Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A
2016-05-15
The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
Locatelli, Luca; Gabriel, Søren; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Taylor, Heidi; Bockhorn, Britta; Larsen, Hauge; Kjølby, Morten Just; Blicher, Anne Steensen; Binning, Philip John
2015-01-01
Stormwater management using water sensitive urban design is expected to be part of future drainage systems. This paper aims to model the combination of local retention units, such as soakaways, with subsurface detention units. Soakaways are employed to reduce (by storage and infiltration) peak and volume stormwater runoff; however, large retention volumes are required for a significant peak reduction. Peak runoff can therefore be handled by combining detention units with soakaways. This paper models the impact of retrofitting retention-detention units for an existing urbanized catchment in Denmark. The impact of retrofitting a retention-detention unit of 3.3 m³/100 m² (volume/impervious area) was simulated for a small catchment in Copenhagen using MIKE URBAN. The retention-detention unit was shown to prevent flooding from the sewer for a 10-year rainfall event. Statistical analysis of continuous simulations covering 22 years showed that annual stormwater runoff was reduced by 68-87%, and that the retention volume was on average 53% full at the beginning of rain events. The effect of different retention-detention volume combinations was simulated, and results showed that allocating 20-40% of a soakaway volume to detention would significantly increase peak runoff reduction with a small reduction in the annual runoff.
NASA Astrophysics Data System (ADS)
Wilson, H. F.; Elliott, J. A.; Glenn, A. J.
2017-12-01
Runoff generation and the associated export of nitrogen, phosphorus, and organic carbon on the Northern Great Plains have historically been dominated by snowmelt runoff. In this region the transport of elements primarily occurs in dissolved rather than particulate forms, so cropland management practices designed to reduce particulate losses tend to be ineffective in reducing nutrient runoff. Over the last decade a higher frequency of high volume and intensity rainfall has been observed, leading to rainfall runoff and downstream flooding. To evaluate interactions between tillage, crop residue management, fertilization practices, weather, and runoff biogeochemistry a network of 18 single field scale watersheds (2-6 ha.) has been established in Manitoba, Canada over a range of fertilization (no input to high input) and tillage (zero tillage to frequent tillage). Soils in this network are typical of cropland in the region with clay or clay loam textures, but soil phosphorus differs greatly depending on input practices (3 to 25 mg kg-1 sodium bicarbonate extractable P). Monitoring of runoff chemistry and hydrology at these sites was initiated in 2013 and over the course of 5 years high volume snowmelt runoff from deep snowpack (125mm snow water equivalent), low volume snowmelt from shallow snowpack (25mm snow water equivalent) and extreme rainfall runoff events in spring have all been observed. Event based analyses of the drivers of runoff chemistry indicate that spring fertilization practices (depth, amount, and timing) influence concentrations of N and P in runoff during large rainfall runoff events, but for snowmelt runoff the near surface soil chemistry, tillage, and crop residue management are of greater importance. Management recommendations that might be suggested to reduce nutrient export and downstream eutrophication in the region differ for snowmelt and rainfall, but are not mutually exclusive.
SWMM IMPROVEMENT FOR ANALYZING BMP/LTD PERFORMANCE
Pollution and treatment costs associated with wet weather flows (WWFs) have caused a need for reducing stormwater runoff volumes as well as loads. A number of strategies and best management practices (BMPs) are being used to mitigate runoff volumes and associated nonpoint source...
78 FR 43898 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... volume control credits were added to Stormwater Management. Incorporating low impact development practices will result in cleaner rainwater runoff. It will also delay urban runoff into floodplains, resulting in reduced stormwater volume that can otherwise have a detrimental scouring impact on a stream's...
Learn about the Stormwater Calculator that provides estimates for stormwater runoff from a specific site. Users can input any location within the U.S. and select different scenarios to see how it affects runoff volumes.
Retrofitting LID Practices into Existing Neighborhoods: Is It Worth It?
NASA Astrophysics Data System (ADS)
Wright, Timothy J.; Liu, Yaoze; Carroll, Natalie J.; Ahiablame, Laurent M.; Engel, Bernard A.
2016-04-01
Low-impact development (LID) practices are gaining popularity as an approach to manage stormwater close to the source. LID practices reduce infrastructure requirements and help maintain hydrologic processes similar to predevelopment conditions. Studies have shown LID practices to be effective in reducing runoff and improving water quality. However, little has been done to aid decision makers in selecting the most effective practices for their needs and budgets. The long-term hydrologic impact assessment LID model was applied to four neighborhoods in Lafayette, Indiana using readily available data sources to compare LID practices by analyzing runoff volumes, implementation cost, and the approximate period needed to achieve payback on the investment. Depending on the LID practice and adoption level, 10-70 % reductions in runoff volumes could be achieved. The cost per cubic meter of runoff reduction was highly variable depending on the LID practice and the land use to which it was applied, ranging from around 3 to almost 600. In some cases the savings from reduced runoff volumes paid back the LID practice cost with interest in less than 3 years, while in other cases it was not possible to generate a payback. Decision makers need this information to establish realistic goals and make informed decisions regarding LID practices before moving into detailed designs, thereby saving time and resources.
Practices to reduce stormwater runoff are implemented for several primary purposes: to protect and improve water quality and hydromorphology in water bodies that receive stormwater runoff, to prevent soil erosion, to maintain groundwater recharge volume, and to prevent increasing...
Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.
Withers, P J; Clay, S D; Breeze, V G
2001-01-01
Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.
[A review of green roof performance towards management of roof runoff].
Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi
2015-08-01
Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.
Impact of dynamically changing land cover on runoff process: the case of Iligan river basin
NASA Astrophysics Data System (ADS)
Salcedo, Stephanie Mae B.; Suson, Peter D.; Milano, Alan E.; Ignacio, Ma. Teresa T.
2016-10-01
Iligan river basin located in Northern Mindanao, Philippines covers 165.7 km2 of basin area. In December 2011, tropical storm Sendong (Washi) hit Iligan City, leaving a trail of wrecked infrastructures and about 490 persons reported dead. What transpired was a wake up call to mitigate future flood disasters. Fundamental to mitigation is understanding runoff behavior inside a basin considering that this is the main source of flooding. For this reason, the present study evaluated total runoff volume, peak discharge and lag time given land cover scenarios in four different years- 1973, 1989, 1998 and 2008. IFSAR and LIDAR DEM were integrated to generate the basin model in ArcGIS. HEC-HMS was used in simulating models for each scenario with Soil Conservation Service Curve Number (SCS CN) as the loss parameter method. Four simulation models of the runoff with varying CN values were established using RIDF as rainfall input with 5 year, 10 year, 25 year, 50 year and 100 year Rainfall Return Period (RRP). Total Runoff volume, peak discharge and lag time were progressively higher from 1973 to 2008 with 1989 land cover as exception where runoff parameters was its lowest. The total runoff volume, peak discharge and lag time is governed by vegetation type. When vegetation is characterized predominantly with woody perennials, runoff volume and peak time is lower. Conversely, when the presence of woody perennials is minimal, these parameters are higher. This study shows that an important way to mitigate flooding is to reduce surface runoff by maintaining vegetation predominantly composed of woody perennials.
Amanda L. Fox; Dean E. Eisenhauer; Michael G. Dosskey
2005-01-01
Vegetated filters (buffers) are used to intercept overland runoff and reduce sediment and other contaminant loads to streams (Dosskey, 2001). Filters function by reducing runoff velocity and volume, thus enhancing sedimentation and infiltration. lnfiltration is the main mechanism for soluble contaminant removal, but it also plays a role in suspended particle removal....
USDA-ARS?s Scientific Manuscript database
The capacity for evapotranspiration (ET)-based irrigation scheduling to reduce runoff volume and nutrient leaching was tested in Fall 2004 and Spring 2005. Runoff (container leachate plus unintercepted irrigation and precipitation) was collected continuously for 17 weeks during production of sweet ...
[Influence of green roof application on water quantity and quality in urban region].
Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi
2014-07-01
Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.
Prairie and turf buffer strips for controlling runoff from paved surfaces.
Steinke, K; Stier, J C; Kussow, W R; Thompson, A
2007-01-01
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.
Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Fu, Dafang
2016-08-01
Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. Copyright © 2016. Published by Elsevier B.V.
Green roof hydrologic performance and modeling: a review.
Li, Yanling; Babcock, Roger W
2014-01-01
Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.
Rice, Pamela J; Horgan, Brian P
2017-02-15
Maintaining quality golf course turf often requires irrigation and application of fertilizer. The transport of excess nutrients with runoff water from highly managed and fertilized biological systems to surrounding surface waters has been shown to result in enhanced algal blooms and promotion of eutrophication. Environmental stewardship includes looking for new approaches to reduce adverse environmental impacts of current practices. One strategy is to replace traditional turfgrass with low-maintenance turfgrass species. Fescue grasses have been shown to provide characteristics desirable for golf course fairways. Thus side-by-side studies comparing runoff from plots planted in creeping bentgrass (CGB) or fine fescue mixture (FFM), similarly managed as a golf course fairway, were conducted to measure runoff volumes and the amount of ammonium nitrogen (NH 4 -N) and nitrate nitrogen (NO 3 -N) transported off-site with runoff. Greater runoff volumes and mass of applied nutrients were measured in the runoff from the FFM, representing a 38% and 56% median increase in the off-site mass transport of NH 4 -N and NO 3 -N with surface flow. Shoot density, thatch depth and soil moisture were the most important factors related to runoff volume. Results of this research will be useful to grounds superintendents and researchers for selecting and developing management strategies to improve environmental stewardship of managed turf while providing desired turf quality. Published by Elsevier B.V.
Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A
2015-04-01
The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.
Pervious pavement systems can be used to reduce stormwater runoff volume and are efficient at removing solids from runoff; however, the pollutant removal efficiency for nutrients, metals, and organic contaminants is yet to be determined due to either a lack of data or inconsisten...
Stoker, Y.E.
1996-01-01
The quantity and quality of stormwater runoff from the Bayside Bridge were evaluated to determine the effectiveness of the stormwater collection and detention pond system of the bridge in reducing constituent loads to Old Tampa Bay. Water-quality samples of stormwater runoff from the bridge and outflow from the detention pond were collected during and after selected storms. These samples were used to compute loads for selected constituents. Stormwater on the Bayside Bridge drained rapidly during rain events. The volume of stormwater runoff from 24 storms measured during the study ranged from 4,086 to 103,705 cubic feet. Storms were most frequent during July through September and were least frequent from February through May. Concentrations of most constituents in stormwater runoff before the bridge opened to traffic were less than or equal to concentrations measured after the bridge was opened to traffic. However, concentrations of arsenic in the outflow from the detention pond generally were greater before the bridge opened than concentrations after, and concentrations of orthophosphorus in the stormwater runoff and outflow from the pond were greater before the bridge opened than during over half the sampled storms after the bridge opened. Concentrations of most constituents measured in stormwater runoff from the bridge were greatest at the beginning of the storm and decreased as the storm continued. Variations in suspended solids, nutrients, and trace element concentrations were not always concurrent with each other. The source of the measured constituent (rainfall or road debris) and the phase of the constituent (suspended or dissolved) probably affected the timing of concentration changes. The quality of stormwater runoff from the Bayside Bridge varied with total runoff volume, with the length of the dry period before the storm, and with season. Average concentrations of suspended solids, ammonia plus organic nitrogen, nitrite plus nitrate nitrogen, orthophosphorus, phosphorus, total organic carbon, aluminum, arsenic, copper, and zinc in stormwater runoff generally were inversely related to runoff volume. The quality of outflow from the detention pond also varied during a storm event and with season. Maximum concentrations generally occurred near the beginning of a storm, and decreased as the storm continued. Maximum concentrations of many constituents occurred in June and July 1995. During the summer months, pH exceeded 9.0 while inorganic nitrogen concentrations were very low. These high pH values and low inorganic nitrogen concentrations are most likely associated with photosynthesis by algae or aquatic plants in the pond. Concentrations of nitrogen, phosphorus, and nickel in stormwater runoff were correlated with total organic carbon concentrations. Concentrations of chromium, copper, iron, nickel, lead, and zinc in stormwater runoff were correlated with aluminum concentrations. The source of these metals is probably the bridge materials and metallic debris from vehicles. The northern detention pond system of the Bayside Bridge effectively reduced concentrations of suspended solids, ammonia nitrogen, nitrite plus nitrate nitrogen, phosphorus, aluminum, cadmium, chromium, copper, iron, lead, nickel, and zinc in stormwater runoff before water discharged from the pond. However, concentrations of ammonia plus organic nitrogen, organic carbon, arsenic, and values for alkalinity, pH, and specific conductance generally were greater in outflow from the pond than in stormwater runoff from the bridge. Stormwater runoff and pond outflow for three storm events were evaluated to determine the effectiveness of the detention pond system in removing selected constituents from the stormwater runoff. Most constituents and constituent loads were reduced in the outflow from the pond. Suspended solids loads were reduced about 30 to 45 percent, inorganic nitrogen loads were reduced by about 60 to 90 percent, and loads of most trace elements
Redefining the stormwater first flush phenomenon.
Bach, Peter M; McCarthy, David T; Deletic, Ana
2010-04-01
The first flush in urban runoff has been an important, yet disputed phenomenon amongst many researchers. The vast differences in the evidence could be solely due to limitations of the first flush current definition and the approach used for its assessment. There is a need for revisiting the first flush theory in the light of its practical applications to urban drainage management practices. We propose that a catchment's first flush behaviour is to be quantified by the runoff volume required to reduce a catchment's stormwater pollutant concentrations to background levels. The proposed method for assessment of this runoff volume starts by finding the average catchment pollutant concentrations for a given increment of discharged volume using a number of event pollutographs. Non-parametric statistics are then used to establish the characteristic pollutograph by pooling statistically indifferent runoff increments (known as slices) together. This allows the identification of the catchment's initial and background pollutant concentrations and for quantification of the first flush volume and its strength. The novel technique was used on seven catchments around Melbourne, Australia, with promising results. Sensitivity to the chosen increment of runoff (for which mean concentrations are calculated) indicated that when dealing with discrete flow-weighted water quality data, a suitable slice size should closely match the flow-weighting of samples. The overall sensitivity to runoff increment and level of significance was found to be negligible. Further research is needed to fully develop this method. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Ghodsi, Seyed Hamed; Kerachian, Reza; Zahmatkesh, Zahra
2016-04-15
In this paper, an integrated framework is proposed for urban runoff management. To control and improve runoff quality and quantity, Low Impact Development (LID) practices are utilized. In order to determine the LIDs' areas and locations, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), which considers three objective functions of minimizing runoff volume, runoff pollution and implementation cost of LIDs, is utilized. In this framework, the Storm Water Management Model (SWMM) is used for stream flow simulation. The non-dominated solutions provided by the NSGA-II are considered as management scenarios. To select the most preferred scenario, interactions among the main stakeholders in the study area with conflicting utilities are incorporated by utilizing bargaining models including a non-cooperative game, Nash model and social choice procedures of Borda count and approval voting. Moreover, a new social choice procedure, named pairwise voting method, is proposed and applied. Based on each conflict resolution approach, a scenario is identified as the ideal solution providing the LIDs' areas, locations and implementation cost. The proposed framework is applied for urban water quality and quantity management in the northern part of Tehran metropolitan city, Iran. Results show that the proposed pairwise voting method tends to select a scenario with a higher percentage of reduction in TSS (Total Suspended Solid) load and runoff volume, in comparison with the Borda count and approval voting methods. Besides, the Nash method presents a management scenario with the highest cost for LIDs' implementation and the maximum values for percentage of runoff volume reduction and TSS removal. The results also signify that selection of an appropriate management scenario by stakeholders in the study area depends on the available financial resources and the relative importance of runoff quality improvement in comparison with reducing the runoff volume. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The movement of metolachlor via runoff and leaching from plots planted to corn on Mississippi River alluvial soil (Commerce silt loam) was measured for a six-year period, 1995-2000. The first three years were characterized by normal rainfall volume, the second three years by reduced rainfall. The ...
Hejl, H.R.
1989-01-01
The precipitation-runoff modeling system was applied to the 8.21 sq-mi drainage area of the Ah-shi-sle-pah Wash watershed in northwestern New Mexico. The calibration periods were May to September of 1981 and 1982, and the verification period was May to September 1983. Twelve storms were available for calibration and 8 storms were available for verification. For calibration A (hydraulic conductivity estimated from onsite data and other storm-mode parameters optimized), the computed standard error of estimate was 50% for runoff volumes and 72% of peak discharges. Calibration B included hydraulic conductivity in the optimization, which reduced the standard error of estimate to 28 % for runoff volumes and 50% for peak discharges. Optimized values for hydraulic conductivity resulted in reductions from 1.00 to 0.26 in/h and 0.20 to 0.03 in/h for the 2 general soils groups in the calibrations. Simulated runoff volumes using 7 of 8 storms occurring during the verification period had a standard error of estimate of 40% for verification A and 38% for verification B. Simulated peak discharge had a standard error of estimate of 120% for verification A and 56% for verification B. Including the eighth storm which had a relatively small magnitude in the verification analysis more than doubled the standard error of estimating volumes and peaks. (USGS)
Wang, Liangmin; Duggin, John A; Nie, Daoping
2012-05-30
Vegetated buffer strips have been recognized as an important element in overall agro-ecosystem management to reduce the delivery of non-point source pollutants from agricultural land to inland water systems. A buffer strip experiment consisting of two tree species (Eucalyptus camaldulensis and Casuarina cunninghamiana) with two planting densities and a pasture treatment was conducted to determine the effectiveness of NO(3)-N removal from a cattle feedlot effluent disposal area at Tullimba near Armidale, NSW Australia. Different management methods were applied for the buffers where grass and weeds were mowed 2-3 times during the second and third years and were not managed during the rest experimental years for the tree buffer, while grass was harvested 1-3 times per year for the pasture buffer. The differences between tree species and planting density significantly affected tree growth, but the growth difference did not significantly affect their capacities to reduce NO(3)-N in soil surface runoff and groundwater. On average for all the tree and pasture treatments, the buffer strips reduced NO(3)-N concentration by 8.5%, 14.7% and 14.4% for the surface runoff, shallow and deep groundwater respectively. The tree and pasture buffer strips were not significantly different in NO(3)-N reduction for both shallow and deep groundwater while the pasture buffer strips reduced significantly more NO(3)-N concentration in surface runoff than the tree buffer strips. Both buffer strips reduced more than 50% of surface runoff volume indicating that both the tree and pasture buffer strips were efficient at removing water and nutrients, mostly through a significant reduction in soil surface runoff volume. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin
2015-09-01
Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.
Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields?
Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Li, Zhe; Li, Shiyang; Jiang, Xiaofeng
2015-07-01
Our study sought to assess how much phosphorus (P) runoff from paddy fields could be cut down by fertilizer management and inoculation with arbuscular mycorrhizal fungi. A field experiment was conducted in Lalin River basin, in the northeast China: six nitrogen-phosphorus-potassium fertilizer levels were provided (0, 20%, 40%, 60%, 80%, and 100% of the recommended fertilizer supply), with or without inoculation with Glomus mosseae. The volume and concentrations of particle P (PP) and dissolved P (DP) were measured for each runoff during the rice growing season. It was found that the seasonal P runoff, including DP and PP, under the local fertilization was 3.7 kg/ha, with PP, rather than DP, being the main form of P in runoff water. Additionally, the seasonal P runoff dropped only by 8.9% when fertilization decreased by 20%; rice yields decreased with declining fertilization. We also found that inoculation increased rice yields and decreased P runoff at each fertilizer level and these effects were lower under higher fertilization. Conclusively, while rice yields were guaranteed arbuscular mycorrhizal inoculation and fertilizer management would play a key role in reducing P runoff from paddy fields. Copyright © 2015. Published by Elsevier B.V.
EPA’s Permeable Pavement Research
A deteriorated parking area on EPA’s Edison Environmental Center needed replacement. The replacement offered an opportunity for the facility managers to reduce the impervious footprint and the reduce stormwater runoff volume. This also provided researchers from the National Risk ...
Effects of landscape-based green infrastructure on stormwater ...
The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reaching streams. These changes have deleterious effects on downstream surface waters. Consequently, strategies to mitigate these impacts are now components of contemporary urban development and stormwater management. This study evaluates the effectiveness of landscape green infrastructure (GI) in reducing stormwater runoff volumes and controlling peak flows in four subdivision-scale suburban catchments (1.88 – 12.97 acres) in Montgomery County, MD, USA. Stormwater flow rates during runoff events were measured in five minute intervals at each catchment outlet. One catchment was built with GI vegetated swales on all parcels with the goal of intercepting, conveying, and infiltrating stormwater before it enters the sewer network. The remaining catchments were constructed with traditional gray infrastructure and “end-of-pipe” best management practices (BMPs) that treat stormwater before entering streams. This study compared characteristics of rainfall-runoff events at the green and gray infrastructure sites to understand their effects on suburban hydrology. The landscape GI strategy generally reduced rainfall-runoff ratios compared to gray infrastructure because of increased infiltration, ul
Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang
2016-03-01
Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Schneeberger, Klaus; Welebil, Irene; Schöber, Johannes; Huss, Matthias; Formayer, Herbert; Huttenlau, Matthias; Schneider, Katrin
2014-05-01
The seasonal distribution of runoff in alpine catchments is markedly influenced by the cryospheric contribution (snow and ice). Long-term climate change will alter these reservoirs and consequently have an impact on the water balance. Glacierized catchments like the Ötztal (Tyrol, Austria) are particularly sensitive to changes in the cryosphere and the hydrological changes related to them. The Ötztal possesses an outstanding role in Austrian and international cryospheric research and reacts sensitive to changes in hydrology due to its socio-economic structure (e.g. importance of tourism, hydro-power). In this study future glacier scenarios for the runoff calculations in the Ötztal catchment are developed. In addition to climatological scenario data, glacier scenarios were established for the hydrological simulation of future runoff. Glacier outlines and glacier surface elevation changes of the Austrian Glacier Inventory were used to derive present ice thickness distribution and scenarios of glacier area distribution. Direct effects of climate change (i.e. temperature and precipitation change) and indirect effects in terms of variations in the cryosphere were considered for the analysis of the mean runoff and particularly flood frequencies. Runoff was modelled with the hydrological model HQSim, which was calibrated for the runoff gauges at Brunau, Obergurgl and Vent. For a sensitivity study, the model was driven by separate glacier scenarios. Keeping glacier area constant, variable climate input was used to separate the effect of climate sensitivity. Results of the combination of changed glacier areas and changed climate input were subsequently analysed. Glacier scenarios show first a decrease in volume, before glacier area shrinks. The applied method indicates a 50% ice volume loss by 2050 relative to today. Further, model results show a reduction in glacier volume and area to less than 20% of the current ice cover towards the end of the 21st century. The effect of reduced glacier areas can be seen in a reduction of runoff particularly in summer. Maintaining the glacier areas constant, runoff would increase in summer month caused by higher ice melt under climate change conditions. Also runoff increases in spring and fall is expected due to a shift from solid to liquid precipitation in the mountain catchments. The simulation of the combination of glacier change and climate change scenarios results in an increase in runoff in spring due to a shift in the snowline and a decrease in runoff in summer caused by reduced glacier area.
Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A
2011-01-01
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.
Adviento-Borbe, M Arlene A; Barnes, Brittany D; Iseyemi, Oluwayinka; Mann, Amanda M; Reba, Michele L; Robertson, William J; Massey, Joseph H; Teague, Tina G
2018-02-01
Use of furrow irrigation in row crop production is a common practice through much of the Midsouth US and yet, nutrients can be transported off-site through surface runoff. A field study with cotton (Gossypium hirsutum, L.) was conducted to understand the impact of furrow tillage practices and nitrogen (N) fertilizer placement on characteristics of runoff water quality during the growing season. The experiment was designed as a randomized complete block design with conventional (CT) and conservation furrow tillage (FT) in combination with either urea (URN) broadcast or 32% urea ammonium nitrate (UAN) injected, each applied at 101kgNha -1 . Concentrations of ammonium (NH 4 -N), nitrate (NO 3 -N), nitrite (NO 2 -N), and dissolved phosphorus (P) in irrigation runoff water and lint yields were measured in all treatments. The intensity and chemical form of nutrient losses were primarily controlled by water runoff volume and agronomic practice. Across tillage and fertilizer N treatments, median N concentrations in the runoff were <0.3mgNL -1 , with NO 3 -N being relatively the highest among N forms. Concentrations of runoff dissolved P were <0.05mgPL -1 and were affected by volume of runoff water. Water pH, specific electrical conductivity, alkalinity and hardness were within levels that common to local irrigation water and less likely to impair pollution in waterways. Lint yields averaged 1111kgha -1 and were higher (P-value=0.03) in FT compared to CT treatments. Runoff volumes across irrigation events were greater (P-value=0.02) in CT than FT treatments, which increased NO 3 -N mass loads in CT treatments (394gNO 3 -Nha -1 season -1 ). Nitrate-N concentrations in CT treatments were still low and pose little threat to N contaminations in waterways. The findings support the adoption of conservation practices for furrow tillage and N fertilizer placement that can reduce nutrient runoff losses in furrow irrigation systems. Published by Elsevier B.V.
Integrated urban water management in commercial buildings.
Trowsdale, S; Gabe, J; Vale, R
2011-01-01
Monitoring results are presented as an annual water balance from the pioneering Landcare Research green building containing commercial laboratory and office space. The building makes use of harvested roof runoff to flush toilets and urinals and irrigate glasshouse experiments, reducing the demand for city-supplied water and stormwater runoff. Stormwater treatment devices also manage the runoff from the carpark, helping curb stream degradation. Composting toilets and low-flow tap fittings further reduce the water demand. Despite research activities requiring the use of large volumes of water, the demand for city-supplied water is less than has been measured in many other green buildings. In line with the principles of sustainability, the composting toilets produce a useable product from wastes and internalise the wastewater treatment process.
EPA’s permeable pavement research and the Edison Environmental Center
A deteriorated parking area on EPA’s Edison Environmental Center needed replacement. The replacement offered an opportunity for the facility managers to reduce the impervious footprint and the reduce stormwater runoff volume. This also provided researchers from the National Risk ...
NASA Astrophysics Data System (ADS)
Papanicolaou, T.; Elhakeem, M.; Wilson, C. G.; Dermisis, D. C.; Abaci, O.
2010-12-01
Conversion of the natural prairie-forested landscape in US Midwestern states to a corn-soybean crop rotation has altered the runoff condition and stream hydrology throughout the region by creating more dynamic surface water flow regimes and increasing the likelihood of severe floods. Flooding and the associated water quality issues in the region adversely affect crop yields, downstream ecosystem health, and water availability. In response to these concerns, Midwestern agricultural producers have adopted Best Management Practices (BMPs) to increase runoff retention and reduce sediment delivery. Common BMPs in the region are Grassed WaterWays (GWWs), which have been found to effectively reduce runoff/sediment conveyance by slowing water flow and increasing infiltration rates. This study examined the storm-event based efficiency of GWWs at reducing runoff within an agricultural watershed of the US Midwest using the Water Erosion Prediction Project (WEPP). Reductions in runoff volume in a representative field increased by 9 times as the length of the GWW increased. GWW efficiency was governed by the hydrology, expressed as Qpeak. The GWWs were more efficient during events with smaller Qpeak values, while the efficiency decreased during larger events. Building on these simulations for a single hillslope, a standardized hydrologic analysis was conducted in the watershed using established hydrologic modeling techniques (i.e., WIN TR-20) to quantify and mitigate potential flooding impacts for the entire watershed. The outcome of this study was to identify and quantify the management practices (e.g., conversion to grass or no-till) and detention structures needed to mitigate large flood events in the watershed. The results suggested that detention structures located along the stream channel corridor were most effective with the landscape changes as a secondary effort. A high level of land use conversion was needed to produce significant runoff reductions. Average reductions in runoff volumes of about 12% were observed for a 25% conversion of agricultural land to grasslands, with about an average 15% reduction for a 50% conversion. However, these land conversions will likely decrease sediment loads in the streams, which can extend the lifespan of the detention structures by preventing siltation.
van der Sterren, M; Rahman, A; Dennis, G R
2012-01-01
Rainwater tanks are increasingly adopted in Australia to reduce potable water demand and are perceived to reduce the volume of stormwater discharge from developments. This paper investigates the water balance of rainwater tanks, in particular the possible impacts these tanks could have in controlling the stormwater discharge volume. The study collected water quantity data from two sites in the Hawkesbury City Council area, New South Wales, Australia and utilised the collected data in a simple water balance model to assess the effectiveness of rainwater tanks in reducing the stormwater discharge volume. The results indicate that a significant reduction in discharge volume from a lot scale development can be achieved if the rainwater tank is connected to multiple end-uses, but is minimal when using irrigation alone. In addition, the commonly used volumetric runoff coefficient of 0.9 was found to over-estimate the runoff from the roof areas and to thereby under-estimate the available volume within the rainwater tanks for retention or detention. Also, sole reliance on the water in the rainwater tanks can make the users aware of their water use pattern and water availability, resulting in significant reductions in water use as the supply dwindles, through self-imposed water restrictions.
Environmental Effects of Pervious Pavement as a Low Impact ...
Pervious pavement systems can be used to reduce stormwater runoff volume and are efficient at removing solids from runoff; however, the pollutant removal efficiency for nutrients, metals, and organic contaminants is yet to be determined due to either a lack of data or inconsistent results. Groundwater recharge through the use of pervious pavement systems has not been proven, although runoff infiltration to underlying soils has been shown under certain conditions. The potential for groundwater contamination through the infiltration of runoff through pervious pavement is dependent on the stressor of interest, its mobility, its concentration in runoff, and its partitioning in runoff (dissolved or particle-bound). Every site is different and care should be taken to examine site conditions, underlying soil characteristics, and local climate prior to determining if the installation of pervious pavement would be an appropriate best management practice for stormwater management at a particular location. To inform the public.
Burwell, Robert W; Beasley, Jeffrey S; Gaston, Lewis A; Borst, Steven M; Sheffield, Ron E; Strahan, Ron E; Munshaw, Gregg C
2011-01-01
Nutrient and sediment runoff from newly constructed levee embankments pose a threat to water quality during soft armor vegetation establishment. Research was initiated in 2008 and 2009 to evaluate the effect of bermudagrass ( L.) coverage and N source on nutrient and sediment runoff from levee embankments during establishment. Bermudagrass plots were seeded at 195.3 kg pure live seed ha and fertilized at 50 kg N ha using a water-soluble N source, urea or NH-NO, or slow-release N source, S-coated urea (SCU) or urea formaldehyde (UF), with controls unfertilized. Vegetative cover percentage, time until the onset of runoff, runoff volume, and total solids (TS), NO-N, and NH-N concentrations were measured from simulated and natural rainfall events for 70 d in 2008 and 56 d in 2009. Bermudagrass at 90% grass cover delayed the onset of runoff an additional 441 to 538 s and reduced runoff volumes 74 to 84% of that exhibited at 10% grass cover. Nitrogen fertilizers did not accelerate bermudagrass growth sufficiently, however, to reduce TS loading compared with unfertilized bermudagrass in either year of the study. The application of urea and SCU resulted in cumulative N losses of 2.45 and 3.13 kg ha compared with 1.59 kg ha from the unfertilized bermudagrass in 2008, and 1.73 kg ha from NH-NO vs. 0.24 kg ha from controls in 2009. Only UF increased bermudagrass establishment without increasing cumulative N losses compared with unfertilized bermudagrass. Therefore, the benefit of greater erosion and runoff resistance expected from N-accelerated vegetative growth did not occur but had the unintended consequence of higher N losses when water-soluble N and SCU fertilizers were applied. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.
2017-12-01
Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.
Storm Water Management Model Reference Manual Volume II ...
SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the quantity and quality of runoff generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period comprised of multiple time steps. The reference manual for this edition of SWMM is comprised of three volumes. Volume I describes SWMM’s hydrologic models, Volume II its hydraulic models, and Volume III its water quality and low impact development models. This document provides the underlying mathematics for the hydraulic calculations of the Storm Water Management Model (SWMM)
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
An at-grade stabilization structure impact on runoff and suspended sediment
Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.
2012-01-01
In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p < 0.001) larger proportion of clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended sediment transported to nearby surface waters. The cost of an AGSS can range from US$3,500 to US$8,000, depending on size. Thus, these structures provide a cheap and effective means of improving water quality in highly erosive landscapes.
Li, Jian-Ming; Wang, Wen-Long; Wang, Zhen; Luo, Ting; Li, Hong-Wei; Jin, Jian
2013-12-01
The processes of runoff and sediment yields from and the benefits of water and sediment reductions by the residues produced in the Shenfu-Dongsheng Coalfield were investigated by a simulated field rainfall experiment. The runoff generation time generally presented a decreasing trend with increasing rainfall intensity, but varied widely with the change of residue compositions. Runoff from the slag reached a steady velocity faster than that from the spoil, and the average velocities of runoff from the residues were gradually decreased in the spoil, the slag with more sand and less stone, and the slag with less sand and more stone. Runoff rates for the residues reached a steady rate 6 min after runoff generation, and were significantly correlated with the rainfall intensities. Erosion on the residues mainly occurred in the first 6 min after runoff generation. Average sediment concentrations in the first 6 min were 0.43-4.27 times of those thereafter for the spoil, and 1.43-54.93 times for the slag. The runoff volume was a linear function of the rainfall intensity for the spoil and the slag with more sand and less stone, and was a power function of rainfall intensity for the slag with less sand and more stone. The relationships between single erosion and rainfall intensity for the spoil and the slag with less sand and more stone can be described by exponential and power functions, respectively. For the spoil, the erosion rate was a linear function of the runoff volume. When fish-scale pits and vegetation coverage were adopted on the surface of the slag, the generation of runoff lagged 24 min behind initial rainfall applications at intensities of 1.0 and 1.5 mm x min(-1), and the runoff and sediment yields were reduced by 29.5%-52.9% and 85.7%-97.9%, respectively.
Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C
2004-01-01
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.
Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G
2018-06-05
Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.
Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel
2016-10-01
Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.
Science in Action: National Stormwater Calculator (SWC) ...
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. EPA has developed the National Stormwater Calculator (SWC) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention using green infrastructure practices as low impact development (LID) controls. To inform the public on what the Stormwater Calculator is used for.
Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model
Granato, Gregory; Jones, Susan Cheung
2017-01-01
The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.
Tangen, Brian; Finocchiaro, Raymond
2017-01-01
The enhancement of agricultural lands through the use of artificial drainage systems is a common practice throughout the United States, and recently the use of this practice has expanded in the Prairie Pothole Region. Many wetlands are afforded protection from the direct effects of drainage through regulation or legal agreements, and drainage setback distances typically are used to provide a buffer between wetlands and drainage systems. A field study was initiated to assess the potential for subsurface drainage to affect wetland surface-water characteristics through a reduction in precipitation runoff, and to examine the efficacy of current U.S. Department of Agriculture drainage setback distances for limiting these effects. Surface-water levels, along with primary components of the catchment water balance, were monitored over 3 y at four seasonal wetland catchments situated in a high-relief terrain (7–11% slopes). During the second year of the study, subsurface drainage systems were installed in two of the catchments using drainage setbacks, and the drainage discharge volumes were monitored. A catchment water-balance model was used to assess the potential effect of subsurface drainage on wetland hydrology and to assess the efficacy of drainage setbacks for mitigating these effects. Results suggest that overland precipitation runoff can be an important component of the seasonal water balance of Prairie Pothole Region wetlands, accounting on average for 34% (19–49%) or 45% (39–49%) of the annual (includes snowmelt runoff) or seasonal (does not include snowmelt) input volumes, respectively. Seasonal (2014–2015) discharge volumes from the localized drainage systems averaged 81 m3 (31–199 m3), and were small when compared with average combined inputs of 3,745 m3 (1,214–6,993 m3) from snowmelt runoff, direct precipitation, and precipitation runoff. Model simulations of reduced precipitation runoff volumes as a result of subsurface drainage systems showed that ponded wetland surface areas were reduced by an average of 590 m2 (141–1,787 m2), or 24% (3–46%), when no setbacks were used (drainage systems located directly adjacent to wetland). Likewise, wetland surface areas were reduced by an average of 141 m2 (23–464 m2), or 7% (1–28%), when drainage setbacks (buffer) were used. In totality, the field data and model simulations suggest that the drainage setbacks should reduce, but not eliminate, impacts to the water balance of the four wetlands monitored in this study that were located in a high-relief terrain. However, further study is required to assess the validity of these conclusions outside of the limited parameters (e.g., terrain, weather, soils) of this study and to examine potential ecological effects of altered wetland hydrology.
Spatio-temporal effects of low impact development practices
NASA Astrophysics Data System (ADS)
Gilroy, Kristin L.; McCuen, Richard H.
2009-04-01
SummaryThe increase in land development and urbanization experienced in the US and worldwide is causing environmental degradation. Traditional off-site stormwater management does not protect small streams. To mitigate the negative effects of land development, best management practices (BMPs) are being implemented into stormwater management policies for the purposes of controlling minor flooding and improving water quality. Unfortunately, the effectiveness of BMPs has not been extensively studied. The purpose of this research was to analyze the effects of both location and quantity of two types of BMPs: cisterns and bioretention pits. A spatio-temporal model of a microwatershed was developed to determine the effects of BMPs on single-family, townhome, and commercial lots. The effects of development and the BMPs on peak runoff rates and volumes were compared to pre-development conditions. The results show that cisterns alone are capable of controlling rooftop runoff for small storms. Both the spatial location and the volume of BMP storage on a microwatershed influences the effectiveness of BMPs. The volume of BMP storage is positively correlated to the percent reduction in the peak discharge rate and total runoff volume; however, location is a factor in the peak reduction and a maximum volume of effective storage for both hydrologic metrics does exist. These results provide guidelines for developing stormwater management policies that can potentially reduce pollution of first-order streams, lower the cost and maintenance requirements, enhance aesthetics, and increase safety.
NASA Astrophysics Data System (ADS)
Hernandez-Santana, V.; Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R.; Tomer, M.
2013-01-01
SummaryIntensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was to assess the effects of strategic introduction of different amounts and location of native prairie vegetation (NPV) within agricultural landscapes on hydrological regulation. The study was conducted in Iowa (USA), and consisted of a fully balanced, replicated, incomplete block design whereby 12 zero-order ephemeral flow watersheds received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (footslope vs. contour strips). Runoff volume and rate were measured from 2008 to 2010 (April-October) with an H-Flume installed in each catchment, and automated ISCO samplers. Over the entire study period, we observed a total of 129 runoff events with an average runoff volume reduction of 37% based on the three treatments with NPV compared to watersheds with row crops. We observed a progressively greater reduction across the 3 years of the study as the perennial strips became established with the greatest differences among treatments occurring in 2010. The differences among the watersheds were attributed mainly to NPV amount and position, with the 10% NPV at footslope treatment having the greatest runoff reduction probably because the portion of NPV filter strip that actually contacted watershed runoff was greater with the 10% NPV at footslope. We observed greater reductions in runoff in spring and fall likely because perennial prairie plants were active and crops were absent or not fully established. High antecedent soil moisture sometimes led to little benefit of the NPV treatments but in general the NPV treatments were effective during both small and large events. We conclude that, small amounts of NPV strategically incorporated into corn-soybean watersheds in the Midwest US can be used to effectively reduce runoff.
Urban Stormwater Runoff: A New Class of Environmental Flow Problem
Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.
2012-01-01
Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257
Trommer, J.T.; Loper, J.E.; Hammett, K.M.; Bowman, Georgia
1996-01-01
Hydrologists use several traditional techniques for estimating peak discharges and runoff volumes from ungaged watersheds. However, applying these techniques to watersheds in west-central Florida requires that empirical relationships be extrapolated beyond tested ranges. As a result there is some uncertainty as to their accuracy. Sixty-six storms in 15 west-central Florida watersheds were modeled using (1) the rational method, (2) the U.S. Geological Survey regional regression equations, (3) the Natural Resources Conservation Service (formerly the Soil Conservation Service) TR-20 model, (4) the Army Corps of Engineers HEC-1 model, and (5) the Environmental Protection Agency SWMM model. The watersheds ranged between fully developed urban and undeveloped natural watersheds. Peak discharges and runoff volumes were estimated using standard or recommended methods for determining input parameters. All model runs were uncalibrated and the selection of input parameters was not influenced by observed data. The rational method, only used to calculate peak discharges, overestimated 45 storms, underestimated 20 storms and estimated the same discharge for 1 storm. The mean estimation error for all storms indicates the method overestimates the peak discharges. Estimation errors were generally smaller in the urban watersheds and larger in the natural watersheds. The U.S. Geological Survey regression equations provide peak discharges for storms of specific recurrence intervals. Therefore, direct comparison with observed data was limited to sixteen observed storms that had precipitation equivalent to specific recurrence intervals. The mean estimation error for all storms indicates the method overestimates both peak discharges and runoff volumes. Estimation errors were smallest for the larger natural watersheds in Sarasota County, and largest for the small watersheds located in the eastern part of the study area. The Natural Resources Conservation Service TR-20 model, overestimated peak discharges for 45 storms and underestimated 21 storms, and overestimated runoff volumes for 44 storms and underestimated 22 storms. The mean estimation error for all storms modeled indicates that the model overestimates peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. The HEC-1 model overestimated peak discharge rates for 55 storms and underestimated 11 storms. Runoff volumes were overestimated for 44 storms and underestimated for 22 storms using the Army Corps of Engineers HEC-1 model. The mean estimation error for all the storms modeled indicates that the model overestimates peak discharge rates and runoff volumes. Generally, the smaller estimation errors in peak discharges were for storms occurring in the urban watersheds, and the larger errors were for storms occurring in the natural watersheds. Estimation errors in runoff volumes; however, were smallest for the 3 natural watersheds located in the southernmost part of Sarasota County. The Environmental Protection Agency Storm Water Management model produced similar peak discharges and runoff volumes when using both the Green-Ampt and Horton infiltration methods. Estimated peak discharge and runoff volume data calculated with the Horton method was only slightly higher than those calculated with the Green-Ampt method. The mean estimation error for all the storms modeled indicates the model using the Green-Ampt infiltration method overestimates peak discharges and slightly underestimates runoff volumes. Using the Horton infiltration method, the model overestimates both peak discharges and runoff volumes. The smaller estimation errors in both peak discharges and runoff volumes were for storms occurring in the five natural watersheds in Sarasota County with the least amount of impervious cover and the lowest slopes. The largest er
NASA Technical Reports Server (NTRS)
Rango, A.
1981-01-01
Both LANDSAT and NOAA satellite data were used in improving snowmelt runoff forecasts. When the satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. A cost benefit analysis run in conjunction with the snow mapping indicated a $36.5 million annual benefit accruing from a one percent improvement in forecast accuracy using the snow cover data for the western United States. The annual cost of employing the system would be $505,000. The snow mapping has proven that satellite snow cover data can be used to reduce snowmelt runoff forecast error in a cost effective manner once all operational satellite data are available within 72 hours after acquisition. Executive summaries of the individual snow mapping projects are presented.
BMP MODELING CONCEPTS AND SIMULATION
In order to minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies and so-called “best man...
Ruban, V; Larrarte, F; Berthier, M; Favreau, L; Sauvourel, Y; Letellier, L; Mosisni, M L; Raimbault, G
2005-01-01
A qualitative and quantitative budget at the outlet of the storm-water runoff system of a small suburban watershed is presented together with some data regarding waste-water. 445,000 m3 (34% of the rain-water volume) were drained by the storm-water runoff system and 40,879 m3 by the waste-water system from September 2002 to March 2004. Storm-water runoff is generally not heavily polluted with regard to trace metals but concentrations occasionally exceed the standards for surface water of good quality. On the contrary, pesticides (diuron and glyphosate) have very high concentrations especially in spring and autumn when their use is maximum. As the St Joseph storm-water runoff is finally discharged into the Erdre River, measures to reduce the use of these pollutants should be considered.
[Impacts of forest and precipitation on runoff and sediment in Tianshui watershed and GM models].
Ouyang, H
2000-12-01
This paper analyzed the impacts of foret stand volume and precipitation on annual erosion modulus, mean sediment, maximum sediment, mean runoff, maximum runoff, minimum runoff, mean water level, maximum water level and minimum water level in Tianshui watershed, and also analyzed the effect of the variation of forest stand volume on monthly mean runoff, minimum runoff and mean water level. The dynamic models of grey system GM(1, N) were constructed to simulate the changes of these hydrological elements. The dynamic GM models on the impact of stand volumes of different forest types(Chinese fir, masson pine and broad-leaved forests) with different age classes(young, middle-aged, mature and over-mature) and that of precipitation on the hydrological elements were also constructed, and their changes with time were analyzed.
[Urban non-point source pollution control by runoff retention and filtration pilot system].
Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia
2011-09-01
A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.
Legg, A.D.; Bannerman, R.T.; Panuska, John
1996-01-01
The quality of runoff from residential lawns is a concern for municipal stormwater management programs. Land-use based computer models are increasingly being used to assess the impact of lawn runoff on urban watersheds. To accurately model the runoff for residential lawns, the variation in the relation of rainfall to runoff from lawns must be understood. The study described in this report measures the runoff parameters from 20 residential lawns in Madison, Wisconsin, using a rainfall simulator. It was determined that the saturated hydraulic conductivity does not vary significantly within a single residential lawn, but does vary significantly from one lawn to another. This variation is recognized in the entire rainfall-runoff relation from one lawn to another. The age of a lawn, or the years since development and turf establishment, is used as a surrogate of several lawn and soil characteristics to describe the variability in lawn runoff volumes. Runoff volumes from newly developed lawns are significantly greater than runoff from older lawns. This is an important consideration when modeling runoff for new developments. For older lawns, the date since lawn establishment does not explain the variation in the rainfall-runoff relation. In order for simple land-use based computer models to adequately account for the volume of runoff from pervious landscapes, field data from individual lawns would be necessary. A more realistic, alternative method may be to consider a basin-scale analysis of runoff from pervious landscapes.
Granato, Gregory E.; Jones, Susan C.
2015-01-01
The case study is hypothetical, but was formulated by using actual data from selected monitoring sites in New England. Data representing streamflow and water-quality were collected at U.S. Geological Survey (USGS) streamgage 01208950 Sasco Brook near Southport, CT, which has a drainage area of 7.38 square miles. In this hypothetical case study a 4-lane highway would replace the current 2-lane road and would have a contributing area of 2.2 acres between the topographic basin divides. Concentrations of TN and TP in highway runoff were simulated with data from USGS highway-runoff monitoring station 423027071291301 along State Route 2 in Littleton Massachusetts. Results of a highway-runoff analysis are shown in relation to three hypothetical discharge criteria for TN and two hypothetical discharge criteria for TP. The risks for exceeding TN discharge criteria of 3, 5, and 8 mg/L for highway runoff are 7.4, 0.83, and 0.13 percent of 1,721 runoff events that may occur during a stochastic 30-year simulation. If a grassy swale is used to treat the runoff, the risks for TN exceedances are reduced to 3.2, 0.33 and 0.03 percent, respectively. The risks for exceeding TP discharge criteria of 0.1 and 0.5 mg/L for highway runoff are 49 and 1.2 percent, respectively. If a grassy swale is used to treat the runoff, the risks for TP exceedances are 57 and 0.8 percent, respectively. The risks for the 0.1 mg/L criterion increase because swales can be a source of TP if pavement concentrations are low. The risks for the 0.5 mg/L criterion decrease because the swale is effective for reducing high TP concentrations. Although the results are mixed for storm-event concentrations, the grassy swale effectively reduces annual loads. Annual loads from the swale are, on average, about 49 percent of highway loads for TN and 62 percent of highway loads of TP because the swale reduces high runoff concentrations and stormflow volumes. Analysis of upstream and downstream concentrations indicates that runoff from the site of interest does not have a substantial effect on instream stormflow concentrations in this example simulation.
Cistern Performance for Stormwater Management in Camden, NJ
The Camden County Municipal Utilities Authority (CCMUA) installed cisterns at locations around the city of Camden, NJ. Cisterns provide a cost effective approach to reduce stormwater runoff volume and peak discharge. The collected water can be substituted for potable water in s...
METHODS FOR OPTIMIZING URBAN WET-WEATHER CONTROL SYSTEM
To minimize impacts of urban nonpoint source pollution and associated costs of control (storage and treatment) associated with wet-weather flows (WWFs), stormwater runoff volumes and pollutant loads must be reduced. A number of control strategies, so-called “best management pract...
Modeling the Hydrologic Processes of a Permeable Pavement System
A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...
Stormwater Volume Control to Prevent Increases in Lake Flooding and Dam Failure Risk
NASA Astrophysics Data System (ADS)
Potter, K. W.
2017-12-01
Urban expansion is not often considered a major factor contributing to dam failure. But if urbanization occurs without mitigation of the hydrologic impacts, the risk of dam failure will increase. Of particular concern are increases in the volume of storm runoff resulting from increases in the extent of impervious surfaces. Storm runoff volumes are not regulated for much the U.S, and where they are, the required control is commonly less than 100%. Unmitigated increases in runoff volume due to urbanization can pose a risk to dams. A recent technical advisory committee of Dane County has recommended that the county require 100% control of stormwater volumes for new developments. The primary motivation was to prevent increases in the water levels in the Yahara Lakes, slowly draining lakes that are highly sensitive to runoff volume. The recommendations included the use of "volume trading" to achieve efficient compliance. Such recommendations should be considered for other slowly draining lakes, including those created by artificial structures.
Effectiveness of Perennial Vegetation Strips in Reducing Runoff in Annual Crop Production Systems
NASA Astrophysics Data System (ADS)
Hernandez-Santana, V.; Zhou, X.; Helmers, M.; Asbjornsen, H.; Kolka, R. K.
2010-12-01
In many parts of the world, unprecedented high crop yields have been attained by conversion of native perennial grasslands to intensively managed annual cropping systems. However, these achievements have often been accompanied by significant environmental impacts with far-reaching social and economic costs. Perhaps nowhere is this situation revealed more acutely than in the Midwestern US, where landscape-scale transformation of native tallgrass prairie to rowcrop corn and soybeans has dramatically altered the hydrologic cycle, increased nutrient and sediment loss, and diminished ecosystem services. The objective of this study was to assess the potential for reducing negative impacts of rowcrop agriculture on water quality and flow by incorporating native prairie vegetation in strategic locations within conventional rowcrop agriculture. Specifically, we tested the hypothesis that small amounts of prairie vegetation strategically located in agricultural landscapes would lead to disproportionate benefits by reducing runoff and nutrient and sediment loss. The study was conducted at the Neal Smith National Wildlife Refuge (Iowa), and consisted of a fully balanced, replicated, incomplete block design whereby twelve small experimental catchments (0.43 - 3.19 ha) received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (downslope “toe” vs. contour strips). Pre- treatment data were collected in 2005, treatments installed in 2006, and post-treatment responses monitored annually (April-October) thereafter. Volume and rate of surface runoff were measured with an H-Flume installed in each catchment, and automated ISCO samplers used to collect event-based runoff samples that were analyzed for sediment, nitrate (N), and phosphorus (P) concentration. A total of 102 rainfall events were registered during the study period (April-October, 2008 and 2009), accounting for a total rainfall amount of 792 mm and 684 mm, in 2008 and 2009, respectively. Eighty-eight of the rainfall events were runoff-producing in at least one of the watersheds. A highly significant linear relationship between rainfall and runoff was found and the slopes of equations were always higher for 100% crops and lower for watersheds with prairie vegetation. Peak flows occurred earlier and higher peaks were observed in the watersheds with 100% crops than in the mixed crop-prairie watersheds. There was a trend of greatest runoff reduction occurring in watersheds with 10% of prairie in toeslope and 20% of prairie in contour strips, compared to the other treatments. Sediment, N, and P loss was approximately 25, 5.5, and 9 times greater, respectively, from the 100% rowcrop watersheds compared to the mixed crop-prairie watersheds. In conclusion, the results suggest that the incorporation of strategically placed small amounts of diverse perennial vegetation (10% at toeslope and 20% strips) can significantly reduce runoff volume and loss of sediment and nutrients from rowcrop agriculture.
Von Guerard, Paul; Weiss, W.B.
1995-01-01
The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce
Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)
NASA Astrophysics Data System (ADS)
Xiao, Q.
2009-12-01
Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.
Li, Tianyang; He, Binghui; Chen, Zhanpeng; Zhang, Yi; Liang, Chuan; Wang, Renxin
2016-06-01
Amounts of landslide deposits were triggered by the Wenchuan earthquake with magnitude 8.0 on May 12, 2008. The landslide deposits were composed of soil and rock fragments, which play important roles in hydrological and erosion processes in the steep slope of landslide deposits. The mixtures of soil and gravels are common in the top layers of landslide deposits, and its processes are obviously different with the soil without gravels. Based on the data of field investigation, a series of simulated scouring flow experiments with four proportion of gravel (0, 25, 33.3, and 50 %) and three scouring flow rates (4, 8, 12 L/min) under two steep slopes (67.5, 72.7 %) were conducted sequentially to know the effects of proportion of gravel on infiltration capacity, runoff generation, and sediment production in the steep slope of landslide deposit. Results indicated that gravel had promoted or reduced effects on infiltration capacity which could affect further the cumulative runoff volume and cumulative sediment mass increase or decrease. The cumulative infiltration volume in 25 % proportion of gravel was less than those in 0, 33.3, and 50 % proportion of gravel. The cumulative runoff volume was in an order of 25 > 0 > 33.3 > 50 % while cumulative sediment mass ranked as 25 > 33.3 > 0 > 50 % with different proportions of gravel. A significant power relationship was found between scouring time and cumulative runoff volume as well as cumulative sediment mass. The relationship between average soil and water loss rate and proportion of gravel was able to express by quadratic function, with a high degree of reliability. The results have important implications for soil and water conservation and modeling in landslide deposit but also provide useful information for the similar conditions.
Characterizations of the first flush in storm water runoff from an urban roadway.
Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T
2005-07-01
Storm water runoff from urban roadways contains anthropogenic pollutants, which are mainly generated from traffic-related activities. The purpose of this study was to evaluate the characteristics of pollutants from the roadway runoff as well as first flush effects. Storm water runoff was sampled during five storm events from the experimental site in Otsu, Shiga, Japan. From the hydrographs and pollutographs for the roadway runoff, the concentration of pollutants increased with increasing runoff flow in the low flow rate event, but did not significantly increase in the high flow rate event. Moreover, according to the analysis of cumulative pollutant mass versus runoff volume curves from five storm events, the first 50% of the runoff volume transported 62% of TOC and Mo, 60% of SS, 59% of Fe, Mn and Cu, 58% of Ni, 57% of Cd and Pb, 56% of Al, 55% of Zn, and 54% of Cr, as the mean values. The first 30% and 80% of the runoff volume also transported 34-43% mass of the pollutants and 82-88% mass of the pollutants, respectively. This study for storm water runoff may also provide useful information to correctly design treatment facilities, such as detention tanks and ponds, filtration and adsorption systems.
Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L
2010-06-01
The off-site transport of pesticides with runoff is both an agronomic and environmental concern, resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creeping bentgrass (Agrostis palustris) turf managed as golf course fairway to gain a better understanding of factors that influence chemical availability and mass transport. Less than 1 to 23% of applied chloropyrifos, flutolanil, mecoprop-p (MCPP), dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), or dicamba was measured in edge-of-plot runoff when commercially available pesticide formulations were applied at label rates 23 +/- 9 h prior to simulated precipitation (62 +/- 13 mm). Time differential between hollow tine core cultivation and runoff did not significantly influence runoff volumes or the percentage of applied chemicals transported in the runoff. With the exception of chlorpyrifos, all chemicals of interest were detected in the initial runoff samples and throughout the runoff events. Chemographs of the five pesticides followed trends in agreement with mobility classifications associated with their soil organic carbon partition coefficient (K(OC).) Data collected from the present study provides information on the transport of chemicals with runoff from turf, which can be used in model simulations to predict nonpoint source pollution potentials and estimate ecological risks. Copyright 2010 SETAC.
Shades of Green: Flood control study focused on Duluth, Minnesota
In the aftermath of the economically and environmentally painful flood of 2012, the city of Duluth and the CSC examined ecologically based options to reduce runoff velocities and flood volume in the watershed with assistance and input of Minnesota Duluth's Natural Resources Resea...
Permeable pavement surfaces are infiltration based stormwater control measures (SCM) commonly applied in parking lots to decrease impervious area and reduce runoff volume. Many are not optimally designed however, as little attention is given to draining a large enough contributin...
Stormwater runoff characterized by GIS determined source areas and runoff volumes.
Liu, Yang; Soonthornnonda, Puripus; Li, Jin; Christensen, Erik R
2011-02-01
Runoff coefficients are usually considered in isolation for each drainage area with resulting large uncertainties in the areas and coefficients. Accurate areas and coefficients are obtained here by optimizing runoff coefficients for characteristic Geographic Information Systems (GIS) subareas within each drainage area so that the resulting runoff coefficients of each drainage area are consistent with those obtained from runoff and rainfall volumes. Lack of fit can indicate that the ArcGIS information is inaccurate or more likely, that the drainage area needs adjustment. Results for 18 drainage areas in Milwaukee, WI for 2000-2004 indicate runoff coefficients ranging from 0.123 for a mostly residential area to 0.679 for a freeway-related land, with a standard error of 0.047. Optimized runoff coefficients are necessary input parameters for monitoring, and for the analysis and design of in situ stormwater unit operations and processes for the control of both urban runoff quantity and quality.
Trommer, J.T.; Loper, J.E.; Hammett, K.M.
1996-01-01
Several traditional techniques have been used for estimating stormwater runoff from ungaged watersheds. Applying these techniques to water- sheds in west-central Florida requires that some of the empirical relationships be extrapolated beyond tested ranges. As a result, there is uncertainty as to the accuracy of these estimates. Sixty-six storms occurring in 15 west-central Florida watersheds were initially modeled using the Rational Method, the U.S. Geological Survey Regional Regression Equations, the Natural Resources Conservation Service TR-20 model, the U.S. Army Corps of Engineers Hydrologic Engineering Center-1 model, and the Environmental Protection Agency Storm Water Management Model. The techniques were applied according to the guidelines specified in the user manuals or standard engineering textbooks as though no field data were available and the selection of input parameters was not influenced by observed data. Computed estimates were compared with observed runoff to evaluate the accuracy of the techniques. One watershed was eliminated from further evaluation when it was determined that the area contributing runoff to the stream varies with the amount and intensity of rainfall. Therefore, further evaluation and modification of the input parameters were made for only 62 storms in 14 watersheds. Runoff ranged from 1.4 to 99.3 percent percent of rainfall. The average runoff for all watersheds included in this study was about 36 percent of rainfall. The average runoff for the urban, natural, and mixed land-use watersheds was about 41, 27, and 29 percent, respectively. Initial estimates of peak discharge using the rational method produced average watershed errors that ranged from an underestimation of 50.4 percent to an overestimation of 767 percent. The coefficient of runoff ranged from 0.20 to 0.60. Calibration of the technique produced average errors that ranged from an underestimation of 3.3 percent to an overestimation of 1.5 percent. The average calibrated coefficient of runoff for each watershed ranged from 0.02 to 0.72. The average values of the coefficient of runoff necessary to calibrate the urban, natural, and mixed land-use watersheds were 0.39, 0.16, and 0.08, respectively. The U.S. Geological Survey regional regression equations for determining peak discharge produced errors that ranged from an underestimation of 87.3 percent to an over- estimation of 1,140 percent. The regression equations for determining runoff volume produced errors that ranged from an underestimation of 95.6 percent to an overestimation of 324 percent. Regression equations developed from data used for this study produced errors that ranged between an underestimation of 82.8 percent and an over- estimation of 328 percent for peak discharge, and from an underestimation of 71.2 percent to an overestimation of 241 percent for runoff volume. Use of the equations developed for west-central Florida streams produced average errors for each type of watershed that were lower than errors associated with use of the U.S. Geological Survey equations. Initial estimates of peak discharges and runoff volumes using the Natural Resources Conservation Service TR-20 model, produced average errors of 44.6 and 42.7 percent respectively, for all the watersheds. Curve numbers and times of concentration were adjusted to match estimated and observed peak discharges and runoff volumes. The average change in the curve number for all the watersheds was a decrease of 2.8 percent. The average change in the time of concentration was an increase of 59.2 percent. The shape of the input dimensionless unit hydrograph also had to be adjusted to match the shape and peak time of the estimated and observed flood hydrographs. Peak rate factors for the modified input dimensionless unit hydrographs ranged from 162 to 454. The mean errors for peak discharges and runoff volumes were reduced to 18.9 and 19.5 percent, respectively, using the average calibrated input parameters for ea
DOT National Transportation Integrated Search
1994-10-28
The Run-Off-Road Collision Avoidance Using IVHS Countermeasures program is to address the single vehicle crash problem through application of technology to prevent and/or reduce the severity of these crashes. This report contains a summary of data us...
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, H.
2017-12-01
The changes of glacier area, ice surface elevation and ice storage in the upper reaches of the Shule River Basin were investigated by the Landsat TM series SRTM and stereo image pairs of Third Resources Satellite (ZY-3)from 2000 to 2015. There are 510 glaciers with areas large than 0.01 km2 in 2015, and the glacier area is 435 km2 in the upper reach of Shule River basin. 96 glaciers were disappeared from 2000 to 2015, and the total glacier area decreased by 57.6±2.68km2 (11.7 %). After correcting the elevation difference between ZY-3 DEM and SRTM and aspect, we found that the average ice surface elevation of glaciers reduced by 2.58±0.6m from 2000 to 2015 , with average reduction 0.172 ±0.04m a-1, and the ice storage reduced by 1.277±0.311km3. Elevation variation of ice surface in different sub-regions reflects the complexity of glacier change. The ice storage change calculated from the sum of single glacier area-volume relationship is glacier 1.46 times higher than that estimated from ice surface elevation change, indicating that the global ice storage change estimated from glacier area-volume change probably overestimated. The shrinkage of glacier increased glacier runoff, and led the significant increase of river runoff. The accuracy of projecting the potential glacier change, glacier runoff and river runoff is the key issues of delicacy water resource management in Shule River Basin.
Driscoll, Daniel G.; Southard, Rodney E.; Koenig, Todd A.; Bender, David A.; Holmes, Robert R.
2014-01-01
During 2011, excess precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Red River of the North, Souris, and Mississippi River Basins. At different times from late February 2011 through September 2011, various rivers in these basins had major flooding, with some locations having multiple rounds of flooding. This report provides broadscale characterizations of annual exceedance probabilities and trends for peak streamflows and annual runoff volumes for selected streamgages in the Central United States in areas affected by 2011 flooding. Annual exceedance probabilities (AEPs) were analyzed for 321 streamgages for annual peak streamflow and for 211 streamgages for annual runoff volume. Some of the most exceptional flooding was for the Souris River Basin, where of 11 streamgages considered for AEP analysis of peak streamflow, flood peaks in 2011 exceeded the next largest peak of record by at least double for 6 of the longest-term streamgages (75 to 108 years of peak-flow record). AEPs for these six streamgages were less than 1 percent. AEPs for 2011 runoff volumes were less than 1 percent for all seven Souris River streamgages considered for AEP analysis. Magnitudes of 2011 runoff volumes exceeded previous maxima by double or more for 5 of the 7 streamgages (record lengths 52 to 108 years). For the Red River of the North Basin, AEPs for 2011 runoff volumes were exceptional, with two streamgages having AEPs less than 0.2 percent, five streamgages in the range of 0.2 to 1 percent, and four streamgages in the range of 1 to 2 percent. Magnitudes of 2011 runoff volumes also were exceptional, with all 11 of the aforementioned streamgages eclipsing previous long-term (62 to 110 years) annual maxima by about one-third or more. AEPs for peak streamflows in the upper Mississippi River Basin were not exceptional, with no AEPs less than 1 percent. AEPs for annual runoff volumes indicated less frequent recurrence, with 11 streamgages having AEPs of less than 1 percent. The 2011 runoff volume for streamgage 05331000 (at Saint Paul, Minnesota) exceeded the previous record (112 years of record) by about 24 percent. An especially newsworthy feature was prolonged flooding along the main stem of the Missouri River downstream from Garrison Dam (located upstream from Bismarck, North Dakota) and extending downstream throughout the length of the Missouri River. The 2011 runoff volume for streamgage 06342500 (at Bismarck) exceeded the previous (1975) maximum by about 50 percent, with an associated AEP in the range of 0.2 to 1 percent. In the Ohio River Basin, peak-streamflow AEPs were less than 2 percent for only four streamgages. Runoff-volume AEPs were less than 2 percent for only three streamgages. Along the lower Mississippi River, the largest streamflow peak in 91 years was recorded for streamgage 07289000 (at Vicksburg, Mississippi), with an associated AEP of 0.8 percent. Trends in peak streamflow were analyzed for 98 streamgages, with 67 streamgages having upward trends, 31 with downward trends, and zero with no trend. Trends in annual runoff volume were analyzed for 182 streamgages, with 145 streamgages having upward trends, 36 with downward trends, and 1 with no trend. The trend analyses used descriptive methods that did not include measures of statistical significance. A dichotomous spatial distribution in trends was apparent for both peak streamflow and annual runoff volume, with a small number of streamgages in the northwestern part of the study area having downward trends and most streamgages in the eastern part of the study area having upward trends.
Cover crops impact on excess rainfall and soil erosion rates in orchards and potato fields, Israel
NASA Astrophysics Data System (ADS)
Egozi, Roey; Gil, Eshel
2015-04-01
Bare soil and high drainage densities are common characteristics of intensive agriculture land. The couplings of these characteristics lead to high runoff and eroded soil volumes leaving the field or the orchard via the local drainage system into the fluvial system. This process increase flood risk due to massive deposition of the coarse fraction of the eroded soil and therefore reduces channel capacity to discharge the increase volumes of concentrated runoff. As a result drainage basin authorities are forced to invest large amount of money in maintaining and enlarging the drainage network. However this approach is un-sustainable. On the other hand, implementing cover crops (CC) and modification to current agricultural practices over the contributing area of the watershed seems to have more benefits and provide sustainable solution. A multi-disciplinary approach applied in commercial potatoes fields and orchards that utilize the benefit of CC shows great success as means of soil and water conservation and weed disinfestation without reduction in the yield, its quality or its profitability. The results indicate that it is possible to grow potatoes and citrus trees under CC with no reduction in yield or nutrient uptake, with more than 95% reduction in soil loss and more than 60% in runoff volumes and peak discharges.
Simulating double-peak hydrographs from single storms over mixed-use watersheds
Yang Yang; Theodore A. Endreny; David J. Nowak
2015-01-01
Two-peak hydrographs after a single rain event are observed in watersheds and storms with distinct volumes contributing as fast and slow runoff. The authors developed a hydrograph model able to quantify these separate runoff volumes to help in estimation of runoff processes and residence times used by watershed managers. The model uses parallel application of two...
Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M Todd
2018-04-17
Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Shi, Tuo; Zong, Min; Walter, M. Todd
2018-01-01
Urbanization is one of the most widespread anthropogenic activities, which brings a range of physical and biochemical changes to hydrological system and processes. Increasing direct runoff caused by land use change has become a major challenge for urban ecological security. Reliable prediction of the quantity and rate of surface runoff is an inherently difficult and time-consuming task for large ungauged urban areas. In this study, we combined Geographic Information System and remote sensing technology with an improved Soil Conservation Service curve number model to evaluate the effects of land use change on direct runoff volume of the four-ring area in Shenyang, China, and analyzed trends of direct runoff at different scales. Through analyzing trends of direct runoff from 1984 to 2015 at different scales, we explored how urbanization and other potential factors affect direct runoff changes. Total direct runoff volume increased over time, and trends varied from the inner urban area to suburban area. Zones 1 and 2 had a tendency toward decreasing direct runoff volume and risks, while Zones 3 and 4 showed gradual increases at both regional and pixel scales. The most important influence on direct runoff change was urban surface change caused by urbanization. This study presents a framework for identifying hotspots of runoff increase, which can provide important guidance to urban managers in future green infrastructure planning, in the hopes of improving the security of urban water ecological patterns. PMID:29673182
Rice, Pamela J; Horgan, Brian P
2011-11-01
The presence of excess nutrients in surface waters can result in undesirable environmental and economic consequences, including nuisance algal blooms and eutrophication. Fertilizer use in highly managed turf systems has raised questions concerning the contribution of nutrients to surrounding surface waters. Experiments were designed to quantify phosphorus and nitrogen transport with runoff from turf plots maintained as a golf course fairway to identify which cultural practice, solid tine (ST) or hollow tine (HT) core cultivation, maximized phosphorus and nitrogen retention at the site of fertilizer application. Simulated precipitation and collection of resulting runoff were completed 26 ± 13 h following granular fertilizer application (18-3-18: N-P₂O₅-K₂O) and 63 d and 2 d following core cultivation. Runoff volumes were reduced in fairway turf plots aerated with HT relative to ST (63 d: 10%, 2 d: 55% reduction). Analysis of the runoff revealed a reduction in soluble phosphorus, ammonium nitrogen, and nitrate nitrogen losses with runoff from plots managed with HT; a 5 to 27% reduction after 63 d; and a 39 to 77% reduction at 2 d. Golf course runoff-to-surface water scenarios were used to calculate estimated environmental concentrations (EECs) of nitrogen and phosphorus in surface water receiving runoff from turf managed with ST or HT core cultivation. Surface water concentrations of phosphorus remained above the U.S. Environmental Protection Agency's water quality criteria to limit eutrophication, with the exception of concentrations associated with HT core cultivation at 2 d. Regardless of management practice (ST or HT) and time between core cultivation and runoff (63 d or 2 d), all EECs of nitrogen were below levels associated with increased algal growth. Understanding nutrient transport with runoff and identifying strategies that reduce off-site transport will increase their effectiveness at intended sites of application and minimize undesirable effects to surrounding surface water resources. Copyright © 2011 SETAC.
Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan
2014-06-15
Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiobjective optimization of low impact development stormwater controls
NASA Astrophysics Data System (ADS)
Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati
2018-07-01
Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.
DETAILED SOIL SURVEYS AND DISTRIBUTED BMPS FOR STORMWATER QUANTITY CONTROL. MAKING THE CONNECTION
Best management practices (BMPs) that operate on the basis of infiltration can be used at the parcel-level to reduce the volume of stormwater runoff that would otherwise erode landscapes and disrupt stream ecosystems. Contemporary urban and ex-urban landscapes have a substantiall...
Evaldi, R.D.; Moore, B.L.
1994-01-01
Linear regression models are presented for estimating storm-runoff volumes, and mean con- centrations and loads of selected constituents in storm runoff from urban watersheds of Jefferson County, Kentucky. Constituents modeled include dissolved oxygen, biochemical and chemical oxygen demand, total and suspended solids, volatile residue, nitrogen, phosphorus and phosphate, calcium, magnesium, barium, copper, iron, lead, and zinc. Model estimations are a function of drainage area, percentage of impervious area, climatological data, and land uses. Estimation models are based on runoff volumes, and concen- trations and loads of constituents in runoff measured at 6 stormwater outfalls and 25 streams in Jefferson County.
Hydrological modelling in sandstone rocks watershed
NASA Astrophysics Data System (ADS)
Ponížilová, Iva; Unucka, Jan
2015-04-01
The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.
Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.
Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H
2014-01-01
Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.
Investigation on the effectiveness of pretreatment in stormwater management technologies.
Maniquiz-Redillas, Marla C; Geronimo, Franz Kevin F; Kim, Lee-Hyung
2014-09-01
The effectiveness of presettling basins as component of stormwater best management practice (BMP) technologies was investigated. Storm event monitoring and sediment collection were conducted from May 2009 to November 2012 on the presettling basins of the three BMP technologies designed to capture and treat stormwater runoff from highly impervious roads and parking lots. Data on captured runoff and sediment, total suspended solids (TSS) loadings, rainfall and runoff rate, sediment accumulation rate, as well as particle distribution and pollutant concentrations of sediment were gathered and analyzed along with the physical design characteristics of the presettling basins such as surface area and storage volume. Regression models were generated to determine significant relationships between design parameters. Results revealed that the storage volume ratio (ratio of storage volume of presettling basin to BMP) was an important parameter in designing the presettling basin of the BMP. For practicality, optimizing the design of the presettling basin means that the storage volume ratio should be determined based on the desired captured amount of runoff and sediment from runoff to limit the frequency of maintenance caused by the accumulation of sediment. It was recommended that pretreatment of runoff should be employed when the site in which the BMP is to be sited has high TSS loading and runoff rate, and is subjected to high intensity rainfall. Copyright © 2014. Published by Elsevier B.V.
River runoff influences on the Central Mediterranean overturning circulation
NASA Astrophysics Data System (ADS)
Verri, Giorgia; Pinardi, N.; Oddo, P.; Ciliberti, S. A.; Coppini, G.
2018-03-01
The role of riverine freshwater inflow on the Central Mediterranean Overturning Circulation (CMOC) was studied using a high-resolution ocean model with a complete distribution of rivers in the Adriatic and Ionian catchment areas. The impact of river runoff on the Adriatic and Ionian Sea basins was assessed by a twin experiment, with and without runoff, from 1999 to 2012. This study tries to show the connection between the Adriatic as a marginal sea containing the downwelling branch of the anti-estuarine CMOC and the large runoff occurring there. It is found that the multiannual CMOC is a persistent anti-estuarine structure with secondary estuarine cells that strengthen in years of large realistic river runoff. The CMOC is demonstrated to be controlled by wind forcing at least as much as by buoyancy fluxes. It is found that river runoff affects the CMOC strength, enhancing the amplitude of the secondary estuarine cells and reducing the intensity of the dominant anti-estuarine cell. A large river runoff can produce a positive buoyancy flux without switching off the antiestuarine CMOC cell, but a particularly low heat flux and wind work with normal river runoff can reverse it. Overall by comparing experiments with, without and with unrealistically augmented runoff we demonstrate that rivers affect the CMOC strength but they can never represent its dominant forcing mechanism and the potential role of river runoff has to be considered jointly with wind work and heat flux, as they largely contribute to the energy budget of the basin. Looking at the downwelling branch of the CMOC in the Adriatic basin, rivers are demonstrated to locally reduce the volume of Adriatic dense water formed in the Southern Adriatic Sea as a result of increased water stratification. The spreading of the Adriatic dense water into the Ionian abyss is affected as well: dense waters overflowing the Otranto Strait are less dense in a realistic runoff regime, with respect to no runoff experiment, and confined to a narrower band against the Italian shelf with less lateral spreading toward the Ionian Sea center.
Lindner-Lunsford, J. B.; Ellis, S.R.
1984-01-01
The U.S. Geological Survey 's Distributed Routing Rainfall-Runoff Model--Version II was calibrated and verified for five urban basins in the Denver metropolitan area. Land-use types in the basins were light commerical, multifamily housing, single-family housing, and a shopping center. The overall accuracy of model predictions of peak flows and runoff volumes was about 15 percent for storms with rainfall intensities of less than 1 inch per hour and runoff volume of greater than 0.01 inch. Predictions generally were unsatisfactory for storm having a rainfall intensity of more than 1 inch per hour, or runoff of 0.01 inch or less. The Distributed Routing Rainfall-Runoff Model-Quality, a multievent runoff-quality model developed by the U.S. Geological Survey, was calibrated and verified on four basins. The model was found to be most useful in the prediction of seasonal loads of constituents in the runoff resulting from rainfall. The model was not very accurate in the prediction of runoff loads of individual constituents. (USGS)
Rice, Pamela J; Harman-Fetcho, Jennifer A; Sadeghi, Ali M; McConnell, Laura L; Coffman, C Benjamin; Teasdale, John R; Abdul-Baki, Aref; Starr, James L; McCarty, Gregory W; Herbert, Rachel R; Hapeman, Cathleen J
2007-02-21
A common management practice for the production of fresh-market vegetables utilizes polyethylene (plastic) mulch because it increases soil temperature, decreases weed pressure, maintains soil moisture, and minimizes soil contact with the product. However, rain events afford much more erosion and runoff because 50-75% of the field is covered with an impervious surface. A plot study was conducted to compare and to quantify the off-site movement of soil, insecticides, and fungicides associated with runoff from plots planted with Sunbeam tomatoes (Lycopersicon esculentum Mill) using the conventional polyethylene mulch management practice vs an alternative management practice-polyethylene mulch-covered beds with cereal rye (Secale cereale) planted in the furrows between the beds. The use of cereal rye-covered furrows with the conventional polyethylene system decreased runoff volume by more than 40%, soil erosion by more than 80%, and pesticide loads by 48-74%. Results indicate that vegetative furrows are critical to minimizing the negative aspects of this management practice.
NASA Astrophysics Data System (ADS)
Augeard, Bénédicte; Kao, Cyril; Chaumont, Cédric; Vauclin, Michel
Artificial drainage has been subject to widespread criticism because of its impact on water quality and because there is suspicion that it may have detrimental effects on flood genesis. The present work aims at a better understanding of the mechanisms controlling infiltration and surface runoff genesis, particularly in soils with artificial drainage and affected by surface crusting. A field experiment was conducted during one drainage season (November 2003-March 2004) in the Brie region (80 km east of Paris, France) on a subsurface drained silty soil. Water table elevation and surface runoff were monitored above the drain and at midpoint between drains. Soil water pressure head was measured at various depths and locations between the midpoint and the drain. Soil surface characteristics (microtopography and degree of structural and sedimentary crust development) were recorded regularly on the experimental site and on other plots of various drainage intensities. The results show that the first surface runoff events were induced by high water table. However, runoff was higher at midpoint between the drains because water table reached the soil surface at that point, thus considerably reducing infiltration capacity compared to that above the drain. Comparing different plots, the area with older drainage installation (1948) yielded the most surface runoff. Wider drain spacing, smaller drain depth and possible plugging may have led to a greater area of saturated soil between drains. During the winter period, the impact of raindrops induced the formation of a structural crust on the soil surface. Furthermore, the development of the sedimentary crust, which was favored by water actually flowing on the soil surface during the high water table periods could be correlated with surface runoff volume. The formation of this crust had a significant impact on runoff occurrence at the end of the winter. Therefore, poorly drained fields presented more favorable conditions for both Horton type runoff and saturation excess runoff. Drainage effectively reduces surface runoff occurrences not only by lowering the water table in winter but also by limiting soil surface sealing.
Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota
Ludden, A.P.; Frink, D.L.; Johnson, D.H.
1983-01-01
Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.
Kertesz, Ruben; Green, Olivia Odom; Shuster, William D
2014-01-01
As regulatory pressure to reduce the environmental impact of urban stormwater intensifies, US municipalities increasingly seek a dedicated source of funding for stormwater programs, such as a stormwater utility. In rare instances, single family residences are eligible for utility discounts for installing green infrastructure. This study examined the hydrologic and economic efficacy of four such programs at the parcel scale: Cleveland (OH), Portland (OR), Fort Myers (FL), and Lynchburg (VA). Simulations were performed to model the reduction in stormwater runoff by implementing bioretention on a typical residential property according to extant administrative rules. The EPA National Stormwater Calculator was used to perform pre- vs post-retrofit comparisons and to demonstrate its ease of use for possible use by other cities in utility planning. Although surface slope, soil type and infiltration rate, impervious area, and bioretention parameters were different across cities, our results suggest that modeled runoff volume was most sensitive to percent of total impervious area that drained to the bioretention cell, with soil type the next most important factor. Findings also indicate a persistent gap between the percentage of annual runoff reduced and the percentage of fee reduced.
NASA Astrophysics Data System (ADS)
Loperfido, J. V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-11-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011-September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Loperfido, John V.; Noe, Gregory B.; Jarnagin, S. Taylor; Hogan, Dianna M.
2014-01-01
Urban stormwater runoff remains an important issue that causes local and regional-scale water quantity and quality issues. Stormwater best management practices (BMPs) have been widely used to mitigate runoff issues, traditionally in a centralized manner; however, problems associated with urban hydrology have remained. An emerging trend is implementation of BMPs in a distributed manner (multi-BMP treatment trains located on the landscape and integrated with urban design), but little catchment-scale performance of these systems have been reported to date. Here, stream hydrologic data (March, 2011–September, 2012) are evaluated in four catchments located in the Chesapeake Bay watershed: one utilizing distributed stormwater BMPs, two utilizing centralized stormwater BMPs, and a forested catchment serving as a reference. Among urban catchments with similar land cover, geology and BMP design standards (i.e. 100-year event), but contrasting placement of stormwater BMPs, distributed BMPs resulted in: significantly greater estimated baseflow, a higher minimum precipitation threshold for stream response and maximum discharge increases, better maximum discharge control for small precipitation events, and reduced runoff volume during an extreme (1000-year) precipitation event compared to centralized BMPs. For all catchments, greater forest land cover and less impervious cover appeared to be more important drivers than stormwater BMP spatial pattern, and caused lower total, stormflow, and baseflow runoff volume; lower maximum discharge during typical precipitation events; and lower runoff volume during an extreme precipitation event. Analysis of hydrologic field data in this study suggests that both the spatial distribution of stormwater BMPs and land cover are important for management of urban stormwater runoff. In particular, catchment-wide application of distributed BMPs improved stream hydrology compared to centralized BMPs, but not enough to fully replicate forested catchment stream hydrology. Integrated planning of stormwater management, protected riparian buffers and forest land cover with suburban development in the distributed-BMP catchment enabled multi-purpose use of land that provided esthetic value and green-space, community gathering points, and wildlife habitat in addition to hydrologic stormwater treatment.
Potential contributions of mature prairie and turfgrass to phosphorus in urban runoff.
Steinke, K; Kussow, W R; Stier, J C
2013-07-01
Urban vegetative plantings are considered desirable to mitigate and filter stormwater runoff and nonpoint-source pollution. Phosphorus fertilization of turfgrass may enhance P in urban runoff; however, the amount of P from nonfertilized, native vegetation that could potentially replace some turf is not known. This study was conducted to measure the relative contributions of nonfertilized, native prairie vegetation and fertilized turfgrass to runoff water and P loads. Six replicates of side-by-side mature urban prairie and turfgrass were monitored for mean annual runoff volumes and P loads, biomass production, vegetative nutrient composition, and changes in soil moisture. Vegetation type did not significantly affect seasonal or annual runoff volumes or P loads. The mean annual total P loads of 0.46 kg ha for prairie and 0.28 kg ha for turfgrass were significant and comparable to those reported by other researchers when studied separately. Total P concentrations in runoff water from prairie and turf vegetation were above USEPA limits, averaging 1.86 and 1.63 mg L, respectively, over 2 yr. Averaged across 2 yr, 78% of runoff P was collected when the soil was frozen. Biomass P reductions over the period of November to April were strongly related to quantities of runoff total P from frozen soil ( = 0.874). Phosphorus losses from urban areas appeared to be primarily correlated with runoff depth, not vegetation type, because correlation coefficients revealed 86 and 45% of the Year 1 and Year 2 total P loads were directly accounted for by runoff volumes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Design and Construction of an Urban Runoff Research Facility
Wherley, Benjamin G.; White, Richard H.; McInnes, Kevin J.; Fontanier, Charles H.; Thomas, James C.; Aitkenhead-Peterson, Jacqueline A.; Kelly, Steven T.
2014-01-01
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems. PMID:25146420
Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico
Knutilla, R.L.; Veenhuis, J.E.
1994-01-01
Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.
Modelling and optimization of land use/land cover change in a developing urban catchment.
Xu, Ping; Gao, Fei; He, Junchao; Ren, Xinxin; Xi, Weijin
2017-06-01
The impacts of land use/cover change (LUCC) on hydrological processes and water resources are mainly reflected in changes in runoff and pollutant variations. Low impact development (LID) technology is utilized as an effective strategy to control urban stormwater runoff and pollution in the urban catchment. In this study, the impact of LUCC on runoff and pollutants in an urbanizing catchment of Guang-Ming New District in Shenzhen, China, were quantified using a dynamic rainfall-runoff model with the EPA Storm Water Management Model (SWMM). Based on the simulations and observations, the main objectives of this study were: (1) to evaluate the catchment runoff and pollutant variations with LUCC, (2) to select and optimize the appropriate layout of LID in a planning scenario for reducing the growth of runoff and pollutants under LUCC, (3) to assess the optimal planning schemes for land use/cover. The results showed that compared to 2013, the runoff volume, peak flow and pollution load of suspended solids (SS), and chemical oxygen demand increased by 35.1%, 33.6% and 248.5%, and 54.5% respectively in a traditional planning scenario. The assessment result of optimal planning of land use showed that annual rainfall control of land use for an optimal planning scenario with LID technology was 65%, and SS pollutant load reduction efficiency 65.6%.
Granato, Gregory E.
2014-01-01
The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.
Influence of land development on stormwater runoff from a mixed land use and land cover catchment.
Paule-Mercado, M A; Lee, B Y; Memon, S A; Umer, S R; Salim, I; Lee, C-H
2017-12-01
Mitigating for the negative impacts of stormwater runoff is becoming a concern due to increased land development. Understanding how land development influences stormwater runoff is essential for sustainably managing water resources. In recent years, aggregate low impact development-best management practices (LID-BMPs) have been implemented to reduce the negative impacts of stormwater runoff on receiving water bodies. This study used an integrated approach to determine the influence of land development and assess the ecological benefits of four aggregate LID-BMPs in stormwater runoff from a mixed land use and land cover (LULC) catchment with ongoing land development. It used data from 2011 to 2015 that monitored 41 storm events and monthly LULC, and a Personalized Computer Storm Water Management Model (PCSWMM). The four aggregate LID-BMPs are: ecological (S1), utilizing pervious covers (S2), and multi-control (S3) and (S4). These LID-BMPs were designed and distributed in the study area based on catchment characteristics, cost, and effectiveness. PCSWMM was used to simulate the monitored storm events from 2014 (calibration: R 2 and NSE>0.5; RMSE <11) and 2015 (validation: R 2 and NSE>0.5; RMSE <12). For continuous simulation and analyzing LID-BMPs scenarios, the five-year (2011 to 2015) stormwater runoff data and LULC change patterns (only 2015 for LID-BMPs) were used. Results show that the expansion of bare land and impervious cover, soil alteration, and high amount of precipitation influenced the stormwater runoff variability during different phases of land development. The four aggregate LID-BMPs reduced runoff volume (34%-61%), peak flow (6%-19%), and pollutant concentrations (53%-83%). The results of this study, in addition to supporting local LULC planning and land development activities, also could be applied to input data for empirical modeling, and designing sustainable stormwater management guidelines and monitoring strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-04-01
training area. The baseball/ softball field adjacent to Building 750. A parking lot and storage area on station property leased to the Minnesota Air...was constructed on this site to help reduce storm water runoff volume at MSPARS. The baseball/ softball field adjacent to Building 750. Site is the
Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin
2009-10-01
Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.
Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.
de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B
2011-01-01
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.
Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan
2017-07-01
This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.
Sizing a rainwater harvesting cistern by minimizing costs
NASA Astrophysics Data System (ADS)
Pelak, Norman; Porporato, Amilcare
2016-10-01
Rainwater harvesting (RWH) has the potential to reduce water-related costs by providing an alternate source of water, in addition to relieving pressure on public water sources and reducing stormwater runoff. Existing methods for determining the optimal size of the cistern component of a RWH system have various drawbacks, such as specificity to a particular region, dependence on numerical optimization, and/or failure to consider the costs of the system. In this paper a formulation is developed for the optimal cistern volume which incorporates the fixed and distributed costs of a RWH system while also taking into account the random nature of the depth and timing of rainfall, with a focus on RWH to supply domestic, nonpotable uses. With rainfall inputs modeled as a marked Poisson process, and by comparing the costs associated with building a cistern with the costs of externally supplied water, an expression for the optimal cistern volume is found which minimizes the water-related costs. The volume is a function of the roof area, water use rate, climate parameters, and costs of the cistern and of the external water source. This analytically tractable expression makes clear the dependence of the optimal volume on the input parameters. An analysis of the rainfall partitioning also characterizes the efficiency of a particular RWH system configuration and its potential for runoff reduction. The results are compared to the RWH system at the Duke Smart Home in Durham, NC, USA to show how the method could be used in practice.
[Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].
Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing
2010-12-01
Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.
Screening of polymers on selected Hawaii soils for erosion reduction and particle settling
NASA Astrophysics Data System (ADS)
Teo, James A.; Ray, Chittaranjan; El-Swaify, Samir A.
2006-01-01
In recent years, high-molecular-weight anionic polyacrylamides (PAMs) have been tested on a variety of soils, primarily in temperate climates. However, little information is available regarding the effectiveness of PAM for preventing soil loss through runoff in tropical settings. Screening tests were performed using three negatively charged PAMs and one positively charged PAM on five Hawaii soils (two Oxisols, one Vertisol, and two Aridisols) to determine erosion loss, sediment settling, and aggregate stability. A laboratory-scale rainfall simulator was used to apply erosive rainfall at intensities from 5 to 8.5 cm h-1 at various PAM doses applied in both dry and solution forms. Soil detachment due to splash and runoff, as well as the runoff and percolate water volumes, were measured for initial and successive storms. The impact of PAM on particle settling and aggregate stability was also evaluated for selected soil-treatment combinations. Among the PAMs, Superfloc A-836 was most effective, and significantly reduced runoff and splash sediment loss for the Wahiawa Oxisol and Pakini Andisol at rates varying between 10 and 50 kg ha-1. Reduced runoff and splash sediment loss were also noted for PAM Aerotil-D when applied in solution form to the Wahiawa Oxisol. Significant reductions in soil loss were not noted for either the Lualualei Vertisol or the Holomua Oxisol. It is believed that the high montmorillonite content of the Lualualei Vertisol and the low cation-exchange capacity of the Holomua Oxisol diminished the effectiveness of the various PAMs tested. The polymers were also found to enhance sediment settling of all soils and helped improve their aggregate stability. This screening study shows the potential use of PAM for tropical soils for applications such as infiltration enhancement, runoff reduction, and enhanced sedimentation of detention ponds.
Bach, P M; McCarthy, D T; Deletic, A
2010-01-01
The management of stormwater pollution has placed particular emphasis on the first flush phenomenon. However, definition and current methods of analyses of the phenomena contain serious limitations, the most important being their inability to capture a possible impact of the event size (total event volume) on the first flush. This paper presents the development of a novel approach in defining and assessing the first flush that should overcome these problems. The phenomenon is present in a catchment if the decrease in pollution concentration with the absolute cumulative volume of runoff from the catchment is statistically significant. Using data from seven diverse catchments around Melbourne, Australia, changes in pollutant concentrations for Total Suspended Solids (TSS) and Total Nitrogen (TN) were calculated over the absolute cumulative runoff and aggregated from a collection of different storm events. Due to the discrete nature of the water quality data, each concentration was calculated as a flow-weighted average at 2 mm runoff volume increments. The aggregated concentrations recorded in each increment (termed as a 'slice' of runoff) were statistically compared to each other across the absolute cumulative runoff volume. A first flush is then defined as the volume at which concentrations reach the 'background concentration' (i.e. the statistically significant minimum). Initial results clearly highlight first flush and background concentrations in all but one catchment supporting the validity of this new approach. Future work will need to address factors, which will help assess the first flush's magnitude and volume. Sensitivity testing and correlation with catchment characteristics should also be undertaken.
Darner, Robert A.; Shuster, William D.; Dumouchelle, Denise H.
2015-01-01
This report updates and examines hydrologic data gathered to characterize the performance of two stormwater-control measure (SCM) sites in the Chagrin River watershed, Ohio. At the Sterncrest Drive site, roadside bioswales and rain gardens were used to alleviate drainage problems in this residential neighborhood area. At the Washington Street site, a treatment train (including a pervious-paver system, rain garden, and bioswales) was used to reduce and delay stormwater runoff at a small business development. Selected metrics were used to demonstrate SCM system performance with regard to stormwater-management objectives at each site. Rain-garden overflow-frequency data collected at the Sterncrest Drive site during 2008–13 were used to characterize system sensitivity to rainfall characteristics. Approximately 70 percent of storms exceeding 0.75 inches during 3 hours or more resulted in overflows. Drainage-design features that may restrict flow through the system were identified. Overall, the data and local observations confirmed the continued success of the SCM at the Sterncrest Drive site in preventing roadway closure due to flooding. The additional years of data collected at the Washington Street site indicated that a previous analysis of increased runoff removal, based on only the first 2 years (2009–10) of data, provided premature conclusions. With 5 years of data (2009–13) and adjusting for changes in rainfall characteristics, it appears that the percentage of runoff removed by the system is decreasing; however, the lag time (time from onset of rainfall to runoff) has remained nearly constant. The annual mean percent removal for 2010–13 ranged from 55 to 37 percent with an overall mean of 45 percent, and this does meet the project objective of reducing runoff from the business complex. One possible explanation for the combination of increased volume of runoff and no change in the timing of runoff is the preferential flow paths developed in the SCM, increasing the capacity for internal drainage. Data indicated that the SCM system at the Washington Street site had reduced functionality over time.
A MULTIDISCIPLINARY APPROACH TO MANAGING STORMWATER RUNOFF IN AN URBAN WATERSHED
Increased impervious surface (e.g., roofs, pavement) due to urbanization can lead to excess runoff throughout a watershed, overwhelming the existing stormwater infrastructure. High volumes of runoff, delivered to receiving streams over short durations at high flow rates, negative...
Storm Water Management Model Reference Manual Volume I, Hydrology
SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...
Storm Water Management Model Reference Manual Volume II – Hydraulics
SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...
McKenzie, Donald J.; Irwin, G.A.
1983-01-01
Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)
Lourenzi, Cledimar Rogério; Ceretta, Carlos Alberto; Tiecher, Tadeu Luis; Lorensini, Felipe; Cancian, Adriana; Stefanello, Lincon; Girotto, Eduardo; Vieira, Renan Costa Beber; Ferreira, Paulo Ademar Avelar; Brunetto, Gustavo
2015-04-01
Successive swine effluent applications can substantially increase the transfer of phosphorus (P) forms in runoff. The aim of this study was to evaluate P accumulation in the soil and transfer of P forms in surface runoff from a Hapludalf soil under no-tillage subjected to successive swine effluent applications. This research was carried out in the Agricultural Engineering Department of the Federal University of Santa Maria, Brazil, from 2004 to 2007, on a Typic Hapludalf soil. Swine effluent rates of 0, 20, 40, and 80 m3 ha(-1) were broadcast over the soil surface prior to sowing of different species in a crop rotation. Soil samples were collected in stratified layers, and the levels of available P were determined. Samples of water runoff from the soil surface were collected throughout the period, and the available, soluble, particulate, and total P were measured. Successive swine effluent applications led to increases in P availability, especially in the soil surface, and P migration through the soil profile. Transfer of P forms was closely associated with runoff, which is directly related to rainfall volume. Swine effluent applications also reduced surface runoff. These results show that in areas with successive swine effluent applications, practices that promote higher water infiltration into the soil are required, e.g., crop rotation and no-tillage system.
Yang, H; Florence, D C; McCoy, E L; Dick, W A; Grewal, P S
2009-01-01
A field-scale bioretention rain garden system was constructed using a novel bi-phasic (i.e. sequence of anaerobic to aerobic) concept for improving retention and removal of storm water runoff pollutants. Hydraulic tests with bromide tracer and simulated runoff pollutants (nitrate-N, phosphate-P, Cu, Pb, and Zn) were performed in the system under a simulated continuous rainfall. The objectives of the tests were (1) to determine hydraulic characteristics of the system, and (2) to evaluate the movement of runoff pollutants through the system. For the 180 mm/24 h rainfall, the bi-phasic bioretention system effectively reduced both peak flow (approximately 70%) and runoff volume (approximately 42%). The breakthrough curves (BTCs) of bromide tracer suggest that the transport pattern of the system is similar to dispersed plug flow under this large runoff event. The BTCs of bromide showed mean 10% and 90% breakthrough times of 5.7 h and 12.5 h, respectively. Under the continuous rainfall, a significantly different transport pattern was found between each runoff pollutant. Nitrate-N was easily transported through the system with potential leaching risk from the initial soil medium, whereas phosphate-P and metals were significantly retained indicating sorption-mediated transport. These findings support the importance of hydraulics, in combination with the soil medium, when creating bioretention systems for bioremediation that are effective for various rainfall sizes and intervals.
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-01-01
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567
Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon
2018-03-16
This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.
Surface Runoff of Pesticides from a Clay Loam Field in Sweden.
Larsbo, Mats; Sandin, Maria; Jarvis, Nick; Etana, Ararso; Kreuger, Jenny
2016-07-01
Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
The use and re-use of unsustainable groundwater for irrigation: A global budget
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted bymore » reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ~600 km 3 yr –1. Lastly, these findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.« less
The use and re-use of unsustainable groundwater for irrigation: A global budget
Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; ...
2017-03-08
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted bymore » reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ~600 km 3 yr –1. Lastly, these findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.« less
The use and re-use of unsustainable groundwater for irrigation: a global budget
NASA Astrophysics Data System (ADS)
Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; Lammers, Richard B.; Frolking, Steve
2017-03-01
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted by reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ∽600 km3 yr-1. These findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.
Storm Water Management Model Reference Manual Volume III – Water Quality
SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and gene...
2003-09-04
an increase in the volume of storm water runoff from the aircraft ramp area, but no changes to storm water quality . No groundwater impacts were...in the volume of stonn water runoff from the aircraft ramp area, but no changes to storm water quality . No groundwater impacts were identified. In
Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.
Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng
2010-01-01
Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.
Hydrologic monitoring for Chicago’s Sustainable Streetscapes Program
Duncker, James J.; Morrow, William S.
2016-04-05
The Chicago Department of Transportation’s Sustainable Streetscapes Program is an innovative program that strives to convert Chicago’s neighborhood commercial areas, riverwalks, and bicycle facilities into active, attractive places for Chicagoans to live, work, and play. The objective of each project is to create flourishing public places while improving the ability of infrastructure to support dense urban living. The U.S. Geological Survey (USGS), in cooperation with the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC), and the Chicago Department of Transportation (CDOT), is monitoring the pre- and postconstruction hydrologic characteristics of an urban corridor on the south side of Chicago that is being renovated using sustainable streetscapes technology.The CDOT Sustainable Streetscapes Program utilizes urban stormwater best-management practices (BMPs) to reduce the storm runoff to the local combined sewer system. The urban stormwater BMPs include permeable pavement, bioswales, infiltration basins, and planters. The urban stormwater BMPs are designed to capture the first flush of storm runoff through features that enhance the infiltration of stormwater runoff to shallow groundwater.The hydrology of the Sustainable Streetscapes Program area is being monitored to evaluate the impacts and effectiveness of the urban stormwater BMP’s. Continuous monitoring of rainfall, sewer flows, stormwater runoff, soil moisture, and groundwater levels will give engineers and scientists measured data to define baseline pre- and postconstruction conditions for the evaluation of the BMPs.Three tipping-bucket rain gages are located along the project corridor. The data provide information on the intensity and volume of rainfall. Rainfall can be highly variable even over a small area like the project corridor.Continuous recording meters are located at specific locations in the combined sewers to record water level and flow during both dry weather (mostly sanitary flow) and wet weather conditions (stormwater runoff in addition to the sanitary flow). Sanitary flow is the largest source of flow in the combined sewers during dry weather, and stormwater runoff and sanitary flow combine during wet weather. The sewer flow data allow engineers and scientists to calculate total runoff volume for selected storm events.Wells are located within the project corridor to record water levels and help determine the direction of movement of groundwater in response to rainfall and snowmelt. In urban settings with aging sewer systems, groundwater can seep into the sewers or combined sewage can seep from the sewers into the local groundwater system. The groundwater data are also important in evaluating the overall impacts of increased infiltration resulting from BMPs.Data from wells show the relative water levels of shallow groundwater, water levels in the combined sewer system, and nearby surface-water channels within the project corridor. In some aging urban sewer systems, the local combined sewer system lies below the water table and receives substantial amounts of groundwater inflow, which can significantly reduce the amount of additional water the sewer system can accept.The bioswale along the south side of West Cermak Road near South Throop Street functions to infiltrate stormwater runoff from the road. Stormwater on the road surface initially drains to the curb and then flows along the curb until it reaches a curb cut-out. Materials within the bioswale allow stormwater to infiltrate and reduce the load to the combined sewer.A common feature in urban areas are curbside catch basins that collect stormwater runoff from paved streets. Stormwater drains first to the curb and then flows along the curb to the catch basin. Lateral sewer pipe connects the catch basin to the combined sewer beneath the street. The use of permeable pavers along the curbs in the project study reach let stormwater infiltrate before it reaches the curb, thus reducing the amount of stormwater draining to the combined sewers.Water-level data from catch basins in the project study area show the effects of permeable pavers in reducing the stormwater drainage to the combined sewers.
Urbanisation impacts on storm runoff along a rural-urban gradient
NASA Astrophysics Data System (ADS)
Miller, James David; Hess, Tim
2017-09-01
Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm runoff generation in mixed land-use catchments.
Harada, Shigeki; Yanbe, Miyu
2018-04-01
This report describes the use of porous concrete at the bottom of a sewage trap to prevent runoff of non-point heavy metals into receiving waters, and, secondarily, to reduce total runoff volume during heavy rains in urbanized areas while simultaneously increasing the recharge volume of heavy-metal-free water into underground aquifers. This idea has the advantage of preventing clogging, which is fundamentally very important when using pervious materials. During actual field experiments, two important parameters were identified: maximum adsorption weight of lead and zinc by the volume of porous concrete, and heavy metal recovery rate by artificial acidification after adsorption. To understand the effect of ambient heavy metal concentration, a simple mixing system was used to adjust the concentrations of lead and zinc solutions. The concrete blocks used had been prepared for a previous study by Harada & Komuro (2010). The results showed that maximum adsorption depended on the ambient concentration, expressed as the linear isothermal theory, and that recovery depended on the final pH value (0.5 or 0.0). The dependence on pH is very important for recycling the porous concrete. A pH of 0.5 is important for recycling both heavy metals, especially zinc, (8.0-22.1% of lead and 42-74% of zinc) and porous concrete because porous concrete has not been heavily damaged by acid. However, at a pH of 0.0, the heavy metals could be recovered: 30-60% of the lead and 75-125% of the zinc. At a higher pH, such as 2.0, no release of heavy metals occurred, indicating the safety to the environment of using porous concrete, because the lowest recorded pH of rainfall in Japan is. 4.0. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramos-Scharron, C. E.; LaFevor, M. C.; Roy, J.
2017-12-01
Developing a conceptually sound yet practical understanding of runoff and sediment delivery from human occupied lands to tropical ocean waters still represents a pivotal need of coral reef management worldwide. In the dry tropical and ephemeral streamflow setting that typifies the small watersheds ( 1s km2) draining the US Virgin Islands, changes in hydrologic and sediment delivery dynamics provoked by unsurfaced road networks represent a major threat to coral reefs and other sensitive marine ecosystems. Through a combined empirical and modeling approach, this study evaluates how road building and associated stormflow restoration strategies affect rainfall thresholds for runoff generation at varying spatial scales and their impact on land-to-sea connectivity. Rainfall thresholds and runoff coefficients for precipitation excess on unpaved roads are 2-3 mm and 22-30% (respectively) or a full order of magnitude different from those for undisturbed hillslopes and watersheds. Here we discuss the use of a `volume-to-breakthrough' inspired index to predict the potential of road runoff to reach downslope portions of the watershed and the coastline as runon. The index integrates the effects of storm-by-storm runoff accumulation for every road drainage point with its flow distance to specific locations along the stream network. While large runoff volumes and short flow distances imply a relatively high connectivity potential, small volumes and long distances are associated to low delivery potential. The index has proven able to discern observed runoff responses under a variety of road-stream network scenarios and rainfall conditions. These results enhance our understanding of ephemeral stream hydrology and are serving to improve coral reef management strategies throughout the Northeastern Caribbean.
Synthetic calibration of a Rainfall-Runoff Model
Thompson, David B.; Westphal, Jerome A.; ,
1990-01-01
A method for synthetically calibrating storm-mode parameters for the U.S. Geological Survey's Precipitation-Runoff Modeling System is described. Synthetic calibration is accomplished by adjusting storm-mode parameters to minimize deviations between the pseudo-probability disributions represented by regional regression equations and actual frequency distributions fitted to model-generated peak discharge and runoff volume. Results of modeling storm hydrographs using synthetic and analytic storm-mode parameters are presented. Comparisons are made between model results from both parameter sets and between model results and observed hydrographs. Although mean storm runoff is reproducible to within about 26 percent of the observed mean storm runoff for five or six parameter sets, runoff from individual storms is subject to large disparities. Predicted storm runoff volume ranged from 2 percent to 217 percent of commensurate observed values. Furthermore, simulation of peak discharges was poor. Predicted peak discharges from individual storm events ranged from 2 percent to 229 percent of commensurate observed values. The model was incapable of satisfactorily executing storm-mode simulations for the study watersheds. This result is not considered a particular fault of the model, but instead is indicative of deficiencies in similar conceptual models.
Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.
Ramos, M C; Quinton, J N; Tyrrel, S F
2006-01-01
The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.
NASA Astrophysics Data System (ADS)
Hailegeorgis, Teklu T.; Alfredsen, Knut
2018-02-01
Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.
Runoff and phosphorus loads from two Iowa fields with and without applied manure, 2000-2011
USDA-ARS?s Scientific Manuscript database
Understanding the dynamics of field-edge runoff water quality and responses to changes in management practices and climate through monitoring will probably require decade-duration data sets. This study compared runoff volumes and phosphorus loads from two fields in central Iowa, where the glacial la...
Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain
NASA Astrophysics Data System (ADS)
Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.
2018-01-01
A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.
Enhancing Seasonal Water Outlooks: Needs and Opportunities in the Critical Runoff Season
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Yocum, H.; Stokes, M.; Miskus, D.
2017-12-01
The runoff season is a critical period for the management of water supply in the western U.S., where in many places over 70% of the annual runoff occurs in the snowmelt period. Managing not only the volume, but the intra-seasonal timing of the runoff is important for optimizing storage, as well as achieving other goals such as mitigating flood risk, and providing peak flows for riparian habitat management, for example, for endangered species. Western river forecast centers produce volume forecasts for western reservoirs that are key input into many water supply decisions, and also short term river forecasts out to 10 days. The early volume forecasts each year typically begin in December, and are updated throughout the winter and into the runoff season (April-July for many areas, but varies). This presentation will discuss opportunities for enhancing this existing suite of RFC water outlooks, including the needs for and potential use for "intraseasonal" products beyond those provided by the Ensemble Streamflow Prediction system and the volume forecasts. While precipitation outlooks have little skill for many areas and seasons, and may not contribute significantly to the outlook, late winter and spring temperature forecasts have meaningful skill in certain areas and sub-seasonal to seasonal time scales. This current skill in CPC temperature outlooks is an opportunity to translate these products into information about the snowpack and potential runoff timing, even where the skill in precipitation is low. Temperature is important for whether precipitation falls as snow or rain, which is critical for streamflow forecasts, especially in the melt season in snowpack-dependent watersheds. There is a need for better outlooks of the evolution of snowpack, conditions influencing the April-July runoff, and the timing of spring peak or shape of the spring hydrograph. The presentation will also discuss a our work with stakeholders of the River Forecast Centers and the NIDIS Drought Early Warning Systems to refine stakeholder needs and create a refined decision calendar for upper Colorado River reservoirs that details decisions in the runoff period.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-02-05
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8-61.1%, followed by SpoPerf (53.9-58.3%) and EcoPerf (42.3-45.4%), and the costs of the three scenarios were 3.74, 3.47, and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.
Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-01-01
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747
Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds
NASA Astrophysics Data System (ADS)
Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.
2012-12-01
Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.
Chemical application strategies to protect water quality.
Rice, Pamela J; Horgan, Brian P; Barber, Brian L; Koskinen, William C
2018-07-30
Management of turfgrass on golf courses and athletic fields often involves application of plant protection products to maintain or enhance turfgrass health and performance. However, the transport of fertilizer and pesticides with runoff to adjacent surface waters can enhance algal blooms, promote eutrophication and may have negative impacts on sensitive aquatic organisms and ecosystems. Thus, we evaluated the effectiveness of chemical application setbacks to reduce the off-site transport of chemicals with storm runoff. Experiments with water soluble tracer compounds confirmed an increase in application setback distance resulted in a significant increase in the volume of runoff measured before first off-site chemical detection, as well as a significant reduction in the total percentage of applied chemical transported with the storm runoff. For example, implementation of a 6.1 m application setback reduced the total percentage of an applied water soluble tracer by 43%, from 18.5% of applied to 10.5% of applied. Evaluation of chemographs revealed the efficacy of application setbacks could be observed with storms resulting in lesser (e.g. 100 L) and greater (e.g. > 300 L) quantities of runoff. Application setbacks offer turfgrass managers a mitigation approach that requires no additional resources or time inputs and may serve as an alternative practice when buffers are less appropriate for land management objectives or site conditions. Characterizing potential contamination of surface waters and developing strategies to safeguard water quality will help protect the environment and improve water resource security. This information is useful to grounds superintendents for designing chemical application strategies to maximize environmental stewardship. The data will also be useful to scientists and regulators working with chemical transport and risk models. Copyright © 2018. Published by Elsevier Inc.
Final Environmental Assessment: Mental Health Clinic Hanscom Air Force Base Massachusetts
2010-08-19
the environmental assessment. QAULITY ASSURANCE LEADER Cravedi, Gregory. 66 MSG/CE. B.S. in Management ; As an Environmental Protection...are insignificant and can be minimized further by using the best management practices described in this EA. iii There are positive impacts that...thus the total volume of storm water runoff from the site will be reduced. It is anticipated that the following best management practices would be
Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12
Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald
2015-01-01
Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.
Influence of storm characteristics on soil erosion and storm runoff
Johnny M. III Grace
2008-01-01
Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...
Wildcat5 for Windows, a rainfall-runoff hydrograph model: user manual and documentation
R. H. Hawkins; A. Barreto-Munoz
2016-01-01
Wildcat5 for Windows (Wildcat5) is an interactive Windows Excel-based software package designed to assist watershed specialists in analyzing rainfall runoff events to predict peak flow and runoff volumes generated by single-event rainstorms for a variety of watershed soil and vegetation conditions. Model inputs are: (1) rainstorm characteristics, (2) parameters related...
Modeling erosion on steep sagebrush rangeland before and after prescribed fire
Corey A. Moffet; Frederick B. Pierson; Kenneth E. Spaeth
2007-01-01
Fire in sagebrush rangelands significantly alters canopy cover, ground cover, and soil properties that influence runoff and erosion processes. Runoff is generated more quickly and a larger volume of runoff is produced following prescribed fire. The result is increased risk of severe erosion and downstream flooding. The Water Erosion Prediction Project (WEPP), developed...
The effects of green infrastructure on exceedance of critical shear stress in Blunn Creek watershed
NASA Astrophysics Data System (ADS)
Shannak, Sa'd.
2017-10-01
Green infrastructure (GI) has attracted city planners and watershed management professional as a new approach to control urban stormwater runoff. Several regulatory enforcements of GI implementation created an urgent need for quantitative information on GI practice effectiveness, namely for sediment and stream erosion. This study aims at investigating the capability and performance of GI in reducing stream bank erosion in the Blackland Prairie ecosystem. To achieve the goal of this study, we developed a methodology to represent two types of GI (bioretention and permeable pavement) into the Soil Water Assessment Tool, we also evaluated the shear stress and excess shear stress for stream flows in conjunction with different levels of adoption of GI, and estimated potential stream bank erosion for different median soil particle sizes using real and design storms. The results provided various configurations of GI schemes in reducing the negative impact of urban stormwater runoff on stream banks. Results showed that combining permeable pavement and bioretention resulted in the greatest reduction in runoff volumes, peak flows, and excess shear stress under both real and design storms. Bioretention as a stand-alone resulted in the second greatest reduction, while the installation of detention pond only had the least reduction percentages. Lastly, results showed that the soil particle with median diameter equals to 64 mm (small cobbles) had the least excess shear stress across all design storms, while 0.5 mm (medium sand) soil particle size had the largest magnitude of excess shear stress. The current study provides several insights into a watershed scale for GI planning and watershed management to effectively reduce the negative impact of urban stormwater runoff and control streambank erosion.
Plant species richness enhances nitrogen retention in green roof plots.
Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi
2016-10-01
Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters downstream of green roofs. © 2016 by the Ecological Society of America.
Evaluation of an Infiltration Model with Microchannels
NASA Astrophysics Data System (ADS)
Garcia-Serrana, M.; Gulliver, J. S.; Nieber, J. L.
2015-12-01
This research goal is to develop and demonstrate the means by which roadside drainage ditches and filter strips can be assigned the appropriate volume reduction credits by infiltration. These vegetated surfaces convey stormwater, infiltrate runoff, and filter and/or settle solids, and are often placed along roads and other impermeable surfaces. Infiltration rates are typically calculated by assuming that water flows as sheet flow over the slope. However, for most intensities water flow occurs in narrow and shallow micro-channels and concentrates in depressions. This channelization reduces the fraction of the soil surface covered with the water coming from the road. The non-uniform distribution of water along a hillslope directly affects infiltration. First, laboratory and field experiments have been conducted to characterize the spatial pattern of flow for stormwater runoff entering onto the surface of a sloped surface in a drainage ditch. In the laboratory experiments different micro-topographies were tested over bare sandy loam soil: a smooth surface, and three and five parallel rills. All the surfaces experienced erosion; the initially smooth surface developed a system of channels over time that increased runoff generation. On average, the initially smooth surfaces infiltrated 10% more volume than the initially rilled surfaces. The field experiments were performed in the side slope of established roadside drainage ditches. Three rates of runoff from a road surface into the swale slope were tested, representing runoff from 1, 2, and 10-year storm events. The average percentage of input runoff water infiltrated in the 32 experiments was 67%, with a 21% standard deviation. Multiple measurements of saturated hydraulic conductivity were conducted to account for its spatial variability. Second, a rate-based coupled infiltration and overland model has been designed that calculates stormwater infiltration efficiency of swales. The Green-Ampt-Mein-Larson assumptions were implemented to calculate infiltration along with a kinematic wave model for overland flow that accounts for short-circuiting of flow. Additionally, a sensitivity analysis on the parameters implemented in the model has been performed. Finally, the field experiments results have been used to quantify the validity of the coupled model.
Jato-Espino, Daniel; Charlesworth, Susanne M; Bayon, Joseba R; Warwick, Frank
2016-01-21
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall-runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network.
Jato-Espino, Daniel; Charlesworth, Susanne M.; Bayon, Joseba R.; Warwick, Frank
2016-01-01
Sustainable Urban Drainage Systems (SuDS) constitute an alternative to conventional drainage when managing stormwater in cities, reducing the impact of urbanization by decreasing the amount of runoff generated by a rainfall event. This paper shows the potential benefits of installing different types of SuDS in preventing flooding in comparison with the common urban drainage strategies consisting of sewer networks of manholes and pipes. The impact of these systems on urban water was studied using Geographic Information Systems (GIS), which are useful tools when both delineating catchments and parameterizing the elements that define a stormwater drainage system. Taking these GIS-based data as inputs, a series of rainfall–runoff simulations were run in a real catchment located in the city of Donostia (Northern Spain) using stormwater computer models, in order to compare the flow rates and depths produced by a design storm before and after installing SuDS. The proposed methodology overcomes the lack of precision found in former GIS-based stormwater approaches when dealing with the modeling of highly urbanized catchments, while the results demonstrated the usefulness of these systems in reducing the volume of water generated after a rainfall event and their ability to prevent localized flooding and surcharges along the sewer network. PMID:26805864
NASA Astrophysics Data System (ADS)
Parish, E. S.; Omitaomu, O.; Sylvester, L.; Nugent, P.
2015-12-01
Many U.S. cities are exploring the potential of using green infrastructure (e.g., porous pavements, green roofs, street planters) to reduce urban storm water runoff, which can be both be a nuisance and costly to treat. While tools exist to measure local runoff changes resulting from individual green infrastructure (GI) projects, most municipalities currently have no method of analyzing the collective impact of GI projects on urban stormwater systems under future rainfall scenarios and impervious surface distribution patterns. Using the mid-sized city of Knoxville, Tennessee as a case study, we propose a set of indicators that can be used to monitor and analyze the collective effects of GI emplacement on urban storm water runoff volumes as well as to quantify potential co-benefits of GI projects (e.g., urban heat island reduction, reduced stream scouring) under different climate projection ensembles and population growth scenarios. These indicators are intended to help the city prioritize GI projects as opportunities arise, as well as to track the effectiveness of GI implementation over time. We explore the aggregation of these indicators across different spatial scales (e.g., plot, neighborhood, watershed, city) in order to assess potential changes in climate change resilience resulting from the collective implementation of GI projects across an urban landscape.
NASA Astrophysics Data System (ADS)
Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.
2017-12-01
Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.
[Nitrogen and phosphorus composition in urban runoff from the new development area in Beijing].
Li, Li-Qing; Lü, Shu-Cong; Zhu, Ren-Xiao; Liu, Ze-Quan; Shan, Bao-Qing
2012-11-01
Stormwater runoff samples were collected from two impervious roof and road of the new development area in Beijing, during three rainfall events in an attempt to characterize the urban runoff and determine nitrogen and phosphorus composition. The outcomes are expected to offer the practical guidance in sources control of urban runoff pollution. The results indicated that the stormwater runoff from the studied area presented a strong first flush for all monitored events and constituents. Eighty percent of the total pollutant loads were transported by the first 10 mm flow volume for roof runoff, whereas 80% of the total pollutant loads were discharged by the first 15 mm flow volume for road runoff. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-) -N and TP for roof runoff were 50.2 mg x L(-1), 81.7 mg x L(-1), 6.07 mg x L(-1), 2.94 mg x L(-1), 1.05 mg x L(-1), and 0.11 mg x L(-1), respectively. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-)-N and TP for road runoff were 539.0 mg x L(-1), 276.4 mg x L(-1), 7.00 mg x L(-1), 1.71 mg x L(-1), 1.51 mg x L(-1), and 0.61 mg x L(-1), respectively. Moreover, for the roof runoff, the particle-bound fraction was 20.8% for COD, 12.3% for TN, and 49.7% for TP. For road runoff, the particle-bound fraction was 68.6% for COD, 20.0% for TN, and 73.6% for TP. Nitrogen in roof runoff was predominantly dissolved (87.7%), with ammonia (57.6%) and nitrate (22.5%). Nitrogen in road runoff was also predominantly dissolved (80.0%), with ammonia (42.1%) and nitrate (35.0%). These findings can assist the development of effective source control strategies to immobilize dissolved and particulate-bound nitrogen/phosphorus in urban stormwater.
NASA Astrophysics Data System (ADS)
Zhang, Wen-Yan; Lin, Chao-Yuan
2017-04-01
The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.
Discussion about initial runoff and volume capture ratio of annual rainfall.
Zhang, Kun; Che, Wu; Zhang, Wei; Zhao, Yang
2016-10-01
In recent years, runoff pollution from urban areas has become a major concern all over the world. But there exists a worldwide confusion about how much stormwater should be captured for the purpose of runoff pollution control. Furthermore, the construction cost and pollution control efficiency are closely linked with the size of stormwater facilities, which is then related to the first flush (FF) phenomenon and volume capture ratio of annual rainfall (VCRa). Based on this background, analysis of the random and changeable characteristics of the occurrence of FF was carried out first, which was proved to vary with catchment characteristics and pollutant types. Secondly, the distribution of design rainfall depth toward 85% VCRa in China and its causes have been analyzed. Thirdly, the relationship between initial runoff and VCRa has been studied at both conceptual and numerical levels, and the change rule of VCRa along with design rainfall depth in different regions has been studied. The limitation of initial runoff has been illustrated from the perspective of runoff characteristics of single rainfall events in the first part, and from the perspective of regional differences in the two subsequent parts.
NASA Astrophysics Data System (ADS)
Nasri, S.; Cudennec, C.; Albergel, J.; Berndtsson, R.
2004-02-01
In the beginning of the 1990s, the Tunisian Ministry of Agriculture launched an ambitious program for constructing small hillside reservoirs in the northern and central region of the country. At present, more than 720 reservoirs have been created. They consist of small compacted earth dams supplied with a horizontal overflow weir. Due to lack of hydrological data and the area's extreme floods, however, it is very difficult to design the overflow weirs. Also, catchments are very sensitive to erosion and the reservoirs are rapidly silted up. Consequently, prediction of flood volumes for important rainfall events becomes crucial. Few hydrological observations, however, exist for the catchment areas. For this purpose a geomorphological model methodology is presented to predict shape and volume of hydrographs for important floods. This model is built around a production function that defines the net storm rainfall (portion of rainfall during a storm which reaches a stream channel as direct runoff) from the total rainfall (observed rainfall in the catchment) and a transfer function based on the most complete possible definition of the surface drainage system. Observed rainfall during 5-min time steps was used in the model. The model runoff generation is based on surface drainage characteristics which can be easily extracted from maps. The model was applied to two representative experimental catchments in central Tunisia. The conceptual rainfall-runoff model based on surface topography and drainage network was seen to reproduce observed runoff satisfactory. The calibrated model was used to estimate runoff from 5, 10, 20, and 50 year rainfall return periods regarding runoff volume, maximum runoff, as well as the general shape of the runoff hydrograph. Practical conclusions to design hill reservoirs and to extrapolate results using this model methodology for ungauged small catchments in semiarid Tunisia are made.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Storage Piles Runoff Subcategory § 411.32 Effluent limitations guidelines representing the degree of... facilities designed, constructed and operated to treat the volume of runoff from materials storage piles...
Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.
Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan
2017-08-01
Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water storage capacities. The performance of both types stays limited to a maximum reduction of 2.4% compared to the baseline scenario, unless the coverage of vegetation and permeable surfaces is significantly increased as a 14.8% reduction is achieved by greening all roof surfaces. We conclude that the study provides empirical support for the effectiveness of urban green infrastructure as nature-based solution to stormwater regulation and assists planners and operators of sewage systems in selecting the most effective measures for implementation and estimation of their effects. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Lai R.; Qian, Yun
This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statisticallymore » insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.« less
Demonstration to characterize watershed runoff potential by microwave techniques
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1977-01-01
Characteristics such as storage capacity of the soil, volume of storage in vegetative matter, and volume of storage available in local depressions are expressed in empirical watershed runoff equations as one or more coefficients. Conventional techniques for estimating coefficients representing the spatial distribution of these characteristics over a watershed drainage area are subjective and produce significant errors. Characteristics of the wear surface are described as a single coefficient called the curve number.
Lopez, M.A.; Giovannelli, R.F.
1984-01-01
Rainfall, runoff, and water quality data were collected at nine urban watersheds in the Tampa Bay area from 1975 to 1980. Watershed drainage area ranged from 0.34 to 0.45 sq mi. Land use was mixed. Development ranged from a mostly residential watershed with a 19% impervious surface, to a commercial-residential watershed with a 61% impervious surface. Average biochemical oxygen demand concentrations of base flow at two sites and of stormwater runoff at five sites exceeded treated sewage effluent standards. Average coliform concentrations of stormwater runoff at all sites were several orders of magnitude greater than standards for Florida Class III receiving water (for recreation or propagation and management of fish and wildlife). Average concentrations of lead and zinc in stormwater runoff were consistently higher than Class III standards. Stormwater-runoff loads and base-flow concentrations of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus, and lead were related to runoff volume, land use, urban development, and antecedent daily rainfall by multiple linear regression. Stormwater-runoff volume was related to pervious area, hydraulically connected impervious surfaces, storm rainfall, and soil-infiltration index. Base-flow daily discharge was related to drainage area and antecedent daily rainfall. The flow regression equations of this report were used to compute 1979 water-year loads of biochemical oxygen demand, chemical oxygen demand, total nitrogen, total organic nitrogen, total phosphorus , and total lead for the nine Tampa Bay area urban watersheds. (Lantz-PTT)
Spatially distributed storm runoff modeling using remote sensing and geographic information systems
NASA Astrophysics Data System (ADS)
Melesse, Assefa Mekonnen
Advances in scientific knowledge and new techniques of remote sensing permit a better understanding of the physical land features governing hydrologic processes, and make possible efficient, large-scale hydrologic modeling. The need for land-cover and hydrologic response change detection at a larger scale and at times of the year when hydrologic studies are critical makes satellite imagery the most cost effective, efficient and reliable source of data. The use of a Geographic Information System (GIS) to store, manipulate and visualize these data, and ultimately to estimate runoff from watersheds, has gained increasing attention in recent years. In this work, remotely-sensed data and GIS tools were used to estimate the changes in land-cover, and to estimate runoff response, for three watersheds (Etonia, Econlockhatchee, and S-65A sub-basins) in Florida. Land-use information from Digital Orthophoto Quarter Quadrangles (DOQQ), Landsat Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) were analyzed for the years 1973, 1984, 1990, 1995, and 2000. Spatial distribution of land-cover was assessed over time. The corresponding infiltration excess runoff response of the study areas due to these changes was estimated using the United States Department of Agriculture, Natural Resources Conservation Service Curve Number (USDA-NRCS-CN) method. A Digital Elevation Model (DEM)-GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. The method was tested on a representative watershed (Simms Creek) in the Etonia sub-basin. Simulated and observed runoff volume and hydrographs were compared for 17 storm events. Isolated storms, with volumes of not less than 12.75 mm (0.5 inch) were selected. This is the minimum amount of rainfall volume recommended for the NRCS-CN method. Results show that the model predicts the runoff response of the study area with an average efficiency of 57%. Comparison of the runoff prediction to Snyder's synthetic Unit hydrograph method and TOPMODEL shows the spatially distributed infiltration excess travel time model performs better than both the Snyder's method and TOPMODEL. The model is applicable to ungaged watersheds and useful for predicting runoff hydrographs resulting from changes in the land-cover.
Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2014-12-01
To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.
First flush of storm runoff pollution from an urban catchment in China.
Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li
2007-01-01
Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
Brezonik, Patrick L; Stadelmann, Teresa H
2002-04-01
Urban nonpoint source pollution is a significant contributor to water quality degradation. Watershed planners need to be able to estimate nonpoint source loads to lakes and streams if they are to plan effective management strategies. To meet this need for the twin cities metropolitan area, a large database of urban and suburban runoff data was compiled. Stormwater runoff loads and concentrations of 10 common constituents (six N and P forms, TSS, VSS, COD, Pb) were characterized, and effects of season and land use were analyzed. Relationships between runoff variables and storm and watershed characteristics were examined. The best regression equation to predict runoff volume for rain events was based on rainfall amount, drainage area, and percent impervious area (R2 = 0.78). Median event-mean concentrations (EMCs) tended to be higher in snowmelt runoff than in rainfall runoff, and significant seasonal differences were found in yields (kg/ha) and EMCs for most constituents. Simple correlations between explanatory variables and stormwater loads and EMCs were weak. Rainfall amount and intensity and drainage area were the most important variables in multiple linear regression models to predict event loads, but uncertainty was high in models developed with the pooled data set. The most accurate models for EMCs generally were found when sites were grouped according to common land use and size.
Fish Passage Center; Columbia Basin Fish and Wildlife Authority, 2000 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Michele
2001-06-01
The year 2000 hydrosystem operations illustrated two main points: (1) that the NMFS Biological Opinion on the operations of the Federal Columbia River Power System (FCRPS) fish migration measures could not be met in a slightly below average water year, and; (2) the impacts and relationships of energy deregulation and volatile wholesale energy prices on the ability of the FCRPS to provide the Biological Opinion fish migration measures. In 2000, a slightly below average water year, the flow targets were not met and, when energy ''emergencies'' were declared, salmon protection measures were reduced. The 2000 migration year was a belowmore » average runoff volume year with an actual run off volume of 61.1 MAF or 96% of average. This year illustrated the ability of the hydro system to meet the migration protection measures established by the NMFS Biological Opinion. The winter operation of storage reservoirs was based upon inaccurate runoff volume forecasts which predicted a January-July runoff volume forecast at The Dalles of 102 to 105% of average, from January through June. Reservoir flood control drafts during the winter months occurred according to these forecasts. This caused an over-draft of reservoirs that resulted in less volume of water available for fish flow augmentation in the spring and the summer. The season Biological Opinion flow targets for spring and summer migrants at Lower Granite and McNary dams were not met. Several power emergencies were declared by BPA in the summer of 2000. The first in June was caused by loss of resources (WNP2 went off-line). The second and third emergencies were declared in August as a result of power emergencies in California and in the Northwest. The unanticipated effects of energy deregulation, power market volatility and rising wholesale electricity prices, and Californian energy deregulation reduced the ability of the FCRPS to implement fish protection measures. A Spill Plan Agreement was implemented in the FCRPS. Under this plan, spill hours were increased at Lower Monumental Dam. Spill volume at The Dalles was reduced and daytime spill tests were conducted at John Day and Bonneville Dams. Although provided for fish, most spill that occurred in 2000 was either in excess of project hydraulic capacity or excess generation. This effectively reduced the actual cost of the spill program. For the most part, spill in 2000 was managed to the waiver limits for total dissolved gas levels and the NMFS action criteria for dissolved gas signs were not exceeded. Hatchery spring chinook returns comprised an estimated 81.4% of the total spring chinook adult return to Lower Granite Dam. Smolt travel time and survival were similar to past years for most Smolt Monitoring Program groups. The notable exceptions were Snake River hatchery steelhead groups and mid-Columbia hatchery sub-yearling groups from Wells and Ringold hatcheries, which had significantly lower survival than previous years. Yearling chinook travel time showed variation from past years, reflecting the atypical flow shape in 2000 which had high flows in April, declining through May.« less
Runoff and water-quality characteristics of three Discovery Farms in North Dakota, 2008–16
Galloway, Joel M.; Nustad, Rochelle A.
2017-12-21
Agricultural producers in North Dakota are aware of concerns about degrading water quality, and many of the producers are interested in implementing conservation practices to reduce the export of nutrients from their farms. Producers often implement conservation practices without knowledge of the water quality of the runoff from their farm or if conservation practices they may implement have any effect on water quality. In response to this lack of information, the U.S. Geological Survey, in cooperation with North Dakota State University Extension Service and in coordination with an advisory group consisting of State agencies, agricultural producers, and commodity groups, implemented a monitoring study as part of a Discovery Farms program in North Dakota in 2007. Three data-collection sites were established at each of three farms near Underwood, Embden, and Dazey, North Dakota. The purpose of this report is to describe runoff and water-quality characteristics using data collected at the three Discovery Farms during 2008–16. Runoff and water-quality data were used to help describe the implications of agricultural conservation practices on runoff and water-quality patterns.Runoff characteristics of monitoring sites at the three farms were determined by measuring flow volume and precipitation. Runoff at the Underwood farm monitoring sites generally was controlled by precipitation in the area, antecedent soil moisture conditions, and, after 2012, possibly by the diversion ditch constructed by the producer. Most of the annual runoff was in March and April each year during spring snowmelt. Runoff characteristics at the Embden farm are complex because of the mix of surface runoff and flow through two separate drainage tile systems. Annual flow volumes for the drainage tiles sites (sites E2 and E3) were several orders of magnitude greater than measured at the surface water site E1. Site E1 generally only had runoff briefly in March and April during spring snowmelt and during only a few large rain events throughout 2009–16. Flow was somewhat continuous at sites E2 and E3 throughout the year during years of increased precipitation, such as in 2010 and 2011. At Dazey farm, annual flow volumes at the most downstream site D3 for 2010–15 ranged from 88 acre-feet (2012) to 12,060 acre-feet (2010). The largest monthly runoff volumes at D1 (most upstream site; combination of data from site D1a [original site] and site D1b [relocated site]) and D3 were in March and April during spring snowmelt runoff and rain events.At Underwood farm, total ammonia and total phosphorus had the highest concentrations at the most upstream site (U1) and decreased sequentially at sites U2 and U3 downstream. Total ammonia and total phosphorus concentrations at the sites for Underwood farm also generally were higher than measured at sites for the Dazey and Embden farms. At Embden farm, nitrate plus nitrite concentrations were lowest at site E1 (surface-water site) and highest at sites E2 and E3 (drainage tile sites). Nitrate plus nitrite concentrations at sites E2 and E3 also were the highest among all the sites at all three farms. Median total nitrate plus nitrite concentrations for sites E1, E2, and E3 were 0.22, 13, and 10 milligrams per liter as nitrogen, respectively. Nutrient concentrations generally were greater at site D1 (most upstream site) compared to site D3 (most downstream site) at Dazey farm. Higher concentrations at site D1, which is farther upstream and closer to potential sources of nutrients, compared to lower concentrations at site D3, which is farther downstream and receives more runoff, indicates that dilution may be the reason concentrations decrease downstream.Annual loads for chloride at all three Underwood sites were the greatest in 2011 and the least in 2012, which coincided with years of the greatest and least annual flow volume, respectively. Total ammonia had a similar pattern at the three sites. Nitrate plus nitrite loads displayed a different pattern than chloride and total ammonia, indicating possible different sources. Chloride, total ammonia, total phosphorus, and suspended sediment were transported past site U1 mostly in March and the least from July through October. Monthly nitrate plus nitrite loads had a different pattern than the other constituents, indicating other possible sources such as fertilizer application in the surrounding cropland.Annual loads for Embden farm were considerably greater at sites E2 and E3 compared to site E1. Annual yields for all constituents also were substantially greater at sites E2 and E3 compared to site E1, mainly because of a combination of higher flow volumes and small contributing drainage areas at sites E2 and E3 compared to site E1.The greatest annual loads at Dazey farm site D3 for chloride, nitrate plus nitrite, and suspended sediment were in 2010 and 2011, and zero loads were estimated for 2012 because no flow was measured at the site. Mean monthly loads generally were greatest for most constituents in March and April at sites D1 and D3 except for suspended sediment that had the greatest monthly loads in May.To mitigate runoff and water-quality effects of their operations, the producers implemented various agricultural conservation practices before and during the Discovery Farms monitoring. Even though it was difficult to quantify the effects of the agricultural conservation practices implemented at the farms, the data collected from the Discovery Farms program provided a better understanding of some of the variables that affect runoff and water quality.
Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff
NASA Astrophysics Data System (ADS)
Hodson, Andy; Nowak, Aga; Sabacka, Marie; Jungblut, Anne; Navarro, Francisco; Pearce, David; Ávila-Jiménez, María Luisa; Convey, Peter; Vieira, Gonçalo
2017-02-01
Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable (<0.45 μm) iron (6-81 kg km-2 a-1) than icebergs (0.0-1.2 kg km-2 a-1). Glacier-fed streams also export more acid-soluble iron (27.0-18,500 kg km-2 a-1) associated with suspended sediment than icebergs (0-241 kg km-2 a-1). Significant fluxes of filterable and sediment-derived iron (1-10 Gg a-1 and 100-1,000 Gg a-1, respectively) are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change.
Green Retrofit Technology for Detention Basin Outlet Control Structures
Urbanization and improperly managed impervious surfaces alters the hydrology of a watershed, leading to increased runoff volumes, higher and/or longer lasting peak flows, and more frequent runoff events. These hydrologic and hydraulic modifications can impact every aspect of stre...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion of...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion of...
40 CFR 258.26 - Run-on/run-off control systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion of...
Liang, X Q; Chen, Y X; Nie, Z Y; Ye, Y S; Liu, J; Tian, G M; Wang, G H; Tuong, T P
2013-10-01
Resource-conserving irrigation and fertilizer management practices have been developed for rice systems which may help address water quality concerns by reducing N and P losses via surface runoff. Field experiments under three treatments, i.e., farmers' conventional practice (FCP), alternate wetting and drying (AWD), and AWD integrated with site-specific nutrient management (AWD + SSNM) were carried out during two rice seasons at two sites in the southwest Yangtze River delta region. Across site years, results indicated that under AWD irrigation (i.e., AWD and AWD + SSNM), water inputs were reduced by 13.4~27.5 % and surface runoff was reduced by 30.2~36.7 % compared to FCP. When AWD was implemented alone, total N and P loss masses via surface runoff were reduced by 23.3~30.4 % and 26.9~31.7 %, respectively, compared to FCP. However, nutrient concentrations of surface runoff did not decrease under AWD alone. Under AWD + SSNM, total N and P loss masses via surface runoff were reduced to a greater extent than AWD alone (39.4~47.6 % and 46.1~48.3 % compared to FCP, respectively), while fertilizer inputs and N surpluses significantly decreased and rice grain yields increased relative to FCP. Therefore, by more closely matching nutrient supply with crop demand and reducing both surface runoff and nutrient concentrations of surface runoff, our results demonstrate that integration of AWD and SSNM practices can mitigate N and P losses via surface runoff from rice fields while maintaining high yields.
[Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].
Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun
2012-01-01
By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.
Spot Spraying Reduces Herbicide Concentrations in Runoff.
Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen
2016-05-25
Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.
Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.
2003-01-01
The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.
Duncker, James J.; Melching, Charles S.
1998-01-01
Rainfall and streamflow data collected from July 1986 through September 1993 were utilized to calibrate and verify a continuous-simulation rainfall-runoff model for three watersheds (11.8--18.0 square miles in area) in Du Page County. Classification of land cover into three categories of pervious (grassland, forest/wetland, and agricultural land) and one category of impervious subareas was sufficient to accurately simulate the rainfall-runoff relations for the three watersheds. Regional parameter sets were obtained by calibrating jointly all parameters except fraction of ground-water inflow that goes to inactive ground water (DEEPFR), interflow recession constant (IRC), and infiltration (INFILT) for runoff from all three watersheds. DEEPFR and IRC varied among the watersheds because of physical differences among the watersheds. Two values of INFILT were obtained: one representing the rainfall-runoff process on the silty and clayey soils on the uplands and lake plains that characterize Sawmill Creek, St. Joseph Creek, and eastern Du Page County; and one representing the rainfall-runoff process on the silty soils on uplands that characterize Kress Creek and parts of western Du Page County. Regional rainfall-runoff relations, defined through joint calibration of the rainfall-runoff model and verified for independent periods, presented in this report, allow estimation of runoff for watersheds in Du Page County with an error in the total water balance less than 4.0 percent; an average absolute error in the annual-flow estimates of 17.1 percent with the error rarely exceeding 25 percent for annual flows; and correlation coefficients and coefficients of model-fit efficiency for monthly flows of at least 87 and 76 percent, respectively. Close reproduction of the runoff-volume duration curves was obtained. A frequency analysis of storm-runoff volume indicates a tendency of the model to undersimulate large storms, which may result from underestimation of the amount of impervious land cover in the watershed and errors in measuring rainfall for convective storms. Overall, the results of regional calibration and verification of the rainfall-runoff model indicate the simulated rainfall-runoff relations are adequate for stormwater-management planning and design for watersheds in Du Page County.
Rainfall-Runoff and Water-Balance Models for Management of the Fena Valley Reservoir, Guam
Yeung, Chiu W.
2005-01-01
The U.S. Geological Survey's Precipitation-Runoff Modeling System (PRMS) and a generalized water-balance model were calibrated and verified for use in estimating future availability of water in the Fena Valley Reservoir in response to various combinations of water withdrawal rates and rainfall conditions. Application of PRMS provides a physically based method for estimating runoff from the Fena Valley Watershed during the annual dry season, which extends from January through May. Runoff estimates from the PRMS are used as input to the water-balance model to estimate change in water levels and storage in the reservoir. A previously published model was calibrated for the Maulap and Imong River watersheds using rainfall data collected outside of the watershed. That model was applied to the Almagosa River watershed by transferring calibrated parameters and coefficients because information on daily diversions at the Almagosa Springs upstream of the gaging station was not available at the time. Runoff from the ungaged land area was not modeled. For this study, the availability of Almagosa Springs diversion data allowed the calibration of PRMS for the Almagosa River watershed. Rainfall data collected at the Almagosa rain gage since 1992 also provided better estimates of rainfall distribution in the watershed. In addition, the discontinuation of pan-evaporation data collection in 1998 required a change in the evapotranspiration estimation method used in the PRMS model. These reasons prompted the update of the PRMS for the Fena Valley Watershed. Simulated runoff volume from the PRMS compared reasonably with measured values for gaging stations on Maulap, Almagosa, and Imong Rivers, tributaries to the Fena Valley Reservoir. On the basis of monthly runoff simulation for the dry seasons included in the entire simulation period (1992-2001), the total volume of runoff can be predicted within -3.66 percent at Maulap River, within 5.37 percent at Almagosa River, and within 10.74 percent at Imong River. Month-end reservoir volumes simulated by the reservoir water-balance model for both calibration and verification periods compared closely with measured reservoir volumes. Errors for the calibration periods ranged from 4.51 percent [208.7 acre-feet (acre-ft) or 68.0 million gallons (Mgal)] to -5.90 percent (-317.8 acre-ft or -103.6 Mgal). For the verification periods, errors ranged from 1.69 percent (103.5 acre-ft or 33.7 Mgal) to -4.60 percent (-178.7 acre-ft or -58.2 Mgal). Monthly simulation bias ranged from -0.19 percent for the calibration period to -0.98 percent for the verification period; relative error ranged from -0.37 to -1.12 percent, respectively. Relatively small bias indicated that the model did not consistently overestimate or underestimate reservoir volume.
Highway runoff quality in Ireland.
Berhanu Desta, Mesfin; Bruen, Michael; Higgins, Neil; Johnston, Paul
2007-04-01
Highway runoff has been identified as a significant source of contaminants that impact on the receiving aquatic environment. Several studies have been completed documenting the characteristics of highway runoff and its implication to the receiving water in the UK and elsewhere. However, very little information is available for Ireland. The objective of this study was to determine the quality of highway runoff from major Irish roads under the current road drainage design and maintenance practice. Four sites were selected from the M4 and the M7 motorways outside Dublin. Automatic samplers and continuous monitoring devices were deployed to sample and monitor the runoff quality and quantity. More than 42 storm events were sampled and analysed for the heavy metals Cd, Cu, Pb, and Zn, 16 US EPA specified PAHs, volatile organic compounds including MTBE, and a number of conventional pollutants. All samples were analysed based on the Standard Methods. Significant quantities of solids and heavy metals were detected at all sites. PAHs were not detected very often, but when detected the values were different from quantities observed in UK highways. The heavy metal concentrations were strongly related to the total suspended solids concentrations, which has a useful implication for runoff management strategies. No strong relationship was discovered between pollutant concentrations and event characteristics such as rainfall intensity, antecedent dry days (ADD), or rainfall depth (volume). This study has demonstrated that runoff from Irish motorways was not any cleaner than in the UK although the traffic volume at the monitored sites was relatively smaller. This calls for a site specific investigation of highway runoff quality before adopting a given management strategy.
Galeone, Daniel G.
1996-01-01
The U.S. Geological Survey and the Bureau of Land and Water Conservation of the Pennsylvania Department of Environmental Protection conducted a cooperative study to determine the effects of manure application and antecedent soil-phosphorus concentrations on the transport of phosphorus from the soil of a typical farm site in Lancaster County, Pa., from September 1992 to March 1995. The relation between concentrations of soil phosphorus and phosphorus transport needs to be identified because excessive phosphorus concentrations in surface-water bodies promote eutrophication.The objective of the study was to quantify and determine the significance of chemical, physical, and hydrologic factors that affected phosphorus transport. Three study plots less than 1 acre in size were tilled and planted in silage corn. Phosphorus in the form of liquid swine and dairy manure was injected to a depth of 6-8 inches on two of the three study plots in May 1993 and May 1994. Plot 1 received no inputs of phosphorus from manure while plots 2 and 3 received an average of 56 and 126 kilograms of phosphorus per acre, respectively, from the two manure applications. No other fertilizer was applied to any of the study plots. From March 30, 1993, through December 31, 1993, and March 10, 1994, through August 31, 1994 (the study period), phosphorus and selected cations were measured in precipitation, manure, soil, surface runoff, subsurface flow (at 18 inches below land surface), and corn plants before harvest. All storm events that yielded surface runoff and subsurface flow were sampled. Surface runoff was analyzed for dissolved (filtered through a 0.45-micron filter) and total concentrations. Subsurface flow was only analyzed for dissolved constituents. Laboratory soil-flask experiments and geochemical modeling were conducted to determine the maximum phosphate retention capacity of sampled soils after manure applications and primary mineralogic controls in the soils that affect phosphate equilibrium processes.Physical characteristics, such as particle-size distributions in soil, the suspended sediment and particle-size distribution in surface runoff, and surface topography, were quantified. Hydrologic characteristics, such as precipitation intensity and duration, volumes of surface runoff, and infiltration rates of soil, were also monitored during the study period. Volumes of surface runoff differed by plot.Volumes of surface runoff measured during the study period from plots 1 (0.43 acres), 2 (0.23 acres), and 3 (0.28 acres) were 350,000, 350,000, and 750,000 liters per acre, respectively. About 90 percent of the volume of surface runoff occurred after October 1993 because of the lack of intense precipitation from March 30, 1993, through November 30, 1993. For any one precipitation amount, volumes of surface runoff increased with an increase in the maximum intensity of precipitation and decreased with an increase in storm duration. The significantly higher volume of surface runoff for plot 3 relative to plots 1 and 2 was probably caused by lower infiltration rates on plot 3.Soil concentrations of plant-available phosphorus (PAP) for each study plot were high (31-60 parts per million) to excessive (greater than 60 parts per million) for each depth interval (0-6, 6-12, and 12- 24 inches) and sampling period except for some samples collected at depths of 12-24 inches. The high levels of PAP before manure applications made it difficult to detect any changes in the concentration of soil PAP caused by manure applications. Manure applications to the study area prior to this study resulted in relatively high concentrations of soil PAP; however, the manure applications to plot 3 during the study period did cause an increase in the soil concentration of PAP after the second manure application. The percentages of total phosphorus in plant-available and inorganic forms were about 5 and 80 percent, respectively, in the 0-24--inch depth interval of soil on the study plots. Concentrations of total phosphorus on sand, silt, and clay particles from soil were 700, 1,000, and 3,400 parts per million, respectively. About 70 percent of the total mass of phosphorus in soil to a depth of 24 inches was associated with silt and clay particles.Soil-flask experiments indicated that soils from the study plots were not saturated with respect to phosphorus. Soils had the capacity to retain 694 to 1,160 milligrams of phosphorus per kilogram of soil. The measured retention capacity probably exceeded the actual retention capacity of soil because laboratory conditions optimized the contact time between soil and test solutions.Geochemical modeling indicated that the primary mineralogical controls on the concentration of dissolved phosphorus in surface runoff and subsurface flow were aluminum and iron oxides and strengite (if it exists). Aluminum and iron oxides bind phosphate in solution and strengite is an iron-phosphate mineral. The mineralization of organic phosphorus into dissolved inorganic forms could also supply phosphorus to surface runoff and subsurface flow.Phosphorus inputs to the plots during the study period were from precipitation and manure. Phosphorus inputs from precipitation were negligible. The loads of phosphorus to the plots from manure applications in May 1993 and May 1994 were 112 and 251 kilograms per acre for plots 2 and 3, respectively; about 60 percent of the load occurred in 1994.Phosphorus outputs in surface runoff differed between study plots. The cumulative yields of total phosphorus during the study period for plots 1, 2, and 3 were 1.12, 1.24, and 1.69 kilograms per acre, respectively. Differences between plots were primarily evident for dissolved yields of phosphorus. The percentage of the total phosphorus output in surface runoff that was in the dissolved phase varied from 6 percent for plot 1 to 26 percent for plot 3.The cumulative yields of dissolved phosphorus from plots 2 and 3 were 135 and 500 percent greater, respectively, than the dissolved yield from plot 1. Even though volumes of surface runoff were different on the plots, the primary cause of the difference between plots in the yield of dissolved phosphorus in surface runoff was differences in the concentration of dissolved phosphorus. After the second manure application, concentrations of dissolved phosphorus in surface runoff on plots 2 and 3 were significantly higher than the concentration for plot 1.An increase in the concentration of dissolved phosphorus in subsurface flow from plots 2 and 3 was measured after manure applications. The mean concentrations of dissolved phosphorus in subsurface flow after the first manure application were 0.29, 0.57, and 1.45 milligrams per liter of phosphorus for plots 1, 2, and 3, respectively.The loss of dissolved phosphorus in surface runoff was related to the soil concentration of PAP. The model relating dissolved phosphorus in surface runoff to soil PAP indicated that concentrations of dissolved phosphorus in surface runoff would exceed 0.1 milligram per liter if soil concentrations of PAP exceeded 9 parts per million; this PAP concentration was exceeded by each study plot. Over 50 percent of the variation of dissolved phosphorus in surface runoff was explained by soil concentrations of PAP in the 0-6-inch depth interval.The loss of suspended phosphorus in surface runoff was primarily affected by the particle-size distribution of suspended sediment in surface runoff. Surface runoff was enriched with fines relative to the soil matrix. Generally, over 90 percent of sediment in runoff was comprised of silt and clay particles; only 50-60 percent of particle sizes from the intact soil matrix were in the silt- to clay-size range. Concentrations of suspended phosphorus in surface runoff were not significantly related to soil concentrations of total phosphorus in the 0-6-inch depth interval.Concentrations of dissolved phosphorus in subsurface flow were also related to soil concentrations of PAP. The relation indicated that dissolved concentrations of phosphorus in subsurface flow would exceed 0.1 milligram per liter if soil concentrations of PAP in the 0-6-inch depth interval of soil were greater than 49 parts per million; this PAP concentration was exceeded by each study plot.The significant relation of high concentrations of dissolved phosphorus in water to soil concentrations of PAP indicated that soils with comparable concentrations of soil PAP would be potential sources of dissolved phosphorus to surface water and subsurface water tables. The percentage of the total phosphorus lost from a system in the dissolved form increased as soil concentrations of PAP increased. This indicates that best-management practices to reduce phosphorus losses from this system not only need to target suspended forms of phosphorus but also dissolved forms. Practices aimed at reducing the loss of dissolved phosphorus from the system increase in importance with an increase in soil concentrations of PAP.
NASA Astrophysics Data System (ADS)
Dhakal, A. S.; Adera, S.; Niswonger, R. G.; Gardner, M.
2016-12-01
The ability of the Precipitation-Runoff Modeling System (PRMS) to predict peak intensity, peak timing, base flow, and volume of streamflow was examined in Arroyo Hondo (180 km2) and Upper Alameda Creek (85 km2), two sub-watersheds of the Alameda Creek watershed in Northern California. Rainfall-runoff volume ratios vary widely, and can exceed 0.85 during mid-winter flashy rainstorm events. Due to dry antecedent soil moisture conditions, the first storms of the hydrologic year often produce smaller rainfall-runoff volume ratios. Runoff response in this watershed is highly hysteretic; large precipitation events are required to generate runoff following a 4-week period without precipitation. After about 150 mm of cumulative rainfall, streamflow responds quickly to subsequent storms, with variations depending on rainstorm intensity. Inputs to PRMS included precipitation, temperature, topography, vegetation, soils, and land cover data. The data was prepared for input into PRMS using a suite of data processing Python scripts written by the Desert Research Institute and U.S. Geological Survey. PRMS was calibrated by comparing simulated streamflow to measured streamflow at a daily time step during the period 1995 - 2014. The PRMS model is being used to better understand the different patterns of streamflow observed in the Alameda Creek watershed. Although Arroyo Hondo receives more rainfall than Upper Alameda Creek, it is not clear whether the differences in streamflow patterns are a result of differences in rainfall or other variables, such as geology, slope and aspect. We investigate the ability of PRMS to simulate daily streamflow in the two sub-watersheds for a variety of antecedent soil moisture conditions and rainfall intensities. After successful simulation of watershed runoff processes, the model will be expanded using GSFLOW to simulate integrated surface water and groundwater to support water resources planning and management in the Alameda Creek watershed.
Jeton, Anne E.; Maurer, Douglas K.
2011-01-01
The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To allow for water budget comparisons to the ephemeral models, the two perennial models were then run from 1980 to 2007, the time period constrained somewhat by the later record for the high-altitude climate station used in the simulation. The daily mean values of precipitation, runoff, evapotranspiration, and groundwater inflow simulated from the watershed models were summed to provide mean annual rates and volumes derived from each year of the simulation. Mean annual bias for the calibration period for Ash Canyon Creek and Clear Creek watersheds was within 6 and 3 percent, and relative errors were about 18 and -2 percent, respectively. For the 1980-2007 period of record, mean recharge efficiency and runoff efficiency (percentage of precipitation as groundwater inflow and runoff) averaged 7 and 39 percent, respectively, for Ash Canyon Creek, and 8 and 31 percent, respectively, for Clear Creek. For this same period, groundwater inflow volumes averaged about 500 acre-feet for Ash Canyon and 1,200 acre-feet for Clear Creek. The simulation period for the ephemeral watersheds ranged from water years 1978 to 2007. Mean annual simulated precipitation ranged from 6 to 11 inches. Estimates of recharge efficiency for the ephemeral watersheds ranged from 3 percent for Eureka Canyon to 7 percent for Eldorado Canyon. Runoff efficiency ranged from 7 percent for Eureka Canyon and 15 percent at Brunswick Canyon. For the 1978-2007 period, mean annual groundwater inflow volumes ranged from about 40 acre-feet for Eureka Canyon to just under 5,000 acre-feet for Churchill Canyon watershed. Watershed model results indicate significant interannual variability in the volumes of groundwater inflow caused by climate variations. For most of the modeled watersheds, little to no groundwater inflow was simulated for years with less than 8 inches of precipitation, unless those years were preceded by abnormally high precipitation years with significant subsurface storage carryover.
Fletcher, Tim D; Walsh, Chistopher J; Bos, Darren; Nemes, Veronika; RossRakesh, Sharyn; Prosser, Toby; Hatt, Belinda; Birch, Rhiannon
2011-01-01
Urbanisation results in changes to runoff behaviour which, if not addressed, inevitably degrade receiving waters. To date, most stormwater management has focussed on the streetscape and public open space. Given that much of the catchment imperviousness is located on private land, we developed and tested a novel economic instrument (a uniform price auction) for encouraging allotment-scale stormwater retention. We evaluated bids using an integrated environmental benefit index (EBI), based on the ability of the proposed works to reduce runoff frequency, pollutant loads and to reduce potable water demand. The uniform price auction resulted in 1.4 ha of impervious areas being effectively 'disconnected' from the stormwater system. The EBI provided an objective and transparent method of comparing bids, which varied in the type of works proposed (e.g. rainwater tank, rain-garden), the cost and the resulting environmental benefit. Whilst the pilot auction was a success, the public subsidy of works undertaken was around 85%, meaning that property owners a relatively small private benefit in the works. Future auction rounds will be revised to (i) test an EBI which is more focussed on the protection of streams (assessing changes to runoff frequency, baseflow volumes and water quality) and (ii) provide an auction process which is simpler to understand, and provides greater practical support for landholders who wish to undertake works.
Global change and drought severity in the Battle River Basin, Alberta
NASA Astrophysics Data System (ADS)
Byrne, J.; Kienzle, S.; Sauchyn, D.
2004-12-01
The Battle River basin is a prairie watershed with headwaters in the central Alberta Parkland region immediately east of the Rocky Mountain foothills. The watershed has low relief - mean slope of about 1.5% - typical for a prairie landscape. Most streamflow originates from spring snowmelt. In years with high snowmelt runoff, the channel wetlands are extensive and enhance runoff from summer showers. In years of low snowmelt runoff, the wetlands are of modest scale, and the rate of runoff from summer showers decline rapidly as the season advances and the wetlands shrink or disappear. Upland wetlands, also called sloughs or potholes, likely contribute very modest quantities of water to the regional groundwater system that interacts with the Battle River. The Battle has suffered a severe climatic and hydrologic drought since the year 2000. The objective herein is to define the relative severity of the drought in 2000-04 in the upper Battle River watershed. Dendrochronology data indicated the drought was one of the worst in the past several centuries. Frequency analyses indicated the summer low flow experienced in 2002 was stochastically a 1:217 year event. The average Palmer Drought Severity Index (PSDI) over the entire basin in July 2002 is at an historical extreme. Land use changes are likely adversely affecting runoff. Climate change is likely affecting hydrology, including timing and volumes of the spring peak flow and summer runoff. Water licenses have increased significantly over the past years and certainly contribute to the cumulative effects resulting in reduced streamflow, particularly in the summer months. Water authorities must re-examine the assumptions for engineering design and water allocation in the basin given the changing climate and hydrology regimes.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2011-10-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
Keeping soil in the field - runoff and erosion management in asparagus crops
NASA Astrophysics Data System (ADS)
Niziolomski, Joanna; Simmons, Robert; Rickson, Jane; Hann, Mike
2016-04-01
Row crop production (including potatoes, onions, carrots, asparagus, bulbs and lettuce) is regarded as one of the most erosive agricultural cropping systems. This is a result of the many practices involved that increase erosion risk including: fine seedbed preparation, a typically short growing season where adequate ground cover protects the soil, permanent bare soil areas between crops, and often intensive harvesting methods that can damage soil structure and result in soil compaction. Sustained exposure of bare soil coupled with onsite compaction on slightly sloping land results in soil and water issues in asparagus production. Asparagus production is a growing British industry covering > 2000 ha and is worth approximately £30 million yr-1. However, no tried and tested erosion control measurements currently exist to manage associated problems. Research has recently been undertaken investigating the effectiveness of erosion control measures suitable for asparagus production systems. These consisted of surface applied wheat straw mulch and shallow soil disturbance (< 350 mm) using several tine configurations: a currently adopted winged tine, a narrow with two shallow leading tines, and a modified para-plough. These treatments were tested individually and in combination (straw mulch with each shallow soil disturbance tine configuration) using triplicated field plots situated on a working asparagus farm in Herefordshire, UK. Testing was conducted between May and November 2013. Rainfall-event based runoff and erosion measurements were taken including; runoff volume, runoff rate and total soil loss. Runoff and soil erosion was observed from all treatments. However, the surface application of straw mulch alone out performed each shallow soil disturbance practice. This suggests that runoff and erosion from asparagus production can be reduced using the simple surface application of straw.
Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei
2015-01-01
Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.
Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei
2015-01-01
Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922
Guay, J.R.
1996-01-01
Urban areas in Perris Valley, California, have more than tripled during the last 20 years. To quantify the effects of increased urbanization on storm runoff volumes and peak discharges, rainfall-runoff models of the basin were developed to simulate runoff for 1970-75 and 1990-93 conditions. Hourly rainfall data for 1949-93 were used with the rainfall-runoff models to simulate a long-term record of storm runoff. The hydrologic effects of increased urbanization from 1970-75 to 1990-93 were analyzed by comparing the simulated annual peak discharges and volumes, and storm runoff peaks, frequency of annual peak discharges and runoff volumes, and duration of storm peak discharges for each study period. A Log-Pearson Type-III frequency analysis was calculated using the simulated annual peaks to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals. The estimated 2-year discharge at the outlet of the basin was 646 cubic feet per second for the 1970-75 conditions and 1,328 cubic feet per second for the 1990-93 conditions. The 100-year discharge at the outlet of the basin was about 14,000 cubic feet per second for the 1970-75 and 1990-93 conditions. The station duration analysis used 925 model-simulated storm peaks from each basin to estimate the percent chance a peak discharge is exceeded. At the outlet of the basin, the chances of exceeding 100 cubic feet per second were about 33 percent under 1970-75 conditions and about 59 percent under 1990-93 conditions. The chance of exceeding 2,500 cubic feet per second at the outlet of the basin was less than 1 percent higher under the 1990-93 conditions than under the 1970-75 conditions. The increase in urbanization from the early 1970's to the early 1990's more than doubled the peak discharges with a 2-year return period. However, peak discharges with return periods greater than 50 years were not significantly affected by the change in urbanization.
Adeli, Ardeshir; Read, John J; Brooks, John P; Miles, Dana; Feng, Gary; Jenkins, Johnie N
2017-03-01
The inability to incorporate broiler litter (BL) into permanent hayfields and pastures leads to nutrient accumulation near the soil surface and increases the potential transport of nutrients in runoff. This study was conducted on Marietta silt loam soil to determine the effect of flue gas desulfurization (FGD) gypsum and lignite on P, N, C, and microbial concentrations in runoff. Treatments were (i) control (unfertilized) and (ii) BL at 13.4 Mg ha alone or (iii) treated with either FGD gypsum or lignite applied at 20% (w/w) (2.68 Mg ha). Rainfall simulators were used to produce a 5.6 cm h storm event sufficient in duration to cause 15 min of continuous runoff. Repeated rains were applied at 3-d intervals to determine how long FGD gypsum and lignite are effective in reducing loss of litter-derived N, P, and C from soil. Application of BL increased N, P, and C concentrations in runoff as compared to the control. Addition of FGD gypsum reduced ( < 0.05) water-soluble P and dissolved organic C concentrations in runoff by 39 and 16%, respectively, as compared to BL alone. Lignite reduced runoff total N and NH-N concentrations by 38 and 70%, respectively, as compared to BL alone. Addition of FGD gypsum or lignite failed to significantly reduce microbial loads in runoff, although both treatments reduced microbial concentration by >20%. Thus, BL treated with FGD and lignite can be considered as cost-effective management practices in the mitigation of P, N, and C and possibly microbial concentration in runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff.
Choi, J Y; Maniquiz-Redillas, M C; Hong, J S; Lee, S Y; Kim, L H
2015-01-01
This study was conducted to compare the treatment performance of two hybrid constructed wetlands (CWs) in treating stormwater runoff. The hybrid CWs were composed of a combination of free water surface (FWS) and horizontal subsurface flow (HSSF) CWs. Based on the results, strong correlation exists between potential runoff impacts and stormwater characteristics; however, the low correlations also suggest that not only the monitored parameters contribute to stormwater event mean concentrations (EMC) of pollutants, but other factors should also be considered as well. In the hydraulic and treatment performance of the hybrid CWs, a small surface area to catchment area (SA/CA) ratio, receiving a high concentration of influent EMC, will find it hard to achieve great removal efficiency; also a large SA/CA ratio, receiving low concentration of influent EMC, will find it hard to achieve great removal efficiency. With this, SA/CA ratio and influent characteristics such as EMC or load should be considered among the design factors of CWs. The performance data of the two CWs were used to consider the most cost-effective design of a hybrid CW. The optimum facility capacity (ratio of total runoff volume to storage volume) that is applicable for a target volume reduction and removal efficiency was provided in this study.
Major winter and nonwinter floods in selected basins in New York and Pennsylvania
Langbein, Walter Basil
1947-01-01
The scientific design of flood-control works is based on an evaluation of the hydrologic factors basic to flood events, particularly how rainfall and snow runoff, soil conditions, and channel influences can combine to produce greater or lesser floods. For this purpose an analysis of the pertinent hydrologic data is needed. The methods of analysis adopted should conform as closely as possible to those already in use and must be adapted to the quality of the available information. Maximum floods in 8 basins in New York and Pennsylvania during the winter and nonwinter months were studied, a total of 21 floods. The most outstanding winter flood of record in the North Atlantic region was that of March 1936. Rainfall plus snow melt in the basins studied ranged between 3.04 and 6.87 inches, and associated volumes of direct runoff from 1.88 to 5.63 inches. Winter floods have a common characteristic in their relation to freezing temperature. The antecedent periods, representing a period of snow accumulation and frost penetration, are below freezing, and the flood itself is contemporaneous with a period of above-freezing temperatures, usually associated with rain, during which the previously accumulated snow is melted. A second common characteristic of major winter floods is their tendency to be associated with widespread causal meteorologic conditions. There was a more complete conversion of rainfall and snow melt into runoff during the winter storms studied than during the wettest nonwinter flood. Snow melt during winter floods ranged from 0.04 to 0.07 inch per degree-day above 32° F. The depth of mean areal rainfall produced by the nonwinter storms studied ranged from 3.05 to 4.96 inches. The maximum 24-hour quantity at single stations was 14 inches, which was measured during the storm of July 1935 in New York. The volume of direct runoff ranged between 1.39 and 3.41 inches. The portion of rainfall that was converted into runoff varied in accordance with the rate of antecedent base flow, expressed in second-feet per square mile, and emphasized the influence of antecedent conditions. The average volume of direct runoff during winter floods was 4.24 inches, and the average during nonwinter floods was 2.44 inches. The latter, however, were more concentrated as to time, tending to compensate for large volume of runoff in winter, so that the crest rates of direct runoff averaged 0.056 inches per hour during the winter and 0.051 inches during the nonwinter period.
[Off-line control of runoff pollution by filtering ditch-pond system in urban tourist areas].
Chen, Qing-Feng; Shan, Bao-Qing; Yin, Cheng-Qing; Hu, Cheng-Xiao
2007-10-01
An off-line filtering ditch-pond system for controlling storm runoff pollution in urban tourist areas was developed, which could retain the first flush effectively, resulting in the decrease of pollutant concentration and suspended solid average grain size, and the improvement of pollutant retention in runoff. This system could be an effective treatment system for storm runoff pollution, particularly for the scarcity of available land use in urban areas. In 2005, the yearly retention rates of TSS, COD, TN and TP were 86.4%, 85.5%, 83.9% and 82.9%, and during a storm event on June 26, the retention rates of runoff volume, TSS, COD, TN and TP were 67.9%, 97.0%, 89.2%, 94.9% and 96.2%, respectively. This system could also retain most of the suspended solids in runoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.M. Gallaher; R.J. Koch
2004-09-15
In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and amore » general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.« less
NASA Astrophysics Data System (ADS)
Painter, T. H.; Andreadis, K.; Berisford, D. F.; Goodale, C. E.; Hart, A. F.; Heneghan, C.; Deems, J. S.; Gehrke, F.; Marks, D. G.; Mattmann, C. A.; McGurk, B. J.; Ramirez, P.; Seidel, F. C.; Skiles, M.; Trangsrud, A.; Winstral, A. H.; Kirchner, P.; Zimdars, P. A.; Yaghoobi, R.; Boustani, M.; Khudikyan, S.; Richardson, M.; Atwater, R.; Horn, J.; Goods, D.; Verma, R.; Boardman, J. W.
2013-12-01
Snow cover and its melt dominate regional climate and water resources in many of the world's mountainous regions. However, we face significant water resource challenges due to the intersection of increasing demand from population growth and changes in runoff total and timing due to climate change. Moreover, increasing temperatures in desert systems will increase dust loading to mountain snow cover, thus reducing the snow cover albedo and accelerating snowmelt runoff. The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still poorly quantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. Recognizing this need, JPL developed the Airborne Snow Observatory (ASO), an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. Critical in the design of the ASO system is the availability of snow water equivalent and albedo products within 24 hours of acquisition for timely constraint of snowmelt runoff forecast models. In spring 2013, ASO was deployed for its first year of a multi-year Demonstration Mission of weekly acquisitions in the Tuolumne River Basin (Sierra Nevada) and monthly acquisitions in the Uncompahgre River Basin (Colorado). The ASO data were used to constrain spatially distributed models of varying complexities and integrated into the operations of the O'Shaughnessy Dam on the Hetch Hetchy reservoir on the Tuolumne River. Here we present the first results from the ASO Demonstration Mission 1 along with modeling results with and without the constraint by the ASO's high spatial resolution and spatially complete acquisitions. ASO ultimately provides a potential foundation for coming spaceborne missions.
DOT National Transportation Integrated Search
2017-11-01
The abundance of impervious surfaces in developed areas leads to increased threats from stormwater runoff. The contaminants carried in unmanaged stormwater runoff in addition to higher volumes of water damage the natural environment and put undue str...
Evaluating the Accuracy of Common Runoff Estimation Methods for New Impervious Hot-Mix Asphalt
Accurately predicting runoff volume from impervious surfaces for water quality design events (e.g., 25.4 mm) is important for sizing green infrastructure stormwater control measures to meet water quality and infiltration design targets. The objective of this research was to quan...
Evaluation of core cultivation practices to reduce ecological risk of pesticides in runoff from turf
USDA-ARS?s Scientific Manuscript database
Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; raising concern of their potential environmental effects and a desire to reduce their transport to non-target locations. Runoff studies were conducted to compare the effective...
[Analysis of first flush effect of typical underlying surface runoff in Beijing urban city].
Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Hou, Pei-Qiang
2013-01-01
Rapid increase of the urban impervious underlying surfaces causes a great increase of urban runoff and the accumulation of pollutants on the roof and road surfaces brings many pollutants into the drainage system with the runoff, and it thus becomes a great threat to the urban water environment. To know the runoff pollution process and to build scientific basis for pollutant control, runoff processes from the roof and road surfaces were monitored and analyzed from 2004 to 2006, and the runoff EMC (Event Mean Concentration) was calculated. It was found that two types of runoff were seriously polluted by COD and TN. The COD and TN of roof runoff exceeded the fifth level of the surface water environmental quality standard (GB 3838-2002) by 3.64 and 4.80 times, respectively, and the COD and TN of road runoff exceeded by 3.73 and 1.07 times, respectively. M (V) curve was used to determine the relation between runoff volume and runoff pollution load. Various degrees of the first flush phenomenon were found for TSS, COD, TN and TP in roof runoff. But this phenomenon occurred only for TSS and TP of the road runoff, and on the whole it was not obvious. Properties of the underlying surfaces, rainfall intensity, and pollutant accumulation are all important factors affecting the roof and road runoff pollutant emission characteristics.
Vadas, Peter A; Good, Laura W; Jokela, William E; Karthikeyan, K G; Arriaga, Francisco J; Stock, Melanie
2017-11-01
Agricultural phosphorus (P) management is a research and policy issue due to P loss from fields and water quality degradation. Better information is needed on the risk of P loss from dairy manure applied in winter or when runoff is imminent. We used the SurPhos computer model and 108 site-years of weather and runoff data to assess the impact of these two practices on dissolved P loss. Model results showed that winter manure application can increase P loss by 2.5 to 3.6 times compared with non-winter applications, with the amount increasing as the average runoff from a field increases. Increased P loss is true for manure applied any time from late November through early March, with a maximum P loss from application in late January and early February. Shifting manure application to fields with less runoff can reduce P loss by 3.4 to 7.5 times. Delaying manure application when runoff is imminent can reduce P loss any time of the year, and sometimes quite significantly, but the number of times that application delays will reduce P loss is limited to only 3 to 9% of possible spreading days, and average P loss may be reduced by only 15% for winter-applied manure and 6% for non-winter-applied manure. Overall, long-term strategies of shifting manure applications to low runoff seasons and fields can potentially reduce dissolved P loss in runoff much more compared with near-term, tactical application decisions of avoiding manure application when runoff is imminent. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Lyon, Steve W.; Walter, M. Todd; Gérard-Marchant, Pierre; Steenhuis, Tammo S.
2004-10-01
Because the traditional Soil Conservation Service curve-number (SCS-CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point-source pollution. The method presented here used the traditional SCS-CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south-eastern Australia to produce runoff-probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN-VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS-CN method, the distributed CN-VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN-VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS-CN method, while still adhering to the principles of VSA hydrology.
Brabets, Timothy P.
1999-01-01
The developed part of Elmendorf Air Force Base near Anchorage, Alaska, consists of two basins with drainage areas of 4.0 and 0.64 square miles, respectively. Runoff and suspended-sediment data were collected from August 1996 to March 1998 to gain a basic understanding of the surface-water hydrology of these areas and to estimate flood-frequency characteristics. Runoff from the larger basin averaged 6 percent of rainfall, whereas runoff from the smaller basin averaged 13 percent of rainfall. During rainfall periods, the suspended-sediment load transported from the larger watershed ranged from 179 to 21,000 pounds and that from the smaller watershed ranged from 23 to 18,200 pounds. On a yield basis, suspended sediment from the larger watershed was 78 pounds per inch of runoff and from the smaller basin was 100 pounds per inch of runoff. Suspended-sediment loads and yields were generally lower during snowmelt periods than during rainfall periods. At each outfall of the two watersheds, water flows into steep natural channels. Suspended-sediment loads measured approximately 1,000 feet downstream from the outfalls during rainfall periods ranged from 8,450 to 530,000 pounds. On a yield basis, suspended sediment averaged 705 pounds per inch of runoff, more than three times as much as the combined sediment yield from the two watersheds. The increase in suspended sediment is most likely due to natural erosion of the streambanks. Streamflow data, collected in 1996 and 1997, were used to calibrate and verify a U.S. Geological Survey computer model?the Distributed Routing Rainfall Runoff Model-Version II (DR3M-II). The model was then used to simulate annual peak discharges and runoff volumes for 1981 to 1995 using historical rainfall records. Because the model indicated that surcharging (or ponding) would occur, no flood-frequency analysis was done for peak discharges. A flood-frequency analysis of flood volumes indicated that a 10-year flood would result in 0.39 inch of runoff (averaged over the entire drainage basin) from the larger watershed and 1.1 inches of runoff from the smaller watershed.
1972-01-01
allocation. Pri- marily it is concerned with any land use that increases surface water runoff and soil compaction, two phenomena that decrease recharge... runoff . Forested filter strips between range and reser- voir boundary should be developed as a land use for water quality control and quail habitat. High...shown on Plates G-10 and G-11) some measures will also be necessary to prevent fertilizer pollution of the reservoir from excessive surface runoff . G
Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff
Hodson, Andy; Nowak, Aga; Sabacka, Marie; Jungblut, Anne; Navarro, Francisco; Pearce, David; Ávila-Jiménez, María Luisa; Convey, Peter; Vieira, Gonçalo
2017-01-01
Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable (<0.45 μm) iron (6–81 kg km−2 a−1) than icebergs (0.0–1.2 kg km−2 a−1). Glacier-fed streams also export more acid-soluble iron (27.0–18,500 kg km−2 a−1) associated with suspended sediment than icebergs (0–241 kg km−2 a−1). Significant fluxes of filterable and sediment-derived iron (1–10 Gg a−1 and 100–1,000 Gg a−1, respectively) are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change. PMID:28198359
NASA Astrophysics Data System (ADS)
Wörman, A.; Bottacin-Busolin, A.; Zmijewski, N.; Riml, J.
2017-08-01
Climate-driven fluctuations in the runoff and potential energy of surface water are generally large in comparison to the capacity of hydropower regulation, particularly when hydropower is used to balance the electricity production from covarying renewable energy sources such as wind power. To define the bounds of reservoir storage capacity, we introduce a dedicated reservoir volume that aggregates the storage capacity of several reservoirs to handle runoff from specific watersheds. We show how the storage bounds can be related to a spectrum of the climate-driven modes of variability in water availability and to the covariation between water and wind availability. A regional case study of the entire hydropower system in Sweden indicates that the longest regulation period possible to consider spans from a few days of individual subwatersheds up to several years, with an average limit of a couple of months. Watershed damping of the runoff substantially increases the longest considered regulation period and capacity. The high covariance found between the potential energy of the surface water and wind energy significantly reduces the longest considered regulation period when hydropower is used to balance the fluctuating wind power.
Soong, David T.; Over, Thomas M.
2015-01-01
Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.
Soil Erodibility Parameters Under Various Cropping Systems of Maize
NASA Astrophysics Data System (ADS)
van Dijk, P. M.; van der Zijp, M.; Kwaad, F. J. P. M.
1996-08-01
For four years, runoff and soil loss from seven cropping systems of fodder maize have been measured on experimental plots under natural and simulated rainfall. Besides runoff and soil loss, several variables have also been measured, including rainfall kinetic energy, degree of slaking, surface roughness, aggregate stability, soil moisture content, crop cover, shear strength and topsoil porosity. These variables explain a large part of the variance in measured runoff, soil loss and splash erosion under the various cropping systems. The following conclusions were drawn from the erosion measurements on the experimental plots (these conclusions apply to the spatial level at which the measurements were carried out). (1) Soil tillage after maize harvest strongly reduced surface runoff and soil loss during the winter; sowing of winter rye further reduced winter erosion, though the difference with a merely tilled soil is small. (2) During spring and the growing season, soil loss is reduced strongly if the soil surface is partly covered by plant residues; the presence of plant residue on the surface appeared to be essential in achieving erosion reduction in summer. (3) Soil loss reductions were much higher than runoff reductions; significant runoff reduction is only achieved by the straw system having flat-lying, non-fixed plant residue on the soil surface; the other systems, though effective in reducing soil loss, were not effective in reducing runoff.
Horwatich, Judy A.; Bannerman, Roger T.
2012-01-01
A hydrodynamic-settling device was installed in 2004 to treat stormwater runoff from a roof and parking lot located at the Water Utility Administration Building in Madison, Wis. The U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, the City of Madison, cities in the Waukesha Permit Group, Hydro International, Earth Tech, Inc., National Sanitation Foundation International, and the U.S. Environmental Protection Agency, monitored the device from November 2005 through September 2006 to evaluate it as part of the U.S. Environmental Protection Agency's Environmental Technology Verification Program. Twenty-three runoff events monitored for flow volume and water quality at the device's inlet and outlet were used to calculate the percentage of pollutant reduction for the device. The geometric mean concentrations of suspended sediment (SS), "adjusted" total suspended solids (TSS), total phosphorus (TP), dissolved phosphorus (DP), total recoverable zinc (TZn), and total recoverable copper (TCu) measured at the inlet were 107 mg/L (milligrams per liter), 92 mg/L, 0.17 mg/L, 0.05 mg/L, 38 μg/L (micrograms per liter), and 12 μg/L, respectively, and these concentrations are in the range of values observed in stormwater runoff from other parking lots in Wisconsin and Michigan. Efficiency of the settling device was calculated using the efficiency ratio and summation of loads (SOL) methods. Using the efficiency ratio method, the device reduced concentrations of SS, and DP, by 19, and 15, percent, respectively. Using the efficiency ratio method, the device increased "adjusted" TSS and TZn concentrations by 5 and 19, respectively. Bypass occurred for 3 of the 23 runoff events used in this assessment, and the bypass flow and water-quality concentrations were used to determine the efficiency of the bypass system. Concentrations of SS, "adjusted" TSS, and DP were reduced for the system by 18, 5, and 18, respectively; however, TZn increased by 5 percent. Some of the TSS concentrations were "adjusted" to add the particles that remained on the sieves during sample processing. The loads of SS, "adjusted" TSS, and DP were reduced using the SOL method for the settling device by 38, 9, and 19 percent, respectively, and TZn increased by 13 percent. For the bypass system, the loads of SS, "adjusted" TSS, and DP had percentage reductions of 39, 12, 22, respectively, however TZn increased by 4 percent. The SOL method produced percentage reductions for SS and 'adjusted" TSS that were twice those for the efficiency ratio method. Removing the two large runoff events on August 23 and 24, 2006, from the SOL calculation brought the reduction for SS down to 16 and increased "adjusted" TSS by 4 percent. The two large runoff events were anomalies in that the runoff volumes and dissolved solids concentrations were greatly increased by overflow from an adjacent recycling facility. The SOL method was used to determine the percentage of SS load reduction for six different particle sizes for both the settling device and bypass system. Essentially no load reduction was observed for particles less than 125 micrometers (μm) in diameter, and about a 90-percent reduction occurred for particle sizes greater than 250 μm in diameter. The large removal efficiencies for particle sizes greater than 250 μm in diameter were further supported by the fact that more than 80 percent of the particle sizes trapped in the sump were greater than 250 μm in diameter. These results support the claim by the manufacturer of achieving a large percentage load reduction for particle sizes greater than 250 μm in diameter.
Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye
2018-05-01
Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.
NASA Astrophysics Data System (ADS)
Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.
2018-05-01
Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.
An overview of urban stormwater-management practices in Miami-Dade County, Florida
Chin, David A.
2004-01-01
Agencies with jurisdiction over stormwater-management systems in Miami-Dade County, Florida, include the Miami-Dade Department of Environmental Resources Management (DERM), South Florida Water Management District (SFWMD), and Florida Department of Transportation (FDOT). These agencies are primarily concerned with minor drainage systems that handle runoff from storms with return periods of 10 years or less (DERM), major drainage systems that handle runoff from storms with return periods of 25 years or more (SFWMD), and runoff from major roadways (FDOT). All drainage regulations require retention of at least a specified water-quality volume (defined volume of surface runoff), typically the first inch of runoff. The DERM and FDOT intensity duration frequency (IDF) curves used as a basis for design are similar but different, with differences particularly apparent for short-duration storms. The SFWMD 25-year 3-day storm incorporates an IDF curve that is substantially different from both the IDF curves of DERM and FDOT. A DERM methodology for designing closed exfiltration systems is applicable to storms of 1-hour duration, but is not applicable to all storms with a given T-year return period. A trench design that is applicable to all storms with a given T-year return period is presented as an alternative approach.
Runoff prediction using rainfall data from microwave links: Tabor case study.
Stransky, David; Fencl, Martin; Bares, Vojtech
2018-05-01
Rainfall spatio-temporal distribution is of great concern for rainfall-runoff modellers. Standard rainfall observations are, however, often scarce and/or expensive to obtain. Thus, rainfall observations from non-traditional sensors such as commercial microwave links (CMLs) represent a promising alternative. In this paper, rainfall observations from a municipal rain gauge (RG) monitoring network were complemented by CMLs and used as an input to a standard urban drainage model operated by the water utility of the Tabor agglomeration (CZ). Two rainfall datasets were used for runoff predictions: (i) the municipal RG network, i.e. the observation layout used by the water utility, and (ii) CMLs adjusted by the municipal RGs. The performance was evaluated in terms of runoff volumes and hydrograph shapes. The use of CMLs did not lead to distinctively better predictions in terms of runoff volumes; however, CMLs outperformed RGs used alone when reproducing a hydrograph's dynamics (peak discharges, Nash-Sutcliffe coefficient and hydrograph's rising limb timing). This finding is promising for number of urban drainage tasks working with dynamics of the flow. Moreover, CML data can be obtained from a telecommunication operator's data cloud at virtually no cost. That makes their use attractive for cities unable to improve their monitoring infrastructure for economic or organizational reasons.
Rationale for seeding grass on the Stanislaus Complex Burnt
Earl C. Ruby
1989-01-01
An emergency survey of the 147,000-acre (59,491 hectare), Stanislaus Complex Burn found that large, continuous, land areas were intensely burned, resulting in strongly hydrophobic soils, with potential to yield catastrophic volumes of flood runoff. The potential cumulative effect of greatly increased runoff efficiency on contiguous watersheds threatened serious...
NASA Astrophysics Data System (ADS)
Shaw, Stephen B.; Walter, M. Todd
2009-03-01
The Soil Conservation Service curve number (SCS-CN) method is widely used to predict storm runoff for hydraulic design purposes, such as sizing culverts and detention basins. As traditionally used, the probability of calculated runoff is equated to the probability of the causative rainfall event, an assumption that fails to account for the influence of variations in soil moisture on runoff generation. We propose a modification to the SCS-CN method that explicitly incorporates rainfall return periods and the frequency of different soil moisture states to quantify storm runoff risks. Soil moisture status is assumed to be correlated to stream base flow. Fundamentally, this approach treats runoff as the outcome of a bivariate process instead of dictating a 1:1 relationship between causative rainfall and resulting runoff volumes. Using data from the Fall Creek watershed in western New York and the headwaters of the French Broad River in the mountains of North Carolina, we show that our modified SCS-CN method improves frequency discharge predictions in medium-sized watersheds in the eastern United States in comparison to the traditional application of the method.
APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF
Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff v...
APPROACHES FOR DETERMINING SWALE PERFORMANCE FOR STORMWATER RUNOFF - Wilmington, NC
Swales are “engineered vegetated ditches” that provide stable routing for stormwater runoff and a low-cost drainage option for highways, farms, industrial sites, and commercial areas. It is reported in the literature that swales mitigate runoff-carried pollutants, reduce runoff ...
Investigating Runoff Efficiency in Upper Colorado River Streamflow Over Past Centuries
NASA Astrophysics Data System (ADS)
Woodhouse, Connie A.; Pederson, Gregory T.
2018-01-01
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.
Investigating runoff efficiency in upper Colorado River streamflow over past centuries
Woodhouse, Connie A.; Pederson, Gregory T.
2018-01-01
With increasing concerns about the impact of warming temperatures on water resources, more attention is being paid to the relationship between runoff and precipitation, or runoff efficiency. Temperature is a key influence on Colorado River runoff efficiency, and warming temperatures are projected to reduce runoff efficiency. Here, we investigate the nature of runoff efficiency in the upper Colorado River (UCRB) basin over the past 400 years, with a specific focus on major droughts and pluvials, and to contextualize the instrumental period. We first verify the feasibility of reconstructing runoff efficiency from tree-ring data. The reconstruction is then used to evaluate variability in runoff efficiency over periods of high and low flow, and its correspondence to a reconstruction of late runoff season UCRB temperature variability. Results indicate that runoff efficiency has played a consistent role in modulating the relationship between precipitation and streamflow over past centuries, and that temperature has likely been the key control. While negative runoff efficiency is most common during dry periods, and positive runoff efficiency during wet years, there are some instances of positive runoff efficiency moderating the impact of precipitation deficits on streamflow. Compared to past centuries, the 20th century has experienced twice as many high flow years with negative runoff efficiency, likely due to warm temperatures. These results suggest warming temperatures will continue to reduce runoff efficiency in wet or dry years, and that future flows will be less than anticipated from precipitation due to warming temperatures.
Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.
Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E
2002-01-01
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.
Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems
Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.
2018-01-01
Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.
Retrofitting for watershed drainage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, D.B.; Heaney, J.P.
1991-09-01
Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushingmore » in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.« less
Adhesion of and to soil in runoff as influenced by polyacrylamide.
Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor
2014-11-01
Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Sensitivity to experimental data of pollutant site mean concentration in stormwater runoff.
Mourad, M; Bertrand-Krajewski, J L; Chebbo, G
2005-01-01
Urban wet weather discharges are known to be a great source of pollutants for receiving waters, which protection requires the estimation of long-term discharged pollutant loads. Pollutant loads can be estimated by multiplying a site mean concentration (SMC) by the total runoff volume during a given period of time. The estimation of the SMC value as a weighted mean value with event runoff volumes as weights is affected by uncertainties due to the variability of event mean concentrations and to the number of events used. This study carried out on 13 catchments gives orders of magnitude of these uncertainties and shows the limitations of usual practices using few measured events. The results obtained show that it is not possible to propose a standard minimal number of events to be measured on any catchment in order to evaluate the SMC value with a given uncertainty.
Quality of stormwater runoff discharged from Massachusetts highways, 2005-07
Smith, Kirk P.; Granato, Gregory E.
2010-01-01
The U.S. Geological Survey (USGS), in cooperation with U.S. Department of Transportation Federal Highway Administration and the Massachusetts Department of Transportation, conducted a field study from September 2005 through September 2007 to characterize the quality of highway runoff for a wide range of constituents. The highways studied had annual average daily traffic (AADT) volumes from about 3,000 to more than 190,000 vehicles per day. Highway-monitoring stations were installed at 12 locations in Massachusetts on 8 highways. The 12 monitoring stations were subdivided into 4 primary, 4 secondary, and 4 test stations. Each site contained a 100-percent impervious drainage area that included two or more catch basins sharing a common outflow pipe. Paired primary and secondary stations were located within a few miles of each other on a limited-access section of the same highway. Most of the data were collected at the primary and secondary stations, which were located on four principal highways (Route 119, Route 2, Interstate 495, and Interstate 95). The secondary stations were operated simultaneously with the primary stations for at least a year. Data from the four test stations (Route 8, Interstate 195, Interstate 190, and Interstate 93) were used to determine the transferability of the data collected from the principal highways to other highways characterized by different construction techniques, land use, and geography. Automatic-monitoring techniques were used to collect composite samples of highway runoff and make continuous measurements of several physical characteristics. Flowweighted samples of highway runoff were collected automatically during approximately 140 rain and mixed rain, sleet, and snowstorms. These samples were analyzed for physical characteristics and concentrations of 6 dissolved major ions, total nutrients, 8 total-recoverable metals, suspended sediment, and 85 semivolatile organic compounds (SVOCs), which include priority polyaromatic hydrocarbons (PAHs), phthalate esters, and other anthropogenic or naturally occurring organic compounds. The distribution of particle size of suspended sediment also was determined for composite samples of highway runoff. Samples of highway runoff were collected year round and under various dry antecedent conditions throughout the 2-year sampling period. In addition to samples of highway runoff, supplemental samples also were collected of sediment in highway runoff, background soils, berm materials, maintenance sands, deicing compounds, and vegetation matter. These additional samples were collected near or on the highways to support data analysis. There were few statistically significant differences between populations of constituent concentrations in samples from the primary and secondary stations on the same principal highways (Mann-Whitney test, 95-percent confidence level). Similarly, there were few statistically significant differences between populations of constituent concentrations for the four principal highways (data from the paired primary and secondary stations for each principal highway) and populations for test stations with similar AADT volumes. Exceptions to this include several total-recoverable metals for stations on Route 2 and Interstate 195 (highways with moderate AADT volumes), and for stations on Interstate 95 and Interstate 93 (highways with high AADT volumes). Supplemental data collected during this study indicate that many of these differences may be explained by the quantity, as well as the quality, of the sediment in samples of highway runoff. Nonparametric statistical methods also were used to test for differences between populations of sample constituent concentrations among the four principal highways that differed mainly in traffic volume. These results indicate that there were few statistically significant differences (Mann-Whitney test, 95-percent confidence level) for populations of concentrations of most total-recoverable metals
NASA Astrophysics Data System (ADS)
Epps, T.
2015-12-01
Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.
Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying
2010-09-15
The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.
Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K
2016-10-01
Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Research on stormwater runoff quality of mountain city by source area monitoring].
Li, Li-Qing; Shan, Bao-Qing; Zhao, Jian-Wei; Guo, Shu-Gang; Gao, Yong
2012-10-01
Stormwater runoff samples were collected from 10 source areas in Mountain City, Chongqing, during five rain events in an attempt to investigate the characteristics of runoff quality and influencing factors. The outcomes are expected to offer practical guidance of sources control of urban runoff pollution. The results indicated that the stormwater runoff of Mountain City presented a strong first flush for almost all events and constituents. The runoff quality indices were also influenced by the rainfall intensity. The concentration of TSS, COD, TN and TP decreased as the rainfall intensity increased. The concentrations of COD and TP in stormwater runoff were highly correlated with TSS concentrations. Suspended solid matter were not only the main pollutant of stormwater runoff but also served as the vehicle for transport of organic matter and phosphorus. Organic matter and phosphorus in stormwatrer runoff were mainly bound to particles, whereas nitrogen was predominantly dissolved, with ammonia and nitrate. A significant difference of stormwater runoff quality was observed among the ten monitored source areas. The highest magnitude of urban stormwater runoff pollution was expected in the commercial area and the first trunk road, followed by the minor road, residential area, parking lot and roof. Urban surface function, traffic volume, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. Commercial area, the first trunk road and residential area with high population density are the critical sources areas of urban stormwater runoff pollution.
Role of Organic Matter in the Removal of Heavy Metals in Stormwater Runoff
NASA Astrophysics Data System (ADS)
Barrett, M.; Ingenloff, C.; Katz, L.
2011-12-01
Heavy metals (copper, zinc, and lead) are common constituents in highway runoff and concentrations in runoff from highway facilities are particularly high. These concentrations are also generally higher than observed in natural water bodies and several studies have demonstrated acute and chronic toxicity to aquatic ecosystems. One focus of this project is to assess the potential of sorption to reduce the concentration of metals in runoff. The difficulty evaluating adsorption in multi-component systems is to capture the impacts of background organic matter and other complexing ions on adsorption behavior. Very few studies have evaluated the ability of surface complexation models to predict adsorption in systems that contain organic matter from highway runoff. Moreover, the composition of the organic matter in stormwater runoff can be significantly different from natural organic matter typically used to assess the impact of background organics on metal ion adsorption. This research project specifically addresses these concerns and examines the impact of highway runoff on the adsorption behavior to determine whether existing surface complexation and chemical speciation models and parameter databases can be used to predict adsorption of target metal ions in these waters. Previous research has employed both actual storm water that has been obtained from actual field highway runoff sites as well as synthetic storm water compositions that have attempted to mimic the major components of natural storm water. Researchers and practitioners in the field generally agree on the importance of capturing the background water matrix; however, concerns associated with required volumes, holding times, aging, consistency and temporal and spatial variability often favor the use of synthetic formulations. While synthetic storm water can achieve the required consistency, numerous artifacts can be introduced due to the high reactivity of trace metal ions with background inorganic and organic ligands. Of particular concern, is the background organic matrix associated with stormwater. While most of the inorganic composition of natural stormwater can be adequately characterized using routine analytical procedures, characterization of organic matter to the same level of detail is not possible. Indeed, methods for characterization of natural organic matter typically only provide operational definitions of the composition. A compromise between using natural and synthetic storm water was therefore made by recognizing the importance of capturing the organic matter from natural storm water, but adding the flexibility of using synthetic storm water to provide the ionic composition. To alleviate concerns associated with storing large volumes and aging of organic solutions, the storm water was concentrated within twenty-four hours of collection using reverse osmosis and then freeze-dried. The freeze-dried organic matter will be reconstituted as needed at concentrations that mimic the initial total organic concentration of the stormwater when it was collected. This paper provides detailed guidance for the preparation of a synthetic water that can be used to simulate stormwater composition.
Water balance dynamics in the Nile Basin
Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.
2009-01-01
Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.
Wang, Di; Li, Hong-fang; Liu, Feng; Wang, Yi; Zhong, Yuan-chun; He, Yang; Xiao, Run-fin; Wu, Jin-shui
2016-05-15
Interception effects of an ecological ditch, used to control agricultural non-point source pollution in subtropical China, on nitrogen transport in surface runoff were studied by monthly measuring the runoff volume and concentrations of ammonium nitrogen (NH₄⁺-N), nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) at the ditch inlet and outlet from 2013 to 2014. In addition, differences of NH₄⁺-N, NO₃⁻-N and TN removal were compared between 2013 and 2014. The results showed that the study ecological ditch worked effectively in N removal with average NH₄⁺-N, NO₃⁻-N and TN removal rates of 77.8%, 58.3%, and 48.7%; and their interception rates were 38.4, 59.6, and 171.1 kg · a⁻¹, respectively. The average proportion of NH₄⁺-N and NO₃⁻-N in TN was 47.5% at inlet, and 33.6% at outlet, which was significantly lower than that at inlet (P < 0.01). All hydrophytes in the ecological ditch were replaced by Myriophyllum aquaticum in 2014, which led to the increased average NO₃⁻-N and TN removal rates of 30.5% and 18.2%, respectively, Compared to in 2013. The vegetation of Myriophyllum aquaticum was beneficial to the improvement of N interception in ecological ditch. These findings clearly demonstrated that ecological ditch can substantially reduce N loss from surface runoff and be used as an important technique to prevent agricultural non-point N pollution.
Assessment of flood hazard in a combined sewer system in Reykjavik city centre.
Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe
2015-01-01
Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades.
Farm factors associated with reducing Cryptosporidium loading in storm runoff from dairies.
Miller, W A; Lewis, D J; Pereira, M D G; Lennox, M; Conrad, P A; Tate, K W; Atwill, E R
2008-01-01
A systems approach was used to evaluate environmental loading of Cryptosporidium oocysts on five coastal dairies in California. One aspect of the study was to determine Cryptosporidium oocyst concentrations and loads for 350 storm runoff samples from dairy high use areas collected over two storm seasons. Selected farm factors and beneficial management practices (BMPs) associated with reducing the Cryptosporidium load in storm runoff were assessed. Using immunomagnetic separation (IMS) with direct fluorescent antibody (DFA) analysis, Cryptosporidium oocysts were detected on four of the five farms and in 21% of storm runoff samples overall. Oocysts were detected in 59% of runoff samples collected near cattle less than 2 mo old, while 10% of runoff samples collected near cattle over 6 mo old were positive. Factors associated with environmental loading of Cryptosporidium oocysts included cattle age class, 24 h precipitation, and cumulative seasonal precipitation, but not percent slope, lot acreage, cattle stocking number, or cattle density. Vegetated buffer strips and straw mulch application significantly reduced the protozoal concentrations and loads in storm runoff, while cattle exclusion and removal of manure did not. The study findings suggest that BMPs such as vegetated buffer strips and straw mulch application, especially when placed near calf areas, will reduce environmental loading of fecal protozoa and improve stormwater quality. These findings are assisting working dairies in their efforts to improve farm and ecosystem health along the California coast.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.
2012-03-01
The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.
NASA Astrophysics Data System (ADS)
Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt
2016-04-01
Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P < 0.05) differences on the number of pods per plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the watershed.
NASA Astrophysics Data System (ADS)
Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.
2006-01-01
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.
Lindner-Lunsford, J. B.; Ellis, S.R.
1987-01-01
Multievent, conceptually based models and a single-event, multiple linear-regression model for estimating storm-runoff quantity and quality from urban areas were calibrated and verified for four small (57 to 167 acres) basins in the Denver metropolitan area, Colorado. The basins represented different land-use types - light commercial, single-family housing, and multi-family housing. Both types of models were calibrated using the same data set for each basin. A comparison was made between the storm-runoff volume, peak flow, and storm-runoff loads of seven water quality constituents simulated by each of the models by use of identical verification data sets. The models studied were the U.S. Geological Survey 's Distributed Routing Rainfall-Runoff Model-Version II (DR3M-II) (a runoff-quantity model designed for urban areas), and a multievent urban runoff quality model (DR3M-QUAL). Water quality constituents modeled were chemical oxygen demand, total suspended solids, total nitrogen, total phosphorus, total lead, total manganese, and total zinc. (USGS)
Logging effects on streamflow: storm runoff at Caspar Creek in northwestern California
Kenneth A. Wright; Sendek Karen H.; Raymond M. Rice; Robert B. Thomas
1990-01-01
This paper reports a study to determine whether road building and selective harvesting at Caspar Creek in northwestern California increased total storm volumes, quick flow volumes, or peak flows or altered the lag times
NASA Astrophysics Data System (ADS)
Beamer, J. P.; Hill, D. F.; Arendt, A.; Liston, G. E.
2016-05-01
A comprehensive study of the Gulf of Alaska (GOA) drainage basin was carried out to improve understanding of the coastal freshwater discharge (FWD) and glacier volume loss (GVL). Hydrologic processes during the period 1980-2014 were modeled using a suite of physically based, spatially distributed weather, energy-balance snow/ice melt, soil water balance, and runoff routing models at a high-resolution (1 km horizontal grid; daily time step). Meteorological forcing was provided by the North American Regional Reanalysis (NARR), Modern Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR) data sets. Streamflow and glacier mass balance modeled using MERRA and CFSR compared well with observations in four watersheds used for calibration in the study domain. However, only CFSR produced regional seasonal and long-term trends in water balance that compared favorably with independent Gravity Recovery and Climate Experiment (GRACE) and airborne altimetry data. Mean annual runoff using CFSR was 760 km3 yr-1, 8% of which was derived from the long-term removal of stored water from glaciers (glacier volume loss). The annual runoff from CFSR was partitioned into 63% snowmelt, 17% glacier ice melt, and 20% rainfall. Glacier runoff, taken as the sum of rainfall, snow, and ice melt occurring each season on glacier surfaces, was 38% of the total seasonal runoff, with the remaining runoff sourced from nonglacier surfaces. Our simulations suggests that existing GRACE solutions, previously reported to represent glacier mass balance alone, are actually measuring the full water budget of land and ice surfaces.
An examination of short-term variations in water quality at a karst spring in Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.; Meiman, J.
1996-01-01
Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods. A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time. A phreatic conduit segment,more » calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring. A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water. The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations. Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin.« less
Sansalone, John J; Kim, Jong-Yeop
2008-02-01
Source area runoff entrains a hetero-disperse particle size distribution (PSD). When retained for clarification, larger sediment and settleable particles are mainly influenced by gravitational forces, while the suspended particles, in particular the clay-size particles, are subject to coagulation phenomena. Such phenomena occur in untreated runoff as well as runoff treated with a coagulant, albeit to differing rates and extents. Runoff PSDs and water chemistry indices including zeta potential (xi) are potentially modified during inter-event stormwater retention in best management practices (BMPs). This study examined xi of clay-size particles (<2 microm) in retained runoff, captured from an instrumented watershed, subject to batch coagulation and variable redox conditions. Separate parallel tests were also conducted with wastewater. Significant turbidity, particle mass (measured as total suspended solids (TSS)) and volume concentration (as total volume concentration (TVC)) reduction generated by alum and ferric chloride consistently occurred at a xi in the range of -15 to about -10 mV. Alum addition produced a charge reversal at dosing above 60 mg/L (18 x 10(-5)M) while ferric chloride did not reverse charge. With respect to turbidity and TSS reductions, alum outperformed ferric chloride, without the need for pH control. While xi illustrated no clear trend during aerobic retention, anoxic retention resulted in a trend for xi approaching the isoelectric point. The decrease in negative xi towards the isoelectric point appears to be a result of the coupled pH depression under reductive conditions and an increase in conductivity. Results have significant implications for BMPs that retain runoff between events.
Response of turf and quality of water runoff to manure and fertilizer.
Gaudreau, J E; Vietor, D M; White, R H; Provin, T L; Munster, C L
2002-01-01
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.
Glacial runoff strongly influences food webs in Gulf of Alaska fjords
NASA Astrophysics Data System (ADS)
Arimitsu, M.; Piatt, J. F.; Mueter, F. J.
2015-12-01
Melting glaciers contribute large volumes of freshwater to the Gulf of Alaska coast. Rates of glacier volume loss have increased markedly in recent decades, raising concern about the eventual loss of glaciers as a source of freshwater in coastal waters. To better understand the influence of glacier melt water on fjord ecosystems, we sampled oceanography, nutrients, zooplankton, forage fish, and seabirds within four fjords in the coastal Gulf of Alaska. We used generalized additive models and geostatistics to identify the range of influence of glacier runoff in fjords of varying estuarine and topographic complexity. We also modeled the responses of chlorophyll a concentration, copepod biomass, fish and seabird abundance to physical, nutrient and biotic predictor variables. Physical and nutrient signatures of glacial runoff extended 10-20 km into coastal fjords. Glacially modified physical gradients and among-fjord differences explained 66% of the variation in phytoplankton abundance, which drives ecosystem structure at higher trophic levels. Copepod, euphausiid, fish and seabird distribution and abundance were also related to environmental gradients that could be traced to glacial freshwater input. Seabird density was predicted by prey availability and silica concentrations, which may indicate upwelling areas where this nutrient is in excess. Similarities in ecosystem structure among fjords were due to influx of cold, fresh, sediment and nutrient laden water, while differences were due to fjord topography and the relative importance of estuarine vs. ocean influences. We anticipate continued changes in the volume and magnitude of glacial runoff will affect coastal marine food webs in the future.
Savidge, William B; Brink, Jonathan; Blanton, Jackson O
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
NASA Astrophysics Data System (ADS)
Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
USDA-ARS?s Scientific Manuscript database
Metal runoff from fields fertilized with poultry litter may pose a threat to aquatic systems. Buffer strips have been added to fields to reduce nutrients and solids runoff. However, scant information exists on the effects of buffer strips combined with grazing management strategies on metal runoff f...
Control of Sediment Export From The Forest Road Prism
Johnny M. Grace
2002-01-01
The effectiveness of four road turn-out ditch treatments (vegetation, rip-rap, sediment fences, and settling basins) in reducing sediment export to the forest floor was evaluated. These four runoff control method are commonly prescribed to control forest road runoff and sediments. The study utilized runoff samplers, runoff diversion walls, sediment filter bags, and...
USDA-ARS?s Scientific Manuscript database
Enrichment of surface water with nitrate-nitrogen is a significant problem throughout the world. In support of developing a method for removing nitrate from water using denitrification, this project characterized runoff events at two nurseries in South Florida to provide information needed for desi...
NASA Technical Reports Server (NTRS)
Bowley, C. J.; Barnes, J. C.; Rango, A.
1981-01-01
The purpose of the handbook is to update the various snowcover interpretation techniques, document the snow mapping techniques used in the various ASVT study areas, and describe the ways snowcover data have been applied to runoff prediction. Through documentation in handbook form, the methodology developed in the Snow Mapping ASVT can be applied to other areas.
Influence of Cattle Trails on Runoff Quantity and Quality.
Miller, Jim J; Curtis, Tony; Chanasyk, David S; Willms, Walter D
2017-03-01
Cattle trails in grazed pastures close to rivers may adversely affect surface water quality of the adjacent river by directing runoff to it. The objective of this 3-yr study (2013-2015) in southern Alberta, Canada, was to determine if cattle trails significantly increased the risk of runoff and contaminants (sediment, nutrients) compared with the adjacent grazed pasture (control). A portable rainfall simulator was used to generate artificial rainfall (140 mm h) and runoff. The runoff properties measured were time to runoff and initial abstraction (infiltration), total runoff depth and average runoff rates, as well as concentrations and mass loads of sediment, N, and P fractions. Cattle trails significantly ( ≤ 0.10) decreased time to runoff and initial abstraction (26-32%) in the 2 yr measured and increased total runoff depth, runoff coefficients, and average runoff rates (21-51%) in 2 of 3 yr. Concentrations of sediment, N, and P fractions in runoff were not significantly greater for cattle trails than for control areas. However, mass loads of total suspended solids (57-85% increase), NH-N (31-90%), and dissolved reactive P (DRP) (30-92%) were significantly greater because of increased runoff volumes. Overall, runoff quantity and loads of sediment, NH-N, and DRP were greater for cattle trails compared with the adjacent grazed pasture, and hydrologic connection with cattle-access sites on the riverbank suggests that this could adversely affect water quality in the adjacent river. Extrapolation of the study results should be tempered by the specific conditions represented by this rainfall simulation study. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Fraser, Grant; Rohde, Ken; Silburn, Mark
2017-08-01
Dissolved inorganic nitrogen (DIN) movement from Australian sugarcane farms is believed to be a major cause of crown-of-thorns starfish outbreaks which have reduced the Great Barrier Reef coral cover by ~21% (1985-2012). We develop a daily model of DIN concentration in runoff based on >200 field monitored runoff events. Runoff DIN concentrations were related to nitrogen fertiliser application rates and decreased after application with time and cumulative rainfall. Runoff after liquid fertiliser applications had higher initial DIN concentrations, though these concentrations diminished more rapidly in comparison to granular fertiliser applications. The model was validated using an independent field dataset and provided reasonable estimates of runoff DIN concentrations based on a number of modelling efficiency score results. The runoff DIN concentration model was combined with a water balance cropping model to investigate temporal aspects of sugarcane fertiliser management. Nitrogen fertiliser application in December (start of wet season) had the highest risk of DIN movement, and this was further exacerbated in years with a climate forecast for 'wet' seasonal conditions. The potential utility of a climate forecasting system to predict forthcoming wet months and hence DIN loss risk is demonstrated. Earlier fertiliser application or reducing fertiliser application rates in seasons with a wet climate forecast may markedly reduce runoff DIN loads; however, it is recommended that these findings be tested at a broader scale.
Holmes, Robert R.; Wiche, Gregg J.; Koenig, Todd A.; Sando, Steven K.
2013-01-01
During 2011, excessive precipitation resulted in widespread flooding in the Central United States with 33 fatalities and approximately $4.2 billion in damages reported in the Souris/Red River of the North (Souris/Red) and Mississippi River Basins. At different times, beginning in late February 2011 and extending through September 2011, various rivers in these basins had major flooding, with some locations receiving multiple rounds of flooding. Peak streamflow records were broken at 105 streamgages in the Souris/Red and Mississippi River Basins and annual runoff volume records set at 47 of the 211 streamgages analyzed for annual runoff. For the period of 1950 through 2011, the Ohio River provided almost one-half of the annual runoff at Vicksburg; the Missouri River contributed less than one-fourth, and the lower Mississippi River less than one-fourth. Those relative contribution patterns also occurred in 1973 and 2011, with the notable exception of the decrease in contribution of the lower Mississippi River tributaries and the increase in contribution from the upper Missouri River Basin in 2011 as compared to 1973 and the long-term average from 1950 to 2011.
Brooks, J P; Adeli, A; McLaughlin, M R; Miles, D M
2012-12-01
Increasing costs associated with inorganic fertilizer have led to widespread use of broiler litter. Proper land application, typically limiting nutrient loss, is essential to protect surface water. This study was designed to evaluate litter-borne microbial runoff (heterotrophic plate count bacteria, staphylococci, Escherichia coli, enterococci, and Clostridium perfringens) while applying typical nutrient-control methods. Field studies were conducted in which plots with high and low litter rates, inorganic fertilizer, AlCl(3)-treated litter, and controls were rained on five times using a rain generator. Overall, microbial runoff from poultry litter applied plots was consistently greater (2-5 log(10) plot(-1)) than controls. No appreciable effect on microbial runoff was noted from variable litter application rate or AlCl(3) treatments, though rain event, not time, significantly affected runoff load. C. perfringens and staphylococci runoff were consistently associated with poultry litter application, during early rain events, while other indicators were unreliable. Large microbial runoff pulses were observed, ranging from 10(2) to 10(10) CFU plot(-1); however, only a small fraction of litter-borne microbes were recoverable in runoff. This study indicated that microbial runoff from litter-applied plots can be substantial, and that methods intended to reduce nutrient losses do not necessarily reduce microbial runoff.
Determining volume sensitive waters in Beaufort County, SC tidal creeks
Andrew Tweel; Denise Sanger; Anne Blair; John Leffler
2016-01-01
Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.
The effect of leaf litter cover on surface runoff and soil erosion in Northern China.
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h-1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes.
The Effect of Leaf Litter Cover on Surface Runoff and Soil Erosion in Northern China
Li, Xiang; Niu, Jianzhi; Xie, Baoyuan
2014-01-01
The role of leaf litter in hydrological processes and soil erosion of forest ecosystems is poorly understood. A field experiment was conducted under simulated rainfall in runoff plots with a slope of 10%. Two common types of litter in North China (from Quercus variabilis, representing broadleaf litter, and Pinus tabulaeformis, representing needle leaf litter), four amounts of litter, and five rainfall intensities were tested. Results revealed that the litter reduced runoff and delayed the beginning of runoff, but significantly reduced soil loss (p<0.05). Average runoff yield was 29.5% and 31.3% less than bare-soil plot, and for Q. variabilis and P. tabulaeformis, respectively, and average sediment yield was 85.1% and 79.9% lower. Rainfall intensity significantly affected runoff (R = 0.99, p<0.05), and the efficiency in runoff reduction by litter decreased considerably. Runoff yield and the runoff coefficient increased dramatically by 72.9 and 5.4 times, respectively. The period of time before runoff appeared decreased approximately 96.7% when rainfall intensity increased from 5.7 to 75.6 mm h−1. Broadleaf and needle leaf litter showed similarly relevant effects on runoff and soil erosion control, since no significant differences (p≤0.05) were observed in runoff and sediment variables between two litter-covered plots. In contrast, litter mass was probably not a main factor in determining runoff and sediment because a significant correlation was found only with sediment in Q. variabilis litter plot. Finally, runoff yield was significantly correlated (p<0.05) with sediment yield. These results suggest that the protective role of leaf litter in runoff and erosion processes was crucial, and both rainfall intensity and litter characteristics had an impact on these processes. PMID:25232858
White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L
2010-01-01
Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.
Rantz, S.E.; Stafford, H.M.
1956-01-01
Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.
Water quality and bathymetry of Sand Lake, Anchorage, Alaska
Donaldson, Donald E.
1976-01-01
Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)
Contour Planting: A Strategy to Reduce Soil Erosion on Steep Slopes
USDA-ARS?s Scientific Manuscript database
Practices that combine GPS-based guidance for terrain contouring and tillage for runoff detention have potential to increase water infiltration and reduce runoff. The objective of this study was to investigate contour planting as a means to reduce soil erosion on steep slopes of the Columbia Platea...
Passive stormwater samplers for sampling highway runoff from BMPS : feasibility studies.
DOT National Transportation Integrated Search
2013-12-01
Pollution from highway stormwater runoff has been a concern within the environmental field. To reduce contamination within highway runoff, many structural Best Management Practices (BMPs) have been implemented. One challenge for BMPs is monitoring th...
Reuse of Concentrated Animal Feeding Operating Wastewater on Agricultural Lands
Concentrated animal feeding operations (CAFOs) generate large volumes of manure and manure-contaminated wash and runoff water. Transportation, storage, and treatment of manure and manure-contaminated water are costly. The large volume of waste generated, and the lack of disposal ...
Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin
NASA Astrophysics Data System (ADS)
Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.
2011-12-01
The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.
A pilot study to evaluate runoff quantity from green roofs.
Lee, Ju Young; Lee, Min Jung; Han, Mooyoung
2015-04-01
The use of green roofs is gaining increased recognition in many countries as a solution that can be used to improve environmental quality and reduce runoff quantity. To achieve these goals, pilot-scale green roof assemblies have been constructed and operated in an urban setting. From a stormwater management perspective, green roofs are 42.8-60.8% effective in reducing runoff for 200 mm soil depth and 13.8-34.4% effective in reducing runoff for 150 mm soil depth. By using Spearman rank correlation analysis, high rainfall intensity was shown to have a negative relationship with delayed occurrence time, demonstrating that the soil media in green roofs do not efficiently retain rainwater. Increasing the number of antecedent dry days can help to improve water retention capacity and delay occurrence time. From the viewpoint of runoff water quality, green roofs are regarded as the best management practice by filtration and adsorption through growth media (soil). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas
2015-04-01
Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been distributed randomly within the treatments. Linear mixed effect modelling was used to examine the effects of the treatments on sediment discharge and surface runoff. Results were compared with recent findings from erosion models and laboratory studies. Results show that sediment discharge is significantly higher (59 %, p=0.018) on conventional treatments (31.8 g/m2/h) than on organic treatments (20.0 g/m2/h). This finding supports results from several studies, which found soil erosion rates from 18 % to 184 % higher on conventional than on organic treatments. Under both farming systems, ploughed treatments show higher sediment discharge (conventional farming: 104 %, organic farming: 133 %, p=0.004) than treatments with reduced or no tillage. Runoff volume did not show significant effects in our treatments. An interaction between the farming practice and the tillage system could not be found, which strengthens the importance of both. With the help of a well-replicated micro-scale runoff plot design and a portable rainfall simulator we were able to gather reliable soil erosion data in situ in short term and without external parameterization. Our field assessment shows that organic farming and reduced tillage practices protect agricultural land best against soil erosion.
A method of determining surface runoff by
Donald E. Whelan; Lemuel E. Miller; John B. Cavallero
1952-01-01
To determine the effects of watershed management on flood runoff, one must make a reliable estimate of how much the surface runoff can be reduced by a land-use program. Since surface runoff is the difference between precipitation and the amount of water that soaks into the soil, such an estimate must be based on the infiltration capacity of the soil.
NASA Astrophysics Data System (ADS)
Ogden, Fred L.; Raj Pradhan, Nawa; Downer, Charles W.; Zahner, Jon A.
2011-12-01
The literature contains contradictory conclusions regarding the relative effects of urbanization on peak flood flows due to increases in impervious area, drainage density and width function, and the addition of subsurface storm drains. We used data from an urbanized catchment, the 14.3 km2 Dead Run watershed near Baltimore, Maryland, USA, and the physics-based gridded surface/subsurface hydrologic analysis (GSSHA) model to examine the relative effect of each of these factors on flood peaks, runoff volumes, and runoff production efficiencies. GSSHA was used because the model explicitly includes the spatial variability of land-surface and hydrodynamic parameters, including subsurface storm drains. Results indicate that increases in drainage density, particularly increases in density from low values, produce significant increases in the flood peaks. For a fixed land-use and rainfall input, the flood magnitude approaches an upper limit regardless of the increase in the channel drainage density. Changes in imperviousness can have a significant effect on flood peaks for both moderately extreme and extreme storms. For an extreme rainfall event with a recurrence interval in excess of 100 years, imperviousness is relatively unimportant in terms of runoff efficiency and volume, but can affect the peak flow depending on rainfall rate. Changes to the width function affect flood peaks much more than runoff efficiency, primarily in the case of lower density drainage networks with less impermeable area. Storm drains increase flood peaks, but are overwhelmed during extreme rainfall events when they have a negligible effect. Runoff in urbanized watersheds with considerable impervious area shows a marked sensitivity to rainfall rate. This sensitivity explains some of the contradictory findings in the literature.
The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe
NASA Astrophysics Data System (ADS)
Mupangwa, W.; Twomlow, S.; Walker, S.
Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.
Application of a snowmelt-runoff model using LANDSAT data. [Dinwoody Creek Basin, Wyoming
NASA Technical Reports Server (NTRS)
1980-01-01
The snowmelt-runoff model developed for two small central European watersheds simulate daily streamflow on the 228 sq km Dinwoody Creek basin in Wyoming, using snowcover extent for LANDSAT and conventionally measured temperature and precipitation. For the six-month snowmelt seasons of 1976 and 1974, the simulated seasonal runoff volumes were within 5 and 1%, respectively, of the measured runoff. Also the daily fluctuations of discharge were simulated to a high degree by the model. Thus far the limiting basin size for applying the model has not been reached, and improvements can be expected if the hydrometeorological data can be obtained from a station inside the basin. LANDSAT provides an efficient way to obtain the critical snowcover input parameter required by the model.
Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.
2014-01-01
In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.
Simulation of quantity and quality of storm runoff for urban catchments in Fresno, California
Guay, J.R.; Smith, P.E.
1988-01-01
Rainfall-runoff models were developed for a multiple-dwelling residential catchment (2 applications), a single-dwelling residential catchment, and a commercial catchment in Fresno, California, using the U.S. Geological Survey Distributed Routing Rainfall-Runoff Model (DR3M-II). A runoff-quality model also was developed at the commercial catchment using the Survey 's Multiple-Event Urban Runoff Quality model (DR3M-qual). The purpose of this study was: (1) to demonstrate the capabilites of the two models for use in designing storm drains, estimating the frequency of storm runoff loads, and evaluating the effectiveness of street sweeping on an urban drainage catchment; and (2) to determine the simulation accuracies of these models. Simulation errors of the two models were summarized as the median absolute deviation in percent (mad) between measured and simulated values. Calibration and verification mad errors for runoff volumes and peak discharges ranged from 14 to 20%. The estimated annual storm-runoff loads, in pounds/acre of effective impervious area, that could occur once every hundred years at the commercial catchment was 95 for dissolved solids, 1.6 for the dissolved nitrite plus nitrate, 0.31 for total recoverable lead, and 120 for suspended sediment. Calibration and verification mad errors for the above constituents ranged from 11 to 54%. (USGS)
Indicate severe toxicity of highway runoff.
Dorchin, Achik; Shanas, Uri
2013-09-01
Road runoff is recognized as a substantial nonpoint source of contamination to the aquatic environment. Highway seasonal first flushes contain particularly high concentrations of pollutants. To fully account for the toxicity potential of the runoff, the cumulative effects of the pollutants should be assessed, ideally by biological analyses. Acute toxicity tests with were used to measure the toxicity of runoff from three major highway sections in Israel for 2 yr. Highway first flushes resulted in the mortality of all tested individuals within 24 to 48 h. A first flush collected from Highway 4 (traffic volume: 81,200 cars d) remained toxic even after dilution to <5% (48 h EC <5%). Synthetic solutions with metal concentrations corresponding to highways' first flushes revealed a synergistic adverse effect on survival and a potential additive effect of nonmetal pollutants in the runoff. Because daphnids and other invertebrates constitute the base of the aquatic food chain, detrimental effects of highway runoff may propagate to higher levels of biological organization. The observed high potential of environmental contamination warrants the control of highway runoff in proximity to natural watercourses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.
2013-01-01
A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.
Improving the water use efficiency of olive trees growing in water harvesting systems
NASA Astrophysics Data System (ADS)
Berliner, Pedro; Leake, Salomon; Carmi, Gennady; Agam, Nurit
2017-04-01
Water is a primary limiting factor for agricultural development in many arid and semi-arid regions in which a runoff generation is a rather frequent event. If conveyed to dyke surrounded plots and ponded, runoff water can thereafter be used for tree production. One of the most promising runoff collection configurations is that of micro-catchments in which water is collected close to the area in which runoff was generated and stored in adjacent shallow pits. The objective of this work was to assess the effect of the geometry of runoff water collection area (shallow pit or trench) on direct evaporative water losses and on the water use efficiency of olive trees grown in them. The study was conducted during the summer of 2013 and 2014. In this study regular micro-catchments with basins of 9 m2 (3 x 3 m) by 0.1 m deep were compared with trenches of one meter deep and one meter wide. Each configuration was replicated three times. One tree was planted in each shallow basin and the distance between trees in the 12 m long trench was four meters. Access tubes for neutron probes were installed in the micro-catchments and trenches (four and seven, respectively) to depths of 2.5 m. Soil water content in the soil profile was monitored periodically throughout drying periods in between simulated runoff events. Transpiration of the trees was estimated from half-hourly sap flow measurements using a Granier system. Total transpiration fluxes were computed for time intervals corresponding to consecutive soil water measurements. During the first year, a large runoff event was simulated by applying once four cubic meters to each plot; and in the second year the same volume of water was split into four applications, simulating a series of small runoff events. In both geometries, trees received the same amount of water per tree. Evaporation from trenches and micro-catchments was estimated as the difference between evapotranspiration obtained computing the differences in total soil water content between two consecutive measurements and transpiration for this interval estimated from sap flow measurements. In both years the evaporation from micro-catchments was significantly larger than that of trenches. The fractional loss due to evaporation from the total applied water for the second year for example, was 53% and 22% for micro-catchments and trenches, respectively. This indicates that a trench geometry reduces the amount of water lost to direct evaporation from the soil, and is thus more efficient in utilizing harvested runoff water.
Modeling Episodic Surface Runoff in an Arid Environment
NASA Astrophysics Data System (ADS)
Waichler, S. R.; Wigmosta, M. S.
2003-12-01
Methods were developed for estimating episodic surface runoff in arid eastern Washington, USA. Small (1--10 km2) catchments in this region with mean annual precipitation around 180 mm produce runoff in about half the years, and such events usually occur during winter when a widespread cold snap and possible snow accumulation is followed by warmer temperatures and rainfall. Existence of frozen soil appears to be a key factor, and a moving average of air temperature is an effective predictor of soil temperature. The watershed model DHSVM simulates snow accumulation and ablation reasonably well at a monitoring location, but the same model applied in distributed mode across a 850 km2 basin overpredicts runoff. Inadequate definition of local meteorology appears to limit the accuracy of runoff predictions. However, runoff estimates of sufficient quality to support modeling of long-term groundwater recharge and sediment transport may be found in focusing on recurrence intervals and volumes rather than hydrographs. Usefulness of upland watershed modeling to environmental management of the Hanford Site and an adjacent military reservation will likely improve through sensitivity analysis of basic assumptions about upland water balance.
Effect of reforestation on streamflow in central New York
Schneider, William Joseph; Ayer, Gordon Roundy
1961-01-01
Hydrologic data have been collected since 1932 in central New York State to determine the effect of reforestation on streamflow. Data are available for three small partly reforested areas and for one nonreforested control area. From 35 to 58 percent of the 3 areas were reforested, mostly with species of pine and spruce. The trees were allowed to grow without thinning or cutting, and by 1958 these reforested areas had developed into dense coniferous woodlots. Intensive statistical analyses of the data from the four study areas were made in 1958. Analyses were made for three hydrologic periods: the dormant season represented by the 6-month period ending April 30, the growing season represented by the 6-month period ending October 31, and the year represented by the 12-month period ending April 30. Analyses of the hydrologic data using multiple correlation with time as a variable and analyses of covariance between early and late periods of record indicated that several significant changes had occurred in the streamflow from the partly reforested study areas. Based on correlation with precipitation, total runoff for the dormant season from the 3 study areas was reduced by annual rates of 0.17 to 0.29 inches per year. Based on correlations with streamflow from a control area, total runoff from the partly reforested Shackham Brook area was reduced by average rates of 0.14 inches per growing season, 0.23 inches per dormant season, and 0.36 inches per hydrologic year. Peak discharges on Shackham Brook during the dormant season were reduced by 1958 by an average of 41 percent for the season, with reductions ranging from an average of 66 percent for November to an average of 16 percent for April. No significant changes were found in the peak discharges for the growing season, rates of base-flow recession, volumes of direct runoff, or annual low flows of streams in the three partly reforested areas. The significant reductions in total runoff are attributed to increases in interception and transpiration in the reforested areas. The reductions in peak discharges during the dormant period are attributed largely to increased interception and sublimation of snowfall, and a gradual desynchronization of snowmelt runoff from the wooded and open areas of partly reforested watersheds. The changes in streamflow occurred gradually over the years; it could not be determined from the data whether changes in streamflow were still occurring in 1958, or whether they had reached a maximum.
Yang Yang; Theodore A. Endreny; David J. Nowak
2015-01-01
Impervious land cover was the choice for many urban development projects in order to accelerate runoff and reduce the depth and duration of local flooding, however this led to increases in downstream runoff characterized by large, flashy peak flows. Urban ecosystem restoration now involves slowing down urban runoff to restore local hydrology with green infrastructure,...
Zimmerman, Marc J.; Barbaro, Jeffrey R.; Sorenson, Jason R.; Waldron, Marcus C.
2010-01-01
During the months of August and September, flows in the Ipswich River, Massachusetts, dramatically decrease largely due to groundwater withdrawals needed to meet increased residential and commercial water demands. In the summer, rates of groundwater recharge are lower than during the rest of the year, and water demands are higher. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of low-impact-development (LID) enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of (1) replacing an impervious parking lot surface with a porous surface on groundwater quality, (2) installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and (3) installing a 3,000-square foot (ft2) green roof on the quantity and quality of stormwater runoff. In addition, the effects of broad-scale implementation of LID techniques, reduced water withdrawals, and water-conservation measures on streamflow in large areas of the basin were simulated using the U.S. Geological Survey's Ipswich River Basin model. From June 2005 to 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, MA, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers. Changes in the concentrations of the water-quality constituents, phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons, were monitored. Increased infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking lot surface. In Wilmington, MA, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the above constituents to Silver Lake. Flow-proportional water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and Escherichia coli bacteria. In general, when all storms were considered, no substantial decreases were observed in runoff volume as a result of installing LID enhancements. However, the relation between rainfall and runoff did provide some insight into how the LID enhancements affected the effective impervious area for the neighborhood. A decrease in runoff was observed for storms of 0.2 inches (in.) or less of precipitation, which indicated a reduction in effective impervious area from approximately 10 percent to about 4.5 percent for the 3-acre area. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. Three factors were probably most important in minimizing differences: (1) the small decrease in effective impervious area, (2) the differences in the size of storms sampled for water-quality constituents before and after installation of the infiltration enhancing measures, and (3) small sample sizes. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The amount of precipitation and the length of the antecedent dry period were the two primary factors affecting the gre
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongyi; Sivapalan, Murugesu
Hortonian overland flow, Dunne overland flow and subsurface stormflow are the three dominant mechanisms contributing to both the volume and timing of streamflow. A previous study quantified the climatic and landscape controls on the relative dominance of the volumes of the different runoff components. In this paper we explore the impacts of climate, soil and topography on the timing of these runoff components in small catchments within the framework of the Connected Instantaneous Response Functions (CIRF). The CIRF here is viewed as a probability density function of travel times of water droplets associated with a given runoff generation mechanism (frommore » the locations where they are generated to the catchment outlet). CIRF is a refinement of the traditional catchment IRF in that it explicitly accounts for variable contributing areas: only those partial areas of runoff generation which are hydrologically connected to the outlet are regarded as contributing areas. The CIRFs are derived for each runoff mechanism through the numerical simulations with a spatially distributed hydrological model which accounts for spatially distributed runoff generation and routing, involving all three mechanisms, under multiple combinations of climate, soil and topographic properties. The advective and dispersive aspects of catchment’s runoff routing response are captured through the use of, respectively, the mean travel times and dimensionless forms of the CIRFs (i.e., scaled by their respective mean travel times). It was found that the CIRFs, upon non-dimensionalization, collapsed to common characteristic shapes, which could be explained in terms of the relative contributions of hillslope and channel network flows, and especially of the size of the runoff contributing areas. The contributing areas are themselves governed by the competition between drainage and recharge to the water table, and could be explained by a dimensionless drainage index which quantifies this competition. On the other hand, the mean residence times were vastly different in each case, and are governed by relative lengths of the flow pathways, flow velocities (and their variability) and the study also revealed simple indicators based on landscape properties that can explain their magnitudes in different catchments.« less
NASA Technical Reports Server (NTRS)
Schumann, H. H.
1981-01-01
Ground surveys and aerial observations were used to monitor rapidly changing moisture conditions in the Salt-Verde watershed. Repetitive satellite snow cover observations greatly reduce the necessity for routine aerial snow reconnaissance flights over the mountains. High resolution, multispectral imagery provided by LANDSAT satellite series enabled rapid and accurate mapping of snow-cover distributions for small- to medium-sized subwatersheds; however, the imagery provided only one observation every 9 days of about a third of the watershed. Low resolution imagery acquired by the ITOSa dn SMS/GOES meteorological satellite series provides the daily synoptic observation necessary to monitor the rapid changes in snow-covered area in the entire watershed. Short term runoff volumes can be predicted from daily sequential snow cover observations.
NASA Astrophysics Data System (ADS)
Wang, Jinhua; Zhang, Ronggang; Sun, Juan
2018-02-01
Using artificial rainfall simulation method, 23 simulation experiments were carried out in water-wind erosion crisscross region in order to analyze the influence of vegetation coverage on runoff and sediment yield. The experimental plots are standard plots with a length of 20m, width of 5m and slope of 15 degrees. The simulation experiments were conducted in different vegetation coverage experimental plots based on three different rainfall intensities. According to the experimental observation data, the influence of vegetation coverage on runoff and infiltration was analyzed. Vegetation coverage has a significant impact on runoff, and the higher the vegetation coverage is, the smaller the runoff is. Under the condition of 0.6mm/min rainfall intensity, the runoff volume from the experimental plot with 18% vegetation coverage was 1.2 times of the runoff from the experimental with 30% vegetation coverage. What’s more, the difference of runoff is more obvious in higher rainfall intensity. If the rainfall intensity reaches 1.32mm/min, the runoff from the experimental plot with 11% vegetation coverage is about 2 times as large as the runoff from the experimental plot with 53%vegetation coverage. Under the condition of small rainfall intensity, the starting time of runoff in the experimental plot with higher vegetation coverage is later than that in the experimental plot with low vegetation coverage. However, under the condition of heavy rainfall intensity, there is no obvious difference in the beginning time of runoff. In addition, the higher the vegetation coverage is, the deeper the rainfall infiltration depth is.The results can provide reference for ecological construction carried out in wind erosion crisscross region with serious soil erosion.
40 CFR 440.141 - Specialized definitions and provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... shaking tables. (7) “Infiltration water” means that water which permeates through the earth into the plant... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...
40 CFR 440.141 - Specialized definitions and provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., hydrocyclones, or shaking tables. (7) “Infiltration water” means that water which permeates through the earth... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...
40 CFR 440.141 - Specialized definitions and provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., hydrocyclones, or shaking tables. (7) “Infiltration water” means that water which permeates through the earth... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...
40 CFR 440.141 - Specialized definitions and provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., hydrocyclones, or shaking tables. (7) “Infiltration water” means that water which permeates through the earth... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...
40 CFR 440.141 - Specialized definitions and provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shaking tables. (7) “Infiltration water” means that water which permeates through the earth into the plant... drainage, and infiltration and drainage waters which commingle with mine drainage or waters resulting from... increase in volume from precipitation or infiltration, plus the maximum volume of water runoff resulting...
NASA Astrophysics Data System (ADS)
Grant, G. E.; Jefferson, A. J.; Tague, C.; Lewis, S.
2010-12-01
In young volcanic landscapes, such as Hawaii or the Cascade Mountains of the U.S. Pacific Northwest, runoff generation is a hidden process. These landscapes are constructed by episodic volcanism, resulting in a layer-cake stratigraphy of multiple overlapping basaltic lava flows. Because of their cooling history, such lava flows are extremely porous, so that almost all precipitation infiltrates, and is stored as groundwater. Surficial channels are poorly defined or non-existent, and runoff is discharged at high-volume springs. These springs represent “windows” into the sub-surface, and the chemistry of the emerging water reveals important clues about the timescales, pathways, and storage volumes of water at the landscape scale. For example, water isotopes of Oregon High Cascades springs indicate transit times of years to decades, and can be used to identify recharge elevations and delineate cryptic flowpaths that do not necessarily obey topographic divides. Residence times can be used to infer aquifer thickness and overall landscape storage volumes, which are immense - on order of 20 -30 cubic kilometers. Moreover, inter-annual variability in discharge from springs can be used to interpret landscape memory and sensitivity to climate variation. These young volcanic landscapes are therefore perfect laboratories for exploring the role of storage dynamics in streamflow generation.
NASA Astrophysics Data System (ADS)
Bedford, D.
2012-12-01
We studied the effects of small-scale roughness on overland flow/runoff and the spatial pattern of infiltration. Our semi-arid sites include a grassland and shrubland in Central New Mexico and a shrubland in the Eastern Mojave Desert. Vegetation exerts strong controls on small-scale surface roughness in the form of plant mounds and other microtopography such as depressions and rills. We quantified the effects of densely measured soil surface heterogeneity using model simulations of runoff and infiltration. Microtopographic roughness associated with vegetation patterns, on the scale of mm-cm's in height, has a larger effect on runoff and infiltration than spatially correlated saturated conductivity. The magnitude and pattern of the effect of roughness largely depends on the vegetation and landform type, and rainfall depth and intensity. In all cases, runoff and infiltration amount and patterns were most strongly affected by depression storage. In the grassland we studied in central New Mexico, soil surface roughness had a large effect on runoff and infiltration where vegetation mounds coalesced, forming large storage volumes that require filling and overtopping in order for overland flow to concentrate into runoff. Total discharge over rough surfaces was reduced 100-200% compared to simulations in which no surface roughness was accounted for. For shrublands, total discharge was reduced 30-40% by microtopography on gently sloping alluvial fans and only 10-20% on steep hillslopes. This difference is largely due to the lack of storage elements on steep slopes. For our sites, we found that overland flow can increase infiltration by up to 2.5 times the total rainfall by filling depressions. The redistribution of water via overland flow can affect up to 20% of an area but varies with vegetation type and landform. This infiltration augmentation by overland flow tends to occur near the edges of vegetation canopies where overland flow depths are deep and infiltration rates are moderate. Infiltration augmentation is greatest in microtopographic depressions and flow threads. These results show that some vegetation-landform settings are efficient at trapping and concentrating the primary limiting resource, and demonstrate the importance of micro-scale soil characteristics for the ecohydrologic function of semi-arid environments. Since other essential attributes for plant ecosystems, such as nutrients, likely co-vary with water availability, further research is needed to elucidate ecosystem dynamics that may lead to self-organized behavior and determine thresholds for ecosystem stability.
Kim, D G; Jeong, K; Ko, S O
2014-01-01
Highway runoff is known to be an important non-point source (NPS), increasing the load of pollutants in receiving water. For reducing NPS pollutants in runoff, removal of road deposited sediment (RDS) by sweeping is considered effective. However, the contribution of sweeping to the improvement of runoff quality has not been clearly and quantitatively demonstrated so far. In this study, a field test was carried out on a section of operating highway in Korea to investigate the effectiveness of sweeping on improving the quality of highway runoff. Results showed that the average reduction in the load of RDS by sweeping was 61.10% with a standard deviation of 1.74%. RDS removal efficiency decreased when the sweeping speed increased from 4-8 to 20 km h(-1), the load decreased from 12.5 to 1.25 g m(-2) and particle size decreased from sand to silt/clay size ranges. Runoff was induced by applying a 15 mm h(-1) artificial rainfall to both swept and non-swept sections. Analysis of runoff quality showed that the event mean concentrations of total suspended solid, biological oxygen demand, chemical oxygen demand, nutrients and most of the heavy metals were reduced by 31-87% after sweeping. In addition, field tests for RDS build-up indicated a sweeping frequency of once every four or five days to prevent re-suspension of RDS. The results of this study suggest that sweeping can be the best management practice for effectively reducing RDS on highways and improving the quality of highway runoff.
Ponds' water balance and runoff of endorheic watersheds in the Sahel
NASA Astrophysics Data System (ADS)
Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe
2015-04-01
The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff proxy derived for the Agoufou pond is used to evaluate results from the KINEROS2 model (KINematic runoff and EROSion). This model is specifically designed to simulate surface runoff in semi-arid watersheds. It describes the processes of runoff, infiltration and erosion by taking into account land cover and soil characteristics. We show that rain intensity, soil hydrological properties (hydraulic conductivity and Manning's roughness coefficient), contributing source area areas and land use-land cover were the major factors to take into account to correctly simulate runoff over the present period (2006-2010). This will help to simulate the past evolution of the Agoufou watershed and better understand the key mechanisms of the Sahelian paradox in non-cultivated Sahel. Finally, we will discuss the application of the SWOT and Sentinel-2 future satellites, which will provide water level and pond's surface, to obtain large-scale estimates of water balance in ungauged Sahelian basins.
Measurement and modeling of diclosulam runoff under the influence of simulated severe rainfall.
van Wesenbeeck, I J; Peacock, A L; Havens, P L
2001-01-01
A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.
Rice, Pamela J; Horgan, Brian P
2013-07-01
Enrichment of surface waters with excess nutrients is associated with increased algal blooms, euthrophication and hypoxic zones, as reported in the northern Gulf of Mexico. A source of nutrients to surface waters results from fertilizer runoff. Management strategies used to maintain turf on golf courses and recreational fields often include aerification and application of fertilizer. Although research exists on benefits of core cultivation and verticutting (VC) to reduce thatch and the transport of applied chemicals with runoff, there are no studies reporting the effect of coupling these management practices with the goal of further reduction of off-site transport of fertilizer with runoff. We hypothesized that the addition of VC to hollow tine core cultivation (HTCC) would enhance infiltration of precipitation, reduce runoff and nutrient transport with runoff and therefore influence concentrations of nutrients in surface waters receiving runoff from turf managed as a golf course fairway. Greater runoff and mass of soluble phosphorus and ammonium nitrogen transported with runoff were measured from plots managed with HTCC+VC than HTCC; however, the reverse was noted for nitrate nitrogen. Only a portion of the observed trends proved to be statistically significant. Our research showed no reduction or enhancement of risk associated with surface water concentrations of phosphorus or nitrogen, resulting from runoff from creeping bentgrass turf that was managed with HTCC+VC compared to HTCC. Data obtained in this research will be useful to grounds superintendents when selecting best management practices and to scientists seeking data relating runoff to land management for watershed-scale modeling. Published by Elsevier B.V.
Potter, Thomas L; Truman, Clint C; Bosch, David D; Bednarz, Craig
2004-01-01
In the Atlantic Coastal Plain region of southern Georgia (USA), cotton (Gossypium hirsutum L.) acreage increased threefold in the past decade. To more effectively protect water quality in the region, best management practices are needed that reduce pesticide runoff from fields in cotton production. This study compared runoff of two herbicides, fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)-phenyl]-urea] and pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitro-benzenamine], from plots in strip-tillage (ST) and conventional-tillage (CT) management near Tifton, GA. Rainfall simulations were conducted one day after preemergence herbicide applications to 0.0006-ha plots and runoff from 0.15-ha plots due to natural rainfall following preemergence pendimethalin and fluometuron and postemergence fluometuron use was monitored. Pendimethalin runoff was greater under CT than ST due to strong pendimethalin soil sorption and higher erosion and runoff under CT. The highest losses, 1.3% of applied in CT and 0.22% of applied in ST, were observed during rainfall simulations conducted 1 DAT. Fluometuron runoff from natural rainfall was substantially lower from ST than from CT plots but the trend was reversed in rainfall simulations. In all studies, fluometuron runoff was also relatively low (<1% of applied), and on plots under natural rainfall, desmethylfluometuron (DMF) represented about 50% of total fluometuron runoff. Fluometuron's relatively low runoff rate appeared linked to its rapid leaching, and high DMF detection rates in runoff support DMF inclusion in fluometuron risk assessments. Results showed that ST has the potential to reduce runoff of both herbicides, but fluometuron leaching may be a ground water quality concern.
NASA Astrophysics Data System (ADS)
Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.
2017-12-01
In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.
NASA Astrophysics Data System (ADS)
Yang, Chun Xia; Xiao, PeiQing; Li, Li; Jiao, Peng
2018-06-01
Land consolidation measures affected the underlying surface erosion environment during the early stage of vegetation construction, and then had an impact on rainfall infiltration, erosion and sediment yield. This paper adopted the field simulated rainfall experiments to analyze the function that pockets site preparation measures affected on rainfall infiltration, runoff sediment yield and runoff erosion ability. The results showed that, the measures can delay the rainfall runoff formation time of the slope by 3'17" and 1'04" respectively. Compared with the same condition of the bare land and natural grassland. The rainfall infiltration coefficient each increased by 76.47% and 14.49%, and infiltration rate increased by 0.26 mm/min and 0.11mm/min respectively; The amount of runoff and sediment yield were reduced because of the pockets site preparation. The amount of runoff reducing rate were 33.51% and 30.49%, and sediment reduction rate were 81.35% and 65.66%, The sediment concentration was decreased by 71.99% and 50.58%; Runoff velocity of bare slope and natural grassland slope decreased by 38.12% and 34.59% respectively after pockets site preparation . The runoff erosion rate decreased by 67.92% and 79.68% respectively. The results will have a great significance for recognizing the effect of water and sediment reduction about vegetation and the existence of its plowing measures at the early period of restoration.
Water-quality characteristics of stormwater runoff in Rapid City, South Dakota, 2008-14
Hoogestraat, Galen K.
2015-01-01
For the Arrowhead and Meade-Hawthorne sites, event-mean concentrations typically exceeded the TSS and bacteria beneficial-use criteria for Rapid Creek by 1–2 orders of magnitude. Comparing the two drainage basins, median TSS event-mean concentrations were more than two times greater at the Meade-Hawthorne outlet (520 milligrams per liter) than the Arrowhead outlet (200 milligrams per liter). Median fecal coliform bacteria event-mean concentrations also were greater at the Meade-Hawthorne outlet site (30,000 colony forming units per 100 milliliters) than the Arrowhead outlet site (17,000 colony forming units per 100 milliliters). A comparison to relevant standards indicates that stormwater runoff from the Downtown drainage basin exceeded criteria for bacteria and TSS, but concentrations generally were below standards for nutrients and metals. Stormwater-quality conditions from the Downtown drainage basin outfalls were similar to or better than stormwater-quality conditions observed in the Arrowhead and Meade-Hawthorne drainage basins. Three wetland channels located at the outlet of the Downtown drainage basin were evaluated for their pollutant reduction capability. Mean reductions in TSS and lead concentrations were greater than 40 percent for all three wetland channels. Total nitrogen, phosphorus, copper, and zinc concentrations also were reduced by at least 20 percent at all three wetlands. Fecal coliform bacteria concentrations typically were reduced by about 21 and 36 percent at the 1st and 2nd Street wetlands, respectively, but the reduction at the 3rd Street wetland channel was nearly zero percent. Total wetland storage volume affected pollutant reductions because TSS, phosphorus, and ammonia reductions were greatest in the wetland with the greatest volume. Chloride concentrations typically increased from inflow to outflow at the 2nd and 3rd Street wetland channels.
Cropland filter strip removal of cattle manure constituents in runoff
USDA-ARS?s Scientific Manuscript database
There is little scientifically-derived information available to help identify setback distances required to effectively reduce contaminants from incoming runoff on cropland areas. The objective of this study was to determine the effects of cropland filter strip (CFS) length and runoff rate on concen...
USDA-ARS?s Scientific Manuscript database
Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...
On the non-uniqueness of sediment yield
NASA Astrophysics Data System (ADS)
Kim, J.; Ivanov, V. Y.; Katopodes, N.
2012-12-01
Estimation of sediment yield at the catchment scale plays an important role for optimal design of hydraulic structures, such as bridges, culverts, reservoirs, and detention basins, as well as making informed decisions in environmental management. Many experimental studies focused on obtaining flow and sediment data in search of unique relationships between runoff (specifically, volume and peak) and sediment characteristics. These relationships were employed to predict sediment yield from flow information. However, despite the same flow volume, the actual sediment yield produced by river basins can vary significantly depending on several conditions: (i) the catchment size, (ii) land use, topography, and soil type, (iii) climatic variations or characteristics , and (iv) initial conditions of soil moisture and soil surface . Additionally, shield formation by relatively larger particles can be one of the possible controllers of erosion and net sediment transport. Smaller particles have low settling velocities and tend to move far from their original position of detachment. Conversely, larger particles can settle quickly near their original locations. Eventually, such particles can form a shield on soil bed and protect underlying soil from rainfall detachment and runoff entrainment. The shield formation and temporal development can be influenced by rainfall intensity, frequency, and volume. Rainfall influences the generation of runoff leading to different conditions of flow depth and velocity that can perturb intact soil into a loose condition. In this study, we numerically investigate the effects of precipitation patterns on the generation of sediment yield. In particular, we address reasons of non-uniqueness of basin sediment yield for the same runoff volume as well as causes of unsteady phenomena in erosion processes under steady state flow conditions. For numerical simulations, the two-dimensional Hairsine-Rose model coupled with a fully distributed hydrology and hydraulics model (tRIBS-OFM: Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model) is used.
Is April to July runoff really decreasing in the Western United States?
Wahl, Kenneth L.
1991-01-01
Global warming has been the topic of a great deal of heated discussion and debate in recent years, both in the lay press and in scientific journals. The debate is about whether we are beginning to detect signs of a buildup of greenhouse gases on a global scale. A major part of the debate concerns the possible effects on climate and on the future availability of water resources. The ongoing drought in California has added impetus to the debate, serving notice of the serious consequences of any prolonged decrease in the availability of adequate water supplies. This paper has three primary objectives: (1) To evaluate the ramifications of using fractional runoff rather than total runoff to define trends in runoff; (2) to analyze additional streamflow data for the presence and extent of trends in annual and seasonal runoff volume for the conterminous Western United States; and (3) to examine the influence of the current California drought on indicators of trend.
Bayesian analyses of seasonal runoff forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Reese, S.
1991-12-01
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.
Curve Number and Peakflow Responses Following the Cerro Grande Fire on a Small Watershed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, E. P.; Hawkins, Richard H.
The Curve Number (CN) method is routinely used to estimate runoff and peakflows following forest fires, but there has been essentially no literature on the estimated value and temporal variation of CNs following wildland fires. In May 2000, the Cerro Grande Fire burned the headwaters of the major watersheds that cross Los Alamos National Laboratory, and a stream gauging network presented an opportunity to assess CNs following the fire. Analysis of rainfall-runoff events indicated that the pre-fire watershed response was complacent or limited watershed area contributed to runoff. The post-fire response indicated that the complacent behavior continued so the watershedmore » response was not dramatically changed. Peakflows did increase by 2 orders of magnitude following the fire, and this was hypothesized to be a function of increase in runoff volume and changes in watershed network allowing more efficient delivery of runoff. More observations and analyses following fires are needed to support definition of CNs for post-fire response and mitigation efforts.« less
Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona
Norman, Laura M.; Brinkerhoff, Fletcher C.; Gwilliam, Evan; Guertin, D. Phillip; Callegary, James B.; Goodrich, David C.; Nagler, Pamela L.; Gray, Floyd
2016-01-01
In this study, hydrological processes are evaluated to determine impacts of stream restoration in the West Turkey Creek, Chiricahua Mountains, southeast Arizona, during a summer-monsoon season (June–October of 2013). A paired-watershed approach was used to analyze the effectiveness of check dams to mitigate high flows and impact long-term maintenance of hydrologic function. One watershed had been extensively altered by the installation of numerous small check dams over the past 30 years, and the other was untreated (control). We modified and installed a new stream-gauging mechanism developed for remote areas, to compare the water balance and calculate rainfall–runoff ratios. Results show that even 30 years after installation, most of the check dams were still functional. The watershed treated with check dams has a lower runoff response to precipitation compared with the untreated, most notably in measurements of peak flow. Concerns that downstream flows would be reduced in the treated watershed, due to storage of water behind upstream check dams, were not realized; instead, flow volumes were actually higher overall in the treated stream, even though peak flows were dampened. We surmise that check dams are a useful management tool for reducing flow velocities associated with erosion and degradation and posit they can increase baseflow in aridlands.
Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem
Faist, Akasha M; Herrick, Jeffrey E.; Belnap, Jayne; Van Zee, Justin W; Barger, Nichole N
2017-01-01
Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems, and these processes may then be dramatically altered with soil surface disturbance. In this study, we examined biocrust hydrologic responses to disturbance at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance (trampling, scalping and trampling+scalping) of the early successional light cyanobacterial biocrusts generally reduced runoff. In contrast, trampling well-developed dark-cyano-lichen biocrusts increased runoff and sediment loss relative to intact controls. Scalping did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well-developed, intact dark biocrusts generally had lower runoff, low sediment loss, and highest aggregate stability whereas the less-developed light biocrusts were highest in runoff and sediment loss when compared to the controls. These results suggest the importance of maintaining the well-developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential.
Stochastic Model of Seasonal Runoff Forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman; Watada, Leslie M.
1986-03-01
Each year the National Weather Service and the Soil Conservation Service issue a monthly sequence of five (or six) categorical forecasts of the seasonal snowmelt runoff volume. To describe uncertainties in these forecasts for the purposes of optimal decision making, a stochastic model is formulated. It is a discrete-time, finite, continuous-space, nonstationary Markov process. Posterior densities of the actual runoff conditional upon a forecast, and transition densities of forecasts are obtained from a Bayesian information processor. Parametric densities are derived for the process with a normal prior density of the runoff and a linear model of the forecast error. The structure of the model and the estimation procedure are motivated by analyses of forecast records from five stations in the Snake River basin, from the period 1971-1983. The advantages of supplementing the current forecasting scheme with a Bayesian analysis are discussed.
Seaburn, G.E.
1969-01-01
The study described in this report is concerned with the effects of intensive urban development on direct runoff to East Meadow Brook, a southward-flowing stream in central Nassau County, N.Y., during the period 1937-66. The specific objectives of the study were (a) to relate indices of urban development to increases in the volume of annual direct runoff to the stream; (b) to compare hydrograph features at different periods during the transition of the drainage basin from rural to urban conditions; and (c) to compare the rainfall-runoff relations for periods before and after urban development.Periods of housing and street construction in the drainage basin correspond to three distinct periods of increased direct runoff after the base period 1937-43-namely, 1944-51, 1952-59, and 1960-62. During each period, the average annual direct runoff increased because of an increase in the area served by storm sewers that discharged into East Meadow Brook. The amount of land served by sewers increased from about 570 acres in 1943 to about 3,600 acres in 1962, or about 530 percent. During this same period, the average annual direct runoff increased from about 920 acre-feet per year to about 3,400 acre-feet per year, or about 270 percent.The shape of direct-runoff unit hydrographs of East Meadow Brook also changed during the period of study. The average peak discharge of a 1-hour-duration unit hydrograph increased from 313 cubic feet per second, for storms in 1937-43, to 776 cubic feet per second, for storms in 1960-62, or about 2.5 times. In addition, the widths of the unit hydrographs for 1960-62 at values of 50 and 75 percent of the peak discharge were 38 and 28 percent, respectively, the comparable widths of the unit hydrographs for 1937-43.An analysis of the rainfall-runoff relations for both preurban and urban conditions indicates that the direct runoff for both periods increased with the magnitude of the storm. However, the direct runoff during a period of urbanized conditions (1964- 66) was from 1.1 to 4.6 times greater than the corresponding runoff during the preurban period 1937-43, depending on the size of the individual storm.The volume of direct runoff from the parts of the subarea equipped with storm sewers that discharged into East Meadow Brook is estimated to have been roughly 3,000 acre-feet per year in 1960-62, or about 20 percent of the precipitation on those parts of the area.The increase in direct runoff probably represents a loss of ground-water recharge. However, because data changes in evapo-transpiration are insufficient and because the effects of recharge basins are unknown, adequate quantitative estimates of groundwater recharge can not be made.On the basis of the present zoning regulations and on assumption that an additional 320 acres in the Hempstead subarea will be serviced by storm sewers that discharge into East Meadow Brook, direct runoff from the subarea is expected to increase in the future to an estimated 4,000-4,500 acre-feet per year.
The increased storm water runoff rate and volume caused by urbanization, and their detrimental effects on stream habitat and morphology, is well documented. In most cases, current storm water management policies are focused on attenuating peak flow rates. While these policies may...
Reducing Phosphorus Runoff from Biosolids with Water Treatment Residuals
USDA-ARS?s Scientific Manuscript database
A large fraction of the biosolids produced in the U.S. are placed in landfills or incinerated to avoid potential water quality problems associated with non-point source phosphorus (P) runoff. The objective of this study was to determine the effect of various chemical amendments on P runoff from bi...
USDA-ARS?s Scientific Manuscript database
Numerous modeling and field studies have evaluated the effectiveness of vegetative treatment systems in treating runoff from animal feeding operations; however, none have evaluated the effectiveness of vegetative treatment areas (VTA’s) receiving direct runoff from small swine operations during natu...
USDA-ARS?s Scientific Manuscript database
Runoff from grazing pasture lands can impact water quality in receiving streams if not well managed. Management consists of conservation practices to reduce runoff and pollutants transport. Simulation models have been effectively used to design and implement these conservation practices. The Agricul...
Reducing nutrient losses in runoff from furrow irrigation
USDA-ARS?s Scientific Manuscript database
Few studies have comprehensively examined nutrient losses in runoff from furrow-irrigated fields, but the rising cost of fertilizer and finite nature of the resource encourages further research. A 2-yr experiment measured runoff losses of sediment, particulate P and N, and dissolved NO3-N, NH4-N, K...
NASA Astrophysics Data System (ADS)
Youngseok, Song; Moojong, Park; JungHo, Lee; HeeSup, Lee
2013-04-01
As extreme floods occur frequently in recent years due to global climate changes, an in sudden local flooding of great volume and short duration is becoming the significant danger and loss of life and property in the Korean Peninsula as well as most parts of the world. The desire for living without hazardous damages grows these days, the city strategy to make the safer community has become an issue. Previously most of flood prevention efforts have been made for relatively large watersheds near to channel flow. However, as economical development and the expansion of city near medium and small stream, human casualty and property by flood occurs frequently. Therefore, to reduce the damage of human lives and property by flood, we develop an assessment method for flood warning trigger rainfall considering urban effect. Considering complex land use, HEC-HMS is used for rural area and SWMM is adopted for sewer networks runoff. And relationship between runoff and stream water level, HEC-RAS is accompanied with runoff results. Proposed flood warning trigger rainfall assessment method shows good agreement with gauged data and could be used for another case to mitigate damage. Acknowledgement: "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keyword: HEC-HMS, HEC-RAS, critical precipitation, medium and small stream
Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.
Liu, Yaoze; Ahiablame, Laurent M; Bralts, Vincent F; Engel, Bernard A
2015-01-01
Best management practices (BMPs) and low impact development (LID) practices are increasingly being used as stormwater management techniques to reduce the impacts of urban development on hydrology and water quality. To assist planners and decision-makers at various stages of development projects (planning, implementation, and evaluation), user-friendly tools are needed to assess the effectiveness of BMPs and LID practices. This study describes a simple tool, the Long-Term Hydrologic Impact Assessment-LID (L-THIA-LID), which is enhanced with additional BMPs and LID practices, improved approaches to estimate hydrology and water quality, and representation of practices in series (meaning combined implementation). The tool was used to evaluate the performance of BMPs and LID practices individually and in series with 30 years of daily rainfall data in four types of idealized land use units and watersheds (low density residential, high density residential, industrial, and commercial). Simulation results were compared with the results of other published studies. The simulated results showed that reductions in runoff volume and pollutant loads after implementing BMPs and LID practices, both individually and in series, were comparable with the observed impacts of these practices. The L-THIA-LID 2.0 model is capable of assisting decision makers in evaluating environmental impacts of BMPs and LID practices, thereby improving the effectiveness of stormwater management decisions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Krutz, L Jason; Locke, Martin A; Steinriede, R Wade
2009-01-01
The need to control glyphosate [N-(phosphonomethyl)glycine]-resistant weed biotypes with tillage and preemergence herbicides in glyphosate-resistant crops (GRCs) is causing a reduction in no-tillage hectarage thereby threatening the advances made in water quality over the past decade. Consequently, if environmental gains afforded by GRCs are to be maintained, then an in-field best management practice (BMP) compatible with tillage is required for hectarage infested with glyphosate-resistant weed biotypes. Thus, 1 d after a preemergent application of fluometuron [N,N-dimethyl-N'-(3-(trifluoromethyl)phenyl)urea] (1.02 kg ha(-1)) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] (1.18 kg ha(-1)) to a Dundee silt loam (fine-silty, mixed, active, thermic Typic Endoaqualf), simulated rainfall (60 mm h(-1)) was applied to 0.0002-ha microplots for approximately 1.25 h to elucidate tillage (no tillage [NT] and reduced tillage [RT])and cover crop (no cover [NC] and rye cover [RC]) effects on water, sediment, and herbicide loss in surface runoff. Regardless of tillage, RC delayed time-to-runoff 1.3-fold, reduced cumulative runoff volume 1.4-fold, and decreased cumulative sediment loss 4.7-fold. Cumulative fluometuron loss was not affected by tillage or cover crop. Conversely, total metolachlor loss was 1.3-fold lower in NT than RT and 1.4-fold lower in RC than NC. These data indicate that RC can be established in hectarage requiring tillage and potentially curtail water, sediment, and preemergence herbicide losses in the spring to levels equivalent to or better than that of NT, thereby protecting environmental gains provided by GRCs.
NASA Astrophysics Data System (ADS)
Tassi, R.; Lorenzini, F.; Allasia, D. G.
2015-06-01
In the last decades, new approaches were adopted to manage stormwater as close to its source as possible through technologies and devices that preserve and recreate natural landscape features. Green Roofs (GR) are examples of these devices that are also incentivized by city's stormwater management plans. Several studies show that GR decreases on-site runoff from impervious surfaces, however, the analysis of the effect of widespread implementation of GR in the flood characteristics at the urban basin scale in subtropical areas are little discussed, mainly because of the absence of data. Thereby, this paper shows results related to the monitoring of an extensive modular GR under subtropical weather conditions, the development of a rainfall-runoff model based on the modified Curve Number (CN) and SCS Triangular Unit Hydrograph (TUH) methods and the analysis of large-scale impact of GR by modelling different basins. The model was calibrated against observed data and showed that GR absorbed almost all the smaller storms and reduced runoff even during the most intense rainfall. The overall CN was estimated in 83 (consistent with available literature) with the shape of hydrographs well reproduced. Large-scale modelling (in basins ranging from 0.03 ha to several square kilometers) showed that the widespread use of GRs reduced peak flows (volumes) around 57% (48%) at source and 38% (32%) at the basin scale. Thus, this research validated a tool for the assessment of structural management measures (specifically GR) to address changes in flood characteristics in the city's water management planning. From the application of this model it was concluded that even if the efficiency of GR decreases as the basin scale increase they still provide a good option to cope with urbanization impact.
Effect of inlet modelling on surface drainage in coupled urban flood simulation
NASA Astrophysics Data System (ADS)
Jang, Jiun-Huei; Chang, Tien-Hao; Chen, Wei-Bo
2018-07-01
For a highly developed urban area with complete drainage systems, flood simulation is necessary for describing the flow dynamics from rainfall, to surface runoff, and to sewer flow. In this study, a coupled flood model based on diffusion wave equations was proposed to simulate one-dimensional sewer flow and two-dimensional overland flow simultaneously. The overland flow model provides details on the rainfall-runoff process to estimate the excess runoff that enters the sewer system through street inlets for sewer flow routing. Three types of inlet modelling are considered in this study, including the manhole-based approach that ignores the street inlets by draining surface water directly into manholes, the inlet-manhole approach that drains surface water into manholes that are each connected to multiple inlets, and the inlet-node approach that drains surface water into sewer nodes that are connected to individual inlets. The simulation results were compared with a high-intensity rainstorm event that occurred in 2015 in Taipei City. In the verification of the maximum flood extent, the two approaches that considered street inlets performed considerably better than that without street inlets. When considering the aforementioned models in terms of temporal flood variation, using manholes as receivers leads to an overall inefficient draining of the surface water either by the manhole-based approach or by the inlet-manhole approach. Using the inlet-node approach is more reasonable than using the inlet-manhole approach because the inlet-node approach greatly reduces the fluctuation of the sewer water level. The inlet-node approach is more efficient in draining surface water by reducing flood volume by 13% compared with the inlet-manhole approach and by 41% compared with the manhole-based approach. The results show that inlet modeling has a strong influence on drainage efficiency in coupled flood simulation.
NASA Astrophysics Data System (ADS)
Jefferson, A.; Avellaneda, P. M.; Jarden, K. M.; Turner, V. K.; Grieser, J.
2016-12-01
Distributed green infrastructure approaches to stormwater management that can be retrofit into existing development are of growing interest, but questions remain about their effectiveness at the watershed-scale. In suburban northeastern Ohio, homeowners on a residential street with 55% impervious surface were given the opportunity for free rain barrels, rain gardens, and bioretention cells. Of 163 parcels, only 22 owners (13.5%) chose to participate, despite intense outreach efforts. After pre-treatment monitoring, 37 rain barrels, 7 rain gardens, and 16 street-side bioretention cells were installed in 2013-2014. Using a paired watershed approach, a reduction in up to 33% of peak flow and 40% of total runoff volume per storm was measured in the storm sewer. Using the monitoring data, a calibrated and validated SWMM model was built to explore the long-term effectiveness of the green infrastructure against a wider range of hydrological conditions. Model results confirm the effectiveness of green infrastructure in reducing surface runoff and increasing infiltration and evaporation. Based on 20 years of historical precipitation data, the model shows that the green infrastructure is capable of reducing flows by >40% at the 1, 2, and 5 year return period, suggesting some resilience to projected increases in precipitation intensity in a changing climate. Further, in this project, more benefit is derived from the street-side bioretention cells than from the rain barrels and gardens that treat rooftop runoff. Substantial hydrological gains were achieved despite low homeowner participation. Surveys indicate that many residents viewed stormwater as the city's problem and had negative perceptions of green infrastructure, despite slightly pro-environment values generally. Overall, this study demonstrates green infrastructure's hydrological effectiveness but raises challenging questions about overcoming social barriers retrofits at the neighborhood scale.
Investigation of Media Effects on Removal of Heavy Metals in Bioretention Cells
NASA Astrophysics Data System (ADS)
Gülbaz, Sezar; Melek Kazezyilmaz-Alhan, Cevza; Copty, Nadim K.
2015-04-01
Heavy metals are the most toxic elements at high concentrations, although some of them such as Cu and Zn are essential to plants, humans, and animals within a limited value. However, some heavy metals, such as Pb, have adverse effects even at low concentrations. Therefore, it is known that the toxic metals such as Zn, Cu and Pb in storm water runoff are serious threat for aquatic organisms. It is very important to control and reduce heavy metal concentration in urban storm water runoff. There are several methods to remove the aforementioned toxic metals such as electrolyte extraction, chemical precipitation, ion-exchange, reverse osmosis, membrane filtration, adsorption, cementation, and electrochemical treatment technologies. However, these methods are highly expensive and hard to implement for treatment of big volumes of water such as storm water. For this purpose, Low Impact Development (LID) Best Management Practices (BMPs) have become popular to collect, infiltrate, and treat toxic metals in storm water runoff in recent years. LID-BMP is a land planning method which is used to manage storm water runoff and improve water quality by reducing contaminant in storm water runoff. Bioretention is an example of LID-BMP application of which usage has recently been started in storm water treatment. Researchers have been investigating the advantages of bioretention systems and this study contributes to these research efforts by seeking for the media effects of bioretention on heavy metal removal. For this purpose, batch sorption experiments were performed to determine the distribution coefficients and retardation factor of copper (Cu), lead (Pb), and zinc (Zn) for bioretention media such as mulch, turf, local or vegetative soil, sand and gravel. Furthermore, sorption reaction kinetics of Cu, Pb and Zn are tested in order to assess the sorption equilibrium time of these metals for 5 bioretention media. The results of sorption test show that turf has higher sorption capacity than mulch and local soil for heavy metals used in the experiment. On the other hand, sand and gravel have relatively lower sorption capacities. Linear equilibrium isotherm represents sorption of these metals for all bioretention media. The highest sorption is observed for Pb followed by Cu and Zn for all bioretention media. The time required for reaching equilibrium conditions for bioretention column media is ranged from 1 to 6 hours for each metal investigated.
Wang, Kang; Lin, Zhongbing; Zhang, Renduo
2016-02-01
The objective of this study was to investigate the influence of large-scale phosphate mining (PM) on hydrology and water quality in the Huangbai River basin, China. Rainfall and runoff data were used to analyze hydrological changes of the basin before (from 1978 to 2002) and during (from 2003 to 2014) the PM period. From 2009 to 2014, flow rate and concentrations of ammonia nitrogen (NH4(+)), nitrate (NO3(-)), fluoride (F(-)), suspended solids (SS), total nitrogen (TN), soluble phosphorus (SP), and total phosphorus (TP) were measured at the outfalls of PM as well as at outlets of sub-basins with and without PM practices. Results showed that the PM activities generally reduced runoff (i.e., the runoff coefficient and runoff peak). The sequential Mann Kendall test revealed a decrease trend of runoff during wet seasons after 2008 in the PM regions. For a mining scale of one unit of PM productivity (i.e., 10(8)kg phosphate ore per year or 2.74×10(5) kg d(-1)), TN, SS, and TP of 0.633, 1.46 to 5.22, and 0.218 to 0.554 kg d(-1) were generated, respectively. The NH4(+) and TN loads in the sub-basins with PM were significantly higher than these in the sub-basins without PM; however, the NH4(+) and TN loads that discharged into rivers from the background non-point sources discharged were less in the sub-basins with PM than those without PM. The result was attributed to the reduction of runoff volume by PM. The annual mean concentrations of TN in reservoir water increased with the scales of PM, whereas the mean concentrations of SP were low. Nevertheless, the SP concentrations in the reservoirs greatly increased after 2012, mainly related to the dissolution of apatite in the sediment. The information from this study should improve the understanding of changes in hydrology and water quality in regions with large-scale PM. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Panday, Prajjwal K.; Williams, Christopher A.; Frey, Karen E.; Brown, Molly E.
2013-01-01
Previous studies have drawn attention to substantial hydrological changes taking place in mountainous watersheds where hydrology is dominated by cryospheric processes. Modelling is an important tool for understanding these changes but is particularly challenging in mountainous terrain owing to scarcity of ground observations and uncertainty of model parameters across space and time. This study utilizes a Markov Chain Monte Carlo data assimilation approach to examine and evaluate the performance of a conceptual, degree-day snowmelt runoff model applied in the Tamor River basin in the eastern Nepalese Himalaya. The snowmelt runoff model is calibrated using daily streamflow from 2002 to 2006 with fairly high accuracy (average Nash-Sutcliffe metric approx. 0.84, annual volume bias <3%). The Markov Chain Monte Carlo approach constrains the parameters to which the model is most sensitive (e.g. lapse rate and recession coefficient) and maximizes model fit and performance. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall compared with simulations using observed station precipitation. The average snowmelt contribution to total runoff in the Tamor River basin for the 2002-2006 period is estimated to be 29.7+/-2.9% (which includes 4.2+/-0.9% from snowfall that promptly melts), whereas 70.3+/-2.6% is attributed to contributions from rainfall. On average, the elevation zone in the 4000-5500m range contributes the most to basin runoff, averaging 56.9+/-3.6% of all snowmelt input and 28.9+/-1.1% of all rainfall input to runoff. Model simulated streamflow using an interpolated precipitation data set decreases the fractional contribution from rainfall versus snowmelt compared with simulations using observed station precipitation. Model experiments indicate that the hydrograph itself does not constrain estimates of snowmelt versus rainfall contributions to total outflow but that this derives from the degree-day melting model. Lastly, we demonstrate that the data assimilation approach is useful for quantifying and reducing uncertainty related to model parameters and thus provides uncertainty bounds on snowmelt and rainfall contributions in such mountainous watersheds.
Impact of landuse/land cover change on run-off in the catchment of a hydro power project
NASA Astrophysics Data System (ADS)
Khare, Deepak; Patra, Diptendu; Mondal, Arun; Kundu, Sananda
2017-05-01
The landuse/land cover change and rainfall have a significant influence on the hydrological response of the river basins. The run-off characteristics are changing naturally due to reduction of initial abstraction that increases the run-off volume. Therefore, it is necessary to quantify the changes in the run-off characteristics of a catchment under the influence of changed landuse/land cover. Soil conservation service model has been used in the present study to analyse the impact of various landuse/land cover (past, present and future time period) change in the run-off characteristics of a part of Narmada basin at the gauge discharge site of Mandaleswar in Madhya Pradesh, India. Calculated run-off has been compared with the observed run-off data for the study. The landuse/land cover maps of 1990, 2000 and 2009 have been prepared by digital classification method with proper accuracy using satellite imageries. The impact of the run-off change on hydro power potential has been assessed in the study along with the estimation of the future changes in hydro power potential. Five types of conditions (+10, +5 %, average, -5, -10 % of average rainfall) have been applied with 90 and 75 % dependability status. The generated energy will be less in 90 % dependable flow in respect to the 75 % dependable flow. This work will be helpful for future planning related to establishment of hydropower setup.
The stochastic runoff-runon process: Extending its analysis to a finite hillslope
NASA Astrophysics Data System (ADS)
Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.
2016-10-01
The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their ;correlation scale;, that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.
Application of GIS in Modeling Zilberchai Basin Runoff
NASA Astrophysics Data System (ADS)
Malekani, L.; Khaleghi, S.; Mahmoodi, M.
2014-10-01
Runoff is one of most important hydrological variables that are used in many civil works, planning for optimal use of reservoirs, organizing rivers and warning flood. The runoff curve number (CN) is a key factor in determining runoff in the SCS (Soil Conservation Service) based hydrologic modeling method. The traditional SCS-CN method for calculating the composite curve number consumes a major portion of the hydrologic modeling time. Therefore, geographic information systems (GIS) are now being used in combination with the SCS-CN method. This work uses a methodology of determining surface runoff by Geographic Information System model and applying SCS-CN method that needs the necessary parameters such as land use map, hydrologic soil groups, rainfall data, DEM, physiographic characteristic of the basin. The model is built by implementing some well known hydrologic methods in GIS like as ArcHydro, ArcCN-Runoff for modeling of Zilberchai basin runoff. The results show that the high average weighted of curve number indicate that permeability of the basin is low and therefore likelihood of flooding is high. So the fundamental works is essential in order to increase water infiltration in Zilberchai basin and to avoid wasting surface water resources. Also comparing the results of the computed and observed runoff value show that use of GIS tools in addition to accelerate the calculation of the runoff also increase the accuracy of the results. This paper clearly demonstrates that the integration of GIS with the SCS-CN method provides a powerful tool for estimating runoff volumes in large basins.
McIntyre, J K; Davis, J W; Hinman, C; Macneale, K H; Anulacion, B F; Scholz, N L; Stark, J D
2015-08-01
Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sun, Siao; Barraud, Sylvie; Castebrunet, Hélène; Aubin, Jean-Baptiste; Marmonier, Pierre
2015-11-15
The assessment of urban stormwater quantity and quality is important for evaluating and controlling the impact of the stormwater to natural water and environment. This study mainly addresses long-term evolution of stormwater quantity and quality in a French urban catchment using continuous measured data from 2004 to 2011. Storm event-based data series are obtained (716 rainfall events and 521 runoff events are available) from measured continuous time series. The Mann-Kendall test is applied to these event-based data series for trend detection. A lack of trend is found in rainfall and an increasing trend in runoff is detected. As a result, an increasing trend is present in the runoff coefficient, likely due to growing imperviousness of the catchment caused by urbanization. The event mean concentration of the total suspended solid (TSS) in stormwater does not present a trend, whereas the event load of TSS has an increasing tendency, which is attributed to the increasing event runoff volume. Uncertainty analysis suggests that the major uncertainty in trend detection results lies in uncertainty due to available data. A lack of events due to missing data leads to dramatically increased uncertainty in trend detection results. In contrast, measurement uncertainty in time series data plays a trivial role. The intra-event distribution of TSS is studied based on both M(V) curves and pollutant concentrations of absolute runoff volumes. The trend detection test reveals no significant change in intra-event distributions of TSS in the studied catchment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of the precipitation-runoff modeling system, Beaver Creek basin, Kentucky
Bower, D.E.
1985-01-01
The Precipitation Runoff Modeling System (PRMS) was evaluated with data from Cane branch and Helton Branch in the Beaver Creek basin of Kentucky. Because of previous studies, 10.6 years of record were available to establish a data base for the basin including 60 storms for Cane Branch and 50 storms for Helton Branch. The model was calibrated initially using data from the 1956-58 water years. Runoff predicted by the model was 94.7% of the observed runoff at Cane Branch (mined area) and 96.9% at Helton Branch (unmined area). After the model and data base were modified, the model was refitted to the 1956-58 data for Helton Branch. It then predicted 98.6% of the runoff for the 10.6-year period. The model parameters from Helton Branch were then used to simulate the Cane Branch runoff and discharge. The model predicted 102.6% of the observed runoff at Cane Branch for the 10.6 years. The simulations produced reasonable storm volumes and peak discharges. Sensitivity analysis of model parameters indicated the parameters associated with soil moisture are the most sensitive. The model was used to predict sediment concentration and daily sediment load for selected storm periods. The sediment computations indicated the model can be used to predict sediment concentrations during storm events. (USGS)
Permeable pavement study (Edison)
While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m2, lined sections that direct all infiltrate into 5.7-m3 tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry de
Cheng, Xiaoya; Shaw, Stephen B; Marjerison, Rebecca D; Yearick, Christopher D; DeGloria, Stephen D; Walter, M Todd
2014-05-01
Predicting runoff producing areas and their corresponding risks of generating storm runoff is important for developing watershed management strategies to mitigate non-point source pollution. However, few methods for making these predictions have been proposed, especially operational approaches that would be useful in areas where variable source area (VSA) hydrology dominates storm runoff. The objective of this study is to develop a simple approach to estimate spatially-distributed risks of runoff production. By considering the development of overland flow as a bivariate process, we incorporated both rainfall and antecedent soil moisture conditions into a method for predicting VSAs based on the Natural Resource Conservation Service-Curve Number equation. We used base-flow immediately preceding storm events as an index of antecedent soil wetness status. Using nine sub-basins of the Upper Susquehanna River Basin, we demonstrated that our estimated runoff volumes and extent of VSAs agreed with observations. We further demonstrated a method for mapping these areas in a Geographic Information System using a Soil Topographic Index. The proposed methodology provides a new tool for watershed planners for quantifying runoff risks across watersheds, which can be used to target water quality protection strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gaddam, Vinay Kumar; Kulkarni, Anil V; Gupta, Anil Kumar
2018-02-20
Hydrological regimes of most of the Himalayan river catchments are poorly studied due to sparse hydro-meteorological data. Hence, stream runoff assessment becomes difficult for various socio-industrial activities in the Himalaya. Therefore, an attempt is made in this study to assess the stream runoff of Baspa River in Himachal Pradesh, India, by evaluating the contribution from snow-ice melt and rainfall runoff. The total volume of flow was computed for a period of 15 years, from 2000 to 2014, and validated with the long-term field discharge measurements, obtained from Jaipee Hydropower station (31° 32' 35.53″ N, 78° 00' 54.80″ E), at Kuppa barrage in the basin. The observations suggest (1) a good correlation (r 2 > 0.80) between the modeled runoff and field discharge measurements, and (2) out of the total runoff, 81.2% are produced by snowmelt, 11.4% by rainfall, and 7.4% from ice melt. The catchment receives ~75% of its total runoff in the ablation period (i.e., from May to September). In addition, an early snowmelt is observed in accumulation season during study period, indicating the significant influence of natural and anthropogenic factors on high-altitude areas.
NASA Astrophysics Data System (ADS)
Pagan, Brianna; Ashfaq, Moetasim; Rastogi, Deeksha; Kao, Shih-Chieh; Naz, Bibi; Mei, Rui; Kendall, Donald; Pal, Jeremy
2016-04-01
The Western United States has a greater vulnerability to climate change impacts on water security due to a reliance on snowmelt driven imported water. The State of California, which is the most populous and agriculturally productive in the United States, depends on an extensive artificial water storage and conveyance system primarily for irrigated agriculture, municipal and industrial supply and hydropower generation. This study provides an integrated approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. A 10-member ensemble of coupled global climate models is dynamically downscaled forcing a regional and hydrological model resulting in a high-resolution 4-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). While precipitation is projected to remain the same or slightly increase, rising temperatures result in a shift in precipitation type towards more rainfall, reducing cold season snowpack and earlier snowmelt. Associated with these hydrological changes are substantial increases in both dry and flood event frequency and intensity, which are evaluated by using the Generalized Extreme Value distribution, Standardized Precipitation Index and ratio of daily precipitation to annual precipitation. Daily annual maximum runoff and precipitation event events significantly increase in intensity and frequency. Return periods change such that extreme events in the future become much more common by mid-century. The largest changes occur in the Colorado River where the daily annual maximum runoff 100-year event, for example, becomes approximately ten times more likely and twice as likely in the other basins. Volumes for annual cumulative maximum runoff increase and in contrast decrease for annual cumulative minimum runoff. Intuitively, increased frequency of years with below historical average runoff put further strain on water supply. However, the escalating likelihood of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring the release of water from reservoirs, also potentially decreasing water availability. Significant reductions in snowpack and increases in extreme runoff necessitate additional multiyear storage solutions for urban and agricultural regions in the Western United States.
Jeton, Anne E.; Maurer, Douglas K.
2007-01-01
Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide estimates of ground-water inflow using similar water input. The calibration periods were water years 1990-2002 for watersheds in the Carson Range, and water years 1981-97 for watersheds in the Pine Nut Mountains. Daily mean values for water years 1990-2002 were then simulated using the calibrated watershed models in the Pine Nut Mountains. The daily mean values of precipitation, runoff, evapotranspiration, and ground-water inflow simulated from the watershed models were summed to provide annual mean rates and volumes for each year of the simulations, and mean annual rates and volumes computed for water years 1990-2002. Mean annual bias for the period of record for models of Daggett Creek and Fredericksburg Canyon watersheds, two gaged perennial watersheds in the Carson Range, was within 4 percent and relative errors were about 6 and 12 percent, respectively. Model fit was not as satisfactory for two gaged perennial watersheds, Pine Nut and Buckeye Creeks, in the Pine Nut Mountains. The Pine Nut Creek watershed model had a large negative mean annual bias and a relative error of -11 percent, underestimated runoff for all years but the wet years in the latter part of the record, but adequately simulated the bulk of the spring runoff most of the years. The Buckeye Creek watershed model overestimated mean annual runoff with a relative error of about -5 percent when water year 1994 was removed from the analysis because it had a poor record. The bias and error of the calibrated models were within generally accepted limits for watershed models, indicating the simulated rates and volumes of runoff and ground-water inflow were reasonable. The total mean annual ground-water inflow to Carson Valley computed using estimates simulated by the watershed models was 38,000 acre-feet, including ground-water inflow from Eagle Valley, recharge from precipitation on eolian sand and gravel deposits, and ground-water recharge from precipitation on the western alluvial fans. The estimate was in close agreement with that obtained from the chloride-balance method, 40,000 acre-feet, but was considerably greater than the estimate obtained from the water-yield method, 22,000 acre-feet. The similar estimates obtained from the watershed models and chloride-balance method, two relatively independent methods, provide more confidence that they represent a reasonably accurate volume of ground-water inflow to Carson Valley. However, the two estimates are not completely independent because they use similar distributions of mean annual precipitation. Annual ground-water recharge of the basin-fill aquifers in Carson Valley ranged from 51,000 to 54,000 acre-feet computed using estimates of ground-water inflow to Carson Valley simulated from the watershed models combined with previous estimates of other ground-water budget components. Estimates of mean annual ground-water discharge range from 44,000 to 47,000 acre-feet. The low range estimate for ground-water recharge, 51,000 acre-feet per year, is most similar to the high range estimate for ground-water discharge, 47,000 acre-feet per year. Thus, an average annual volume of about 50,000 acre-feet is a reasonable estimate for mean annual ground-water recharge to and discharge from the basin-fill aquifers in Carson Valley. The results of watershed models indicate that significant interannual variability in the volumes of ground-water inflow is caused by climate variations. During multi-year drought conditions, the watershed simulations indicate that ground-water recharge could be as much as 80 percent less than the mean annual volume of 50,000 acre-feet.
Mastin, Mark
2012-01-01
A previous collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation resulted in a watershed model for four watersheds that discharge into Potholes Reservoir, Washington. Since the model was constructed, two new meteorological sites have been established that provide more reliable real-time information. The Bureau of Reclamation was interested in incorporating this new information into the existing watershed model developed in 2009, and adding measured snowpack information to update simulated results and to improve forecasts of runoff. This report includes descriptions of procedures to aid a user in making model runs, including a description of the Object User Interface for the watershed model with details on specific keystrokes to generate model runs for the contributing basins. A new real-time, data-gathering computer program automates the creation of the model input files and includes the new meteorological sites. The 2009 watershed model was updated with the new sites and validated by comparing simulated results to measured data. As in the previous study, the updated model (2012 model) does a poor job of simulating individual storms, but a reasonably good job of simulating seasonal runoff volumes. At three streamflow-gaging stations, the January 1 to June 30 retrospective forecasts of runoff volume for years 2010 and 2011 were within 40 percent of the measured runoff volume for five of the six comparisons, ranging from -39.4 to 60.3 percent difference. A procedure for collecting measured snowpack data and using the data in the watershed model for forecast model runs, based on the Ensemble Streamflow Prediction method, is described, with an example that uses 2004 snow-survey data.
USDA-ARS?s Scientific Manuscript database
Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds; invoking concern of their potential environmental effects and a desire to reduce their transport to non-target locations. Quantities of chlorpyrifos, dicamba, dimethylamine s...
Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W
2006-01-01
Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.
Amarakoon, Inoka D; Zvomuya, Francis; Cessna, Allan J; Degenhardt, Dani; Larney, Francis J; McAllister, Tim A
2014-03-01
Veterinary antimicrobials in land-applied manure can move to surface waters via rain or snowmelt runoff, thus increasing their dispersion in agro-environments. This study quantified losses of excreted chlortetracycline, sulfamethazine, and tylosin in simulated rain runoff from surface-applied and soil-incorporated beef cattle ( L.) feedlot manure (60 Mg ha, wet wt.). Antimicrobial concentrations in runoff generally reflected the corresponding concentrations in the manure. Soil incorporation of manure reduced the concentrations of chlortetracycline (from 75 to 12 μg L for a 1:1 mixture of chlortetracycline and sulfamethazine and from 43 to 17 μg L for chlortetracycline alone) and sulfamethazine (from 3.9 to 2.6 μg L) in runoff compared with surface application. However, there was no significant effect of manure application method on tylosin concentration (range, 0.02-0.06 μg L) in runoff. Mass losses, as a percent of the amount applied, for chlortetracycline and sulfamethazine appeared to be independent of their respective soil sorption coefficients. Mass losses of chlortetracycline were significantly reduced with soil incorporation of manure (from 6.5 to 1.7% when applied with sulfamethazine and from 6.5 to 3.5% when applied alone). Mass losses of sulfamethazine (4.8%) and tylosin (0.24%) in runoff were not affected by manure incorporation. Although our results confirm that cattle-excreted veterinary antimicrobials can be removed via surface runoff after field application, the magnitudes of chlortetracycline and sulfamethazine losses were reduced by soil incorporation of manure immediately after application. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Cao, Yansheng; Sun, Huifeng; Liu, Yaqin; Fu, Zishi; Chen, Guifa; Zou, Guoyan; Zhou, Sheng
2017-02-01
To better understand N runoff losses from rice-wheat rotation and demonstrate the effectiveness of improved fertilizer management in reducing N runoff losses, a field study was conducted for three consecutive rice-wheat rotations. Nitrogen losses through surface runoff were measured for five treatments, including CK without N application, C200, C300 simulating the conventional practices, CO200, and CO300. Optimum N rate was applied for C200 and CO200, and 30% of chemical fertilizer was substituted with organic fertilizer for CO200 and CO300 with respect to C200 and C300, respectively. Rice season had higher runoff coefficients than wheat season. Approximately 52% of total N was lost as NH 4 + -N in rice season, ranging from 21 to 83%, and in wheat season, the proportion of NO 3 - -N in total N averaged 53% with a variation from 38 to 67%. The N treatments lost less total N in rice season (1.67-10.7 kg N ha -1 ) than in wheat season (1.72-17.1 kg N ha -1 ). These suggested that a key to controlling N runoff losses from rice-wheat rotation was to limit NO 3 - -N accumulation in wheat season. In both seasons, N runoff losses for C200 and CO300 were lower than those for C300. CO200 better cut N losses than C200 and CO300, with 64 and 57% less N in rice and wheat seasons than C300, respectively. Compared with the conventional practices, optimum N inputs integrated with co-application of organic and chemical fertilizers could reduce N runoff losses with a better N balance under rice-wheat rotation.
Sediment production and runoff from forest road sideslopes
Johnny M. Grace; Robert Rummer; Bryce J. Stokes
1997-01-01
Sediment and runoff production from three erosion control treatments were investigated on a newly constructed road during a two-year study period. The treatments included a wood excelsior erosion mat, native grass species, and exotic grass species. Sediment and runoff production were significantly reduced on both the cutslope and fillslope by the treatments. Grass...
Development of cloud-operating platform for detention facility design
NASA Astrophysics Data System (ADS)
Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping
2017-04-01
In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.
Wang, Qinghai; Li, Cui; Chen, Chao; Chen, Jie; Zheng, Ruilun; Que, Xiaoe
2018-03-01
Atrazine is frequently detected in surface runoff and poses a potential threat to the environment. Grass hedges may minimize runoff loss of atrazine from crop fields. Therefore, the effectiveness of two grass hedges (Melilotus albus and Pennisetum alopecuroides) in controlling atrazine runoff was investigated using simulated rainfall on lands at different slope gradients (15 and 20%) in northern China. Results showed that a storm (40 mm in 1 h), occurring 4 h after atrazine application, caused a loss of 3% of the applied amount. Atrazine loss under 20% slope was significantly greater than that under 15% slope in control plots. Atrazine exports associated with the water fraction accounted for the majority of total loss. Pennisetum hedges were more efficient in controlling atrazine loss with runoff compared to Melilotus hedges. No significant difference in the capacity of grass hedges to reduce atrazine exports was observed between 15 and 20% slopes. These findings suggest grass hedges are effective in minimizing atrazine runoff in northern China, and Pennisetum hedges should be preferentially used on sloping croplands in similar climatic regions.
Assessment of suspended solids concentration in highway runoff and its treatment implication.
Hallberg, M; Renman, G
2006-09-01
It is understood that the major pollution from storm water is related to the content of particulate matter. One treatment practice is based on the first flush, i.e. detention of the initial part of the runoff that is considered to contain the highest concentrations of pollutants. This study has evaluated the concentration of total suspended solids in 30 consecutive runoff events during the winter season for an area of 6.7 hectares. A six-lane highway (E4) that has an annual average daily traffic load of 120,000 dominates the area and road de-icing salt (NaCl) and studded tires were in regular use during the studied period. The effluent standard for wastewater of 60 mg TSS per litre applied in EU was used to assess the treatment requirement of storm water. In only two of the events the event mean concentration was below 60 mg 1(-1). In four runoff events a partial event mean concentration below 60 mg 1(-1) was found, in 26 %, 12 %, 11 %, and 2 % respectively of the runoff volume. This would suggest that a capture of the initial part of the runoff for subsequent treatment is less applicable in this type of urban watershed.
Liu, Kui; Elliott, Jane A; Lobb, David A; Flaten, Don N; Yarotski, Jim
2014-09-01
In a preceding study, converting conventional tillage (ConvT) to conservation tillage (ConsT) was reported to decrease nitrogen (N) but to increase phosphorus (P) losses during snowmelt runoff. A field-scale study was conducted from 2004 to 2012 to determine if conversion of ConsT to rotational tillage (RotaT), where conservation tillage was interrupted by a fall tillage pass every other year, could effectively reduce P losses compared with ConsT. The RotaT study was conducted on long-term paired watersheds established in 1993. The ConvT field in the pair has remained under ConvT practice since 1993, whereas tillage was minimized on the ConsT field from 1997 until 2007. In fall 2007, RotaT was introduced to the ConsT field, and heavy-duty cultivator passes were conducted in the late fall of years 2007, 2009, and 2011. Runoff volume and nutrient content were monitored at the edge of the two fields, and soil and crop residue samples were taken in each field. Greater soil Olsen P and more P released from crop residue are likely the reasons for the increased P losses in the ConsT treatment (2004-2007) relative to the ConvT treatment (2004-2007). Analysis of covariance indicated that, compared with ConsT (2004-2007), RotaT (2008-2012) increased the concentrations of dissolved organic carbon (DOC) by 62%, total dissolved N (TDN) by 190%, and total N (TN) by 272% and increased the loads of DOC by 34%, TDN by 34%, and TN by 60%. However, RotaT (2008-2012) decreased soil test P in surface soil, P released from crop residue, and duration of runoff compared with ConsT (2004-2007) and thus decreased the concentrations of total dissolved P (TDP) by 46% and total P (TP) by 38% and decreased the loads of TDP by 56% and TP by 42%. In the Canadian Prairies, where P is a major environmental concern compared with N, RotaT was demonstrated to be an effective practice to reduce P losses compared with ConsT. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, Mike
2013-01-01
This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004-10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.
Water quality and water contamination in the Harlem River
NASA Astrophysics Data System (ADS)
Wang, J.
2015-12-01
Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during rainstorms; which elevated nutrient and bacteria/pathogen levels, degraded water quality, reduced dissolved oxygen levels, impact on fish consumption safety and threatening public health. Swimming, boating, fishing was not safe especially during rainstorms. Harlem River, a 9 miles natural straight connects the Hudson River and the East River, was used for water recreation in the past. Phosphate, ammonia, turbidity, dissolved oxygen (DO), and pathogens levels in CSOs collected during storms were significantly higher than EPA/DEP's standards (phosphate <0.033mg/L; ammonia<0.23mg/L; turbidity<5.25FAU; DO>=4mg/L; fecal coliform<200MPN/100ml; E.Coli.<126MPN/100ml; enterococcus < 104MPN /100ml). The maximum values are: phosphate: 0.181mg/L; ammonia: 2.864mg/L; turbidity: 245 FAU& 882 FAU; fecal coliform>millions MPN/100ml; E.coli > 5000MPN /100ml; enterococcus>10,000MPN/100ml; DO<2.9 mg/L. Data showed that pathogen levels are higher than published data from riverkeepers (enterococcus) and USGS (fecal coliform). PCB 11 (3,3'-dichlorobiphenyl, C12H8Cl2), an indicator of raw sewage and stormwater runoff, is analyzed. Fish caught from the Harlem River is banned from commercial. New York State Department of Health (NYS DOH) suggests that not to eat the fish because concerns of PCBs, dioxin and cadmium. How to reduce CSOs is critical on water quality improvement. Green wall/roof and wetland has been planned to use along the river to reduce stormwater runoff consequently to reduce CSOs volume.
Huizinga, Richard J.
2014-01-01
The rainfall-runoff pairs from the storm-specific GUH analysis were further analyzed against various basin and rainfall characteristics to develop equations to estimate the peak streamflow and flood volume based on a quantity of rainfall on the basin.
Huang, Tinglin; Li, Xuan; Rijnaarts, Huub; Grotenhuis, Tim; Ma, Weixing; Sun, Xin; Xu, Jinlan
2014-07-01
Jinpen Reservoir is a deep, stratified reservoir in Shaanxi province, located in a warm temperate zone of Northwest China. Influenced by a temperate monsoon climate, more than 60% of the annual precipitation is concentrated from late summer to autumn (July-September). In recent years, extreme rainfall events occurred more frequently and strongly affected the thermal structure, mixing layer depth and evolution of stratification of Jinpen Reservoir. The reservoir's inflow volume increased sharply after heavy rainfall during the flooding season. Large volumes of inflow induced mixing of stratified water zones in early autumn and disturbed the stratification significantly. A temporary positive effect of such disturbance was the oxygenation of the water close to the bottom of the reservoir, leading to inhibition of the release of nutrients from sediments, especially phosphate. However, the massive inflow induced by storm runoff with increased oxygen-consuming substances led to an increase of the oxygen consumption rate. After the bottom water became anaerobic again, the bottom water quality would deteriorate due to the release of pollutants from sediments. Heavy rainfall events could lead to very high nutrient input into the reservoir due to massive erosion from the surrounding uninhabited steep mountains, and the particulate matter contributed to most nutrient inputs. Reasonably releasing density flow is an effective way to reduce the amounts of particulate associated pollutants entering the reservoir. Significant turbid density flow always followed high rainfall events in Jinpen Reservoir, which not only affected the reservoir water quality but also increased costs of the drinking water treatment plant. Understanding the effects of the storm runoff on the vertical distributions of water quality indicators could help water managers to select the proper position of the intake for the water plant in order to avoid high turbidity outflow. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of water harvesting techniques on runoff, sedimentation, and soil properties.
Al-Seekh, Saleh H; Mohammad, Ayed G
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties
NASA Astrophysics Data System (ADS)
Al-Seekh, Saleh H.; Mohammad, Ayed G.
2009-07-01
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65-85% and sedimentation by 58-69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.
Inexpensive alternatives to alum for reducing ammonia emissions and phosphorus runoff from manure
USDA-ARS?s Scientific Manuscript database
Treating broiler manure with aluminum sulfate (alum) is a best management practice that reduces both ammonia (NH3) emissions and phosphorus (P) runoff. However, during the past 10-15 years alum prices have increased substantially. The objective of this work was to develop cost-effective manure amend...
Impact of Prairie Cover on Hydraulic Conductivity and Storm Water Runoff
NASA Astrophysics Data System (ADS)
Herkes, D. M. G.; Gori, A.; Juan, A.
2017-12-01
Houston has long struggled to find effective solutions to its historic flooding problems. Conventional strategies have revolved around constructing hard infrastructure such as levees or regional detention ponds to reduce flood impacts. However, there has been a recent shift to explore the implementation of nature-based solutions in reducing flood impacts. This is due to the price of structural mechanisms, as well as their failure to adequately protect areas from flooding during the latest flood events. One alternative could be utilizing the natural water retention abilities of native Texas prairies. This study examines the effect of Texas prairie areas in increasing soil infiltration capacities, thereby increasing floodwater storage and reducing surface runoff. For this purpose, an infiltration study of 15 sites was conducted on lands owned by the Katy Prairie Conservancy within Cypress Creek watershed. Located in Northwest Houston, it is an area which had been heavily impacted by recent flood events. Each sampling site was selected to represent a particular land cover or vegetation type, ranging from developed open space to native prairies. Field test results are then compared to literature values of soil infiltration capacity in order to determine the infiltration benefit of each vegetation type. Test results show that certain vegetation, especially prairies, significantly increase the infiltration capacity of the underlying soil. For example, the hydraulic conductivity of prairie on sandy loam soil is approximately an order of magnitude higher than that of the soil itself. Finally, a physics-based hydrologic model is utilized to evaluate the flood reduction potential of native Texas prairie. This model represents Cypress Creek watershed in gridded cell format, and allows varying hydraulic and infiltration parameters at each cell. Design storms are run to obtain flow hydrographs for selected watch points in the study area. Two scenarios are simulated and compared: 1) infiltration capacity from soil only and 2) the augmented infiltration capacity of soil due to vegetation. Modeled results show a notable decrease in both total runoff volume and peak flows under the augmented infiltration scenario. This decrease demonstrates the benefit of native Texas prairie land in reducing flood risks.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.
2009-01-01
The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.
NASA Astrophysics Data System (ADS)
Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.
2009-05-01
The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.
Tai, Chao; Zhang, Kun-Feng; Zhou, Tian-Jian; Zhao, Tong-Qian; Wang, Qing-Qing; He, Xiao-Qi
2011-07-01
The distribution characteristics of polycyclic aromatic hydrocarbons in runoff from the middle line source area of south-to-north water diversion project were studied. Five groups of artificial runoff fields were established to collect runoff based on the different types of land-use, the contents of 16 USEPA priority PAHs in the runoff were determined using GC/MS method. The results showed that the average concentrations of PAHs of the aqueous phase in the collected runoff samples of different land-use types decreased in the order:cultivated land (26.53 ng x L(-1)) > oak forest (20.91 ng x L(-1)) > orchard (17.59 ng x L(-1)), and the average concentrations of PAHs of the particle phase were cultivated land (1 073.72 ng x g(-1)) > orchard (652.29 ng x g(-1)) > oak forest (385.46 ng x g(-1)). The high carcinogenic components Bap were detected in both run off of cultivated land and orchard with a detected rate of 30%. According to National Recommended Water Quality Standards of priority toxic pollutants (2006 USEPA), it was found that Chr exceed standard 40%, with a detected rate of 100%. It was also found that the runoff volume and the total PAHs content in runoff increase with the slope, and PAHs loss and slope were closely related in same land-use types. Based on the Molecular Markers Indicative Law, it can be concluded that the dominant source of PAHs in runoff of study area was combustion of coal, and a small amount came from vehicle exhaust emissions. There is a certain degree of ecological risk about runoff PAHs pollution in the study area, which is worth further attention.
A Fuzzy Control System for Reducing Urban Runoff by a Stormwater Storage Tank
NASA Astrophysics Data System (ADS)
Zhang, P.; Cai, Y.; Wang, J.
2017-12-01
Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. Most researches on SST were mainly the design, pollutants removal effect, and operation assessment. While there were few researches on the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormawter runoff. Firstly, the design of SST was investigated. A catchment area and return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff was analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.
NASA Astrophysics Data System (ADS)
Soundharajan, Bankaru-Swamy; Adeloye, Adebayo J.; Remesan, Renji
2016-07-01
This study employed a Monte-Carlo simulation approach to characterise the uncertainties in climate change induced variations in storage requirements and performance (reliability (time- and volume-based), resilience, vulnerability and sustainability) of surface water reservoirs. Using a calibrated rainfall-runoff (R-R) model, the baseline runoff scenario was first simulated. The R-R inputs (rainfall and temperature) were then perturbed using plausible delta-changes to produce simulated climate change runoff scenarios. Stochastic models of the runoff were developed and used to generate ensembles of both the current and climate-change-perturbed future runoff scenarios. The resulting runoff ensembles were used to force simulation models of the behaviour of the reservoir to produce 'populations' of required reservoir storage capacity to meet demands, and the performance. Comparing these parameters between the current and the perturbed provided the population of climate change effects which was then analysed to determine the variability in the impacts. The methodology was applied to the Pong reservoir on the Beas River in northern India. The reservoir serves irrigation and hydropower needs and the hydrology of the catchment is highly influenced by Himalayan seasonal snow and glaciers, and Monsoon rainfall, both of which are predicted to change due to climate change. The results show that required reservoir capacity is highly variable with a coefficient of variation (CV) as high as 0.3 as the future climate becomes drier. Of the performance indices, the vulnerability recorded the highest variability (CV up to 0.5) while the volume-based reliability was the least variable. Such variabilities or uncertainties will, no doubt, complicate the development of climate change adaptation measures; however, knowledge of their sheer magnitudes as obtained in this study will help in the formulation of appropriate policy and technical interventions for sustaining and possibly enhancing water security for irrigation and other uses served by Pong reservoir.
Monitoring and modeling of runoff from a natural and an urbanized part of a small stream catchment
NASA Astrophysics Data System (ADS)
Kalicz, P.; Kucsara, M.; Gribovszki, Z.; Erős, M.; Csáfordi, P.
2012-04-01
Runoff processes in natural catchments are significantly different compared to urbanized areas. Human impacts are manifested in high amount of paved surfaces like roofs, roads, parking plots and the compacted soils of quasi natural areas like public gardens and parks. Decay of permeability and storage capacity both induce higher amount of runoff. The common practice to treat the increased volume of runoff is to collect in pipes and drain to a stream as soon as possible. These interventions induce flash floods with smaller time of concentration and higher flood peaks as normal food waves therefore strongly load discharge capacity of stream channel. Streams in urban areas are strongly modified and regulated. Sometimes the stream channel are dredged out to increase the discharge capacity. In worst case some smaller brooks are crowded with lid to increase urbanized habitat. Many climate change scenarios predict higher probability of heavy storm events, therefore increasing volume of runoff induces higher demands of strongly modified and enormous concrete channels. This study presents one year monitoring of a small stream comparing runoff from natural, rural and urban sections. In this paper we also introduce the process of a model setup and an evaluation to investigate the weak points of a stream section in urbanized areas. The pilot area of this research is the Rák Brook which is the second largest stream of city Sopron (western Hungary). The natural headwater catchment is long-term research area of Hidegvíz Valley Project, therefore we had a good basis to extend the research catchment monitoring in the direction of urbanized lower part of the stream. Seven monitoring points are established along the longitudinal section of the stream. In each point the water stage is recorded continuously beside several other water quality parameters. These data sets help the later validation of the hydrodynamic model.
USDA-ARS?s Scientific Manuscript database
The effect of vegetative buffer strip (VBS) width, vegetation, and season of the year on herbicide transport in runoff has not been well documented for runoff prone soils. A multi-year replicated plot-scale study was conducted on an eroded claypan soil with the following objectives: 1) assess the ef...
Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua
2013-01-01
Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model–the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10−2 m3/m2/h in the bare slope scenario, while the observed values were 1.54×10−2 m3/m2/h and 0.12×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10−2 m3/m2/h in the bare slope scenario, while the observed volumes were 3.46×10−2 m3/m2/h and 4.91×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources. PMID:24244427
Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium
NASA Astrophysics Data System (ADS)
Daly, E.; Grimaldi, S.; Bui, H.
2014-12-01
Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff front and enhanced infiltration when compared to the implemented formulation of TDA. In the ODA, depending on the description of the transition layer, the maximum distances travelled by the runoff front and the maximum depth of infiltration varied over a range of ±15% and ±50% when compared to their respective averaged values.
Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises
NASA Astrophysics Data System (ADS)
Winter, F.; Disse, M.
2012-04-01
Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.
Dairy diet phosphorus and rainfall timing effects on runoff phosphorus from land-applied manure.
Hanrahan, Laura P; Jokela, William E; Knapp, Joanne R
2009-01-01
Surface-applied dairy manure can increase P concentrations in runoff, which may contribute to eutrophication of lakes and streams. The amount of dietary P fed to dairy cows (Bos taurus) and the timing of a rain event after manure application may further affect runoff P losses. The objective of this study was to examine dietary P supplementation effects on manure and runoff P concentrations from rain events occurring at different time intervals after manure application. Manure from dairy cows fed an unsupplemented low P diet (LP; 3.6 g P kg(-1)) or a diet supplemented with either an inorganic (HIP; 4.4 g P kg(-1)) or an organic (HOP; 4.6 g P kg(-1)) source was hand-applied onto soil-packed pans at 56 wet Mg ha(-1). Thirty min of runoff was collected from simulated rain events (30 mm h(-1)) 2, 5, or 9 d after manure application. Total P (TP) concentrations in runoff from HIP and HOP diet manure from the 2-d rain were 46 and 31% greater than that of the LP diet. Runoff P concentrations from high P diets were numerically higher than that of the LP diet at 5 and 9 d after application, but differences were significant only for dissolved reactive P (DRP) at 5 d. Large decreases in runoff TP (89%) and DRP (65%) concentrations occurred with delay of rainfall from 2 d until 5 d. The proportion of TP as DRP increased as the time between manure application and runoff increased. Results showed that reducing dietary P and extending the time between manure application and a rain event can significantly reduce concentrations of TP and DRP in runoff.
Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.
Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H
2010-01-01
Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.
Dispersion and Transport of Cryptosporidium Oocysts from Fecal Pats under Simulated Rainfall Events
Davies, Cheryl M.; Ferguson, Christobel M.; Kaucner, Christine; Krogh, Martin; Altavilla, Nanda; Deere, Daniel A.; Ashbolt, Nicholas J.
2004-01-01
The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds. PMID:14766600
Measuring watershed runoff capability with ERTS data. [Washita River Basin, Oklahoma
NASA Technical Reports Server (NTRS)
Blanchard, B. J.
1974-01-01
Parameters of most equations used to predict runoff from an ungaged area are based on characteristics of the watershed and subject to the biases of a hydrologist. Digital multispectral scanner, MSS, data from ERTS was reduced with the aid of computer programs and a Dicomed display. Multivariate analyses of the MSS data indicate that discrimination between watersheds with different runoff capabilities is possible using ERTS data. Differences between two visible bands of MSS data can be used to more accurately evaluate the parameters than present subjective methods, thus reducing construction cost due to overdesign of flood detention structures.
Gray, John R.; Peters, Charles A.; ,
1985-01-01
Runoff, sediment transport, and precipitation were measured in three gaged basins composing two-thirds of the 20-acre site, and in a 3. 5-acre basin located 0. 3 mile south of the site. Locations and dimensions of surface collapses at the site were recorded by the site contractor. Volumes of collapsed material were calculated and converted to an equivalent weight of earth material by applying a mean value for the bulk density of soils at the site.
NASA Astrophysics Data System (ADS)
Ranzi, R.; Bacchi, B.; Grossi, G.
2003-01-01
Streamflow data and water levels in reservoirs have been collected at 30 recording sites in the Toce river basin and its surroundings, upstream of Lago Maggiore, one of the target areas of the Mesoscale Alpine Programme (MAP) experiment. These data have been used for two purposes: firstly, the verification of a hydrological model, forced by rain-gauge data and the output of a mesoscale meteorological model, for flood simulation and forecasting; secondly, to solve an inverse problem--to estimate rainfall volumes from the runoff data in mountain areas where the influence of orography and the limits of actual monitoring systems prevent accurate measurement of precipitation. The methods are illustrated for 19-20 September 1999, MAP Intensive Observing Period 2b, an event with a 4-year return period for the Toce river basin. Uncertainties in the estimates of the areal rainfall volumes based on rain-gauge data and via the inverse solution are assessed.
USDA-ARS?s Scientific Manuscript database
Soil erosion and sediment loss with runoff are closely linked to global carbon and nitrogen cycles. Reducing tillage has been shown to reduce erosion and runoff sediment-bound carbon (C) and nitrogen (N) losses. However, published studies represent only a few soil types and regions and rarely direct...
NASA Astrophysics Data System (ADS)
Joanne, Joanne; Ciesiolka, Cyril
2010-05-01
The Barron and Johnstone Rivers rise in the basaltic Atherton Tableland, North Queensland, Australia, and flow into the Coral Sea and Great Barrier Reef World Heritage Area (GBRWHA). Natural rainforest in this region was cleared for settlement in the early 20th century. Rapid decline in soil fertility during the 1940's and 50's forced landholders to turn to pasture based industries from row crop agriculture. Since then, these pasture based industries have intensified. The intensified land use has been linked to increases in sediment and nutrient levels in terrestrial runoff and identified as a major environmental threat to the GBRWHA, which has raised alarm for the tourist industry and resource managers. Studies linking land-use to pollutant discharge are often based on measurements and modelling of end of catchment measurements of water quality. Whilst such measurements can be a reasonable indicator of the effects of land use on pollutant discharge to waterways, they are often a gross assessment. This project used rainfall simulations to investigate the relationship between land use and management with sources and sinks of runoff and soil erosion within the Barron and Johnstone Rivers catchments. Rainfall simulations were conducted and pollutant loads measured in natural rainforest, as well as dairy and beef farming systems. The dairy farming systems included an effluent fed pasture, a high mineral fertilizer and supplementary irrigation farm, and a rainfed organic pasture that relied on tropical legumes and introduced grasses and returned organic material to the soil. One of the beef farming systems used a 7-10 day rotation with a low fertilizer regime (kikuyu mostly), while the other, used a long period- two paddock-rotation with no fertiliser and paspalum pastures. The rainforests were generally small isolated enclaves with a well developed shrub layer (1-3 m), and a presence of scattered, deciduous trees. Simulations were carried out on sites which were observed to be part of a drainage network and which were typical of the surrounding hillslopes. A 13 m long by 2 m wide portable rainfall simulator was used to produce rainfall associated with high intensity events. The simulator consisted of six A-frame modules with spray nozzles (equipped with pressure gauges) that operated in an oscillating movement. Rainfall from the simulator was measured using seven dynamically calibrated pluviometers (~0.1mm/tip) and 26 rain gauges (100mm diameter, muslin covered). Runoff volume was recorded using a tipping bucket mechanism. Samples were collected at three minute intervals and used to calculate soil loss using standard methods. At sites where there was a high rate of infiltration a catena effect on runoff could be discerned. Highest runoff volumes tended to be generated on the midslope, rectilinear segments of the hillslope. However some of the sites exhibited effects from indurated laterite layers, exfiltration areas, and small areas of unweathered basalt veneered by a surface ferrasol. All sites had high levels of vegetative cover but large differences in biomass. While runoff and soil erosion were not significantly correlated with vegetative cover, a useful relationship was found when cover was multiplied by biomass. The rate of soil loss from intensive dairying was less than from the intensive beef grazing sites and cattle tracks. However, because deposition from these point sources occurred it became difficult to verify whether contributions from overland flow to the stream were significant. Observations of farm dam overflows near to the simulation sites confirmed the significant subsurface flows that diluted sediment concentrations in the local waterways. Overall, the results indicated that to reduce sediment loss farms must be designed and managed according to landscape features. In order to better understand runoff and sediment delivery it would be necessary to measure volumes and rates through a 'nested' catchment approach so that stream channel contributions could be quantified.
ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps
Zhan, X.; Huang, M.-L.
2004-01-01
The development and the application of ArcCN-Runoff tool, an extension of ESRI@ ArcGIS software, are reported. This tool can be applied to determine curve numbers and to calculate runoff or infiltration for a rainfall event in a watershed. Implementation of GIS techniques such as dissolving, intersecting, and a curve-number reference table improve efficiency. Technical processing time may be reduced from days, if not weeks, to hours for producing spatially varied curve number and runoff maps. An application example for a watershed in Lyon County and Osage County, Kansas, USA, is presented. ?? 2004 Elsevier Ltd. All rights reserved.
Nutrient Runoff Losses from Liquid Dairy Manure Applied with Low-Disturbance Methods.
Jokela, William; Sherman, Jessica; Cavadini, Jason
2016-09-01
Manure applied to cropland is a source of phosphorus (P) and nitrogen (N) in surface runoff and can contribute to impairment of surface waters. Tillage immediately after application incorporates manure into the soil, which may reduce nutrient loss in runoff as well as N loss via NH volatilization. However, tillage also incorporates crop residue, which reduces surface cover and may increase erosion potential. We applied liquid dairy manure in a silage corn ( L.)-cereal rye ( L.) cover crop system in late October using methods designed to incorporate manure with minimal soil and residue disturbance. These include strip-till injection and tine aerator-band manure application, which were compared with standard broadcast application, either incorporated with a disk or left on the surface. Runoff was generated with a portable rainfall simulator (42 mm h for 30 min) three separate times: (i) 2 to 5 d after the October manure application, (ii) in early spring, and (iii) after tillage and planting. In the postmanure application runoff, the highest losses of total P and dissolved reactive P were from surface-applied manure. Dissolved P loss was reduced 98% by strip-till injection; this result was not statistically different from the no-manure control. Reductions from the aerator band method and disk incorporation were 53 and 80%, respectively. Total P losses followed a similar pattern, with 87% reduction from injected manure. Runoff losses of N had generally similar patterns to those of P. Losses of P and N were, in most cases, lower in the spring rain simulations with fewer significant treatment effects. Overall, results show that low-disturbance manure application methods can significantly reduce nutrient runoff losses compared with surface application while maintaining residue cover better than incorporation by tillage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Response of Colorado river runoff to dust radiative forcing in snow
Painter, T.H.; Deems, J.S.; Belnap, J.; Hamlet, A.F.; Landry, C.C.; Udall, B.
2010-01-01
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Hereweuse the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ???5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.
[Characteristics of rainfall and runoff in urban drainage based on the SWMM model.
Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke
2016-11-18
The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.
Experimental study on soluble chemical transfer to surface runoff from soil.
Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei
2016-10-01
Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Temperature
water temperature changes associated with urbanization, heated surface runoff associated with urbanization, how temperature changes associated with urbanization can affect stream biota, interactive effects of urbanizaiton and climate change.
NASA Astrophysics Data System (ADS)
Alizadehtazi, B.; Montalto, F. A.
2013-12-01
Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.
Adriaanse, Paulien I; Van Leerdam, Robert C; Boesten, Jos J T I
2017-04-15
Within the European Union the exposure of aquatic organisms to pesticides is assessed by simulations with the so-called FOCUS Surface Water Scenarios. Runoff plays an important role in these scenarios. As little is known about the effect of runoff size on the exposure, we investigated the effect of runoff size on the concentration in the runoff water and in streams simulated with the PRZM and TOXSWA models for two FOCUS runoff scenarios. For weakly sorbing pesticides (K F,oc <100Lkg -1 ) the pesticide concentration in the runoff water decreased exponentially with increasing daily runoff size. The runoff size hardly affected the pesticide concentration in the runoff water of strongly sorbing pesticides (K F,oc ≥1000Lkg -1 ). For weakly sorbing pesticides the concentration in the FOCUS stream reached a maximum at runoff sizes of about 0.3 to 1mm. The concentration increased rapidly when the runoff size increased from 0 to 0.1mm and gradually decreased when runoff exceeded 1mm. For strongly sorbing pesticides the occurrence of the maximum concentration in the stream is clearly less pronounced and lies approximately between 1 and 20mm runoff. So, this work indicates that preventing small runoff events (e.g. by vegetated buffer strips) reduces exposure concentrations strongly for weakly sorbing pesticides. A simple metamodel was developed for the ratio between the concentrations in the stream and in the runoff water. This model predicted the ratios simulated by TOXSWA very well and it demonstrated that (in addition to runoff size and concentration in runoff) the size of the pesticide-free base flow and pesticide treatment ratio of the catchment determine the stream concentration to a large extent. Copyright © 2016 Elsevier B.V. All rights reserved.
Adekalu, K O; Olorunfemi, I A; Osunbitan, J A
2007-03-01
Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.
Liu, Yaoze; Engel, Bernard A; Collingsworth, Paris D; Pijanowski, Bryan C
2017-12-01
Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. The nutrient loading from urban areas needs to be reduced with the installation of green infrastructure (GI) practices. The Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model was used to explore the influences of land use (LU) and climate change on water quantity and quality in Spy Run Creek watershed (SRCW) (part of Maumee River watershed), decide whether and where excess phosphorus loading existed, identify critical areas to understand where the greatest amount of runoff/pollutants originated, and optimally implement GI practices to obtain maximum environmental benefits with the lowest costs. Both LU/climate changes increased runoff/pollutants generated from the watershed. Areas with the highest runoff/pollutant amount per area, or critical areas, differed for various environmental concerns, land uses (LUs), and climates. Compared to optimization considering all areas, optimization conducted only in critical areas can provide similar cost-effective results with decreased computational time for low levels of runoff/pollutant reductions, but critical area optimization results were not as cost-effective for higher levels of runoff/pollutant reductions. Runoff/pollutants for 2011/2050 LUs/climates could be reduced to amounts of 2001 LU/climate by installation of GI practices with annual expenditures of $0.34 to $2.05 million. The optimization scenarios that were able to obtain the 2001 runoff level in 2011/2050, can also reduce all pollutants to 2001 levels in this watershed. Copyright © 2017 Elsevier B.V. All rights reserved.
Inter-event variability in urban stormwater runoff response associated with hydrologic connectivity
NASA Astrophysics Data System (ADS)
Hondula, K. L.
2015-12-01
Urbanization alters the magnitude and composition of hydrologic and biogeochemical fluxes from watersheds, with subsequent deleterious consequences for receiving waters. Projected changes in storm characteristics such as rainfall intensity and event size are predicted to amplify these impacts and render current regulations inadequate for protecting surface water quality. As stormwater management practices (BMPs) are increasingly being relied upon to reduce excess nutrient pollution in runoff from residential development, empirical investigation of their performance across a range of conditions is warranted. Despite substantial investment in urban and suburban BMPs, significant knowledge gaps exist in understanding how landscape structure and precipitation event characteristics influence the amount of stormwater runoff and associated nutrient loads from these complex catchments. Increasing infiltration of stormwater before it enters the sewer network (source control) is hypothesized to better mimic natural hydrologic and biogeochemical fluxes compared to more centralized BMPs at sewer outlets such as wet and dry ponds. Rainfall and runoff quality and quantity were monitored in four small (1-5 ha) residential catchments in Maryland to test the efficacy of infiltration-based stormwater management practices in comparison to end-of-pipe BMPs. Results indicated that reduced hydrologic connectivity associated with infiltration-based practices affected the relationship between the magnitude of rainfall events and water yield , but only for small precipitation events: compared to end-of-pipe BMPs, source control was associated with both lower runoff ratios and lower nutrient export per area for a given rainfall event size. We found variability in stormwater runoff responses (water yield, quality, and nutrient loads) was associated with precipitation event size, antecedent rainfall, and hydrologic connectivity as quantified by a modified directional connectivity index. Accounting for the interactive effects of landscape structure and precipitation event characteristics can reduce the uncertainty surrounding stormwater runoff responses in complex urban watersheds.
Transport of plutonium in snowmelt run-off
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purtymun, W.D.; Peters, R.; Maes, M.N.
1990-07-01
Plutonium in treated low-level radioactive effluents released into intermittent streams is bound by ion exchange or adsorption to bed sediments in the stream channel. These sediments are subject to transport with summer and spring snowmelt run-off. A study was made of the transport of plutonium during seven spring run-off events in Los Alamos and Pueblo canyons from the Laboratory boundary to Otowi on the Rio Grande. The melting of the snowpack during these years resulted in run-off that was large enough to reach the eastern edge of the Laboratory. Of these seven run-off events recorded at the Laboratory boundary, onlymore » five had sufficient flow to reach the Rio Grande. The volume of the five events that reached the river ranged from 5 {times} 10{sup 3} m{sup 3} to 104 {times} 10{sup 3} m{sup 3}. The five run-off events carried 119 {times} 10{sup 3} kg of suspended sediments and 1073 {times} 10{sup 3} kg of bed sediments, and transported 598 {mu}Ci of plutonium to the river. Of the 598 {mu}Ci of plutonium, 3% was transported in solution, 57% with suspended sediments, and 40% with bed sediments. 13 refs., 3 figs., 6 tabs.« less
Asquith, W.H.; Mosier, J. G.; Bush, P.W.
1997-01-01
The watershed simulation model Hydrologic Simulation Program—Fortran (HSPF) was used to generate simulated flow (runoff) from the 13 watersheds to the six bay systems because adequate gaged streamflow data from which to estimate freshwater inflows are not available; only about 23 percent of the adjacent contributing watershed area is gaged. The model was calibrated for the gaged parts of three watersheds—that is, selected input parameters (meteorologic and hydrologic properties and conditions) that control runoff were adjusted in a series of simulations until an adequate match between model-generated flows and a set (time series) of gaged flows was achieved. The primary model input is rainfall and evaporation data and the model output is a time series of runoff volumes. After calibration, simulations driven by daily rainfall for a 26-year period (1968–93) were done for the 13 watersheds to obtain runoff under current (1983–93), predevelopment (pre-1940 streamflow and pre-urbanization), and future (2010) land-use conditions for estimating freshwater inflows and for comparing runoff under the three land-use conditions; and to obtain time series of runoff from which to estimate time series of freshwater inflows for trend analysis.
Forecasting land use change and its environmental impact at a watershed scale.
Tang, Z; Engel, B A; Pijanowski, B C; Lim, K J
2005-07-01
Urban expansion is a major driving force altering local and regional hydrology and increasing non-point source (NPS) pollution. To explore these environmental consequences of urbanization, land use change was forecast, and long-term runoff and NPS pollution were assessed in the Muskegon River watershed, located on the eastern coast of Lake Michigan. A land use change model, LTM, and a web-based environmental impact model, L-THIA, were used in this study. The outcomes indicated the watershed would likely be subjected to impacts from urbanization on runoff and some types of NPS pollution. Urbanization will slightly or considerably increase runoff volume, depending on the development rate, slightly increase nutrient losses in runoff, but significantly increase losses of oil and grease and certain heavy metals in runoff. The spatial variation of urbanization and its impact were also evaluated at the subwatershed scale and showed subwatersheds along the coast of the lake and close to cities would have runoff and nitrogen impact. The results of this study have significant implications for urban planning and decision making in an effort to protect and remediate water and habitat quality of Muskegon Lake, which is one of Lake Michigan's Areas of Concern (AOC), and the techniques described here can be used in other areas.
Review of environmental effects and treatment of runoff from storage and handling of wood.
Hedmark, Asa; Scholz, Miklas
2008-09-01
This review paper summarises the environmental effects of runoff from wood handling sites including log yards. The characteristics of site runoff and the corresponding effects on the receiving watercourses are presented for worldwide case studies, highlighting the urgent need to address the water pollution problem associated with the wood industry. The methods used to reduce the negative environmental impact of the runoff, such as constructed wetlands, soil infiltration and chemical oxidation, are evaluated. The principal environmental problem of runoff is usually the high concentration of organic substances originating from the wood and bark, some of which are toxic to aquatic life. Phosphorus is also a problem according to some studies. The toxicity of the runoff varies greatly, and depends on the species of tree stored, the amount of water the wood has been in contact with and the degree of runoff treatment.
Li, Huai; Wu, Wei; Tian, Yong-jing; Huang, Tian-yin
2016-02-15
The particle size distribution (PSD) and its transformation processes in the stormwater runoffs in the ancient town of Suzhou were studied based on the particles size analyses, the water-quality monitoring data and the parameters of the rainfall-runoff models. The commercial districts, the modern residential area, the old residential area, the traffic area and the landscape tourist area were selected as the five functional example areas in the ancient town of Suzhou. The effects of antecedent dry period, the rainfall intensity and the amount of runoffs on the particle size distributions were studied, and the existing forms of the main pollutants in different functional areas and their possible relations were analyzed as well. The results showed that the particle size distribution, the migration processes and the output characteristics in the stormwater runoffs were greatly different in these five functional areas, which indicated different control measures for the pollution of the runoffs should be taken in the design process. The antecedent dry period, the rainfall intensity and the amount of runoffs showed significant correlations with the particle size distribution, showing these were the important factors. The output of the particles was greatly influenced by the flow scouring in the early period of the rainfall, and the correlations between the amount of runoffs and the particle migration ability presented significant difference in 30% (early period) and 70% (later period) of the runoff volume. The major existence form of the output pollutants was particle, and the correlation analyses of different diameter particles showed that the particles smaller than 150 microm were the dominant carrier of the pollutants via adsorption and accumulation processes.
Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.
Zhang, Xuyang; Goh, Kean S
2015-11-01
Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Characterization and first flush analysis in road and roof runoff in Shenyang, China.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Gong, Jiping; Sun, Fengyun; Xu, Yanyan
2014-01-01
As urbanization increases, urban runoff is an increasingly important component of total urban non-point source pollution. In this study, the properties of urban runoff were examined in Shenyang, in northeastern China. Runoff samples from a tiled roof, a concrete roof and a main road were analyzed for key pollutants (total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), Pb, Cd, Cr, Cu, Ni, and Zn). The event mean concentration, site mean concentration, M(V) curves (dimensionless cumulative curve of pollutant load with runoff volume), and mass first flush ratio (MFF30) were used to analyze the characteristics of pollutant discharge and first flush (FF) effect. For all events, the pollutant concentration peaks occurred in the first half-hour after the runoff appeared and preceded the flow peaks. TN is the main pollutant in roof runoff. TSS, TN, TP, Pb, and Cr are the main pollutants in road runoff in Shenyang. There was a significant correlation between TSS and other pollutants except TN in runoff, which illustrated that TSS was an important carrier of organic matter and heavy metals. TN had strong positive correlations with total rainfall (Pearson's r = 0.927), average rainfall (Pearson's r = 0.995), and maximum rainfall intensity (Pearson's r = 0.991). TP had a strong correlation with rainfall intensity (Pearson's r = 0.940). A significant positive correlation between COD and rainfall duration (Pearson's r = 0.902, significance level = 0.05) was found. The order of FF intensity in different surfaces was concrete roof > tile roof > road. Rainfall duration and the length of the antecedent dry period were positively correlated with the FF. TN tended to exhibit strong flush for some events. Heavy metals showed a substantially stronger FF than other pollutant.
Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.
Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T
2017-05-15
Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
Wang, Qian; Zhang, Qionghua; Dzakpasu, Mawuli; Lian, Bin; Wu, Yaketon; Wang, Xiaochang C
2018-03-01
Stormwater particles washed from road-deposited sediments (RDS) are traditionally characterized as either turbidity or total suspended solids (TSS). Although these parameters are influenced by particle sizes, neither of them characterizes the particle size distribution (PSD), which is of great importance in pollutant entrainment and treatment performance. Therefore, the ratio of turbidity to TSS (Tur/TSS) is proposed and validated as a potential surrogate for the bulk PSD and quality of stormwater runoff. The results show an increasing trend of Tur/TSS with finer sizes of both RDS and stormwater runoff. Taking heavy metals (HMs, including Cu, Pb, Zn, Cr, and Ni) as typical pollutants in stormwater runoff, the concentrations (mg/kg) were found to vary significantly during rainfall events and tended to increase significantly with Tur/TSS. Therefore, Tur/TSS is a valid parameter to characterize the PSD and quality of stormwater. The high negative correlations between Tur/TSS and rainfall intensity demonstrate that stormwater with higher Tur/TSS generates under low intensity and, thus, characterizes small volume, finer sizes, weak settleability, greater mobility, and bioavailability. Conversely, stormwater with lower Tur/TSS generates under high intensity and, thus, characterizes large volume, coarser sizes, good settleability, low mobility, and bioavailability. These results highlight the need to control stormwater with high Tur/TSS. Moreover, Tur/TSS can aid the selection of stormwater control measures with appropriate detention storage, pollution loading, and removal effectiveness of particles.
Effectiveness of distinct mulch application rates and schemes under laboratory conditions
NASA Astrophysics Data System (ADS)
Prats, Sergio; Abrantes, Joao; Crema, Isabela; Keizer, Jacob; de Lima, Joao
2017-04-01
Post-fire forest residue mulching using eucalypt bark strands have been proven effective for reducing hillslope runoff and erosion in field plots of different sizes. Application rates of around 8-10 Mg ha-1 achieved about 80% of protective soil surface. Lower application rates, however, would reduce costs and, possibly, also allow faster application, which could be especially critical in late summer high-severity fires. Such lower rates could be achieved by applying less mulch per unit area, by applying mulch in specific zones (strips) and by removing the finest fractions, especially since these can be expected to contribute little to reduce erosion risk. The objective of this laboratory study was to identify the threshold, or the minimum application rate, at which a new mulch blend (without the fraction ≤4 cm) would effectively control runoff and erosion. Two levels of ground cover by forest residue mulch (50 and 70%) and three mulch strips (of 1/3, 2/3 and 3/3) at the bottom of the flume were tested against the untreated bare soil, by applying simulated rainfall and simulated inflow. The seven treatments were replicated three times using a 2.7 m x 0.3 m soil flume with a 40% slope, filled with a dry loamy sand soil. Each experiment included: (i) a "Dry" soil run comprising 20 min of simulated rainfall at a rate of 56 mm h-1; (ii) a "Wet" soil run with the same rainfall characteristics; (iii) a "Flow" run combining 20 min of rainfall with three inflows at increasing rates (52, 110, 232 mm h-1) on nearly saturated soil. The results showed that runoff, interrill and rill erosion were strongly reduced by covering 3/3 and 2/3 of the flume with mulch at 70% ground cover (overall mulch application rates of 2.6 and 1.3 Mg ha-1). The 1/3 mulch strip at 70% mulch cover (application rate of 1 Mg ha-1) also reduced significantly erosion but not runoff. The mulch strips at 50% were less effective, and only the application over the whole plot was able to reduce interrill and rill erosion. Apparently, runoff depended most on mulch cover, while soil losses depended most on strip width. Even so, the new mulch was poorly effective in reducing runoff but effective in reducing interrill erosion and even highly effective in reducing rill erosion.
Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.
Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E
2017-09-05
Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.
Runoff quality from no-till cotton fertilized with broiler litter in subsurface bands.
Adeli, A; Tewolde, H; Shankle, M W; Way, T R; Brooks, J P; McLaughlin, M R
2013-01-01
Surface broadcast of broiler litter to no-till row crops exposes the litter and its nutrients to risks of loss in runoff water and volatilization and may limit the potential benefit of litter to the crops. Subsurface banding of litter could alleviate these risks. A field study was conducted in 2008 and 2009 on an upland Falkner silt loam soil to determine the effect of broiler litter placement on runoff nutrient losses from no-till cotton ( L.). Treatments included surface broadcast broiler litter applied manually, subsurface-banded litter applied by tractor-drawn equipment, and no broiler litter, all in combination with or without winter wheat ( L.) cover crop residue. Broiler litter rate was 5.6 Mg ha. The experimental design was a randomized complete block with a split-plot arrangement of treatments replicated three times. In 2008, simulated rainfall was used to generate runoff 27 d after litter application. Subsurface-banded litter reduced runoff total C, N, P, NH, NO, Cu, Zn and water-soluble P (WP) concentrations by 72, 64, 51, 49, 70, 36, 65, and 77%, respectively, compared with surface broadcast. The reductions were greater in 2009 where runoff occurred 1 d after litter application. Bacterial runoff was decreased by one log with subsurface-banded litter compared to surface broadcast. Except for C, NH, N, and WP, the presence of winter cover crop residue did not affect the load or runoff nutrient concentrations in either year. The results indicate that subsurface banding litter to no-till cotton substantially reduces nutrient and bacterial losses in runoff compared with surface broadcasting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Pryahina, G.; Zelepukina, E.; Guzel, N.
2012-04-01
Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of the basin is formed by underground waters and melting snowfields, during the absence of rainfall period the part of one amounted to 10% of the run-off in the lower profile. We suggest that this water discharge corresponds to base flow value in the lower profile because the area of snowfields of the basin was < 0.1 km2 that year. Run-off monitoring has showed that rivers with a small glacial food are characterized by absence of diurnal balance of runoff. During rainfall the water content of river has being increased due to substantial derivation of basin and, as a result, fast flowing rain water into bed of river. The sharp decrease in water content of river during periods of rainfall absence indicates low inventory of soil and groundwater and the low rate of glacial. Thus, glaciers and character of the relief influence the formation of run-off small mountain rivers. Results of researches will be used for mathematical modeling mountain rivers run-off.
Event-based stormwater management pond runoff temperature model
NASA Astrophysics Data System (ADS)
Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.
2016-09-01
Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.
Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire
NASA Astrophysics Data System (ADS)
Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.
2016-12-01
Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.
NASA Astrophysics Data System (ADS)
Lal, Mohan; Mishra, S. K.; Pandey, Ashish; Pandey, R. P.; Meena, P. K.; Chaudhary, Anubhav; Jha, Ranjit Kumar; Shreevastava, Ajit Kumar; Kumar, Yogendra
2017-01-01
The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (P) and runoff (Q) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall-runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient (λ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall-runoff dataset and 0.108 and 0 for the ordered rainfall-runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.
Hernández-Guzmán, Rafael; Ruiz-Luna, Arturo; Berlanga-Robles, César Alejandro
2008-10-01
Results on runoff estimates as a response to land-use and land-cover changes are presented. We used remote sensing and GIS techniques with rainfall time-series data, spatial ancillary information, and the curve-number method (NRCS-CN) to assess the runoff response in the San Pedro subbasin. Thematic maps with eight land-cover classes derived from satellite imagery classification (1973, 1990, and 2000) and hydrologic soil-group maps were used as the input for the runoff calculation. About 20% to 25% of the subbasin landscape has changed since 1973, mainly as consequence of the growth of agriculture. Forest is the main cover, although further analyses indicate that forest is degrading from good to poor conditions when evaluated as a function of the spectral response. Soils with low infiltration rates, classified as the hydrological soil-group "C", were dominant in the area (52%). The overlaying of all the hydrological soil groups with the land-use map produced a total of 43 hydro-group and land-use categories for which runoff was calculated using the curve-number method. Estimates of total runoff volumes (26 x 10(6) m3) were similar for the three dates analyzed in spite of landscape changes, but there were temporal variations among the hydro-group and land-use categories as a consequence. Changes are causing the rise of covers with high runoff potential and the increase of runoff depth is expected, but it can be reversed by different management of subbasin hydro-groups and land-use units.
An index-flood model for deficit volumes assessment
NASA Astrophysics Data System (ADS)
Strnad, Filip; Moravec, Vojtěch; Hanel, Martin
2017-04-01
The estimation of return periods of hydrological extreme events and the evaluation of risks related to such events are objectives of many water resources studies. The aim of this study is to develop statistical model for drought indices using extreme value theory and index-flood method and to use this model for estimation of return levels of maximum deficit volumes of total runoff and baseflow. Deficit volumes for hundred and thirty-three catchments in the Czech Republic for the period 1901-2015 simulated by a hydrological model Bilan are considered. The characteristics of simulated deficit periods (severity, intensity and length) correspond well to those based on observed data. It is assumed that annual maximum deficit volumes in each catchment follow the generalized extreme value (GEV) distribution. The catchments are divided into three homogeneous regions considering long term mean runoff, potential evapotranspiration and base flow. In line with the index-flood method it is further assumed that the deficit volumes within each homogeneous region are identically distributed after scaling with a site-specific factor. The goodness-of-fit of the statistical model is assessed by Anderson-Darling statistics. For the estimation of critical values of the test several resampling strategies allowing for appropriate handling of years without drought are presented. Finally the significance of the trends in the deficit volumes is assessed by a likelihood ratio test.
NASA Astrophysics Data System (ADS)
Pastorek, Jaroslav; Fencl, Martin; Stránský, David; Rieckermann, Jörg; Bareš, Vojtěch
2017-04-01
Reliable and representative rainfall data are crucial for urban runoff modelling. However, traditional precipitation measurement devices often fail to provide sufficient information about the spatial variability of rainfall, especially when heavy storm events (determining design of urban stormwater systems) are considered. Commercial microwave links (CMLs), typically very dense in urban areas, allow for indirect precipitation detection with desired spatial and temporal resolution. Fencl et al. (2016) recognised the high bias in quantitative precipitation estimates (QPEs) from CMLs which significantly limits their usability and, in order to reduce the bias, suggested a novel method for adjusting the QPEs to existing rain gauge networks. Studies evaluating the potential of CMLs for rainfall detection so far focused primarily on direct comparison of the QPEs from CMLs to ground observations. In contrast, this investigation evaluates the suitability of these innovative rainfall data for stormwater runoff modelling on a case study of a small ungauged (in long-term perspective) urban catchment in Prague-Letňany, Czech Republic (Fencl et al., 2016). We compare the runoff measured at the outlet from the catchment with the outputs of a rainfall-runoff model operated using (i) CML data adjusted by distant rain gauges, (ii) rainfall data from the distant gauges alone and (iii) data from a single temporary rain gauge located directly in the catchment, as it is common practice in drainage engineering. Uncertainties of the simulated runoff are analysed using the Bayesian method for uncertainty evaluation incorporating a statistical bias description as formulated by Del Giudice et al. (2013). Our results show that adjusted CML data are able to yield reliable runoff modelling results, primarily for rainfall events with convective character. Performance statistics, most significantly the timing of maximal discharge, reach better (less uncertain) values with the adjusted CML data than with the distant rain gauges. When the relative error of the volume discharged during the maximum flow period is concerned, the adjusted CMLs perform even better than the rain gauge in the catchment. This seem to be very promising, especially for urban catchments with sparse rain gauge networks. References: Del Giudice, D., Honti, M., Scheidegger, A., Albert, C., Reichert, P., and Rieckermann, J. 2013. Improving uncertainty estimation in urban hydrological modeling by statistically describing bias. Hydrology and Earth System Sciences 17, 4209-4225. Fencl, M., Dohnal, M., Rieckermann, J., and Bareš, V. 2016. Gauge-Adjusted Rainfall Estimates from Commercial Microwave Links, Hydrology and Earth System Sciences Discussions, doi:10.5194/hess-2016- 397, in review. Acknowledgements to the Czech Science Foundation projects No. 14-22978S and No. 17-16389S.
Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran
2011-07-01
Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.
Maniquiz-Redillas, Marla C; Kim, Lee-Hyung
2016-01-01
In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.
NASA Astrophysics Data System (ADS)
Hakimdavar, Raha; Culligan, Patricia J.; Guido, Aida
2014-05-01
Green roofs have the potential, if implemented on a wide scale and with proper foresight, to become an important supplement to traditional urban water management infrastructure, while also helping to change the face of cities from concrete draped, highly modified environments, to hybrid places where nature is more closely integrated into designs rather than pushed out of them. The ability of these systems to act as a decentralized rainwater handling network has been the topic of many recent studies. While these studies have attempted to quantify the hydrologic performance of green roofs, it's clear that they are dynamic systems whose responses are difficult to generalize. What also seems to be lacking from many studies is a discussion on the effects of green roof scale, spatial planning and configuration. This research aims to understand how rainfall characteristics and green roof scale impact its hydrologic performance. Three extensive green roof systems in New York City, with the same engineered components, age and regional climatic conditions, but different drainage areas, are analyzed. We find that rainfall volume and event duration are two of the parameters that most affect green roof performance, while rainfall intensity and antecedent dry weather period are less significant. We also find that green roof scale does in fact affect hydrologic performance, but mainly in reducing runoff peaks, with rainfall retention and lag time being much less affected by drainage area. We also introduce a low-cost monitoring method, termed the Soil Water Apportioning (SWA) method, which uses a water balance approach to analytically link precipitation to substrate moisture, and enable inference of green runoff and evapotranspiration from information on substrate moisture changes over time. Twelve months of in situ rainfall and soil moisture observations from three different green roof systems - extensive vegetated mat, semi-intensive vegetated mat, and semi-intensive tray - are used to test the reliability of the proposed approach using two different low-cost soil moisture probes. The estimates of runoff are compared with observed runoff data for durations ranging between 6 months to 1 year. Preliminary results indicate that this can be an effective low-cost and low-maintenance alternative to the custom made weir and lysimeter systems frequently used to quantify runoff during green roof studies. By significantly reducing the cost and labor associated with typical monitoring efforts, the SWA method makes large scale studies of green roof hydrologic performance more feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanielista, M.; Charba, J.; Dietz, J.
This is the final report on the use of Granulated Active Carbon (GAC) beds of Filtrasorb 400 in series to reduce the Trihalomethane Formation Potential (THMFP) concentrations at the Lake Angel detention pond, Orange County, Florida. The detention pond accepts runoff from an interstate highway and a commercial area. Breakthrough time was estimated from laboratory analyses and used to design two beds in series at the detention pond. Breakthrough occurred in the first bed after treating 138,000 liters of water. Exhaustion of the first bed was reached after treating 1270 bed volumes with a sorption zone length of 1.70 feet.more » The TOC adsorbed per gram of GAC was 6.3 mg. The liquid flow rate averaged 0.0011 cfs. Similar breakthrough curves for Total Organic Carbon (TOC) and color were also reported. The used GAC can be disposed of by substituting it for sand in concrete mixes. An economic evaluation of the GAC system at Lake Angel demonstrated an annual cost of $4.39/1000 gallons to treat the stormwater runoff after detention and before discharge into a drainage well. The cost could be further reduced by using the stormwater to irrigate right-of-way sections of the watershed. An alternative method of pumping to another drainage basin was estimated to be more expensive. The underdrain network for the GAC system initially became clogged with the iron- and sulfur-precipitation bacteria Leptothrix, Gallionella and Thiothrix. These bacteria were substantially reduced by altering the influent GAC system pipeline to take water directly from the lake. An alternate pipe system used a clay layer to reduce ground water inputs and did not exhibit substantial bacterial growth.« less
Response of Colorado River runoff to dust radiative forcing in snow.
Painter, Thomas H; Deems, Jeffrey S; Belnap, Jayne; Hamlet, Alan F; Landry, Christopher C; Udall, Bradley
2010-10-05
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.
Response of Colorado River runoff to dust radiative forcing in snow
Painter, Thomas H.; Deems, Jeffrey S.; Belnap, Jayne; Hamlet, Alan F.; Landry, Christopher C.; Udall, Bradley
2010-01-01
The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river’s historical mean. Climate models project runoff losses of 7–20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river’s runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916–2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change. PMID:20855581
Generalised synthesis of space-time variability in flood response: Dynamics of flood event types
NASA Astrophysics Data System (ADS)
Viglione, Alberto; Battista Chirico, Giovanni; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter
2010-05-01
A analytical framework is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.
Quantifying space-time dynamics of flood event types
NASA Astrophysics Data System (ADS)
Viglione, Alberto; Chirico, Giovanni Battista; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter
2010-11-01
SummaryA generalised framework of space-time variability in flood response is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.
Precipitation-runoff modeling system; user's manual
Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.
1983-01-01
The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)
EVALUATION OF ECONOMIC INCENTIVES FOR DECENTRALIZED STORMWATER RUNOFF MANAGEMENT
Impervious surfaces in urban and suburban areas can lead to excess stormwater runoff throughout a watershed, typically resulting in widespread hydrologic and ecological alteration of receiving streams. Decentralized stormwater management may improve stream ecosystems by reducing ...
Catalyzing municipal stakeholder engagement for stormwater funding solutions
Stormwater runoff contributes to a range of water quality issues in coastal systems, including eutrophication, contamination of water resources, and reduced value to coastal residents. However, managing runoff sources and meeting permit requirements can be costly. Municipalities ...
Simple Runoff Control Structures Stand Test of Time
Dean M. Knighton
1984-01-01
Diversion terraces and detention basins constructed along the field-forest edge in the Driftless Area reduce farmland runoff and subsequent gullying in the forest below for many years. The structures are inexpensive and simple to build.
NASA Astrophysics Data System (ADS)
Li, Yi; Ye, Quanliang; Liu, An; Meng, Fangang; Zhang, Wenlong; Xiong, Wei; Wang, Peifang; Wang, Chao
2017-07-01
Urban rainwater management need to achieve an optimal compromise among water resource augmentation, water loggings alleviation, economic investment and pollutants reduction. Rainwater harvesting (RWH) systems, such as green rooftops, porous pavements, and green lands, have been successfully implemented as viable approaches to alleviate water-logging disasters and water scarcity problems caused by rapid urbanization. However, there is limited guidance to determine the construction areas of RWH systems, especially for stormwater runoff control due to increasing extreme precipitation. This study firstly developed a multi-objective model to optimize the construction areas of green rooftops, porous pavements and green lands, considering the trade-offs among 24 h-interval RWH volume, stormwater runoff volume control ratio (R), economic cost, and rainfall runoff pollutant reduction. Pareto fronts of RWH system areas for 31 provinces of China were obtained through nondominated sorting genetic algorithm. On the national level, the control strategies for the construction rate (the ratio between the area of single RWH system and the total areas of RWH systems) of green rooftops (ηGR), porous pavements (ηPP) and green lands (ηGL) were 12%, 26% and 62%, and the corresponding RWH volume and total suspended solids reduction was 14.84 billion m3 and 228.19 kilotons, respectively. Optimal ηGR , ηPP and ηGL in different regions varied from 1 to 33%, 6 to 54%, and 30 to 89%, respectively. Particularly, green lands were the most important RWH system in 25 provinces with ηGL more than 50%, ηGR mainly less than 15%, and ηPP mainly between 10 and 30%. Results also indicated whether considering the objective MaxR made a non-significant difference for RWH system areas whereas exerted a great influence on the result of stormwater runoff control. Maximum daily rainfall under control increased, exceeding 200% after the construction of the optimal RWH system compared with that before construction. Optimal RWH system areas presented a general picture for urban development policy makers in China.
NASA Astrophysics Data System (ADS)
Lee, Serena B.; Birch, Gavin F.
2012-10-01
Estuarine health is affected by contamination from stormwater, particularly in highly-urbanised environments. For systems where catchment monitoring is insufficient, novel techniques must be employed to determine the impact of urban runoff on receiving water bodies. In the present work, estuarine monitoring and modelling were successfully employed to determine stormwater runoff volumes and establish an appropriate rainfall/runoff relationship capable of replicating fresh-water discharge due to the full range of precipitation conditions in the Sydney Estuary, Australia. Using estuary response to determine relationships between catchment rainfall and runoff is a widely applicable method and may be of assistance in the study of waterways where monitoring fluvial discharges is not practical or is beyond the capacity of management authorities. For the Sydney Estuary, the SCS-CN method replicated rainfall/runoff and was applied in numerical modelling experiments investigating the hydrodynamic characteristics affecting stratification and estuary recovery following high precipitation. Numerical modelling showed stratification in the Sydney Estuary was dominated by fresh-water discharge. Spring tides and up-estuary winds contributed to mixing and neap tides and down-estuary winds enhanced stratification.
Peter R. Robichaud; Sarah A. Lewis; Joseph W. Wagenbrenner; Louise E. Ashmun; Robert E. Brown
2013-01-01
Mulch treatments often are used to mitigate post-fire increases in runoff and erosion rates but the comparative effectiveness of various mulches is not well established. The ability of mulch treatments to reduce sediment yields from natural rainfall and resulting overland flow was measured using hillslope plots on areas burned at high severity following four wildfires...
Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.
2001-01-01
The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.
The Effects of Reduced Tillage on Phosphate Transport from Agricultural Land.
1981-01-01
SOLUBLE INORGANIC I’IIOSPIORUS IN RUNOFF ................................................... 12 .F.ECT OF PHOSPHATE FERTILI ZATION ON LOSSES OF AVAILABLE...an reverse side if necessary end identifY by block number) Conservation Tillage Soil Loss Phosphorus Loss Surface Runoff 20 AMThAC? fCinf--- mbb iV...tillage (primarily no till) versus conventional tillage on surface runoff , soil loss and phosphorus loss. The data show that conservation tillage
Zimmerman, Marc J.; Waldron, Marcus C.; Barbaro, Jeffrey R.; Sorenson, Jason R.
2010-01-01
Low-impact-development (LID) approaches are intended to create, retain, or restore natural hydrologic and water-quality conditions that may be affected by human alterations. Wide-scale implementation of LID techniques may offer the possibility of improving conditions in river basins, such as the Ipswich River Basin in Massachusetts, that have run dry during the summer because of groundwater withdrawals and drought. From 2005 to 2008, the U.S. Geological Survey, in a cooperative funding agreement with the Massachusetts Department of Conservation and Recreation, monitored small-scale installations of LID enhancements designed to diminish the effects of storm runoff on the quantity and quality of surface water and groundwater. Funding for the studies also was contributed by the U.S. Environmental Protection Agency's Targeted Watersheds Grant Program through a financial assistance agreement with Massachusetts Department of Conservation and Recreation. The monitoring studies examined the effects of * replacing an impervious parking-lot surface with a porous surface on groundwater quality, * installing rain gardens and porous pavement in a neighborhood of 3 acres on the quantity and quality of stormwater runoff, and * installing a 3,000-ft2 (square-foot) green roof on the quantity and quality of rainfall-generated roof runoff. In addition to these small-scale installations, the U.S. Geological Survey's Ipswich River Basin model was used to simulate the basin-wide effects on streamflow of several changes: broad-scale implementation of LID techniques, reduced water-supply withdrawals, and water-conservation measures. Water-supply and conservation scenarios for application in model simulations were developed with the assistance of two technical advisory committees that included representatives of State agencies responsible for water resources, the U.S. Environmental Protection Agency, the U.S. Geological Survey, water suppliers, and non-governmental organizations. From June 2005 to June 2007, groundwater quality was monitored at the Silver Lake town beach parking lot in Wilmington, Massachusetts, prior to and following the replacement of the conventional, impervious-asphalt surface with a porous surface consisting primarily of porous asphalt and porous pavers designed to enhance rainfall infiltration into the groundwater and to minimize runoff to Silver Lake. Concentrations of phosphorus, nitrogen, cadmium, chromium, copper, lead, nickel, zinc, and total petroleum hydrocarbons in groundwater were monitored. Enhancing infiltration of precipitation did not result in discernible increases in concentrations of these potential groundwater contaminants. Concentrations of dissolved oxygen increased slightly in groundwater profiles following the removal of the impervious asphalt parking-lot surface. In Wilmington, Massachusetts, in a 3-acre neighborhood, stormwater runoff volume and quality were monitored to determine the ability of selected LID enhancements (rain gardens and porous paving stones) to reduce flows and loads of the selected constituents to Silver Lake. Water-quality samples were analyzed for nutrients, metals, total petroleum hydrocarbons, and total-coliform and E. coli bacteria. A decrease in runoff quantity was observed for storms of 0.25 inch or less of precipitation. Water-quality-monitoring results were inconclusive; there were no statistically significant differences in concentrations or loads when the pre- and post-installation-period samples were compared. In a third field study, the characteristics of runoff from a vegetated 'green' roof and a conventional, rubber-membrane roof were compared. The two primary factors affecting the green roof's water-storage capacity were the amount of precipitation and antecedent dry period. Although concentrations of many of the chemicals in roof runoff were higher from the green roof than from the conventional roof, the ability of the green roof to retain w
NASA Astrophysics Data System (ADS)
Auvet, B.; Lidon, B.; Kartiwa, B.; Le Bissonnais, Y.; Poussin, J.-C.
2015-09-01
This paper presents an approach to model runoff and erosion risk in a context of data scarcity, whereas the majority of available models require large quantities of physical data that are frequently not accessible. To overcome this problem, our approach uses different sources of data, particularly on agricultural practices (tillage and land cover) and farmers' perceptions of runoff and erosion. The model was developed on a small (5 ha) cultivated watershed characterized by extreme conditions (slopes of up to 55 %, extreme rainfall events) on the Merapi volcano in Indonesia. Runoff was modelled using two versions of STREAM. First, a lumped version was used to determine the global parameters of the watershed. Second, a distributed version used three parameters for the production of runoff (slope, land cover and roughness), a precise DEM, and the position of waterways for runoff distribution. This information was derived from field observations and interviews with farmers. Both surface runoff models accurately reproduced runoff at the outlet. However, the distributed model (Nash-Sutcliffe = 0.94) was more accurate than the adjusted lumped model (N-S = 0.85), especially for the smallest and biggest runoff events, and produced accurate spatial distribution of runoff production and concentration. Different types of erosion processes (landslides, linear inter-ridge erosion, linear erosion in main waterways) were modelled as a combination of a hazard map (the spatial distribution of runoff/infiltration volume provided by the distributed model), and a susceptibility map combining slope, land cover and tillage, derived from in situ observations and interviews with farmers. Each erosion risk map gives a spatial representation of the different erosion processes including risk intensities and frequencies that were validated by the farmers and by in situ observations. Maps of erosion risk confirmed the impact of the concentration of runoff, the high susceptibility of long steep slopes, and revealed the critical role of tillage direction. Calibrating and validating models using in situ measurements, observations and farmers' perceptions made it possible to represent runoff and erosion risk despite the initial scarcity of hydrological data. Even if the models mainly provided orders of magnitude and qualitative information, they significantly improved our understanding of the watershed dynamics. In addition, the information produced by such models is easy for farmers to use to manage runoff and erosion by using appropriate agricultural practices.
Influences of Hydrological Regime on Runoff Quality and Pollutant Loadings in Tropical Urban Areas
NASA Astrophysics Data System (ADS)
Chow, M.; Yusop, Z.
2011-12-01
Experience in many developed countries suggests that non point source (NPS) pollution is still the main contributor to pollutant loadings into water bodies in urban areas. However, the mechanism of NPS pollutant transport and the influences of hydrologic regime on the pollutant loading are still unclear. Understanding these interactions will be useful for improving design criteria and strategies for controlling NPS pollution in urban areas. This issue is also extremely relevant in tropical environment because its rainfall and the runoff generation processes are so different from the temperate regions where most of the studies on NPS pollutant have been carried out. In this regard, an intensive study to investigate the extent of this pollution was carried out in Skudai, Johor, Malaysia. Three small catchments, each represents commercial, residential and industrial land use were selected. Stormwater samples and flow rate data were collected at these catchments over 52 storm events from year 2008 to 2009. Samples were analyzed for ten water quality constituents including total suspended solids, 5-day biochemical oxygen demand, chemical oxygen demand, oil and grease, nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, soluble phosphorus, total phosphorus and zinc. Quality of stormwater runoff is estimated using Event Mean Concentration (EMC) value. The storm characteristics analyzed included rainfall depth, rainfall duration, mean intensity, max 5 minutes intensity, antecedent dry day, runoff volume and peak flow. Correlation coefficients were determined between storm parameters and EMCs for the residential, commercial and industrial catchments. Except for the antecedent storm mean intensity and antecedent dry days, the other rainfall and runoff variables were negatively correlated with EMCs of most pollutants. This study reinforced the earlier findings on the importance of antecedent dry days for causing greater EMC values with exceptions for oil and grease, nitrate nitrogen, total phosphorus and zinc. There is no positive correlation between rainfall intensity and EMC of constituents in all the studied catchments. In contrast, the pollutant loadings are influenced primarily by the rainfall and runoff characteristics. Rainfall depth, mean intensity, max 5 minute intensity, runoff volume and peak flow were positively correlated with the loadings of most of the constituents. Antecedent storm mean intensity and antecedent dry days seemed to be less important for estimating the pollutant loadings. Such study should be further conducted for acquiring a long term monitoring data related to storm runoff quality during rainfall, in order to have a better understanding on NPS pollution in urban areas.
Optimization of contour ridge water harvesting systems for arid zones.
NASA Astrophysics Data System (ADS)
Berliner, Pedro; Arazi, Adit
2017-04-01
Runoff is generated along slopes in semi-arid regions during rainfall events and flows into the lower lying areas, usually ephemeral streams. Depending on the slope and volume of water involved, the flow can become turbulent and cause the detachments of soil particles (erosion). The purpose of the system under investigation is to capture the water after a relatively short flow distance and allow it to be absorbed by the soil. This action accomplishes two objectives: erosion is averted and the stored water can be used for plant production. Depending on the ratio of contributing to receiving areas and storm characteristics the stored water can be significantly higher than the precipitation. The objective of the present project was to develop a simple model that describes the above biomass production in such a system and allows to determine the optimum distribution of structures along a given slope in order to meet one criteria (e.g. minimize variance, maximize production, maximize lowest production, etc.) or a suite of them. The basic assumption is that tree above ground biomass production is linearly related to transpired water, the latter driven by an external force (potential evaporation) and modulated by water availability in the soil. PET is computed using the standard Penman-Monteith formulation for evaporation from open water bodies, if the latter is not available. Four water fluxes are computed: Evaporation, Transpiration, Runoff and Drainage, the first two not interacting directly. All of the above mentioned fluxes and rates are daily lumped values and water content in the profile is updated daily, assuming that rainfall events happen after the computation of fluxes. Daily water inputs are estimated from rainfall data and computed runoff. A dynamic runoff coefficient (=cumulative generated runoff generated/cumulative precipitation) was derived from measurements carried out in the area and used in order to estimate runoff volumes from total recorded precipitation and varying runoff generating areas. Tree development, as parameterized by cross-sectional canopy area, was estimated from the sigmoid that describes cross-sectional as a function of cumulative water used. Results of simulations carried out for consecutive five year periods in one thirty-year period indicated that contour ridges at 2 m. intervals resulted in the highest canopy covered area, irrespective of soil depth.
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Stormwater Runoff
Introduction to impervious surfaces associated with urbanization, overview of effects vs. total imperviousness, overview of how impervious surfaces affect biotic condition, summary of threshold values of impervious cover for stream biotic condition.
NASA Astrophysics Data System (ADS)
Danáčová, Michaela; Valent, Peter; Výleta, Roman
2017-12-01
Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity of 5 mm/min was used to irrigate a corrupted soil sample. The experiment was undertaken for several different slopes, under the condition of no vegetation cover. The results of the rainfall simulation experiment complied with the expectations of a strong relationship between the slope gradient, and the amount of surface runoff generated. The experiments with higher slope gradients were characterised by larger volumes of surface runoff generated, and by shorter times after which it occurred. The experiments with rainfall simulators in both laboratory and field conditions play an important role in better understanding of runoff generation processes. The results of such small scale experiments could be used to estimate some of the parameters of complex hydrological models, which are used to model rainfall-runoff and erosion processes at catchment scale.
Lick Run: Green Infrastructure in Cincinnati and Beyond
By capturing and redistributing rain water or runoff in plant-soil systems such as green roofs, rain gardens or swales, green infrastructure restores natural hydrologic cycles and reduces runoff from overburdened gray infrastructure. Targeted ecosystem restoration, contaminant fi...
Applying a Reverse Auction to Reduce Stormwater Runoff
Incentivizing commercial properties to adopt stormwater runoff control is usually done through command-and-control tactics such as stormwater fees with rebates for implementation of certain best management practices (BMP). In recently-built housing developments around the count...
Encouraging stormwater management using a reverse auction: potential to restore stream ecosystems
Stormwater runoff is the primary mechanism by which urbanizing landscapes disrupt natural, stream ecosystems. Source control management has been demonstrated as an effective and cost-efficient method for reducing stormwater runoff; however, sufficiently widespread implementation...
Watts, D B; Way, T R; Torbert, H A
2011-01-01
Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.
Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff.
McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, C Roselina; Turner, Benjamin L
2005-01-01
Modifying broiler diets to mitigate water quality concerns linked to excess phosphorus (P) in regions of intensive broiler production has recently increased. Our goals were to evaluate the effects of dietary modification, using phytase and reduced non-phytate phosphorus (NPP) supplementation, on P speciation in broiler litters, changes in litter P forms during long-term storage, and subsequent impacts of diets on P in runoff from litter-amended soils. Four diets containing two levels of NPP with and without phytase were fed to broilers in a three-flock floor pen study. After removal of the third flock, litters were stored for 440 d at their initial moisture content (MC; 24%) and at a MC of 40%. Litter P fractions and orthophosphate and phytate P concentrations were determined before and after storage. After storage, litters were incorporated with a sandy and silt loam and simulated rainfall was applied. Phytase and reduced dietary NPP significantly reduced litter total P. Reducing dietary NPP decreased water-extractable inorganic phosphorus (IP) and the addition of dietary phytase reduced NaOH- and HCl-extractable organic P in litter, which correlated well with orthophosphate and phytic acid measured by 31P nuclear magnetic resonance (NMR), respectively. Although dry storage caused little change in P speciation, wet storage increased concentrations of water-soluble IP, which increased reactive P in runoff from litter-amended soils. Therefore, diet modification with phytase and reduced NPP could be effective in reducing P additions on a watershed scale. Moreover, efforts to minimize litter MC during storage may reduce the potential for dissolved P losses in runoff.
Total pollution effect of urban surface runoff.
Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue
2009-01-01
For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.
Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA
Griffin, Eleanor R.; Friedman, Jonathan M.
2017-01-01
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.
Sustainability in urban water resources management - some notes from the field
NASA Astrophysics Data System (ADS)
Shuster, W.; Garmestani, A.; Green, O. O.
2014-12-01
Urban development has radically transformed landscapes, and along with it, how our cities and suburbs cycle energy and water. One unfortunate outcome of urbanization is the production of massive volumes of uncontrolled runoff volume. Our civic infrastructure is sometimes marginally capable of handling even dry-weather fluxes without wastewater system overflows, much less the challenges of wet-weather events. The predominance of runoff volume in urban water balance has had serious ramifications for regulatory activity, municipal financial matters, and public health. In the interest of protecting human health and the environment, my group's research has primarily addressed the integration of social equity, economic stabilization, and environmental management to underpin the development of sustainable urban water cycles. In this talk, I will present on: 1) the Shepherd Creek Stormwater Management project wherein an economic incentive was used to recruit citizen stormwater managers and distribute parcel-level, green infrastructure-based stormwater control measures; and 2) our urban soil pedologic-hydrologic assessment protocol that we use as a way of understanding the capacity for urban soils to provide ecosystem services, and in cities representing each of the major soil orders.
Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska
Neal, E.G.; Hood, E.; Smikrud, K.
2010-01-01
Watersheds along the Gulf of Alaska (GOA) are undergoing climate warming, glacier volume loss, and shifts in the timing and volume of freshwater delivered to the eastern North Pacific Ocean. We estimate recent mean annual freshwater discharge to the GOA at 870 km3 yr-1. Small distributed coastal drainages contribute 78% of the freshwater discharge with the remainder delivered by larger rivers penetrating coastal ranges. Discharge from glaciers and icefields accounts for 47% of total freshwater discharge, with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers along the GOA. Our results indicate the region of the GOA from Prince William Sound to the east, where glacier runoff contributes 371 km3 yr -1, is vulnerable to future changes in freshwater discharge as a result of glacier thinning and recession. Changes in timing and magnitude of freshwater delivery to the GOA could impact coastal circulation as well as biogeochemical fluxes to near-shore marine ecosystems and the eastern North Pacific Ocean. Copyright ?? 2010 by the American Geophysical Union.
Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.
Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D
2014-03-01
Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Smith, Douglas R; Moore, P A; Miles, D M; Haggard, B E; Daniel, T C
2004-01-01
Phosphorus (P) losses from pastures fertilized with poultry litter contribute to the degradation of surface water quality in the United States. Dietary modification and manure amendments may reduce potential P runoff losses from pastures. In the current study, broilers were fed a normal diet, phytase diet, high available phosphorus (HAP) corn diet, or HAP corn + phytase diet. Litter treatments were untreated control and alum added at 10% by weight between flocks. Phytase and HAP corn diets reduced litter dissolved P content in poultry litter by 10 and 35%, respectively, compared with the normal diet (789 mg P kg(-1)). Alum treatment of poultry litter reduced the amount of dissolved P by 47%, while a 74% reduction was noted after alum treatment of litter from the HAP corn + phytase diet. The P concentrations in runoff water were highest from plots receiving poultry litter from the normal diet, whereas plots receiving poultry litter from phytase and HAP corn diets had reduced P concentrations. The addition of alum to the various poultry litters reduced P runoff by 52 to 69%; the greatest reduction occurred when alum was used in conjunction with HAP corn and phytase. This study demonstrates the potential added benefits of using dietary modification in conjunction with manure amendments in poultry operations. Integrators and producers should consider the use of phytase, HAP corn, and alum to reduce potential P losses associated with poultry litter application to pastures.
Designing Bioretention Systems to Improve Nitrogen Removal - poster
Rain gardens, also referred to as bioretention systems, are designed primarily to infiltrate stormwater flow and reduce surface runoff and peak flows to receiving streams. Additionally, they are known to remove stressors from urban stormwater runoff, including oil and grease, pho...
DOT National Transportation Integrated Search
2016-04-01
The focus of this research project was the development of geospatial technology (GST) methodology to : characterize and evaluate highway runoff stormwater management potential (HRSMP) sites in order to : reduce their impact on properties, save lives ...
Yu, Xing-Xiu; Ma, Qian; Liu, Qian-Jin; Lü, Guo-An
2011-02-01
Field in-situ rainfall simulation tests with two rainfall intensities (40 mm x h(-1) and 70 mm x h(-1)), which were conducted at typical sloping cropland in Yimeng mountainous area, were designed to analyze the output characteristics of dissolved inorganic nitrogen, Inorganic-N (NO3(-)-N, NH4(+) -N) and dissolved phosphorus (DP) in runoff water, as well as to compare the eutrophication risk in this water by calculating three ratios of Inorganic-N/DP, NO3(-) -N/DP, and NH4(+)-N/DP, respectively, in cross ridge and longitudinal ridge tillage methods. Results showed that, under the same rainfall intensity, the DP level in runoff water was higher in cross ridge than longitudinal ridge, while the change of different Inorganic-N level between the two tillage methods were not consistent. Cross ridge could effectively reduce runoff and the output rate of Inorganic-N and DP when compared to the longitudinal ridge tillage, which would be more outstanding with the increases of rainfall intensities. The losses of Inorganic-N and DP in runoff water were 43% and 5% less, respectively, in cross ridge than longitudinal ridge at the 40 mm x h(-1) rainfall intensity, and were 68% and 55%, respectively, at 70 mm x h(-1). The higher Inorganic-N/DP and NO3(-) -N/DP ratios suggest that runoff water from either cross ridge or longitudinal ridge tillage have a certain eutrophication risk, which present an increasing trend during the precipitation-runoff process. Compared with longitudinal ridge, cross ridge can not only hinder the increasing trend of eutrophication risk, but also can significantly lower it, and thus effectively reduce the effect of sloping cropland runoff on the eutrophication processes of receiving waters.
NASA Astrophysics Data System (ADS)
Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.
2013-03-01
To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.
NASA Astrophysics Data System (ADS)
Dunkerley, David
2018-01-01
The characteristic intermittency of rainfall includes temporary cessations (hiatuses), as well as periods of very low intensity within more intense events. To understand how these characteristics of rainfall affect overland flow production, rainfall simulations involving repeated cycles of on-off intermittency were carried out on dryland soils in arid western New South Wales, Australia. Periods of rain (10 mm/h) and no-rain were applied in alternation with cycle times from 3 min to 25 min, in experiments lasting 1-1.5 h. Results showed that intermittency could delay the onset of runoff by more than 30 min, reduce the runoff ratio, reduce the peak runoff rate, and reduce the apparent event infiltration rate by 30-45%. When hiatuses in rainfall were longer than 15-20 min, runoff that had resulted from prior rain ceased completely before the recommencement of rain. Results demonstrate that if rainfall intermittency is not accounted for, estimates of infiltrability based on runoff plot data can be systematically in error. Despite the use of intermittent rain, the episodic occurrence of runoff could be predicted successfully by fitting multiple affine Horton infiltration equations, whose changing f0 and Kf coefficients, but uniform values of fc, reflected the redistribution of soil moisture and the change in the infiltrability f during hiatuses in rainfall. The value of fc varied little among the fitted equations, so constituting an affine set of relationships. This new approach provides an alternative to the use of steady-state methods that are common in rainfall simulation experiments and which typically yield only an estimate of fc. The new field results confirm that intermittency affects infiltration and runoff depths and timing at plot scale and on intra-event timescales. Additional work on other soil types, and at other spatial and temporal scales, is needed to test the generality of these findings.
DOT National Transportation Integrated Search
2004-01-01
The objectives of this study were to assess the quantity and quality of salt-contaminated water generated from stormwater runoff at VDOT's salt storage facilities and to evaluate management/treatment alternatives to reduce costs and better protect th...
Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae
2018-01-01
An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
A protocol for conducting rainfall simulation to study soil runoff.
Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B
2014-04-03
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.
A Protocol for Conducting Rainfall Simulation to Study Soil Runoff
Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.
2014-01-01
Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061
Nimick, David A.; McCarthy, Peter M.; Fields, Vanessa
2011-01-01
Benton Lake National Wildlife Refuge is an important area for waterfowl production and migratory stopover in west-central Montana. Eight wetland units covering about 5,600 acres are the essential features of the refuge. Water availability for the wetland units can be uncertain owing to the large natural variations in precipitation and runoff and the high cost of pumping supplemental water. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, has developed a digital model for planning water management. The model can simulate strategies for water transfers among the eight wetland units and account for variability in runoff and pumped water. This report describes this digital model, which uses a water-accounting spreadsheet to track inputs and outputs to each of the wetland units of Benton Lake National Wildlife Refuge. Inputs to the model include (1) monthly values for precipitation, pumped water, runoff, and evaporation; (2) water-level/capacity data for each wetland unit; and (3) the pan-evaporation coefficient. Outputs include monthly water volume and flooded surface area for each unit for as many as 5 consecutive years. The digital model was calibrated by comparing simulated and historical measured water volumes for specific test years.
Monitoring on The Quality and Quantity of DIY Rainwater Harvesting System
NASA Astrophysics Data System (ADS)
Kasmin, H.; Bakar, N. H.; Zubir, M. M.
2016-07-01
Rainwater harvesting is an alternative sources of water supply and can be used for potable and non-potable uses. It could helps to store treated rainwater for more beneficial use and also for flood mitigation. Sustainable approach for flooding problem reduction in urban areas is by slowing down the rate of surface runoff flows at source by providing more storage area/tank. In order to understand the performance of a rainwater harvesting system (RWH), a preliminary monitoring on a ‘do it yourself’ (DIY) RWH model with additional first -flush strategy for water quality treatment was done. The main concept behind first flush diversion is to prevent initial polluted rainwater from entering the storage tank. Based on seven rainfall events observed in Parit Raja, both quality and quantity of the rainfalls were analysed. For rainwater quality, the samples from first flush diverter and storage tank were taken to understand their performance based on pH, dissolved oxygen (DO), turbidity, total dissolved solid (TDS), total suspended solid (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. While for rainwater quantity, hydrograph analysis were done based on the performance of total rainfall and runoff, peak flow of rainfall and runoff; and delayed time parameters. Based on Interim National Water Quality Standard (INWQS) and National Drinking Water Quality Standard (NDWQS), first flush diverter apparently helps on water quality improvement in storage tanks when pH, DO, TDS, TSS and turbidity were classified as Class I (INWQS) and is allowable for drinking; but BOD and COD parameters were classified as Class III (INWQS). Hence, it has potential to be used as potable usage but will need extensive treatment to reduce its poor microbial quality. Based on the maximum observed rainfall event which had total volume of 3195.5 liter, had peakflow reduction from 0.00071 m3/s to 0.00034 m3/s and delayed runoff between 5 and 10 minutes after rainfall started. It concludes that the performance of water retention could be due to total rainfall and the tank capacity. Therefore, RWH has a potential to be used as potable use and at the same time it also has a potential to reduce local urban flooding.
Hydroclimatic alteration increases vulnerability of montane meadows in the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Viers, J. H.; Peek, R.; Purdy, S. E.; Emmons, J. D.; Yarnell, S. M.
2012-12-01
Meadow ecosystems of the Sierra Nevada (California, USA) have been maintained by the interplay of biotic and abiotic forces, where hydrological functions bridge aquatic and terrestrial realms. Meadows are not only key habitat for fishes, amphibians, birds, and mammals alike, but also provide enumerable ecosystem services to humans, not limited to regulating services (eg, water filtration), provisioning services (eg, grazing), and aesthetics. Using hydroclimatic models and spatial distribution models of indicator species, a range wide assessment was conducted to assess and synthesize the vulnerability of meadow ecosystems to hydroclimatic alteration, a result of regional climate change. Atmospheric warming is expected to result in a greater fraction of total precipitation falling as winter rain (rather than snow) and earlier snowmelt. These predicted changes will likely cause more precipitation-driven runoff in winter and reduced snowmelt runoff in spring, leading to reduced annual runoff and a general shift in runoff timing to earlier in the year. These profound effects have consequences for hydrological cycling and meadow functioning, though such changes will not occur steadily through time or uniformly across the range, and each individual meadow will respond as a function of its composition and land use history. Most vulnerable is groundwater recharge, a fundamental component of meadow hydrology. As a result of shortened snow melt period and absence of diel snowmelt fluxes that would otherwise gradually refill meadow aquifers, recharge is expected to decline due to less infiltration. Diminished water tables will likely stress hydric and mesic vegetation, promoting more xeric conditions. Coupled with greater magnitude stream flows, these conditions promote channel incision and ultimate state shift to non-meadow conditions. The biological effects of hydroclimatic alteration, such as lower mean annual flow and earlier timing, will result in an overall decrease in available habitat for aquatic species, particularly for cold water fishes (ie, salmonids and sculpins). Earlier timing and longer low flow duration will force aquatic biota to withstand more days at thermally challenging temperatures, potentially promoting non-native species. Decreased mean annual flow, less overall snow volume, and warmer daily air temperatures will potentially decrease the number of days of standing water available for amphibian reproduction. A core strategy for maintaining meadow ecosystems, ecosystem services, and dependent biodiversity is to reduce vulnerabilities, such as unstable stream banks that promote cycles of incision, and increase resilience to disturbance, such as actively removing encroaching vegetation that can overtap water tables and build up wildfire fuels. Reducing meadow vulnerability to hydroclimatic alteration and ensuring sustained ecosystem services will require active ecosystem management (ie, managed for indicator species, but with focus on hydrological functioning); coordinated hydrological management (ie, conservation action and removal of stressors coordinated across all ownerships and management regimes); and effective communication to minimize human activities that reduce resilience, as well as improve human
Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?
Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio
2017-01-01
Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K.
2011-01-01
Concept development simulation with distributed, physics-based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics-based hydrologic response model InHM has been employed to generate base case simulations for four well-characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics-based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms. Copyright 2011 by the American Geophysical Union.
A Pulse of Mercury and Major Ions in Snowmelt Runoff from a Small Arctic Alaska Watershed.
Douglas, Thomas A; Sturm, Matthew; Blum, Joel D; Polashenski, Christopher; Stuefer, Svetlana; Hiemstra, Christopher; Steffen, Alexandra; Filhol, Simon; Prevost, Romain
2017-10-03
Atmospheric mercury (Hg) is deposited to Polar Regions during springtime atmospheric mercury depletion events (AMDEs) that require halogens and snow or ice surfaces. The fate of this Hg during and following snowmelt is largely unknown. We measured Hg, major ions, and stable water isotopes from the snowpack through the entire spring melt runoff period for two years. Our small (2.5 ha) watershed is near Barrow (now Utqiaġvik), Alaska. We measured discharge, made 10 000 snow depths, and collected over 100 samples of snow and meltwater for chemical analysis in 2008 and 2009 from the watershed snowpack and ephemeral stream channel. Results show an "ionic pulse" of mercury and major ions in runoff during both snowmelt seasons, but major ion and Hg runoff concentrations were roughly 50% higher in 2008 than in 2009. Though total discharge as a percent of total watershed snowpack water equivalent prior to the melt was similar in both years (36% in 2008 melt runoff and 34% in 2009), it is possible that record low precipitation in the summer of 2007 led to the higher major ion and Hg concentrations in 2008 melt runoff. Total dissolved Hg meltwater runoff of 14.3 (± 0.7) mg/ha in 2008 and 8.1 (± 0.4) mg/ha in 2009 is five to seven times higher than that reported from other arctic watersheds. We calculate 78% of snowpack Hg was exported with snowmelt runoff in 2008 and 41% in 2009. Our results suggest AMDE Hg complexed with Cl - or Br - may be less likely to be photochemically reduced and re-emitted to the atmosphere prior to snowmelt, and we estimate that roughly 25% of the Hg in snowmelt is attributable to AMDEs. Projected Arctic warming, with more open sea ice leads providing halogen sources that promote AMDEs, may provide enhanced Hg deposition, reduced Hg emission and, ultimately, an increase in snowpack and snowmelt runoff Hg concentrations.
NASA Astrophysics Data System (ADS)
MacAvoy, S. E.; Mucha, S.; Williamson, G.
2017-12-01
While green roofs have well understood benefits for retaining runoff, there is less of a consensus regarding the potential for retaining and absorbing nutrients or suspended solids from roof runoff that would otherwise travel to waterways. Additionally, there are numerous designs, materials and maintenance plans associated with "green" roofs/surfaces that may greatly impact not only their hydrological benefit but also their pollution mitigation potential. Here we examine the NO3, NH4, total organic carbon (TOC), total phosphorus (TP) and total suspended solids (TSS) retention potential from planted and unplanted foam roofs and traditional soil roofs. Direct precipitation, untreated runoff and throughflow from the different roof types were collected for 3 to 11 rain events over a year (depending on roof). Unplanted and traditional roofs reduced TSS by 80% or better relative to runoff. Traditional roofs showed 50% lower TP than runoff or other roof types. TOC was higher than direct precipitation for all treatments, although there were no differences among the treatments themselves. Taken as averages over the 11 events, NO3 and NH4 concentrations were highly variable for runoff and treatments and significant differences were not detected. Preliminary analysis suggests there were no differences between performance of traditional versus foam-based roofs, although a greater sample size is required to be definitive.
Volume 1, Sources and migration of highway runoff pollutants--executive summary
DOT National Transportation Integrated Search
1984-05-01
This report summarizes the research undertaken to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. ...
Storm Water Management Model (SWMM)
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (E...
Tailoring Green Infrastructure Implementation Scenarios based on Stormwater Management Objectives
Green infrastructure (GI) refers to stormwater management practices that mimic nature by soaking up, storing, and controlling onsite. GI practices can contribute reckonable benefits towards meeting stormwater management objectives, such as runoff peak shaving, volume reduction, f...
Volume 2, Sources and migration of highway runoff pollutants--methods
DOT National Transportation Integrated Search
1984-02-01
The overall objectives of this research were to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. In...
Volume 4, Sources and migration of highway runoff pollutants--appendix
DOT National Transportation Integrated Search
1984-04-01
The overall objectives of this research were to identify the sources of highway pollutants and to determine their deposition and accumulation with the highway system and subsequent removal from the highway system to the surrounding environment. This ...
FRAMEWORK DESIGN FOR BMP PLACEMENT IN URBAN WATERSHEDS
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...
ESTIMATING URBAN WET WEATHER POLLUTANT LOADING
This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...
FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN WATERSHEDS
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...
Zheng, Mingguo; Chen, Xiaoan
2015-01-01
Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng’s tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I 30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I 30 is equally correlated with soil loss as factors of I 20, EI 10 (the product of the rainfall kinetic energy, E, and I 10), EI 20 and EI 30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I 30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations. PMID:25781173
Mattsson, Tuija; Lehtoranta, Jouni; Ekholm, Petri; Palviainen, Marjo; Kortelainen, Pirkko
2017-12-01
Climate change influences the volume and seasonal distribution of runoff in the northern regions. Here, we study how the seasonal variation in the runoff affects the concentrations and export of terminal electron acceptors (i.e. TEAs: NO 3 , Mn, Fe and SO 4 ) in different boreal land-cover classes. Also, we make a prediction how the anticipated climate change induced increase in runoff will alter the export of TEAs in boreal catchments. Our results show that there is a strong positive relationship between runoff and the concentration of NO 3 -N, Mn and Fe in agricultural catchments. In peaty catchments, the relationship is poorer and the concentrations of TEAs tend to decrease with increasing runoff. In forested catchments, the correlation between runoff and TEA concentrations was weak. In most catchments, the concentrations of SO 4 decrease with an increase in runoff regardless of the land cover or season. The wet years export much higher amounts of TEAs than the dry years. In southern agricultural catchments, the wet years increased the TEA export for both spring (January-May) and autumn (September-December) periods, while in the peaty and forested catchments in eastern and northern Finland the export only increased in the autumn. Our predictions for the year 2099 indicate that the export of TEAs will increase especially from agricultural but also from forested catchments. Additionally, the predictions show an increase in the export of Fe and SO 4 for all the catchments for the autumn. Thus, the climate induced change in the runoff regime is likely to alter the exported amount of TEAs and the timing of the export downstream. The changes in the amounts and timing in the export of TEAs have a potential to modify the mineralization pathways in the receiving water bodies, with feedbacks in the cycling of C, nutrients and metals in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sultana, R.; Mroczek, M.; Dallman, S.; Sengupta, A.; Stein, E. D.
2016-12-01
The portion of the Total Impervious Area (TIA) that is hydraulically connected to the storm drainage network is called the Effective Impervious Area (EIA). The remaining fraction of impervious area, called the non-effective impervious area, drains onto pervious surfaces which do not contribute to runoff for smaller events. Using the TIA instead of EIA in models and calculations can lead to overestimates of runoff volumes peak discharges and oversizing of drainage system since it is assumed all impervious areas produce urban runoff that is directly connected to storm drains. This makes EIA a better predictor of actual runoff from urban catchments for hydraulic design of storm drain systems and modeling non-point source pollution. Compared to TIA, determining the EIA is considerably more difficult to calculate since it cannot be found by using remote sensing techniques, readily available EIA datasets, or aerial imagery interpretation alone. For this study, EIA percentages were calculated by two successive regression methods for five watersheds (with areas of 8.38 - 158mi2) located in Southern California using rainfall-runoff event data for the years 2004 - 2007. Runoff generated from the smaller storm events are considered to be emanating only from the effective impervious areas. Therefore, larger events that were considered to have runoff from both impervious and pervious surfaces were successively removed in the regression methods using a criterion of (1) 1mm and (2) a max (2 , 1mm) above the regression line. MSE is calculated from actual runoff and runoff predicted by the regression. Analysis of standard deviations showed that criterion of max (2 , 1mm) better fit the regression line and is the preferred method in predicting the EIA percentage. The estimated EIAs have shown to be approximately 78% to 43% of the TIA which shows use of EIA instead of TIA can have significant impact on the cost building urban hydraulic systems and stormwater capture devices.
Zheng, Mingguo; Chen, Xiaoan
2015-01-01
Correlation analysis is popular in erosion- or earth-related studies, however, few studies compare correlations on a basis of statistical testing, which should be conducted to determine the statistical significance of the observed sample difference. This study aims to statistically determine the erosivity index of single storms, which requires comparison of a large number of dependent correlations between rainfall-runoff factors and soil loss, in the Chinese Loess Plateau. Data observed at four gauging stations and five runoff experimental plots were presented. Based on the Meng's tests, which is widely used for comparing correlations between a dependent variable and a set of independent variables, two methods were proposed. The first method removes factors that are poorly correlated with soil loss from consideration in a stepwise way, while the second method performs pairwise comparisons that are adjusted using the Bonferroni correction. Among 12 rainfall factors, I30 (the maximum 30-minute rainfall intensity) has been suggested for use as the rainfall erosivity index, although I30 is equally correlated with soil loss as factors of I20, EI10 (the product of the rainfall kinetic energy, E, and I10), EI20 and EI30 are. Runoff depth (total runoff volume normalized to drainage area) is more correlated with soil loss than all other examined rainfall-runoff factors, including I30, peak discharge and many combined factors. Moreover, sediment concentrations of major sediment-producing events are independent of all examined rainfall-runoff factors. As a result, introducing additional factors adds little to the prediction accuracy of the single factor of runoff depth. Hence, runoff depth should be the best erosivity index at scales from plots to watersheds. Our findings can facilitate predictions of soil erosion in the Loess Plateau. Our methods provide a valuable tool while determining the predictor among a number of variables in terms of correlations.
Tillage impact on herbicide loss by surface runoff and lateral subsurface flow
USDA-ARS?s Scientific Manuscript database
There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...
USDA-ARS?s Scientific Manuscript database
Within the agriculturally-intensive Mississippi River Basin of the United States, significant conservation efforts have focused on management practices that reduce nutrient runoff into receiving aquatic ecosystems. Only a small fraction of those efforts have focused on phytoremediation techniques. ...
Deininger, A; Faithfull, C L; Lange, K; Bayer, T; Vidussi, F; Liess, A
2016-08-01
Climate change scenarios predict intensified terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity, with unknown consequences for the phytoplankton community. We conducted a 12-day mesocosm experiment in the Mediterranean Thau Lagoon (France), adding soil (simulated runoff) and fish (different food webs) in a 2 × 2 full factorial design and monitored phytoplankton composition, shade adaptation and stoichiometry. Diatoms (Chaetoceros) increased four-fold immediately after soil addition, prymnesiophytes and dinoflagellates peaked after six- and 12 days, respectively. Soil induced no phytoplankton shade adaptation. Fish reduced the positive soil effect on dinoflagellates (Scripsiella, Glenodinium), and diatom abundance in general. Phytoplankton community composition drove seston stoichiometry. In conclusion, pulsed terrestrial runoff can cause rapid, low quality (high carbon: nutrient) diatom blooms. However, bloom duration may be short and reduced in magnitude by fish. Thus, climate change may shift shallow coastal ecosystems towards famine or feast dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.
2003-04-01
Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.
Hoppe, H; Messmann, S; Giga, A; Gruening, H
2011-01-01
'Classical' real-time control (RTC) strategies in sewer systems are based on water level and flow measurements with the goal of activation of retention volume. The control system rule of 'clean (storm water) runoff into the receiving water - polluted runoff into the treatment plant' has been thwarted by rough operating conditions and lack of measurements. Due to the specific boundary conditions in the city of Wuppertal's separate sewer system (clean stream water is mixed with polluted storm water runoff) a more sophisticated--pollution-based--approach was needed. In addition the requirements to be met by the treatment of storm water runoff have become more stringent in recent years. To separate the highly-polluted storm water runoff during rain events from the cleaner stream flow a pollution-based real-time control (P-RTC) system was developed and installed. This paper describes the measurement and P-RTC equipment, the definition of total suspended solids as the pollution-indicating parameter, the serviceability of the system, and also gives a cost assessment. A sensitivity analysis and pollution load calculations have been carried out in order to improve the P-RTC algorithm. An examination of actual measurements clearly shows the ecological and economic advantages of the P-RTC strategy.
Impacts of climate change and human activities on runoff in Weihe Basin based on Budyko hypothesis
NASA Astrophysics Data System (ADS)
Wu, H. S.; Liu, D. F.; Chang, J. X.; Zhang, H. X.; Huang, Q.
2017-08-01
The Weihe River Basin (WRB) is the largest tributary of the Yellow River and plays an irreplaceable role in the Shaanxi-Gansu-Ningxia area. In recent years, owing to the human activities and climate change, the runoff of the WRB has reduced, wherefore, it is necessary to analyze the impact on runoff quantitatively. By using the data of Huaxian and Zhuangtou stations, we can respectively calculate the changes in runoff for climate change and human activities via Budyko hypothesis. The trend of runoff, precipitation, temperature, potential evapotranspiration and the break points are examined by Mann-Kendall test (M-K method), cumulative anomaly method and ordered cluster analysis. The results show that the break points of runoff series in WRB are 1970 and 1989, so that the runoff series can be divided into the baseline period and the changed period. Based on the data of potential evapotranspiration and Budyko formula, the contribution rates of climate change and human activities to runoff are 41% and 59% in 1970-1989. From 1990 to 2010, the contribution rates of climate change and human activities are 37% and 63%, respectively.
Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment
NASA Astrophysics Data System (ADS)
Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav
2010-05-01
Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis
Designing hybrid grass genomes to control runoff generation
NASA Astrophysics Data System (ADS)
MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.
2010-12-01
Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.
McIntyre, J K; Davis, J W; Incardona, J P; Stark, J D; Anulacion, B F; Scholz, N L
2014-12-01
Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness. Copyright © 2014 Elsevier B.V. All rights reserved.
Prats, Sergio Alegre; Martins, Martinho António Dos Santos; Malvar, Maruxa Cortizo; Ben-Hur, Meni; Keizer, Jan Jacob
2014-01-15
For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitigation of these effects has been little studied, especially outside the USA. This study aimed to quantify the effectiveness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus bark mulch at a rate of 10-12 Mg ha(-1), and surface application of a dry, granular, anionic polyacrylamide (PAM) at a rate of 50 kg ha(-1). During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average, 785 mm of overland flow in the untreated plots and 8.4 Mg ha(-1) of soil losses. Mulching reduced these two figures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-fire standing biomass. © 2013 Elsevier B.V. All rights reserved.
Antonious, George F
2012-01-01
Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.
Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures.
Dougherty, Warwick J; Nicholls, Paul J; Milham, Paul J; Havilah, Euie J; Lawrie, Roy A
2008-01-01
Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.
Sustainable water deliveries from the Colorado River in a changing climate.
Barnett, Tim P; Pierce, David W
2009-05-05
The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per year (bcm/yr) in 2025 to approximately 1.2-1.9 bcm/yr by 2050 out of a request of approximately 17.3 bcm/yr. Such values are small enough to be manageable. The chance of a year with deliveries <14.5 bcm/yr increases to 21% by midcentury if runoff reduces 20%, but such low deliveries could be largely avoided by reducing scheduled deliveries. These results are computed by using estimates of Colorado River flow from the 20th century, which was unusually wet; if the river reverts to its long-term mean, shortfalls increase another 1-1.5 bcm/yr. With either climate-change or long-term mean flows, currently scheduled future water deliveries from the Colorado River are not sustainable. However, the ability of the system to mitigate droughts can be maintained if the various users of the river find a way to reduce average deliveries.
Burkitt, Lucy L; Dougherty, Warwick J; Corkrey, Ross; Broad, Shane T
2011-01-01
The potential loss of P in runoff is a function of the combined effects of fertilizer-soil interactions and climatic characteristics. In this study, we applied a Bayesian approach to experimental data to model the annualized long-term risk of P runoff following single and split P fertilizer applications using two example catchments with contrasting rainfall/runoff patterns. Split P fertilizer strategies are commonly used in intensive pasture production in Australia and our results showed that three applications of 13.3 kg P ha(-1) resulted in a greater risk of P runoff compared with a single application of 40 kg P ha(-1) when long-term surface runoff data were incorporated into a Bayesian P risk model. Splitting P fertilizer applications increased the likelihood of a coincidence of fertilizer application and runoff occurring. We found that the overall risk of P runoff is also increased in catchments where the rainfall/runoff pattern is less predictable, compared with catchments where rainfall/runoff is winter dominant. The findings of our study also question the effectiveness of current recommendations to avoid applying fertilizer if runoff is likely to occur in the next few days, as we found that total P concentrations at the half-life were still very high (18.2 and 8.2 mg P L(-1)) following single and split P treatments, respectively. Data from the current study also highlight that omitting P fertilizer on soils that already have adequate soil test P concentrations is an effective method of reducing P loss in surface runoff. If P fertilizer must be applied, we recommend less frequent applications and only during periods of the year when the risk of surface P runoff is low.
Slash application reduces soil erosion in steep-sloped piñon-juniper woodlands
USDA-ARS?s Scientific Manuscript database
Mitigating runoff and associated erosion is a fundamental challenge for sustainable management of rangelands. Hillslope runoff and erosion are strongly influenced by ground cover, thus, a strategic management option exists to increase cover with slash from woody plant removal activities particularl...
Volume 3, Sources and migration of highway runoff pollutants--research report
DOT National Transportation Integrated Search
1984-05-01
The overall objectives of this research were to identify the sources of highway pollutants, and to determine their deposition and accumulation within the highway system and subsequent removal from the highway system to the surrounding environment. Th...
Effects of landscape-based green infrastructure on stormwater runoff in suburban developments
The development of impervious surfaces in urban and suburban catchments affects their hydrological behavior by decreasing infiltration, increasing peak hydrograph response following rainfall events, and ultimately increasing the total volume of water and mass of pollutants reachi...
Science in Action: National Stormwater Calculator (SWC)
Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. EPA has developed the National Stormwater C...
FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHEDS
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, gr...
FRAMEWORK FOR PLACEMENT OF BMP/LID IN URBAN WATERSHED
A number of stormwater control strategies, commonly known as best management practices (BMPs), are used to mitigate runoff volumes and associated nonpoint source pollution due to wet-weather flows (WWFs). BMP types include ponds, bioretention facilities, infiltration trenches, g...
Reducing sedimentation of depressional wetlands in agricultural landscapes
Skagen, S.K.; Melcher, Cynthia; Haukos, D.A.
2008-01-01
Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants that threaten wetlands and the current knowledge of design and usefulness of grass buffers for protecting isolated wetlands. Buffer effectiveness is dependent on several factors, including vegetation structure, buffer width, attributes of the surrounding watershed (i.e., area, vegetative cover, slope and topography, soil type and structure, soil moisture, amount of herbicides and pesticides applied), and intensity and duration of rain events. To reduce dissolved contaminants from runoff, the water must infiltrate the soil where microbes or other processes can break down or sequester contaminants. But increasing infiltration also diminishes total water volume entering a wetland, which presents threats to wetland hydrology in semi-arid regions. Buffer effectiveness may be enhanced significantly by implementing other best management practices (e.g., conservation tillage, balancing input with nutrient requirements for livestock and crops, precision application of chemicals) in the surrounding watershed to diminish soil erosion and associated contaminant runoff. Buffers require regular maintenance to remove sediment build-up and replace damaged or over-mature vegetation. Further research is needed to establish guidelines for effective buffer width and structure, and such efforts should entail a coordinated, regional, multi-scale, multidisciplinary approach to evaluate buffer effectiveness and impacts. Direct measures in "real-world" systems and field validations of buffer-effectiveness models are crucial next steps in evaluating how grass buffers will impact the abiotic and biotic variables attributes that characterize small, isolated wetlands. ?? 2008 The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
McGuire, Luke A.; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-07-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
Hedberg, Yolanda S; Goidanich, Sara; Herting, Gunilla; Wallinder, Inger Odnevall
2015-01-01
Predictions of the diffuse dispersion of metals from outdoor constructions such as roofs and facades are necessary for environmental risk assessment and management. An existing predictive model has been compared with measured data of copper runoff from copper sheets exposed at four different inclinations facing four orientations at two different urban sites (Stockholm, Sweden, and Milan, Italy) during a 4-year period. Its applicability has also been investigated for copper sheet exposed at two marine sites(Cadiz, Spain, for 5 years, and Brest, France, for 9 years). Generally the model can be used for all given conditions. However, vertical surfaces should be considered as surfaces inclined 60-80 due to wind driven effects. The most important parameters that influence copper runoff, and not already included in the model, are the wind and rain characteristics that influence the actual rainfall volume impinging the surface of interest.
Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael R; Madsen, Henrik
2013-01-01
Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input for forecasting outflow from two catchments in the Copenhagen area. Stochastic grey-box models are applied to create the runoff forecasts, providing us with not only a point forecast but also a quantification of the forecast uncertainty. Evaluating the results, we can show that using the adjusted radar data improves runoff forecasts compared with using the original radar data and that rain gauge measurements as forecast input are also outperformed. Combining the data merging approach with short-term rainfall forecasting algorithms may result in further improved runoff forecasts that can be used in real time control.
McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-01-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
Release of silver nanoparticles from outdoor facades.
Kaegi, Ralf; Sinnet, Brian; Zuleeg, Steffen; Hagendorfer, Harald; Mueller, Elisabeth; Vonbank, Roger; Boller, Markus; Burkhardt, Michael
2010-09-01
In this study we investigate the release of metallic silver nanoparticles (Ag-NP) from paints used for outdoor applications. A facade panel mounted on a model house was exposed to ambient weather conditions over a period of one year. The runoff volume of individual rain events was determined and the silver and titanium concentrations of 36 out of 65 runoff events were measured. Selected samples were prepared for electron microscopic analysis. A strong leaching of the Ag-NP was observed during the initial runoff events with a maximum concentration of 145 micro Ag/l. After a period of one year, more than 30% of the Ag-NP were released to the environment. Particles were mostly <15 nm and are released as composite colloids attached to the organic binders of the paint. Microscopic results indicate that the Ag-NP are likely transformed to considerably less toxic forms such as Ag2S. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Diffuse emission and control of copper in urban surface runoff.
Boller, M A; Steiner, M
2002-01-01
Copper washed off from roofs and roads is considered to be a major contribution to diffuse copper pollution of urban environments. In order to guarantee sustainable protection of soils and water, the long-term strategy is to avoid or replace copper containing materials on roofs and fagades. Until achievement of this goal, a special adsorber system is suggested to control the diffuse copper fluxes by retention of copper by a mixture of granulated iron-hydroxide (GEH) and calcium carbonate. Since future stormwater runoff concepts are based on decentralised runoff infiltration into the underground, solutions are proposed which provide for copper retention in infiltration sites using GEH adsorption layers. The example of a large copper façade of which the runoff is treated in an adsorption trench reveals the first full-scale data on façade runoff and adsorber performance. During the first year of investigation average façade runoff concentrations in the range of 1-10 mg Cu/l are reduced by 96-99% in the adsorption ditch.
Ficklin, Darren L; Luo, Yuzhou; Luedeling, Eike; Gatzke, Sarah E; Zhang, Minghua
2010-01-01
The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO(2), temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO(2) concentration or temperature. Increase of precipitation by +/-10% and +/-20% generally changed agricultural runoff proportionally. Solely increasing CO(2) concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO(2) concentration changes.
NASA Astrophysics Data System (ADS)
Giaccio, Gustavo; Laterra, Pedro; Aparicio, Virginia; Costa, Jose Luis
2017-04-01
In this study, some aspects related to the effect of the crack willow (Salix fragilis L.) invasion on the reduction of runoff and sediment retention, glyphosate, nitrogen and phosphorus in riparian environments with herbaceous vegetation of the Austral Pampa of Argentina were analysed. In order to evaluate the influence of the willows on the filtering mechanisms, surface runoff simulation experiments were carried out in plots of 1.5 m x 2.5 m in environments characterized by the presence vs. the absence of willows. In spite of the small length of the experimental plots, glyphosate retention in the tree-less plots reached 73.6%, a higher value than that recorded in tree stands (43.8%). However, sediment, nitrogen and phosphorus retention did not vary significantly between treatments. On the other hand, the reduction of the volume of runoff in the sites with trees reached 63%, a superior value to the one registered in strips without trees (31%). The presence of trees only significantly modified the biophysical properties of hydraulic conductivity, surface roughness, aerial biomass and soil moisture, compared to areas with no trees. Partial correlation analysis for both tree and no-tree environments showed that the reduction in runoff volume increased significantly with hydraulic conductivity, soil sand content and depth at the water table, and decreased with apparent density, soil moisture and the slope of the riverbank. However, sediment retention increased significantly with aerial, mulch and root biomass and decreased with the slope of the riparian strip. Glyphosate retention increased significantly with sediment retention and decreased with the slope of the riparian strip and the mulch biomass. Nitrogen retention increased with the reduction of runoff flow, soil hydraulic conductivity and depth to the water table and decreased with slope and sediment retention. While, phosphorus retention increased with sediment retention and decreased with slope and soil content of soils. However, the mechanisms involved in the differential effect of the vegetation with or without trees could not be explained. This work emphasizes the importance of the ecosystem function of glyphosate filtration of riparian environments covered by herbaceous vegetation in front of the increasing intensification of agriculture. On the other hand, in the context of agro ecosystems and agricultural landscapes the presence of trees contributes to the reduction of the flow of runoff, although these sub compensate in relation to the sites without trees, considering the balance between flow and concentration.
Modelling increased soil cohesion by plant roots with EUROSEM
NASA Astrophysics Data System (ADS)
de Baets, S.; Poesen, J.; Torri, D.; Salvador, M. P.
2009-04-01
Soil cohesion is an important variable to model soil detachment by runoff (Morgan et al., 1998a). As soil particles are not loose, soil detachment by runoff will be limited by the cohesion of the soil material. It is generally recognized that plant roots contribute to the overall cohesion of the soil. Determination of this increased cohesion and soil roughness however is complicated and measurements of shear strength and soil reinforcement by plant roots are very time- and labour consuming. A model approach offers an alternative for the assessment of soil cohesion provided by plant roots However, few erosion models account for the effects of the below-ground biomass in their calculation of erosion rates. Therefore, the main objectives of this study is to develop an approach to improve an existing soil erosion model (EUROSEM) accounting for the erosion-reducing effects of roots. The approach for incorporating the root effects into this model is based on a comparison of measured soil detachment rates for bare and for root-permeated topsoil samples with predicted erosion rates under the same flow conditions using the erosion equation of EUROSEM. Through backwards calculation, transport capacity efficiencies and corresponding soil cohesion values can be assessed for bare and root-permeated topsoils respectively. The results are promising and show that grass roots provide a larger increase in soil cohesion as compared with tap-rooted species and that the increase in soil cohesion is not significantly different under wet and dry soil conditions, either for fibrous root systems or for tap root systems. Relationships are established between measured root density values and the corresponding calculated soil cohesion values, reflecting the effects of roots on the resistance of the topsoil to concentrated flow incision. These relationships enable one to incorporate the root effect into the soil erosion model EUROSEM, through adapting the soil cohesion input value. A scenario analysis performed with EUROSEM for different vegetation treatments, indicates that runoff and soil loss on root-permeated topsoils are slightly higher as compared to fully covered grass fields or harvested grass fields with some plant residue left, but much smaller as compared to bare topsoils. Moreover, when re-vegetating bare soils, roots are responsible for a large part of the reduction in soil loss and runoff by concentrated flow. Hence, this analysis shows that the contribution of roots to soil cohesion is very important for preventing soil loss and reducing runoff volume. The increase in soil shear strength due to the binding effect of roots on soil particles is two orders of magnitude lower as compared with soil reinforcement achieved when roots mobilize their tensile strength during soil shearing and root breakage.
Dam nation: A geographic census of American dams and their large-scale hydrologic impacts
NASA Astrophysics Data System (ADS)
Graf, William L.
1999-04-01
Newly available data indicate that dams fragment the fluvial system of the continental United States and that their impact on river discharge is several times greater than impacts deemed likely as a result of global climate change. The 75,000 dams in the continental United States are capable of storing a volume of water almost equaling one year's mean runoff, but there is considerable geographic variation in potential surface water impacts. In some western mountain and plains regions, dams can store more than 3 year's runoff, while in the Northeast and Northwest, storage is as little as 25% of the annual runoff. Dams partition watersheds; the drainage area per dam varies from 44 km2 (17 miles2) per dam in New England to 811 km2 (313 miles2) per dam in the Lower Colorado basin. Storage volumes, indicators of general hydrologic effects of dams, range from 26,200 m3 km-2 (55 acre-feet mile-2) in the Great Basin to 345,000 m3 km-2 (725 acre-feet mile-2) in the South Atlantic region. The greatest river flow impacts occur in the Great Plains, Rocky Mountains, and the arid Southwest, where storage is up to 3.8 times the mean annual runoff. The nation's dams store 5000 m3 (4 acre-feet) of water per person. Water resource regions have experienced individualized histories of cumulative increases in reservoir storage (and thus of downstream hydrologic and ecologic impacts), but the most rapid increases in storage occurred between the late 1950s and the late 1970s. Since 1980, increases in storage have been relatively minor.
A model for assessing water quality risk in catchments prone to wildfire
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Smith, Hugh; Chong, Derek; Nyman, Petter; Lane, Patrick; Sheridan, Gary
2017-04-01
Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity-Frequency-Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6 - 28.5 mm ka-1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18 - 124 years.
NASA Astrophysics Data System (ADS)
Stewart, Anne M.
This dissertation reports on the methods and results of a three-phased investigation to estimate the annual volume of ephemeral-channel-focused groundwater recharge attributable to urbanization (urban-enhanced groundwater recharge) in the Sierra Vista subwatershed of southeastern Arizona, USA. Results were used to assess a prior estimate. The first research phase focused on establishment of a study area, installation of a distributed network of runoff gages, gaging for stage, and transforming 2008 stage data into time series of volumetric discharge, using the continuous slope-area method. Stage data were collected for water years 2008 - 2011. The second research phase used 2008 distributed runoff data with NWS DOPPLER RADAR data to optimize a rainfall-runoff computational model, with the aim of identifying optimal site-specific distributed hydraulic conductivity values and model-predicted infiltration. The third research phase used the period-of-record runoff stage data to identify study-area ephemeral flow characteristics and to estimate channel-bed infiltration of flow events. Design-storm modeling was used to identify study-area predevelopment ephemeral flow characteristics, given the same storm event. The difference between infiltration volumes calculated for the two cases was attributed to urbanization. Estimated evapotranspiration was abstracted and the final result was equated with study-area-scale urban-enhanced groundwater recharge. These results were scaled up to the Sierra Vista subwatershed: the urban-enhanced contribution to groundwater recharge is estimated to range between 3270 and 3635 cubic decameters (between 2650 and 2945 acre-feet) per year for the period of study. Evapotranspirational losses were developed from estimates made elsewhere in the subwatershed. This, and other sources of uncertainty in the estimates, are discussed and quantified if possible.
This project examined a common, but poorly understood, problem associated with land development, namely the modifications made to soil structure and the associated reduced rainfall infiltration and increased runoff. The project was divided into two separate major tasks: 1) to tes...
Setback distance requirements for removal of swine slurry constituents in runoff
USDA-ARS?s Scientific Manuscript database
The establishment of vegetative filter strips at the bottom of a hillslope has been shown to substantially reduce nutrients and sediment in runoff. The use of setback distances on cropland areas could serve a similar function. However, there is little information available to help identify setback ...
Utilizing water treatment residuals to reduce phosphorus runoff from biosolids
USDA-ARS?s Scientific Manuscript database
Approximately 40% of biosolids (sewage sludge) produced in the U.S. are incinerated or landfilled rather than land applied due to concern over non-point source phosphorus (P) runoff. The objective of this study was to determine the impact of chemical amendments on water-extractable P (WEP) in appli...