Sample records for reducing scan test

  1. Scanning ion-conductance and atomic force microscope with specialized sphere-shaped nanopippettes

    NASA Astrophysics Data System (ADS)

    Zhukov, M. V.; Sapozhnikov, I. D.; Golubok, A. O.; Chubinskiy-Nadezhdin, V. I.; Komissarenko, F. E.; Lukashenko, S. Y.

    2017-11-01

    A scanning ion-conductance microscope was designed on the basis of scanning probe microscope NanoTutor. The optimal parameters of nanopipettes fabrication were found according to scanning electron microscopy diagnostics, current-distance I (Z) and current-voltage characteristics. A comparison of images of test objects, including biological samples, was carried out in the modes of optical microscopy, atomic force microscopy and scanning ion-conductance microscopy. Sphere-shaped nanopippettes probes were developed and tested to increase the stability of pipettes, reduce invasiveness and improve image quality of atomic force microscopy in tapping mode. The efficiency of sphere-shaped nanopippettes is shown.

  2. An audit of imaging test utilization for the management of lymphoma in an oncology hospital: implications for resource planning?

    PubMed

    Schwartz, A; Gospodarowicz, M K; Khalili, K; Pintilie, M; Goddard, S; Keller, A; Tsang, R W

    2006-02-01

    The purpose of this study was to assist with resource planning by examining the pattern of physician utilization of imaging procedures for lymphoma patients in a dedicated oncology hospital. The proportion of imaging tests ordered for routine follow up with no specific clinical indication was quantified, with specific attention to CT scans. A 3-month audit was performed. The reasons for ordering all imaging procedures (X-rays, CT scans, ultrasound, nuclear scan and MRI) were determined through a retrospective chart review. 411 lymphoma patients had 686 assessments (sets of imaging tests) and 981 procedures (individual imaging tests). Most procedures were CT scans (52%) and chest radiographs (30%). The most common reasons for ordering imaging were assessing response (23%), and investigating new symptoms (19%). Routine follow up constituted 21% of the assessments (142/686), and of these, 82% were chest radiographs (116/142), while 24% (34/142) were CT scans. With analysis restricted to CT scans (296 assessments in 248 patients), the most common reason for ordering CT scans were response evaluation (40%), and suspicion of recurrence and/or new symptom (23%). Follow-up CT scans done with no clinical indication comprised 8% (25/296) of all CT assessments. Staging CT scans were under-represented at 6% of all assessments. Imaging with CT scans for follow up of asymptomatic patients is infrequent. However, scans done for staging new lymphoma patients were unexpectedly low in frequency, due to scans done elsewhere prior to referral. This analysis uncovered utilization patterns, helped resource planning and provided data to reduce unnecessary imaging procedures.

  3. Scanning laser densitometry and color perimetry demonstrate reduced photopigment density and sensitivity in two patients with retinal degeneration.

    PubMed

    Tornow, R P; Stilling, R; Zrenner, E

    1999-10-01

    To test the feasibility of scanning laser densitometry with a modified Rodenstock scanning laser ophthalmoscope (SLO) to measure the rod and cone photopigment distribution in patients with retinal diseases. Scanning laser densitometry was performed using a modified Rodenstock scanning laser ophthalmoscope. The distribution of the photopigments was calculated from dark adapted and bleached images taken with the 514 nm laser of the SLO. This wavelength is absorbed by rod and cone photopigments. Discrimination is possible due to their different spatial distribution. Additionally, to measure retinal sensitivity profiles, dark adapted two color static perimetry with a Tübinger manual perimeter was performed along the horizontal meridian with 1 degree spacing. A patient with retinitis pigmentosa had slightly reduced photopigment density within the central +/- 5 degrees but no detectable photopigment for eccentricities beyond 5 degrees. A patient with cone dystrophy had nearly normal pigment density beyond +/- 5 degrees, but considerably reduced photopigment density within the central +/- 5 degrees. Within the central +/- 5 degrees, the patient with retinitis pigmentosa had normal sensitivity for the red stimulus and reduced sensitivity for the green stimulus. There was no measurable function beyond 7 degrees. The patient with cone dystrophy had normal sensitivity for the green stimulus outside the foveal center and reduced sensitivity for the red stimulus at the foveal center. The results of color perimetry for this patient with a central scotoma were probably influenced by eccentric fixation. Scanning laser densitometry with a modified Rodenstock SLO is a useful method to assess the human photopigment distribution. Densitometry results were confirmed by dark adapted two color static perimetry. Photopigment distribution and retinal sensitivity profiles can be measured with high spatial resolution. This may help to measure exactly the temporal development of retinal diseases and to test the success of different therapeutic treatments. Both methods have limitations at the present state of development. However, some of these limitations can be overcome by further improving the instruments.

  4. Females scan more than males: a potential mechanism for sex differences in recognition memory.

    PubMed

    Heisz, Jennifer J; Pottruff, Molly M; Shore, David I

    2013-07-01

    Recognition-memory tests reveal individual differences in episodic memory; however, by themselves, these tests provide little information regarding the stage (or stages) in memory processing at which differences are manifested. We used eye-tracking technology, together with a recognition paradigm, to achieve a more detailed analysis of visual processing during encoding and retrieval. Although this approach may be useful for assessing differences in memory across many different populations, we focused on sex differences in face memory. Females outperformed males on recognition-memory tests, and this advantage was directly related to females' scanning behavior at encoding. Moreover, additional exposures to the faces reduced sex differences in face recognition, which suggests that males may be able to improve their recognition memory by extracting more information at encoding through increased scanning. A strategy of increased scanning at encoding may prove to be a simple way to enhance memory performance in other populations with memory impairment.

  5. Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    PubMed Central

    Zhu, Xianyong; Liu, Yaohui; Wang, Qiang; Liu, Jiaan

    2014-01-01

    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion. PMID:28788236

  6. SU-C-206-07: A Practical Sparse View Ultra-Low Dose CT Acquisition Scheme for PET Attenuation Correction in the Extended Scan Field-Of-View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, J; Fan, J; Gopinatha Pillai, A

    Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less

  7. Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity

    PubMed Central

    Song, Jie; Desphande, Alok S.; Meier, Timothy B.; Tudorascu, Dana L.; Vergun, Svyatoslav; Nair, Veena A.; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Bellec, Pierre; Prabhakaran, Vivek

    2012-01-01

    Resting-state functional MRI (rs-fMRI) has emerged as a powerful tool for investigating brain functional connectivity (FC). Research in recent years has focused on assessing the reliability of FC across younger subjects within and between scan-sessions. Test-retest reliability in resting-state functional connectivity (RSFC) has not yet been examined in older adults. In this study, we investigated age-related differences in reliability and stability of RSFC across scans. In addition, we examined how global signal regression (GSR) affects RSFC reliability and stability. Three separate resting-state scans from 29 younger adults (18–35 yrs) and 26 older adults (55–85 yrs) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available as part of the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 92 regions of interest (ROIs) with 5 cubic mm radius, derived from the default, cingulo-opercular, fronto-parietal and sensorimotor networks, were previously defined based on a recent study. Mean time series were extracted from each of the 92 ROIs from each scan and three matrices of z-transformed correlation coefficients were created for each subject, which were then used for evaluation of multi-scan reliability and stability. The young group showed higher reliability of RSFC than the old group with GSR (p-value = 0.028) and without GSR (p-value <0.001). Both groups showed a high degree of multi-scan stability of RSFC and no significant differences were found between groups. By comparing the test-retest reliability of RSFC with and without GSR across scans, we found significantly higher proportion of reliable connections in both groups without GSR, but decreased stability. Our results suggest that aging is associated with reduced reliability of RSFC which itself is highly stable within-subject across scans for both groups, and that GSR reduces the overall reliability but increases the stability in both age groups and could potentially alter group differences of RSFC. PMID:23227153

  8. Gated CT imaging using a free-breathing respiration signal from flow-volume spirometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Souza, Warren D.; Kwok, Young; Deyoung, Chad

    2005-12-15

    Respiration-induced tumor motion is known to cause artifacts on free-breathing spiral CT images used in treatment planning. This leads to inaccurate delineation of target volumes on planning CT images. Flow-volume spirometry has been used previously for breath-holds during CT scans and radiation treatments using the active breathing control (ABC) system. We have developed a prototype by extending the flow-volume spirometer device to obtain gated CT scans using a PQ 5000 single-slice CT scanner. To test our prototype, we designed motion phantoms to compare image quality obtained with and without gated CT scan acquisition. Spiral and axial (nongated and gated) CTmore » scans were obtained of phantoms with motion periods of 3-5 s and amplitudes of 0.5-2 cm. Errors observed in the volume estimate of these structures were as much as 30% with moving phantoms during CT simulation. Application of motion-gated CT with active breathing control reduced these errors to within 5%. Motion-gated CT was then implemented in patients and the results are presented for two clinical cases: lung and abdomen. In each case, gated scans were acquired at end-inhalation, end-exhalation in addition to a conventional free-breathing (nongated) scan. The gated CT scans revealed reduced artifacts compared with the conventional free-breathing scan. Differences of up to 20% in the volume of the structures were observed between gated and free-breathing scans. A comparison of the overlap of structures between the gated and free-breathing scans revealed misalignment of the structures. These results demonstrate the ability of flow-volume spirometry to reduce errors in target volumes via gating during CT imaging.« less

  9. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT.

    PubMed

    Hanna, Gerard G; McAleese, Jonathan; Carson, Kathryn J; Stewart, David P; Cosgrove, Vivian P; Eakin, Ruth L; Zatari, Ashraf; Lynch, Tom; Jarritt, Peter H; Young, V A Linda; O'Sullivan, Joe M; Hounsell, Alan R

    2010-05-01

    Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non-small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTV on the CT scan alone and then on the PET-CT scan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. PET-CT improved the CI between observers when defining the GTV using the PET-CT images compared with using CT alone for matched cases (median CI, 0.57 for CT and 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTV(CT) to GTV(FUSED) was -5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

  10. Scanning-time evaluation of Digimarc Barcode

    NASA Astrophysics Data System (ADS)

    Gerlach, Rebecca; Pinard, Dan; Weaver, Matt; Alattar, Adnan

    2015-03-01

    This paper presents a speed comparison between the use of Digimarc® Barcodes and the Universal Product Code (UPC) for customer checkout at point of sale (POS). The recently introduced Digimarc Barcode promises to increase the speed of scanning packaged goods at POS. When this increase is exploited by workforce optimization systems, the retail industry could potentially save billions of dollars. The Digimarc Barcode is based on Digimarc's watermarking technology, and it is imperceptible, very robust, and does not require any special ink, material, or printing processes. Using an image-based scanner, a checker can quickly scan consumer packaged goods (CPG) embedded with the Digimarc Barcode without the need to reorient the packages with respect to the scanner. Faster scanning of packages saves money and enhances customer satisfaction. It reduces the length of the queues at checkout, reduces the cost of cashier labor, and makes self-checkout more convenient. This paper quantifies the increase in POS scanning rates resulting from the use of the Digimarc Barcode versus the traditional UPC. It explains the testing methodology, describes the experimental setup, and analyzes the obtained results. It concludes that the Digimarc Barcode increases number of items per minute (IPM) scanned at least 50% over traditional UPC.

  11. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  12. Golden angle based scanning for robust corneal topography with OCT

    PubMed Central

    Wagner, Joerg; Goldblum, David; Cattin, Philippe C.

    2017-01-01

    Corneal topography allows the assessment of the cornea’s refractive power which is crucial for diagnostics and surgical planning. The use of optical coherence tomography (OCT) for corneal topography is still limited. One limitation is the susceptibility to disturbances like blinking of the eye. This can result in partially corrupted scans that cannot be evaluated using common methods. We present a new scanning method for reliable corneal topography from partial scans. Based on the golden angle, the method features a balanced scan point distribution which refines over measurement time and remains balanced when part of the scan is removed. The performance of the method is assessed numerically and by measurements of test surfaces. The results confirm that the method enables numerically well-conditioned and reliable corneal topography from partially corrupted scans and reduces the need for repeated measurements in case of abrupt disturbances. PMID:28270961

  13. Performance of the NIRS fast scanning system for heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Shirai, Toshiyuki; Takei, Yuka; Takeshita, Eri; Mizushima, Kota; Iwata, Yoshiyuki; Himukai, Takeshi; Mori, Shinichiro; Fukuda, Shigekazu; Minohara, Shinichi; Takada, Eiichi; Murakami, Takeshi; Noda, Koji

    2010-11-01

    A project to construct a new treatment facility, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy at NIRS. This new treatment facility is equipped with a 3D irradiation system with pencil-beam scanning. The challenge of this project is to realize treatment of a moving target by scanning irradiation. To achieve fast rescanning within an acceptable irradiation time, the authors developed a fast scanning system. In order to verify the validity of the design and to demonstrate the performance of the fast scanning prior to use in the new treatment facility, a new scanning-irradiation system was developed and installed into the existing HIMAC physics-experiment course. The authors made strong efforts to develop (1) the fast scanning magnet and its power supply, (2) the high-speed control system, and (3) the beam monitoring. The performance of the system including 3D dose conformation was tested by using the carbon beam from the HIMAC accelerator. The performance of the fast scanning system was verified by beam tests. Precision of the scanned beam position was less than +/-0.5 mm. By cooperating with the planning software, the authors verified the homogeneity of the delivered field within +/-3% for the 3D delivery. This system took only 20 s to deliver the physical dose of 1 Gy to a spherical target having a diameter of 60 mm with eight rescans. In this test, the average of the spot-staying time was considerably reduced to 154 micros, while the minimum staying time was 30 micros. As a result of this study, the authors verified that the new scanning delivery system can produce an accurate 3D dose distribution for the target volume in combination with the planning software.

  14. Testing and validation of multi-lidar scanning strategies for wind energy applications: Testing and validation of multi-lidar scanning strategies for wind energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.

    Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise, and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In Summer 2013, a vertically profiling Leosphere WindCube lidar and threemore » Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a “virtual tower” above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions, and can measure highresolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans.« less

  15. Exclusion and diagnosis of pulmonary embolism by a rapid ELISA D-dimer test and noninvasive imaging techniques within the context of a clinical model.

    PubMed

    Michiels, J J; Pattynama, P M

    2000-01-01

    A negative rapid ELISA D-dimer test alone in out-patients with a low to moderate clinical probability (CP) on pulmonary embolism (PE) is predicted to safely exclude pulmonary embolism. The combination of a negative rapid ELISA D-dimer test and a low to moderate CP on PE followed by compression ultrasonography (CUS) for the detection of deep vein thrombosis (DVT) is safe and cost-effective as it reduces the need for noninvasive imaging techniques to about 50% to 60% of outpatients with suspected PE. A high probability ventilation-perfusion (VP) scan or a positive spiral CT consistent with PE and the detection of DVT by CUS are currently considered to be clear indications for anticoagulant treatment. Subsequent pulmonary angiography (PA) is the gold standard diagnostic strategy to exclude or diagnose PE in suspected outpatients with a negative CUS, a positive rapid ELISA D-dimer test, and a nondiagnostic VP scan or negative spiral CT to prevent overtreatment with anticoagulants. However, the willingness of clinicians and the availability of resources to perform PA is restricted, a fact that has provided an impetus for clinical investigators to search for alternative noninvasive strategies to exclude or detect venous thromboembolism (VTE). Serial CUS testing for the detection of DVT in patients with a low to moderate CP on PE and a nondiagnostic VP scan or negative spiral CT is predicted to be safe and will reduce the need for PA to less than 10% or even less than 5%. This noninvasive serial CUS strategy restricts the need for invasive PA to a minor group of patients (< 5%) with the combination of a low CP on PE and high probability VP scan or the combination of a nondiagnostic VP scan or negative spiral CT and a high CP on PE. Prospective evaluations are warranted to implement and to validate the advantages and the disadvantages of the various combinations of noninvasive strategies and to compare serial CUS testing versus PA in randomized clinical management studies of outpatients with suspected pulmonary embolism.

  16. Evaluation of uterine ultrasound imaging in cervical radiotherapy; a comparison of autoscan and conventional probe

    PubMed Central

    Cooper, David T; Behrens, Claus F

    2016-01-01

    Objective: In cervical radiotherapy, it is essential that the uterine position is correctly determined prior to treatment delivery. The aim of this study was to evaluate an autoscan ultrasound (A-US) probe, a motorized transducer creating three-dimensional (3D) images by sweeping, by comparing it with a conventional ultrasound (C-US) probe, where manual scanning is required to acquire 3D images. Methods: Nine healthy volunteers were scanned by seven operators, using the Clarity® system (Elekta, Stockholm, Sweden). In total, 72 scans, 36 scans from the C-US and 36 scans from the A-US probes, were acquired. Two observers delineated the uterine structure, using the software-assisted segmentation in the Clarity workstation. The data of uterine volume, uterine centre of mass (COM) and maximum uterine lengths, in three orthogonal directions, were analyzed. Results: In 53% of the C-US scans, the whole uterus was captured, compared with 89% using the A-US. F-test on 36 scans demonstrated statistically significant differences in interobserver COM standard deviation (SD) when comparing the C-US with the A-US probe for the inferior–superior (p < 0.006), left–right (p < 0.012) and anteroposterior directions (p < 0.001). The median of the interobserver COM distance (Euclidean distance for 36 scans) was reduced from 8.5 (C-US) to 6.0 mm (A-US). An F-test on the 36 scans showed strong significant differences (p < 0.001) in the SD of the Euclidean interobserver distance when comparing the C-US with the A-US scans. The average Dice coefficient when comparing the two observers was 0.67 (C-US) and 0.75 (A-US). The predictive interval demonstrated better interobserver delineation concordance using the A-US probe. Conclusion: The A-US probe imaging might be a better choice of image-guided radiotherapy system for correcting for daily uterine positional changes in cervical radiotherapy. Advances in knowledge: Using a novel A-US probe might reduce the uncertainty in interoperator variability during ultrasound scanning. PMID:27452268

  17. Evaluation of uterine ultrasound imaging in cervical radiotherapy; a comparison of autoscan and conventional probe.

    PubMed

    Baker, Mariwan; Cooper, David T; Behrens, Claus F

    2016-10-01

    In cervical radiotherapy, it is essential that the uterine position is correctly determined prior to treatment delivery. The aim of this study was to evaluate an autoscan ultrasound (A-US) probe, a motorized transducer creating three-dimensional (3D) images by sweeping, by comparing it with a conventional ultrasound (C-US) probe, where manual scanning is required to acquire 3D images. Nine healthy volunteers were scanned by seven operators, using the Clarity(®) system (Elekta, Stockholm, Sweden). In total, 72 scans, 36 scans from the C-US and 36 scans from the A-US probes, were acquired. Two observers delineated the uterine structure, using the software-assisted segmentation in the Clarity workstation. The data of uterine volume, uterine centre of mass (COM) and maximum uterine lengths, in three orthogonal directions, were analyzed. In 53% of the C-US scans, the whole uterus was captured, compared with 89% using the A-US. F-test on 36 scans demonstrated statistically significant differences in interobserver COM standard deviation (SD) when comparing the C-US with the A-US probe for the inferior-superior (p < 0.006), left-right (p < 0.012) and anteroposterior directions (p < 0.001). The median of the interobserver COM distance (Euclidean distance for 36 scans) was reduced from 8.5 (C-US) to 6.0 mm (A-US). An F-test on the 36 scans showed strong significant differences (p < 0.001) in the SD of the Euclidean interobserver distance when comparing the C-US with the A-US scans. The average Dice coefficient when comparing the two observers was 0.67 (C-US) and 0.75 (A-US). The predictive interval demonstrated better interobserver delineation concordance using the A-US probe. The A-US probe imaging might be a better choice of image-guided radiotherapy system for correcting for daily uterine positional changes in cervical radiotherapy. Using a novel A-US probe might reduce the uncertainty in interoperator variability during ultrasound scanning.

  18. Reduced-order modeling for hyperthermia control.

    PubMed

    Potocki, J K; Tharp, H S

    1992-12-01

    This paper analyzes the feasibility of using reduced-order modeling techniques in the design of multiple-input, multiple-output (MIMO) hyperthermia temperature controllers. State space thermal models are created based upon a finite difference expansion of the bioheat transfer equation model of a scanned focused ultrasound system (SFUS). These thermal state space models are reduced using the balanced realization technique, and an order reduction criterion is tabulated. Results show that a drastic reduction in model dimension can be achieved using the balanced realization. The reduced-order model is then used to design a reduced-order optimal servomechanism controller for a two-scan input, two thermocouple output tissue model. In addition, a full-order optimal servomechanism controller is designed for comparison and validation purposes. These two controllers are applied to a variety of perturbed tissue thermal models to test the robust nature of the reduced-order controller. A comparison of the two controllers validates the use of open-loop balanced reduced-order models in the design of MIMO hyperthermia controllers.

  19. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jun, E-mail: jun.deng@yale.edu; Chen Zhe; Yu, James B.

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGymore » to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.« less

  20. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  1. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  2. Individual A-Scan Signal Normalization Between Two Spectral Domain Optical Coherence Tomography Devices

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Ling, Yun; Bilonick, Richard A.; Kagemann, Larry; Sigal, Ian A.; Schuman, Joel S.

    2013-01-01

    Purpose. We developed a method to normalize optical coherence tomography (OCT) signal profiles from two spectral-domain (SD) OCT devices so that the comparability between devices increases. Methods. We scanned 21 eyes from 14 healthy and 7 glaucoma subjects with two SD-OCT devices on the same day, with equivalent cube scan patterns centered on the fovea (Cirrus HD-OCT and RTVue). Foveola positions were selected manually and used as the center for registration of the corresponding images. A-scan signals were sampled 1.8 mm from the foveola in the temporal, superior, nasal, and inferior quadrants. After oversampling and rescaling RTVue data along the Z-axis to match the corresponding Cirrus data format, speckle noise reduction and amplitude normalization were applied. For comparison between normalized A-scan profiles, mean absolute difference in amplitude in percentage was measured at each sampling point. As a reference, the mean absolute difference between two Cirrus scans on the same eye also was measured. Results. The mean residual of the A-scan profile amplitude was reduced significantly after signal normalization (12.7% vs. 6.2%, P < 0.0001, paired t-test). All four quadrants also showed statistically significant reduction (all P < 0.0001). Mean absolute difference after normalization was smaller than the one between two Cirrus scans. No performance difference was detected between health and glaucomatous eyes. Conclusions. The reported signal normalization method successfully reduced the A-scan profile differences between two SD-OCT devices. This signal normalization processing may improve the direct comparability of OCT image analysis and measurement on various devices. PMID:23611992

  3. Comparison of Agar Dilution, Disk Diffusion, MicroScan, and Vitek Antimicrobial Susceptibility Testing Methods to Broth Microdilution for Detection of Fluoroquinolone-Resistant Isolates of the Family Enterobacteriaceae

    PubMed Central

    Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.

    1999-01-01

    Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809

  4. Glenn Goddard TDRSS Waveform 1.1.3 On-Orbit Performance Report

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.

    2014-01-01

    The objective of the Space Communications and Navigation (SCaN) Testbed is to study the development, testing, and operation of software defined radios (SDRs) and their associated appliations in the operational space environment to reduce cost and risk for future space missions. This report covers the results of on-orbit performance testing completed using the Glenn Goddard Tracking and Data Relay Satellite System (TDRSS) waveform version 1.1.3 in the ground and space environments. The Glenn Goddard TDRSS (GGT) waveform, operating on the SCaN Testbed Jet Propulsion Laboratory (JPL) SDR, is capable of a variety of data rates and frequencies, operating using Binary Phase Shift Keying (BPSK).

  5. Treatment of visual neglect in elderly patients with stroke: a single-subject series using either a scanning and cueing strategy or a left-limb activation strategy.

    PubMed

    Bailey, Maggie J; Riddoch, M Jane; Crome, Peter

    2002-08-01

    The presence of unilateral visual neglect (UVN) may adversely affect functional recovery, and rehabilitation strategies that are practical for use in clinical settings are needed. The purpose of this study was to evaluate the use of 2 approaches to reduce UVN in people who have had strokes. Seven elderly patients with stroke and severe left UVN, aged 60 to 85 years, were recruited from a stroke rehabilitation unit. A nonconcurrent, multiple-baselines-across-subjects approach, with an A-B-A treatment-withdrawal single-subject experimental design, was used. Five subjects received a scanning and cueing approach, and 2 subjects received a contralesional limb activation approach, for 10 one-hour sessions. In the former approach, active scanning to the left was encouraged by the therapist, using visual and verbal cues and a mental imagery technique, during reading and copying tasks and simple board games. In the latter approach, functional and goal-oriented left upper-limb activities in neglected hemispace were encouraged. Unilateral visual neglect was examined by a masked (blinded) examiner throughout all phases using the Star Cancellation Test, the Line Bisection Test, and the Baking Tray Task. Data were analyzed using visual and inferential statistical techniques. Both subjects who received limb activation and 3 of the 5 subjects who received scanning and cueing showed a reduction in UVN in one or more tests. This improvement was maintained during the withdrawal phase. Both approaches had a positive effect of reducing aspects of UVN in some subjects relative to no-treatment baselines. However, causality cannot be assured in the absence of controls. The approaches are practical for use in rehabilitation settings. These procedures warrant further replication across subjects, settings, and therapists.

  6. Reducing Head CT Use for Children With Head Injuries in a Community Emergency Department.

    PubMed

    Jennings, Rebecca M; Burtner, Jennifer J; Pellicer, Joseph F; Nair, Deepthi K; Bradford, Miranda C; Shaffer, Michele; Uspal, Neil G; Tieder, Joel S

    2017-04-01

    Clinical decision rules have reduced use of computed tomography (CT) to evaluate minor pediatric head injury in pediatric emergency departments (EDs). CT use remains high in community EDs, where the majority of children seek medical care. We sought to reduce the rate of CT scans used to evaluate pediatric head injury from 29% to 20% in a community ED. We evaluated a quality improvement (QI) project in a community ED aimed at decreasing the use of head CT scans in children by implementing a validated head trauma prediction rule for traumatic brain injury. A multidisciplinary team identified key drivers of CT use and implemented decision aids to improve the use of prediction rules. The team identified and mitigated barriers. An affiliated children's hospital offered Maintenance of Certification credit and QI coaching to participants. We used statistical process control charts to evaluate the effect of the intervention on monthly CT scan rates and performed a Wald test of equivalence to compare preintervention and postintervention CT scan proportions. The baseline period (February 2013-July 2014) included 695 patients with a CT scan rate of 29.2% (95% confidence interval, 25.8%-32.6%). The postintervention period (August 2014-October 2015) included 651 patients with a CT scan rate of 17.4% (95% confidence interval, 14.5%-20.2%, P < .01). Barriers included targeting providers with variable pediatric experience and parental imaging expectations. We demonstrate that a Maintenance of Certification QI project sponsored by a children's hospital can facilitate evidence-based pediatric care and decrease the rate of unnecessary CT use in a community setting. Copyright © 2017 by the American Academy of Pediatrics.

  7. Evaluation of the dependence of the exposure dose on the attenuation correction in brain PET/CT scans using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong

    2014-01-01

    This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.

  8. Excitation-scanning hyperspectral imaging microscope

    PubMed Central

    Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2014-01-01

    Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909

  9. Excitation-scanning hyperspectral imaging microscope.

    PubMed

    Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J

    2014-04-01

    Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300  ms/wavelength band with excitation scanning versus 3  s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.

  10. Change descriptors for determining nodule malignancy in national lung screening trial CT screening images

    NASA Astrophysics Data System (ADS)

    Geiger, Benjamin; Hawkins, Samuel; Hall, Lawrence O.; Goldgof, Dmitry B.; Balagurunathan, Yoganand; Gatenby, Robert A.; Gillies, Robert J.

    2016-03-01

    Pulmonary nodules are effectively diagnosed in CT scans, but determining their malignancy has been a challenge. The rate of change of the volume of a pulmonary nodule is known to be a prognostic factor for cancer development. In this study, we propose that other changes in imaging characteristics are similarly informative. We examined the combination of image features across multiple CT scans, taken from the National Lung Screening Trial, with individual scans of the same patient separated by approximately one year. By subtracting the values of existing features in multiple scans for the same patient, we were able to improve the ability of existing classification algorithms to determine whether a nodule will become malignant. We trained each classifier on 83 nodules determined to be malignant by biopsy and 172 nodules determined to be benign by their clinical stability through two years of no change; classifiers were tested on 77 malignant and 144 benign nodules, using a set of features that in a test-retest experiment were shown to be stable. An accuracy of 83.71% and AUC of 0.814 were achieved with the Random Forests classifier on a subset of features determined to be stable via test-retest reproducibility analysis, further reduced with the Correlation-based Feature Selection algorithm.

  11. Poor symptom control is associated with reduced CT scan segmental airway lumen area in smokers with asthma.

    PubMed

    Thomson, Neil C; Chaudhuri, Rekha; Spears, Mark; Messow, Claudia-Martina; MacNee, William; Connell, Martin; Murchison, John T; Sproule, Michael; McSharry, Charles

    2015-03-01

    Cigarette smoking is associated with worse symptoms in asthma and abnormal segmental airways in healthy subjects. We tested the hypothesis that current symptom control in smokers with asthma is associated with altered segmental airway dimensions measured by CT scan. In 93 subjects with mild, moderate, and severe asthma (smokers and never smokers), we recorded Asthma Control Questionnaire-6 (ACQ-6) score, spirometry (FEV1; forced expiratory flow rate, midexpiratory phase [FEF(25%-75%)]), residual volume (RV), total lung capacity (TLC), and CT scan measures of the right bronchial (RB) and left bronchial (LB) segmental airway dimensions (wall thickness, mm; lumen area, mm²) in the RB3/LB3, RB6/LB6, and RB10/LB10 (smaller) airways. The CT scan segmental airway (RB10 and LB10) lumen area was reduced in smokers with asthma compared with never smokers with asthma; RB10, 16.6 mm² (interquartile range, 12.4-19.2 mm²) vs 19.6 mm² (14.7-24.2 mm²) (P = .01); LB10, 14.8 mm² (12.1-19.0 mm²) vs 19.9 mm² (14.5-25.0 mm²) (P = .003), particularly in severe disease, with no differences in wall thickness or in larger airway (RB3 and LB3) dimensions. In smokers with asthma, a reduced lumen area in fifth-generation airways (RB10 or LB10) was associated with poor symptom control (higher ACQ-6 score) (-0.463 [-0.666 to -0.196], P = .001, and -0.401 [-0.619 to -0.126], P = .007, respectively) and reduced postbronchodilator FEF(25%-75%) (0.521 [0.292-0.694], P < .001, and [0.471 [0.236-0.654], P = .001, respectively) and higher RV/TLC %. The CT scan segmental airway lumen area is reduced in smokers with asthma compared with never smokers with asthma, particularly in severe disease, and is associated with worse current symptom control and small airway dysfunction.

  12. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.

    PubMed

    Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S

    2017-11-01

    To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  14. [Creation and Evaluation of Educational Programs for Additional Delayed Scan of FDG-PET/CT].

    PubMed

    Wada, Ryota; Kamiya, Takashi; Fujino, Kouichi; Ueda, Junpei; Isohashi, Kayako; Tatsumi, Mitsuaki; Hatazawa, Jun

    Generally, FDG-PET/CT image is acquired at the 60th minute after tracer administration. Depending on the clinical case, additional delayed scans may be useful. However, it is difficult to judge whether additional delayed scan is useful or not. The purposes of this study were creation and evaluation of educational programs to help radiological technologists to decide the usefulness of additional delayed scan of FDG-PET/CT. Educational programs consisted of the instructional materials and the judgment test of clinical cases. The instructional materials provided the valuable findings for differentiation between uptake in the wall of the colon and colon content, distinction between uptake in the lymph node and urinary tract, and evaluation of malignancy. The judgment test of clinical cases consisted of 10 cases selected by a nuclear medicine physician (for 5 of that cases additional delayed scan was decided to be useful). Five experienced technologists and five inexperienced technologists scored the volubility of additional delayed scan pre- and post-training using the instructional materials (the full marks of score is 5). After the educational programs using the instructional materials, the score was improved with the significant difference in both experienced (pre: 3.6±1.4, post: 4.0±1.2) and inexperienced (pre: 2.8±1.5, post: 3.7±1.5) groups (p<0.05). According to the educational programs, technologist might be able to decide whether the additional delayed scan is useful or not. The successful results of this study may improve the interpretation or reduce the total exposure dose of the PET/CT scan.

  15. Introduction of a pan-scan protocol for blunt trauma activations: what are the consequences?

    PubMed

    James, Melissa K; Schubl, Sebastian D; Francois, Michael P; Doughlin, Geoffrey K; Lee, Shi-Wen

    2017-01-01

    The aim of this study is to determine if the introduction of a pan-scan protocol during the initial assessment for blunt trauma activations would affect missed injuries, incidental findings, treatment times, radiation exposure, and cost. A 6-month prospective study was performed on patients with blunt trauma at a level 1 trauma center. During the last 3 months of the study, a pan-scan protocol was introduced to the trauma assessment. Categorical data were analyzed by Fisher exact test and continuous data were analyzed by Mann-Whitney nonparametric test. There were a total of 220 patients in the pre-pan-scan period and 206 patients during the pan-scan period. There was no significant difference in injury severity or mortality between the groups. Introduction of the pan-scan protocol substantially reduced the incidence of missed injuries from 3.2% to 0.5%, the length of stay in the emergency department by 68.2 minutes (95% confidence interval [CI], -134.4 to -2.1), and the mean time to the first operating room visit by 1465 minutes (95% CI, -2519 to -411). In contrast, fixed computed tomographic scan cost increased by $48.1 (95% CI, 32-64.1) per patient; however, total radiology cost per patient decreased by $50 (95% CI, -271.1 to 171.4). In addition, the rate of incidental findings increased by 14.4% and the average radiation exposure per patient was 8.2 mSv (95% CI, 5.0-11.3) greater during the pan-scan period. Although there are advantages to whole-body computed tomography, elucidation of the appropriate blunt trauma patient population is warranted when implementing a pan-scan protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. SURFACE FINISHES ON STAINLESS STEEL REDUCE BACTERIAL ATTACHMENT AND EARLY BIOFILM FORMATION: SCANNING ELECTRON AND ATOMIC FORCE MICROSCOPY STUDY

    EPA Science Inventory

    Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or ...

  17. Angiography with a multifunctional line scanning ophthalmoscope

    PubMed Central

    Ferguson, R. Daniel; Patel, Ankit H.; Vazquez, Vanessa; Husain, Deeba

    2012-01-01

    Abstract. A multifunctional line scanning ophthalmoscope (mLSO) was designed, constructed, and tested on human subjects. The mLSO could sequentially acquire wide-field, confocal, near-infrared reflectance, fluorescein angiography (FA), and indocyanine green angiography (ICGA) retinal images. The system also included a retinal tracker (RT) and a photodynamic therapy laser treatment port. The mLSO was tested in a pilot clinical study on human subjects with and without retinal disease. The instrument exhibited robust retinal tracking and high-contrast line scanning imaging. The FA and ICGA angiograms showed a similar appearance of hyper- and hypo-pigmented disease features and a nearly equivalent resolution of fine capillaries compared to a commercial flood-illumination fundus imager. An mLSO-based platform will enable researchers and clinicians to image human and animal eyes with a variety of modalities and deliver therapeutic beams from a single automated interface. This approach has the potential to improve patient comfort and reduce imaging session times, allowing clinicians to better diagnose, plan, and conduct patient procedures with improved outcomes. PMID:22463040

  18. Design and application of a small size SAFT imaging system for concrete structure

    NASA Astrophysics Data System (ADS)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  19. Implementation of a CT Scan Practice Guideline for Pediatric Trauma Patients Reduces Unnecessary Scans Without Impacting Outcomes.

    PubMed

    McGrew, Patrick R; Chestovich, Paul J; Fisher, Jay D; Kuhls, Deborah A; Fraser, Douglas R; Patel, Purvi P; Katona, Chad W; Saquib, Syed; Fildes, John J

    2018-05-04

    Computed Tomography (CT) scans are useful in the evaluation of trauma patients, but are costly and pose risks from ionizing radiation in children. Recent literature has demonstrated the utility of CT scan guidelines in the management of pediatric trauma. This study objective is to review our treatment of pediatric blunt trauma patients and evaluate CT utilization before and after CT-guideline implementation. Our Pediatric Level 2 Trauma Center (TC) implemented a CT scan practice guideline for pediatric trauma patients in March 2014. The guideline recommended for or against CT of the head and abdomen/pelvis utilizing published criteria from the Pediatric Emergency Care and Research Network (PECARN). There was no chest CT guideline. We reviewed all pediatric trauma patients for CT scans obtained during initial evaluation before and after guideline implementation, excluding inpatient scans. The Trauma Registry Database was queried to include all pediatric (age<15) trauma patients seen in our TC from 2010-2016, excluding penetrating mechanism and deaths in the TC. Scans were considered positive if organ injury was detected. Primary outcome was the proportion of patients undergoing CT and percent positive CTs. Secondary outcomes were hospital length of stay (LOS), readmissions, and mortality. Categorical and continuous variables were analyzed with Chi-square and Wilcoxon rank-sum tests, respectively. P<0.05 was considered significant. We identified 1934 patients: 1106 pre- and 828 post-guideline. Absolute reductions in head, chest, and abdomen/pelvis CT scans were 17.7%, 11.5%, and 18.8% respectively (p<0.001). Percent positive head CTs were equivalent, but percent positive chest and abdomen CT increased after implementation. Secondary outcomes were unchanged. Implementation of a pediatric CT guideline significantly decreases CT utilization, reducing the radiation exposure without a difference in outcome. Trauma centers treating pediatric patients should adopt similar guidelines to decrease unnecessary CT scans in children. Level IV, Therapeutic Study.

  20. Cotton phenotyping with lidar from a track-mounted platform

    NASA Astrophysics Data System (ADS)

    French, Andrew N.; Gore, Michael A.; Thompson, Alison

    2016-05-01

    High-Throughput Phenotyping (HTP) is a discipline for rapidly identifying plant architectural and physiological responses to environmental factors such as heat and water stress. Experiments conducted since 2010 at Maricopa, Arizona with a three-fold sensor group, including thermal infrared radiometers, active visible/near infrared reflectance sensors, and acoustic plant height sensors, have shown the validity of HTP with a tractor-based system. However, results from these experiments also show that accuracy of plant phenotyping is limited by the system's inability to discriminate plant components and their local environmental conditions. This limitation may be overcome with plant imaging and laser scanning which can help map details in plant architecture and sunlit/shaded leaves. To test the capability for mapping cotton plants with a laser system, a track-mounted platform was deployed in 2015 over a full canopy and defoliated cotton crop consisting of a scanning LIDAR driven by Arduinocontrolled stepper motors. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at 0.1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). These tests showed that an autonomous LIDAR platform can reduce HTP logistical problems and provide the capability to accurately map cotton plants and cotton bolls. A prototype track-mounted platform was developed to test the use of LIDAR scanning for High- Throughput Phenotyping (HTP). The platform was deployed in 2015 at Maricopa, Arizona over a senescent cotton crop. Using custom Python and Tkinter code, the platform moved autonomously along a pipe-track at <1 m/s while collecting LIDAR scans at 25 Hz (0.1667 deg. beam). Scanning data mapped the canopy heights and widths, and detected cotton bolls.

  1. Proof of concept demonstration for coherent beam pattern measurements of KID detectors

    NASA Astrophysics Data System (ADS)

    Davis, Kristina K.; Baryshev, Andrey M.; Jellema, Willem; Yates, Stephen J. C.; Ferrari, Lorenza; Baselmans, Jochem J. A.

    2016-07-01

    Here we summarize the initial results from a complex field radiation pattern measurement of a kinetic inductance detector instrument. These detectors are phase insensitive and have thus been limited to scalar, or amplitude-only, beam measurements. Vector beam scans, of both amplitude and phase, double the information received in comparison to scalar beam scans. Scalar beam measurements require multiple scans at varying distances along the optical path of the receiver to fully constrain the divergence angle of the optical system and locate the primary focus. Vector scans provide this information with a single scan, reducing the total measurement time required for new systems and also limiting the influence of system instabilities. The vector scan can be taken at any point along the optical axis of the system including the near-field, which makes beam measurements possible for large systems at high frequencies where these measurements may be inconceivable to be tested in-situ. Therefore, the methodology presented here should enable common heterodyne analysis for direct detector instruments. In principle, this coherent measurement strategy allows phase dependent analysis to be performed on any direct-detect receiver instrument.

  2. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  3. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    NASA Astrophysics Data System (ADS)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  4. Hierarchical pictorial structures for simultaneously localizing multiple organs in volumetric pre-scan CT

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Song, Qi; Das, Bipul; Yin, Zhye

    2015-03-01

    Parsing volumetric computed tomography (CT) into 10 or more salient organs simultaneously is a challenging task with many applications such as personalized scan planning and dose reporting. In the clinic, pre-scan data can come in the form of very low dose volumes acquired just prior to the primary scan or from an existing primary scan. To localize organs in such diverse data, we propose a new learning based framework that we call hierarchical pictorial structures (HPS) which builds multiple levels of models in a tree-like hierarchy that mirrors the natural decomposition of human anatomy from gross structures to finer structures. Each node of our hierarchical model learns (1) the local appearance and shape of structures, and (2) a generative global model that learns probabilistic, structural arrangement. Our main contribution is twofold. First we embed the pictorial structures approach in a hierarchical framework which reduces test time image interpretation and allows for the incorporation of additional geometric constraints that robustly guide model fitting in the presence of noise. Second we guide our HPS framework with the probabilistic cost maps extracted using random decision forests using volumetric 3D HOG features which makes our model fast to train and fast to apply to novel test data and posses a high degree of invariance to shape distortion and imaging artifacts. All steps require approximate 3 mins to compute and all organs are located with suitably high accuracy for our clinical applications such as personalized scan planning for radiation dose reduction. We assess our method using a database of volumetric CT scans from 81 subjects with widely varying age and pathology and with simulated ultra-low dose cadaver pre-scan data.

  5. A fast infrared scanning technique for nondestructive testing

    NASA Astrophysics Data System (ADS)

    Hartikainen, Jari

    1989-04-01

    A simple and fast thermal NDT measurement system is described and its usefulness is demonstrated using a honeycomb structure as a test sample. The sample is heated with a hot air jet and the surface temperature differences due to subsurface defects are detected with a single HgCdTe detector. An image of the sample is formed by scanning over the sample surface with a deflection mirror in the y direction while moving the sample in the x direction. The measurement time is typically 6 s per image and several images are averaged to improve signal to noise ratio. The main advantages of this system compared to conventional infrared camera techniques are considerably reduced cost and the ease with which the system can be modified to various applications.

  6. High-speed scanning of critical structures in aviation using coordinate measurement machine and the laser ultrasonic.

    PubMed

    Swornowski, Pawel J

    2012-01-01

    Aviation is one of the know-how spheres containing a great deal of responsible sub-assemblies, in this case landing gear. The necessity for reducing production cycle times while achieving better quality compels metrologists to look for new and improved ways to perform inspection of critical structures. This article describes the ability to determine the shape deviation and location of defects in landing gear using coordinate measuring machines and laser ultrasonic with high-speed scanning. A nondestructive test is the basis for monitoring microcrack and corrosion propagation in the context of a damage-tolerant design approach. This article presents an overview of the basics and of the various metrological aspects of coordinate measurement and a nondestructive testing method in terms of high-speed scanning. The new test method (laser ultrasonic) promises to produce the necessary increase in inspection quality, but this is limited by the wide range of materials, geometries, and structure aeronautic parts used. A technique combining laser ultrasonic and F-SAFT (Fourier-Synthetic Aperture Focusing Technique) processing has been proposed for the detection of small defects buried in landing gear. The experimental results of landing gear inspection are also presented. © Wiley Periodicals, Inc.

  7. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu; Chung, Hsiao-Wen; Chiu, Hui-Chu; Liu, Yi-Jui; Hsu, Hsian-He; Juan, Chun-Jung

    2016-04-01

    To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s(-1)) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s(-1), respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.

  8. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Poinsatte, Philip; Thurman, Douglas; Wroblewski, Adam; Snyder, Christopher

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possessundulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce dragcompared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae andCalifornia Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of thewhiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskerswere used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to performwind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to studyincidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulationswere conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements overthe baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixedwing aircraft. Noise reduction potential is also explored

  9. Are facilities following best practices of pediatric abdominal CT scans?

    PubMed

    Nosek, Amy E; Hartin, Charles W; Bass, Kathryn D; Glick, Philip L; Caty, Michael G; Dayton, Merril T; Ozgediz, Doruk E

    2013-05-01

    Established guidelines for pediatric abdominal CT scans include reduced radiation dosage to minimize cancer risk and the use of intravenous (IV) contrast to obtain the highest-quality diagnostic images. We wish to determine if these practices are being used at nonpediatric facilities that transfer children to a pediatric facility. Children transferred to a tertiary pediatric facility over a 16-mo period with abdominal CT scans performed for evaluation of possible appendicitis were retrospectively reviewed for demographics, diagnosis, radiation dosage, CT contrast use, and scan quality. If CT scans were repeated, the radiation dosage between facilities was compared using Student t-test. Ninety-one consecutive children transferred from 29 different facilities had retrievable CT scan images and clinical information. Half of CT scans from transferring institutions used IV contrast. Due to poor quality or inconclusive CT scans, 19 patients required a change in management. Children received significantly less radiation at our institution compared to the referring adult facility for the same body area scanned on the same child (9.7 mSv versus 19.9 mSv, P = 0.0079). Pediatric facilities may be using less radiation per CT scan due to a heightened awareness of radiation risks and specific pediatric CT scanning protocols. The benefits of IV contrast for the diagnostic yield of pediatric CT scans should be considered to obtain the best possible image and to prevent additional imaging. Every facility performing pediatric CT scans should minimize radiation exposure, and pediatric facilities should provide feedback and education to other facilities scanning children. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Self-Calibrating Wave-Encoded Variable-Density Single-Shot Fast Spin Echo Imaging.

    PubMed

    Chen, Feiyu; Taviani, Valentina; Tamir, Jonathan I; Cheng, Joseph Y; Zhang, Tao; Song, Qiong; Hargreaves, Brian A; Pauly, John M; Vasanawala, Shreyas S

    2018-04-01

    It is highly desirable in clinical abdominal MR scans to accelerate single-shot fast spin echo (SSFSE) imaging and reduce blurring due to T 2 decay and partial-Fourier acquisition. To develop and investigate the clinical feasibility of wave-encoded variable-density SSFSE imaging for improved image quality and scan time reduction. Prospective controlled clinical trial. With Institutional Review Board approval and informed consent, the proposed method was assessed on 20 consecutive adult patients (10 male, 10 female, range, 24-84 years). A wave-encoded variable-density SSFSE sequence was developed for clinical 3.0T abdominal scans to enable high acceleration (3.5×) with full-Fourier acquisitions by: 1) introducing wave encoding with self-refocusing gradient waveforms to improve acquisition efficiency; 2) developing self-calibrated estimation of wave-encoding point-spread function and coil sensitivity to improve motion robustness; and 3) incorporating a parallel imaging and compressed sensing reconstruction to reconstruct highly accelerated datasets. Image quality was compared pairwise with standard Cartesian acquisition independently and blindly by two radiologists on a scale from -2 to 2 for noise, contrast, confidence, sharpness, and artifacts. The average ratio of scan time between these two approaches was also compared. A Wilcoxon signed-rank tests with a P value under 0.05 considered statistically significant. Wave-encoded variable-density SSFSE significantly reduced the perceived noise level and improved the sharpness of the abdominal wall and the kidneys compared with standard acquisition (mean scores 0.8, 1.2, and 0.8, respectively, P < 0.003). No significant difference was observed in relation to other features (P = 0.11). An average of 21% decrease in scan time was achieved using the proposed method. Wave-encoded variable-density sampling SSFSE achieves improved image quality with clinically relevant echo time and reduced scan time, thus providing a fast and robust approach for clinical SSFSE imaging. 1 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:954-966. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Sad people are more accurate at expression identification with a smaller own-ethnicity bias than happy people.

    PubMed

    Hills, Peter J; Hill, Dominic M

    2017-07-12

    Sad individuals perform more accurately at face identity recognition (Hills, Werno, & Lewis, 2011), possibly because they scan more of the face during encoding. During expression identification tasks, sad individuals do not fixate on the eyes as much as happier individuals (Wu, Pu, Allen, & Pauli, 2012). Fixating on features other than the eyes leads to a reduced own-ethnicity bias (Hills & Lewis, 2006). This background indicates that sad individuals would not view the eyes as much as happy individuals and this would result in improved expression recognition and a reduced own-ethnicity bias. This prediction was tested using an expression identification task, with eye tracking. We demonstrate that sad-induced participants show enhanced expression recognition and a reduced own-ethnicity bias than happy-induced participants due to scanning more facial features. We conclude that mood affects eye movements and face encoding by causing a wider sampling strategy and deeper encoding of facial features diagnostic for expression identification.

  12. WE-G-18A-02: Calibration-Free Combined KV/MV Short Scan CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Loo, B; Bazalova, M

    Purpose: To combine orthogonal kilo-voltage (kV) and Mega-voltage (MV) projection data for short scan cone-beam CT to reduce imaging time on current radiation treatment systems, using a calibration-free gain correction method. Methods: Combining two orthogonal projection data sets for kV and MV imaging hardware can reduce the scan angle to as small as 110° (90°+fan) such that the total scan time is ∼18 seconds, or within a breath hold. To obtain an accurate reconstruction, the MV projection data is first linearly corrected using linear regression using the redundant data from the start and end of the sinogram, and then themore » combined data is reconstructed using the FDK method. To correct for the different changes of attenuation coefficients in kV/MV between soft tissue and bone, the forward projection of the segmented bone and soft tissue from the first reconstruction in the redundant region are added to the linear regression model. The MV data is corrected again using the additional information from the segmented image, and combined with kV for a second FDK reconstruction. We simulated polychromatic 120 kVp (conventional a-Si EPID with CsI) and 2.5 MVp (prototype high-DQE MV detector) projection data with Poisson noise using the XCAT phantom. The gain correction and combined kV/MV short scan reconstructions were tested with head and thorax cases, and simple contrast-to-noise ratio measurements were made in a low-contrast pattern in the head. Results: The FDK reconstruction using the proposed gain correction method can effectively reduce artifacts caused by the differences of attenuation coefficients in the kV/MV data. The CNRs of the short scans for kV, MV, and kV/MV are 5.0, 2.6 and 3.4 respectively. The proposed gain correction method also works with truncated projections. Conclusion: A novel gain correction and reconstruction method was developed to generate short scan CBCT from orthogonal kV/MV projections. This work is supported by NIH Grant 5R01CA138426-05.« less

  13. Meditative music listening to reduce state anxiety in patients during the uptake phase before positron emission tomography (PET) scans

    PubMed Central

    Lee, Wen-Li; Liu, Shu-Hsin; Chang, Shu-Min

    2017-01-01

    Objective: This study examines the effects of listening to meditative music on state anxiety and heart rate variability (HRV) of patients during the uptake phase before positron emission tomography (PET) scans. Methods: A two-group randomized experimental design was used. Eligible patients were randomly assigned to either the experimental or control group. All patients received baseline assessments of state anxiety using Spielberger State-Trait Anxiety Inventory (STAI-S) and HRV before receiving an intravenous injection of radiopharmaceutical fluorine-18 fludeoxyglucose in the uptake room. The experimental group (n = 35) listened individually to 30 min of meditative music, integrating Chinese “Chi” and western frequency resonation in the uptake room. The control group (n = 37) lay on bed quietly for 40 min in the uptake room without music. All patients were assessed for their anxiety level and HRV again, before receiving PET scanning as post-test. Results: The results indicated that patients in the experimental group showed a significant reduction in state anxiety and heart rate, and increase on high frequency norm of HRV (p < 0.001). There was a statistically significant reduction on anxiety level (p < 0.001), heart rate (p < 0.001) and high frequency norm (p = 0.001) in the experimental group compared with those of the control group. Conclusion: Listening to meditative music as a non-invasive and cost-effective strategy can help maximize efforts to promote comfort and relaxation for patients awaiting stressful procedures, such as PET scans. Meditative music can be effective in alleviating state anxiety of patients during the uptake phase before PET scans. Advances in knowledge: The study provides scientific evidence of the effects of listening to meditative music for reducing state anxiety in patients during the uptake phase before PET scans. It may have the potential to lower the risk of unwanted false-positive fluorine-18 fludeoxyglucose uptake in normal organs and to further improve image quality and image interpretation. Listening to meditative music is a safe and inexpensive intervention which can be incorporated into routine procedures to reduce anxiety of patients undergoing PET scans. PMID:27897034

  14. Meditative music listening to reduce state anxiety in patients during the uptake phase before positron emission tomography (PET) scans.

    PubMed

    Lee, Wen-Li; Sung, Huei-Chuan; Liu, Shu-Hsin; Chang, Shu-Min

    2017-02-01

    This study examines the effects of listening to meditative music on state anxiety and heart rate variability (HRV) of patients during the uptake phase before positron emission tomography (PET) scans. A two-group randomized experimental design was used. Eligible patients were randomly assigned to either the experimental or control group. All patients received baseline assessments of state anxiety using Spielberger State-Trait Anxiety Inventory (STAI-S) and HRV before receiving an intravenous injection of radiopharmaceutical fluorine-18 fludeoxyglucose in the uptake room. The experimental group (n = 35) listened individually to 30 min of meditative music, integrating Chinese "Chi" and western frequency resonation in the uptake room. The control group (n = 37) lay on bed quietly for 40 min in the uptake room without music. All patients were assessed for their anxiety level and HRV again, before receiving PET scanning as post-test. The results indicated that patients in the experimental group showed a significant reduction in state anxiety and heart rate, and increase on high frequency norm of HRV (p < 0.001). There was a statistically significant reduction on anxiety level (p < 0.001), heart rate (p < 0.001) and high frequency norm (p = 0.001) in the experimental group compared with those of the control group. Listening to meditative music as a non-invasive and cost-effective strategy can help maximize efforts to promote comfort and relaxation for patients awaiting stressful procedures, such as PET scans. Meditative music can be effective in alleviating state anxiety of patients during the uptake phase before PET scans. Advances in knowledge: The study provides scientific evidence of the effects of listening to meditative music for reducing state anxiety in patients during the uptake phase before PET scans. It may have the potential to lower the risk of unwanted false-positive fluorine-18 fludeoxyglucose uptake in normal organs and to further improve image quality and image interpretation. Listening to meditative music is a safe and inexpensive intervention which can be incorporated into routine procedures to reduce anxiety of patients undergoing PET scans.

  15. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials

    PubMed Central

    Memon, Shazim Ali; Liao, Wenyu; Yang, Shuqing; Cui, Hongzhi; Shah, Syed Farasat Ali

    2015-01-01

    In this research, we focused on the development of composite phase-change materials (CPCMs) by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS)). The composite PCMs were characterized using environmental scanning electron microscopy (ESEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade. PMID:28787953

  16. First Experiences with the Trimble SX10 Scanning Total Station for Building Facade Survey

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2017-02-01

    The use of Terrestrial Laser Scanner (TLS) tends to become a solution in many research areas related to large scale surveying. Meanwhile, the technological advances combined with the investigation of user needs have brought to the design of innovative devices known as scanning total stations. Such instruments merge in a unique hardware both scanning and surveying facilities. Even if their scanning rate is often reduced compared to conventional TLS, they make it possible to directly georeference laser scanning projects and to complete them with measurements of individual points of interest. The recent Trimble SX10 which was launched on the market in early October 2016 has been tested and some experiences carried out with it are reported in this paper. The analyses mainly focus on the survey of a building facade. Next to laser scanning survey, a photogrammetry campaign using an Unmanned Aerial Vehicle (UAV) has been carried out. These different datasets are used to assess the Trimble SX10 issued point clouds through a set of comparisons. Since georeferencing is possible either directly or indirectly using this device, data processed both ways are also compared to conclude about the more reliable method.

  17. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  18. N-doped structures and surface functional groups of reduced graphene oxide and their effect on the electrochemical performance of supercapacitor with organic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Shin-Ming; Yang, Shin-Yi; Wang, Yu-Sheng; Tsai, Hsiu-Ping; Tien, Hsi-Wen; Hsiao, Sheng-Tsung; Liao, Wei-Hao; Chang, Chien-Liang; Ma, Chen-Chi M.; Hu, Chi-Chang

    2015-03-01

    Nitrogen-doped reduced graphene oxide (N-rGO) has been synthesized using a simple, efficient method combining instant thermal exfoliation and covalent bond transformation from a melamine-graphene oxide mixture. The capacitive performance of N-rGO has been tested in both aqueous (0.5 M H2SO4) and organic (1 M tetraethyl-ammonium tetrafluoroborate (TEABF4) in propylene carbonate (PC)) electrolytes, which are compared with those obtained from thermal-reduced graphene oxide (T-rGO) and chemical-reduced graphene oxide (C-rGO). The contributions of scan-rate-independent (double-layer-like) and scan-rate-dependent (pseudo-capacitance-like) capacitance of all reduced graphene oxides in both aqueous and organic electrolytes were evaluated and compared. The results show that relatively rich oxygen-containing functional groups on C-rGO form significant ion-diffusion barrier, resulting in worse electrochemical responses in organic electrolyte. By contrast, the N-doped structures, large surface area, and lower density of oxygen-containing groups make N-rGO become a promising electrode material for organic electric double-layer capacitors (EDLCs). The capacitance rate-retention of N-rGO reaches 71.1% in 1 M TEABF4/PC electrolyte when the scan rate is elevated to 200 mVs-1, demonstrating that N-rGO improves the relatively low-power drawback of EDLCs in organic electrolytes. The specific energy and power of a symmetric N-rGO cell in the organic electrolyte reach 25 Wh kg-1 and 10 kW kg-1, respectively.

  19. New scoring system for intra-abdominal injury diagnosis after blunt trauma.

    PubMed

    Shojaee, Majid; Faridaalaee, Gholamreza; Yousefifard, Mahmoud; Yaseri, Mehdi; Arhami Dolatabadi, Ali; Sabzghabaei, Anita; Malekirastekenari, Ali

    2014-01-01

    An accurate scoring system for intra-abdominal injury (IAI) based on clinical manifestation and examination may decrease unnecessary CT scans, save time, and reduce healthcare cost. This study is designed to provide a new scoring system for a better diagnosis of IAI after blunt trauma. This prospective observational study was performed from April 2011 to October 2012 on patients aged above 18 years and suspected with blunt abdominal trauma (BAT) admitted to the emergency department (ED) of Imam Hussein Hospital and Shohadaye Hafte Tir Hospital. All patients were assessed and treated based on Advanced Trauma Life Support and ED protocol. Diagnosis was done according to CT scan findings, which was considered as the gold standard. Data were gathered based on patient's history, physical exam, ultrasound and CT scan findings by a general practitioner who was not blind to this study. Chi-square test and logistic regression were done. Factors with significant relationship with CT scan were imported in multivariate regression models, where a coefficient (β) was given based on the contribution of each of them. Scoring system was developed based on the obtained total β of each factor. Altogether 261 patients (80.1% male) were enrolled (48 cases of IAI). A 24-point blunt abdominal trauma scoring system (BATSS) was developed. Patients were divided into three groups including low (score<8), moderate (8≤score<12) and high risk (score≥12). In high risk group immediate laparotomy should be done, moderate group needs further assessments, and low risk group should be kept under observation. Low risk patients did not show positive CT-scans (specificity 100%). Conversely, all high risk patients had positive CT-scan findings (sensitivity 100%). The receiver operating characteristic curve indicated a close relationship between the results of CT scan and BATSS (sensitivity=99.3%). The present scoring system furnishes a high precision and reproducible diagnostic tool for BAT detection and has the potential to reduce unnecessary CT scan and cut unnecessary costs.

  20. Intra-patient comparison of reduced-dose model-based iterative reconstruction with standard-dose adaptive statistical iterative reconstruction in the CT diagnosis and follow-up of urolithiasis.

    PubMed

    Tenant, Sean; Pang, Chun Lap; Dissanayake, Prageeth; Vardhanabhuti, Varut; Stuckey, Colin; Gutteridge, Catherine; Hyde, Christopher; Roobottom, Carl

    2017-10-01

    To evaluate the accuracy of reduced-dose CT scans reconstructed using a new generation of model-based iterative reconstruction (MBIR) in the imaging of urinary tract stone disease, compared with a standard-dose CT using 30% adaptive statistical iterative reconstruction. This single-institution prospective study recruited 125 patients presenting either with acute renal colic or for follow-up of known urinary tract stones. They underwent two immediately consecutive scans, one at standard dose settings and one at the lowest dose (highest noise index) the scanner would allow. The reduced-dose scans were reconstructed using both ASIR 30% and MBIR algorithms and reviewed independently by two radiologists. Objective and subjective image quality measures as well as diagnostic data were obtained. The reduced-dose MBIR scan was 100% concordant with the reference standard for the assessment of ureteric stones. It was extremely accurate at identifying calculi of 3 mm and above. The algorithm allowed a dose reduction of 58% without any loss of scan quality. A reduced-dose CT scan using MBIR is accurate in acute imaging for renal colic symptoms and for urolithiasis follow-up and allows a significant reduction in dose. • MBIR allows reduced CT dose with similar diagnostic accuracy • MBIR outperforms ASIR when used for the reconstruction of reduced-dose scans • MBIR can be used to accurately assess stones 3 mm and above.

  1. Gallbladder radionuclide scan

    MedlinePlus

    ... Gallbladder scan; Biliary scan; Cholescintigraphy; HIDA; Hepatobiliary nuclear imaging scan ... test results. This test is combined with other imaging (such as CT or ultrasound). After the gallbladder ...

  2. Thyroid scan

    MedlinePlus

    ... thyroid; Radioactive iodine uptake and scan test - thyroid; Nuclear scan - thyroid ... the test. Ask your provider or the radiology/nuclear medicine team performing the scan about taking precautions.

  3. Design of a high-speed electrochemical scanning tunneling microscope.

    PubMed

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  4. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials.

    PubMed

    Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun

    2018-03-27

    The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.

  5. Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun

    2018-03-01

    The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.

  6. Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes

    NASA Astrophysics Data System (ADS)

    Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd

    2018-05-01

    In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.

  7. Prospective evaluation of a screening protocol to exclude deep vein thrombosis on the basis of a combination of quantitative D-dimer testing and pretest clinical probability score.

    PubMed

    Yamaki, Takashi; Nozaki, Motohiro; Sakurai, Hiroyuki; Takeuchi, Masaki; Soejima, Kazutaka; Kono, Taro

    2005-11-01

    Clinical signs and symptoms such as swelling, pain, and redness are unreliable markers of deep vein thrombosis (DVT). Because of this venous duplex scanning (VDS) has been heavily used in DVT detection. The purpose of this study was to determine if a combination of D-dimer testing and pretest clinical score could reduce the use of VDS in symptomatic patients with suspected DVT. One hundred seventy-four consecutive patients with suspected DVT were prospectively evaluated using pretest clinical probability (PCP) score and D-dimer testing before VDS. After calculating clinical probability scores developed by Wells and associates, patients were divided into low risk (or=3 points) PCP. One hundred fifty-eight patients were enrolled. The prevalence of DVT in this study was 37%. Thirty-eight patients (24%) were classified as low risk, 64 (41%) as moderate risk, and 56 (35%) as high risk PCP. DVT was identified in only one patient (2.6%) with low risk PCP. In contrast, DVT was found in 22 (34%) with moderate risk, and 35 (63%) with high risk PCP. In the high and moderate risk PCP groups, positive scan patients had a markedly higher value of D-dimer assay than negative scan patients (p=0.0001 and p=0.0057, respectively). In the low risk PCP patients, D-dimer testing provided 100% sensitivity, 46% specificity, 4.8% positive predictive value, and 100% negative predictive value in the diagnosis of DVT. Similarly, in the moderate risk PCP, the D-dimer testing showed 100% sensitivity, 45% specificity, 49% positive predictive value, and 100% negative predictive value. In the high risk group, D-dimer testing achieved 100% sensitivity, 57% specificity, 80% positive predictive value, and 100% negative predictive value in the diagnosis of DVT. These results suggested that 36 of 158 patients who had a non-high PCP (low and moderate PCP) and a normal D-dimer concentration were considered to have no additional investigation, so VDS could have been reduced by 23% (36/158). A combination of D-dimer testing and clinical probability score may be effective in avoiding unnecessary VDS in suspected symptomatic DVT in the low and moderate PCP patients. The need for VDS could be reduced by 23% despite a relatively high prevalence of DVT.

  8. An effect of humid climate on micro structure and chemical component of natural composite (Boehmeria nivea-Albizia falcata) based wind turbine blade

    NASA Astrophysics Data System (ADS)

    Sudarsono, S.; Purwanto; Sudarsono, Johny W.

    2018-02-01

    In this work, wind turbine blade NACA 4415 is fabricated from natural composite of Boehmeria nivea and Albizia falcate. The composite fabrication method used is hand lay up method. The aim of the work is to investigate an effect of humid climate of coastal area on micro structure and chemical composition of composite material of the blade. The wind turbine is tested at Pantai Baru, Bantul, Yogyakarta for 5.5 months. The micro structure scanning is performed with Scanning Electron Microscope (SEM) and material component is measured with Energy Dispersive X-ray spectrometer (EDS). The samples are tested before and after the use within 5.5 month at the location. The results show that composite material inexperienced interface degradation and insignificant change of micro structure. From EDS test, it is observed that Na filtration reduces C and increases O in composite material after 5.5 months.

  9. Sensitivity and specificity of a new scoring system for diabetic macular oedema detection using a confocal laser imaging system

    PubMed Central

    Tong, L; Ang, A; Vernon, S; Zambarakji, H; Bhan, A; Sung, V; Page, S

    2001-01-01

    AIM—To assess the use of the Heidelberg retina tomograph (HRT) in screening for sight threatening diabetic macular oedema in a hospital diabetic clinic, using a new subjective analysis system (SCORE).
METHODS—200 eyes of 100 consecutive diabetic patients attending a diabetologist's clinic were studied, all eyes had an acuity of 6/9 or better. All patients underwent clinical examination by an ophthalmologist. Using the HRT, one good scan was obtained for each eye centred on the fovea. A System for Classification and Ordering of Retinal Edema (SCORE) was developed using subjective assessment of the colour map and the reflectivity image. The interobserver agreement of using this method to detect macular oedema was assessed by two observers (ophthalmic trainees) who were familiarised with SCORE by studying standard pictures of eyes not in the study. All scans were graded from 0-6 and test positive cases were defined as having a SCORE value of 0-2. The sensitivity of SCORE was assessed by pooling the data with an additional 88 scans of 88 eyes in order to reduce the confidence interval of the index.
RESULTS—12 eyes in eight out of the 100 patients had macular oedema clinically. Three scans in three patients could not be analysed because of poor scan quality. In the additional group of scans 76 out of 88 eyes had macular oedema clinically. The scoring system had a specificity of 99% (95% CI 96-100) and sensitivity of 67% (95% CI 57-76). The predictive value of a negative test was 87% (95% CI 82-99), and that of a positive test was 95% (95% CI 86-99). The mean difference of the SCORE value between two observers was -0.2 (95% CI -0.5 to +0.07).
CONCLUSIONS—These data suggest that SCORE is potentially useful for detecting diabetic macular oedema in hospital diabetic patients.

 PMID:11133709

  10. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planningmore » CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer may reduce radiation treatment–related toxicity.« less

  11. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  12. Metal artifact reduction for CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Martz, Harry; Cosman, Pamela

    2015-01-01

    In aviation security, checked luggage is screened by computed tomography scanning. Metal objects in the bags create artifacts that degrade image quality. Though there exist metal artifact reduction (MAR) methods mainly in medical imaging literature, they require knowledge of the materials in the scan, or are outlier rejection methods. To improve and evaluate a MAR method we previously introduced, that does not require knowledge of the materials in the scan, and gives good results on data with large quantities and different kinds of metal. We describe in detail an optimization which de-emphasizes metal projections and has a constraint for beam hardening and scatter. This method isolates and reduces artifacts in an intermediate image, which is then fed to a previously published sinogram replacement method. We evaluate the algorithm for luggage data containing multiple and large metal objects. We define measures of artifact reduction, and compare this method against others in MAR literature. Metal artifacts were reduced in our test images, even for multiple and large metal objects, without much loss of structure or resolution. Our MAR method outperforms the methods with which we compared it. Our approach does not make assumptions about image content, nor does it discard metal projections.

  13. Optimising EEG-fMRI for Localisation of Focal Epilepsy in Children.

    PubMed

    Centeno, Maria; Tierney, Tim M; Perani, Suejen; Shamshiri, Elhum A; StPier, Kelly; Wilkinson, Charlotte; Konn, Daniel; Banks, Tina; Vulliemoz, Serge; Lemieux, Louis; Pressler, Ronit M; Clark, Christopher A; Cross, J Helen; Carmichael, David W

    2016-01-01

    Early surgical intervention in children with drug resistant epilepsy has benefits but requires using tolerable and minimally invasive tests. EEG-fMRI studies have demonstrated good sensitivity for the localization of epileptic focus but a poor yield although the reasons for this have not been systematically addressed. While adults EEG-fMRI studies are performed in the "resting state"; children are commonly sedated however, this has associated risks and potential confounds. In this study, we assessed the impact of the following factors on the tolerability and results of EEG-fMRI in children: viewing a movie inside the scanner; movement; occurrence of interictal epileptiform discharges (IED); scan duration and design efficiency. This work's motivation is to optimize EEG-fMRI parameters to make this test widely available to paediatric population. Forty-six children with focal epilepsy and 20 controls (6-18) underwent EEG-fMRI. For two 10 minutes sessions subjects were told to lie still with eyes closed, as it is classically performed in adult studies ("rest sessions"), for another two sessions, subjects watched a child friendly stimulation i.e. movie ("movie sessions"). IED were mapped with EEG-fMRI for each session and across sessions. The resulting maps were classified as concordant/discordant with the presumed epileptogenic focus for each subject. Movement increased with scan duration, but the movie reduced movement by ~40% when played within the first 20 minutes. There was no effect of movie on the occurrence of IED, nor in the concordance of the test. Ability of EEG-fMRI to map the epileptogenic region was similar for the 20 and 40 minute scan durations. Design efficiency was predictive of concordance. A child friendly natural stimulus improves the tolerability of EEG-fMRI and reduces in-scanner movement without having an effect on IED occurrence and quality of EEG-fMRI maps. This allowed us to scan children as young as 6 and obtain localising information without sedation. Our data suggest that ~20 minutes is the optimal length of scanning for EEG-fMRI studies in children with frequent IED. The efficiency of the fMRI design derived from spontaneous IED generation is an important factor for producing concordant results.

  14. The Episodic Engram Transformed: Time Reduces Retrieval-Related Brain Activity but Correlates It with Memory Accuracy

    ERIC Educational Resources Information Center

    Furman, Orit; Mendelsohn, Avi; Dudai, Yadin

    2012-01-01

    We took snapshots of human brain activity with fMRI during retrieval of realistic episodic memory over several months. Three groups of participants were scanned during a memory test either hours, weeks, or months after viewing a documentary movie. High recognition accuracy after hours decreased after weeks and remained at similar levels after…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, K. X.; Wang, J. J.; Yuan, Z.

    The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. Themore » results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.« less

  16. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  17. Application of Pinniped Vibrissae to Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram (Principal Investigator); Ameri, Ali; Poinsatte, Phil; Thurman, Doug; Wroblewski, Adam; Snyder, Chris

    2015-01-01

    Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possess undulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce drag compared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae and California Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and 3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of the whiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskers were used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to perform wind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to study incidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulations were conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements over the baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixed wing aircraft. Noise reduction potential is also explored.

  18. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    NASA Technical Reports Server (NTRS)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  19. Results of a laboratory experiment that tests rotating unbalanced-mass devices for scanning gimbaled payloads and free-flying spacecraft

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Polites, M. E.

    1994-01-01

    Rotating unbalanced-mass (RUM) devices are a new way to scan space-based, balloon-borne, and ground-based gimbaled payloads, like x-ray and gamma-ray telescopes. They can also be used to scan free-flying spacecraft. Circular scans, linear scans, and raster scans can be generated. A pair of RUM devices generates the basic scan motion and an auxiliary control system using torque motors, control moment gyros, or reaction wheels keeps the scan centered on the target and produces some complementary motion for raster scanning. Previous analyses and simulation results show that this approach offers significant power savings compared to scanning only with the auxiliary control system, especially with large payloads and high scan frequencies. However, these claims have never been proven until now. This paper describes a laboratory experiment which tests the concept of scanning a gimbaled payload with RUM devices. A description of the experiment is given and test results that prove the concept are presented. The test results are compared with those from a computer simulation model of the experiment and the differences are discussed.

  20. Development of scanning holographic display using MEMS SLM

    NASA Astrophysics Data System (ADS)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  1. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    PubMed

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  2. Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Blumenthal, Philip Z.; Helland, Stephen M.

    1994-01-01

    This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.

  3. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Su-Chin; Cheng, Cheng-Chieh; Chang, Hing-Chiu

    Purpose: To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). Methods: This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fatmore » suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. Results: NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s{sup −1}) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s{sup −1}, respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). Conclusions: On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.« less

  4. Augmented Quadruple-Phase Contrast Media Administration and Triphasic Scan Protocol Increases Image Quality at Reduced Radiation Dose During Computed Tomography Urography.

    PubMed

    Saade, Charbel; Mohamad, May; Kerek, Racha; Hamieh, Nadine; Alsheikh Deeb, Ibrahim; El-Achkar, Bassam; Tamim, Hani; Abdul Razzak, Farah; Haddad, Maurice; Abi-Ghanem, Alain S; El-Merhi, Fadi

    The aim of this article was to investigate the opacification of the renal vasculature and the urogenital system during computed tomography urography by using a quadruple-phase contrast media in a triphasic scan protocol. A total of 200 patients with possible urinary tract abnormalities were equally divided between 2 protocols. Protocol A used the conventional single bolus and quadruple-phase scan protocol (pre, arterial, venous, and delayed), retrospectively. Protocol B included a quadruple-phase contrast media injection with a triphasic scan protocol (pre, arterial and combined venous, and delayed), prospectively. Each protocol used 100 mL contrast and saline at a flow rate of 4.5 mL. Attenuation profiles and contrast-to-noise ratio of the renal arteries, veins, and urogenital tract were measured. Effective radiation dose calculation, data analysis by independent sample t test, receiver operating characteristic, and visual grading characteristic analyses were performed. In arterial circulation, only the inferior interlobular arteries in both protocols showed a statistical significance (P < 0.05). Venously, the inferior vena cava, proximal and distal renal veins demonstrated a significant opacification reduction in protocol B than in protocol A (P < 0.001). Protocol B showed a significantly higher mean contrast-to-noise ratio than protocol A (protocol B: 22.68 ± 13.72; protocol A: 14.75 ± 5.76; P < 0.001). Radiation dose was significantly reduced in protocol B (7.38 ± 2.22 mSv) than in protocol A (12.28 ± 2.72 mSv) (P < 0.001). Visual grading characteristic (P < 0.027) and receiver operating characteristic (P < 0.0001) analyses demonstrated a significant preference for protocol B. In computed tomography urography, augmented quadruple-phase contrast media and triphasic scan protocol usage increases the image quality at a reduced radiation dose.

  5. Copoly(Imide Siloxane) Abhesive Materials with Varied Siloxane Oligomer Length

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2010-01-01

    Incorporation of PDMS moieties into a polyimide matrix lowered the surface energy resulting in enhanced adhesive interactions. Polyimide siloxane materials were generated using amine-terminated PDMS oligomers of different lengths to study changes in surface migration behavior, phase segregation, mechanical, thermal, and optical properties. These materials were characterized using contact angle goniometry, tensile testing, and differential scanning calorimetry. The surface migration behavior of the PDMS component depended upon the siloxane molecular weight as indicated by distinct relationships between PDMS chain length and advancing water contact angles. Similar correlations were observed for percent elongation values obtained from tensile testing, while the addition of PDMS reduced the modulus. High fidelity topographical modification via laser ablation patterning further reduced the polyimide siloxane surface energy. Initial particulate adhesion testing experiments demonstrated that polyimide siloxane materials exhibited greater abhesive interactions relative to their respective homopolyimides.

  6. A prospective gating method to acquire a diverse set of free-breathing CT images for model-based 4DCT

    NASA Astrophysics Data System (ADS)

    O'Connell, D.; Ruan, D.; Thomas, D. H.; Dou, T. H.; Lewis, J. H.; Santhanam, A.; Lee, P.; Low, D. A.

    2018-02-01

    Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5  ⩽  N  ⩽  9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or ‘spread’, of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5  ±  4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while achieving mean model residual within 0.5 mm.

  7. Digital micromirror device based ophthalmoscope with concentric circle scanning.

    PubMed

    Damodaran, Mathi; Vienola, Kari V; Braaf, Boy; Vermeer, Koenraad A; de Boer, Johannes F

    2017-05-01

    Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast.

  8. Digital micromirror device based ophthalmoscope with concentric circle scanning

    PubMed Central

    Damodaran, Mathi; Vienola, Kari V.; Braaf, Boy; Vermeer, Koenraad A.; de Boer, Johannes F.

    2017-01-01

    Retinal imaging is demonstrated using a novel scanning light ophthalmoscope based on a digital micromirror device with 810 nm illumination. Concentric circles were used as scan patterns, which facilitated fixation by a human subject for imaging. An annular illumination was implemented in the system to reduce the background caused by corneal reflections and thereby to enhance the signal-to-noise ratio. A 1.9-fold increase in the signal-to-noise ratio was found by using an annular illumination aperture compared to a circular illumination aperture, resulting in a 5-fold increase in imaging speed and a better signal-to-noise ratio compared to our previous system. We tested the imaging performance of our system by performing non-mydriatic imaging on two subjects at a speed of 7 Hz with a maximum 20° (diameter) field of view. The images were shot noise limited and clearly show various anatomical features of the retina with high contrast. PMID:28663905

  9. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-06-01

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10-4 Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  10. Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis.

    PubMed

    Baronio, Gabriele; Volonghi, Paola; Signoroni, Alberto

    2017-01-01

    In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand.

  11. Concept and Design of a 3D Printed Support to Assist Hand Scanning for the Realization of Customized Orthosis

    PubMed Central

    Volonghi, Paola

    2017-01-01

    In the rehabilitation field, the use of additive manufacturing techniques to realize customized orthoses is increasingly widespread. Obtaining a 3D model for the 3D printing phase can be done following different methodologies. We consider the creation of personalized upper limb orthoses, also including fingers, starting from the acquisition of the hand geometry through accurate 3D scanning. However, hand scanning procedure presents differences between healthy subjects and patients affected by pathologies that compromise upper limb functionality. In this work, we present the concept and design of a 3D printed support to assist hand scanning of such patients. The device, realized with FDM additive manufacturing techniques in ABS material, allows palmar acquisitions, and its design and test are motivated by the following needs: (1) immobilizing the hand of patients during the palmar scanning to reduce involuntary movements affecting the scanning quality and (2) keeping hands open and in a correct position, especially to contrast the high degree of hypertonicity of spastic subjects. The resulting device can be used indifferently for the right and the left hand; it is provided in four-dimensional sizes and may be also suitable as a palmar support for the acquisition of the dorsal side of the hand. PMID:29234219

  12. Ultrashort pulse laser dicing of thin Si wafers: the influence of laser-induced periodic surface structures on the backside breaking strength

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Egle, Bernadette; Piredda, Giovanni; Stroj, Sandra; Fasching, Gernot; Bodea, Marius; Schwarz, Elisabeth

    2016-11-01

    High power electronic chips are usually fabricated on about 50 µm thin Si wafers to improve heat dissipation. At these chip thicknesses mechanical dicing becomes challenging. Chippings may occur at the cutting edges, which reduce the mechanical stability of the die. Thermal load changes could then lead to sudden chip failure. Ultrashort pulsed lasers are a promising tool to improve the cutting quality, because thermal side effects can be reduced to a minimum. However, laser-induced periodic surface structures occur at the sidewalls and at the trench bottom during scribing. The goal of this study was to investigate the influence of these periodic structures on the backside breaking strength of the die. An ultrafast laser with a pulse duration of 380 fs and a wavelength of 1040 nm was used to cut a wafer into single chips. The pulse energy and the number of scans was varied. The cuts in the wafer were investigated using transmitted light microscopy, the sidewalls of the cut chips were investigated using scanning electron and confocal microscopy, and the breaking strength was evaluated using the 3-point bending test. The results indicated that periodic holes with a distance of about 20-30 µm were formed at the bottom of the trench, if the number of scans was set too low to completely cut the wafer; the wafer was only perforated. Mechanical breaking of the bridges caused 5 µm deep kerfs in the sidewall. These kerfs reduced the breaking strength at the backside of the chip to about 300 MPa. As the number of scans was increased, the bridges were ablated and the wafer was cut completely. Periodic structures were observed on the sidewall; the roughness was below 1 µm. The surface roughness remained on a constant level even when the number of scans was doubled. However, the periodic structures on the sidewall seemed to vanish and the probability to remove local flaws increases with the number of scans. As a consequence, the breaking strength was increased to about 700 MPa.

  13. Using a respiratory navigator significantly reduces variability when quantifying left ventricular torsion with cardiovascular magnetic resonance.

    PubMed

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Andres, Kristin N; Powell, David K; Charnigo, Richard J; Fornwalt, Brandon K

    2017-03-01

    Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion. We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure and then enforce variability in end-expiratory position between all LV basal and apical acquisitions. From these data, we quantified the inter-test variability of torsion in the absence and presence of enforced end-expiratory position variability, which established an upper bound for the expected torsion variability. For the second experiment (in 20 new, healthy volunteers), 10 pairs of cine DENSE basal and apical images were each acquired from consecutive breath-holds and consecutive navigator-gated scans (with a single acceptance position). Inter-test variability of torsion was compared between the breath-hold and navigator-gated scans to quantify the variability due to natural breath-hold variation. To demonstrate the importance of these variability reductions, we quantified the reduction in sample size required to detect a clinically meaningful change in LV torsion with the use of a respiratory navigator. The mean torsion was 3.4 ± 0.2°/cm. From the first experiment, enforced variability in end-expiratory position translated to considerable variability in measured torsion (0.56 ± 0.34°/cm), whereas inter-test variability with consistent end-expiratory position was 57% lower (0.24 ± 0.16°/cm, p < 0.001). From the second experiment, natural respiratory variability from consecutive breath-holds translated to a variability in torsion of 0.24 ± 0.10°/cm, which was significantly higher than the variability from navigator-gated scans (0.18 ± 0.06°/cm, p = 0.02). By using a respiratory navigator with DENSE, theoretical sample sizes were reduced from 66 to 16 and 26 to 15 as calculated from the two experiments. A substantial portion (22-57%) of the inter-test variability of LV torsion can be reduced by using a respiratory navigator to ensure a consistent breath-hold position between image acquisitions.

  14. Adaptive laser conditioning of reflective thin film based on photo thermal lens probe

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zheng, Yi; Zhang, Qinghua; Pan, Feng; Wei, Yaowei; Wang, Jian; Xu, Qiao

    2017-12-01

    A novel laser conditioning (LC) concept that performs adaptive control of exposure fluence is proposed. As photo-thermal absorption effect can discover defects responsible for laser-induced damage of reflective thin film, in situ photo-thermal lens probe is introduced in conventional LC procedure to detect defects during raster-scanning. The absorptance signal is fed back to guide the adaptive control of exposure fluence. By this method, the damage risk accompanying with LC can be reduced to a rather low level. In order to test the performance of adaptive laser conditioning (ALC), an experimental setup has been built, and several film samples have been tested. The results show that ALC is effective at reducing laser damage risk.

  15. MO-FG-204-02: Reference Image Selection in the Presence of Multiple Scan Realizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, D; Dou, T; Thomas, D

    Purpose: Fusing information from multiple correlated realizations (e.g., 4DCT) can improve image quality. This process often involves ill-conditioned and asymmetric nonlinear registration and the proper selection of a reference image is important. This work proposes to examine post-registration variation indirectly for such selection, and develops further insights to reduce the number of cross-registrations needed. Methods: We consider each individual scan as a noisy point in the vicinity of an image manifold, related by motion. Nonrigid registration “transports” a scan along the manifold to the reference neighborhood, and the residual is a surrogate for local variation. To test this conjecture, 10more » thoracic scans from the same session were reconstructed from a recently developed low-dose helical 4DCT protocol. Pairwise registration was repeated bi-directionally (81 times) and fusion was performed with each candidate reference. The fused image quality was assessed with SNR and CNR. Registration residuals in SSD, harmonic energy, and deformation Jacobian behavior were examined. The semi-symmetry is further utilized to reduce the number of registration needed. Results: The comparison of image quality between single image and fused ones identified reduction of local intensity variance as the major contributor of image quality, boosting SNR and CNR by 5 to 7 folds. This observation further suggests the criticality of good agreement across post-registration images. Triangle inequality on the SSD metric provides a proficient upper-bound and surrogate on such disagreement. Empirical observation also confirms that fused images with high residual SSD have lower SNR and CNR than the ones with low or intermediate SSDs. Registration SSD is structurally close enough to symmetry for reduced computation. Conclusion: Registration residual is shown to be a good predictor of post-fusion image quality and can be used to identify good reference centers. Semi-symmetry of the registration residual further reduces computation cost. Supported by in part by NIH R01 CA096679.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Wang, J

    Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less

  17. Apparatus and method for ultrasonic reconstruction and testing of a turbine rotor blade attachment structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.F.

    1995-04-25

    An apparatus and method for ultrasonic reconstruction and testing of a non-visible turbine rotor blade attachment structure is described. The method of the invention includes positioning transducers at a first location to obtain slot region scan data corresponding to a slot region of the non-visible turbine rotor blade attachment structure, and positioning transducers at a second location to obtain straddle-mount region scan data corresponding to a straddle-mount region of the non-visible turbine rotor blade attachment structure. The shape of the non-visible turbine rotor blade attachment structure is reconstructed from the slot region scan data and the straddle-mount region scan datamore » to form reconstruction data. The reconstruction data is used to select test scan positions for ultrasonic testing. Ultrasonic testing is then performed at the selected test scan positions. 11 figs.« less

  18. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest

    Treesearch

    Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi

    2017-01-01

    Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...

  19. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    PubMed Central

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown. PMID:29270242

  20. Accuracy of Reduced-Dose Computed Tomography for Ureteral Stones in Emergency Department Patients

    PubMed Central

    Moore, Christopher L.; Daniels, Brock; Ghita, Monica; Gunabushanam, Gowthaman; Luty, Seth; Molinaro, Annette M.; Singh, Dinesh; Gross, Cary P.

    2016-01-01

    Study objective Reduced-dose computed tomography (CT) scans have been recommended for diagnosis of kidney stone but are rarely used in the emergency department (ED) setting. Test characteristics are incompletely characterized, particularly in obese patients. Our primary outcome is to determine the sensitivity and specificity of a reduced-dose CT protocol for symptomatic ureteral stones, particularly those large enough to require intervention, using a protocol stratified by patient size. Methods This was a prospective, blinded observational study of 201 patients at an academic medical center. Consenting subjects underwent both regular- and reduced-dose CT, stratified into a high and low body mass index (BMI) protocol based on effective abdominal diameter. Reduced-dose CT scans were interpreted by radiologists blinded to regular-dose interpretations. Follow-up for outcome and intervention was performed at 90 days. Results CT scans with both regular and reduced doses were conducted for 201 patients, with 63% receiving the high BMI reduced-dose protocol. Ureteral stone was identified in 102 patients (50.7%) of those receiving regular-dose CT, with a ureteral stone greater than 5 mm identified in 26 subjects (12.9%). Sensitivity of the reduced-dose CT for any ureteral stone was 90.2% (95% confidence interval [CI] 82.3% to 95.0%), with a specificity of 99.0% (95% CI 93.7% to 100.0%). For stones greater than 5 mm, sensitivity was 100% (95% CI 85.0% to 100.0%). Reduced-dose CT identified 96% of patients who required intervention for ureteral stone within 90 days. Mean reduction in size-specific dose estimate was 18.6 milligray (mGy), from 21.7 mGy (SD 9.7) to 3.4 mGy (SD 0.9). Conclusion CT with substantial dose reduction was 90.2% (95% CI 82.3% to 95.0%) sensitive and 98.9% (95% CI 85.0% to 100.0%) specific for ureteral stones in ED patients with a wide range of BMIs. Reduced-dose CT was 96.0% (95% CI 80.5% to 99.3%) sensitive for ureteral stones requiring intervention within 90 days. PMID:25441242

  1. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study

    PubMed Central

    Ried, Karin; Eng, Peter; Sali, Avni

    2017-01-01

    Background: Circulating-Tumour-Cells (CTC) provide a blood biomarker for early carcinogenesis, cancer progression and treatment effectiveness. An increase in CTCs is associated with cancer progression, a CTC decrease with cancer containment or remission. Several technologies have been developed to identify CTC, including the validated Isolation-by-Size-of-Epithelial-Tumour (ISET, Rarecells) technology, combining blood filtration and microscopy using standard histo-pathological criteria. Methods: This observational study compared CTC count to cancer status and cancer risk, by monitoring treatment effectiveness in cancer patients and by screening for CTC in asymptomatic patients with risk factors, including family history of cancer. Results: Between Sept-2014 and Dec-2016 we undertook 600 CTC tests (542 patients), including 50% screening requests of patients without cancer diagnosis but with risk factors. CTC were detected in all cancer patients (n=277, 100%), and in half of the asymptomatic patients screened (50%, 132 out-of 265 patients). Follow-up tests including scans, scheduled within 1-10 months of positive CTC tests, found early cancerous lesions in 20% of screened patients. In 50% of male patients with CTC and normal PSA (prostate-specific-antigen) levels, PSMA-PET scans revealed increased uptake in the prostate, indicative of early prostate cancer. Other types of cancers detected by CTC screening and subsequent scans included early breast, ovarian, lung, or renal cancer. Patients with CTC were advised on integrative approaches including immune-stimulating and anti-carcinogenic nutritional therapies. CTC repeat tests were available in 10% of patients with detected CTC (40 out-of 409 patients, n=98 CTC tests) to assess treatment effectiveness, suggesting nutritional therapies to be beneficial in reducing CTC count. Conclusions: CTC screening provided a highly sensitive biomarker for the early detection of cancer, with higher CTC counts being associated with higher risk of malignancy. CTC monitoring over time indicated treatment effectiveness. Nutrients with anti-carcinogenic properties could reduce CTC count, and included curcumin, garlic, green tea, grape seed, modified citrus pectin, and medicinal mushroom extract. PMID:28843267

  2. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study

    PubMed

    Ried, Karin; Eng, Peter; Sali, Avni

    2017-08-27

    Background: Circulating-Tumour-Cells (CTC) provide a blood biomarker for early carcinogenesis, cancer progression and treatment effectiveness. An increase in CTCs is associated with cancer progression, a CTC decrease with cancer containment or remission. Several technologies have been developed to identify CTC, including the validated Isolation-by-Size-of-Epithelial-Tumour (ISET, Rarecells) technology, combining blood filtration and microscopy using standard histo-pathological criteria. Methods: This observational study compared CTC count to cancer status and cancer risk, by monitoring treatment effectiveness in cancer patients and by screening for CTC in asymptomatic patients with risk factors, including family history of cancer. Results: Between Sept-2014 and Dec-2016 we undertook 600 CTC tests (542 patients), including 50% screening requests of patients without cancer diagnosis but with risk factors. CTC were detected in all cancer patients (n=277, 100%), and in half of the asymptomatic patients screened (50%, 132 out-of 265 patients). Follow-up tests including scans, scheduled within 1-10 months of positive CTC tests, found early cancerous lesions in 20% of screened patients. In 50% of male patients with CTC and normal PSA (prostate-specific-antigen) levels, PSMA-PET scans revealed increased uptake in the prostate, indicative of early prostate cancer. Other types of cancers detected by CTC screening and subsequent scans included early breast, ovarian, lung, or renal cancer. Patients with CTC were advised on integrative approaches including immune-stimulating and anti-carcinogenic nutritional therapies. CTC repeat tests were available in 10% of patients with detected CTC (40 outof 409 patients, n=98 CTC tests) to assess treatment effectiveness, suggesting nutritional therapies to be beneficial in reducing CTC count. Conclusions: CTC screening provided a highly sensitive biomarker for the early detection of cancer, with higher CTC counts being associated with higher risk of malignancy. CTC monitoring over time indicated treatment effectiveness. Nutrients with anti-carcinogenic properties could reduce CTC count, and included curcumin, garlic, green tea, grape seed, modified citrus pectin, and medicinal mushroom extract. Creative Commons Attribution License

  3. A Novel Solid State Ultracapacitor

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.

    2017-01-01

    Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.

  4. Parallax scanning methods for stereoscopic three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2012-03-01

    Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.

  5. Inorganic fullerene-like tungsten disulfide nanocoating for friction reduction of nickel-titanium alloys.

    PubMed

    Samorodnitzky-Naveh, Gili R; Redlich, Meir; Rapoport, Lev; Feldman, Yishay; Tenne, Reshef

    2009-12-01

    To fabricate a friction-reducing coating onto different nickel-titanium (NiTi) substrates using inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles and to estimate in vitro friction reducing extent of the coating. Different NiTi substrates were coated with cobalt and IF-WS(2) nanoparticles film by the electrodeposition procedure. Coating composition analyses was made by scanning-electron microscopy, energy dispersive x-ray spectroscopy, x-ray powder diffractometry and x-ray photoelectron spectroscopy. Friction evaluation was carried out using standard tribological tests and an Instron system. Stable and well-adhered cobalt + IF-WS(2) coating of the NiTi substrates was obtained. Friction tests presented up to 66% reduction of the friction coefficient. NiTi alloy is widely used for many medical appliances; hence, this unique friction-reducing coating could be implemented to provide better manipulation and lower piercing rates.

  6. Research and test facilities for development of technologies and experiments with commercial applications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  7. Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.

    PubMed

    Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard

    2015-08-01

    This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  9. Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Martarelli, M.; Castellini, P.

    2017-03-01

    Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.

  10. Mobile Laser Scanning Systems for Measuring the Clearance Gauge of Railways: State of Play, Testing and Outlook

    PubMed Central

    Mikrut, Sławomir; Kohut, Piotr; Pyka, Krystian; Tokarczyk, Regina; Barszcz, Tomasz; Uhl, Tadeusz

    2016-01-01

    The paper contains a survey of mobile scanning systems for measuring the railway clearance gauge. The research was completed as part of the project carried out for the PKP (PKP Polish Railway Lines S.A., Warsaw, Poland) in 2011–2013. The authors conducted experiments, including a search for the latest solutions relating to mobile measurement systems that meet the basic requirement. At the very least, these solutions needed to be accurate and have the ability for quick retrieval of data. In the paper, specifications and the characteristics of the component devices of the scanning systems are described. Based on experiments, the authors did some examination of the selected mobile systems to be applied for measuring the clearance gauge. The Riegl (VMX-250) and Z+F (Zoller + Fröhlich) Solution were tested. Additional test measurements were carried out within a 30-kilometer section of the Warsaw-Kraków route. These measurements were designed so as to provide various elements of the railway infrastructure, the track geometry and the installed geodetic control network. This ultimately made it possible to reduce the time for the preparation of geodetic reference measurements for the testing of the accuracy of the selected systems. Reference measurements included the use of the polar method to select profiles perpendicular to the axis of the track. In addition, the coordinates selected were well defined as measuring points of the objects of the infrastructure of the clearance gauge. All of the tested systems meet the accuracy requirements initially established (within the range of 2 cm as required by the PKP). The tested systems have shown their advantages and disadvantages. PMID:27187400

  11. Prefrontal activity and diagnostic monitoring of memory retrieval: FMRI of the criterial recollection task.

    PubMed

    Gallo, David A; Kensinger, Elizabeth A; Schacter, Daniel L

    2006-01-01

    According to the distinctiveness heuristic, subjects rely more on detailed recollections (and less on familiarity) when memory is tested for pictures relative to words, leading to reduced false recognition. If so, then neural regions that have been implicated in effortful postretrieval monitoring (e.g., dorsolateral prefrontal cortex) might be recruited less heavily when trying to remember pictures. We tested this prediction with the criterial recollection task. Subjects studied black words, paired with either the same word in red font or a corresponding colored picture. Red words were repeated at study to equate recognition hits for red words and pictures. During fMRI scanning, alternating red word memory tests and picture memory tests were given, using only white words as test stimuli (say "yes" only if you recollect a corresponding red word or picture, respectively). These tests were designed so that subjects had to rely on memory for the criterial information. Replicating prior behavioral work, we found enhanced rejection of lures on the picture test compared to the red word test, indicating that subjects had used a distinctiveness heuristic. Critically, dorsolateral prefrontal activity was reduced when rejecting familiar lures on the picture test, relative to the red word test. These findings indicate that reducing false recognition via the distinctiveness heuristic is not heavily dependent on frontally mediated postretrieval monitoring processes.

  12. Operator Variability in Scan Positioning is a Major Component of HR-pQCT Precision Error and is Reduced by Standardized Training

    PubMed Central

    Bonaretti, Serena; Vilayphiou, Nicolas; Chan, Caroline Mai; Yu, Andrew; Nishiyama, Kyle; Liu, Danmei; Boutroy, Stephanie; Ghasem-Zadeh, Ali; Boyd, Steven K.; Chapurlat, Roland; McKay, Heather; Shane, Elizabeth; Bouxsein, Mary L.; Black, Dennis M.; Majumdar, Sharmila; Orwoll, Eric S.; Lang, Thomas F.; Khosla, Sundeep; Burghardt, Andrew J.

    2017-01-01

    Introduction HR-pQCT is increasingly used to assess bone quality, fracture risk and anti-fracture interventions. The contribution of the operator has not been adequately accounted in measurement precision. Operators acquire a 2D projection (“scout view image”) and define the region to be scanned by positioning a “reference line” on a standard anatomical landmark. In this study, we (i) evaluated the contribution of positioning variability to in vivo measurement precision, (ii) measured intra- and inter-operator positioning variability, and (iii) tested if custom training software led to superior reproducibility in new operators compared to experienced operators. Methods To evaluate the operator in vivo measurement precision we compared precision errors calculated in 64 co-registered and non-co-registered scan-rescan images. To quantify operator variability, we developed software that simulates the positioning process of the scanner’s software. Eight experienced operators positioned reference lines on scout view images designed to test intra- and inter-operator reproducibility. Finally, we developed modules for training and evaluation of reference line positioning. We enrolled 6 new operators to participate in a common training, followed by the same reproducibility experiments performed by the experienced group. Results In vivo precision errors were up to three-fold greater (Tt.BMD and Ct.Th) when variability in scan positioning was included. Inter-operator precision errors were significantly greater than short-term intra-operator precision (p<0.001). New trained operators achieved comparable intra-operator reproducibility to experienced operators, and lower inter-operator reproducibility (p<0.001). Precision errors were significantly greater for the radius than for the tibia. Conclusion Operator reference line positioning contributes significantly to in vivo measurement precision and is significantly greater for multi-operator datasets. Inter-operator variability can be significantly reduced using a systematic training platform, now available online (http://webapps.radiology.ucsf.edu/refline/). PMID:27475931

  13. Re-designing scanning to reduce learning demands: the performance of typically developing 2-year-olds.

    PubMed

    McCarthy, John; Light, Janice; Drager, Kathryn; McNaughton, David; Grodzicki, Laura; Jones, Jonathan; Panek, Elizabeth; Parkin, Elizabeth

    2006-12-01

    Children with severe motor impairments who cannot use direct selection are typically introduced to scanning as a means of accessing assistive technology. Unfortunately, it is difficult for young children to learn to scan because the design of current scanning techniques does not always make explicit the offer of items from the selection array; furthermore, it does not provide explicit feedback after activation of the switch to select the target item. In the current study, scanning was redesigned to reduce learning demands by making both the offer of items and the feedback upon selection more explicit through the use of animation realized through HTML and speech output with appropriate intonation. Twenty typically developing 2-year-olds without disabilities were randomly assigned to use either traditional scanning or enhanced scanning to select target items from an array of three items. The 2-year-olds did not learn to use traditional scanning across three sessions. Their performance in Session 3 did not differ from that in Session 1; they did not exceed chance levels of accuracy in either session (mean accuracy of 20% for Sessions 1 and 3). In contrast, the children in the enhanced scanning condition demonstrated improvements in accuracy across the three 10-20-min sessions (mean accuracies of 22 and 48% for Sessions 1 and 3, respectively). There were no reliable differences between the children's performances with the two scanning techniques for Session 1; however, by Session 3, the children were more than twice as accurate using the enhanced scanning technique compared to the traditional design. Results suggest that by redesigning scanning, we may be able to reduce some of the learning demands and thereby reduce some of the instructional time required for children to attain mastery. Clinical implications, limitations, and directions for future research and development are discussed.

  14. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) improves chest CT image quality and reduces radiation exposure.

    PubMed

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.

  15. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  16. Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite

    NASA Astrophysics Data System (ADS)

    Wang, Xiaobo; Bai, Zhimin; Zhao, Dong; Zhao, Fuyan

    2013-07-01

    In this paper, Mg-Al-CO3 LDH was prepared by magnesite under chemical precipitation and hydrothermal methods. In order to improve the dispersion of LDH in base oil, the as-prepared sample was modified with sodium laurate. The obtained material (GMAC-LDH) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and thermo gravimetric analyzer (DSC-TGA) and scanning electron microscope (SEM). The results show that the modified LDH has platelet morphology with a near hexagon shape. In addition, the tribological properties of GMAC-LDH were evaluated by four-ball friction tester and gear tester. As a lubricant, GMAC-LDH possesses an excellent property on reducing friction and wear of friction pair. The results of friction tests indicated that the friction coefficient, diameter of wear scar and power consumption of the oil with GMAC-LDH was reduced by 11.0%, 8.5% and 2.1% as compared with that of base oil.

  17. SU-F-J-74: High Z Geometric Integrity and Beam Hardening Artifact Assessment Using a Retrospective Metal Artifact Reduction (MAR) Reconstruction Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; DiCostanzo, D; Gupta, N

    Purpose: To test the efficacy of a retrospective metal artifact reduction (MAR) reconstruction algorithm for a commercial computed tomography (CT) scanner for radiation therapy purposes. Methods: High Z geometric integrity and artifact reduction analysis was performed with three phantoms using General Electric’s (GE) Discovery CT. The three phantoms included: a Computerized Imaging Reference Systems (CIRS) electron density phantom (Model 062) with a 6.5 mm diameter titanium rod insert, a custom spine phantom using Synthes Spine hardware submerged in water, and a dental phantom with various high Z fillings submerged in water. Each phantom was reconstructed using MAR and compared againstmore » the original scan. Furthermore, each scenario was tested using standard and extended Hounsfield Unit (HU) ranges. High Z geometric integrity was performed using the CIRS phantom, while the artifact reduction was performed using all three phantoms. Results: Geometric integrity of the 6.5 mm diameter rod was slightly overestimated for non-MAR scans for both standard and extended HU. With MAR reconstruction, the rod was underestimated for both standard and extended HU. For artifact reduction, the mean and standard deviation was compared in a volume of interest (VOI) in the surrounding material (water and water equivalent material, ∼0HU). Overall, the mean value of the VOI was closer to 0 HU for the MAR reconstruction compared to the non-MAR scan for most phantoms. Additionally, the standard deviations for all phantoms were greatly reduced using MAR reconstruction. Conclusion: GE’s MAR reconstruction algorithm improves image quality with the presence of high Z material with minimal degradation of its geometric integrity. High Z delineation can be carried out with proper contouring techniques. The effects of beam hardening artifacts are greatly reduced with MAR reconstruction. Tissue corrections due to these artifacts can be eliminated for simple high Z geometries and greatly reduced for more complex geometries.« less

  18. Module generation for self-testing integrated systems

    NASA Astrophysics Data System (ADS)

    Vanriessen, Ronald Pieter

    Hardware used for self test in VLSI (Very Large Scale Integrated) systems is reviewed, and an architecture to control the test hardware in an integrated system is presented. Because of the increase of test times, the use of self test techniques has become practically and economically viable for VLSI systems. Beside the reduction in test times and costs, self test also provides testing at operational speeds. Therefore, a suitable combination of scan path and macrospecific (self) tests is required to reduce test times and costs. An expert system that can be used in a silicon compilation environment is presented. The approach requires a minimum of testability knowledge from a system designer. A user friendly interface was described for specifying and modifying testability requirements by a testability expert. A reason directed backtracking mechanism is used to solve selection failures. Both the hierarchical testable architecture and the design for testability expert system are used in a self test compiler. The definition of a self test compiler was given. A self test compiler is a software tool that selects an appropriate test method for every macro in a design. The hardware to control a macro test will be included in the design automatically. As an example, the integration of the self-test compiler in a silicon compilation system PIRAMID was described. The design of a demonstrator circuit by self test compiler is described. This circuit consists of two self testable macros. Control of the self test hardware is carried out via the test access port of the boundary scan standard.

  19. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  20. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  1. Atom Optics for Bose-Einstein Condensates (BEC)

    DTIC Science & Technology

    2012-04-25

    Electron Micrograph of the Top View of Test Chip A .......................................29 11. A Scanning Electron Micrograph of the Cross...Sectional View of Test Chip A .....................29 12. A Scanning Electron Micrograph of the Top View of Test Chip B...30 13. A Scanning Electron Micrograph of the Cross Sectional View of Test Chip B .....................30 14. Toner Masks for Etching

  2. A Boundary Scan Test Vehicle for Direct Chip Attach Testing

    NASA Technical Reports Server (NTRS)

    Parsons, Heather A.; DAgostino, Saverio; Arakaki, Genji

    2000-01-01

    To facilitate the new faster, better and cheaper spacecraft designs, smaller more mass efficient avionics and instruments are using higher density electronic packaging technologies such as direct chip attach (DCA). For space flight applications, these technologies need to have demonstrated reliability and reasonably well defined fabrication and assembly processes before they will be accepted as baseline designs in new missions. As electronics shrink in size, not only can repair be more difficult, but 49 probing" circuitry can be very risky and it becomes increasingly more difficult to identify the specific source of a problem. To test and monitor these new technologies, the Direct Chip Attach Task, under NASA's Electronic Parts and Packaging Program (NEPP), chose the test methodology of boundary scan testing. The boundary scan methodology was developed for interconnect integrity and functional testing at hard to access electrical nodes. With boundary scan testing, active devices are used and failures can be identified to the specific device and lead. This technology permits the incorporation of "built in test" into almost any circuit and thus gives detailed test access to the highly integrated electronic assemblies. This presentation will describe boundary scan, discuss the development of the boundary scan test vehicle for DCA and current plans for testing of direct chip attach configurations.

  3. The child's perspective on discomfort during medical research procedures: a descriptive study.

    PubMed

    Staphorst, Mira S; Benninga, Marc A; Bisschoff, Margriet; Bon, Irma; Busschbach, Jan J V; Diederen, Kay; van Goudoever, Johannes B; Haarman, Eric G; Hunfeld, Joke A M; Jaddoe, Vincent V W; de Jong, Karin J M; de Jongste, Johan C; Kindermann, Angelika; Königs, Marsh; Oosterlaan, Jaap; Passchier, Jan; Pijnenburg, Mariëlle W; Reneman, Liesbeth; Ridder, Lissy de; Tamminga, Hyke G; Tiemeier, Henning W; Timman, Reinier; van de Vathorst, Suzanne

    2017-08-01

    The evaluation of discomfort in paediatric research is scarcely evidence-based. In this study, we make a start in describing children's self-reported discomfort during common medical research procedures and compare this with discomfort during dental check-ups which can be considered as a reference level of a 'minimal discomfort' medical procedure. We exploratory study whether there are associations between age, anxiety-proneness, gender, medical condition, previous experiences and discomfort. We also describe children's suggestions for reducing discomfort. Cross-sectional descriptive study. Paediatric research at three academic hospitals. 357 children with and without illnesses (8-18 years, mean=10.6 years) were enrolled: 307 from paediatric research studies and 50 from dental care. We measured various generic forms of discomfort (nervousness, annoyance, pain, fright, boredom, tiredness) due to six common research procedures: buccal swabs, MRI scans, pulmonary function tests, skin prick tests, ultrasound imaging and venepunctures. Most children reported limited discomfort during the research procedures (means: 1-2.6 on a scale from 1 to 5). Compared with dental check-ups, buccal swab tests, skin prick tests and ultrasound imaging were less discomforting, while MRI scans, venepunctures and pulmonary function tests caused a similar degree of discomfort. 60.3% of the children suggested providing distraction by showing movies to reduce discomfort. The exploratory analyses suggested a positive association between anxiety-proneness and discomfort. The findings of this study support the acceptability of participation of children in the studied research procedures, which stimulates evidence-based research practice. Furthermore, the present study can be considered as a first step in providing benchmarks for discomfort of procedures in paediatric research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The child's perspective on discomfort during medical research procedures: a descriptive study

    PubMed Central

    Staphorst, Mira S; Benninga, Marc A; Bisschoff, Margriet; Bon, Irma; Busschbach, Jan J V; Diederen, Kay; van Goudoever, Johannes B; Haarman, Eric G; Hunfeld, Joke A M; Jaddoe, Vincent V W; de Jong, Karin J M; de Jongste, Johan C; Kindermann, Angelika; Königs, Marsh; Oosterlaan, Jaap; Passchier, Jan; Pijnenburg, Mariëlle W; Reneman, Liesbeth; de Ridder, Lissy; Tamminga, Hyke G; Tiemeier, Henning W; Timman, Reinier; van de Vathorst, Suzanne

    2017-01-01

    Objective The evaluation of discomfort in paediatric research is scarcely evidence-based. In this study, we make a start in describing children's self-reported discomfort during common medical research procedures and compare this with discomfort during dental check-ups which can be considered as a reference level of a ‘minimal discomfort’ medical procedure. We exploratory study whether there are associations between age, anxiety-proneness, gender, medical condition, previous experiences and discomfort. We also describe children's suggestions for reducing discomfort. Design Cross-sectional descriptive study. Setting Paediatric research at three academic hospitals. Patients 357 children with and without illnesses (8–18 years, mean=10.6 years) were enrolled: 307 from paediatric research studies and 50 from dental care. Main outcome measures We measured various generic forms of discomfort (nervousness, annoyance, pain, fright, boredom, tiredness) due to six common research procedures: buccal swabs, MRI scans, pulmonary function tests, skin prick tests, ultrasound imaging and venepunctures. Results Most children reported limited discomfort during the research procedures (means: 1–2.6 on a scale from 1 to 5). Compared with dental check-ups, buccal swab tests, skin prick tests and ultrasound imaging were less discomforting, while MRI scans, venepunctures and pulmonary function tests caused a similar degree of discomfort. 60.3% of the children suggested providing distraction by showing movies to reduce discomfort. The exploratory analyses suggested a positive association between anxiety-proneness and discomfort. Conclusions The findings of this study support the acceptability of participation of children in the studied research procedures, which stimulates evidence-based research practice. Furthermore, the present study can be considered as a first step in providing benchmarks for discomfort of procedures in paediatric research. PMID:28765130

  5. MRI simulation: end-to-end testing for prostate radiation therapy using geometric pelvic MRI phantoms

    NASA Astrophysics Data System (ADS)

    Sun, Jidi; Dowling, Jason; Pichler, Peter; Menk, Fred; Rivest-Henault, David; Lambert, Jonathan; Parker, Joel; Arm, Jameen; Best, Leah; Martin, Jarad; Denham, James W.; Greer, Peter B.

    2015-04-01

    To clinically implement MRI simulation or MRI-alone treatment planning requires comprehensive end-to-end testing to ensure an accurate process. The purpose of this study was to design and build a geometric phantom simulating a human male pelvis that is suitable for both CT and MRI scanning and use it to test geometric and dosimetric aspects of MRI simulation including treatment planning and digitally reconstructed radiograph (DRR) generation. A liquid filled pelvic shaped phantom with simulated pelvic organs was scanned in a 3T MRI simulator with dedicated radiotherapy couch-top, laser bridge and pelvic coil mounts. A second phantom with the same external shape but with an internal distortion grid was used to quantify the distortion of the MR image. Both phantoms were also CT scanned as the gold-standard for both geometry and dosimetry. Deformable image registration was used to quantify the MR distortion. Dose comparison was made using a seven-field IMRT plan developed on the CT scan with the fluences copied to the MR image and recalculated using bulk electron densities. Without correction the maximum distortion of the MR compared with the CT scan was 7.5 mm across the pelvis, while this was reduced to 2.6 and 1.7 mm by the vendor’s 2D and 3D correction algorithms, respectively. Within the locations of the internal organs of interest, the distortion was <1.5 and <1 mm with 2D and 3D correction algorithms, respectively. The dose at the prostate isocentre calculated on CT and MRI images differed by 0.01% (1.1 cGy). Positioning shifts were within 1 mm when setup was performed using MRI generated DRRs compared to setup using CT DRRs. The MRI pelvic phantom allows end-to-end testing of the MRI simulation workflow with comparison to the gold-standard CT based process. MRI simulation was found to be geometrically accurate with organ dimensions, dose distributions and DRR based setup within acceptable limits compared to CT.

  6. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components.

  7. Evaluation of Two Commercial Systems for Automated Processing, Reading, and Interpretation of Lyme Borreliosis Western Blots▿

    PubMed Central

    Binnicker, M. J.; Jespersen, D. J.; Harring, J. A.; Rollins, L. O.; Bryant, S. C.; Beito, E. M.

    2008-01-01

    The diagnosis of Lyme borreliosis (LB) is commonly made by serologic testing with Western blot (WB) analysis serving as an important supplemental assay. Although specific, the interpretation of WBs for diagnosis of LB (i.e., Lyme WBs) is subjective, with considerable variability in results. In addition, the processing, reading, and interpretation of Lyme WBs are laborious and time-consuming procedures. With the need for rapid processing and more objective interpretation of Lyme WBs, we evaluated the performances of two automated interpretive systems, TrinBlot/BLOTrix (Trinity Biotech, Carlsbad, CA) and BeeBlot/ViraScan (Viramed Biotech AG, Munich, Germany), using 518 serum specimens submitted to our laboratory for Lyme WB analysis. The results of routine testing with visual interpretation were compared to those obtained by BLOTrix analysis of MarBlot immunoglobulin M (IgM) and IgG and by ViraScan analysis of ViraBlot and ViraStripe IgM and IgG assays. BLOTrix analysis demonstrated an agreement of 84.7% for IgM and 87.3% for IgG compared to visual reading and interpretation. ViraScan analysis of the ViraBlot assays demonstrated agreements of 85.7% for IgM and 94.2% for IgG, while ViraScan analysis of the ViraStripe IgM and IgG assays showed agreements of 87.1 and 93.1%, respectively. Testing by the automated systems yielded an average time savings of 64 min/run compared to processing, reading, and interpretation by our current procedure. Our findings demonstrated that automated processing and interpretive systems yield results comparable to those of visual interpretation, while reducing the subjectivity and time required for Lyme WB analysis. PMID:18463211

  8. Evaluation of two commercial systems for automated processing, reading, and interpretation of Lyme borreliosis Western blots.

    PubMed

    Binnicker, M J; Jespersen, D J; Harring, J A; Rollins, L O; Bryant, S C; Beito, E M

    2008-07-01

    The diagnosis of Lyme borreliosis (LB) is commonly made by serologic testing with Western blot (WB) analysis serving as an important supplemental assay. Although specific, the interpretation of WBs for diagnosis of LB (i.e., Lyme WBs) is subjective, with considerable variability in results. In addition, the processing, reading, and interpretation of Lyme WBs are laborious and time-consuming procedures. With the need for rapid processing and more objective interpretation of Lyme WBs, we evaluated the performances of two automated interpretive systems, TrinBlot/BLOTrix (Trinity Biotech, Carlsbad, CA) and BeeBlot/ViraScan (Viramed Biotech AG, Munich, Germany), using 518 serum specimens submitted to our laboratory for Lyme WB analysis. The results of routine testing with visual interpretation were compared to those obtained by BLOTrix analysis of MarBlot immunoglobulin M (IgM) and IgG and by ViraScan analysis of ViraBlot and ViraStripe IgM and IgG assays. BLOTrix analysis demonstrated an agreement of 84.7% for IgM and 87.3% for IgG compared to visual reading and interpretation. ViraScan analysis of the ViraBlot assays demonstrated agreements of 85.7% for IgM and 94.2% for IgG, while ViraScan analysis of the ViraStripe IgM and IgG assays showed agreements of 87.1 and 93.1%, respectively. Testing by the automated systems yielded an average time savings of 64 min/run compared to processing, reading, and interpretation by our current procedure. Our findings demonstrated that automated processing and interpretive systems yield results comparable to those of visual interpretation, while reducing the subjectivity and time required for Lyme WB analysis.

  9. Virtobot--a multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy.

    PubMed

    Ebert, Lars Christian; Ptacek, Wolfgang; Naether, Silvio; Fürst, Martin; Ross, Steffen; Buck, Ursula; Weber, Stefan; Thali, Michael

    2010-03-01

    The Virtopsy project, a multi-disciplinary project that involves forensic science, diagnostic imaging, computer science, automation technology, telematics and biomechanics, aims to develop new techniques to improve the outcome of forensic investigations. This paper presents a new approach in the field of minimally invasive virtual autopsy for a versatile robotic system that is able to perform three-dimensional (3D) surface scans as well as post mortem image-guided soft tissue biopsies. The system consists of an industrial six-axis robot with additional extensions (i.e. a linear axis to increase working space, a tool-changing system and a dedicated safety system), a multi-slice CT scanner with equipment for angiography, a digital photogrammetry and 3D optical surface-scanning system, a 3D tracking system, and a biopsy end effector for automatic needle placement. A wax phantom was developed for biopsy accuracy tests. Surface scanning times were significantly reduced (scanning times cut in half, calibration three times faster). The biopsy module worked with an accuracy of 3.2 mm. Using the Virtobot, the surface-scanning procedure could be standardized and accelerated. The biopsy module is accurate enough for use in biopsies in a forensic setting. The Virtobot can be utilized for several independent tasks in the field of forensic medicine, and is sufficiently versatile to be adapted to different tasks in the future. (c) 2009 John Wiley & Sons, Ltd.

  10. Synthesis and Characterization of a New Co-Crystal Explosive with High Energy and Good Sensitivity

    NASA Astrophysics Data System (ADS)

    Gao, Han; Jiang, Wei; Liu, Jie; Hao, Gazi; Xiao, Lei; Ke, Xiang; Chen, Teng

    2017-10-01

    A new energetic co-crystal consisting of one of the most powerful explosive molecules 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the military explosive cyclotrimethylenetrinitramine (RDX) was prepared with a simple solvent evaporation method. Scanning electron microscopy (SEM) revealed the morphology of the bar-shaped product, which differed greatly from the morphology of the individual components. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction spectrum (XRD), and differential scanning calorimetry (DSC) proved the formation of the co-crystal at the molecular level. The result of mechanical sensitivity test indicated the sensitivity was effectively reduced compared to raw CL-20. Finally, a possible crystallization mechanism was discussed.

  11. Leg CT scan

    MedlinePlus

    CAT scan - leg; Computed axial tomography scan - leg; Computed tomography scan - leg; CT scan - leg ... CT scan makes detailed pictures of the body very quickly. The test may help look for: An abscess ...

  12. Kinetic modeling and long-term test-retest reproducibility of the mGluR5 PET tracer 18F-FPEB in human brain.

    PubMed

    Leurquin-Sterk, Gil; Postnov, Andrey; de Laat, Bart; Casteels, Cindy; Celen, Sofie; Crunelle, Cleo L; Bormans, Guy; Koole, Michel; Van Laere, Koen

    2016-04-01

    (18)F-FPEB is a promising PET tracer for studying the metabotropic glutamate subtype 5 receptor (mGluR5) expression in neuropsychiatric disorders. To assess the potential of (18)F-FPEB for longitudinal mGluR5 evaluation in patient studies, we evaluated the long-term test-retest reproducibility using various kinetic models in the human brain. Nine healthy volunteers underwent consecutive scans separated by a 6-month period. Dynamic PET was combined with arterial sampling and radiometabolite analysis. Total distribution volume (V(T)) and nondisplaceable binding potential (BP(ND)) were derived from a two-tissue compartment model without constraints (2TCM) and with constraining the K(1)/k(2) ratio to the value of either cerebellum (2TCM-CBL) or pons (2TCM-PONS). The effect of fitting different functions to the tracer parent fractions and reducing scan duration were assessed. Regional absolute test-retest variability (aTRV), coefficient of repeatability (CR) and intraclass correlation coefficient (ICC) were computed. The 2TCM-CBL showed best fits. The mean 6-month aTRV of V(T) ranged from 8 to 13% (CR < 25%) with ICC > 0.6 for all kinetic models. BPND from 2TCM-CBL with a sigmoid fit for the parent fractions showed the best reproducibility, with aTRV ≤ 7% (CR < 16%) and ICC > 0.9 in most regions. Reducing the scan duration from 90 to 60 min did not affect reproducibility. These results demonstrate for the first time that (18)F-FPEB brain PET has good long-term reproducibility, therefore validating its use to monitor mGluR5 expression in longitudinal clinical studies. We suggest a 2TCM-CBL with fitting a sigmoid function to the parent fractions to be optimal for this tracer. © 2016 Wiley Periodicals, Inc.

  13. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal.

    PubMed

    Thomason, Moriah E; Glover, Gary H

    2008-01-01

    Recent studies have shown that blood oxygen level dependent (BOLD) response amplitude during short periods of breath holding (BH) measured by functional magnetic resonance imaging (fMRI) can be an effective metric for intersubject calibration procedures. However, inconsistency in the depth of inspiration during the BH scan may account for a portion of BOLD variation observed in such scans, and it is likely to reduce the effectiveness of the calibration measurement. While modulation of BOLD signal has been correlated with end-tidal CO2 and other measures of breathing, fluctuations in performance of BH have not been studied in the context of their impact on BOLD signal. Here, we studied the degree to which inspiration depth corresponds to BOLD signal change and tested the effectiveness of a method designed to control inspiration level through visual cues during the BH task paradigm. We observed reliable differences in BOLD signal amplitude corresponding to the depth of inspiration. It was determined that variance in BOLD signal response to BH could be significantly reduced when subjects were given visual feedback during task inspiration periods. The implications of these findings for routine BH studies of BOLD-derived neurovascular response are discussed.

  14. Hydrogen-enhanced cracking revealed by in situ micro-cantilever bending test inside environmental scanning electron microscope.

    PubMed

    Deng, Yun; Hajilou, Tarlan; Barnoush, Afrooz

    2017-07-28

    To evaluate the hydrogen (H)-induced embrittlement in iron aluminium intermetallics, especially the one with stoichiometric composition of 50 at.% Al, a novel in situ micro-cantilever bending test was applied within an environmental scanning electron microscope (ESEM), which provides both a full process monitoring and a clean, in situ H-charging condition. Two sets of cantilevers were analysed in this work: one set of un-notched cantilevers, and the other set with focused ion beam-milled notch laying on two crystallographic planes: (010) and (110). The cantilevers were tested under two environmental conditions: vacuum (approximately 5 × 10 -4  Pa) and ESEM (450 Pa water vapour). Crack initiation at stress-concentrated locations and propagation to cause catastrophic failure were observed when cantilevers were tested in the presence of H; while no cracking occurred when tested in vacuum. Both the bending strength for un-notched beams and the fracture toughness for notched beams were reduced under H exposure. The hydrogen embrittlement (HE) susceptibility was found to be orientation dependent: the (010) crystallographic plane was more fragile to HE than the (110) plane.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  15. The Feasibility of Detecting Neuropsychologic and Neuroanatomic Effects of Type 1 Diabetes in Young Children

    PubMed Central

    Aye, Tandy; Reiss, Allan L.; Kesler, Shelli; Hoang, Sherry; Drobny, Jessica; Park, Yaena; Schleifer, Kristin; Baumgartner, Heidi; Wilson, Darrell M.; Buckingham, Bruce A.

    2011-01-01

    OBJECTIVE To determine if frequent exposures to hypoglycemia and hyperglycemia during early childhood lead to neurocognitive deficits and changes in brain anatomy. RESEARCH DESIGN AND METHODS In this feasibility, cross-sectional study, young children, aged 3 to 10 years, with type 1 diabetes and age- and sex-matched healthy control (HC) subjects completed neuropsychologic (NP) testing and magnetic resonance imaging (MRI) scans of the brain. RESULTS NP testing and MRI scanning was successfully completed in 98% of the type 1 diabetic and 93% of the HC children. A significant negative relationship between HbA1c and Wechsler Intelligence Scale for Children (WISC) verbal comprehension was observed. WISC index scores were significantly reduced in type 1 diabetic subjects who had experienced seizures. White matter volume did not show the expected increase with age in children with type 1 diabetes compared with HC children (diagnosis by age interaction, P = 0.005). A similar trend was detected for hippocampal volume. Children with type 1 diabetes who had experienced seizures showed significantly reduced gray matter and white matter volumes relative to children with type 1 diabetes who had not experienced seizures. CONCLUSIONS It is feasible to perform MRI and NP testing in young children with type 1 diabetes. Further, early signs of neuroanatomic variation may be present in this population. Larger cross-sectional and longitudinal studies of neurocognitive function and neuroanatomy are needed to define the effect of type 1 diabetes on the developing brain. PMID:21562318

  16. Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia

    PubMed Central

    Fan, Yuzhou; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining

    2017-01-01

    Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a “virtual organ” from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times—thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted. PMID:29410714

  17. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pant, Nidhi; Das, Santanu; Mitra, Sanjit

    Mild, unavoidable deviations from circular-symmetry of instrumental beams along with scan strategy can give rise to measurable Statistical Isotropy (SI) violation in Cosmic Microwave Background (CMB) experiments. If not accounted properly, this spurious signal can complicate the extraction of other SI violation signals (if any) in the data. However, estimation of this effect through exact numerical simulation is computationally intensive and time consuming. A generalized analytical formalism not only provides a quick way of estimating this signal, but also gives a detailed understanding connecting the leading beam anisotropy components to a measurable BipoSH characterisation of SI violation. In this paper,more » we provide an approximate generic analytical method for estimating the SI violation generated due to a non-circular (NC) beam and arbitrary scan strategy, in terms of the Bipolar Spherical Harmonic (BipoSH) spectra. Our analytical method can predict almost all the features introduced by a NC beam in a complex scan and thus reduces the need for extensive numerical simulation worth tens of thousands of CPU hours into minutes long calculations. As an illustrative example, we use WMAP beams and scanning strategy to demonstrate the easability, usability and efficiency of our method. We test all our analytical results against that from exact numerical simulations.« less

  18. Extracting Cross-Sectional Clinical Images Based on Their Principal Axes of Inertia.

    PubMed

    Fan, Yuzhou; Luo, Liangping; Djuric, Marija; Li, Zhiyu; Antonijevic, Djordje; Milenkovic, Petar; Sun, Yueyang; Li, Ruining; Fan, Yifang

    2017-01-01

    Cross-sectional imaging is considered the gold standard in diagnosing a range of diseases. However, despite its widespread use in clinical practice and research, no widely accepted method is available to reliably match cross-sectional planes in several consecutive scans. This deficiency can impede comparison between cross-sectional images and ultimately lead to misdiagnosis. Here, we propose and demonstrate a method for finding the same imaging plane in images obtained during separate scanning sessions. Our method is based on the reconstruction of a "virtual organ" from which arbitrary cross-sectional images can be extracted, independent of the axis orientation in the original scan or cut; the key is to establish unique body coordinates of the organ from its principal axes of inertia. To verify our method a series of tests were performed, and the same cross-sectional plane was successfully extracted. This new approach offers clinicians access, after just a single scanning session, to the morphology and structure of a lesion through cross-sectional images reconstructed along arbitrary axes. It also aids comparable detection of morphological and structural changes in the same imaging plane from scans of the same patient taken at different times-thus potentially reducing the misdiagnosis rate when cross-sectional images are interpreted.

  19. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  20. Accuracy and Radiation Dose Reduction of Limited-Range CT in the Evaluation of Acute Appendicitis in Pediatric Patients.

    PubMed

    Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T

    2017-09-01

    The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p < 0.001). A limited-range CT examination performed from the top of L2 to the top of the pubic symphysis is as accurate as a full-range abdominopelvic CT in evaluating pediatric patients with suspected appendicitis and reduces the dose by approximately 46%.

  1. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain.

    PubMed

    Ng, Kok Pin; Pascoal, Tharick A; Mathotaarachchi, Sulantha; Therriault, Joseph; Kang, Min Su; Shin, Monica; Guiot, Marie-Christine; Guo, Qi; Harada, Ryuichi; Comley, Robert A; Massarweh, Gassan; Soucy, Jean-Paul; Okamura, Nobuyuki; Gauthier, Serge; Rosa-Neto, Pedro

    2017-03-31

    18 F-THK5351 is a quinoline-derived tau imaging agent with high affinity to paired helical filaments (PHF). However, high levels of 18 F-THK5351 retention in brain regions thought to contain negligible concentrations of PHF raise questions about the interpretation of the positron emission tomography (PET) signals, particularly given previously described interactions between quinolone derivatives and monoamine oxidase B (MAO-B). Here, we tested the effects of MAO-B inhibition on 18 F-THK5351 brain uptake using PET and autoradiography. Eight participants (five mild cognitive impairment, two Alzheimer's disease, and one progressive supranuclear palsy) had baseline 18 F-AZD4694 and 18 F-THK5351 scans in order to quantify brain amyloid and PHF load, respectively. A second 18 F-THK5351 scan was conducted 1 week later, 1 h after a 10-mg oral dose of selegiline. Three out of eight patients also had a third 18 F-THK5351 scan 9-28 days after the selegiline administration. The primary outcome measure was standardized uptake value (SUV), calculated using tissue radioactivity concentration from 50 to 70 min after 18 F-THK5351 injection, normalizing for body weight and injected radioactivity. The SUV ratio (SUVR) was determined using the cerebellar cortex as the reference region. 18 F-THK5351 competition autoradiography studies in postmortem tissue were conducted using 150 and 500 nM selegiline. At baseline, 18 F-THK5351 SUVs were highest in the basal ganglia (0.64 ± 0.11) and thalamus (0.62 ± 0.14). In the post-selegiline scans, the regional SUVs were reduced on average by 36.7% to 51.8%, with the greatest reduction noted in the thalamus (51.8%) and basal ganglia (51.4%). MAO-B inhibition also reduced 18 F-THK5351 SUVs in the cerebellar cortex (41.6%). The SUVs remained reduced in the three patients imaged at 9-28 days. Tissue autoradiography confirmed the effects of MAO-B inhibition on 18 F-THK5351 uptake. These results indicate that the interpretation of 18 F-THK5351 PET images, with respect to tau, is confounded by the high MAO-B availability across the entire brain. In addition, the heterogeneous MAO-B availability across the cortex may limit the interpretation of 18 F-THK5351 scans using reference region methods.

  2. Multicenter study of pectus excavatum, final report: complications, static/exercise pulmonary function, and anatomic outcomes.

    PubMed

    Kelly, Robert E; Mellins, Robert B; Shamberger, Robert C; Mitchell, Karen K; Lawson, M Louise; Oldham, Keith T; Azizkhan, Richard G; Hebra, Andre V; Nuss, Donald; Goretsky, Michael J; Sharp, Ronald J; Holcomb, George W; Shim, Walton K T; Megison, Stephen M; Moss, R Lawrence; Fecteau, Annie H; Colombani, Paul M; Cooper, Dan; Bagley, Traci; Quinn, Amy; Moskowitz, Alan B; Paulson, James F

    2013-12-01

    A multicenter study of pectus excavatum was described previously. This report presents our final results. Patients treated surgically at 11 centers were followed prospectively. Each underwent a preoperative evaluation with CT scan, pulmonary function tests, and body image survey. Data were collected about associated conditions, complications, and perioperative pain. One year after treatment, patients underwent repeat chest CT scan, pulmonary function tests, and body image survey. A subset of 50 underwent exercise pulmonary function testing. Of 327 patients, 284 underwent Nuss procedure and 43 underwent open procedure without mortality. Of 182 patients with complete follow-up (56%), 18% had late complications, similarly distributed, including substernal bar displacement in 7% and wound infection in 2%. Mean initial CT scan index of 4.4 improved to 3.0 post operation (severe >3.2, normal = 2.5). Computed tomography index improved at the deepest point (xiphoid) and also upper and middle sternum. Pulmonary function tests improved (forced vital capacity from 88% to 93%, forced expiratory volume in 1 second from 87% to 90%, and total lung capacity from 94% to 100% of predicted (p < 0.001 for each). VO2 max during peak exercise increased by 10.1% (p = 0.015) and O2 pulse by 19% (p = 0.007) in 20 subjects who completed both pre- and postoperative exercise tests. There is significant improvement in lung function at rest and in VO2 max and O2 pulse after surgical correction of pectus excavatum, with CT index >3.2. Operative correction significantly reduces CT index and markedly improves the shape of the entire chest, and can be performed safely in a variety of centers. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Improved operator agreement and efficiency using the minimum area contour change method for delineation of hyperintense multiple sclerosis lesions on FLAIR MRI

    PubMed Central

    2013-01-01

    Background Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan. Methods The MACC algorithm first identifies an outer bound for the solution path, forms a high number of iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion analysis ROIs drawn by a single expert operator. Results In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final accepted ROIS had to be created or edited by the expert. Conclusion When used with an expert operator's verification of automatically created ROIs, MACC can be used to improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed in multicenter clinical trials. PMID:24004511

  4. Fast and Robust STEM Reconstruction in Complex Environments Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Wang, D.; Hollaus, M.; Puttonen, E.; Pfeifer, N.

    2016-06-01

    Terrestrial Laser Scanning (TLS) is an effective tool in forest research and management. However, accurate estimation of tree parameters still remains challenging in complex forests. In this paper, we present a novel algorithm for stem modeling in complex environments. This method does not require accurate delineation of stem points from the original point cloud. The stem reconstruction features a self-adaptive cylinder growing scheme. This algorithm is tested for a landslide region in the federal state of Vorarlberg, Austria. The algorithm results are compared with field reference data, which show that our algorithm is able to accurately retrieve the diameter at breast height (DBH) with a root mean square error (RMSE) of ~1.9 cm. This algorithm is further facilitated by applying an advanced sampling technique. Different sampling rates are applied and tested. It is found that a sampling rate of 7.5% is already able to retain the stem fitting quality and simultaneously reduce the computation time significantly by ~88%.

  5. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction.

    PubMed

    Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R

    2012-04-01

    To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.

  6. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation

    PubMed Central

    Shearrer, Grace E.; House, Benjamin T.; Gallas, Michelle C.; Luci, Jeffrey J.; Davis, Jaimie N.

    2016-01-01

    Introduction This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). Methods The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Results Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Conclusion Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity. PMID:26901881

  7. Fat Imaging via Magnetic Resonance Imaging (MRI) in Young Children (Ages 1-4 Years) without Sedation.

    PubMed

    Shearrer, Grace E; House, Benjamin T; Gallas, Michelle C; Luci, Jeffrey J; Davis, Jaimie N

    2016-01-01

    This pilot study developed techniques to perform Magnetic Resonance Imaging (MRI) of specific fat deposition in 18 children (age 18 months to 4 years). The children engaged in a series of practice tests to become acclimated to the scanner noises, reduce claustrophobia, and rehearse holding still for a set time. The practice tests assessed if the child could remain still for two minutes while watching a video, first while lying on a blanket, second, on the blanket with headphones, and third, in the mock scanner. The children who passed the three practice tests were then scanned with a 3T Siemens Skyra magnet. Abdominal fat distribution (region of interest (ROI) from the top of the ileac crest to the bottom of the ribcage) volume was measured using 2-point DIXON technique. This region was chosen to give an indication of the body composition around the liver. Twelve out of eighteen participants successfully completed the actual MRI scan. Chi-squared test showed no significant difference between male and female pass-fail rates. The median age of completed scans was 36 months, whereas the median age for children unable to complete a scan was 28 months. The average total trunk fat was 240.9±85.2mL and the average total VAT was 37.7±25.9mLand liver fat was not quantifiable due to physiological motion. Several strategies (modeling, videos, and incentives) were identified to improve pediatric imaging in different age ranges. Using an age-specific and tailored protocol, we were able to successfully use MRI for fat imaging in a majority of young children. Development of such protocols enables researchers to better understand the etiology of fat deposition in young children, which can be used to aid in the prevention and treatment of adiposity.

  8. Low bandwidth eye tracker for scanning laser ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Harvey, Zachary G.; Dubra, Alfredo; Cahill, Nathan D.; Lopez Alarcon, Sonia

    2012-02-01

    The incorporation of adaptive optics to scanning ophthalmoscopes (AOSOs) has allowed for in vivo, noninvasive imaging of the human rod and cone photoreceptor mosaics. Light safety restrictions and power limitations of the current low-coherence light sources available for imaging result in each individual raw image having a low signal to noise ratio (SNR). To date, the only approach used to increase the SNR has been to collect large number of raw images (N >50), to register them to remove the distortions due to involuntary eye motion, and then to average them. The large amplitude of involuntary eye motion with respect to the AOSO field of view (FOV) dictates that an even larger number of images need to be collected at each retinal location to ensure adequate SNR over the feature of interest. Compensating for eye motion during image acquisition to keep the feature of interest within the FOV could reduce the number of raw frames required per retinal feature, therefore significantly reduce the imaging time, storage requirements, post-processing times and, more importantly, subject's exposure to light. In this paper, we present a particular implementation of an AOSO, termed the adaptive optics scanning light ophthalmoscope (AOSLO) equipped with a simple eye tracking system capable of compensating for eye drift by estimating the eye motion from the raw frames and by using a tip-tilt mirror to compensate for it in a closed-loop. Multiple control strategies were evaluated to minimize the image distortion introduced by the tracker itself. Also, linear, quadratic and Kalman filter motion prediction algorithms were implemented and tested and tested using both simulated motion (sinusoidal motion with varying frequencies) and human subjects. The residual displacement of the retinal features was used to compare the performance of the different correction strategies and prediction methods.

  9. 2D photoacoustic scanning imaging with a single pulsed laser diode excitation

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Li, Changwei; Zeng, Lvming; Liu, Guodong; Huang, Zhen; Ren, Zhong

    2012-03-01

    A portable near-infrared photoacoustic scanning imaging system has been developed with a single pulsed laser diode, which was integrated with an optical lens system to straightforward boost the laser energy density for photoacoustic generation. The 905 nm laser diode provides a maximum energy output of 14 μJ within 100 ns pulse duration, and the pulse repetition frequency rate is 0.8 KHz. As a possible alternative light source, the preliminary 2D photoacoustic results primely correspond with the test phantoms of umbonate extravasated gore and knotted blood vessel network. The photoacoustic SNR can reach 20.6+/-1.2 dB while signal averaging reduces to 128 pulses from thousands to tens of thousands times, and the signal acquisition time accelerates to less than 0.2 s in each A-scan, especially the volume of the total radiation source is only 10 × 3 × 3 cm3. It demonstrated that the pulsed semiconductor laser could be a candidate of photoacoustic equipment for daily clinical application.

  10. A prototype scanning system for optimal edging and trimming of rough hardwood lumber

    Treesearch

    Sang-Mook Lee; A. Lynn Abbott; Philip A. Araman; Daniel L. Schmoldt

    2003-01-01

    This paper is concerned with scanning and assessment of hardwood lumber early in the manufacturing process. Scanning operations that take place immediately after the headrig have significantly greater potential to reduce loss and improve economic value, as compared to scanning that is performed during subsequent manufacturing steps. In spite of this, the scanning of...

  11. Radiofrequency artefacts in echoplanar imaging induced by two 1.5 T MR scanners in close proximity.

    PubMed

    Li, X; Cui, J; Christopasak, S P; Kumar, A; Peng, Z-G

    2014-06-01

    The purpose of this study was to assess radio frequency (RF) artefacts in echoplanar imaging (EPI) induced by two 1.5 T MR scanners in close proximity and to find an effective method to correct them. Based on the intact shielding of rooms, experiments were performed by two MR scanners with similar centre frequencies. Phantom A (PA) was scanned in one scanner by EPI at different bandwidths (BWs). Simultaneously, phantom B was scanned in a fixed sequence for scanning with the other scanner. RF artefact gaps of PA, scanning time and the image signal-noise ratio (SNR) were measured and recorded. Statistical analysis was performed with the repeated-measures analysis of variance test. Based on findings obtained from PA, three healthy volunteers were studied at a conventional BW and a lower BW to observe the artefact variance. EPI RF artefacts were symmetrically situated in both sides of the image following the phase-encoding direction. The gap size of the artefact became larger and the SNR was significantly improved with a narrower BW. RF artefacts with a lower BW in volunteers presented the same characteristic as PA. For EPI RF artefacts produced by two 1.5 T MR scanners with approximately similar centre frequencies, we can reduce BWs in a suitable range to minimize the effect on MRI. MR scanners with the same field strength installed in the same vicinity might produce RF artefacts in the sequence at larger BWs. Reducing BWs properly is effective to control the position of artefacts and improve the image quality.

  12. Feasibility of large volume tumor ablation using multiple-mode strategy with fast scanning method: A numerical study

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Shen, Guofeng; Qiao, Shan; Chen, Yazhu

    2017-03-01

    Sonication with fast scanning method can generate homogeneous lesions without complex planning. But when the target region is large, switching focus too fast will reduce the heat accumulation, the margin of which may not ablated. Furthermore, high blood perfusion rate will reduce this maximum volume that can be ablated. Therefore, fast scanning method may not be applied to large volume tumor. To expand the therapy scope, this study combines the fast scan method with multiple mode strategy. Through simulation and experiment, the feasibility of this new strategy is evaluated and analyzed.

  13. Peripheral Nerve Stimulation Characteristics of an Asymmetric Head-Only Gradient Coil Compatible with a High-Channel-Count Receiver Array

    PubMed Central

    Lee, Seung-Kyun; Mathieu, Jean-Baptiste; Graziani, Dominic; Piel, Joseph; Budesheim, Eric; Fiveland, Eric; Hardy, Christopher J.; Tan, Ek Tsoon; Amm, Bruce; Foo, Thomas K.-F; Bernstein, Matt A.; Huston, John; Shu, Yunhong; Schenck, John F.

    2015-01-01

    Purpose To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. Methods Two prototypes of an asymmetric head-only gradient coil set, with 42-cm inner diameter, were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. 24 volunteer tests were performed to measure PNS thresholds with the transverse (X, left/right; Y, anterior/posterior) gradient coils of both prototypes. 14 volunteers were also tested for the Z-gradient PNS in the second prototype, and were additionally scanned with high-slew-rate EPI immediately after the PNS tests. Results For both prototypes, the Y-gradient PNS threshold was markedly higher than the X-gradient. The Z-gradient threshold was intermediate between those for the X- and Y-coils. Out of the 24 volunteer subjects, only two experienced Y-gradient PNS at 80 mT/m, 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. Conclusion Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared to conventional whole-body gradient coils. PMID:26628078

  14. MO-FG-CAMPUS-JeP2-02: Audiovisual Biofeedback Guided Respiratory-Gated MRI: An Investigation of Tumor Definition and Scan Time for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D; Pollock, S; Keall, P

    Purpose: Breathing consistency variations can cause respiratory-related motion blurring and artifacts and increase in MRI scan time due to inadequate respiratory-gating and discarding of breathing cycles. In a previous study the concept of audiovisual biofeedback (AV) guided respiratory-gated MRI was tested with healthy volunteers and it demonstrated image quality improvement on anatomical structures and scan time reduction. This study tests the applicability of AV-guided respiratorygated MRI for lung cancer in a prospective patient study. Methods: Image quality and scan time were investigated in thirteen lung cancer patients who underwent two 3T MRI sessions. In the first MRI session (pre-treatment), respiratory-gatedmore » MR images with free breathing (FB) and AV were acquired at inhalation and exhalation. An RF navigator placed on the liver dome was employed for the respiratory-gated MRI. This was repeated in the second MRI session (mid-treatment). Lung tumors were delineated on each dataset. FB and AV were compared in terms of (1) tumor definition assessed by lung tumor contours and (2) intra-patient scan time variation using the total image acquisition time of inhalation and exhalation datasets from the first and second MRI sessions across 13 lung cancer patients. Results: Compared to FB AV-guided respiratory-gated MRI improved image quality for contouring tumors with sharper boundaries and less blurring resulted in the improvement of tumor definition. Compared to FB the variation of intra-patient scan time with AV was reduced by 48% (p<0.001) from 54 s to 28 s. Conclusion: This study demonstrated that AV-guided respiratorygated MRI improved the quality of tumor images and fixed tumor definition for lung cancer. These results suggest that audiovisual biofeedback breathing guidance has the potential to control breathing for adequate respiratory-gating for lung cancer imaging and radiotherapy.« less

  15. Spatial Clustering of Escherichia coli with Reduced Susceptibility to Cefotaxime and Ciprofloxacin among Dairy Cattle Farms Relative to European Starling Night Roosts.

    PubMed

    Medhanie, G A; Pearl, D L; McEwen, S A; Guerin, M T; Jardine, C M; Schrock, J; LeJeune, J T

    2017-05-01

    European starlings (Sturnus vulgaris) have been implicated in the dispersal of zoonotic enteric pathogens. However, their role in disseminating antimicrobial-resistant organisms through their home range has not been clearly established. The aim of this study was to determine whether starling night roosts served as foci for spreading organisms with reduced susceptibility to antimicrobials among dairy cattle farms. Bovine faecal pats were collected from 150 dairy farms in Ohio. Each farm was visited twice (in summer and fall) between 2007 and 2009. A total of 1490 samples (10 samples/farm over two visits) were tested for Escherichia coli with reduced susceptibility to cefotaxime and ciprofloxacin. Using a spatial scan statistic, focal scans were conducted to determine whether clusters of farms with a high prevalence of organisms with reduced susceptibility to cefotaxime and ciprofloxacin surrounded starling night roosts. Faecal pats 13.42% and 13.56% of samples carried Escherichia coli with reduced susceptibility to cefotaxime and ciprofloxacin, respectively. Statistically significant (P < 0.05) spatial clusters of faecal pats with high prevalence of Escherichia coli showing reduced susceptibility to cefotaxime and ciprofloxacin were identified around these night roosts. This finding suggests that the risk of carriage of organisms with reduced susceptibility to antimicrobials in cattle closer to starling night roosts was higher compared to cattle located on farms further from these sites. Starlings might have an important role in spreading antimicrobial-resistant E. coli to livestock environments, thus posing a threat to animal and public health. © 2016 Blackwell Verlag GmbH.

  16. Does MRI scan acceleration affect power to track brain change?

    PubMed

    Ching, Christopher R K; Hua, Xue; Hibar, Derrek P; Ward, Chadwick P; Gunter, Jeffrey L; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change. Using tensor-based morphometry, no significant difference was detected in numerical summaries of atrophy rates from accelerated and nonaccelerated scans in subgroups of patients with Alzheimer's disease, early or late mild cognitive impairment, or healthy controls over a 6- and 12-month scan interval. Whole-brain voxelwise mapping analyses revealed some apparent regional differences in 6-month atrophy rates when comparing all subjects irrespective of diagnosis (n = 345). No such whole-brain difference was detected for the 12-month scan interval (n = 156). Effect sizes for structural brain changes were not detectably different in accelerated versus nonaccelerated data. Scan acceleration may influence brain measures but has minimal effects on tensor-based morphometry-derived atrophy measures, at least over the 6- and 12-month intervals examined here. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. 4D Optimization of Scanned Ion Beam Tracking Therapy for Moving Tumors

    PubMed Central

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-01-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking. PMID:24889215

  18. Involved-node radiotherapy in early-stage Hodgkin's lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG).

    PubMed

    Eich, Hans Theodor; Müller, Rolf-Peter; Engenhart-Cabillic, Rita; Lukas, Peter; Schmidberger, Heinz; Staar, Susanne; Willich, Normann

    2008-08-01

    Radiotherapy of Hodgkin's Lymphoma has evolved from extended-field to involved-field (IF) radiotherapy reducing toxicity whilst maintaining high cure rates. Recent publications recommend further reduction in the radiation field to involved-node (IN) radiotherapy; however, this concept has never been tested in a randomized trial. The German Hodgkin Study Group aims to compare it with standard IF radiotherapy in their future HD17 trial. ALL patients must be examined by the radiation oncologist before the start of chemotherapy. At that time, patients must have complete staging CT scans. For patients with IN radiotherapy, a radiation planning CT before and after chemotherapy with patients in the treatment position is recommended. Fusion techniques, allowing the overlapping of the pre- and postchemotherapy CT scans, should be used. Usage of PET-CT scans with patients in the treatment position is recommended, whenever possible. The clinical target volume encompasses the initial volume of the Lymph node(s) before chemotherapy and incorporates the initial Location and extent of the disease taking the displacement of the normal tissues into account. The margin of the planning target volume should be 2 cm in axial and 3 cm in craniocaudal direction. If necessary, it can be reduced to 1-1.5 cm. To minimize Lung and cardiac toxicity, the target definition in the mediastinum is different. The concept of IN radiotherapy has been proposed as a means to further improve the therapeutic ratio by reducing the risk of radiation-induced toxicity, including second malignancies. Field sizes wiLL further decrease compared to IF radiotherapy.

  19. 4D optimization of scanned ion beam tracking therapy for moving tumors

    NASA Astrophysics Data System (ADS)

    Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph

    2014-07-01

    Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.

  20. Randomized, single-blind, factorial design study of the interaction of food and time on intestinal activity in 99mTc-tetrofosmin stress myocardial perfusion scintigraphy.

    PubMed

    Lyngholm, Ann Marie; Pedersen, Begitte H; Petersen, Lars J

    2008-09-01

    Intestinal activity at the inferior myocardial wall represents an issue for assessment of myocardial perfusion imaging (MPI) with 99mTc-labelled tracers. The aim of this study was to investigate the effect of time and food on upper abdominal activity in 99mTc-tetrofosmin MPI. The study population consisted of 152 consecutive patients referred for routine MPI. All patients underwent 2-day stress-rest 99mTc-tetrofosmin single-photon emission computed tomography MPI. Before stress testing, patients were randomized in a factorial design to four different regimens. Group A: early scan (image acquisition initiated within 15 min after injection of the tracer) and no food; group B: early scan and food (two pieces of white bread with butter and a minimum of 450 ml of water); group C: late scan (image acquisition 30-60 min after injection of the tracer) and no food; and group D: late and scan with food. Patients underwent standard bicycle exercise or pharmacological stress test. The degree of upper abdominal activity was evaluated by trained observers blinded to the randomization code. The primary endpoint was the proportion of accepted scans in the intention-to-treat population in stress MPI. The results showed statistical significant impact on both time and food on upper abdominal activity. The primary endpoint showed that the acceptance rate improved from 55% in group A to 100% success rate in group D. An early scan reduced the acceptance rate by 30% versus a late scan [hazard ratio 0.70, 95% confidence interval 0.58-0.84; P<0.0001], whereas the addition of food improved the success rate versus no food by 27% (hazard ratio 1.27, 95% confidence interval 1.07-1.51; P=0.006). No significant interaction between food and time was observed. An analysis of accepted scans according to the actual scan time and food consumption confirmed the findings of the intention-to-treat analysis. In addition, similar findings were seen in 116 of 152 patients with a rest MPI (success rate of 53% in group A vs. 96% in group D). A combination of solid food and water administered after injection of the tracer and delayed image acquisition led to significant and clinically relevant decrease of interfering upper abdominal activity in 99mTc-tetrofosmin MPI.

  1. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons.

    PubMed Central

    Fan, G Y; Fujisaki, H; Miyawaki, A; Tsay, R K; Tsien, R Y; Ellisman, M H

    1999-01-01

    A video-rate (30 frames/s) scanning two-photon excitation microscope has been successfully tested. The microscope, based on a Nikon RCM 8000, incorporates a femtosecond pulsed laser with wavelength tunable from 690 to 1050 nm, prechirper optics for laser pulse-width compression, resonant galvanometer for video-rate point scanning, and a pair of nonconfocal detectors for fast emission ratioing. An increase in fluorescent emission of 1.75-fold is consistently obtained with the use of the prechirper optics. The nonconfocal detectors provide another 2.25-fold increase in detection efficiency. Ratio imaging and optical sectioning can therefore be performed more efficiently without confocal optics. Faster frame rates, at 60, 120, and 240 frames/s, can be achieved with proportionally reduced scan lines per frame. Useful two-photon images can be acquired at video rate with a laser power as low as 2.7 mW at specimen with the genetically modified green fluorescent proteins. Preliminary results obtained using this system confirm that the yellow "cameleons" exhibit similar optical properties as under one-photon excitation conditions. Dynamic two-photon images of cardiac myocytes and ratio images of yellow cameleon-2.1, -3.1, and -3.1nu are also presented. PMID:10233058

  2. Soft tissue-preserving computer-aided impression: a novel concept using ultrasonic 3D-scanning.

    PubMed

    Vollborn, Thorsten; Habor, Daniel; Pekam, Fabrice Chuembou; Heger, Stefan; Marotti, Juliana; Reich, Sven; Wolfart, Stefan; Tinschert, Joachim; Radermacher, Klaus

    2014-01-01

    Subgingival preparations are often affected by blood and saliva during impression taking, regardless of whether one is using compound impression techniques or intraoral digital scanning methods. The latter are currently based on optical principles and therefore also need clean and dry surfaces. In contrast, ultrasonic waves are able to non-invasively penetrate gingiva, saliva, and blood, leading to decisive advantages, as cleaning and drying of the oral cavity becomes unnecessary. In addition, the application of ultrasound may facilitate the detection of subgingival structures without invasive manipulation, thereby reducing the risk of secondary infection and treatment time, and increasing patient comfort. Ultrasound devices commonly available for medical application and for the testing of materials are only suitable to a limited extent, as their resolution, precision, and design do not fulfill the requirements for intraoral scanning. The aim of this article is to describe the development of a novel ultrasound technology that enables soft tissue-preserving digital impressions of preparations for the CAD/CAM-based production of dental prostheses. The concept and development of the high-resolution ultrasound technique and the corresponding intraoral scanning system, as well as the integration into the CAD/CAM process chain, is presented.

  3. Multiview marker-free registration of forest terrestrial laser scanner data with embedded confidence metrics

    DOE PAGES

    Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...

    2016-10-18

    Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less

  4. Viewing-zone scanning holographic display using a MEMS spatial light modulator.

    PubMed

    Takaki, Yasuhiro; Fujii, Keisuke

    2014-10-06

    Horizontally scanning holography using a spatial light modulator based on microelectromechanical system, which we previously proposed for enlarging both the screen size and the viewing zone, utilized a screen scanning system with elementary holograms being scanned horizontally on the screen. In this study, to enlarge the screen size and the viewing zone, we propose a viewing-zone scanning system with enlarged hologram screen and horizontally scanned reduced viewing zone. The reduced viewing zone is localized using converging light emitted from the screen, and the entire screen can be viewed from the localized viewing zone. An experimental system was constructed, and we demonstrated the generation of reconstructed images with a screen size of 2.0 in, a viewing zone width of 437 mm at a distance of 600 mm from the screen, and a frame rate of 60 Hz.

  5. Dual-resolution image reconstruction for region-of-interest CT scan

    NASA Astrophysics Data System (ADS)

    Jin, S. O.; Shin, K. Y.; Yoo, S. K.; Kim, J. G.; Kim, K. H.; Huh, Y.; Lee, S. Y.; Kwon, O.-K.

    2014-07-01

    In ordinary CT scan, so called full field-of-view (FFOV) scan, in which the x-ray beam span covers the whole section of the body, a large number of projections are necessary to reconstruct high resolution images. However, excessive x-ray dose is a great concern in FFOV scan. Region-of-interest (ROI) scan is a method to visualize the ROI in high resolution while reducing the x-ray dose. But, ROI scan suffers from bright-band artifacts which may hamper CT-number accuracy. In this study, we propose an image reconstruction method to eliminate the band artifacts in the ROI scan. In addition to the ROI scan with high sampling rate in the view direction, we get FFOV projection data with much lower sampling rate. Then, we reconstruct images in the compressed sensing (CS) framework with dual resolutions, that is, high resolution in the ROI and low resolution outside the ROI. For the dual-resolution image reconstruction, we implemented the dual-CS reconstruction algorithm in which data fidelity and total variation (TV) terms were enforced twice in the framework of adaptive steepest descent projection onto convex sets (ASD-POCS). The proposed method has remarkably reduced the bright-band artifacts at around the ROI boundary, and it has also effectively suppressed the streak artifacts over the entire image. We expect the proposed method can be greatly used for dual-resolution imaging with reducing the radiation dose, artifacts and scan time.

  6. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity

    PubMed Central

    Boudreau, Colton; Wee, Tse-Luen (Erika); Duh, Yan-Rung (Silvia); Couto, Melissa P.; Ardakani, Kimya H.; Brown, Claire M.

    2016-01-01

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity. PMID:27485088

  7. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.

    PubMed

    Boudreau, Colton; Wee, Tse-Luen Erika; Duh, Yan-Rung Silvia; Couto, Melissa P; Ardakani, Kimya H; Brown, Claire M

    2016-08-03

    It is important to determine the most effective method of delivering light onto a specimen for minimal light induced damage. Assays are presented to measure photo-bleaching of fluorophores and photo-toxicity to living cells under different illumination conditions. Turning the light off during part of the experimental time reduced photo-bleaching in a manner proportional to the time of light exposure. The rate of photo-bleaching of EGFP was reduced by 9-fold with light pulsing on the micro-second scale. Similarly, in living cells, rapid line scanning resulted in reduced cell stress as measured by mitochondrial potential, rapid cell protrusion and reduced cell retraction. This was achieved on a commercial confocal laser scanning microscope, without any compromise in image quality, by using rapid laser scan settings and line averaging. Therefore this technique can be implemented broadly without any software or hardware upgrades. Researchers can use the rapid line scanning option to immediately improve image quality on fixed samples, reduce photo-bleaching for large high resolution 3D datasets and improve cell health in live cell experiments. The assays developed here can be applied to other microscopy platforms to measure and optimize light delivery for minimal sample damage and photo-toxicity.

  8. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  9. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using Pseudomonas putida S12.

    PubMed

    Kang, Du-Kyeong; Lee, Cho-Ryong; Lee, Sun Hee; Bae, Jung-Hoon; Park, Young-Kwon; Rhee, Young Ha; Sung, Bong Hyun; Sohn, Jung-Hoon

    2017-05-28

    Polyhydroxyalkanoates (PHAs) are biodegradable plastics produced by bacteria, but their use in diverse applications is prohibited by high production costs. To reduce these costs, the conversion by Pseudomonas strains of P HAs from crude s ludge p alm oil ( SPO) a s an inexpensive renewable raw material was tested. Pseudomonas putida S12 was found to produce the highest yield (~41%) of elastomeric medium-chain-length (MCL)-PHAs from SPO. The MCL-PHA characteristics were analyzed by gas-chromatography/mass spectrometry, gel permeation chromatography, and differential scanning calorimetry. These findings may contribute to more widespread use of PHAs by reducing PHA production costs.

  10. Evaluation and mitigation of potential errors in radiochromic film dosimetry due to film curvature at scanning.

    PubMed

    Palmer, Antony L; Bradley, David A; Nisbet, Andrew

    2015-03-08

    This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.

  11. Study on the Synergetic Fire-Retardant Effect of Nano-Sb₂O₃ in PBT Matrix.

    PubMed

    Niu, Lei; Xu, Jianlin; Yang, Wenlong; Ma, Jiqiang; Zhao, Jinqiang; Kang, Chenghu; Su, Jiaqiang

    2018-06-22

    Nano-Sb₂O₃ has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame retardancy of a nano-Sb₂O₃⁻brominated epoxy resin (BEO)⁻poly(butylene terephthalate) (PBT) composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy (SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that the nano-Sb₂O₃ particles were homogeneously distributed within the PBT matrix, and the thermal stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were improved, as a result of the superior dispersion and interfacial interactions between nano-Sb₂O₃ and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as the nano-Sb₂O₃ content increased. The results from the cone calorimeter test showed that the peak heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO₂P), and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced, compared to those of the neat PBT matrix. Meanwhile, the SEM⁻energy dispersive spectrometry (EDX) analysis of the residues indicated that a higher amount of C element was left, thus the charring layer of the nanocomposites was compact. This showed that nano-Sb₂O₃ could promote the degradation and charring of the PBT matrix, improving thermal stability and flame retardation.

  12. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  13. Optimization of dose and image quality in adult and pediatric computed tomography scans

    NASA Astrophysics Data System (ADS)

    Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin

    2017-11-01

    Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.

  14. Lumbar spine CT scan

    MedlinePlus

    CAT scan - lumbar spine; Computed axial tomography scan - lumbar spine; Computed tomography scan - lumbar spine; CT - lower back ... CT scans rapidly makes detailed pictures of the lower back. The test may be used to look for: ...

  15. Prefrontal gray matter volume recovery in treatment-seeking cocaine-addicted individuals: a longitudinal study.

    PubMed

    Parvaz, Muhammad A; Moeller, Scott J; d'Oleire Uquillas, Federico; Pflumm, Amanda; Maloney, Tom; Alia-Klein, Nelly; Goldstein, Rita Z

    2017-09-01

    Deficits in prefrontal cortical (PFC) function have been consistently reported in individuals with cocaine use disorders (iCUD), and have separately been shown to improve with longer-term abstinence. However, it is less clear whether the PFC structural integrity possibly underlying these deficits is also modulated by sustained reduction in drug use in iCUD. Here, T1-weighted magnetic resonance imaging scans were acquired, and performance on a neuropsychological test battery was assessed, in 19 initially abstinent treatment-seeking iCUD, first at baseline and then after six months of significantly reduced or no drug use (follow-up). A comparison cohort of 12 healthy controls was also scanned twice with a similar inter-scan interval. The iCUD showed increased gray matter volume in the left inferior frontal gyrus and bilaterally in the ventromedial prefrontal cortex at follow-up compared to baseline; healthy controls, as expected, showed no changes over this same time period. The iCUD also showed improved decision making and cognitive flexibility, with the latter correlated significantly with the gray matter volume increases in the inferior frontal gyrus. Given its association with improved cognitive function, the longitudinal recovery in cortical gray matter volume, particularly in regions where structure and function are adversely affected by chronic drug use, reflects a quantifiable positive impact of significantly reduced drug use on cortical structural integrity. © 2016 Society for the Study of Addiction.

  16. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers

    PubMed Central

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A

    2013-01-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an “active” antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 hours, respectively. PMID:23498233

  17. Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers.

    PubMed

    Kruszewski, Kristen M; Nistico, Laura; Longwell, Mark J; Hynes, Matthew J; Maurer, Joshua A; Hall-Stoodley, Luanne; Gawalt, Ellen S

    2013-05-01

    Stainless steel 316L (SS316L) is a common material used in orthopedic implants. Bacterial colonization of the surface and subsequent biofilm development can lead to refractory infection of the implant. Since the greatest risk of infection occurs perioperatively, strategies that reduce bacterial adhesion during this time are important. As a strategy to limit bacterial adhesion and biofilm formation on SS316L, self-assembled monolayers (SAMs) were used to modify the SS316L surface. SAMs with long alkyl chains terminated with hydrophobic (-CH3) or hydrophilic (oligoethylene glycol) tail groups were used to form coatings and in an orthogonal approach, SAMs were used to immobilize gentamicin or vancomycin on SS316L for the first time to form an "active" antimicrobial coating to inhibit early biofilm development. Modified SS316L surfaces were characterized using surface infrared spectroscopy, contact angles, MALDI-TOF mass spectrometry and atomic force microscopy. The ability of SAM-modified SS316L to retard biofilm development by Staphylococcus aureus was functionally tested using confocal scanning laser microscopy with COMSTAT image analysis, scanning electron microscopy and colony forming unit analysis. Neither hydrophobic nor hydrophilic SAMs reduced biofilm development. However, gentamicin-linked and vancomycin-linked SAMs significantly reduced S. aureus biofilm formation for up to 24 and 48 h, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    NASA Astrophysics Data System (ADS)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  19. Synthesis and Properties of a Clean and Sustainable Deicing Additive for Asphalt Mixture

    PubMed Central

    Peng, Chao; Yu, Jianying; Zhao, Zhijie; Dai, Jing; Fu, Jingyi; Zhao, Meiling; Wang, Wei

    2015-01-01

    A clean and sustainable deicing additive was prepared via the adsorption of acetate anions (Ac-) by magnesium (Mg) and aluminum (Al) calcined layered double hydroxide (Mg/Al-CLDH). Fourier transform infrared spectroscopy spectrums proved that Ac- had intercalated into LDH structure. X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy images showed that the intercalation spacing and platelet thickness of Mg and Al layered double hydroxide containing Ac- anions (Mg/Al-Ac- LDH) had been enlarged due to substitution of divalent CO3 2- anions by a larger quantity of monovalent Ac– anions. Differential scanning calorimetry tests testified that the insoluble Mg2/Al-Ac- LDH evidently decreased the freeze point (FP) of water to -10.68°C. X-ray photoelectron spectroscopy analyses confirmed that the Ac- were strongly confined by the metal layers of LDHs. FP test of asphalt mixtures confirmed that Mg/Al-Ac- LDHs reduced FP to -5.5°C. Immersion test results indicated that Mg/Al-Ac- LDH had a good deicing durability and Ac- did not released from asphalt mixture. Snow melting observation was conducted further testified that Mg/Al-Ac- LDH melted snow or ice sustainably. PMID:25625279

  20. Synthesis and properties of a clean and sustainable deicing additive for asphalt mixture.

    PubMed

    Peng, Chao; Yu, Jianying; Zhao, Zhijie; Dai, Jing; Fu, Jingyi; Zhao, Meiling; Wang, Wei

    2015-01-01

    A clean and sustainable deicing additive was prepared via the adsorption of acetate anions (Ac-) by magnesium (Mg) and aluminum (Al) calcined layered double hydroxide (Mg/Al-CLDH). Fourier transform infrared spectroscopy spectrums proved that Ac- had intercalated into LDH structure. X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy images showed that the intercalation spacing and platelet thickness of Mg and Al layered double hydroxide containing Ac- anions (Mg/Al-Ac- LDH) had been enlarged due to substitution of divalent CO32- anions by a larger quantity of monovalent Ac- anions. Differential scanning calorimetry tests testified that the insoluble Mg2/Al-Ac- LDH evidently decreased the freeze point (FP) of water to -10.68°C. X-ray photoelectron spectroscopy analyses confirmed that the Ac- were strongly confined by the metal layers of LDHs. FP test of asphalt mixtures confirmed that Mg/Al-Ac- LDHs reduced FP to -5.5°C. Immersion test results indicated that Mg/Al-Ac- LDH had a good deicing durability and Ac- did not released from asphalt mixture. Snow melting observation was conducted further testified that Mg/Al-Ac- LDH melted snow or ice sustainably.

  1. Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.

    1979-11-01

    Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.

  2. Evaluation of an initiative to reduce radiation exposure from CT to children in a non-pediatric-focused facility.

    PubMed

    Blumfield, Einat; Zember, Jonathan; Guelfguat, Mark; Blumfield, Amit; Goldman, Harold

    2015-12-01

    We would like to share our experience of reducing pediatric radiation exposure. Much of the recent literature regarding successes of reducing radiation exposure has come from dedicated children's hospitals. Nonetheless, over the past two decades, there has been a considerable increase in CT imaging of children in the USA, predominantly in non-pediatric-focused facilities where the majority of children are treated. In our institution, two general hospitals with limited pediatric services, a dedicated initiative intended to reduce children's exposure to CT radiation was started by pediatric radiologists in 2005. The initiative addressed multiple issues including eliminating multiphase studies, decreasing inappropriate scans, educating referring providers, training residents and technologists, replacing CT with ultrasound or MRI, and ensuring availability of pediatric radiologists for consultation. During the study period, the total number of CT scans decreased by 24 %. When accounting for the number of scans per visit to the emergency department (ED), the numbers of abdominal and head CT scans decreased by 37.2 and 35.2 %, respectively. For abdominal scans, the average number of phases per scan decreased from 1.70 to 1.04. Upon surveying the pediatric ED staff, it was revealed that the most influential factors on ordering of scans were daily communication with pediatric radiologists, followed by journal articles and lectures by pediatric radiologists. We concluded that a non-pediatric-focused facility can achieve dramatic reduction in CT radiation exposure to children; however, this is most effectively achieved through a dedicated, multidisciplinary process led by pediatric radiologists.

  3. Large-aperture space optical system testing based on the scanning Hartmann.

    PubMed

    Wei, Haisong; Yan, Feng; Chen, Xindong; Zhang, Hao; Cheng, Qiang; Xue, Donglin; Zeng, Xuefeng; Zhang, Xuejun

    2017-03-10

    Based on the Hartmann testing principle, this paper proposes a novel image quality testing technology which applies to a large-aperture space optical system. Compared with the traditional testing method through a large-aperture collimator, the scanning Hartmann testing technology has great advantages due to its simple structure, low cost, and ability to perform wavefront measurement of an optical system. The basic testing principle of the scanning Hartmann testing technology, data processing method, and simulation process are presented in this paper. Certain simulation results are also given to verify the feasibility of this technology. Furthermore, a measuring system is developed to conduct a wavefront measurement experiment for a 200 mm aperture optical system. The small deviation (6.3%) of root mean square (RMS) between experimental results and interferometric results indicates that the testing system can measure low-order aberration correctly, which means that the scanning Hartmann testing technology has the ability to test the imaging quality of a large-aperture space optical system.

  4. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Deal, Joshua A.; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2016-04-01

    The natural fluorescence (autofluorescence) of tissues has been noted as a biomarker for cancer for several decades. Autofluorescence contrast between tumors and healthy tissues has been of significant interest in endoscopy, leading to development of autofluorescence endoscopes capable of visualizing 2-3 fluorescence emission wavelengths to achieve maximal contrast. However, tumor detection with autofluorescence endoscopes is hindered by low fluorescence signal and limited quantitative information, resulting in prolonged endoscopic procedures, prohibitive acquisition times, and reduced specificity of detection. Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.

  5. Online Self-Administered Cognitive Testing Using the Amsterdam Cognition Scan: Establishing Psychometric Properties and Normative Data.

    PubMed

    Feenstra, Heleen Em; Vermeulen, Ivar E; Murre, Jaap Mj; Schagen, Sanne B

    2018-05-30

    Online tests enable efficient self-administered assessments and consequently facilitate large-scale data collection for many fields of research. The Amsterdam Cognition Scan is a new online neuropsychological test battery that measures a broad variety of cognitive functions. The aims of this study were to evaluate the psychometric properties of the Amsterdam Cognition Scan and to establish regression-based normative data. The Amsterdam Cognition Scan was self-administrated twice from home-with an interval of 6 weeks-by 248 healthy Dutch-speaking adults aged 18 to 81 years. Test-retest reliability was moderate to high and comparable with that of equivalent traditional tests (intraclass correlation coefficients: .45 to .80; .83 for the Amsterdam Cognition Scan total score). Multiple regression analyses indicated that (1) participants' age negatively influenced all (12) cognitive measures, (2) gender was associated with performance on six measures, and (3) education level was positively associated with performance on four measures. In addition, we observed influences of tested computer skills and of self-reported amount of computer use on cognitive performance. Demographic characteristics that proved to influence Amsterdam Cognition Scan test performance were included in regression-based predictive formulas to establish demographically adjusted normative data. Initial results from a healthy adult sample indicate that the Amsterdam Cognition Scan has high usability and can give reliable measures of various generic cognitive ability areas. For future use, the influence of computer skills and experience should be further studied, and for repeated measurements, computer configuration should be consistent. The reported normative data allow for initial interpretation of Amsterdam Cognition Scan performances. ©Heleen EM Feenstra, Ivar E Vermeulen, Jaap MJ Murre, Sanne B Schagen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2018.

  6. Scan-based volume animation driven by locally adaptive articulated registrations.

    PubMed

    Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S

    2011-03-01

    This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE

  7. Comparative analysis of the apparent saturation hysteresis approach and the domain theory of hysteresis in respect of prediction of scanning curves and air entrapment

    NASA Astrophysics Data System (ADS)

    Beriozkin, A.; Mualem, Y.

    2018-05-01

    This study theoretically analyzes the concept of apparent saturation hysteresis, combined with the Scott et al. (1983) scaling approach, as suggested by Parker and Lenhard (1987), to account for the effect of air entrapment and release on the soil water hysteresis. We found that the theory of Parker and Lenhard (1987) is comprised of some mutually canceling mathematical operations, and when cleared of the superfluous intermediate calculations, their model reduces to the original Scott et al.'s (1983) scaling method, supplemented with the requirement of closure of scanning loops. Our analysis reveals that actually there is no effect of their technique of accounting for the entrapped air on the final prediction of the effective saturation (or water content) scanning curves. Our consideration indicates that the use of the Land (1968) formula for assessing the amount of entrapped air is in disaccord with the apparent saturation concept as introduced by Parker and Lenhard (1987). In this paper, a proper routine is suggested for predicting hysteretic scanning curves of any order, given the two measured main curves, in the complete hysteretic domain and some verification tests are carried out versus measured results. Accordingly, explicit closed-form formulae for direct prediction (with no need of intermediate calculation) of scanning curves up to the third order are derived to sustain our analysis.

  8. Design and Characterization of the 4STAR Sun-Sky Spectrometer with Results from 4- Way Intercomparison of 4STAR, AATS-14, Prede, and Cimel Photometers at Mauna Loa Observatory.

    NASA Astrophysics Data System (ADS)

    Flynn, C. J.; Dunagan, S. E.; Johnson, R. R.; Schmid, B.; Shinozuka, Y.; Ramachandran, S.; Livingston, J. M.; Russell, P. B.; Redemann, J.; Tran, A. K.; Holben, B. N.

    2008-12-01

    Uncertainties in radiative forcing of climate are still dominated by uncertainties in forcing by aerosols. Aerosols impact the radiation balance in three primary ways: the direct effect through scattering and absorption of radiation, the indirect effect by acting as cloud condensation nuclei affecting cloud optical depth and longevity, and the semi-direct effect affecting cloud formation and longevity through heating and thermodynamics. An active collaboration between the Pacific Northwest National Laboratory (PNNL), National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and NASA Goddard Space Flight Center (GSFC) is advancing new instrument concepts with application to reducing these aerosol uncertainties. The concept of 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) and Aeronet-like sky scanning capability with state-of-the-art monolithic spectrometry. The overall science goal for the new instruments is to improve knowledge of atmospheric constituents and their links to climate. The high-resolution spectral capability will improve retrievals of gas constituents (e.g., H2O, O3, and NO2) and thereby improve determination of aerosol properties as residual components of the total optical depth. The sky scanning capability will enable retrievals of aerosol type (via complex refractive index and shape) and aerosol size distribution extending to larger sizes than attainable by direct-beam sun photometry alone. Additional technical goals are to reduce instrument size, weight, and power requirements while increasing autonomy and component modularity to permit operation on a wide range of aircraft including unmanned aerial vehicles (UAVs). To investigate techniques to accomplish these goals, we developed a ground-based prototype, 4STAR-Ground. The 4STAR-Ground operating performance has been characterized in many tests including field of view (FOV) scans, repeatability testing of the fiber optic coupler, calibration of diffuse sky radiance with integrating sphere, and calibration of solar irradiance via Langley retrievals. Recent results from an intercomparison on Mauna Loa Observatory involving 4STAR, AATS-14, AERONET Cimel sun-sky photometers, and a Prede sun-sky photometer will be presented.

  9. PitScan: Computer-Assisted Feature Detection

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Robinson, M. S.

    2018-04-01

    We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.

  10. Construction and testing of a Scanning Laser Radar (SLR), phase 2

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, H. D.

    1971-01-01

    The scanning laser radar overall system is described. Block diagrams and photographs of the hardware are included with the system description. Detailed descriptions of all the subsystems that make up the scanning laser radar system are included. Block diagrams, photographs, and detailed optical and electronic schematics are used to help describe such subsystem hardware as the laser, beam steerer, receiver optics and detector, control and processing electronics, visual data displays, and the equipment used on the target. Tests were performed on the scanning laser radar to determine its acquisition and tracking performance and to determine its range and angle accuracies while tracking a moving target. The tests and test results are described.

  11. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    PubMed

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well.

  12. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem

    PubMed Central

    Wang, Jun Yi; Ngo, Michael M.; Hessl, David; Hagerman, Randi J.; Rivera, Susan M.

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer’s segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well. PMID:27213683

  13. Abdominal CT scan

    MedlinePlus

    Computed tomography scan - abdomen; CT scan - abdomen; CT abdomen and pelvis ... An abdominal CT scan makes detailed pictures of the structures inside your belly very quickly. This test may be used to look ...

  14. Normalization of CT scans reconstructed with different kernels to reduce variability in emphysema measurements

    NASA Astrophysics Data System (ADS)

    Gallardo Estrella, L.; van Ginneken, B.; van Rikxoort, E. M.

    2013-03-01

    Chronic Obstructive Pulmonary Disease (COPD) is a lung disease characterized by progressive air flow limitation caused by emphysema and chronic bronchitis. Emphysema is quantified from chest computed tomography (CT) scans as the percentage of attentuation values below a fixed threshold. The emphysema quantification varies substantially between scans reconstructed with different kernels, limiting the possibilities to compare emphysema quantifications obtained from scans with different reconstruction parameters. In this paper we propose a method to normalize scans reconstructed with different kernels to have the same characteristics as scans reconstructed with a reference kernel and investigate if this normalization reduces the variability in emphysema quantification. The proposed normalization splits a CT scan into different frequency bands based on hierarchical unsharp masking. Normalization is performed by changing the energy in each frequency band to the average energy in each band in the reference kernel. A database of 15 subjects with COPD was constructed for this study. All subjects were scanned at total lung capacity and the scans were reconstructed with four different reconstruction kernels. The normalization was applied to all scans. Emphysema quantification was performed before and after normalization. It is shown that the emphysema score varies substantially before normalization but the variation diminishes after normalization.

  15. Novel modes and adaptive block scanning order for intra prediction in AV1

    NASA Astrophysics Data System (ADS)

    Hadar, Ofer; Shleifer, Ariel; Mukherjee, Debargha; Joshi, Urvang; Mazar, Itai; Yuzvinsky, Michael; Tavor, Nitzan; Itzhak, Nati; Birman, Raz

    2017-09-01

    The demand for streaming video content is on the rise and growing exponentially. Networks bandwidth is very costly and therefore there is a constant effort to improve video compression rates and enable the sending of reduced data volumes while retaining quality of experience (QoE). One basic feature that utilizes the spatial correlation of pixels for video compression is Intra-Prediction, which determines the codec's compression efficiency. Intra prediction enables significant reduction of the Intra-Frame (I frame) size and, therefore, contributes to efficient exploitation of bandwidth. In this presentation, we propose new Intra-Prediction algorithms that improve the AV1 prediction model and provide better compression ratios. Two (2) types of methods are considered: )1( New scanning order method that maximizes spatial correlation in order to reduce prediction error; and )2( New Intra-Prediction modes implementation in AVI. Modern video coding standards, including AVI codec, utilize fixed scan orders in processing blocks during intra coding. The fixed scan orders typically result in residual blocks with high prediction error mainly in blocks with edges. This means that the fixed scan orders cannot fully exploit the content-adaptive spatial correlations between adjacent blocks, thus the bitrate after compression tends to be large. To reduce the bitrate induced by inaccurate intra prediction, the proposed approach adaptively chooses the scanning order of blocks according to criteria of firstly predicting blocks with maximum number of surrounding, already Inter-Predicted blocks. Using the modified scanning order method and the new modes has reduced the MSE by up to five (5) times when compared to conventional TM mode / Raster scan and up to two (2) times when compared to conventional CALIC mode / Raster scan, depending on the image characteristics (which determines the percentage of blocks predicted with Inter-Prediction, which in turn impacts the efficiency of the new scanning method). For the same cases, the PSNR was shown to improve by up to 7.4dB and up to 4 dB, respectively. The new modes have yielded 5% improvement in BD-Rate over traditionally used modes, when run on K-Frame, which is expected to yield 1% of overall improvement.

  16. Mouse manipulation through single-switch scanning.

    PubMed

    Blackstien-Adler, Susie; Shein, Fraser; Quintal, Janet; Birch, Shae; Weiss, Patrice L Tamar

    2004-01-01

    Given the current extensive reliance on the graphical user interface, independent access to computer software requires that users be able to manipulate a pointing device of some type (e.g., mouse, trackball) or be able to emulate a mouse by some other means (e.g., scanning). The purpose of the present study was to identify one or more optimal single-switch scanning mouse emulation strategies. Four alternative scanning strategies (continuous Cartesian, discrete Cartesian, rotational, and hybrid quadrant/continuous Cartesian) were selected for testing based on current market availability as well as on theoretical considerations of their potential speed and accuracy. Each strategy was evaluated using a repeated measures study design by means of a test program that permitted mouse emulation via any one of four scanning strategies in a motivating environment; response speed and accuracy could be automatically recorded and considered in view of the motor, cognitive, and perceptual demands of each scanning strategy. Ten individuals whose disabilities required them to operate a computer via single-switch scanning participated in the study. Results indicated that Cartesian scanning was the preferred and most effective scanning strategy. There were no significant differences between results from the Continuous Cartesian and Discrete Cartesian scanning strategies. Rotational scanning was quite slow with respect to the other strategies, although it was equally accurate. Hybrid Quadrant scanning improved access time but at the cost of fewer correct selections. These results demonstrated the importance of testing and comparing alternate single-switch scanning strategies.

  17. Definition and design of an experiment to test raster scanning with rotating unbalanced-mass devices on gimbaled payloads

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.; Alhorn, D. C.; Polites, M. E.

    1992-01-01

    An experiment designed to test the feasibility of using rotating unbalanced-mass (RUM) devices for line and raster scanning gimbaled payloads, while expending very little power is described. The experiment is configured for ground-based testing, but the scan concept is applicable to ground-based, balloon-borne, and space-based payloads, as well as free-flying spacecraft. The servos used in scanning are defined; the electronic hardware is specified; and a computer simulation model of the system is described. Simulation results are presented that predict system performance and verify the servo designs.

  18. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Gabr, Refaat E.; Zhou, Jinyuan; Weiss, Robert G.; Bottomley, Paul A.

    2013-12-01

    Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.

  19. WE-DE-BRA-09: Fast Megavoltage CT Imaging with Rapid Scan Time and Low Imaging Dose in Helical Tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magome, T; University of Tokyo Hospital, Tokyo; University of Minnesota, Minneapolis, MN

    Purpose: Megavoltage computed tomography (MVCT) imaging has been widely used for daily patient setup with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, owing to slow couch speed. The purpose of this study was to develop an MVCT imaging method allowing faster couch speeds, and to assess its accuracy for image guidance for HT. Methods: Three cadavers (mimicking closest physiological and physical system of patients) were scanned four times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm. The MVCT images weremore » registered with kilovoltage CT images, and the registration errors were compared with the errors with conventional filtered back projection (FBP) algorithm. Moreover, the fast MVCT imaging was tested in three cases of total marrow irradiation as a clinical trial. Results: Three-dimensional registration errors of the MVCT images reconstructed with the IR algorithm were significantly smaller (p < 0.05) than the errors of images reconstructed with the FBP algorithm at fast couch speeds (3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, a limited number of conventional MVCT (1.2 mm/s) and fast MVCT (3 mm/s) reveals acceptable reduced imaging time and dose able to use for anatomical registration. Conclusion: Fast MVCT with IR algorithm maybe clinically feasible alternative for rapid 3D patient localization. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area.« less

  20. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology

    PubMed Central

    Clinton, Lani K.; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J.

    2016-01-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. PMID:27558176

  1. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    PubMed

    Rosenegger, David G; Tran, Cam Ha T; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  2. Calibration improvements to electronically scanned pressure systems and preliminary statistical assessment

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    1996-01-01

    Orifice-to-orifice inconsistencies in data acquired with an electronically-scanned pressure system at the beginning of a wind tunnel experiment forced modifications to the standard, instrument calibration procedures. These modifications included a large increase in the number of calibration points which would allow a critical examination of the calibration curve-fit process, and a subsequent post-test reduction of the pressure data. Evaluation of these data has resulted in an improved functional representation of the pressure-voltage signature for electronically-scanned pressures sensors, which can reduce the errors due to calibration curve fit to under 0.10 percent of reading compared to the manufacturer specified 0.10 percent of full scale. Application of the improved calibration function allows a more rational selection of the calibration set-point pressures. These pressures should be adjusted to achieve a voltage output which matches the physical shape of the pressure-voltage signature of the sensor. This process is conducted in lieu of the more traditional approach where a calibration pressure is specified and the resulting sensor voltage is recorded. The fifteen calibrations acquired over the two-week duration of the wind tunnel test were further used to perform a preliminary, statistical assessment of the variation in the calibration process. The results allowed the estimation of the bias uncertainty for a single instrument calibration; and, they form the precursor for more extensive and more controlled studies in the laboratory.

  3. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    PubMed Central

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  4. The effect of laser focus and process parameters on microstructure and mechanical properties of SLM Inconel 718

    NASA Astrophysics Data System (ADS)

    Bean, Glenn E.; Witkin, David B.; McLouth, Tait D.; Zaldivar, Rafael J.

    2018-02-01

    Research on the selective laser melting (SLM) method of laser powder bed fusion additive manufacturing (AM) has shown that surface and internal quality of AM parts is directly related to machine settings such as laser energy density, scanning strategies, and atmosphere. To optimize laser parameters for improved component quality, the energy density is typically controlled via laser power, scanning rate, and scanning strategy, but can also be controlled by changing the spot size via laser focal plane shift. Present work being conducted by The Aerospace Corporation was initiated after observing inconsistent build quality of parts printed using OEM-installed settings. Initial builds of Inconel 718 witness geometries using OEM laser parameters were evaluated for surface roughness, density, and porosity while varying energy density via laser focus shift. Based on these results, hardware and laser parameter adjustments were conducted in order to improve build quality and consistency. Tensile testing was also conducted to investigate the effect of build plate location and laser settings on SLM 718. This work has provided insight into the limitations of OEM parameters compared with optimized parameters towards the goal of manufacturing aerospace-grade parts, and has led to the development of a methodology for laser parameter tuning that can be applied to other alloy systems. Additionally, evidence was found that for 718, which derives its strength from post-manufacturing heat treatment, there is a possibility that tensile testing may not be perceptive to defects which would reduce component performance. Ongoing research is being conducted towards identifying appropriate testing and analysis methods for screening and quality assurance.

  5. Evaluation and mitigation of potential errors in radiochromic film dosimetry due to film curvature at scanning

    PubMed Central

    Bradley, David A.; Nisbet, Andrew

    2015-01-01

    This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film‐measured doses with treatment planning system‐calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple‐channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single‐channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier‐type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat‐film scanning. This effect has been overlooked to date in the literature. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:26103181

  6. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  7. Platelet adhesion on phosphorus-incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Liu, Meng; Dai, Zhifei; Han, Xiao; Han, Jiecai

    2008-11-01

    The haemocompatibility of phosphorus-incorporated tetrahedral amorphous carbon (ta-C:P) films, synthesized by filtered cathodic vacuum arc technique with PH 3 as the dopant source, was assessed by in vitro platelet adhesion tests. Results based on scanning electron microscopy and contact angle measurements reveal that phosphorus incorporation improves the wettability and blood compatibility of ta-C film. Our studies may provide a novel approach for the design and synthesis of doped ta-C films to repel platelet adhesion and reduce thrombosis risk.

  8. Thermomechanical Contact Phenomena and Wear of Sliding Components

    DTIC Science & Technology

    1989-07-31

    seals. Many of those methods were used in this study. • • I I i II I I I I I I I l1 2. METHDS Sliding wear tests were conducted on Inconel 625 seal rings...wear. These coatings have been used successfully in reducing the wear of machine tools , aircraft and automobile engine parts, etc. It is only recently...scanning electron microscopy were tools employed to determine the wear behavior and wear mechanism associated with the various chromium carbide and tungsten

  9. Interactive lung segmentation in abnormal human and animal chest CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less

  10. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Jun, E-mail: jun.deng@yale.edu; Chen Zhe; Roberts, Kenneth B.

    Purpose: To investigate doses induced by kilovoltage cone-beam computed tomography (kVCBCT) to pediatric cancer patients undergoing radiotherapy, as well as strategies for dose reduction. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose deposition due to kVCBCT on 4 pediatric cancer patients. Absorbed doses to various organs were analyzed for both half-fan and full-fan modes. Clinical conditions, such as distance from organ at risk (OAR) to CBCT field border, kV peak energy, and testicular shielding, were studied. Results: The mean doses induced by one CBCT scan operated at 125 kV in half-fan mode to testes,more » liver, kidneys, femoral heads, spinal cord, brain, eyes, lens, and optical nerves were 2.9, 4.7, 7.7, 10.5, 8.8, 7.6, 7.7, 7.8, and 7.2 cGy, respectively. Increasing the distances from OARs to CBCT field border greatly reduced the doses to OARs, ranging from 33% reduction for spinal cord to 2300% reduction for testes. As photon beam energy increased from 60 to 125 kV, the dose increase due to kVCBCT ranged from 170% for lens to 460% for brain and spinal cord. A testicular shielding made of 1-cm cerrobend could reduce CBCT doses down to 31%, 51%, 68%, and 82%, respectively, for 60, 80, 100, and 125 kV when the testes lay within the CBCT field. Conclusions: Generally speaking, kVCBCT deposits much larger doses to critical structures in children than in adults, usually by a factor of 2 to 3. Increasing the distances from OARs to CBCT field border greatly reduces doses to OARs. Depending on OARs, kVCBCT-induced doses increase linearly or exponentially with photon beam energy. Testicular shielding works more efficiently at lower kV energies. On the basis of our study, it is essential to choose an appropriate scanning protocol when kVCBCT is applied to pediatric cancer patients routinely.« less

  11. Natural pixel decomposition for computational tomographic reconstruction from interferometric projection: algorithms and comparison

    NASA Astrophysics Data System (ADS)

    Cha, Don J.; Cha, Soyoung S.

    1995-09-01

    A computational tomographic technique, termed the variable grid method (VGM), has been developed for improving interferometric reconstruction of flow fields under ill-posed data conditions of restricted scanning and incomplete projection. The technique is based on natural pixel decomposition, that is, division of a field into variable grid elements. The performances of two algorithms, that is, original and revised versions, are compared to investigate the effects of the data redundancy criteria and seed element forming schemes. Tests of the VGMs are conducted through computer simulation of experiments and reconstruction of fields with a limited view angel of 90 degree(s). The temperature fields at two horizontal sections of a thermal plume of two interacting isothermal cubes, produced by a finite numerical code, are analyzed as test fields. The computer simulation demonstrates the superiority of the revised VGM to either the conventional fixed grid method or the original VGM. Both the maximum and average reconstruction errors are reduced appreciably. The reconstruction shows substantial improvement in the regions with dense scanning by probing rays. These regions are usually of interest in engineering applications.

  12. Considerations for ultrasonic testing application for on-orbit NDE

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper addresses some on-orbit nondestructive evaluation (NDE) needs of NASA for International Space Station (ISS). The presentation gives NDE requirements for inspecting suspect damage due to micro-meteoroids and orbital debris (MMOD) impact on the pressure wall of the ISS. This inspection is meant to be conducted from inside of the ISS module. The metallic wall of the module has a fixed wall thickness but also has integral orthogrid ribs for reinforcement. Typically, a single MMOD hit causes localized damage in a small area causing loss of material similar to pitting corrosion, but cracks may be present too. The impact may cause bulging of the wall. Results of the ultrasonic and eddy current demonstration scans on test samples are provided. The ultrasonic technique uses shear wave scans to interrogate the localized damage area from the surrounding undamaged area. The scanning protocol results in multiple scans, each with multiple "vee" paths. A superimposition and mosaic of the three-dimensional ultrasonic data from individual scans is desired to create C-scan images of the damage. This is a new data reduction process which is not currently implemented in state-of-art ultrasonic instruments. Results of ultrasonic scans on the simulated MMOD damage test plates are provided. The individual C-scans are superimposed manually creating mosaic of the inspection. The resulting image is compared with visibly detected damage boundaries, X-ray images, and localized ultrasonic and eddy current scans for locating crack tips to assess effectiveness of the ultrasonic scanning. The paper also discusses developments needed in improving ergonomics of the ultrasonic testing for on-orbit applications.

  13. SU-F-BRB-05: Collision Avoidance Mapping Using Consumer 3D Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardan, R; Popple, R

    2015-06-15

    Purpose: To develop a fast and economical method of scanning a patient’s full body contour for use in collision avoidance mapping without the use of ionizing radiation. Methods: Two consumer level 3D cameras used in electronic gaming were placed in a CT simulator room to scan a phantom patient set up in a high collision probability position. A registration pattern and computer vision algorithms were used to transform the scan into the appropriate coordinate systems. The cameras were then used to scan the surface of a gantry in the treatment vault. Each scan was converted into a polygon mesh formore » collision testing in a general purpose polygon interference algorithm. All clinically relevant transforms were applied to the gantry and patient support to create a map of all possible collisions. The map was then tested for accuracy by physically testing the collisions with the phantom in the vault. Results: The scanning fidelity of both the gantry and patient was sufficient to produce a collision prediction accuracy of 97.1% with 64620 geometry states tested in 11.5 s. The total scanning time including computation, transformation, and generation was 22.3 seconds. Conclusion: Our results demonstrate an economical system to generate collision avoidance maps. Future work includes testing the speed of the framework in real-time collision avoidance scenarios. Research partially supported by a grant from Varian Medical Systems.« less

  14. Impact of a bladder scan protocol on discharge efficiency within a care pathway for ambulatory inguinal herniorraphy.

    PubMed

    Antonescu, I; Baldini, G; Watson, D; Kaneva, P; Fried, G M; Khwaja, K; Vassiliou, M C; Carli, F; Feldman, L S

    2013-12-01

    Postoperative urinary retention (POUR) is a common complication of ambulatory inguinal herniorraphy, with an incidence reaching 38%, and many surgeons require patients to void before discharge. This study aimed to assess whether the implementation of a bladder scan-based voiding protocol reduces the time until discharge after ambulatory inguinal herniorraphy without increasing the rate of POUR. As part of a perioperative care pathway, a protocol was implemented to standardize decision making after elective inguinal hernia repair (February 2012). Patients were assessed with a bladder scan, and those with <600 mL of urine were discharged home, whereas those with more than 600 mL of urine had an in-and-out catheterization before discharge. The patients received written information about urinary symptoms and instructions to present to the emergency department if they were unable to void at home. An audit of scheduled outpatient inguinal hernia repairs between October 2011 and July 2012 was performed. Comparisons were made using the t test, Fisher's exact test, and Wilcoxon rank sum test where appropriate. Statistical significance was defined a priori as a p value lower than 0.05. During the study period, 124 patients underwent hernia repair: 60 before and 64 after implementation of the protocol. The findings showed no significant differences in patient characteristics, laparoscopic approach (35 vs. 33%; p = 0.80), proportion receiving general anesthesia (70 vs. 73%; p = 0.67), or amount of intravenous fluids given (793 vs. 663 mL; p = 0.07). The proportion of patients voiding before discharge was higher after protocol implementation (73 vs. 89%; p = 0.02). The protocol had no impact on median time to discharge (190 vs. 205 min; p = 0.60). Only one patient in each group presented to the emergency department with POUR (2%). After ambulatory inguinal herniorraphy, implementation of a bladder scan-based voiding protocol did not result in earlier discharge. The incidence of POUR was lower than reported in the literature.

  15. Nondestructive Testing Information Analysis Center, 1979.

    DTIC Science & Technology

    1980-09-01

    transmission and reflectometry Ultrasonic imaging Spectrum analysis Acoustic emission * LIQUID PENETRANT TESTING Dye penetrants Fluorescent penetrants...OPTICAL TESTING Visual testing Optical reflectometry and transmission Holography * THERMAL TESTING Infrared radiometry The rmography 13 The present...on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, and the monthly Engineering Index and Science Abstracts. New books

  16. Design and fabrication of a differential scanning nanocalorimeter

    NASA Astrophysics Data System (ADS)

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; Lu, Ming

    2017-02-01

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterized through the measurement of current-voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. The noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.

  17. From nanoparticles to large aerosols: Ultrafast measurement methods for size and concentration

    NASA Astrophysics Data System (ADS)

    Keck, Lothar; Spielvogel, Jürgen; Grimm, Hans

    2009-05-01

    A major challenge in aerosol technology is the fast measurement of number size distributions with good accuracy and size resolution. The dedicated instruments are frequently based on particle charging and electric detection. Established fast systems, however, still feature a number of shortcomings. We have developed a new instrument that constitutes of a high flow Differential Mobility Analyser (high flow DMA) and a high sensitivity Faraday Cup Electrometer (FCE). The system enables variable flow rates of up to 150 lpm, and the scan time for size distribution can be shortened considerably due to the short residence time of the particles in the DMA. Three different electrodes can be employed in order to cover a large size range. First test results demonstrate that the scan time can be reduced to less than 1 s for small particles, and that the results from the fast scans feature no significant difference to the results from established slow method. The fields of application for the new instrument comprise the precise monitoring of fast processes with nanoparticles, including monitoring of engine exhaust in automotive research.

  18. Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.

    PubMed

    Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo

    2012-11-21

    To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.

  19. A technique for the reduction of banding in Landsat Thematic Mapper Images

    USGS Publications Warehouse

    Helder, Dennis L.; Quirk, Bruce K.; Hood, Joy J.

    1992-01-01

    The radiometric difference between forward and reverse scans in Landsat thematic mapper (TM) images, referred to as "banding," can create problems when enhancing the image for interpretation or when performing quantitative studies. Recent research has led to the development of a method that reduces the banding in Landsat TM data sets. It involves passing a one-dimensional spatial kernel over the data set. This kernel is developed from the statistics of the banding pattern and is based on the Wiener filter. It has been implemented on both a DOS-based microcomputer and several UNIX-based computer systems. The algorithm has successfully reduced the banding in several test data sets.

  20. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  1. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  2. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens.

    PubMed

    Peng, Jian-Min; Lin, Jia-Cheng; Chen, Zhuo-Yu; Wei, Meng-Chao; Fu, Yuan-Xiang; Lu, Shu-Shen; Yu, Dong-Sheng; Zhao, Wei

    2017-02-01

    As a means of capitalizing on the synergistic properties between reduced graphene nanosheets (R-GNs) and silver nanoparticles (AgNPs), an efficient and convenient chemical reduction method was used to prepare silver-nanoparticle-decorated reduced graphene nanocomposites (R-GNs/Ag). The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which confirmed the loading of well-dispersed silver nanoparticles on reduced graphene sheets. Their antimicrobial activities against oral pathogens such as Candida albicans, Lactobacillus acidophilus, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were investigated by MIC determination, the counting of colony-forming units (CFU), agar diffusion tests, and growth curve observation. Compared with pure R-GNs and AgNPs, R-GNs/Ag composites exhibited enhanced antimicrobial properties owing to highly dispersed AgNPs on R-GNs. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Reducing patient identification errors related to glucose point-of-care testing.

    PubMed

    Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron

    2011-01-01

    Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT.

  4. Reducing patient identification errors related to glucose point-of-care testing

    PubMed Central

    Alreja, Gaurav; Setia, Namrata; Nichols, James; Pantanowitz, Liron

    2011-01-01

    Background: Patient identification (ID) errors in point-of-care testing (POCT) can cause test results to be transferred to the wrong patient's chart or prevent results from being transmitted and reported. Despite the implementation of patient barcoding and ongoing operator training at our institution, patient ID errors still occur with glucose POCT. The aim of this study was to develop a solution to reduce identification errors with POCT. Materials and Methods: Glucose POCT was performed by approximately 2,400 clinical operators throughout our health system. Patients are identified by scanning in wristband barcodes or by manual data entry using portable glucose meters. Meters are docked to upload data to a database server which then transmits data to any medical record matching the financial number of the test result. With a new model, meters connect to an interface manager where the patient ID (a nine-digit account number) is checked against patient registration data from admission, discharge, and transfer (ADT) feeds and only matched results are transferred to the patient's electronic medical record. With the new process, the patient ID is checked prior to testing, and testing is prevented until ID errors are resolved. Results: When averaged over a period of a month, ID errors were reduced to 3 errors/month (0.015%) in comparison with 61.5 errors/month (0.319%) before implementing the new meters. Conclusion: Patient ID errors may occur with glucose POCT despite patient barcoding. The verification of patient identification should ideally take place at the bedside before testing occurs so that the errors can be addressed in real time. The introduction of an ADT feed directly to glucose meters reduced patient ID errors in POCT. PMID:21633490

  5. Orchidectomy-induced alterations in volumetric bone density, cortical porosity and strength of femur are attenuated by dietary conjugated linoleic acid in aged guinea pigs.

    PubMed

    DeGuire, Jason R; Mak, Ivy L; Lavery, Paula; Agellon, Sherry; Wykes, Linda J; Weiler, Hope A

    2015-04-01

    Age-related osteoporosis and sarcopenia are ascribed in part to reductions in anabolic hormones. Dietary conjugated linoleic acid (CLA) improves lean and bone mass, but its impact during androgen deficiency is not known. This study tested if CLA would attenuate the effects of orchidectomy (ORX)-induced losses of bone and lean tissue. Male guinea pigs (n=40; 70-72 weeks), were randomized into four groups: (1) SHAM+Control diet, (2) SHAM+CLA diet, (3) ORX+Control diet, (4) ORX+CLA diet. Baseline blood sampling and dual-energy X-ray absorptiometry (DXA) scans were conducted, followed by surgery 4 days later with the test diets started 7 days after baseline sampling. Serial blood sampling and DXA scans were repeated 2, 4, 8 and 16 weeks on the test diets. Body composition and areal BMD (aBMD) of whole body, lumbar spine, femur and tibia were measured using DXA. At week 16, muscle protein fractional synthesis rate (FSR), volumetric BMD (vBMD), microarchitecture and bone strength were assessed. Body weight declined after SHAM and ORX surgery, with slower recovery in the ORX group. Dietary CLA did not affect weight or lean mass, but attenuated gains in fat mass. Lean mass was stable in SHAM and reduced in ORX by 2 weeks with whole body and femur bone mineral content (BMC) reduced by 4 weeks; CLA did not alter BMC. By week 16 ORX groups had lower free testosterone and myofibrillar FSR, yet higher cortisol, osteocalcin and ionized calcium with no alterations due to CLA. ORX+Control had higher prostaglandin E2 (PGE2) and total alkaline phosphatase compared to SHAM+Control whereas ORX+CLA were not different from SHAM groups. Femur metaphyseal vBMD was reduced in ORX+CTRL with the reduction attenuated by CLA. Femur cortical thickness (Ct.Th.) and biomechanical strength were reduced and cortical porosity (Ct.Po.) elevated by ORX and attenuated by CLA. This androgen deficient model with a sarcopenic-osteoporotic phenotype similar to aging men responded to dietary CLA with significant benefits to femur density and strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Star sensing for an earth imaging sensor

    NASA Technical Reports Server (NTRS)

    Ellis, Kenneth K. (Inventor); Griffith, Paul C. (Inventor)

    2012-01-01

    A star sensor includes (a) a scan mirror for scanning at least one star; (b) a detector array, coupled to the scan mirror, for detecting the one star; and (c) a processor, coupled to the detector array. The processor includes a first filter configured to reduce noise spikes in the detected one star, and provide a detection mask of filtered data. Also included is a second filter configured to reduce non-contiguous samples in the detection mask. A centroid calculator is included to determine a location of the one star, after the first and second filtering. The first filter includes a median filter, followed by an averaging filter, both configured to filter the one star in an along-scan direction of the scan mirror. The first filter includes another median filter, which is configured to filter the detected one star in the cross-scan direction of the scan mirror. An adder is included to subtract (a) output data from the other median filter from (b) output data from the averaging filter and provide filtered star data to the second filter.

  7. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    PubMed Central

    Jung, Jaehoon; Yoon, Sanghyun; Ju, Sungha; Heo, Joon

    2015-01-01

    The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM). The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM) technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m) according to the guidelines of the General Services Administration for BIM accuracy. PMID:26501292

  8. A methodology of SiP testing based on boundary scan

    NASA Astrophysics Data System (ADS)

    Qin, He; Quan, Haiyang; Han, Yifei; Zhu, Tianrui; Zheng, Tuo

    2017-10-01

    System in Package (SiP) play an important role in portable, aerospace and military electronic with the microminiaturization, light weight, high density, and high reliability. At present, SiP system test has encountered the problem on system complexity and malfunction location with the system scale exponentially increase. For SiP system, this paper proposed a testing methodology and testing process based on the boundary scan technology. Combining the character of SiP system and referencing the boundary scan theory of PCB circuit and embedded core test, the specific testing methodology and process has been proposed. The hardware requirement of the under test SiP system has been provided, and the hardware platform of the testing has been constructed. The testing methodology has the character of high test efficiency and accurate malfunction location.

  9. TU-EF-204-07: Add Tube Current Modulation to a Low Dose Simulation Tool for CT Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y.; Department of Physics, University of Arizona, Tucson, AZ; Wen, G.

    2015-06-15

    Purpose: We extended the capabilities of a low dose simulation tool to model Tube-Current Modulation (TCM). TCM is widely used in clinical practice to reduce radiation dose in CT scans. We expect the tool to be valuable for various clinical applications (e.g., optimize protocols, compare reconstruction techniques and evaluate TCM methods). Methods: The tube current is input as a function of z location, instead of a fixed value. Starting from the line integrals of a scan, a new Poisson noise realization at a lower dose is generated for each view. To validate the new functionality, we compared simulated scans withmore » real scans in image space. Results: First we assessed noise in the difference between the low-dose simulations and the original high-dose scan. When the simulated tube current is a step function of z location, the noise at each segment matches the noise of 3 separate constant-tube-current-simulations. Secondly, with a phantom that forces TCM, we compared a low-dose simulation with an equivalent real low-dose scan. The mean CT number of the simulated scan and the real low-dose scan were 137.7±0.6 and 137.8±0.5 respectively. Furthermore, with 240 ROIs, the noise of the simulated scan and the real low-dose scan were 24.03±0.45 and 23.99±0.43 respectively, and they were not statistically different (2-sample t-test, p-value=0.28). The facts that the noise reflected the trend of the TCM curve, and that the absolute noise measurements were not statistically different validated the TCM function. Conclusion: We successfully added tube-current modulation functionality in an existing low dose simulation tool. We demonstrated that the noise reflected an input tube-current modulation curve. In addition, we verified that the noise and mean CT number of our simulation agreed with a real low dose scan. The authors are all employees of Philips. Yijun Ding is also supported by NIBIB P41EB002035 and NIBIB R01EB000803.« less

  10. Life without Scan-Tron: Tests as Thinking.

    ERIC Educational Resources Information Center

    Posner, Richard

    1987-01-01

    Claims that written tests are superior to objective, scan-tron tests in literature, composition, and vocabulary because they require students to think on paper. Describes the following types of in-class written tests and examines the advantages of each: literary essay, topical composition, imitation, brief answer, timed rewrites, and vocabulary…

  11. Improved Differential Ion Mobility Separations Using Linked Scans of Carrier Gas Composition and Compensation Field

    NASA Astrophysics Data System (ADS)

    Santiago, Brandon G.; Harris, Rachel A.; Isenberg, Samantha L.; Ridgeway, Mark E.; Pilo, Alice L.; Kaplan, Desmond A.; Glish, Gary L.

    2015-07-01

    Differential ion mobility spectrometry (DIMS) separates ions based on differences in their mobilities in low and high electric fields. When coupled to mass spectrometric analyses, DIMS has the ability to improve signal-to-background by eliminating isobaric and isomeric compounds for analytes in complex mixtures. DIMS separation power, often measured by resolution and peak capacity, can be improved through increasing the fraction of helium in the nitrogen carrier gas. However, because the mobility of ions is higher in helium, a greater number of ions collide with the DIMS electrodes or housing, yielding losses in signal intensity. To take advantage of the benefits of helium addition on DIMS separations and reduce ion losses, linked scans were developed. In a linked scan the helium content of the carrier gas is reduced as the compensation field is increased. Linked scans were compared with conventional compensation field scans with constant helium content for the protein ubiquitin and a tryptic digest of bovine serum albumin (BSA). Linked scans yield better separation of ubiquitin charge states and enhanced peak capacities for the analysis of BSA compared with compensation field scans with constant helium carrier gas percentages. Linked scans also offer improved signal intensity retention in comparison to compensation field scans with constant helium percentages in the carrier gas.

  12. TH-CD-209-10: Scanning Proton Arc Therapy (SPArc) - The First Robust and Delivery-Efficient Spot Scanning Proton Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Li, X; Zhang, J

    Purpose: To develop a delivery-efficient proton spot-scanning arc therapy technique with robust plan quality. Methods: We developed a Scanning Proton Arc(SPArc) optimization algorithm integrated with (1)Control point re-sampling by splitting control point into adjacent sub-control points; (2)Energy layer re-distribution by assigning the original energy layers to the new sub-control points; (3)Energy layer filtration by deleting low MU weighting energy layers; (4)Energy layer re-sampling by sampling additional layers to ensure the optimal solution. A bilateral head and neck oropharynx case and a non-mobile lung target case were tested. Plan quality and total estimated delivery time were compared to original robust optimizedmore » multi-field step-and-shoot arc plan without SPArc optimization (Arcmulti-field) and standard robust optimized Intensity Modulated Proton Therapy(IMPT) plans. Dose-Volume-Histograms (DVH) of target and Organ-at-Risks (OARs) were analyzed along with all worst case scenarios. Total delivery time was calculated based on the assumption of a 360 degree gantry room with 1 RPM rotation speed, 2ms spot switching time, beam current 1nA, minimum spot weighting 0.01 MU, energy-layer-switching-time (ELST) from 0.5 to 4s. Results: Compared to IMPT, SPArc delivered less integral dose(−14% lung and −8% oropharynx). For lung case, SPArc reduced 60% of skin max dose, 35% of rib max dose and 15% of lung mean dose. Conformity Index is improved from 7.6(IMPT) to 4.0(SPArc). Compared to Arcmulti-field, SPArc reduced number of energy layers by 61%(276 layers in lung) and 80%(1008 layers in oropharynx) while kept the same robust plan quality. With ELST from 0.5s to 4s, it reduced 55%–60% of Arcmulti-field delivery time for the lung case and 56%–67% for the oropharynx case. Conclusion: SPArc is the first robust and delivery-efficient proton spot-scanning arc therapy technique which could be implemented in routine clinic. For modern proton machine with ELST close to 0.5s, SPArc would be a popular treatment option for both single and multi-room center.« less

  13. Prospective audit of a one-centre combined nuchal translucency and triple test programme for the detection of trisomy 21.

    PubMed

    Babbur, Vijayalakshmi; Lees, Christoph C; Goodburn, Sandra F; Morris, Nigel; Breeze, Andrew C G; Hackett, Gerald A

    2005-06-01

    To determine detection and false-positive rates for trisomy 21 using two-stage combined nuchal translucency (NT) and triple testing, whilst disclosing abnormal nuchal measurements at the scan. A prospective audit in a UK women's hospital, of 3188 women with singleton pregnancies, requesting screening for trisomy 21. Median age was 37 years (range 19-46). Women were offered NT screening at 11 to 14 weeks. Those with NT > or =3 mm were offered chorionic villus sampling. Those declining CVS, and those with NT <3 mm, were offered early triple tests. Women with a term combined risk of trisomy 21 > or = 1:250, based on age, NT, and triple test results were offered amniocentesis. Using a 3-mm NT 'cut-off' identified 16/25 cases of trisomy 21 (64%; 95% CI 38.8, 78.9). Of 2725 women who had a combined nuchal plus triple test assessment, 79 (2.6%) had a > or = 1:250 term risk of trisomy 21. Forty (1.3%) had amniocentesis identifying 6/9 remaining cases (67%:95% CI:27.9, 92.5). Overall, the detection rate was 88% (95% CI:68.8, 97.5) for a 4.8% FPR. For the screened population, to achieve an 88% detection rate using the triple test alone, the predicted FPR would be 20%. Conversely, for an FPR of 4.8% using the triple test alone, the detection rate would be only 60%. In a high-risk group, the combination of NT with triple test offers detection of trisomy 21 at least equivalent to either test, while allowing disclosure of an abnormal NT at the scan and reducing the FPR. Importantly, the FPR is less than 5%, considerably lower than expected for triple test alone for this population.

  14. Inertia Compensation While Scanning Screw Threads on Coordinate Measuring Machines

    NASA Astrophysics Data System (ADS)

    Kosarevsky, Sergey; Latypov, Viktor

    2010-01-01

    Usage of scanning coordinate-measuring machines for inspection of screw threads has become a common practice nowadays. Compared to touch trigger probing, scanning capabilities allow to speed up the measuring process while still maintaining high accuracy. However, in some cases accuracy drastically depends on the scanning speed. In this paper a compensation method is proposed allowing to reduce the influence of inertia of the probing system while scanning screw threads on coordinate-measuring machines.

  15. Elevated levels of CXC chemokine connective tissue activating peptide (CTAP)-III in lung cancer patients.

    PubMed

    Lee, Gina; Gardner, Brian K; Elashoff, David A; Purcell, Colleen M; Sandha, Harpavan S; Mao, Jenny T; Krysan, Kostyantyn; Lee, Jay M; Dubinett, Steven M

    2011-05-15

    Despite advances in treatments, lung cancer has been the leading cause of cancer-related deaths in the United States for the past several decades. Recent findings from the National Lung Screening Trial reveal that low-dose helical computed tomography (CT) scan screening of high-risk individuals reduces lung cancer mortality. This suggests that early detection is of key importance to improving patient outcome. However, of those screened with CT scans, 25% had positive scans that require further follow-up studies which often involve more radiation exposure and invasive tests to reduce false positive results. The purpose of this study was to identify candidate plasma biomarkers to aid in diagnosis of lung cancer in at-risk individuals. We found increased expression of the CXC chemokine connective tissue-activating peptide (CTAP)-III from plasma specimens of lung cancer patients compared to at-risk control subjects. Identification of the peptide was confirmed by the addition of an anti-NAP-2 antibody that recognizes CTAP-III and NAP-2. We also quantified and verified the increased levels of plasma CTAP-III with ELISA in patients with lung cancer (mean ± SD, 1859 ± 1219 ng/mL) compared to controls (698 ± 434 ng/mL; P<0.001). Our findings demonstrate elevated plasma levels of CTAP-III occur in lung cancer patients. Further studies are required to determine if this chemokine could be utilized in a blood-based biomarker panel for the diagnosis of lung cancer.

  16. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope.

    PubMed

    Đorđević, Biljana; Neděla, Vilém; Tihlaříková, Eva; Trojan, Václav; Havel, Ladislav

    2018-05-18

    Somatic embryogenesis is an important biotechnological technique which can be used in studies associated with environmental stress. Four embryogenic cell lines of Norway spruce were grown on media enriched with copper and arsenic in concentration ranges 50-500 μM and 10-50 μM, respectively. The effects were observed during subsequent stages of somatic embryogenesis, the characteristics evaluated being proliferation potential, average number of somatic embryos obtained per g/fresh weight, morphology of developed somatic embryos, metal uptake, and microanalysis of macro- and micronutrients uptake. Copper and arsenic at higher concentrations significantly reduced the growth of early somatic embryos. In almost all treatments, the cell line V-1-3 showed the best performance compared with the other lines tested. Environmental scanning electron microscopy was used to visualize and identify morphological abnormalities in the development of somatic embryos. Abnormalities observed were classified into several categories: meristemless somatic embryos, somatic embryos with disrupted meristem, reduced number of cotyledons, single cotyledon and fused cotyledons. With the application of a low temperature method for the environmental scanning electron microscope, samples were stabilized and whole meristems could be investigated in their native state. As far as we are aware, this is the first report of the effect of copper and arsenic during the process of somatic embryogenesis and the first to evaluate the content of macro and micronutrients uptake in Norway spruce. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumbilavil, Sreekanth; Sankar, Pranitha; Priya Rose, T.

    Wavelength dispersion of optical power limiting is an important factor to be considered while designing potential optical limiters for laser safety applications. We report the observation of broadband, ultrafast optical limiting in reduced graphene oxide (rGO), measured by a single open aperture Z-scan using a white light continuum (WLC) source. WLC Z-scan is fast when the nonlinearity is to be measured over broad wavelength ranges, and it obviates the need for an ultrafast tunable laser making it cost-economic compared to conventional Z-scan. The nonlinearity arises from nondegenerate two-photon absorption, owing mostly to the crystallinity and extended π conjugation of rGO.

  18. BETA: Behavioral testability analyzer and its application to high-level test generation and synthesis for testability. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Hsing

    1992-01-01

    In this thesis, a behavioral-level testability analysis approach is presented. This approach is based on analyzing the circuit behavioral description (similar to a C program) to estimate its testability by identifying controllable and observable circuit nodes. This information can be used by a test generator to gain better access to internal circuit nodes and to reduce its search space. The results of the testability analyzer can also be used to select test points or partial scan flip-flops in the early design phase. Based on selection criteria, a novel Synthesis for Testability approach call Test Statement Insertion (TSI) is proposed, which modifies the circuit behavioral description directly. Test Statement Insertion can also be used to modify circuit structural description to improve its testability. As a result, Synthesis for Testability methodology can be combined with an existing behavioral synthesis tool to produce more testable circuits.

  19. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  20. Setup of a photomultiplier tube test bench for LHAASO-KM2A

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zhang, Zhong-Quan; Tian, Ye; Du, Yan-Yan; Zhao, Xiao; Shen, Fu-Wang; Li, Chang-Yu; Sun, Yan-Sheng; Feng, Cun-Feng

    2016-08-01

    To fulfill the requirements for testing the photomultiplier tubes (PMTs) of the electromagnetic detector at the Large High Altitude Air Shower Observatory (LHAASO), a multi-functional PMT test bench with a two-dimensional scanning system has been developed. With this 2D scanning system, 16 PMTs can be scanned simultaneously for characteristics tests, including uniformity, cathode transit time difference, single photo-electron spectrum, gain vs. high voltage, linear behavior and dark noise. The programmable hardware and intelligent software of the test bench make it convenient to use and provide reliable results. The test methods are described in detail and primary results are presented. Supported by NSFC (11075096) SDNFS (ZR2011AM007), China

  1. SU-E-U-02: The Development of a Practical Ultrasonic System for Cross-Sectional Imaging of Small Animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamp, J; Karmanos Cancer Institute - International Imaging Center, Detroit, MI; Malyarenko, E

    Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included amore » programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge the financial and engineering support from Tessonics.« less

  2. What psychological testing and neuroimaging tell us about the treatment of Posttraumatic Stress Disorder by Eye Movement Desensitization and Reprocessing.

    PubMed

    Levin, P; Lazrove, S; van der Kolk, B

    1999-01-01

    To better understand the pathophysiology and treatment of Posttraumatic Stress Disorder (PTSD), standard psychological testing, Rorschach Ink Blot testing, and neuroimaging using Single Photon Emission Computed Tomography (SPECT) were administered to subjects with PTSD prior to and following three sessions of Eye Movement Desensitization and Reprocessing (EMDR). Using this within-subject design, data from one of six subjects in our series is presented as a case report. Following EMDR, the subject experienced improvement in his level of distress, which correlated with decrements in PTSD and depressive symptomatology on psychological testing. Analysis of the Rorschach data corroborated these changes. Among other findings, the Hypervigilance Index went from positive to negative, indicating that the subject was spending less time scanning the environment for threats, and available ego resources also increased, as measured by the Experience Actual variable. Upon recall of the traumatic memory during SPECT scanning, two areas of the brain were hyperactive post-EMDR treatment relative to pretreatment: the anterior cingulate gyrus and the left frontal lobe. These changes were consistent with summed data from four out of six subjects in the ongoing study. An important implication of these findings is that successful treatment of PTSD does not reduce arousal at the limbic level, but instead, enhances the ability to differentiate real from imagined threat. The psychology and neurophysiology of PTSD are discussed in greater detail.

  3. Continuous scanning mode for ptychography

    DOE PAGES

    Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...

    2014-10-15

    We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.

  4. WE-EF-207-07: Dual Energy CT with One Full Scan and a Second Sparse-View Scan Using Structure Preserving Iterative Reconstruction (SPIR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: Conventional dual energy CT (DECT) reconstructs CT and basis material images from two full-size projection datasets with different energy spectra. To relax the data requirement, we propose an iterative DECT reconstruction algorithm using one full scan and a second sparse-view scan by utilizing redundant structural information of the same object acquired at two different energies. Methods: We first reconstruct a full-scan CT image using filtered-backprojection (FBP) algorithm. The material similarities of each pixel with other pixels are calculated by an exponential function about pixel value differences. We assume that the material similarities of pixels remains in the second CTmore » scan, although pixel values may vary. An iterative method is designed to reconstruct the second CT image from reduced projections. Under the data fidelity constraint, the algorithm minimizes the L2 norm of the difference between pixel value and its estimation, which is the average of other pixel values weighted by their similarities. The proposed algorithm, referred to as structure preserving iterative reconstruction (SPIR), is evaluated on physical phantoms. Results: On the Catphan600 phantom, SPIR-based DECT method with a second 10-view scan reduces the noise standard deviation of a full-scan FBP CT reconstruction by a factor of 4 with well-maintained spatial resolution, while iterative reconstruction using total-variation regularization (TVR) degrades the spatial resolution at the same noise level. The proposed method achieves less than 1% measurement difference on electron density map compared with the conventional two-full-scan DECT. On an anthropomorphic pediatric phantom, our method successfully reconstructs the complicated vertebra structures and decomposes bone and soft tissue. Conclusion: We develop an effective method to reduce the number of views and therefore data acquisition in DECT. We show that SPIR-based DECT using one full scan and a second 10-view scan can provide high-quality DECT images and accurate electron density maps as conventional two-full-scan DECT.« less

  5. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  6. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  7. Comprehension of Navigation Directions

    NASA Technical Reports Server (NTRS)

    Healy, Alice F.; Schneider, Vivian I.

    2002-01-01

    Subjects were shown navigation instructions varying in length directing them to move in a space represented by grids on a computer screen. They followed the instructions by clicking on the grids in the locations specified. Some subjects repeated back the instructions before following them, some did not, and others repeated back the instructions in reduced form, including only the critical words. The commands in each message were presented simultaneously for half of the subjects and sequentially for the others. For the longest messages, performance was better on the initial commands and worse on the final commands with simultaneous than with sequential presentation. Instruction repetition depressed performance, but reduced repetition removed this disadvantage. Effects of presentation format were attributed to visual scanning strategies. The advantage for reduced repetition was attributable either to enhanced visual scanning or to reduced output interference. A follow-up study with auditory presentation supported the visual scanning explanation.

  8. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan.

    PubMed

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G

    2015-06-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine-cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mmHg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. Copyright © 2015. Published by Elsevier Inc.

  9. Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan

    PubMed Central

    Lipp, Ilona; Murphy, Kevin; Caseras, Xavier; Wise, Richard G.

    2015-01-01

    FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment. PMID:25795342

  10. Rapid Antimicrobial Susceptibility Testing Using Forward Laser Light Scatter Technology.

    PubMed

    Hayden, Randall T; Clinton, Lani K; Hewitt, Carolyn; Koyamatsu, Terri; Sun, Yilun; Jamison, Ginger; Perkins, Rosalie; Tang, Li; Pounds, Stanley; Bankowski, Matthew J

    2016-11-01

    The delayed reporting of antimicrobial susceptibility testing remains a limiting factor in clinical decision-making in the treatment of bacterial infection. This study evaluates the use of forward laser light scatter (FLLS) to measure bacterial growth for the early determination of antimicrobial susceptibility. Three isolates each (two clinical isolates and one reference strain) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were tested in triplicate using two commercial antimicrobial testing systems, the Vitek2 and the MicroScan MIC panel, to challenge the BacterioScan FLLS. The BacterioScan FLLS showed a high degree of categorical concordance with the commercial methods. Pairwise comparison with each commercial system serving as a reference standard showed 88.9% agreement with MicroScan (two minor errors) and 72.2% agreement with Vitek (five minor errors). FLLS using the BacterioScan system shows promise as a novel method for the rapid and accurate determination of antimicrobial susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Rifaximin suppresses background intestinal 18F-FDG uptake on PET/CT scans.

    PubMed

    Franquet, Elisa; Palmer, Mathew R; Gifford, Anne E; Selen, Daryl J; Chen, Yih-Chieh S; Sedora-Roman, Neda; Joyce, Robin M; Kolodny, Gerald M; Moss, Alan C

    2014-10-01

    Identification of cancer or inflammatory bowel disease in the intestinal tract by PET/computed tomography (CT) imaging can be hampered by physiological uptake of F-fluorodeoxyglucose (F-FDG) in the normal colon. Previous work has localized this F-FDG uptake to the intestinal lumen, predominantly occupied by bacteria. We sought to determine whether pretreatment with an antibiotic could reduce F-FDG uptake in the healthy colon. Thirty patients undergoing restaging PET/CT for nongastrointestinal lymphoma were randomly selected to receive rifaximin 550 mg twice daily for 2 days before their scan (post-rifaximin). Their PET/CT images were compared with those from their prior study (pre-rifaximin). Cecal maximum standard uptake value (SUVmax) and overall colonic F-FDG uptake were compared between scans. All PET/CT images were blindly scored by a radiologist. The same comparison of sequential scans was also undertaken in 30 patients who did not receive antibiotics. Thirty post-rifaximin scans were compared with 30 pre-rifaximin scans in the same patients. SUVmax in the cecum was significantly lower in the patient's post-rifaximin scans than in their pre-rifaximin scans (P=0.002). The percentage of scans with greater than grade 1 colonic F-FDG uptake was significantly lower in the post-rifaximin scans than in the pre-rifaximin scans (P<0.05). In contrast, there was no significant difference in the paired sequential scans from control patients, nor a reduction in the percentage of scans with greater than grade 1 colonic F-FDG uptake. This pilot study shows that treatment with rifaximin for 2 days before PET/CT scanning can significantly reduce physiological F-FDG uptake in the normal colonic lumen.

  12. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  13. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    PubMed

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  14. Testing biomechanical models of human lumbar lordosis variability.

    PubMed

    Castillo, Eric R; Hsu, Connie; Mair, Ross W; Lieberman, Daniel E

    2017-05-01

    Lumbar lordosis (LL) is a key adaptation for bipedalism, but factors underlying curvature variations remain unclear. This study tests three biomechanical models to explain LL variability. Thirty adults (15 male, 15 female) were scanned using magnetic resonance imaging (MRI), a standing posture analysis was conducted, and lumbar range of motion (ROM) was assessed. Three measures of LL were compared. The trunk's center of mass was estimated from external markers to calculate hip moments (M hip ) and lumbar flexion moments. Cross-sectional areas of lumbar vertebral bodies and trunk muscles were measured from scans. Regression models tested associations between LL and the M hip moment arm, a beam bending model, and an interaction between relative trunk strength (RTS) and ROM. Hip moments were not associated with LL. Beam bending was moderately predictive of standing but not supine LL (R 2  = 0.25). Stronger backs and increased ROM were associated with greater LL, especially when standing (R 2  = 0.65). The strength-flexibility model demonstrates the differential influence of RTS depending on ROM: individuals with high ROM exhibited the most LL variation with RTS, while those with low ROM showed reduced LL regardless of RTS. Hip moments appear constrained suggesting the possibility of selection, and the beam model explains some LL variability due to variations in trunk geometry. The strength-flexibility interaction best predicted LL, suggesting a tradeoff in which ROM limits the effects of back strength on LL. The strength-flexibility model may have clinical relevance for spinal alignment and pathology. This model may also suggest that straight-backed Neanderthals had reduced lumbar mobility. © 2017 Wiley Periodicals, Inc.

  15. Classification of SD-OCT volumes for DME detection: an anomaly detection approach

    NASA Astrophysics Data System (ADS)

    Sankar, S.; Sidibé, D.; Cheung, Y.; Wong, T. Y.; Lamoureux, E.; Milea, D.; Meriaudeau, F.

    2016-03-01

    Diabetic Macular Edema (DME) is the leading cause of blindness amongst diabetic patients worldwide. It is characterized by accumulation of water molecules in the macula leading to swelling. Early detection of the disease helps prevent further loss of vision. Naturally, automated detection of DME from Optical Coherence Tomography (OCT) volumes plays a key role. To this end, a pipeline for detecting DME diseases in OCT volumes is proposed in this paper. The method is based on anomaly detection using Gaussian Mixture Model (GMM). It starts with pre-processing the B-scans by resizing, flattening, filtering and extracting features from them. Both intensity and Local Binary Pattern (LBP) features are considered. The dimensionality of the extracted features is reduced using PCA. As the last stage, a GMM is fitted with features from normal volumes. During testing, features extracted from the test volume are evaluated with the fitted model for anomaly and classification is made based on the number of B-scans detected as outliers. The proposed method is tested on two OCT datasets achieving a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, experiments show that the proposed method achieves better classification performances than other recently published works.

  16. Development and verification of a cementless novel tapered wedge stem for total hip arthroplasty.

    PubMed

    Faizan, Ahmad; Wuestemann, Thies; Nevelos, Jim; Bastian, Adam C; Collopy, Dermot

    2015-02-01

    Most current tapered wedge hip stems were designed based upon the original Mueller straight stem design introduced in 1977. These stems were designed to have a single medial curvature and grew laterally to accommodate different sizes. In this preclinical study, the design and verification of a tapered wedge stem using computed tomography scans of 556 patients are presented. The computer simulation demonstrated that the novel stem, designed for proximal engagement, allowed for reduced distal fixation, particularly in the 40-60 year male population. Moreover, the physical micromotion testing and finite element analysis demonstrated that the novel stem allowed for reduced micromotion. In summary, preclinical data suggest that the computed tomography based stem design described here may offer enhanced implant fit and reduced micromotion. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and themore » test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.« less

  18. The effect of porosity on the mechanical properties of porous titanium scaffolds: comparative study on experimental and analytical values

    NASA Astrophysics Data System (ADS)

    Khodaei, Mohammad; Fathi, Mohammadhossein; Meratian, Mahmood; Savabi, Omid

    2018-05-01

    Reducing the elastic modulus and also improving biological fixation to the bone is possible by using porous scaffolds. In the present study, porous titanium scaffolds containing different porosities were fabricated using the space holder method. Pore distribution, formed phases and mechanical properties of titanium scaffolds were studied by Scanning Electron Microscope (SEM), x-ray diffraction (XRD) and cold compression test. Then the results of compression test were compared to the Gibson-Ashby model. Both experimentally measured and analytically calculated elastic modulus of porous titanium scaffolds decreased by porosity increment. The compliance between experimentally measured and analytically calculated elastic modulus of titanium scaffolds are also increased by porosity increment.

  19. Regulation Mechanism of Novel Thermomechanical Treatment on Microstructure and Properties in Al-Zn-Mg-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Zhiguo; Ren, Jieke; Zhang, Jishuai; Chen, Jiqiang; Fang, Liang

    2016-02-01

    Scanning electron microscopy, transmission electron microscopy, tensile test, exfoliation corrosion test, and slow strain rate tensile test were applied to investigate the properties and microstructure of Al-Zn-Mg-Cu alloy processed by final thermomechanical treatment, retrogression reaging, and novel thermomechanical treatment (a combination of retrogression reaging with cold or warm rolling). The results indicate that in comparison with conventional heat treatment, the novel thermomechanical treatment reduces the stress corrosion susceptibility. A good combination of mechanical properties, stress corrosion resistance, and exfoliation corrosion resistance can be obtained by combining retrogression reaging with warm rolling. The mechanism of the novel thermomechanical treatment is the synergistic effect of composite microstructure such as grain morphology, dislocation substructures, as well as the morphology and distribution of primary phases and precipitations.

  20. Performance of the HIMAC beam control system using multiple-energy synchrotron operation

    NASA Astrophysics Data System (ADS)

    Mizushima, K.; Furukawa, T.; Iwata, Y.; Hara, Y.; Saotome, N.; Saraya, Y.; Tansho, R.; Sato, S.; Fujimoto, T.; Shirai, T.; Noda, K.

    2017-09-01

    Multiple-energy synchrotron operation was developed to realize fast 3D scanning irradiation for carbon-ion radiotherapy. This type of operation can output various carbon-ion beams with different energies in a single synchrotron cycle. The beam control system used in this kind of operation was developed to quickly provide the beam energy and intensity required from the irradiation control system. The performance of the system was verified by experimental tests. The system could output beams of 197 different energies in 63 s. The beam intensity could be controlled for all the output beams without large ripples or overshooting. The experimental test of irradiation for prostate cancer treatment was also successfully performed, and the test results proved that our system can greatly reduce the irradiation time.

  1. Overview of Imaging Tests

    MedlinePlus

    ... Overview of Imaging Tests Angiography Computed Tomography (CT) Magnetic Resonance Imaging (MRI) Plain X-Rays Radionuclide Scanning ... and radionuclide scanning Sound waves, as in ultrasonography Magnetic fields, as in magnetic resonance imaging (MRI) Substances ...

  2. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  3. cnvScan: a CNV screening and annotation tool to improve the clinical utility of computational CNV prediction from exome sequencing data.

    PubMed

    Samarakoon, Pubudu Saneth; Sorte, Hanne Sørmo; Stray-Pedersen, Asbjørg; Rødningen, Olaug Kristin; Rognes, Torbjørn; Lyle, Robert

    2016-01-14

    With advances in next generation sequencing technology and analysis methods, single nucleotide variants (SNVs) and indels can be detected with high sensitivity and specificity in exome sequencing data. Recent studies have demonstrated the ability to detect disease-causing copy number variants (CNVs) in exome sequencing data. However, exonic CNV prediction programs have shown high false positive CNV counts, which is the major limiting factor for the applicability of these programs in clinical studies. We have developed a tool (cnvScan) to improve the clinical utility of computational CNV prediction in exome data. cnvScan can accept input from any CNV prediction program. cnvScan consists of two steps: CNV screening and CNV annotation. CNV screening evaluates CNV prediction using quality scores and refines this using an in-house CNV database, which greatly reduces the false positive rate. The annotation step provides functionally and clinically relevant information using multiple source datasets. We assessed the performance of cnvScan on CNV predictions from five different prediction programs using 64 exomes from Primary Immunodeficiency (PIDD) patients, and identified PIDD-causing CNVs in three individuals from two different families. In summary, cnvScan reduces the time and effort required to detect disease-causing CNVs by reducing the false positive count and providing annotation. This improves the clinical utility of CNV detection in exome data.

  4. Access-in-turn test architecture for low-power test application

    NASA Astrophysics Data System (ADS)

    Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun

    2017-03-01

    This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.

  5. Effect of staff training on radiation dose in pediatric CT.

    PubMed

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p<0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p>0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  7. Intensity-Stabilized Fast-Scanned Direct Absorption Spectroscopy Instrumentation Based on a Distributed Feedback Laser with Detection Sensitivity down to 4 × 10−6

    PubMed Central

    Zhao, Gang; Tan, Wei; Jia, Mengyuan; Hou, Jiajuan; Ma, Weiguang; Dong, Lei; Zhang, Lei; Feng, Xiaoxia; Wu, Xuechun; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-01

    A novel, intensity-stabilized, fast-scanned, direct absorption spectroscopy (IS-FS-DAS) instrumentation, based on a distributed feedback (DFB) diode laser, is developed. A fiber-coupled polarization rotator and a fiber-coupled polarizer are used to stabilize the intensity of the laser, which significantly reduces its relative intensity noise (RIN). The influence of white noise is reduced by fast scanning over the spectral feature (at 1 kHz), followed by averaging. By combining these two noise-reducing techniques, it is demonstrated that direct absorption spectroscopy (DAS) can be swiftly performed down to a limit of detection (LOD) (1σ) of 4 × 10−6, which opens up a number of new applications. PMID:27657082

  8. A simple way to higher speed atomic force microscopy by retrofitting with a novel high-speed flexure-guided scanner

    NASA Astrophysics Data System (ADS)

    Ouma Alunda, Bernard; Lee, Yong Joong; Park, Soyeun

    2018-06-01

    A typical line-scan rate for a commercial atomic force microscope (AFM) is about 1 Hz. At such a rate, more than four minutes of scanning time is required to obtain an image of 256 × 256 pixels. Despite control electronics of most commercial AFMs permit faster scan rates, default piezoelectric X–Y scanners limit the overall speed of the system. This is a direct consequence of manufacturers choosing a large scan range over the maximum operating speed for a X–Y scanner. Although some AFM manufacturers offer reduced-scan area scanners as an option, the speed improvement is not significant because such scanners do not have large enough reduction in the scan range and are mainly targeted to reducing the overall cost of the AFM systems. In this article, we present a simple parallel-kinematic substitute scanner for a commercial atomic force microscope to afford a higher scanning speed with no other hardware or software upgrade to the original system. Although the scan area reduction is unavoidable, our modified commercial XE-70 AFM from Park Systems has achieved a line scan rate of over 50 Hz, more than 10 times faster than the original, unmodified system. Our flexure-guided X–Y scanner can be a simple drop-in replacement option for enhancing the speed of various aging atomic force microscopes.

  9. Accuracy, repeatability, and reproducibility of Artemis very high-frequency digital ultrasound arc-scan lateral dimension measurements

    PubMed Central

    Reinstein, Dan Z.; Archer, Timothy J.; Silverman, Ronald H.; Coleman, D. Jackson

    2008-01-01

    Purpose To determine the accuracy, repeatability, and reproducibility of measurement of lateral dimensions using the Artemis (Ultralink LLC) very high-frequency (VHF) digital ultrasound (US) arc scanner. Setting London Vision Clinic, London, United Kingdom. Methods A test object was measured first with a micrometer and then with the Artemis arc scanner. Five sets of 10 consecutive B-scans of the test object were performed with the scanner. The test object was removed from the system between each scan set. One expert observer and one newly trained observer separately measured the lateral dimension of the test object. Two-factor analysis of variance was performed. The accuracy was calculated as the average bias of the scan set averages. The repeatability and reproducibility coefficients were calculated. The coefficient of variation (CV) was calculated for repeatability and reproducibility. Results The test object was measured to be 10.80 mm wide. The mean lateral dimension bias was 0.00 mm. The repeatability coefficient was 0.114 mm. The reproducibility coefficient was 0.026 mm. The repeatability CV was 0.38%, and the reproducibility CV was 0.09%. There was no statistically significant variation between observers (P = .0965). There was a statistically significant variation between scan sets (P = .0036) attributed to minor vertical changes in the alignment of the test object between consecutive scan sets. Conclusion The Artemis VHF digital US arc scanner obtained accurate, repeatable, and reproducible measurements of lateral dimensions of the size commonly found in the anterior segment. PMID:17081860

  10. Mathematical modeling of tomographic scanning of cylindrically shaped test objects

    NASA Astrophysics Data System (ADS)

    Kapranov, B. I.; Vavilova, G. V.; Volchkova, A. V.; Kuznetsova, I. S.

    2018-05-01

    The paper formulates mathematical relationships that describe the length of the radiation absorption band in the test object for the first generation tomographic scan scheme. A cylindrically shaped test object containing an arbitrary number of standard circular irregularities is used to perform mathematical modeling. The obtained mathematical relationships are corrected with respect to chemical composition and density of the test object material. The equations are derived to calculate the resulting attenuation radiation from cobalt-60 isotope when passing through the test object. An algorithm to calculate the radiation flux intensity is provided. The presented graphs describe the dependence of the change in the γ-quantum flux intensity on the change in the radiation source position and the scanning angle of the test object.

  11. Training improves interobserver reliability for the diagnosis of scaphoid fracture displacement.

    PubMed

    Buijze, Geert A; Guitton, Thierry G; van Dijk, C Niek; Ring, David

    2012-07-01

    The diagnosis of displacement in scaphoid fractures is notorious for poor interobserver reliability. We tested whether training can improve interobserver reliability and sensitivity, specificity, and accuracy for the diagnosis of scaphoid fracture displacement on radiographs and CT scans. Sixty-four orthopaedic surgeons rated a set of radiographs and CT scans of 10 displaced and 10 nondisplaced scaphoid fractures for the presence of displacement, using a web-based rating application. Before rating, observers were randomized to a training group (34 observers) and a nontraining group (30 observers). The training group received an online training module before the rating session, and the nontraining group did not. Interobserver reliability for training and nontraining was assessed by Siegel's multirater kappa and the Z-test was used to test for significance. There was a small, but significant difference in the interobserver reliability for displacement ratings in favor of the training group compared with the nontraining group. Ratings of radiographs and CT scans combined resulted in moderate agreement for both groups. The average sensitivity, specificity, and accuracy of diagnosing displacement of scaphoid fractures were, respectively, 83%, 85%, and 84% for the nontraining group and 87%, 86%, and 87% for the training group. Assuming a 5% prevalence of fracture displacement, the positive predictive value was 0.23 in the nontraining group and 0.25 in the training group. The negative predictive value was 0.99 in both groups. Our results suggest training can improve interobserver reliability and sensitivity, specificity and accuracy for the diagnosis of scaphoid fracture displacement, but the improvements are slight. These findings are encouraging for future research regarding interobserver variation and how to reduce it further.

  12. Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array.

    PubMed

    Lee, Seung-Kyun; Mathieu, Jean-Baptiste; Graziani, Dominic; Piel, Joseph; Budesheim, Eric; Fiveland, Eric; Hardy, Christopher J; Tan, Ek Tsoon; Amm, Bruce; Foo, Thomas K-F; Bernstein, Matt A; Huston, John; Shu, Yunhong; Schenck, John F

    2016-12-01

    To characterize peripheral nerve stimulation (PNS) of an asymmetric head-only gradient coil that is compatible with a commercial high-channel-count receive-only array. Two prototypes of an asymmetric head-only gradient coil set with a 42-cm inner diameter were constructed for brain imaging at 3T with maximum performance specifications of up to 85 mT/m and 708 T/m/s. Tests were performed in 24 volunteers to measure PNS thresholds with the transverse (x = left-right; y = anterior-posterior [A/P]) gradient coils of both prototypes. Fourteen of these 24 volunteers were also tested for the z-gradient PNS in the second prototype and were scanned with high-slew-rate echo planar imaging (EPI) immediately after the PNS tests. For both prototypes, the y-gradient PNS threshold was markedly higher than the x-gradient threshold. The z-gradient threshold was intermediate between those for the x- and y-coils. Of the 24 volunteers, only two experienced y-gradient PNS at 80 mT/m and 500 T/m/s. All volunteers underwent the EPI scan without PNS when the readout direction was set to A/P. Measured PNS characteristics of asymmetric head-only gradient coil prototypes indicate that such coils, especially in the A/P direction, can be used for fast EPI readout in high-performance neuroimaging scans with substantially reduced PNS concerns compared with conventional whole body gradient coils. Magn Reson Med 76:1939-1950, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  13. Microbiological and corrosion analysis of three urine pretreatment regimes with titanium 6A1-4V

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    1993-01-01

    One objective of the water recovery test (WRT) performed at NASA's Marshall Space Flight Center (MSFC) for the environmental control and life support systems (ECLSS) of Space Station Freedom is to determine the ability of the water recovery system to reclaim urine for crew reuse. In the process, raw urine is pretreated using a commercially available oxidant, Oxone (Dupont), and sulfuric acid (to reduce ammonia), and pumped into a urine processing subsystem. A combination of sodium hypochlorite and sulfuric acid were also considered as an alternative pretreatment. The ability of these pretreatments, plus a third pretreatment of ozone, to reduce microbial levels in urine generated during testing of the water recovery system at MSFC was examined. In addition, the corrosion rate of weld and base metal specimens of titanium 6A1-4V, a candidate material for the water system of Space Station Freedom, was monitored in the presence of these pretreatments. Specimen surfaces were examined at completion of the 21-day test using scanning electron microscopy. Change in pH, color, turbidity, and odor were recorded over the course of the test.

  14. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.

    2016-01-01

    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  15. Fast scanning mode and its realization in a scanning acoustic microscope

    NASA Astrophysics Data System (ADS)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  16. Prenatal screening: current practice, new developments, ethical challenges.

    PubMed

    de Jong, Antina; Maya, Idit; van Lith, Jan M M

    2015-01-01

    Prenatal screening pathways, as nowadays offered in most Western countries consist of similar tests. First, a risk-assessment test for major aneuploides is offered to pregnant women. In case of an increased risk, invasive diagnostic tests, entailing a miscarriage risk, are offered. For decades, only conventional karyotyping was used for final diagnosis. Moreover, several foetal ultrasound scans are offered to detect major congenital anomalies, but the same scans also provide relevant information for optimal support of the pregnancy and the delivery. Recent developments in prenatal screening include the application of microarrays that allow for identifying a much broader range of abnomalities than karyotyping, and non-invasive prenatal testing (NIPT) that enables reducing the number of invasive tests for aneuploidies considerably. In the future, broad NIPT may become possible and affordable. This article will briefly address the ethical issues raised by these technological developments. First, a safe NIPT may lead to routinisation and as such challenge the central issue of informed consent and the aim of prenatal screening: to offer opportunity for autonomous reproductive choice. Widening the scope of prenatal screening also raises the question to what extent 'reproductive autonomy' is meant to expand. Finally, if the same test is used for two different aims, namely detection of foetal anomalies and pregnancy-related problems, non-directive counselling can no longer be taken as a standard. Our broad outline of the ethical issues is meant as an introduction into the more detailed ethical discussions about prenatal screening in the other articles of this special issue. © 2014 John Wiley & Sons Ltd.

  17. Report on Cosmic Dust Capture Research and Development for the Exobiology Program

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji

    1997-01-01

    Collaboration with Ames' personnel was in: 1) grant administration, 2) intellectual science support, 3) collaboration with the University of Paris for the Mir flight experiment, and 4) arranging scanning and X-ray probe analytical support from UCB and SUNYP. LNIMS provided access to: 1) analytical research instruments, 2) chemical analyses support, 3) cleanroom facilities, and 4) design and fabrication expertise of hardware and electronics. They also supported the hypervelocity testing along with test data acquisition and its reduction for the breadboard instrument. A&M Associates provided technical expertise and support on determining the expected charges on orbital particles and a conceptual design for a breadboard particle charge detection sensor. University of California provided analytical support for the recovered Mir flight modules using their unique scanning capability to detect particle tracks in the aerogel. SUNYP, along with help from the University of Chicago, analyzed particle tracks found in the aerogel for biogenic compounds using an x-ray probe instrument. Dr. Schultz provided access to his experiments and the benefits of his considerable hyper-velocity testing expertise at the Ames hypervelocity gun facility, and this proved beneficial to our development testing, significantly reducing the test time and cost for the breadboard instrument development testing. The participants in this activity acknowledge and thank the National Aeronautics and Space Administration and its Ames Research Center for providing the necessary support and resources to conduct this investigation on instrument technology for exobiology application and being able to acquire some interesting results. Primarily, the newly identified technology problems for future research are the important results of this research.

  18. Resonant Scanning with Large Field of View Reduces Photobleaching and Enhances Fluorescence Yield in STED Microscopy.

    PubMed

    Wu, Yong; Wu, Xundong; Lu, Rong; Zhang, Jin; Toro, Ligia; Stefani, Enrico

    2015-10-01

    Photobleaching is a major limitation of superresolution Stimulated Depletion Emission (STED) microscopy. Fast scanning has long been considered an effective means to reduce photobleaching in fluorescence microscopy, but a careful quantitative study of this issue is missing. In this paper, we show that the photobleaching rate in STED microscopy can be slowed down and the fluorescence yield be enhanced by scanning with high speed, enabled by using large field of view in a custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching and fluorescence yield is more remarkable at higher levels of depletion laser irradiance, and virtually disappears in conventional confocal microscopy. With ≥6 GW∙cm(-2) depletion irradiance, we were able to extend the fluorophore survival time of Atto 647N and Abberior STAR 635P by ~80% with 8-fold wider field of view. We confirm that STED Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data agree with a theoretical model. Our results encourage further increasing the linear scanning speed for photobleaching reduction in STED microscopy.

  19. Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting

    PubMed Central

    Palousek, David; Pantelejev, Libor; Hoeller, Christian; Pichler, Rudolf; Tesicky, Lukas; Kaiser, Jozef

    2018-01-01

    This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical properties a row of experiments was done. Three types of samples were used: single-track welds, bulk samples and samples for tensile testing. Single-track welds were used to find the appropriate processing parameters for achieving continuous and well-shaped welds. The bulk samples were built with different scanning strategies with the aim of reaching a low relative porosity of the material. The combination of the chessboard strategy with a 2 × 2 mm field size fabricated with an out-in spiral order was found to eliminate a major lack of fusion defects. However, small cracks in the material structure were found over the complete range of tested parameters. The decisive criteria was the elimination of small cracks that drastically reduced mechanical properties. Reduction of the thermal gradient using support structures or fabrication under elevated temperatures shows a promising approach to eliminating the cracks. Mechanical properties of samples produced by SLM were compared with the properties of extruded material. The results showed that the SLM-processed 2618 alloy could only reach one half of the yield strength and tensile strength of extruded material. This is mainly due to the occurrence of small cracks in the structure of the built material. PMID:29443912

  20. Accelerated defect visualization of microelectronic systems using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2018-04-01

    The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  1. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  2. Weight-Bearing Cone-Beam CT Scan Assessment of Stability of Supination External Rotation Ankle Fractures in a Cadaver Model.

    PubMed

    Lawlor, Mark C; Kluczynski, Melissa A; Marzo, John M

    2018-03-01

    The utility of computed tomography (CT) for measuring medial clear space (MCS) for determination of the stability of supination external rotation (SER) ankle fractures and in comparison to standard radiographs is unknown. We compared MCS on gravity stress (GS) radiographs to GS and weight bearing (WB) cone-beam CT (CBCT). An AO SER 44B3.1 ankle fracture was simulated in 10 human cadavers, also serving as controls. MCS was measured on GS radiographs, GS CBCT, and a simulated WB CBCT scan. Specimens were stable if MCS was <5 mm and unstable if MCS was ≥5 mm. Paired t tests were used to compare MCS from each imaging modality for controls versus SER injuries and stable versus unstable specimens. Compared with controls assessed by GS radiographs, MCS was greater for an SER injury when assessed by GS radiograph and GS CBCT scan within the stable group. Compared with controls assessed by GS radiographs, MCS was greater for SER injuries when assessed by GS radiograph, GS CBCT scan, and WB CBCT within the unstable group. MCS was reduced for stable versus unstable SER injuries assessed by WB CBCT. In a cadaveric model of SER ankle fracture, the medial clear space was statistically significantly greater for the experimental condition when assessed by gravity stress radiograph and gravity stress CBCT scan. Under weight-bearing conditions, the cone-beam CT scanner distinguished between stable and unstable ankles in the experimental condition. This study suggests that a WB cone-beam CT scan may be able to distinguish between stable and unstable SER ankle fractures and influence operative decision making.

  3. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    PubMed Central

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  4. Concussion

    MedlinePlus

    ... symptoms. They may test your senses, balance, reflexes, memory, and thinking. In some cases, the doctor will order tests to scan your brain. These include a computed tomography (CT) or magnetic resonance imaging (MRI) scan. They take a picture of your ...

  5. A prototype piecewise-linear dynamic attenuator

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Peng, Mark V.; May, Christopher A.; Shunhavanich, Picha; Fleischmann, Dominik; Pelc, Norbert J.

    2016-07-01

    The piecewise-linear dynamic attenuator has been proposed as a mechanism in CT scanning for personalizing the x-ray illumination on a patient- and application-specific basis. Previous simulations have shown benefits in image quality, scatter, and dose objectives. We report on the first prototype implementation. This prototype is reduced in scale and speed and is integrated into a tabletop CT system with a smaller field of view (25 cm) and longer scan time (42 s) compared to a clinical system. Stainless steel wedges were machined and affixed to linear actuators, which were in turn held secure by a frame built using rapid prototyping technologies. The actuators were computer-controlled, with characteristic noise of about 100 microns. Simulations suggest that in a clinical setting, the impact of actuator noise could lead to artifacts of only 1 HU. Ring artifacts were minimized by careful design of the wedges. A water beam hardening correction was applied and the scan was collimated to reduce scatter. We scanned a 16 cm water cylinder phantom as well as an anthropomorphic pediatric phantom. The artifacts present in reconstructed images are comparable to artifacts normally seen with this tabletop system. Compared to a flat-field reference scan, increased detectability at reduced dose is shown and streaking is reduced. Artifacts are modest in our images and further refinement is possible. Issues of mechanical speed and stability in the challenging clinical CT environment will be addressed in a future design.

  6. Enzymes immobilization on Fe 3O 4-gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalska-Szostko, B.; Rogowska, M.; Dubis, A.; Szymański, K.

    2012-01-01

    In the present study Fe3O4 magnetic nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ from chlorides. In the next step magnetite-gold core-shell nanoparticles were synthesized from HAuCl4 using an ethanol as a reducing agent. Finally, magnetic nanoparticles were functionalized by hexadecanethiol. The immobilization of biological molecules (trypsin and glucose oxidase) to the thiol-modified and unmodified magnetite-gold nanoparticles surface was tested. The resulting nanoparticles were characterized by infrared spectroscopy, differential scanning calorimetry, Mössbauer spectroscopy and transmission electron microscopy.

  7. Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography

    PubMed Central

    Lapierre-Landry, Maryse; Tucker-Schwartz, Jason M.; Skala, Melissa C.

    2016-01-01

    Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors. PMID:27446693

  8. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  9. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    An imager or sounder on satellites, such as the Geostationary Operational Environmental Satellite (GOES), in geostationary orbit (GEO) has a scan mirror and motor in the scan cavity. The GEO orbit is 24 hours long. During part of the orbit, direct sunlight enters the scan aperture and adds heat to components in the scan cavity. Solar heating also increases the scan motor temperature. Overheating of the scan motor could reduce its reliability. For GOES-N to P, a radiator with a thermal louver rejects the solar heat absorbed to keep the scan cavity cool. A sunshield shields the radiator/louver from the Sun. This innovation uses phase change material (PCM) in the scan cavity to maintain the temperature stability of the scan mirror and motor. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the scan cavity warm. It reduces the heater power required to make up the heat lost by radiation to space through the aperture. This is a major advantage when compared to a radiator/ louver. PCM is compact because it has a high solid-to-liquid enthalpy. Also, it could be spread out in the scan cavity. This is another advantage. Paraffin wax is a good PCM candidate, with high solid-to-liquid enthalpy, which is about 225 kJ/kg. For GOES-N to P, a radiator with a louver rejects the solar heat that enters the aperture to keep the scan cavity cool. For the remainder of the orbit, sunlight does not enter the scan aperture. However, the radiator/louver continues radiating heat to space because the louver effective emittance is about 0.12, even if the louver is fully closed. This requires makeup heater power to maintain the temperature within the stability range.

  10. Observations on the Use of SCAN To Identify Children at Risk for Central Auditory Processing Disorder.

    ERIC Educational Resources Information Center

    Emerson, Maria F.; And Others

    1997-01-01

    The SCAN: A Screening Test for Auditory Processing Disorders was administered to 14 elementary children with a history of otitis media and 14 typical children, to evaluate the validity of the test in identifying children with central auditory processing disorder. Another experiment found that test results differed based on the testing environment…

  11. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  12. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  13. Regional variation in the severity of pesticide exposure outcomes: applications of geographic information systems and spatial scan statistics.

    PubMed

    Sudakin, Daniel L; Power, Laura E

    2009-03-01

    Geographic information systems and spatial scan statistics have been utilized to assess regional clustering of symptomatic pesticide exposures reported to a state Poison Control Center (PCC) during a single year. In the present study, we analyzed five subsequent years of PCC data to test whether there are significant geographic differences in pesticide exposure incidents resulting in serious (moderate, major, and fatal) medical outcomes. A PCC provided the data on unintentional pesticide exposures for the time period 2001-2005. The geographic location of the caller, the location where the exposure occurred, the exposure route, and the medical outcome were abstracted. There were 273 incidents resulting in moderate effects (n = 261), major effects (n = 10), or fatalities (n = 2). Spatial scan statistics identified a geographic area consisting of two adjacent counties (one urban, one rural), where statistically significant clustering of serious outcomes was observed. The relative risk of moderate, major, and fatal outcomes was 2.0 in this spatial cluster (p = 0.0005). PCC data, geographic information systems, and spatial scan statistics can identify clustering of serious outcomes from human exposure to pesticides. These analyses may be useful for public health officials to target preventive interventions. Further investigation is warranted to understand better the potential explanations for geographical clustering, and to assess whether preventive interventions have an impact on reducing pesticide exposure incidents resulting in serious medical outcomes.

  14. Adult soft tissue sarcoma

    MedlinePlus

    ... or intestines Breathing problems Exams and Tests Your health care provider will ask you about your medical history and do a physical exam. Other tests may include: X-rays CT scan MRI PET scan If your provider suspects cancer, you might ...

  15. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... MoreBMI Calculator Complete Blood Count (CBC)Blood Test: Lipid PanelRapid Strep TestPelvic UltrasoundAbdominal UltrasoundCT Head ScanPap Smear ( ... because it can provide images of internal body structures. It is more like a CT scan than ...

  16. Microwave scanning beam approach and landing system phased array antenna.

    DOT National Transportation Integrated Search

    1971-09-01

    The design, operating instructions, detailed logic circuitry, and antenna test range results for the electronic circular scanning phased array developed at TSC (DOTSCAN) are described. Components developed for this effort are also described, and test...

  17. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  18. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  19. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  20. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  1. 40 CFR 1620.5 - Administrative claim; evidence and information to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relevant medical treatment records, laboratory and other tests, including X-Rays, MRI, CT scans and other... tests including X-Rays, MRI, CT scans and other objective evidence of medical evaluation and diagnosis...

  2. NASA Tech Briefs, December 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Topics covered include: Organic/Inorganic Hybrid Polymer/Clay Nanocomposites; Less-Toxic Coatings for Inhibiting Corrosion of Aluminum; Liquid Coatings for Reducing Corrosion of Steel in Concrete; Processable Polyimides Containing APB and Reactive End Caps; Rod/Coil Block Copolyimides for Ion-Conducting Membranes; Techniques for Characterizing Microwave Printed Antennas; Cylindrical Antenna With Partly Adaptive Phased-Array Feed; Command Interface ASIC - Analog Interface ASIC Chip Set; Predicting Accumulations of Ice on Aerodynamic Surfaces; Analyzing Aeroelasticity in Turbomachines; Software for Allocating Resources in the Deep Space Network; Expert Seeker; High-Speed Recording of Test Data on Hard Disks; Functionally Graded Nanophase Beryllium/Carbon Composites; Thin Thermal-Insulation Blankets for Very High Temperatures; Aerostructures Test Wing; Flight-Test Evaluation of Flutter-Prediction Methods; Piezoelectrically Actuated Microvalve for Liquid Effluents; Larger-Stroke Piezoelectrically Actuated Microvalve; Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost; Safer Roadside Crash Walls Would Limit Deceleration; Improved Interactive Medical-Imaging System; Scanning Microscopes Using X Rays and Microchannels; Slotting Fins of Heat Exchangers to Provide Thermal Breaks; Methane Clathrate Hydrate Prospecting; Automated Monitoring with a BSP Fault-Detection Test; Automated Monitoring with a BCP Fault-Decision Test; Vector-Ordering Filter Procedure for Data Reduction; Remote Sensing and Information Technology for Large Farms; Developments at the Advanced Design Technologies Testbed; Spore-Forming Bacteria that Resist Sterilization; and Acoustical Applications of the HHT Method.

  3. A novel system to diagnose cutaneous adverse drug reactions employing the cellscan--comparison with histamine releasing test and Inf-gamma Releasing Test.

    PubMed

    Goldberg, Ilan; Gilburd, Boris; Kravitz, Martine Szyper; Kivity, Shmuel; Chaim, Berta Ben; Klein, Tirza; Schiffenbauer, Yael; Trubniykovr, Ela; Brenner, Sarah; Shoenfeld, Yehuda

    2005-03-01

    There are several mechanisms to describe allergic drug reactions yet the methods to diagnose them are limited. To compare several conventional clinical and laboratory methods to diagnose skin reactions to drugs to a new method of diagnosing drug reactions by the CellScan system. The study entailed 21 patients who were diagnosed as suffering from drug eruptions, and 105 healthy controls with no history of drug allergy. The drugs were classified into two groups according to suspicion of causing drug allergy: high and low. Most of the patients were on more than one drug, leading to 41 patient-drug interactions (assays). Histamine releasing test (HRT), interferon (INF)-gamma releasing test and CellScan examination were performed on lymphocytes of the patients and controls. The HRTwas interpreted as positive in 9 out of 18 (50%) patients and in 13 out of 35 (37%) assays. Based on the INF-gamma releasing test, positive results were observed in 16 out of 21 (76%) patients and in 24 out of 41 (59%) assays. In the CellScan test (CST), positive results were observed in 17 out of 21 (81%) patients and in 29 out of 41 (71%) assays. The rate of identifying the drug for eruption in the high suspicion level drugs was 9 out of 22 (41%) assays in the HRT, 20 out of 24 (83%) assays in the INF-gamma releasing test, and 21 out of 24 (87%) studies with the CellScan method. The rate of determining of the drug that caused the eruption in the low suspicion level drugs was 4 out of 13 (31 %) in the HRT, 4 out of 17 (24%) assays in the INF-gamma releasing test, and 8 out of 17 (47%) analyses in the CST. When examined in the CellScan, 99 out of 105 (94%) controls were interpreted as negative. This preliminary study indicates that the CellScan seems to be an easy and promising method for the detection of drugs responsible for adverse skin reactions. In contrast to the HRT and to the Interferon-gamma secretion test, the CellScan method is characterized by its ability to track and monitor the reaction of individual cells. By measuring the kinetic parameters of selected cells before and after adding the suspected drug, we were able to identify the culprit drug. The CellScan method had the highest sensitivity, and the interferon-gamma secretion test had the highest specificity for detection of the culprit drug. In contrast, the analysis of 105 normal control sera disclosed a high specificity of 94% for the CellScan method.

  4. Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose

    PubMed Central

    Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.

    2014-01-01

    The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403

  5. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  6. Evaluation of a continuous-rotation, high-speed scanning protocol for micro-computed tomography.

    PubMed

    Kerl, Hans Ulrich; Isaza, Cristina T; Boll, Hanne; Schambach, Sebastian J; Nolte, Ingo S; Groden, Christoph; Brockmann, Marc A

    2011-01-01

    Micro-computed tomography is used frequently in preclinical in vivo research. Limiting factors are radiation dose and long scan times. The purpose of the study was to compare a standard step-and-shoot to a continuous-rotation, high-speed scanning protocol. Micro-computed tomography of a lead grid phantom and a rat femur was performed using a step-and-shoot and a continuous-rotation protocol. Detail discriminability and image quality were assessed by 3 radiologists. The signal-to-noise ratio and the modulation transfer function were calculated, and volumetric analyses of the femur were performed. The radiation dose of the scan protocols was measured using thermoluminescence dosimeters. The 40-second continuous-rotation protocol allowed a detail discriminability comparable to the step-and-shoot protocol at significantly lower radiation doses. No marked differences in volumetric or qualitative analyses were observed. Continuous-rotation micro-computed tomography significantly reduces scanning time and radiation dose without relevantly reducing image quality compared with a normal step-and-shoot protocol.

  7. A comprehensive study on decreasing the kilovoltage cone-beam CT dose by reducing the projection number.

    PubMed

    Lu, Bo; Lu, Haibin; Palta, Jatinder

    2010-05-12

    The objective of this study was to evaluate the effect of kilovoltage cone-beam computed tomography (CBCT) on registration accuracy and image qualities with a reduced number of planar projections used in volumetric imaging reconstruction. The ultimate goal is to evaluate the possibility of reducing the patient dose while maintaining registration accuracy under different projection-number schemes for various clinical sites. An Elekta Synergy Linear accelerator with an onboard CBCT system was used in this study. The quality of the Elekta XVI cone-beam three-dimensional volumetric images reconstructed with a decreasing number of projections was quantitatively evaluated by a Catphan phantom. Subsequently, we tested the registration accuracy of imaging data sets on three rigid anthropomorphic phantoms and three real patient sites under the reduced projection-number (as low as 1/6th) reconstruction of CBCT data with different rectilinear shifts and rota-tions. CBCT scan results of the Catphan phantom indicated the CBCT images got noisier when the number of projections was reduced, but their spatial resolution and uniformity were hardly affected. The maximum registration errors under the small amount transformation of the reference CT images were found to be within 0.7 mm translation and 0.3 masculine rotation. However, when the projection number was lower than one-fourth of the full set with a large amount of transformation of reference CT images, the registration could easily be trapped into local minima solutions for a nonrigid anatomy. We concluded, by using projection-number reduction strategy under conscientious care, imaging-guided localization procedure could achieve a lower patient dose without losing the registration accuracy for various clinical sites and situations. A faster scanning time is the main advantage compared to the mA decrease-based, dose-reduction method.

  8. The atypical structure and function of newborn arterial endothelium is mediated by Rho/Rho kinase signaling.

    PubMed

    Flavahan, Sheila; Flavahan, Nicholas A

    2014-08-15

    Endothelium of fetal or newborn arteries is atypical, displaying actin stress fibers and reduced nitric oxide (NO)-mediated dilatation. This study tested the hypothesis that Rho/Rho kinase signaling, which promotes endothelial stress fibers and inhibits endothelial dilatation, contributed to this phenotype. Carotid arteries were isolated from newborn [postnatal day 1 (P1)], P7, and P21 mice. Endothelial dilatation to acetylcholine (pressure myograph) was minimal at P1, increased at P7, and further increased at P21. Inhibition of Rho (C3 transferase) or Rho kinase (Y27632, fasudil) significantly increased dilatation to acetylcholine in P1 arteries but had no effect in P7 or P21 arteries. After inhibition of NO synthase (N(G)-nitro-l-arginine methyl ester), Rho kinase inhibition no longer increased acetylcholine responses in P1 arteries. Rho kinase inhibition did not affect dilatation to the NO donor DEA-NONOate. The endothelial actin cytoskeleton was labeled with phalloidin and visualized by laser-scanning microscopy. In P1 arteries, the endothelium had prominent transcytoplasmic stress fibers, whereas in P7 and P21 arteries, the actin fibers had a significantly reduced intensity and were restricted to cell borders. Phosphorylation of myosin light chains, a Rho kinase substrate, was highest in P1 endothelium and significantly reduced in P7 and P21 endothelium (laser-scanning microscopy). In P1 arteries, inhibition of Rho (C3 transferase) or Rho kinase (Y27632) significantly reduced the intensity of actin fibers, which were restricted to cell borders. Similarly, in P1 arteries, Rho inhibition significantly reduced endothelial levels of phosphorylated myosin light chains. These results indicate that the atypical function and morphology of newborn endothelium is mediated by Rho/Rho kinase signaling. Copyright © 2014 the American Physiological Society.

  9. Friction behavior and other material properties of nickel-titanium and titanium-molybdenum archwires following electrochemical surface refinement.

    PubMed

    Meier, Miriam Julia; Bourauel, Christoph; Roehlike, Jan; Reimann, Susanne; Keilig, Ludger; Braumann, Bert

    2014-07-01

    The aim of this work was to investigate whether electrochemical surface treatment of nickel-titanium (NiTi) and titanium-molybdenum (TiMo) archwires (OptoTherm and BetaTitan; Ortho-Dent Specials, Kisdorf, Germany) reduces friction inside the bracket-archwire complex. We also evaluated further material properties and compared these to untreated wires. The material properties of the surface-treated wires (Optotherm/LoFrix and BetaTitan/LoFrix) were compared to untreated wires made by the same manufacturer (see above) and by another manufacturer (Neo Sentalloy; GAC, Bohemia, NY, USA). We carried out a three-point bending test, leveling test, and friction test using an orthodontic measurement and simulation system (OMSS). In addition, a pure bending test was conducted at a special test station, and scanning electron micrographs were obtained to analyze the various wire types for surface characteristics. Finally, edge beveling and cross-sectional dimensions were assessed. Force losses due to friction were reduced by 10 percentage points (from 36 to 26%) in the NiTi and by 12 percentage points (from 59 to 47%) in the TiMo wire specimens. Most of the other material properties exhibited no significant changes after surface treatment. While the three-point bending tests revealed mildly reduced force levels in the TiMo specimens due to diameter losses of roughly 2%, these force levels remained almost unchanged in the NiTi specimens. Compared to untreated NiTi and TiMo archwire specimens, the surface-treated specimens demonstrated reductions in friction loss by 10 and 12 percentage points, respectively.

  10. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated bronchial tree segmentation and airway wall thickness measurement tools. Improvements in Hounsfield unit calibration have to be performed when the interest of the study lies in determining and quantifying parenchymal changes and rely on estimating partial volume contributions of underlying structures to voxel densities.

  11. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    NASA Technical Reports Server (NTRS)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on the appropriate applications for the 45 WS mission. These include forecasting the onset of lightning, the cessation of lightning, convective winds, and hopefully the inference of electrical fields in clouds. This presentation will report on the results achieved so far in the project.

  12. The HOLO Series: Critical Ground-Based Demonstrations of Holographic Scanning Lidars

    NASA Technical Reports Server (NTRS)

    Wilkerson, Thomas D.; Sanders, Jason A.; Andrus, Ionio Q.; Schwemmer, Geary K.; Miller, David O.; Guerra, David; Schnick, Jeffrey; Moody, Stephen E.

    2000-01-01

    Results of two lidar measurement campaigns are presented, HOLO-1 (Utah, March 1999) and HOLO-2 (New Hampshire, June 1999). These tests demonstrate the ability of lidars utilizing holographic optical elements (HOEs) to determine tropospheric wind velocity and direction at cloud altitude. Several instruments were employed. HOLO-1 used the 1,064 mm transmission-HOE lidar (HARLIE, Goddard Space Flight Center), a zenith-staring 532 nm lidar (AROL-2, Utah State University), and a wide-field video camera (SkyCam) for imagery of clouds overhead. HOLO-2 included these instruments plus the 532 nm reflection-HOE lidar (PHASERS, St. Anselm College). HARLIE and PHASERS scan the sky at constant cone angles of 45 deg. and 42 deg. from normal, respectively. The progress of clouds and entire cloud fields across the sky is tracked by the repetitive conical scans of the HOE lidars. AROL-2 provides the attitude information enabling the SkyCam cloud images to be analyzed for independent data on cloud motion. Data from the HOE lidars are reduced by means of correlations, visualization by animation techniques, and kinematic diagrams of cloud feature motion. Excellent agreement is observed between the HOE lidar results and those obtained with video imagery and lidar ranging.

  13. Design and fabrication of a differential scanning nanocalorimeter

    DOE PAGES

    Zuo, Lei; Chen, Xiaoming; Yu, Shifeng; ...

    2016-12-19

    This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 µK. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterizedmore » through the measurement of current–voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. As a result, the noise test together with the simulation show the device is promising for micro 10 µK temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding.« less

  14. Ability of calibration phantom to reduce the interscan variability in electron beam computed tomography.

    PubMed

    Budoff, Matthew J; Mao, Songshou; Lu, Bin; Takasu, Junichiro; Child, Janis; Carson, Sivi; Fisher, Hans

    2002-01-01

    To test the hypothesis that a calibration phantom would improve interpatient and interscan variability in coronary artery calcium (CAC) studies. We scanned 144 patients twice with or without the calibration phantom and then scanned 93 patients with a single calcific lesion twice and, finally, scanned a cork heart with calcific foci. There were no linear correlations in computed tomography Hounsfield unit (CT HU) and CT HU interscan variation between blood pool and phantom plugs at any slice level in patient groups (p > 0.05). The CT HU interscan variation in phantom plugs (2.11 HU) was less than that of the blood pool (3.47 HU; p < 0.05) and CAC lesion (20.39; p < 0.001). Comparing images with and without a calibration phantom, there was a significant decrease in CT HU as well as an increase in noise and peak values in patient studies and the cork phantom study. The CT HU attenuation variations of the interpatient and interscan blood pool, calibration phantom plug, and cork coronary arteries were not parallel. Therefore, the ability to adjust the CT HU variation of calcific lesions by a calibration phantom is problematic and may worsen the problem.

  15. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  16. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  17. Kilovoltage cone-beam CT: Comparative dose and image quality evaluations in partial and full-angle scan protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangroh; Yoo, Sua; Yin Fangfang

    2010-07-15

    Purpose: To assess imaging dose of partial and full-angle kilovoltage CBCT scan protocols and to evaluate image quality for each protocol. Methods: The authors obtained the CT dose index (CTDI) of the kilovoltage CBCT protocols in an on-board imager by ion chamber (IC) measurements and Monte Carlo (MC) simulations. A total of six new CBCT scan protocols were evaluated: Standard-dose head (100 kVp, 151 mA s, partial-angle), low-dose head (100 kVp, 75 mA s, partial-angle), high-quality head (100 kVp, 754 mA s, partial-angle), pelvis (125 kVp, 706 mA s, full-angle), pelvis spotlight (125 kVp, 752 mA s, partial-angle), and low-dosemore » thorax (110 kVp, 271 mA s, full-angle). Using the point dose method, various CTDI values were calculated by (1) the conventional weighted CTDI (CTDI{sub w}) calculation and (2) Bakalyar's method (CTDI{sub wb}). The MC simulations were performed to obtain the CTDI{sub w} and CTDI{sub wb}, as well as from (3) central slice averaging (CTDI{sub 2D}) and (4) volume averaging (CTDI{sub 3D}) techniques. The CTDI values of the new protocols were compared to those of the old protocols (full-angle CBCT protocols). Image quality of the new protocols was evaluated following the CBCT image quality assurance (QA) protocol [S. Yoo et al., ''A quality assurance program for the on-board imager registered ,'' Med. Phys. 33(11), 4431-4447 (2006)] testing Hounsfield unit (HU) linearity, spatial linearity/resolution, contrast resolution, and HU uniformity. Results: The CTDI{sub w} were found as 6.0, 3.2, 29.0, 25.4, 23.8, and 7.7 mGy for the new protocols, respectively. The CTDI{sub w} and CTDI{sub wb} differed within +3% between IC measurements and MC simulations. Method (2) results were within {+-}12% of method (1). In MC simulations, the CTDI{sub w} and CTDI{sub wb} were comparable to the CTDI{sub 2D} and CTDI{sub 3D} with the differences ranging from -4.3% to 20.6%. The CTDI{sub 3D} were smallest among all the CTDI values. CTDI{sub w} of the new protocols were found as {approx}14 times lower for standard head scan and 1.8 times lower for standard body scan than the old protocols, respectively. In the image quality QA tests, all the protocols except low-dose head and low-dose thorax protocols were within the tolerance in the HU verification test. The HU value for the two protocols was always higher than the nominal value. All the protocols passed the spatial linearity/resolution and HU uniformity tests. In the contrast resolution test, only high-quality head and pelvis scan protocols were within the tolerance. In addition, crescent effect was found in the partial-angle scan protocols. Conclusions: The authors found that CTDI{sub w} of the new CBCT protocols has been significantly reduced compared to the old protocols with acceptable image quality. The CTDI{sub w} values in the point dose method were close to the volume averaging method within 9%-21% for all the CBCT scan protocols. The Bakalyar's method produced more accurate dose estimation within 14%. The HU inaccuracy from low-dose head and low-dose thorax protocols can render incorrect dose results in the treatment planning system. When high soft-tissue contrast data are desired, high-quality head or pelvis scan protocol is recommended depending on the imaging area. The point dose method can be applicable to estimate CBCT dose with reasonable accuracy in the clinical environment.« less

  18. Benefits And Humanisation Of The Working Environment By Using Laser Inspection Systems In The Industry

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Pietzsch, Karl; Feige, Christian

    1989-02-01

    At a time of rapid development, introduction of new technologies, and increasing world-wide competition, the quality specifications for products and materials becoming even more demanding. This also applies with regard to the avoidance of defects in the surfaces of materials. Consequently there is a need for systems which allow 100% in-line testing of materials and surfaces during the production of, e.g. textiles, data storage media, papers, films and metals. Thanks to its optical and electronical precision, its unlimited applications - even under the most severe conditions-and its absolutely constant acuity, compared with visual inspection, the Sick-Scan-System is an excellent means for improving quality and profits in industrial manufacture, reducing rejects production and thus providing even more customer satisfaction. Here we describe briefly our laser scanner technology. It will set new standards in the area of automatic inspection, and the term laser tested will stablish itself as a mark of quality. In the last few years laser scanning inspection systems have been further developed in collaboration with a large number of materials manufacturers. These systems have been adopted in modern production lines and demonstrate their economy.

  19. Splenomegaly Segmentation using Global Convolutional Kernels and Conditional Generative Adversarial Networks

    PubMed Central

    Huo, Yuankai; Xu, Zhoubing; Bao, Shunxing; Bermudez, Camilo; Plassard, Andrew J.; Liu, Jiaqi; Yao, Yuang; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.

    2018-01-01

    Spleen volume estimation using automated image segmentation technique may be used to detect splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have demonstrated advantages for abdominal organ segmentation. However, variations in both size and shape of the spleen on MRI images may result in large false positive and false negative labeling when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. SSNet was designed based on the framework of image-to-image conditional generative adversarial networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 weighted) from patients with splenomegaly were used to train and test the networks. The experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with splenomegaly.

  20. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    PubMed

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  1. Development and Application of HVOF Sprayed Spinel Protective Coating for SOFC Interconnects

    NASA Astrophysics Data System (ADS)

    Thomann, O.; Pihlatie, M.; Rautanen, M.; Himanen, O.; Lagerbom, J.; Mäkinen, M.; Varis, T.; Suhonen, T.; Kiviaho, J.

    2013-06-01

    Protective coatings are needed for metallic interconnects used in solid oxide fuel cell (SOFC) stacks to prevent excessive high-temperature oxidation and evaporation of chromium species. These phenomena affect the lifetime of the stacks by increasing the area-specific resistance (ASR) and poisoning of the cathode. Protective MnCo2O4 and MnCo1.8Fe0.2O4 coatings were applied on ferritic steel interconnect material (Crofer 22 APU) by high velocity oxy fuel spraying. The substrate-coating systems were tested in long-term exposure tests to investigate their high-temperature oxidation behavior. Additionally, the ASRs were measured at 700 °C for 1000 h. Finally, a real coated interconnect was used in a SOFC single-cell stack for 6000 h. Post-mortem analysis was carried out with scanning electron microscopy. The deposited coatings reduced significantly the oxidation of the metal, exhibited low and stable ASR and reduced effectively the migration of chromium.

  2. Sulfaguanidine cocrystals: Synthesis, structural characterization and their antibacterial and hemolytic analysis.

    PubMed

    Abidi, Syed Sibte Asghar; Azim, Yasser; Khan, Shahper Nazeer; Khan, Asad U

    2018-02-05

    Sulfaguanidine (SG), belongs to the class of sulfonamide drug used as an effective antibiotic. In the present work, using crystal engineering approach two novel cocrystals of SG were synthesized (SG-TBA and SG-PT) with thiobarbutaric acid (TBA) and 1,10-phenanthroline (PT), characterized by solid state techniques viz., powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and the crystal structures were determined by single crystal X-ray diffraction studies. A comparative antibacterial activity and hemolytic potential was done on SG drug, coformers and their cocrystals. The tested cocrystals formulations showed almost two fold higher antibacterial activity against the tested strains of bacteria Gram-positive bacteria (S. mutans and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumonia and E. clocae) over SG alone and their coformers. Cocrystal SG-TBA showed better antibacterial activity and reduced hemolysis, thereby, reduced cytotoxicity than SG-PT. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    NASA Astrophysics Data System (ADS)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  4. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS(2) impregnated in electroless nickel-phosphorous film.

    PubMed

    Redlich, M; Katz, A; Rapoport, L; Wagner, H D; Feldman, Y; Tenne, R

    2008-12-01

    To reduce friction between orthodontic stainless wires and bracket by coating the wire with nickel-phosphorous electroless film impregnated with inorganic fullerene-like nanoparticles of tungsten disulfide (IF-WS(2)) which are potent dry lubricants. Coating was preformed by inserting stainless steel (SS) wires into electroless solutions of nickel-phosphorus (Ni-P) and IF-WS(2). The coated wires were analyzed by SEM (scanning electron microscope) and EDS (energy-dispersive X-ray spectrometer) as well as by tribological tests using a ball-on-flat device. Friction tests simulating archwire functioning of the coated and uncoated wires were carried out by an Instron machine. The adhesion properties of the coated wires after friction were analyzed by a Raman microscope. SEM/EDS analysis of the coated wires showed clear impregnation of the IF-WS(2) nanoparticles in the Ni-P matrix. The friction coefficient measured by the ball-on-flat tribometer was significantly reduced (from 0.25 to 0.08). The friction forces as measured with the Instron on the coated wire were reduced by up to 54% (4.00 N+/-0.19 uncoated vs. 1.85 N+/-0.21 coated). Raman spectra showed that even after extensive friction tests the Ni-P with the IF-WS(2) nanoparticles is attached to the underlying stainless steel wire. It is proposed that the wires coated with these nanoparticles might offer a novel opportunity to substantially reduce friction during tooth movement. A few tests undertaken to evaluate the toxicity of the fullerene-like nanoparticles have provided indications that they might be biocompatible.

  5. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    ... can become damaged or even die. Reduced pumping efficiency. SPECT can show how completely your heart chambers ... radioactive tracer SPECT scans aren't safe for women who are pregnant or breast-feeding because the ...

  6. SU-F-J-123: CT-Based Determination of DIBH Variability and Its Dosimetric Impact On Post-Mastectomy Plus Regional Nodal Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, M; Kang, H; Tatebe, K

    Purpose: Breast cancer radiotherapy delivered using voluntary deep inspiration breath-hold (DIBH) requires reproducible breath holds, particularly when matching supraclavicular fields to tangential fields. We studied the impact of variation in DIBHs on CTV and OAR dose metrics by comparing the dose distribution computed on two DIBH CT scans taken at the time of simulation. Methods: Ten patients receiving 50Gy in 25 fractions to the left chestwall and regional lymph nodes were studied. Two simulation CT scans were taken during separate DIBHs along with a free-breathing (FB) scan. The treatment was planned using one DIBH CT. The dose was recomputed onmore » the other two scans using adaptive planning (Pinnacle 9.10) in which the scans are registered using a cross-correlation algorithm. The chestwall, lymph nodes and OARs were contoured on the scans following the RTOG consensus guidelines. The overall translational and rotational variation between the DIBH scans was used to estimate positional variation between breath-holds. Dose metrics between plans were compared using paired t-tests (p < 0.05) and means and standard deviations were reported. Results: The registration parameters were sub-millimeter and sub-degree. Although DIBH significantly reduced mean heart dose by 2.4Gy compared to FB (p < 0.01), no significant changes in dose were observed for targets or OARs between the two DIBH scans. Nodal coverage as assessed by V90% was 90%±8% and 89%±8% for supraclavicular and 99%±2% and 97%±22% for IM nodes. Though a significant decrease (10.5%±12.4%) in lung volume in the second DIBH CT was observed, the lung V20Gy was unchanged (14±2% and 14±3%) between the two DIBH scans. Conclusion: While the lung volume often varied between DIBHs, the CTV and OAR dose metrics were largely unchanged. This indicates that manual DIBH has the potential to provide consistent dose delivery to the chestwall and regional nodes targets when using matched fields.« less

  7. Intelligent single switch wheelchair navigation.

    PubMed

    Ka, Hyun W; Simpson, Richard; Chung, Younghyun

    2012-11-01

    We have developed an intelligent single switch scanning interface and wheelchair navigation assistance system, called intelligent single switch wheelchair navigation (ISSWN), to improve driving safety, comfort and efficiency for individuals who rely on single switch scanning as a control method. ISSWN combines a standard powered wheelchair with a laser rangefinder, a single switch scanning interface and a computer. It provides the user with context sensitive and task specific scanning options that reduce driving effort based on an interpretation of sensor data together with user input. Trials performed by 9 able-bodied participants showed that the system significantly improved driving safety and efficiency in a navigation task by significantly reducing the number of switch presses to 43.5% of traditional single switch wheelchair navigation (p < 0.001). All participants made a significant improvement (39.1%; p < 0.001) in completion time after only two trials.

  8. Intraoral 3D Scanning or Dental Impressions for the Assessment of Dental Arch Relationships in Cleft Care: Which is Superior?

    PubMed

    Chalmers, E V; McIntyre, G T; Wang, W; Gillgrass, T; Martin, C B; Mossey, P A

    2016-09-01

    This study was undertaken to evaluate intraoral 3D scans for assessing dental arch relationships and obtain patient/parent perceptions of impressions and intraoral 3D scanning. Forty-three subjects with nonsyndromic unilateral cleft lip and palate (UCLP) had impressions taken for plaster models. These and the teeth were scanned using the R700 Orthodontic Study Model Scanner and Trios® Digital Impressions Scanner (3Shape A/S, Copenhagen, Denmark) to create indirect and direct digital models. All model formats were scored by three observers on two occasions using the GOSLON and modified Huddart Bodenham (MHB) indices. Participants and parents scored their perceptions of impressions and scanning from 1 (very good) to 5 (very bad). Intra- and interexaminer reliability were tested using GOSLON and MHB data (Cronbach's Alpha >0.9). Bland and Altman plots were created for MHB data, with each model medium (one-sample t tests, P < .05) and questionnaire data (Wilcoxon signed ranks P < .05) tested. Intra- and interexaminer reliability (>0.9) were good for all formats with the direct digital models having the lowest interexaminer differences. Participants had higher ratings for scanning comfort (84.8%) than impressions (44.2%) (P < .05) and for scanning time (56.6%) than impressions (51.2%) (P > .05). None disliked scanning, but 16.3% disliked impressions. Data for parents and children positively correlated (P < .05). Reliability of scoring dental arch relationships using intraoral 3D scans was superior to indirect digital and to plaster models; Subjects with UCLP preferred intra-oral 3D scanning to dental impressions, mirrored by parents/carers; This study supports the replacement of conventional impressions with intra-oral 3D scans in longitudinal evaluations of the outcomes of cleft care.

  9. Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes and Support Vector Machine Classification

    NASA Astrophysics Data System (ADS)

    Pawłuszek, Kamila; Borkowski, Andrzej

    2016-06-01

    Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research, especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA) were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than 50 landslides located on Rożnów Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the average user's accuracy (UA), producer's accuracy (PA), and overall accuracy (OA) were calculated for two models according to the classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively. Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but reduce computational time.

  10. Comparison of eye lens dose on neuroimaging protocols between 16- and 64-section multidetector CT: achieving the lowest possible dose.

    PubMed

    Tan, J S P; Tan, K-L; Lee, J C L; Wan, C-M; Leong, J-L; Chan, L-L

    2009-02-01

    To our knowledge, there has been no study that compares the radiation dose delivered to the eye lens by 16- and 64-section multidetector CT (MDCT) for standard clinical neuroimaging protocols. Our aim was to assess radiation-dose differences between 16- and 64-section MDCT from the same manufacturer, by using near-identical neuroimaging protocols. Three cadaveric heads were scanned on 16- and 64-section MDCT by using standard neuroimaging CT protocols. Eye lens dose was measured by using thermoluminescent dosimeters (TLD), and each scanning was repeated to reduce random error. The dose-length product, volume CT dose index (CTDI(vol)), and TLD readings for each imaging protocol were averaged and compared between scanners and protocols, by using the paired Student t test. Statistical significance was defined at P < .05. The radiation dose delivered and eye lens doses were lower by 28.1%-45.7% (P < .000) on the 64-section MDCT for near-identical imaging protocols. On the 16-section MDCT, lens dose reduction was greatest (81.1%) on a tilted axial mode, compared with a nontilted helical mode for CT brain scans. Among the protocols studied, CT of the temporal bone delivered the greatest radiation dose to the eye lens. Eye lens radiation doses delivered by the 64-section MDCT are significantly lower, partly due to improvements in automatic tube current modulation technology. However, where applicable, protection of the eyes from the radiation beam by either repositioning the head or tilting the gantry remains the best way to reduce eye lens dose.

  11. Effect of Cu content on the microstructure evolution and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys

    NASA Astrophysics Data System (ADS)

    Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al

    2017-10-01

    Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x  =  0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.

  12. Ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Johnson, Roy R.; Redemann, Jens; Holben, Brent N.; Schmidt, Beat; Flynn, Connor Joseph; Fahey, Lauren; LeBlanc, Samuel; Liss, Jordan; Kacenelenbogen, Meloe S.; hide

    2017-01-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to airpollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituentsand determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution.Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds.These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates amodular sun-tracking sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers,permitting miniaturization of the external optical tracking head, and future detector evolution.4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides thebasis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, andexpanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodioderadiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument.

  13. Establishing a method to measure bone structure using spectral CT

    NASA Astrophysics Data System (ADS)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  14. Improving magnetic resonance imaging (MRI) examinations: Development and evaluation of an intervention to reduce movement in scanners and facilitate scan completion.

    PubMed

    Powell, Rachael; Ahmad, Mahadir; Gilbert, Fiona J; Brian, David; Johnston, Marie

    2015-09-01

    The movement of patients in magnetic resonance imaging (MRI) scanners results in motion artefacts which impair image quality. Non-completion of scans leads to delay in diagnosis and increased costs. This study aimed to develop and evaluate an intervention to enable patients to stay still in MRI scanners (reducing motion artefacts) and to enhance scan completion. Successful scan outcome was deemed to be completing the scan with no motion artefacts. Previous research indicated self-efficacy to predict successful scan outcome, and interviews with patients identified a need for procedural and sensory information to facilitate successful scan behaviour. A DVD intervention was developed which targeted self-efficacy and included procedural and sensory information. It was successfully piloted with 10 patients and then evaluated in a randomized controlled trial compared with the standard hospital information leaflet (intervention group N = 41; control group N = 42). The clinic radiographer, who was blind to group allocation, rated MRI scans for motion artefact and recorded whether the participant completed the scan; participants completed MRI self-efficacy and anxiety measures. Only one participant reported not finding the DVD useful. Thirty-five participants in the intervention group and 23 in the control group completed scans and had no motion artefacts, χ(2) (1, 83) = 7.84, p < .001 (relative risk of an unsatisfactory outcome in the control group/intervention group = 3.09). The intervention effect was mediated by self-efficacy. The DVD intervention was efficacious and warrants further research to examine generalizability. © 2015 The British Psychological Society.

  15. Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression

    PubMed Central

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2012-01-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression. PMID:20617892

  16. Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression.

    PubMed

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2011-07-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half under the massed learning condition (i.e., four consecutive repetitions with jittered interstimulus interval) and the other half under the spaced learning condition (i.e., the four repetitions were interleaved). Recognition memory tests afterward revealed a significant spacing effect: Participants recognized more items learned under the spaced learning condition than under the massed learning condition. Successful face memory encoding was associated with stronger activation in the bilateral fusiform gyrus, which showed a significant repetition suppression effect modulated by subsequent memory status and spaced learning. Specifically, remembered faces showed smaller repetition suppression than forgotten faces under both learning conditions, and spaced learning significantly reduced repetition suppression. These results suggest that spaced learning enhances recognition memory by reducing neural repetition suppression.

  17. 320-Row wide volume CT significantly reduces density heterogeneity observed in the descending aorta: comparisons with 64-row helical CT.

    PubMed

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    The aim of this study was to compare density heterogeneity on wide volume (WV) scans with that on helical CT scans. 22 subjects underwent chest CT using 320-WV and 64-helical modes. Density heterogeneity of the descending aorta was evaluated quantitatively and qualitatively. At qualitative assessment, the heterogeneity was judged to be smaller on WV scans than on helical scans (p<0.0001). Mean changes in aortic density between two contiguous slices were 1.64 HU (3.40%) on WV scans and 2.29 HU (5.19%) on helical scans (p<0.0001). CT density of thoracic organs is more homogeneous and reliable on WV scans than on helical scans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Array automated assembly task, phase 2. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. T.

    1978-01-01

    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.

  19. Accuracy of single-pass whole-body computed tomography for detection of injuries in patients with major blunt trauma

    PubMed Central

    Stengel, Dirk; Ottersbach, Caspar; Matthes, Gerrit; Weigeldt, Moritz; Grundei, Simon; Rademacher, Grit; Tittel, Anja; Mutze, Sven; Ekkernkamp, Axel; Frank, Matthias; Schmucker, Uli; Seifert, Julia

    2012-01-01

    Background: Contrast-enhanced whole-body computed tomography (also called “pan-scanning”) is considered to be a conclusive diagnostic tool for major trauma. We sought to determine the accuracy of this method, focusing on the reliability of negative results. Methods: Between July 2006 and December 2008, a total of 982 patients with suspected severe injuries underwent single-pass pan-scanning at a metropolitan trauma centre. The findings of the scan were independently evaluated by two reviewers who analyzed the injuries to five body regions and compared the results to a synopsis of hospital charts, subsequent imaging and interventional procedures. We calculated the sensitivity and specificity of the pan-scan for each body region, and we assessed the residual risk of missed injuries that required surgery or critical care. Results: A total of 1756 injuries were detected in the 982 patients scanned. Of these, 360 patients had an Injury Severity Score greater than 15. The median length of follow-up was 39 (interquartile range 7–490) days, and 474 patients underwent a definitive reference test. The sensitivity of the initial pan-scan was 84.6% for head and neck injuries, 79.6% for facial injuries, 86.7% for thoracic injuries, 85.7% for abdominal injuries and 86.2% for pelvic injuries. Specificity was 98.9% for head and neck injuries, 99.1% for facial injuries, 98.9% for thoracic injuries, 97.5% for abdominal injuries and 99.8% for pelvic injuries. In total, 62 patients had 70 missed injuries, indicating a residual risk of 6.3% (95% confidence interval 4.9%–8.0%). Interpretation: We found that the positive results of trauma pan-scans are conclusive but negative results require subsequent confirmation. The pan-scan algorithms reduce, but do not eliminate, the risk of missed injuries, and they should not replace close monitoring and clinical follow-up of patients with major trauma. PMID:22392949

  20. Characterization of C/Enhanced SiC Composite During Creep-Rupture Tests Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Verrilli, Michael J.; Martin, Richard E.; Cosgriff, Laura M.

    2004-01-01

    An ultrasonic guided wave scan system was used to nondestructively monitor damage over time and position in a C/enhanced SiC sample that was creep tested to failure at 1200 C in air at a stress of 69 MPa (10 ksi). The use of the guided wave scan system for mapping evolving oxidation profiles (via porosity gradients resulting from oxidation) along the sample length and predicting failure location was explored. The creep-rupture tests were interrupted for ultrasonic evaluation every two hours until failure at approx. 17.5 cumulative hours.

  1. Nondestructive Testing Information Analysis Center, 1982.

    DTIC Science & Technology

    1983-03-01

    RF Fields Microwaves Magnetic Flux Analysis Magnetic Particles * ULTRASONIC AND ACOUSTIC TESTING Ultrasonic Transmission and Reflectometry Ultrasonic... Reflectometry and Transmission Holography THERMAL TESTING Infrared Radiometry Thermography 3 The present organization and personnel of NTIAC are...the current core and secondary serials. As an added check on our surveillance effectiveness, we also scan Current Contents, NASA /SCAN, as well as the

  2. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculationsmore » for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.« less

  3. [Evaluation of the quality of three-dimensional data acquired by using two kinds of structure light intra-oral scanner to scan the crown preparation model].

    PubMed

    Zhang, X Y; Li, H; Zhao, Y J; Wang, Y; Sun, Y C

    2016-07-01

    To quantitatively evaluate the quality and accuracy of three-dimensional (3D) data acquired by using two kinds of structure intra-oral scanner to scan the typical teeth crown preparations. Eight typical teeth crown preparations model were scanned 3 times with two kinds of structured light intra-oral scanner(A, B), as test group. A high precision model scanner were used to scan the model as true value group. The data above the cervical margin was extracted. The indexes of quality including non-manifold edges, the self-intersections, highly-creased edges, spikes, small components, small tunnels, small holes and the anount of triangles were measured with the tool of mesh doctor in Geomagic studio 2012. The scanned data of test group were aligned to the data of true value group. 3D deviations of the test group compared with true value group were measured for each scanned point, each preparation and each group. Independent-samples Mann-Whitney U test was applied to analyze 3D deviations for each scanned point of A and B group. Correlation analysis was applied to index values and 3D deviation values. The total number of spikes in A group was 96, and that in B group and true value group were 5 and 0 respectively. Trueness: A group 8.0 (8.3) μm, B group 9.5 (11.5) μm(P>0.05). Correlation analysis of the number of spikes with data precision of A group was r=0.46. In the study, the qulity of the scanner B is better than scanner A, the difference of accuracy is not statistically significant. There is correlation between quality and data precision of the data scanned with scanner A.

  4. Large photocathode 20-inch PMT testing methods for the JUNO experiment

    NASA Astrophysics Data System (ADS)

    Anfimov, N.

    2017-06-01

    The 20 kt Liquid Scintillator (LS) JUNO detector is being constructed by the International Collaboration in China, with the primary goal of addressing the question of neutrino mass ordering (hierarchy). The main challenge for JUNO is to achieve a record energy resolution, ~ 3% at 1 MeV of energy released in the LS, which is required to perform the neutrino mass hierarchy determination. About 20 000 large 20'' PMTs with high Photon Detection Efficiency (PDE) and good photocathode uniformity will ensure an approximately 80% surface coverage of the JUNO detector. The JUNO collaboration is preparing equipment for the mass tests of all PMTs using 4 dedicated containers. Each container consists of 36 drawers. Each drawer will test a single PMT. This approach allows us to test 144 PMTs in parallel. The primary measurement in the container will be the PMT response to illumination of its photocathode by a low-intensity uniform light. Each of the 20000 PMTs will undergo the container test. Additionally, a dedicated scanning system was constructed for sampled tests of PMTs that allows us to study the variation of the PDE over the entire PMT photocathode surface. A sophisticated laboratory for PMT testing was recently built. It includes a dark room where the scanning station is housed. The core of the scanning station is a rotating frame with 7 LED sources of calibrated short light flashes that are placed along the photocathode surface covering zenith angles from the top of a PMT to its equator. It allows for the testing of individual PMTs in all relevant aspects by scanning the photocathode and identifying any potential problems. The collection efficiency of a large PMT is known to be very sensitive to the Earth Magnetic Field (EMF), therefore, understanding the necessary level of EMF suppression is crucial for the JUNO Experiment. A dark room with Helmholtz coils compensating the EMF components is available for these tests at a JUNO facility. The Hamamatsu R12860 20'' PMT is a candidate for the JUNO experiment. In this article the container design and mass-testing method, the scanning setup and scanning method are briefly described and preliminary results for performance test of this PMT are reported.

  5. High-speed scanning ablation of dental hard tissues with a λ=9.3-μm CO2 laser: heat accumulation and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Staninec, Michal; Lee, Chulsung; Fried, Daniel

    2010-02-01

    A mechanically scanned CO2 laser operated at high laser pulse repetition rates can be used to rapidly and precisely remove dental decay. This study aims to determine whether these laser systems can safely ablate enamel and dentin without excessive heat accumulation and peripheral thermal damage. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. Samples were derived from noncarious extracted molars. Pulpal temperatures were recorded using microthermocouples situated at the pulp chamber roof of samples (n=12), which were occlusally ablated using a rapid-scanning, water-cooled 300 Hz CO2 laser over a two minute time course. The mechanical strength of facially ablated dentin (n=10) was determined via four-point bend test and compared to control samples (n=10) prepared with 320 grit wet sand paper to simulate conventional preparations. Composite-to-enamel bond strength was measured via single-plane shear test for ablated/non-etched (n=10) and ablated/acid-etched (n=8) samples and compared to control samples (n=9) prepared by 320 grit wet sanding. Thermocouple measurements indicated that the temperature remained below ambient temperature at 19.0°C (s.d.=0.9) if water-cooling was used. There was no discoloration of either dentin and enamel, the treated surfaces were uniformly ablated and there were no cracks observable on the laser treated surfaces. Fourpoint bend tests yielded mean mechanical strengths of 18.2 N (s.d.=4.6) for ablated dentin and 18.1 N (s.d.=2.7) for control (p>0.05). Shear tests yielded mean bond strengths of 31.2 MPa (s.d.=2.5, p<0.01) for ablated/acid-etched samples, 5.2 MPa (s.d.=2.4, p<0.001) for ablated/non-etched samples, and 37.0 MPa (s.d.=3.6) for control. The results indicate that a rapid-scanning 300 Hz CO2 laser can effectively ablate dentin and enamel without excessive heat accumulation and with minimal thermal damage. It is not clear whether the small (16%) but statistically significant reduction in the shear bond strength to enamel is clinically significant since the mean shear bond strength exceeded 30 MPa.

  6. Value of brain scanning in the management of strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, J.L.; Schlesinger, E.B.; Michelsen, W.J.

    1975-01-01

    The usefulness of brain scanning in the diagnosis and management of strokes was evaluated in 313 serial cases. Of 38 patients with transient ischemic attacks (TIAs), only one had a positive test. The optimal time for scanning completed strokes was between seven and 14 days after onset. The pattern of uptake was characteristic of a vascular lesion in 76.8 percent. When uptake was indistinguishable from tumor, follow-up scans were useful. Patients with negative scans in the second week have a significantly better prognosis than the ones with a positive study. Cerebral angiography and brain scan correlated well in 56 patientsmore » who had both tests performed. The postmortem findings in 12 cases again emphasize the importance of the correct timing of the study, and the fact that a brain scan does not usually demonstrate lesions smaller than 2 cm in diameter. It is concluded that the brain scan represents a useful tool in the diagnosis of strokes and helps in predicting the degree of recovery following a vascular insult.« less

  7. Molecular Simulation Study on Modification Mechanism of Red Mud Modified Asphalt

    NASA Astrophysics Data System (ADS)

    Tao, FU; Hui-ming, BAO; xing-xing, Duan

    2017-12-01

    This article used red mud, the aluminum industrial wastes, as modified asphalt material, through the study of the routine test of modified asphalt properties, and the micro test of electron microscope scanning, infrared spectrum and differential scanning calorimetry analysis etc. to discuss its performance and modification mechanism . The test results show that after mixing red mud, asphalt’s penetration index and 15 °C ductility reduced, softening point enhanced, thus the temperature sensitivity and high temperature stability of asphalt improved; Red mud after mixing the matrix asphalt, can form a uniform, stable and matrix asphalt blending system, and improve the asphalt’s thermal stability. Using molecular simulation technology to analyze the asphalt with the temperature change of energy and find in the process of asphalt melting, the largest is the key to influence on bituminous, and van der waals energy is small. It concludes that red mud -modified asphalt material is mainly controlled by bond energy, in order to obtain its favorable property of modification mechanism, red mud of senior activation and molecular bond energy of asphalt is needed to be enhanced.The results of molecular simulation show that the main component of hematite in red mud is the most adsorbed in the asphalt, the asphaltene is the second, the colloid is the worst, but the adsorption capacity of the colloid is the highest.

  8. Effect of live music therapy for patients undergoing magnetic resonance imaging.

    PubMed

    Walworth, Darcy D

    2010-01-01

    The purpose of the current study was to identify the effects of live music therapy interventions compared with preferred recorded music for patients undergoing MRI scans. To date, there has not been a published study involving the use of live music therapy during MRI scans. The current study investigated the differences between teenage through adult patients receiving live music therapy intervention during outpatient MRI scans versus the standard protocol of care listening to recorded music (N = 88). Subjects ranged in age from 15 to 93 years old. Results indicated subjects who received the live music therapy protocol reported significantly better perception of the MRI procedure (p < 0.05). Additionally, subjects receiving the live music therapy protocol had fewer scans repeated due to movement. Of the repeated images, 26% occurred in the live music group and 73% occurred in the recorded music group. Subjects receiving live music therapy also requested less breaks from the scan. Two percent of the live music subjects requested a break and 17.6% of the control patients requested breaks. When comparing the same type of scan between groups, subjects receiving the live music protocol required less time to complete the scans. For lumbar scans without contrast (N = 14, n = 7, n = 7), live music subjects spent an average of 4.63 less min per scan for a total of 32 less min for 7 subjects. For brain scans (N = 8, n = 4, n = 4), live music subjects spent an average of 5.8 less min per scan for a total of 23 less min for 4 subjects. Results of the current study supports the use of live music therapy intervention for teenage and adult patients undergoing MRI scans to reduce patient anxiety and improve patient perception of the scan experience. Additionally, live music therapy has the potential to shorten the length of time required for patients to complete MRI scans due to decreased patient movements and fewer breaks requested during the scans. The cost savings impact of reduced procedure time can positively impact the facility productivity by allowing more scans to be scheduled daily.

  9. Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction: clinical article.

    PubMed

    Morton, Ryan P; Reynolds, Renee M; Ramakrishna, Rohan; Levitt, Michael R; Hopper, Richard A; Lee, Amy; Browd, Samuel R

    2013-10-01

    In this study, the authors describe their experience with a low-dose head CT protocol for a preselected neurosurgical population at a dedicated pediatric hospital (Seattle Children's Hospital), the largest number of patients with this protocol reported to date. All low-dose head CT scans between October 2011 and November 2012 were reviewed. Two different low-dose radiation dosages were used, at one-half or one-quarter the dose of a standard head CT scan, based on patient characteristics agreed upon by the neurosurgery and radiology departments. Patient information was also recorded, including diagnosis and indication for CT scan. Six hundred twenty-four low-dose head CT procedures were performed within the 12-month study period. Although indications for the CT scans varied, the most common reason was to evaluate the ventricles and catheter placement in hydrocephalic patients with shunts (70%), followed by postoperative craniosynostosis imaging (12%). These scans provided adequate diagnostic imaging, and no patient required a follow-up full-dose CT scan as a result of poor image quality on a low-dose CT scan. Overall physician comfort and satisfaction with interpretation of the images was high. An additional 2150 full-dose head CT scans were performed during the same 12-month time period, making the total number of CT scans 2774. This value compares to 3730 full-dose head CT scans obtained during the year prior to the study when low-dose CT and rapid-sequence MRI was not a reliable option at Seattle Children's Hospital. Thus, over a 1-year period, 22% of the total CT scans were able to be converted to low-dose scans, and full-dose CT scans were able to be reduced by 42%. The implementation of a low-dose head CT protocol substantially reduced the amount of ionizing radiation exposure in a preselected population of pediatric neurosurgical patients. Image quality and diagnostic utility were not significantly compromised.

  10. An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.

    PubMed

    Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan

    2015-01-01

    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.

  11. Development of Phased-Array Ultrasonic Testing Acceptability Criteria : (Phase II)

    DOT National Transportation Integrated Search

    2014-10-01

    The preliminary technical approach and scan plans developed during phase I of this research was implemented on testing four butt-weld specimens. The ray path analysis carried out to develop the scan plans and the preliminary data analysis indicated t...

  12. SU-F-T-195: Systematic Constraining of Contralateral Parotid Gland Led to Improved Dosimetric Outcomes for Multi-Field Optimization with Scanning Beam Proton Therapy: Promising Results From a Pilot Study in Patients with Base of Tongue Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R; Liu, A; Poenisch, F

    Purpose: Treatment planning for Intensity Modulated Proton Therapy (IMPT) for head and neck cancer is time-consuming due to the large number of organs-at-risk (OAR) to be considered. As there are many competing objectives and also wide range of acceptable OAR constraints, the final approved plan may not be most optimal for the given structures. We evaluated the dose reduction to the contralateral parotid by implementing standardized constraints during optimization for scanning beam proton therapy planning. Methods: Twenty-four (24) consecutive patients previously treated for base of tongue carcinoma were retrospectively selected. The doses were 70Gy, 63Gy and 57Gy (SIB in 33more » fractions) for high-, intermediate-, and standard-risk clinical target volumes (CTV), respectively; the treatment included bilateral neck. Scanning beams using MFO with standardized bilateral anterior oblique and PA fields were applied. New plans where then developed and optimized by employing additional contralateral parotid constraints at multiple defined dose levels. Using a step-wise iterative process, the volume-based constraints at each level were then further reduced until known target coverages were compromised. The newly developed plans were then compared to the original clinically approved plans using paired student t-testing. Results: All 24 newly optimized treatment plans maintained initial plan quality as compared to the approved plans, and the 98% prescription dose coverage to the CTV’s were not compromised. Representative DVH comparison is shown in FIGURE 1. The contralateral parotid doses were reduced at all levels of interest when systematic constraints were applied to V10, V20, V30 and V40Gy (All P<0.0001; TABLE 1). Overall, the mean contralateral parotid doses were reduced by 2.26 Gy on average, a ∼13% relative improvement. Conclusion: Applying systematic and volume-based contralateral parotid constraints for IMPT planning significantly reduced the dose at all dosimetric levels for patients with base of tongue cancer.« less

  13. Variation compensation and analysis on diaphragm curvature analysis for emphysema quantification on whole lung CT scans

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Barr, R. Graham; Yankelevitz, David F.; Henschke, Claudia I.

    2010-03-01

    CT scans allow for the quantitative evaluation of the anatomical bases of emphysema. Recently, a non-density based geometric measurement of lung diagphragm curvature has been proposed as a method for the quantification of emphysema from CT. This work analyzes variability of diaphragm curvature and evaluates the effectiveness of a compensation methodology for the reduction of this variability as compared to emphysema index. Using a dataset of 43 scan-pairs with less than a 100 day time-interval between scans, we find that the diaphragm curvature had a trend towards lower overall variability over emphysema index (95% CI:-9.7 to + 14.7 vs. -15.8 to +12.0), and that the variation of both measures was reduced after compensation. We conclude that the variation of the new measure can be considered comparable to the established measure and the compensation can reduce the apparent variation of quantitative measures successfully.

  14. Bone scan as a screening test for missed fractures in severely injured patients.

    PubMed

    Lee, K-J; Jung, K; Kim, J; Kwon, J

    2014-12-01

    In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2003-01-01

    We have investigated and developed the use of holographic optical elements (HOE) and holographic transmission gratings for scanning lidar telescopes. By rotating a flat HOE in its own plane with the focal spot on the rotation axis, a very simple and compact conical scanning telescope is possible. We developed and tested transmission and reflection HOES for use with the first three harmonics of Nd:YAG lasers, and designed, built, and tested two lidar systems based on this technology.

  16. Rapid-scan EPR of immobilized nitroxides

    NASA Astrophysics Data System (ADS)

    Yu, Zhelin; Quine, Richard W.; Rinard, George A.; Tseitlin, Mark; Elajaili, Hanan; Kathirvelu, Velavan; Clouston, Laura J.; Boratyński, Przemysław J.; Rajca, Andrzej; Stein, Richard; Mchaourab, Hassane; Eaton, Sandra S.; Eaton, Gareth R.

    2014-10-01

    X-band electron paramagnetic resonance spectra of immobilized nitroxides were obtained by rapid scan at 293 K. Scan widths were 155 G with 13.4 kHz scan frequency for 14N-perdeuterated tempone and for T4 lysozyme doubly spin labeled with an iodoacetamide spirocyclohexyl nitroxide and 100 G with 20.9 kHz scan frequency for 15N-perdeuterated tempone. These wide scans were made possible by modifications to our rapid-scan driver, scan coils made of Litz wire, and the placement of highly conducting aluminum plates on the poles of a Bruker 10″ magnet to reduce resistive losses in the magnet pole faces. For the same data acquisition time, the signal-to-noise for the rapid-scan absorption spectra was about an order of magnitude higher than for continuous wave first-derivative spectra recorded with modulation amplitudes that do not broaden the lineshapes.

  17. A controlled statistical study to assess measurement variability as a function of test object position and configuration for automated surveillance in a multicenter longitudinal COPD study (SPIROMICS).

    PubMed

    Guo, Junfeng; Wang, Chao; Chan, Kung-Sik; Jin, Dakai; Saha, Punam K; Sieren, Jered P; Barr, R G; Han, MeiLan K; Kazerooni, Ella; Cooper, Christopher B; Couper, David; Newell, John D; Hoffman, Eric A

    2016-05-01

    A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dual source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [-6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors' results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.

  18. A controlled statistical study to assess measurement variability as a function of test object position and configuration for automated surveillance in a multicenter longitudinal COPD study (SPIROMICS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Junfeng; Newell, John D.; Wang, Chao

    Purpose: A test object (phantom) is an important tool to evaluate comparability and stability of CT scanners used in multicenter and longitudinal studies. However, there are many sources of error that can interfere with the test object-derived quantitative measurements. Here the authors investigated three major possible sources of operator error in the use of a test object employed to assess pulmonary density-related as well as airway-related metrics. Methods: Two kinds of experiments were carried out to assess measurement variability caused by imperfect scanning status. The first one consisted of three experiments. A COPDGene test object was scanned using a dualmore » source multidetector computed tomographic scanner (Siemens Somatom Flash) with the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) inspiration protocol (120 kV, 110 mAs, pitch = 1, slice thickness = 0.75 mm, slice spacing = 0.5 mm) to evaluate the effects of tilt angle, water bottle offset, and air bubble size. After analysis of these results, a guideline was reached in order to achieve more reliable results for this test object. Next the authors applied the above findings to 2272 test object scans collected over 4 years as part of the SPIROMICS study. The authors compared changes of the data consistency before and after excluding the scans that failed to pass the guideline. Results: This study established the following limits for the test object: tilt index ≤0.3, water bottle offset limits of [−6.6 mm, 7.4 mm], and no air bubble within the water bottle, where tilt index is a measure incorporating two tilt angles around x- and y-axis. With 95% confidence, the density measurement variation for all five interested materials in the test object (acrylic, water, lung, inside air, and outside air) resulting from all three error sources can be limited to ±0.9 HU (summed in quadrature), when all the requirements are satisfied. The authors applied these criteria to 2272 SPIROMICS scans and demonstrated a significant reduction in measurement variation associated with the test object. Conclusions: Three operator errors were identified which significantly affected the usability of the acquired scan images of the test object used for monitoring scanner stability in a multicenter study. The authors’ results demonstrated that at the time of test object scan receipt at a radiology core laboratory, quality control procedures should include an assessment of tilt index, water bottle offset, and air bubble size within the water bottle. Application of this methodology to 2272 SPIROMICS scans indicated that their findings were not limited to the scanner make and model used for the initial test but was generalizable to both Siemens and GE scanners which comprise the scanner types used within the SPIROMICS study.« less

  19. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs.

    PubMed

    Andreka, Gyorgy; Vertesaljai, Marton; Szantho, Gergely; Font, Gusztav; Piroth, Zsolt; Fontos, Geza; Juhasz, Eszter D; Szekely, Laszlo; Szelid, Zsolt; Turner, Mark S; Ashrafian, Houman; Frenneaux, Michael P; Andreka, Peter

    2007-06-01

    Ischaemic preconditioning results in a reduction in ischaemic-reperfusion injury to the heart. This beneficial effect is seen both with direct local preconditioning of the myocardium and with remote preconditioning of easily accessible distant non-vital limb tissue. Ischaemic postconditioning with a comparable sequence of brief periods of local ischaemia, when applied immediately after the ischaemic insult, confers benefits similar to preconditioning. To test the hypothesis that limb ischaemia induces remote postconditioning and hence reduces experimental myocardial infarct size in a validated swine model of acute myocardial infarction. Acute myocardial infarction was induced in 24 pigs with 90 min balloon inflations of the left anterior descending coronary artery. Remote ischaemic postconditioning was induced in 12 of the pigs by four 5 min cycles of blood pressure cuff inflation applied to the lower limb immediately after the balloon deflation. Infarct size was assessed by measuring 72 h creatinine kinase release, MRI scan and immunohistochemical analysis. Area under the curve of creatinine kinase release was significantly reduced in the postconditioning group compared with the control group with a 26% reduction in the infarct size (p<0.05). This was confirmed by MRI scanning and immunohistochemical analysis that revealed a 22% (p<0.05) and a 47.52% (p<0.01) relative reduction in the infarct size, respectively. Remote ischaemic postconditioning is a simple technique to reduce infarct size without the hazards and logistics of multiple coronary artery balloon inflations. This type of conditioning promises clear clinical potential.

  20. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  1. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    PubMed

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  2. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays

    PubMed Central

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-01-01

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390

  3. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays.

    PubMed

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-05-11

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.

  4. Evaluation of scanning earth sensor mechanism on engineering test satellite 4

    NASA Technical Reports Server (NTRS)

    Ikeuchi, M.; Wakabayashi, Y.; Ohkami, Y.; Kida, T.; Ishigaki, T.; Matsumoto, M.

    1983-01-01

    The results of the analysis and the evaluation of flight data obtained from the horizon sensor test project are described. The rotary mechanism of the scanning earth sensor composed of direct drive motor and bearings using solid lubricant is operated satisfactorily. The transmitted flight data from Engineering Test Satellite IV was evaluated in comparison with the design value.

  5. Influence of Ce addition on biomedical porous Ti-51 atomic percentage (at. %) Ni shape memory alloy fabricated by microwave sintering

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.

    2017-12-01

    Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.

  6. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    NASA Astrophysics Data System (ADS)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  7. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used tomore » analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.« less

  8. Comparison of Image Quality and Radiation Dose of Coronary Computed Tomography Angiography Between Conventional Helical Scanning and a Strategy Incorporating Sequential Scanning

    PubMed Central

    Einstein, Andrew J.; Wolff, Steven D.; Manheimer, Eric D.; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M. Robert

    2009-01-01

    Radiation dose from coronary computed tomography angiography may be reduced using a sequential scanning protocol rather than a conventional helical scanning protocol. Here we compare radiation dose and image quality from coronary computed tomography angiography in a single center between an initial period during which helical scanning with electrocardiographically-controlled tube current modulation was used for all patients (n=138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose reduction (mean dose-length product of 305.2 vs. 875.1 and mean effective dose of 14.9 mSv vs. 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the dose-length product was 201.9 ± 90.0 mGy·cm, while for patients undergoing helical scanning under either strategy, the dose-length product was 890.9 ± 293.3 mGy·cm (p<0.0001), corresponding to mean effective doses of 3.4 mSv and 15.1 mSv, respectively, a 77.5% reduction. Image quality was significantly greater for the sequential studies, reflecting the poorer image quality in patients undergoing helical scanning in the sequential-if-appropriate strategy. In conclusion, a sequential-if-appropriate diagnostic strategy reduces dose markedly compared to a helical-only strategy, with no significant difference in image quality. PMID:19892048

  9. Laser-induced selective copper plating of polypropylene surface

    NASA Astrophysics Data System (ADS)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  10. Comparing two quantitative methods for studying remineralization of artificial caries.

    PubMed

    Lo, E C M; Zhi, Q H; Itthagarun, A

    2010-04-01

    To compare the detection of changes before and after remineralization of artificial enamel and dentin caries by microCT scanning, polarized light microscopy (PLM) and transverse microradiography (TMR). Fourteen extracted premolars were cut into tooth blocks and painted with an acid-resistant varnish leaving one enamel and one dentin surface exposed. The tooth blocks were immersed into demineralizing solution for 4 days to produce artificial caries-like lesions and scanned by microCT. Then the 14 tooth blocks were randomly allocated into two groups. Seven tooth blocks in Group I were cut longitudinally through the exposed surface into 100-150 microm thick sections and microradiographs were taken. The other seven tooth blocks in Group II were left intact. All the tooth blocks and sections were then immersed into remineralizing solution for 5 days. PLM and TMR of the tooth sections in Group I were taken again. Depth of the lesion on the TMR was measured. Tooth blocks in Group II were scanned by microCT. Mean lesion depth in Group I reduced by 13.0% and 8.2% after remineralization for enamel and dentin, respectively (paired t-test, P<0.001). In Group II, linear attenuation coefficient (LAC) of the region of interest (ROI) increased by 11.1% and 23.8% after remineralization for enamel and dentin lesions, respectively (paired t-test, P<0.001). Both microCT and microradiography are able to detect a change of similar magnitude in the artificial caries lesions after remineralization. MicroCT may be used to substitute TMR and PLM in in vitro studies about caries. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. 3D ultrasound characterization of woven composites

    NASA Astrophysics Data System (ADS)

    Tayong, Rostand B.; Mienczakowski, Martin J.; Smith, Robert A.

    2018-04-01

    Recent studies on the Non-Destructive Testing (NDT) of composites for the aerospace industry have led to an understanding of ultrasonic propagation in these materials [1]. Techniques for enhanced ultrasonic imaging of the internal structure of composite laminates containing unidirectional fibers have been proposed and tested in a laboratory environment. For the automotive industry, textile composites are often preferred and widely used. The reason for this is that these types of composites offer good mechanical performance, with resistance to delamination and reduced manufacturing costs. In this study, two models are developed and shown to be suitable to characterize the woven specimen. The first model is a 1D analytical model that makes simplified assumptions and the second is a 3D time-domain Finite Element (FE) model developed [2] for advanced understanding of the woven composite response to an ultrasonic excitation. For each of the proposed models, three parameters are defined and used to analyze the structure behavior. They are the instantaneous amplitude, instantaneous phase and instantaneous frequency. These parameters are employed to track the in-plane fiber orientation and the ply-interface location and for the sentencing of features. Three different specimens with the following weave type: 3D orthogonal, 2D plain and Multilayer stitching were considered and scanned (using a focused ultrasonic transducer) to validate the proposed models. As a preliminary study, the work only focuses on the Orthogonal weave specimen. The results obtained from experimental, analytical and FE modeling, B-scan and C-scan are compared, discussed and presented in terms of the above defined parameters.

  12. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    NASA Astrophysics Data System (ADS)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  13. Scanning Optical Head with Nontilted Reference Beam: Assuring Nanoradian Accuracy for a New Generation Surface Profiler in the Large-Slope Testing Range

    DOE PAGES

    Qian, Shinan

    2011-01-01

    Nmore » anoradian Surface Profilers (SPs) are required for state-of-the-art synchrotron radiation optics and high-precision optical measurements. ano-radian accuracy must be maintained in the large-angle test range. However, the beams' notable lateral motions during tests of most operating profilers, combined with the insufficiencies of their optical components, generate significant errors of ∼ 1  μ rad rms in the measurements. The solution to nano-radian accuracy for the new generation of surface profilers in this range is to apply a scanning optical head, combined with nontilted reference beam. I describe here my comparison of different scan modes and discuss some test results.« less

  14. TH-C-18A-01: Is Automatic Tube Current Modulation Still Necessary with Statistical Iterative Reconstruction?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Zhao, W; Gomez-Cardona, D

    Purpose: Automatic tube current modulation (TCM) has been widely used in modern multi-detector CT to reduce noise spatial nonuniformity and streaks to improve dose efficiency. With the advent of statistical iterative reconstruction (SIR), it is expected that the importance of TCM may diminish, since SIR incorporates statistical weighting factors to reduce the negative influence of photon-starved rays. The purpose of this work is to address the following questions: Does SIR offer the same benefits as TCM? If yes, are there still any clinical benefits to using TCM? Methods: An anthropomorphic CIRS chest phantom was scanned using a state-of-the-art clinical CTmore » system equipped with an SIR engine (Veo™, GE Healthcare). The phantom was first scanned with TCM using a routine protocol and a low-dose (LD) protocol. It was then scanned without TCM using the same protocols. For each acquisition, both FBP and Veo reconstructions were performed. All scans were repeated 50 times to generate an image ensemble from which noise spatial nonuniformity (NSN) and streak artifact levels were quantified. Monte-Carlo experiments were performed to estimate skin dose. Results: For FBP, noise streaks were reduced by 4% using TCM for both routine and LD scans. NSN values were actually slightly higher with TCM (0.25) than without TCM (0.24) for both routine and LD scans. In contrast, for Veo, noise streaks became negligible (<1%) with or without TCM for both routine and LD scans, and the NSN was reduced to 0.10 (low dose) or 0.08 (routine). The overall skin dose was 2% lower at the shoulders and more uniformly distributed across the skin without TCM. Conclusion: SIR without TCM offers superior reduction in noise nonuniformity and streaks relative to FBP with TCM. For some clinical applications in which skin dose may be a concern, SIR without TCM may be a better option. K. Li, W. Zhao, D. Gomez-Cardona: Nothing to disclose; G.-H. Chen: Research funded, General Electric Company Research funded, Siemens AG Research funded, Varian Medical Systems, Research funded, Hologic, Inc.« less

  15. SU-F-I-46: Optimizing Dose Reduction in Adult Head CT Protocols While Maintaining Image Quality in Postmortem Head Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Carranza, C; Quails, N

    Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less

  16. SCaN Testbed Software Development and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of the software was an extensive effort. The challenges of specifying a suitable test matrix with reconfigurable systems that offer numerous configurations is highlighted. Since the flight system testing requires methodical, controlled testing that limits risk, a nearly identical ground system to the on-orbit flight system was required to develop the software and write verification procedures before it was installed and tested on the flight system. The development of the SCAN testbed was an accelerated effort to meet launch constraints, and this paper discusses tradeoffs made to balance needed software functionality and still maintain the schedule. Future upgrades are discussed that optimize the avionics and allow experimenters to utilize the SCAN testbed potential.

  17. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part B: Scan mirror assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.

  18. Scatter measurement and correction method for cone-beam CT based on single grating scan

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  19. Gaze control during face exploration in schizophrenia.

    PubMed

    Delerue, Céline; Laprévote, Vincent; Verfaillie, Karl; Boucart, Muriel

    2010-10-04

    Patients with schizophrenia perform worse than controls on various face perception tasks. Studies monitoring eye movements have shown reduced scan paths and a lower number of fixations to relevant facial features (eyes, nose, mouth) than to other parts. We examine whether attentional control, through instructions, modulates visual scanning in schizophrenia. Visual scan paths were monitored in 20 patients with schizophrenia and 20 controls. Participants started with a "free viewing" task followed by tasks in which they were asked to determine the gender, identify the facial expression, estimate the age, or decide whether the face was known or unknown. Temporal and spatial characteristics of scan paths were compared for each group and task. Consistent with the literature, patients with schizophrenia showed reduced attention to salient facial features in the passive viewing. However, their scan paths did not differ from that of controls when asked to determine the facial expression, the gender, the age or the familiarity of the face. The results are interpreted in terms of attentional control and cognitive flexibility. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Pressure scanning choices - Rotary vs electronic

    NASA Astrophysics Data System (ADS)

    Pemberton, Addison

    The choices available for present-day pressure scanning applications are described. Typical pressure scanning applications include wind tunnels, flight testing, turbine engine testing, process control, and laboratory/bench testing. The Scanivalve concept is discussed and it is noted that their use eliminates the cost of multiple individual pressure transducers and their signal conditioners as well as associated wiring for each pressure to be measured. However, they are limited to a maximum acquisition speed of 20 ports/sec/scanner. The advantages of electronic pressure scanners include in-situ calibration on demand, fast data acquisition speed, and high reliability. On the other hand, they are three times more expensive than rotary Scanivalves.

  1. SU-F-I-32: Organ Doses from Pediatric Head CT Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liu, Q; Qiu, J

    Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less

  2. Benchmarking contactless acquisition sensor reproducibility for latent fingerprint trace evidence

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Dittmann, Jana

    2015-03-01

    Optical, nano-meter range, contactless, non-destructive sensor devices are promising acquisition techniques in crime scene trace forensics, e.g. for digitizing latent fingerprint traces. Before new approaches are introduced in crime investigations, innovations need to be positively tested and quality ensured. In this paper we investigate sensor reproducibility by studying different scans from four sensors: two chromatic white light sensors (CWL600/CWL1mm), one confocal laser scanning microscope, and one NIR/VIS/UV reflection spectrometer. Firstly, we perform an intra-sensor reproducibility testing for CWL600 with a privacy conform test set of artificial-sweat printed, computer generated fingerprints. We use 24 different fingerprint patterns as original samples (printing samples/templates) for printing with artificial sweat (physical trace samples) and their acquisition with contactless sensory resulting in 96 sensor images, called scan or acquired samples. The second test set for inter-sensor reproducibility assessment consists of the first three patterns from the first test set, acquired in two consecutive scans using each device. We suggest using a simple feature space set in spatial and frequency domain known from signal processing and test its suitability for six different classifiers classifying scan data into small differences (reproducible) and large differences (non-reproducible). Furthermore, we suggest comparing the classification results with biometric verification scores (calculated with NBIS, with threshold of 40) as biometric reproducibility score. The Bagging classifier is nearly for all cases the most reliable classifier in our experiments and the results are also confirmed with the biometric matching rates.

  3. A Study of the Correlation Between Dislocations and Diffusion Length in In(49)Ga(51)P Solar Cells

    DTIC Science & Technology

    2008-12-01

    method of depositing a monocrystalline film on a monocrystalline substrate, the variation in lattice constant is a measure of the structural...charge transport results in greater power generation, reducing the number of cells per panel , thereby reducing weight and volume requirements while... panel . 39 The line scan mode with a horizontal rotation imaged across the dislocation bands was seen in Figure 15, where as the line scan mode

  4. Seeing the Invisible: Embedding Tests in Code That Cannot be Modified

    NASA Technical Reports Server (NTRS)

    O'Malley, Owen; Mansouri-Samani, Masoud; Mehlitz, Peter; Penix, John

    2005-01-01

    The difficulty of characterizing and observing valid software behavior during testing can be very difficult in flight systems. To address this issue, we evaluated several approaches to increasing test observability on the Shuttle Abort Flight Management (SAFM) system. To increase test observability, we added probes into the running system to evaluate the internal state and analyze test data. To minimize the impact of the instrumentation and reduce manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source code. We developed and elicited a spectrum of properties, from generic to application specific properties, to be monitored via the instrumentation. To evaluate additional approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test coverage, Valgrind for looking for memory usage errors, and libraries for finding non-normal floating point values. An in-house C++ source code scanning tool was also used to identify violations of SAFM coding standards, and other potentially problematic C++ constructs. Using these approaches with the existing test data sets, we were able to verify several important properties, confirm several problems and identify some previously unidentified issues.

  5. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone.

    PubMed

    Willett, Thomas L; Sutty, Sibi; Gaspar, Anne; Avery, Nick; Grynpas, Marc

    2013-02-01

    Non-enzymatic glycation (NEG) and advanced glycation endproducts (AGEs) may contribute to bone fragility in various diseases, ageing, and other conditions by modifying bone collagen and causing degraded mechanical properties. In this study, we sought to further understand how collagen modification in an in vitro non-enzymatic ribation model leads to loss of cortical bone toughness. Previous in vitro studies using non-enzymatic ribation reported loss of ductility in the cortical bone. Increased crosslinking is most commonly blamed for these changes; however, some studies report positive correlations between measures of total collagen crosslinking and work-to-fracture/toughness measurements whilst correlations between general NEG and measures of ductility are often negative. Fifteen bone beam triplets were cut from bovine metatarsi. Each provided one native non-incubated control, one incubated control and one ribated specimen. Incubation involved simulated body fluid±ribose for fourteen days at 37°C. Pentosidine and pyridinoline crosslinks were measured using HPLC. Three-point bending tests quantified mechanical properties. Fracture surfaces were examined using scanning electron microscopy. The effects of ribation on bone collagen molecular stability and intermolecular connectivity were investigated using differential scanning calorimetry and hydrothermal isometric tension testing. Ribation caused increased non-enzymatic collagen modification and pentosidine content (16mmol/mol collagen) and inferior post-yield mechanical behaviour, especially post-yield strain and flexural toughness. Fracture surfaces were smoother with less collagen fibril deformation or tearing than observed in controls. In the ribated group only, pentosidine content and thermomechanical measures of crosslinking were positively correlated with measures of strain accommodation and energy absorption before failure. Non-enzymatic ribation and the resulting modifications reduce cortical bone pseudo-plasticity through a reduced capacity for post-yield strain accommodation. However, the positive correlations we have found suggest that increased crosslinking may not provide a complete explanation for this embrittlement. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Pretreatment with diphenoxylate hydrochloride/atropine sulfate (Lomotil) does not decrease physiologic bowel FDG activity on PET/CT scans of the abdomen and pelvis.

    PubMed

    Murphy, Robert; Doerger, Kirk M; Nathan, Mark A; Lowe, Val J

    2009-01-01

    Physiologic uptake of 2-[(18)F]-fluoro-2-deoxy-D: -glucose (FDG) by bowel can confound positron emission tomography/computed tomography (PET/CT) assessment for abdominal pathology, particularly within the bowel itself. We wished to determine if oral administration of the antimotility agent, Lomotil (5 mg diphenoxylate hydrochloride/0.05 mg atropine sulfate; G.D. Searle and Company, a division of Pfizer), prior to PET/CT scanning would reduce physiologic uptake of FDG by the small bowel and colon (lower gastrointestinal [GI] tract). Patients undergoing PET/CT scans for lymphoma were enrolled in a prospective, randomized, double-blinded study and received either 10 mL water (control group) or 10 mL Lomotil (experimental group) orally 30-60 min prior to scanning. Scans were reviewed independently by two blinded experienced readers and scored for the degree of FDG activity in the lower GI tract relative to liver activity. The administration of Lomotil prior to PET/CT scanning did not reduce physiologic FDG activity in the small bowel and colon. In contrast, increased radiotracer uptake by the lower GI tract was observed in the Lomotil group compared to the control group. Pretreatment with Lomotil prior to PET/CT scanning confers no benefit toward the reduction of physiologic FDG uptake by the small bowel and colon.

  7. State-of-the-art cockpit design for the HH-65A helicopters

    NASA Technical Reports Server (NTRS)

    Castleberry, D. E.; Mcelreath, M. Y.

    1982-01-01

    In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.

  8. Social responsibility tools in online gambling: a survey of attitudes and behavior among Internet gamblers.

    PubMed

    Griffiths, Mark D; Wood, Richard T A; Parke, Jonathan

    2009-08-01

    To date, little empirical research has focused on social responsibility in gambling. This study examined players' attitudes and behavior toward using the social responsibility tool PlayScan designed by the Swedish gaming company Svenska Spel. Via PlayScan, players have the option to utilize various social responsibility control tools (e.g., personal gaming budgets, self-diagnostic tests of gambling habits, self-exclusion options). A total of 2,348 participants took part in an online questionnaire study. Participants were clientele of the Svenska Spel online gambling Web site. Results showed that just over a quarter of players (26%) had used PlayScan. The vast majority of those who had activated PlayScan (almost 9 in 10 users) said that PlayScan was easy to use. Over half of PlayScan users (52%) said it was useful; 19% said it was not. Many features were seen as useful by online gamblers, including limit setting (70%), viewing their gambling profile (49%), self-exclusion facilities (42%), self-diagnostic problem gambling tests (46%), information and support for gambling issues (40%), and gambling profile predictions (36%). In terms of actual (as opposed to theoretical) use, over half of PlayScan users (56%) had set spending limits, 40% had taken a self-diagnostic problem gambling test, and 17% had used a self-exclusion feature.

  9. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  10. Four-arm variable-resolution x-ray detector for CT target imaging

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.

    2005-04-01

    The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.

  11. Automated matching of supine and prone colonic polyps based on PCA and SVMs

    NASA Astrophysics Data System (ADS)

    Wang, Shijun; Van Uitert, Robert L.; Summers, Ronald M.

    2008-03-01

    Computed tomographic colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. In current practice, a patient will be scanned twice during the CTC examination - once supine and once prone. In order to assist the radiologists in evaluating colon polyp candidates in both scans, we expect the computer aided detection (CAD) system can provide not only the locations of suspicious polyps, but also the possible matched pairs of polyps in two scans. In this paper, we propose a new automated matching method based on the extracted features of polyps by using principal component analysis (PCA) and Support Vector Machines (SVMs). Our dataset comes from the 104 CT scans of 52 patients with supine and prone positions collected from three medical centers. From it we constructed two groups of matched polyp candidates according to the size of true polyps: group A contains 12 true polyp pairs (> 9 mm) and 454 false pairs; group B contains 24 true polyp pairs (6-9 mm) and 514 false pairs. By using PCA, we reduced the dimensions of original data (with 157 attributes) to 30 dimensions. We did leave-one-patient-out test on the two groups of data. ROC analysis shows that it is easier to match bigger polyps than that of smaller polyps. On group A data, when false alarm probability is 0.18, the sensitivity of SVM achieves 0.83 which shows that automated matching of polyp candidates is practicable for clinical applications.

  12. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  13. Quantification of Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Boellaard, Ronald; Froklage, Femke E; Bakker, Esther D M; Yaqub, Maqsood; Voskuyl, Rob A; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan

    2015-09-01

    The overexpression of P-glycoprotein (Pgp) is thought to be an important mechanism of pharmacoresistance in epilepsy. Recently, (11)C-phenytoin has been evaluated preclinically as a tracer for Pgp. The aim of the present study was to assess the optimal plasma kinetic model for quantification of (11)C-phenytoin studies in humans. Dynamic (11)C-phenytoin PET scans of 6 healthy volunteers with arterial sampling were acquired twice on the same day and analyzed using single- and 2-tissue-compartment models with and without a blood volume parameter. Global and regional test-retest (TRT) variability was determined for both plasma to tissue rate constant (K1) and volume of distribution (VT). According to the Akaike information criterion, the reversible single-tissue-compartment model with blood volume parameter was the preferred plasma input model. Mean TRT variability ranged from 1.5% to 16.9% for K1 and from 0.5% to 5.8% for VT. Larger volumes of interest showed better repeatabilities than smaller regions. A 45-min scan provided essentially the same K1 and VT values as a 60-min scan. A reversible single-tissue-compartment model with blood volume seems to be a good candidate model for quantification of dynamic (11)C-phenytoin studies. Scan duration may be reduced to 45 min without notable loss of accuracy and precision of both K1 and VT, although this still needs to be confirmed under pathologic conditions. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Low dose CT perfusion in acute ischemic stroke.

    PubMed

    Murphy, Amanda; So, Aaron; Lee, Ting-Yim; Symons, Sean; Jakubovic, Raphael; Zhang, Liying; Aviv, Richard I

    2014-12-01

    The purpose of this investigation is to determine if CT perfusion (CTP) measurements at low doses (LD = 20 or 50 mAs) are similar to those obtained at regular doses (RD = 100 mAs), with and without the addition of adaptive statistical iterative reconstruction (ASIR). A single-center, prospective study was performed in patients with acute ischemic stroke (n = 37; 54% male; age = 74 ± 15 years). Two CTP scans were performed on each subject: one at 100 mAs (RD) and one at either 50 or 20 mAs (LD). CTP parameters were compared between the RD and LD scans in regions of ischemia, infarction, and normal tissue. Differences were determined using a within-subjects ANOVA (p < 0.05) followed by a paired t test post hoc analysis (p < 0.01). At 50 mAs, there was no significant difference between cerebral blood flow (CBF), cerebral blood volume (CBV), or time to maximum enhancement (Tmax) values for the RD and LD scans in the ischemic, infarcted, or normal contralateral regions (p < 0.05). At 20 mAs, there were significant differences between the RD and LD scans for all parameters in the ischemic and normal tissue regions (p > 0.05). CTP-derived CBF and CBV are not different at 50 mAs compared to 100 mAs, even without the addition of ASIR. Current CTP protocols can be modified to reduce the effective dose by 50 % without altering CTP measurements.

  15. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  16. Finding the ’RITE’ Acquisition Environment for Navy C2 Software

    DTIC Science & Technology

    2015-05-01

    Boiler plate contract language - Gov purpose Rights • Adding expectation of quality to contracting language • Template SOW’s created Pr...Debugger MCCABE IQ Static Analysis Cyclomatic Complexity and KSLOC. All Languages HP Fortify Security Scan STIG and Vulnerabilities Security & IA...GSSAT (GOTS) Security Scan STIG and Vulnerabilities AutoIT Automated Test Scripting Engine for Automation Functional Testing TestComplete Automated

  17. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.

    PubMed

    Lao, Zhiqiang; Shen, Dinggang; Liu, Dengfeng; Jawad, Abbas F; Melhem, Elias R; Launer, Lenore J; Bryan, R Nick; Davatzikos, Christos

    2008-03-01

    Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.

  18. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes.

    PubMed

    Hsia, Ben; Marschewski, Julian; Wang, Shuang; In, Jung Bin; Carraro, Carlo; Poulikakos, Dimos; Grigoropoulos, Costas P; Maboudian, Roya

    2014-02-07

    We report a highly flexible planar micro-supercapacitor with interdigitated finger electrodes of vertically aligned carbon nanotubes (VACNTs). The planar electrode structures are patterned on a thin polycarbonate substrate with a facile, maskless laser-assisted dry transfer method. Sputtered Ni is used to reduce the in-plane resistance of the VACNT electrodes. An ionogel, an ionic liquid in a semi-solid matrix, is used as an electrolyte to form a fully solid-state device. We measure a specific capacitance of 430 μF cm(-2) for a scan rate of 0.1 V s(-1) and achieve rectangular cyclic voltammograms at high scan rates of up to 100 V s(-1). Minimal change in capacitance is observed under bending. Mechanical fatigue tests with more than 1000 cycles confirm the high flexibility and durability of the novel material combination chosen for this device. Our results indicate that this scalable and facile fabrication technique shows promise for application in integrated energy storage for all solid-state flexible microdevices.

  19. The use of 3d scanner for testing changes in shape of human limbs under the influence of external mechanical load

    NASA Astrophysics Data System (ADS)

    Kasperska, Kamila; Wieczorowski, Michał; Krolczyk, Jolanta B.

    2017-10-01

    Three-dimensional scanning is used in many fields: medicine, architecture, industry, reverse engineering. The aim of the article was to analyze the changes in the shape of the limbs under the influence of a mechanical external load using the method of three-dimensional scanner uses white light technology. The paper presents a system of human movement, passive part - skeleton and active part - the muscles, and principles of their interaction, which results in a change of the position of the body. Furthermore, by using the 3D scan, the differences in appearance of the arm and leg depending on the size of the external load in different positions have been presented. The paper shows that with increasing load, which muscles must prevent, increases the volume of certain parts of the legs, while another parts of them will be reduced. Results of the research using three-dimensional scanner allow determining what impact on changing the legs shape has an external mechanical load.

  20. Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail Dmitrievic; Cairns, Brian; Emde, Claudia; Ackerman, Andrew S.; vanDiedenhove, Bastiaan

    2012-01-01

    We present an algorithm for the retrieval of cloud droplet size distribution parameters (effective radius and variance) from the Research Scanning Polarimeter (RSP) measurements. The RSP is an airborne prototype for the Aerosol Polarimetery Sensor (APS), which was on-board of the NASA Glory satellite. This instrument measures both polarized and total reflectance in 9 spectral channels with central wavelengths ranging from 410 to 2260 nm. The cloud droplet size retrievals use the polarized reflectance in the scattering angle range between 135deg and 165deg, where they exhibit the sharply defined structure known as the rain- or cloud-bow. The shape of the rainbow is determined mainly by the single scattering properties of cloud particles. This significantly simplifies both forward modeling and inversions, while also substantially reducing uncertainties caused by the aerosol loading and possible presence of undetected clouds nearby. In this study we present the accuracy evaluation of our algorithm based on the results of sensitivity tests performed using realistic simulated cloud radiation fields.

  1. A new graphical user interface for fast construction of computation phantoms and MCNP calculations: application to calibration of in vivo measurement systems.

    PubMed

    Borisov, N; Franck, D; de Carlan, L; Laval, L

    2002-08-01

    The paper reports on a new utility for development of computational phantoms for Monte Carlo calculations and data analysis for in vivo measurements of radionuclides deposited in tissues. The individual properties of each worker can be acquired for a rather precise geometric representation of his (her) anatomy, which is particularly important for low energy gamma ray emitting sources such as thorium, uranium, plutonium and other actinides. The software discussed here enables automatic creation of an MCNP input data file based on scanning data. The utility includes segmentation of images obtained with either computed tomography or magnetic resonance imaging by distinguishing tissues according to their signal (brightness) and specification of the source and detector. In addition, a coupling of individual voxels within the tissue is used to reduce the memory demand and to increase the calculational speed. The utility was tested for low energy emitters in plastic and biological tissues as well as for computed tomography and magnetic resonance imaging scanning information.

  2. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  3. Comparative Geometrical Investigations of Hand-Held Scanning Systems

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Przybilla, H.-J.; Lindstaedt, M.; Tschirschwitz, F.; Misgaiski-Hass, M.

    2016-06-01

    An increasing number of hand-held scanning systems by different manufacturers are becoming available on the market. However, their geometrical performance is little-known to many users. Therefore the Laboratory for Photogrammetry & Laser Scanning of the HafenCity University Hamburg has carried out geometrical accuracy tests with the following systems in co-operation with the Bochum University of Applied Sciences (Laboratory for Photogrammetry) as well as the Humboldt University in Berlin (Institute for Computer Science): DOTProduct DPI-7, Artec Spider, Mantis Vision F5 SR, Kinect v1 + v2, Structure Sensor and Google's Project Tango. In the framework of these comparative investigations geometrically stable reference bodies were used. The appropriate reference data were acquired by measurement with two structured light projection systems (AICON smartSCAN and GOM ATOS I 2M). The comprehensive test results of the different test scenarios are presented and critically discussed in this contribution.

  4. Two-dimensional scanning high-energy particle diagnostic system in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ozaki, T.; Goncharov, P.; Sudo, S.; Shoji, M.; Kawahata, K.; Kaneko, O.; Murakami, S.

    2004-10-01

    A high-energy neutral particle measurement is one of the important diagnostics for ion temperature and high-energy particle confinement analysis. The neutral particle analyzer in the large helical device is capable of wide range scanning as a feature. We have obtained various data using the horizontal scan of the analyzer. Recently, in addition to the horizontal scan, a high-speed perpendicular scan became possible which enables acquisition of new information in the poloidal direction. Two stainless blocks are set on the opposite sides of the chain in order to balance the weight (700 kg) of the analyzer and reduce the load for the motor. Therefore a very high scan speed of 1°/s can be obtained. The scanning speed is 1°/s. By adding the vertical scan, the ion temperature profile and the radial variation of the signal loss associated with the resonant loss was obtained in preliminary experimental results.

  5. Neurosensoric disturbances after surgical removal of the mandibular third molar based on either panoramic imaging or cone beam CT scanning: A randomized controlled trial (RCT)

    PubMed Central

    Vaeth, Michael; Wenzel, Ann

    2016-01-01

    Objective: Pre-surgical CBCT has been suggested before removal of the mandibular third molar. Currently, the standard-of-care is two-dimensional (2D) panoramic imaging. The aim of this randomized controlled trial was to analyse possible differences in neurosensoric disturbances of the inferior alveolar nerve between patients undergoing either panoramic imaging or CBCT before surgical removal of the mandibular third molar. Furthermore, the aim was to perform a sensitivity analysis to assess the statistical significance of different assumptions related to sample size calculations. Methods: 230 patients were randomized to a scan group and a non-scan group. All patients were referred from practicing dentists in the Copenhagen area. Inclusion criteria were overlap of the root complex and the mandibular canal on a 2D radiographic image. Central allocation of the randomization code and double blind settings were established. The surgical removal was performed in a specialized surgical practice geographically and personally separated from the study practice. Registration of neurosensoric anomalies was performed with a Semmes–Weinstein test and a visual analogue scale questionnaire pre- and post-surgically. Results: In the scan group (n = 114), 21 episodes of neurosensoric disturbances were registered and in the non-scan group (n = 116), 13 episodes of neurosensoric disturbances were registered. There was no statistically significant difference between the two groups (p = 0.14). Performing a sensitivity analysis confirmed that CBCT was not superior to panoramic imaging in avoiding neurosensoric disturbances. Conclusions: The use of CBCT before removal of the mandibular third molar does not seem to reduce the number of neurosensoric disturbances. PMID:26648386

  6. [Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes].

    PubMed

    Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen

    2016-07-04

    To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.

  7. Neurosensoric disturbances after surgical removal of the mandibular third molar based on either panoramic imaging or cone beam CT scanning: A randomized controlled trial (RCT).

    PubMed

    Petersen, Lars B; Vaeth, Michael; Wenzel, Ann

    2016-01-01

    Pre-surgical CBCT has been suggested before removal of the mandibular third molar. Currently, the standard-of-care is two-dimensional (2D) panoramic imaging. The aim of this randomized controlled trial was to analyse possible differences in neurosensoric disturbances of the inferior alveolar nerve between patients undergoing either panoramic imaging or CBCT before surgical removal of the mandibular third molar. Furthermore, the aim was to perform a sensitivity analysis to assess the statistical significance of different assumptions related to sample size calculations. 230 patients were randomized to a scan group and a non-scan group. All patients were referred from practicing dentists in the Copenhagen area. Inclusion criteria were overlap of the root complex and the mandibular canal on a 2D radiographic image. Central allocation of the randomization code and double blind settings were established. The surgical removal was performed in a specialized surgical practice geographically and personally separated from the study practice. Registration of neurosensoric anomalies was performed with a Semmes-Weinstein test and a visual analogue scale questionnaire pre- and post-surgically. In the scan group (n = 114), 21 episodes of neurosensoric disturbances were registered and in the non-scan group (n = 116), 13 episodes of neurosensoric disturbances were registered. There was no statistically significant difference between the two groups (p = 0.14). Performing a sensitivity analysis confirmed that CBCT was not superior to panoramic imaging in avoiding neurosensoric disturbances. The use of CBCT before removal of the mandibular third molar does not seem to reduce the number of neurosensoric disturbances.

  8. WINCS-BASED WIRELESS ELECTROCHEMICAL MONITORING OF SEROTONIN (5-HT) USING FAST-SCAN CYCLIC VOLTAMMETRY: PROOF OF PRINCIPLE

    PubMed Central

    Griessenauer, Christoph J.; Chang, Su-Youne; Tye, Susannah J.; Kimble, Christopher J.; Bennet, Kevin E.; Garris, Paul A.; Lee, Kendall H.

    2010-01-01

    Object We previously reported the development of a Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for measuring dopamine and suggested that this technology may be useful for evaluating deep brain stimulation (DBS)-related neuromodulatory effects on neurotransmitter systems. WINCS supports fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) for real-time, spatially resolved neurotransmitter measurements. The FSCV parameters used to establish WINCS dopamine measurements are not suitable for serotonin, a neurotransmitter implicated in depression, because they lead to CFM fouling and a loss of sensitivity. Here, we incorporate into WINCS a previously described N-shaped waveform applied at a high scan rate to establish wireless serotonin monitoring. Methods FSCV optimized for the detection of serotonin consisted of an N-shaped waveform scanned linearly from a resting potential of, in V, +0.2 to +1.0, then to −0.1 and back to +0.2 at a rate of 1000 V/s. Proof of principle tests included flow injection analysis and electrically evoked serotonin release in the dorsal raphe nucleus of rat brain slices. Results Flow cell injection analysis demonstrated that the N waveform applied at a scan rate of 1000 V/s significantly reduced serotonin fouling of the CFM, relative to that observed with FSCV parameters for dopamine. In brain slices, WINCS reliably detected sub-second serotonin release in the dorsal raphe nucleus evoked by local high-frequency stimulation. Conclusion WINCS supported high-fidelity wireless serotonin monitoring by FSCV at a CFM. In the future such measurements of serotonin in large animal models and in humans may help to establish the mechanism of DBS for psychiatric disease. PMID:20415521

  9. ultra-Stable Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (5STAR)

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Johnson, R. R.; Redemann, J.; Holben, B. N.; Schmid, B.; Flynn, C. J.; Fahey, L.; LeBlanc, S. E.; Liss, J.; Kacenelenbogen, M. S.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Dahlgren, R. P.; Pistone, K.; Karol, Y.

    2017-12-01

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution and climate. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. Hyperspectral cloud-transmitted radiance measurements enable the retrieval of cloud properties from below clouds. These measurements tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with optical fiber signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical tracking head, and future detector evolution. 4STAR has supported a broad range of flight experiments since it was first flown in 2010. This experience provides the basis for a series of improvements directed toward reducing measurement uncertainty and calibration complexity, and expanding future measurement capabilities, to be incorporated into a new 5STAR instrument. A 9-channel photodiode radiometer with AERONET-matched bandpass filters will be incorporated to improve calibration stability. A wide dynamic range tracking camera will provide a high precision solar position tracking signal as well as an image of sky conditions around the solar axis. An ultrasonic window cleaning system design will be tested. A UV spectrometer tailored for formaldehyde and SO2 gas retrievals will be added to the spectrometer enclosure. Finally, expansion capability for a 4 channel polarized radiometer to measure the Stokes polarization vector of sky light will be incorporated. This paper presents initial progress on this next-generation 5STAR instrument. Keywords: atmosphere; climate; pollution; radiometry; technology; hyperspectral; fiber optic, polarimetry

  10. Quantitative Computerized Two-Point Correlation Analysis of Lung CT Scans Correlates With Pulmonary Function in Pulmonary Sarcoidosis

    PubMed Central

    Erdal, Barbaros Selnur; Yildiz, Vedat; King, Mark A.; Patterson, Andrew T.; Knopp, Michael V.; Clymer, Bradley D.

    2012-01-01

    Background: Chest CT scans are commonly used to clinically assess disease severity in patients presenting with pulmonary sarcoidosis. Despite their ability to reliably detect subtle changes in lung disease, the utility of chest CT scans for guiding therapy is limited by the fact that image interpretation by radiologists is qualitative and highly variable. We sought to create a computerized CT image analysis tool that would provide quantitative and clinically relevant information. Methods: We established that a two-point correlation analysis approach reduced the background signal attendant to normal lung structures, such as blood vessels, airways, and lymphatics while highlighting diseased tissue. This approach was applied to multiple lung fields to generate an overall lung texture score (LTS) representing the quantity of diseased lung parenchyma. Using deidentified lung CT scan and pulmonary function test (PFT) data from The Ohio State University Medical Center’s Information Warehouse, we analyzed 71 consecutive CT scans from patients with sarcoidosis for whom simultaneous matching PFTs were available to determine whether the LTS correlated with standard PFT results. Results: We found a high correlation between LTS and FVC, total lung capacity, and diffusing capacity of the lung for carbon monoxide (P < .0001 for all comparisons). Moreover, LTS was equivalent to PFTs for the detection of active lung disease. The image analysis protocol was conducted quickly (< 1 min per study) on a standard laptop computer connected to a publicly available National Institutes of Health ImageJ toolkit. Conclusions: The two-point image analysis tool is highly practical and appears to reliably assess lung disease severity. We predict that this tool will be useful for clinical and research applications. PMID:22628487

  11. SU-C-12A-07: Effect of Vertical Position On Dose Reduction Using X-Care

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silosky, M; Marsh, R

    Purpose: Reduction of absorbed dose to radiosensitive tissues is an important goal in diagnostic radiology. Siemens Medical has introduced a technique (X-CARE) to lower CT dose to anterior anatomy by reducing the tube current during 80° of rotation over radiosensitive tissues. Phantom studies have shown 30-40% dose reduction when phantoms are positioned at isocenter. However, for CT face and sinus exams, the center of the head is commonly positioned below isocenter. This work investigated the effects of vertical patient positioning on dose reduction using X-CARE. Methods: A 16cm Computed Tomography Dose Index phantom was scanned on a Siemens Definition Flashmore » CT scanner using a routine head protocol, with the phantom positioned at scanner isocenter. Optically stimulated luminescent dosimeters were placed on the anterior and posterior sides of the phantom. The phantom was lowered in increments of 2cm and rescanned, up to 8cm below isocenter. The experiment was then repeated using the same scan parameters but adding the X-CARE technique. The mean dosimeter counts were determined for each phantom position, and the difference between XCARE and routine scans was plotted as a function of distance from isocenter. Results: With the phantom positioned at isocenter, using XCARE reduced dose to the anterior side of the phantom by 40%, compared to dose when X-CARE was not used. Positioned below isocenter, anterior dose was reduced by only 20-27%. Additionally, using X-CARE at isocenter reduced dose to the anterior portion of the phantom by 45.6% compared to scans performed without X-CARE 8cm below isocenter. Conclusion: While using X-CARE substantially reduced dose to the anterior side of the phantom, this effect was diminished when the phantom was positioned below isocenter, simulating common practice for face and sinus scans. This indicates that centering the head in the gantry will maximize the effect of X-CARE.« less

  12. Predicting student performance in sonographic scanning using spatial ability as an ability determinent of skill acquisition

    NASA Astrophysics Data System (ADS)

    Clem, Douglas Wayne

    Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and interpretation of these medical images. Using Ackerman's theory of ability determinants of skilled performance as a conceptual framework, this study explored the relationship of spatial ability and learning sonographic scanning. Beginning first year sonography students from four different educational institutions were administered a spatial abilities test prior to their initial scanning lab coursework. The students' spatial test scores were compared with their scanning competency performance scores. A significant relationship between the students' spatial ability scores and their scanning performance scores was found. This result suggests that the use of spatial ability tests for admission to sonography programs may improve candidate selection, as well as assist programs in adjusting instruction and curriculum for students who demonstrate low spatial ability.

  13. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  14. Wind Tunnel Testing of a One-Dimensional Laser Beam Scanning and Laser Sheet Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram

    2012-01-01

    A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.

  15. The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions

    PubMed Central

    O’Connor, David; Potler, Natan Vega; Kovacs, Meagan; Xu, Ting; Ai, Lei; Pellman, John; Vanderwal, Tamara; Parra, Lucas C.; Cohen, Samantha; Ghosh, Satrajit; Escalera, Jasmine; Grant-Villegas, Natalie; Osman, Yael; Bui, Anastasia; Craddock, R. Cameron

    2017-01-01

    Abstract Background: Although typically measured during the resting state, a growing literature is illustrating the ability to map intrinsic connectivity with functional MRI during task and naturalistic viewing conditions. These paradigms are drawing excitement due to their greater tolerability in clinical and developing populations and because they enable a wider range of analyses (e.g., inter-subject correlations). To be clinically useful, the test-retest reliability of connectivity measured during these paradigms needs to be established. This resource provides data for evaluating test-retest reliability for full-brain connectivity patterns detected during each of four scan conditions that differ with respect to level of engagement (rest, abstract animations, movie clips, flanker task). Data are provided for 13 participants, each scanned in 12 sessions with 10 minutes for each scan of the four conditions. Diffusion kurtosis imaging data was also obtained at each session. Findings: Technical validation and demonstrative reliability analyses were carried out at the connection-level using the Intraclass Correlation Coefficient and at network-level representations of the data using the Image Intraclass Correlation Coefficient. Variation in intrinsic functional connectivity across sessions was generally found to be greater than that attributable to scan condition. Between-condition reliability was generally high, particularly for the frontoparietal and default networks. Between-session reliabilities obtained separately for the different scan conditions were comparable, though notably lower than between-condition reliabilities. Conclusions: This resource provides a test-bed for quantifying the reliability of connectivity indices across subjects, conditions and time. The resource can be used to compare and optimize different frameworks for measuring connectivity and data collection parameters such as scan length. Additionally, investigators can explore the unique perspectives of the brain's functional architecture offered by each of the scan conditions. PMID:28369458

  16. Multiscale intensity homogeneity transformation method and its application to computer-aided detection of pulmonary embolism in computed tomographic pulmonary angiography (CTPA)

    NASA Astrophysics Data System (ADS)

    Guo, Yanhui; Zhou, Chuan; Chan, Heang-Ping; Wei, Jun; Chughtai, Aamer; Sundaram, Baskaran; Hadjiiski, Lubomir M.; Patel, Smita; Kazerooni, Ella A.

    2013-04-01

    A 3D multiscale intensity homogeneity transformation (MIHT) method was developed to reduce false positives (FPs) in our previously developed CAD system for pulmonary embolism (PE) detection. In MIHT, the voxel intensity of a PE candidate region was transformed to an intensity homogeneity value (IHV) with respect to the local median intensity. The IHVs were calculated in multiscales (MIHVs) to measure the intensity homogeneity, taking into account vessels of different sizes and different degrees of occlusion. Seven new features including the entropy, gradient, and moments that characterized the intensity distributions of the candidate regions were derived from the MIHVs and combined with the previously designed features that described the shape and intensity of PE candidates for the training of a linear classifier to reduce the FPs. 59 CTPA PE cases were collected from our patient files (UM set) with IRB approval and 69 cases from the PIOPED II data set with access permission. 595 and 800 PEs were identified as reference standard by experienced thoracic radiologists in the UM and PIOPED set, respectively. FROC analysis was used for performance evaluation. Compared with our previous CAD system, at a test sensitivity of 80%, the new method reduced the FP rate from 18.9 to 14.1/scan for the PIOPED set when the classifier was trained with the UM set and from 22.6 to 16.0/scan vice versa. The improvement was statistically significant (p<0.05) by JAFROC analysis. This study demonstrated that the MIHT method is effective in reducing FPs and improving the performance of the CAD system.

  17. Scan-Line Methods in Spatial Data Systems

    DTIC Science & Technology

    1990-09-04

    algorithms in detail to show some of the implementation issues. Data Compression Storage and transmission times can be reduced by using compression ...goes through the data . Luckily, there are good one-directional compression algorithms , such as run-length coding 13 in which each scan line can be...independently compressed . These are the algorithms to use in a parallel scan-line system. Data compression is usually only used for long-term storage of

  18. Investigation of high temperature fracture of T-111 and ASTAR-811C

    NASA Technical Reports Server (NTRS)

    Gold, R. E.

    1971-01-01

    The high temperature deformation and fracture behavior of T-111 and ASTAR-811C were studied over the temperature range 982 to 2205 C (1800 to 4000 F). As-cast and wrought-recrystallized material as well as GTA welds in sheet and plate were evaluated using conventional tensile and creep tests. Post test examinations were performed using optical metallography, scanning electron microscopy and transmission electron microscopy. A high temperature region of reduced ductility, in terms of tensile elongation, was identified for both alloys. The reduction in tensile elongation became more severe with increase in grain size, being near catastrophic for the as-cast specimens. Optical and electron metallography indicated that even for failures at very low total strain, considerable deformation of a very localized nature had occurred prior to fracture.

  19. Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley

    2009-01-01

    In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.

  20. Benchmarking Dutch and U.S. Naval Shipbuilding: Reducing U.S. Naval Shipbuilding Costs Using Collaborative PLM and 3D Imaging

    DTIC Science & Technology

    2012-11-02

    Scanning Technology (3D LST) and Collaborative Product Lifecycle Management (CPLM) are two technologies that are currently being leveraged by international ... international ship construction organizations to achieve significant cost savings. 3D LST dramatically reduces the time required to scan ship surfaces as...technology does not meet the accuracy requirements, 0.030” accuracy minimum , for naval shipbuilding. The report delivered to the CSNT shows that if the

  1. Memory Scanning, Introversion-Extraversion, and Levels of Processing.

    ERIC Educational Resources Information Center

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    Investigated was the hypothesis that high arousal increases processing of physical characteristics and reduces processing of semantic characteristics. While introverts and extroverts had equivalent scanning rates for physical features, introverts were significantly slower in searching for semantic features of category membership, indicating…

  2. Press-fit fixation using autologous bone in the tibial canal causes less enlargement of bone tunnel diameter in ACL reconstruction--a CT scan analysis three months postoperatively.

    PubMed

    Akoto, Ralph; Müller-Hübenthal, Jonas; Balke, Maurice; Albers, Malte; Bouillon, Bertil; Helm, Philip; Banerjee, Marc; Höher, Jürgen

    2015-08-19

    Bone tunnel enlargement is a phenomenon present in all anterior cruciate ligament (ACL)- reconstruction techniques. It was hypothesized that press-fit fixation using a free autograft bone plug reduces the overall tunnel size in the tibial tunnel. In a prospective cohort study twelve patients who underwent primary ACL reconstruction using an autologous quadriceps tendon graft and adding a free bone block for press-fit fixation (PF) in the tibial tunnel were matched to twelve patients who underwent ACL reconstruction with a hamstring graft and interference screw fixation (IF). The diameters of the bone tunnels were analysed by a multiplanar reconstruction technique (MPR) in a CT scan three months postoperatively. Manual and instrumental laxity (Lachman test, Pivot-shift test, Rolimeter) and functional outcome scores (International Knee Documentation Committee sore, Tegner activity level) were measured after one year follow up. In the PF group the mean bone tunnel diameter at the level of the joint entrance was not significantly enlarged. One and two centimeter distal to the bone tunnel diameter was reduced by 15% (p = .001). In the IF group the bone tunnel at the level of the joint entrance was enlarged by 14% (p = .001). One and two centimeter distal to the joint line the IF group showed a widening of the bone tunnel by 21% (p < .001) One and two centimeter below the joint line the bone tunnel was smaller in the PF group when compared to the IF group (p < .001). No significant difference for laxity test and functional outcome scores could be shown. This study demonstrates that press-fit fixation with free autologous bone plugs in the tibial tunnel results in significantly smaller diameter of the tibial tunnel compared to interference screw fixation.

  3. A fast and reliable method for daily quality assurance in spot scanning proton therapy with a compact and inexpensive phantom.

    PubMed

    Bizzocchi, Nicola; Fracchiolla, Francesco; Schwarz, Marco; Algranati, Carlo

    2017-01-01

    In a radiotherapy center, daily quality assurance (QA) measurements are performed to ensure that the equipment can be safely used for patient treatment on that day. In a pencil beam scanning (PBS) proton therapy center, spot positioning, spot size, range, and dose output are usually verified every day before treatments. We designed, built, and tested a new, reliable, sensitive, and inexpensive phantom, coupled with an array of ionization chambers, for daily QA that reduces the execution times while preserving the reliability of the test. The phantom is provided with 2 pairs of wedges to sample the Bragg peak at different depths to have a transposition on the transverse plane of the depth dose. Three "boxes" are used to check spot positioning and delivered dose. The box thickness helps spread the single spot and to fit a Gaussian profile on a low resolution detector. We tested whether our new QA solution could detect errors larger than our action levels: 1 mm in spot positioning, 2 mm in range, and 10% in spot size. Execution time was also investigated. Our method is able to correctly detect 98% of spots that are actually in tolerance for spot positioning and 99% of spots out of 1 mm tolerance. All range variations greater than the threshold (2 mm) were correctly detected. The analysis performed over 1 month showed a very good repeatability of spot characteristics. The time taken to perform the daily quality assurance is 20 minutes, a half of the execution time of the former multidevice procedure. This "in-house build" phantom substitutes 2 very expensive detectors (a multilayer ionization chamber [MLIC] and a strip chamber, reducing by 5 times the cost of the equipment. We designed, built, and validated a phantom that allows for accurate, sensitive, fast, and inexpensive daily QA procedures in proton therapy with PBS. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  4. Development and experimental testing of an optical micro-spectroscopic technique incorporating true line-scan excitation.

    PubMed

    Biener, Gabriel; Stoneman, Michael R; Acbas, Gheorghe; Holz, Jessica D; Orlova, Marianna; Komarova, Liudmila; Kuchin, Sergei; Raicu, Valerică

    2013-12-27

    Multiphoton micro-spectroscopy, employing diffraction optics and electron-multiplying CCD (EMCCD) cameras, is a suitable method for determining protein complex stoichiometry, quaternary structure, and spatial distribution in living cells using Förster resonance energy transfer (FRET) imaging. The method provides highly resolved spectra of molecules or molecular complexes at each image pixel, and it does so on a timescale shorter than that of molecular diffusion, which scrambles the spectral information. Acquisition of an entire spectrally resolved image, however, is slower than that of broad-bandwidth microscopes because it takes longer times to collect the same number of photons at each emission wavelength as in a broad bandwidth. Here, we demonstrate an optical micro-spectroscopic scheme that employs a laser beam shaped into a line to excite in parallel multiple sample voxels. The method presents dramatically increased sensitivity and/or acquisition speed and, at the same time, has excellent spatial and spectral resolution, similar to point-scan configurations. When applied to FRET imaging using an oligomeric FRET construct expressed in living cells and consisting of a FRET acceptor linked to three donors, the technique based on line-shaped excitation provides higher accuracy compared to the point-scan approach, and it reduces artifacts caused by photobleaching and other undesired photophysical effects.

  5. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.

    PubMed

    Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal

    2016-04-01

    The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.

  6. Biracial and monoracial infant own-race face perception: an eye tracking study.

    PubMed

    Gaither, Sarah E; Pauker, Kristin; Johnson, Scott P

    2012-11-01

    We know that early experience plays a crucial role in the development of face processing, but we know little about how infants learn to distinguish faces from different races, especially for non-Caucasian populations. Moreover, it is unknown whether differential processing of different race faces observed in typically studied monoracial infants extends to biracial infants as well. Thus, we investigated 3-month-old Caucasian, Asian and biracial (Caucasian-Asian) infants' ability to distinguish Caucasian and Asian faces. Infants completed two within-subject, infant-controlled habituation sequences and test trials as an eye tracker recorded looking times and scanning patterns. Examination of individual differences revealed significant positive correlations between own-race novelty preference and scanning frequency between eye and mouth regions of own-race habituation stimuli for Caucasian and Asian infants, suggesting that facility in own-race face discrimination stems from active inspection of internal facial features in these groups. Biracial infants, however, showed the opposite effect: An 'own-race' novelty preference was associated with reduced scanning between eye and mouth regions of 'own-race' habituation stimuli, suggesting that biracial infants use a distinct approach to processing frequently encountered faces. Future directions for investigating face processing development in biracial populations are discussed. © 2012 Blackwell Publishing Ltd.

  7. Scanning mid-IR laser apparatus with eye tracking for refractive surgery

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Yoder, Paul R., Jr.; Bekker, Carsten; Hoffman, Hanna J.; Jensen, Eric F.

    1999-06-01

    A robust, real-time, dynamic eye tracker has been integrated with the short pulse mid-infrared laser scanning delivery system previously described. This system employs a Q- switched Nd:YAG laser pumped optical parametric oscillator operating at 2.94 micrometers. Previous ablation studies on human cadaver eyes and in-vivo cat eyes demonstrated very smooth ablations with extremely low damage levels similar to results with an excimer. A 4-month healing study with cats indicated no adverse healing effects. In order to treat human eyes, the tracker is required because the eyes move during the procedure due to both voluntary and involuntary motions such as breathing, heartbeat, drift, loss of fixation, saccades and microsaccades. Eye tracking techniques from the literature were compared. A limbus tracking system was best for this application. Temporal and spectral filtering techniques were implemented to reduce tracking errors, reject stray light, and increase signal to noise ratio. The expanded-capability system (IRVision AccuScan 2000 Laser System) has been tested in the lab on simulated eye targets, glass eyes, cadaver eyes, and live human subjects. Circular targets ranging from 10-mm to 14-mm diameter were successfully tracked. The tracker performed beyond expectations while the system performed myopic photorefractive keratectomy procedures on several legally blind human subjects.

  8. Biracial and Monoracial Infant Own-Race Face Perception: An Eye Tracking Study

    PubMed Central

    Gaither, Sarah E.; Pauker, Kristin; Johnson, Scott P.

    2012-01-01

    We know early experience plays a crucial role in the development of face processing, but we know little about how infants learn to distinguish faces from different races, especially for non-Caucasian populations. Moreover, it is unknown whether differential processing of different race faces observed in typically-studied monoracial infants extends to biracial infants as well. Thus, we investigated 3-month-old Caucasian, Asian and biracial (Caucasian-Asian) infants’ ability to distinguish Caucasian and Asian faces. Infants completed two within-subject, infant-controlled habituation sequences and test trials as an eye tracker recorded looking times and scanning patterns. Examination of individual differences revealed significant positive correlations between own-race novelty preference and scanning frequency between eye and mouth regions of own-race habituation stimuli for Caucasian and Asian infants, suggesting that facility in own-race face discrimination stems from active inspection of internal facial features in these groups. Biracial infants, however, showed the opposite effect: An “own-race” novelty preference was associated with reduced scanning between eye and mouth regions of “own-race” habituation stimuli, suggesting that biracial infants use a distinct approach to processing frequently encountered faces. Future directions for investigating face processing development in biracial populations are discussed. PMID:23106731

  9. Technical note: 3D from standard digital photography of human crania-a preliminary assessment.

    PubMed

    Katz, David; Friess, Martin

    2014-05-01

    This study assessed three-dimensional (3D) photogrammetry as a tool for capturing and quantifying human skull morphology. While virtual reconstruction with 3D surface scanning technology has become an accepted part of the paleoanthropologist's tool kit, recent advances in 3D photogrammetry make it a potential alternative to dedicated surface scanners. The principal advantages of photogrammetry are more rapid raw data collection, simplicity and portability of setup, and reduced equipment costs. We tested the precision and repeatability of 3D photogrammetry by comparing digital models of human crania reconstructed from conventional, 2D digital photographs to those generated using a 3D surface scanner. Overall, the photogrammetry and scanner meshes showed low degrees of deviation from one another. Surface area estimates derived from photogrammetry models tended to be slightly larger. Landmark configurations generally did not cluster together based upon whether the reconstruction was created with photogrammetry or surface scanning technology. Average deviations of landmark coordinates recorded on photogrammetry models were within the generally allowable range of error in osteometry. Thus, while dependent upon the needs of the particular research project, 3D photogrammetry appears to be a suitable, lower-cost alternative to 3D imaging and scanning options. Copyright © 2014 Wiley Periodicals, Inc.

  10. Multiple echo multi-shot diffusion sequence.

    PubMed

    Chabert, Steren; Galindo, César; Tejos, Cristian; Uribe, Sergio A

    2014-04-01

    To measure both transversal relaxation time (T2 ) and diffusion coefficients within a single scan using a multi-shot approach. Both measurements have drawn interest in many applications, especially in skeletal muscle studies, which have short T2 values. Multiple echo single-shot schemes have been proposed to obtain those variables simultaneously within a single scan, resulting in a reduction of the scanning time. However, one problem with those approaches is the associated long echo read-out. Consequently, the minimum achievable echo time tends to be long, limiting the application of these sequences to tissues with relatively long T2 . To address this problem, we propose to extend the multi-echo sequences using a multi-shot approach, so that to allow shorter echo times. A multi-shot dual-echo EPI sequence with diffusion gradients and echo navigators was modified to include independent diffusion gradients in any of the two echoes. The multi-shot approach allows us to drastically reduce echo times. Results showed a good agreement for the T2 and mean diffusivity measurements with gold standard sequences in phantoms and in vivo data of calf muscles from healthy volunteers. A fast and accurate method is proposed to measure T2 and diffusion coefficients simultaneously, tested in vitro and in healthy volunteers. Copyright © 2013 Wiley Periodicals, Inc.

  11. Quantification of in vitro produced wear sites on composite resins using contact profilometry and CCD microscopy: a methodological investigation.

    PubMed

    Koottathape, Natthavoot; Takahashi, Hidekazu; Finger, Wernerj; Kanehira, Masafumi; Iwasaki, Naohiko; Aoyagi, Yujin

    2012-06-01

    Although attritive and abrasive wear of recent composite resins has been substantially reduced, in vitro wear testing with reasonably simulating devices and quantitative determination of resulting wear is still needed. Three-dimensional scanning methods are frequently used for this purpose. The aim of this trial was to compare maximum depth of wear and volume loss of composite samples, evaluated with a contact profilometer and a non-contact CCD camera imaging system, respectively. Twenty-three random composite specimens with wear traces produced in a ball-on-disc sliding device, using poppy seed slurry and PMMA suspension as third-body media, were evaluated with the contact profilometer (TalyScan 150, Taylor Hobson LTD, Leicester, UK) and with the digital CCD microscope (VHX1000, KEYENCE, Osaka, Japan). The target parameters were maximum depth of the wear and volume loss.Results - The individual time of measurement needed with the non-contact CCD method was almost three hours less than that with the contact method. Both, maximum depth of wear and volume loss data, recorded with the two methods were linearly correlated (r(2) > 0.97; p < 0.01). The contact scanning method and the non-contact CCD method are equally suitable for determination of maximum depth of wear and volume loss of abraded composite resins.

  12. Can younger drivers be trained to scan for information that will reduce their risk in roadway traffic scenarios that are hard to identify as hazardous?

    PubMed Central

    Pradhan, A.K.; Pollatsek, A.; Knodler, M.; Fisher, D.L.

    2009-01-01

    Younger drivers (18–21 years) are over-involved in crashes. Research suggests that one of the reasons for this over-involvement is their failure to scan areas of the roadway for information about potential risks in situations that are hazardous, but not obviously so. The primary objective of the present study is to develop and evaluate a training program that addresses this failure. It was hypothesised that PC-based hazard anticipation training would increase the likelihood that younger drivers would scan for potential hazards on the open road. In order to test this hypothesis, 12 trained and 12 untrained drivers' eye movements were measured as they drove a vehicle on local residential, feeder and arterial roads. Overall, the trained drivers were significantly more likely to gaze at areas of the roadway that contained information relevant to the reduction of risks (64.4%) than were the untrained drivers (37.4%). Significant training effects were observed even in situations on the road that were quite different from those shown in training. These findings have clear implications for the type of training of teen drivers that is necessary in order to increase their anticipation of hazards. PMID:19296315

  13. Wi-Fi location fingerprinting using an intelligent checkpoint sequence

    NASA Astrophysics Data System (ADS)

    Retscher, Günther; Hofer, Hannes

    2017-09-01

    For Wi-Fi positioning location fingerprinting is very common but has the disadvantage that it is very labour consuming for the establishment of a database (DB) with received signal strength (RSS) scans measured on a large number of known reference points (RPs). To overcome this drawback a novel approach is developed which uses a logical sequence of intelligent checkpoints (iCPs) instead of RPs distributed in a regular grid. The iCPs are the selected RPs which have to be passed along the way for navigation from a start point A to the destination B. They are twofold intelligent because of the fact that they depend on their meaningful selection and because of their logical sequence in their correct order. Thus, always the following iCP is known due to a vector graph allocation in the DB and only a small limited number of iCPs needs to be tested when matching the current RSS scans. This reduces the required processing time significantly. It is proven that the iCP approach achieves a higher success rate than conventional approaches. In average correct matching results of 90.0% were achieved using a joint DB including RSS scans of all employed smartphones. An even higher success rate is achieved if the same mobile device is used in both the training and positioning phase.

  14. Parent perspectives and preferences for strategies regarding nonsedated MRI scans in a pediatric oncology population.

    PubMed

    Walker, Breya; Conklin, Heather M; Anghelescu, Doralina L; Hall, Lacey P; Reddick, Wilburn E; Ogg, Robert; Jacola, Lisa M

    2018-06-01

    Children with cancer frequently require MRI scans for clinical purposes. Sedation with general anesthesia (GA) is often used to promote compliance, reduce motion, and alleviate anxiety. The use of GA for MRI scans is costly in terms of time, personnel, and medications. In addition, prominent risks are associated with anesthesia exposure in patients with complex medical conditions. Successful behavioral interventions have been implemented in clinical research settings to promote scan success and compliance. To our knowledge, parent/caregiver acceptability of behavioral interventions to promote nonsedated MRI has not been systematically investigated in a medically complex population. As a first step toward developing a protocol-based intervention to promote nonsedated scanning, we conducted a survey to explore parental perspectives regarding acceptability of nonsedated scanning and to gain information regarding preference for specific behavioral interventions to facilitate nonsedated MRI exams. Parents or guardians of 101 patients diagnosed with childhood cancer participated in a semi-structured survey via telephone. The sample was stratified by age group (8-12 years; 13-18 years), gender, and diagnosis (solid tumor (ST), brain tumor (BT), and acute lymphoblastic leukemia (ALL)). The majority of parents indicated that nonsedated MRI scans would be acceptable. Reduced anesthesia exposure was the most frequently identified benefit, followed by decreased irritability post-MRI scan, and shorter appointment time. Challenges included fear of movement and noise during scans and change in routine, with parents of younger children and those with a history of sedated exams identifying more challenges. Behavioral intervention preference differed by patient age and gender; however, education was ranked as most preferred overall. Parents of children treated for cancer consider behavior interventions to promote nonsedated scanning as acceptable. Patient characteristics should be considered when tailoring behavioral interventions. Results can inform future studies of behavioral interventions to promote nonsedated MRI scans. Future research should also investigate the risks associated with failed exams, both in terms of patient medical care and cost effectiveness.

  15. Safe Active Scanning for Energy Delivery Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, J.; Salazar, B.; Scheibel, P.

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into themore » details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.« less

  16. MO-F-CAMPUS-I-04: Patient Eye-Lens Dose Reduction in Routine Brain CT Examinations Using Organ-Based Tube Current Modulation and In-Plane Bismuth Shielding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan

    Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less

  17. The experience of patients participating in a small randomised control trial that explored two different interventions to reduce anxiety prior to an MRI scan.

    PubMed

    Tugwell-Allsup, J; Pritchard, A W

    2018-05-01

    This paper reports qualitative findings from within a larger randomised control trial where a video clip or telephone conversation with a radiographer was compared to routine appointment letter and information sheet to help alleviate anxiety prior to their MRI scan. Questionnaires consisting of three free-text response questions were administered to all of the 74 patients recruited to the MRI anxiety clinical trial. The questionnaire was designed to establish patients' experiences of the intervention they had received. These questionnaires were administered post-scan. Two participants from each trial arm were also interviewed. A thematic approach was utilised for identifying recurrent categories emerging from the qualitative data which are supported by direct quotations. Participants in the interventional groups commented positively about the provision of pre-MRI scan information they received and this was contrastable with the relatively indifferent responses observed among those who received the standard information letter. Many important themes were identified including the patients needs for clear and simplified information, the experience of anticipation when waiting for the scan, and also the informally acquired information about having an MRI scan i.e. the shared experiences of friends and family. All themes highlighted the need for an inclusive and individually tailored approach to pre-scan information provision. Qualitative data collected throughout the trial is supportive of the statistical findings, where it is asserted that the use of a short video clip or a radiographer having a short conversation with patients before their scan reduces pre-scan anxiety. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Comparing the effectiveness of four desensitizing toothpastes on dentinal tubule occlusion: A scanning electron microscope analysis.

    PubMed

    Jena, Amit; Kala, Soumik; Shashirekha, Govind

    2017-01-01

    Dentin hypersensitivity (DH) is a sudden short sharp pain best explained by hydrodynamic theory. Several agents are available throughout the market that can treat DH either by blocking the nerves that helps in conducting pain or by blocking the open dentinal tubules. The aim of the present study was to compare the tubule occluding efficacy of four different desensitizing dentifrices under scanning electron microscope (SEM). Sixty-two dentin blocks measuring 5 mm × 5 mm × 3 mm were obtained from extracted human molar teeth and were randomly divided into five groups: Group 1 - no treatment (control, n = 2); Group 2 - Pepsodent Pro-sensitive relief and repair ( n = 15); Group 3 - Sensodyne repair and protect ( n = 15); Group 4 - Remin Pro ( n = 15); Group 5 - Test toothpaste containing 15% nano-hydroxyapatite (n-HA) crystals ( n = 15). The specimens were brushed for 2 min/day for 14 days and stored in artificial saliva. After final brushing, specimens were gold sputtered and viewed under SEM at ×2000 magnification. Results obtained were statistically analyzed using nonparametric Kruskal-Wallis test and least significant difference post hoc test. All test groups showed significant increase in dentin tubule occlusion as compared to control group. The highest percentage of tubules occluded was shown by Group 4 and Group 5 which was significantly different from other groups ( P ≤ 0.05), and there was no significant difference in tubule occlusion among them. Newer desensitizing dentifrices containing 15% n-HA and Remin Pro can provide effective tubule occlusion and thereby reduce the pain and discomfort caused by DH.

  19. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K; Kuo, H; Ritter, J

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck planmore » with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.« less

  20. The impact of the introduction of PECARN head CT rules on the utilisation of head CT scans in a private tertiary hospital in Sub-Saharan Africa.

    PubMed

    Kobe, Isaac O; Qureshi, Mahmoud M; Hassan, Saidi; Oluoch-Olunya, David L

    2017-12-01

    The decision to order head CT scans to rule out clinically significant traumatic brain injury in mild head injury in children is made on the basis of clinical decision rules of which the Paediatric Emergency Care Applied Research Network (PECARN) CT head rules have been found to be most sensitive. The purpose of this study is to determine the proportion of head CT scans done for children with mild head injury and to determine disposition of patients from casualty after the introduction of PECARN head CT rules compared to the period before. The research question is "will introduction of the PECARN CT head rules reduce the proportion of head CT scans requested for children under 18 years with mild head injury at the AKUHN?" A before and after quasi experimental study with a study population including all children under 18 years presenting to the AKUHN with mild head injury and a Glasgow coma scale of 14 and above on presentation. Sample size was 85. A total of 42 patients files were analysed in the before study while 43 patients were selected for the after study. The median age was 5 years. The proportion of head CT scans reduced from 56% in the before group to 33% in the after group with no missed clinically significant traumatic brain injury. More patients were discharged home after evaluation in the after group (81%) than in the before group (58%). The number of head CT scans ordered reduced without missing any clinically significant traumatic brain injury.

  1. Dual tunneling-unit scanning tunneling microscope for length measurement based on crystalline lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Higuchi, T.; Nishioki, N.

    1997-01-01

    A dual tunneling-unit scanning tunneling microscope (DTU STM) was developed for nm order length measurement with wide scan range. The crystalline lattice of highly oriented pyrolitic graphite (HOPG) was used as reference scale. A reference unit was set up on top of a test unit. The reference sample holder and the probe tip of test unit were attached to one single XY scanner on either surface, while the test sample holder was open. This enables simultaneous acquisition of wide images of HOPG and test sample. The length in test sample image was measured by counting the number of HOPG lattices.more » An inchworm actuator and an impact drive mechanism were introduced to roughly position probe tips. The XY scanner was designed to be elastic to eliminate image distortion. Some comparison experiments using two HOPG chips were carried out in air. The DTU STM is confirmed to be a stable and more powerful device for length measurement which has nanometer accuracy when covering a wide scan range up to several micrometers, and is capable of measuring comparatively large and heavy samples. {copyright} {ital 1997 American Vacuum Society.}« less

  2. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Donato, A.; Montanari, R.; Sili, A.

    1996-10-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100°C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy.

  3. A comparison of visual inspection time measures in children with cerebral palsy.

    PubMed

    Kaufman, Jacqueline N; Donders, Jacobus; Warschausky, Seth

    2014-05-01

    This study examined the performance of children with and without cerebral palsy on two inspection time (IT) tests, as accessible nonspeeded response measures of cognitive processing speed. Participants, ages 8 to 16, included 66 children with congenital CP and 119 typically developing peers. Measures were two visual IT tasks with identical target stimuli but differential response strategies either via a traditional dual-key method or with an assistive technology pressure switch interface and response option scanning. The CP group had slower IT than the control group independent of test version. Log transformations were used to address skew, and transformed mean intraclass correlations showed moderate agreement between test versions for both participant groups. Bland-Altman plots showed that at higher mean IT thresholds, greater discrepancies between test version scores were observed. Findings support the feasibility of developing tests that reduce speeded motor response demands. Future test development should incorporate increased gradations of difficulty at the extremes of neuropsychological functioning to more accurately assess the performance of individuals whose conditions are associated with atypical performance levels. (c) 2014 APA, all rights reserved.

  4. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming

    2015-01-01

    A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.

  5. Transient elastography (FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease - Where do we stand?

    PubMed Central

    Mikolasevic, Ivana; Orlic, Lidija; Franjic, Neven; Hauser, Goran; Stimac, Davor; Milic, Sandra

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Currently, the routinely used modalities are unable to adequately determine the levels of steatosis and fibrosis (laboratory tests and ultrasonography) or cannot be applied as a screening procedure (liver biopsy). Among the non-invasive tests, transient elastography (FibroScan®, TE) with controlled attenuation parameter (CAP) has demonstrated good accuracy in quantifying the levels of liver steatosis and fibrosis in patients with NAFLD, the factors associated with the diagnosis and NAFLD progression. The method is fast, reliable and reproducible, with good intra- and interobserver levels of agreement, thus allowing for population-wide screening and disease follow-up. The initial inability of the procedure to accurately determine fibrosis and steatosis in obese patients has been addressed with the development of the obese-specific XL probe. TE with CAP is a viable alternative to ultrasonography, both as an initial assessment and during follow-up of patients with NAFLD. Its ability to exclude patients with advanced fibrosis may be used to identify low-risk NAFLD patients in whom liver biopsy is not needed, therefore reducing the risk of complications and the financial costs. PMID:27621571

  6. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles.

    PubMed

    Reis, Catarina Pinto; Gomes, Ana; Rijo, Patrícia; Candeias, Sara; Pinto, Pedro; Baptista, Marina; Martinho, Nuno; Ascensão, Lia

    2013-10-01

    Azelaic acid (AzA) is used in the treatment of acne. However, side effects and low compliance have been associated with several topical treatments with AzA. Nanotechnology presents a strategy that can overcome these problems. Polymeric nanoparticles can control drug release and targeting and reduce local drug toxicity. The aim of this study was to produce and evaluate an innovative topical treatment for acne with AzA-loaded poly-DL-lactide/glycolide copolymer nanoparticles. A soft white powder of nanoparticles was prepared. The mean size of loaded nanoparticles was < 400 nm and zeta potential was negative. Spherical nanoparticles were observed by scanning electron microscopy. Encapsulation efficiency was around 80% and a strong interaction between the polymer and the drug was confirmed by differential scanning calorimetric analysis. In vitro drug release studies suggested a controlled and pulsatile release profile. System efficacy tests suggested similar results between the loaded nanoparticles and the nonencapsulated drug against the most common bacteria associated with acne. Cytotoxicity of AzA-loaded nanoparticles was concentration dependent, although not pronounced. The occluded patch test seemed to indicate that the formulation excipients were safe and thus AzA-loaded nanoparticles appear to be an efficient and safe treatment for acne.

  7. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients

    PubMed Central

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J.; Schabath, Matthew B.

    2017-01-01

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features. PMID:29221183

  8. Scanning electron microscopy and roughness study of dental composite degradation.

    PubMed

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  9. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  10. [Magnetic resonance spectroscopy in lenticular nucleus of Bipolar II disorder and its relation with cognitive function].

    PubMed

    Zhang, Haiyan; Wen, Shenglin; Wang, Jihui; Cheng, Minfeng; Wang, Hong

    2015-03-10

    To explore the magnetic resonance spectroscopy characteristics of lenticular nucleus in Bipolar II disorder and its relation with cognitive function. Thirty Bipolar II disorder patients in hospital from 2012 September to 2013 April and twenty healthy controls were evaluated with Multi-Voxel 1H-MRS scans on lenticular nucleus to assess the NAA, Cho, Cr and MI. All subjects were assessed for attention using the Stroop Test and executive function by Wisconsin card sorting test. NAA, Cho, Cr in right lenticular nucleus and Cr in left lenticular nucleus were lower than healthy controls (P < 0.05). The patients showed significant cognitive impairment in all aspects of Stroop Test and Wisconsin card sorting test (P < 0.05). NAA in right lenticular nucleus was positively correlated with correct number of Stroop-CW. Neural dysfunction in right lenticular nucleus of Bipolar II disorder may influence attention function. Cellular energy metabolism rate was reduced in bilateral lenticular nucleus.

  11. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    PubMed Central

    Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960

  12. Landscape Response to the 1980 Eruption of Mount St. Helens: Using Historical Aerial Photography to Measure Surface Change

    NASA Astrophysics Data System (ADS)

    Sweeney, K.; Major, J. J.

    2016-12-01

    Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.

  13. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    PubMed

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  14. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less

  15. A Quality Improvement Project to Decrease Human Milk Errors in the NICU.

    PubMed

    Oza-Frank, Reena; Kachoria, Rashmi; Dail, James; Green, Jasmine; Walls, Krista; McClead, Richard E

    2017-02-01

    Ensuring safe human milk in the NICU is a complex process with many potential points for error, of which one of the most serious is administration of the wrong milk to the wrong infant. Our objective was to describe a quality improvement initiative that was associated with a reduction in human milk administration errors identified over a 6-year period in a typical, large NICU setting. We employed a quasi-experimental time series quality improvement initiative by using tools from the model for improvement, Six Sigma methodology, and evidence-based interventions. Scanned errors were identified from the human milk barcode medication administration system. Scanned errors of interest were wrong-milk-to-wrong-infant, expired-milk, or preparation errors. The scanned error rate and the impact of additional improvement interventions from 2009 to 2015 were monitored by using statistical process control charts. From 2009 to 2015, the total number of errors scanned declined from 97.1 per 1000 bottles to 10.8. Specifically, the number of expired milk error scans declined from 84.0 per 1000 bottles to 8.9. The number of preparation errors (4.8 per 1000 bottles to 2.2) and wrong-milk-to-wrong-infant errors scanned (8.3 per 1000 bottles to 2.0) also declined. By reducing the number of errors scanned, the number of opportunities for errors also decreased. Interventions that likely had the greatest impact on reducing the number of scanned errors included installation of bedside (versus centralized) scanners and dedicated staff to handle milk. Copyright © 2017 by the American Academy of Pediatrics.

  16. SU-E-E-11: Novel Matching Module for Respiration-Gated Motion Tumor of Cone-Beam Computed Tomography (CBCT) to 4DCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, P; Tsai, Y; Nien, H

    2015-06-15

    Purpose: Four dimensional computed tomography (4DCT) scans reliably record whole respiratory phase and generate internal target volumes (ITV) for radiotherapy planning. However, image guiding with cone-beam computed tomography (CBCT) cannot acquire all or specific respiratory phases. This study was designed to investigate the correlation between average CT and Maximum Intensity Projection (MIP) from 4DCT and CBCT. Methods: Retrospective respiratory gating were performed by GE Discovery CT590 RT. 4DCT and CBCT data from CRIS Dynamic Thorax Phantom with simulated breathing mode were analyzed. The lung tissue equivalent material encompassed 3 cm sphere tissue equivalent material. Simulated breathing cycle period was setmore » as 4 seconds, 5 seconds and 6 seconds for representing variation of patient breathing cycle time, and the sphere material moved toward inferior and superior direction with 1 cm amplitude simulating lung tumor motion during respiration. Results: Under lung window, the volume ratio of CBCT scans to ITVs derived from 10 phases average scans was 1.00 ± 0.02, and 1.03 ± 0.03 for ratio of CBCT scans to MIP scans. Under abdomen window, the ratio of CBCT scans to ITVs derived from 10 phases average scans was 0.39 ± 0.06, and 0.06 ± 0.00 for ratio of CBCT scans to MIP scans. There was a significant difference between lung window Result and abdomen window Result. For reducing image guiding uncertainty, CBCT window was set with width 500 and level-250. The ratio of CBCT scans to ITVs derived from 4 phases average scans with abdomen window was 1.19 ± 0.02, and 1.06 ± 0.01 for ratio of CBCT to MIP scans. Conclusion: CBCT images with suitable window width and level can efficiently reduce image guiding uncertainty for patient with mobile tumor. By our setting, we can match motion tumor to gating tumor location on planning CT more accurately neglecting other motion artifacts during CBCT scans.« less

  17. The Clouds and the Earth's Radiant Energy System Elevation Bearing Assembly Life Test

    NASA Technical Reports Server (NTRS)

    Brown, Phillip L.; Miller, James B.; Jones, William R., Jr.; Rasmussen, Kent; Wheeler, Donald R.; Rana, Mauro; Peri, Frank

    1999-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) elevation scan bearings lubricated with Pennzane SHF X2000 and 2% lead naphthenate (PbNp) were life tested for a seven-year equivalent Low Earth Orbit (LEO) operation. The bearing life assembly was tested continuously at an accelerated and normal rate using the scanning patterns developed for the CERES Earth Observing System AM-1 mission. A post-life-test analysis was performed on the collected data, bearing wear, and lubricant behavior.

  18. Accelerated damage visualization using binary search with fixed pitch-catch distance laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Park, Byeongjin; Sohn, Hoon

    2017-07-01

    Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.

  19. Eye Exam: Is a Laser Retina Scan Worthwhile?

    MedlinePlus

    Healthy Lifestyle Adult health Is a laser retina scan necessary? My eye care provider offers the test, but I'm not sure if I need it. Answers from Alaina ... Softing Hataye, O.D. For most people, a laser retina scan isn't necessary. If you choose ...

  20. Digital Video of Live-Scan Fingerprint Data

    National Institute of Standards and Technology Data Gateway

    NIST Digital Video of Live-Scan Fingerprint Data (PC database for purchase)   NIST Special Database 24 contains MPEG-2 (Moving Picture Experts Group) compressed digital video of live-scan fingerprint data. The database is being distributed for use in developing and testing of fingerprint verification systems.

  1. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition.

    PubMed

    Richter, Gunther; Hillerich, Karla; Gianola, Daniel S; Mönig, Reiner; Kraft, Oliver; Volkert, Cynthia A

    2009-08-01

    The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities.

  2. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  3. Discovering Visual Scanning Patterns in a Computerized Cancellation Test

    ERIC Educational Resources Information Center

    Huang, Ho-Chuan; Wang, Tsui-Ying

    2013-01-01

    The purpose of this study was to develop an attention sequential mining mechanism for investigating the sequential patterns of children's visual scanning process in a computerized cancellation test. Participants had to locate and cancel the target amongst other non-targets in a structured form, and a random form with Chinese stimuli. Twenty-three…

  4. Confocal laser scanning microscopic photoconversion: a new method to stabilize fluorescently labeled cellular elements for electron microscopic analysis.

    PubMed

    Colello, Raymond J; Tozer, Jordan; Henderson, Scott C

    2012-01-01

    Photoconversion, the method by which a fluorescent dye is transformed into a stable, osmiophilic product that can be visualized by electron microscopy, is the most widely used method to enable the ultrastructural analysis of fluorescently labeled cellular structures. Nevertheless, the conventional method of photoconversion using widefield fluorescence microscopy requires long reaction times and results in low-resolution cell targeting. Accordingly, we have developed a photoconversion method that ameliorates these limitations by adapting confocal laser scanning microscopy to the procedure. We have found that this method greatly reduces photoconversion times, as compared to conventional wide field microscopy. Moreover, region-of-interest scanning capabilities of a confocal microscope facilitate the targeting of the photoconversion process to individual cellular or subcellular elements within a fluorescent field. This reduces the area of the cell exposed to light energy, thereby reducing the ultrastructural damage common to this process when widefield microscopes are employed. © 2012 by John Wiley & Sons, Inc.

  5. Reducing flicker due to ambient illumination in camera captured images

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bengtson, Kurt; Li, Lisa; Allebach, Jan P.

    2013-02-01

    The flicker artifact dealt with in this paper is the scanning distortion arising when an image is captured by a digital camera using a CMOS imaging sensor with an electronic rolling shutter under strong ambient light sources powered by AC. This type of camera scans a target line-by-line in a frame. Therefore, time differences exist between the lines. This mechanism causes a captured image to be corrupted by the change of illumination. This phenomenon is called the flicker artifact. The non-content area of the captured image is used to estimate a flicker signal that is a key to being able to compensate the flicker artifact. The average signal of the non-content area taken along the scan direction has local extrema where the peaks of flicker exist. The locations of the extrema are very useful information to estimate the desired distribution of pixel intensities assuming that the flicker artifact does not exist. The flicker-reduced images compensated by our approach clearly demonstrate the reduced flicker artifact, based on visual observation.

  6. Air traffic control specialist visual scanning II : task load, visual noise, and intrusions into controlled airspace.

    DOT National Transportation Integrated Search

    1999-12-01

    The Federal Aviation Administration (FAA) started an Air Traffic Control Specialist (ATCS) information-scanning program a number : of years ago. The goal is to learn about how controllers use information displays and develop techniques for reducing a...

  7. Lessons Learned in the First Year Operating Software Defined Radios in Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard

    2014-01-01

    Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDRs approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.

  8. Lessons Learned in the First Year Operating Software Defined Radios in Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Mortensen, Dale; Shalkhauser, Mary Jo; Johnson, Sandra K.; Reinhart, Richard

    2014-01-01

    Operating three unique software defined radios (SDRs) in a space environment aboard the Space Communications and Navigation (SCaN) Testbed for over one year has provided an opportunity to gather knowledge useful for future missions considering using software defined radios. This paper provides recommendations for the development and use of SDRs, and it considers the details of each SDR's approach to software upgrades and operation. After one year, the SCaN Testbed SDRs have operated for over 1000 hours. During this time, the waveforms launched with the SDR were tested on-orbit to assure that they operated in space at the same performance level as on the ground prior to launch to obtain an initial on-orbit performance baseline. A new waveform for each SDR has been developed, implemented, uploaded to the flight system, and tested in the flight environment. Recommendations for SDR-based missions have been gathered from early development through operations. These recommendations will aid future missions to reduce the cost, schedule, and risk of operating SDRs in a space environment. This paper considers the lessons learned as they apply to SDR pre-launch checkout, purchasing space-rated hardware, flexibility in command and telemetry methods, on-orbit diagnostics, use of engineering models to aid future development, and third-party software. Each SDR implements the SCaN Testbed flight computer command and telemetry interface uniquely, allowing comparisons to be drawn. The paper discusses the lessons learned from these three unique implementations, with suggestions on the preferred approach. Also, results are presented showing that it is important to have full system performance knowledge prior to launch to establish better performance baselines in space, requiring additional test applications to be developed pre-launch. Finally, the paper presents the issues encountered with the operation and implementation of new waveforms on each SDR and proposes recommendations to avoid these issues.

  9. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    PubMed

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  10. Computed tomography scan to detect traumatic arthrotomies and identify periarticular wounds not requiring surgical intervention: an improvement over the saline load test.

    PubMed

    Konda, Sanjit R; Davidovitch, Roy I; Egol, Kenneth A

    2013-09-01

    To report our experience with computed tomography (CT) scans to detect traumatic arthrotomies of the knee (TAK) joint based on the presence of intra-articular air. Retrospective review. Level I trauma center. Sixty-two consecutive patients (63 knees) underwent a CT scan of the knee in the emergency department and had a minimum of 14 days follow-up. Cohort of 37 patients (37 knees) from the original 62 patients who underwent a saline load test (SLT). CT scan and SLT. Positive traumatic arthrotomy of the knee (+TAK) was defined as operating room (OR) confirmation of an arthrotomy or no intra-articular air on CT scan (-iaCT) (and -SLT if performed) with follow-up revealing a septic knee. Periarticular wound equivalent to no traumatic arthrotomy (pw = (-TAK)) was defined as OR evaluation revealing no arthrotomy or -iaCT (and -SLT if performed) with follow-up revealing no septic knee. All 32 knees with intra-articular air on CT scan (+iaCT) had OR confirmation of a TAK and none of these patients had a knee infection at a mean follow-up of 140.0 ± 279.6 days. None of the 31 patients with -iaCT had a knee infection at a mean follow-up of 291.0 ± 548.1 days. Based on these results, the sensitivity and specificity of the CT scan to detect +TAK and pw = (-TAK) was 100%. In a subgroup of 37 patients that received both a CT scan and the conventional SLT, the sensitivity and specificity of the CT scan was 100% compared with 92% for the SLT (P < 0.001). CT scan performs better than the conventional SLT to detect traumatic knee arthrotomies and identify periarticular knee wounds that do not require surgical intervention and should be considered a valid diagnostic test in the appropriate clinical setting. Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  11. Can Mixed-Species Groups Reduce Individual Parasite Load? A Field Test with Two Closely Related Poeciliid Fishes (Poecilia reticulata and Poecilia picta)

    PubMed Central

    Dargent, Felipe; Torres-Dowdall, Julián; Scott, Marilyn E.; Ramnarine, Indar; Fussmann, Gregor F.

    2013-01-01

    Predation and parasitism are two of the most important sources of mortality in nature. By forming groups, individuals can gain protection against predators but may increase their risk of being infected with contagious parasites. Animals might resolve this conflict by forming mixed-species groups thereby reducing the costs associated with parasites through a relative decrease in available hosts. We tested this hypothesis in a system with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta) and their host-specific monogenean ectoparasites (Gyrodactylus spp.) in Trinidad. Fish from three different rivers were sampled from single and mixed-species groups, measured and scanned for Gyrodactylus. The presence and abundance of Gyrodactylus were lower when fish of both species were part of mixed-species groups relative to single-species groups. This is consistent with the hypothesis that mixed-species groups provide a level of protection against contagious parasites. We discuss the importance of potentially confounding factors such as salinity and individual fish size. PMID:23437237

  12. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279

  13. Picosecond Pulsed Laser Ablation for the Surface Preparation of Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Fulton, Tayler; Arthur, Alexandria; Eldridge, Keishara; Thibeault, Sheila; Lin, Yi; Wohl, Chris; Connell, John

    2017-01-01

    As part of a technical challenge under the Advanced Composites Program, methods for improving pre-bond process control for aerospace composite surface treatments and inspections, in conjunction with Federal Aviation Administration guidelines, are under investigation. The overall goal is to demonstrate high fidelity, rapid and reproducible surface treatment and surface characterization methods to reduce uncertainty associated with the bonding process. The desired outcomes are reliable bonded airframe structure, and reduced timeline to certification. In this work, laser ablation was conducted using a q-switched Nd:YVO4 laser capable of nominal pulse durations of 8 picoseconds (ps). Aerospace structural carbon fiber reinforced composites with an epoxy resin matrix were laser treated, characterized, processed into bonded assemblies and mechanically tested. The characterization of ablated surfaces were conducted using scanning electron microscopy (SEM), water contact angle (WCA) goniometry, micro laser induced breakdown spectroscopy (uLIBS), and electron spin resonance (ESR). The bond performance was assessed using a double cantilever beam (DCB) test with an epoxy adhesive. The surface characteristics and bond performance obtained from picosecond ablated carbon fiber reinforced plastics (CFRPs) are presented herein.

  14. MutScan: fast detection and visualization of target mutations by scanning FASTQ data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Wen, Tiexiang; Li, Hong; Xu, Mingyan; Gu, Jia

    2018-01-22

    Some types of clinical genetic tests, such as cancer testing using circulating tumor DNA (ctDNA), require sensitive detection of known target mutations. However, conventional next-generation sequencing (NGS) data analysis pipelines typically involve different steps of filtering, which may cause miss-detection of key mutations with low frequencies. Variant validation is also indicated for key mutations detected by bioinformatics pipelines. Typically, this process can be executed using alignment visualization tools such as IGV or GenomeBrowse. However, these tools are too heavy and therefore unsuitable for validating mutations in ultra-deep sequencing data. We developed MutScan to address problems of sensitive detection and efficient validation for target mutations. MutScan involves highly optimized string-searching algorithms, which can scan input FASTQ files to grab all reads that support target mutations. The collected supporting reads for each target mutation will be piled up and visualized using web technologies such as HTML and JavaScript. Algorithms such as rolling hash and bloom filter are applied to accelerate scanning and make MutScan applicable to detect or visualize target mutations in a very fast way. MutScan is a tool for the detection and visualization of target mutations by only scanning FASTQ raw data directly. Compared to conventional pipelines, this offers a very high performance, executing about 20 times faster, and offering maximal sensitivity since it can grab mutations with even one single supporting read. MutScan visualizes detected mutations by generating interactive pile-ups using web technologies. These can serve to validate target mutations, thus avoiding false positives. Furthermore, MutScan can visualize all mutation records in a VCF file to HTML pages for cloud-friendly VCF validation. MutScan is an open source tool available at GitHub: https://github.com/OpenGene/MutScan.

  15. Chromatic dispersive confocal technology for intra-oral scanning: first in-vitro results

    NASA Astrophysics Data System (ADS)

    Ertl, T.; Zint, M.; Konz, A.; Brauer, E.; Hörhold, H.; Hibst, R.

    2015-02-01

    Various test objects, plaster models, partially equipped with extracted teeth and pig jaws representing various clinical situations of tooth preparations were used for in-vitro scanning tests with an experimental intra-oral scanning system based on chromatic-dispersive confocal technology. Scanning results were compared against data sets of the same object captured by an industrial μCT measuring system. Compared to μCT data an average error of 18 - 30 μm was achieved for a single tooth scan area and less than 40 to 60 μm error measured over the restoration + the neighbor teeth and pontic areas up to 7 units. Mean error for a full jaw is within 100 - 140 μm. The length error for a 3 - 4 unit bridge situation form contact point to contact point is below 100 μm and excellent interproximal surface coverage and prep margin clarity was achieved.

  16. Electronic noise in CT detectors: Impact on image noise and artifacts.

    PubMed

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  17. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways

    NASA Astrophysics Data System (ADS)

    Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.

    2017-03-01

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  18. Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways.

    PubMed

    Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R

    2017-03-08

    Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.

  19. Interconnect mechanisms in microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Roma, Maria Penafrancia C.

    Global economic, environmental and market developments caused major impact in the microelectronics industry. Astronomical rise of gold metal prices over the last decade shifted the use of copper and silver alloys as bonding wires. Environmental legislation on the restriction of the use of Pb launched worldwide search for lead-free solders and platings. Finally, electrical and digital uses demanded smaller, faster and cheaper devices. Ultra-fine pitch bonding, decreasing bond wire sizes and hard to bond substrates have put the once-robust stitch bond in the center of reliability issues due to stitch bond lift or open wires .Unlike the ball bond, stitch bonding does not lead to intermetallic compound formation but adhesion is dependent on mechanical deformation, interdiffusion, solid solution formation, void formation and mechanical interlocking depending on the wire material, bond configuration, substrate type , thickness and surface condition. Using Au standoff stitch bonds on NiPdAu plated substrates eliminated stitch bond lift even when the Au and Pd layers are reduced. Using the Matano-Boltzmann analysis on a STEM (Scanning Transmission Analysis) concentration profile the interdiffusion coefficient is measured to be 10-16 cm 2/s. Wire pull strength data showed that the wire pull strength is 0.062N and increases upon stress testing. Meanwhile, coating the Cu wire with Pd, not only increases oxidation resistance but also improved adhesion due to the formation of a unique interfacial adhesion layers. Adhesion strength as measured by pull showed the Cu wire bonded to Ag plated Cu substrate (0.132N) to be stronger than the Au wire bonded on the same substrate (0.124N). Ag stitch bonded to Au is predicted to be strong but surface modification made the adhesion stronger. However, on the Ag ball bonded to Al showed multiple IMC formation with unique morphology exposed by ion milling and backscattered scanning electron microscopy. Adding alloying elements in the Ag wire alloy showed differences in adhesion strength and IMC formation. Bond strength by wire pull testing showed the 95Ag alloy with higher values while shear bond testing showed the 88Ag higher bond strength. Use of Cu pillars in flip chips and eutectic bonding in wafer level chip scale packages are direct consequences of diminishing interconnect dimension as a result of the drive for miniaturization. The combination of Cu-Sn interdiffusion, Kirkendall mechanism and heterogeneous vacancy precipitation are the main causes of IMC and void formation in Cu pillar - Sn solder - Cu lead frame sandwich structure. However, adding a Ni barrier agent showed less porous IMC layer as well as void formation as a result of the modified Cu and Sn movement well as the void formation. Direct die to die bonding using Al-Ge eutectic bonds is necessary when 3D integration is needed to reduce the footprint of a package. Hermeticity and adhesion strength are a function of the Al/Ge thickness ratio, bonding pressure, temperature and time. Scanning Electron Microscope (SEM) and Focused Ion Beam (FIB) allowed imaging of interfacial microstructures, porosity, grain morphology while Scanning Transmission Electron microscope (STEM) provided diffusion profile and confirmed interdiffusion. Ion polishing technique provided information on porosity and when imaged using backscattered mode, grain structure confirmed mechanical deformation of the bonds. Measurements of the interfacial bond strength are made by wire pull tests and ball shear tests based on existing industry standard tests. However, for the Al-Ge eutectic bonds, no standard strength is available so a test is developed using the stud pull test method using the Dage 4000 Plus to yield consistent results. Adhesion strengths of 30-40 MPa are found for eutectic bonded packages however, as low as 20MPa was measured in low temperature bonded areas.

  20. Evaluation of a laser scanning sensor for variable-rate tree sprayer development

    USDA-ARS?s Scientific Manuscript database

    Accurate canopy measurement capabilities are prerequisites to automate variable-rate sprayers. A 270° radial range laser scanning sensor was tested for its scanning accuracy to detect tree canopy profiles. Signals from the laser sensor and a ground speed sensor were processed with an embedded comput...

  1. Quantitative 3-d diagnostic ultrasound imaging using a modified transducer array and an automated image tracking technique.

    PubMed

    Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S

    2002-08-01

    An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.

  2. Transformation fatigue and stress relaxation of shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Pappas, P.; Bollas, D.; Parthenios, J.; Dracopoulos, V.; Galiotis, C.

    2007-12-01

    The present work deals with the stress generation capability of nickel-titanium shape memory alloys (SMAs) under constrained conditions for two well-defined loading modes: recurrent crystalline transformation (transformation fatigue) and a one-step continuous activation (generated stress relaxation). The data acquired will be very useful during the design process of an SMA Ni-Ti element as a functional part of an assembly. Differential scanning calorimetry (DSC) was employed in order to investigate the transformation characteristics of the alloy before and after the tests. Transformation fatigue tests revealed that the parameter that affects more the rate of the functional degradation is the number of crystalline transitions the wire undergoes. Thus, the service life limit of this material as a stress generator can be reduced to a few thousand working cycles. For stress relaxation, the main factor that affects the ability for stress generation is the working temperature: the higher the temperature above the austenite finish (TAf) limit the higher the relaxation effect. Thermomechanical treatment of the alloy during the tests reveals the 'hidden' transformation from the cubic structure (B2) of austenite to the rhombohedral structure of the R-phase. It is believed that the gradual loss of the stress generation capability of the material under constrained conditions must be associated to a gradual slipping relaxation mechanism. Scanning electron microscopy (SEM) observations on as-received, re-trained, fatigued and stress-relaxed specimens in the martensitic state provide further support for this hypothesis.

  3. Value of initial radiological investigations in patients admitted to hospital with appendicitis, acute gallbladder disease or acute pancreatitis.

    PubMed

    Bhangu, Aneel; Richardson, Charlotte; Winter, Hannah; Bleetman, Anthony

    2010-10-01

    To determine the value of abdominal radiography (AXR) for investigating patients attending hospital with a first episode of appendicitis (requiring appendicectomy), acute gallbladder disease or acute pancreatitis, and to identify if early (within 18 h) ultrasound or CT scanning reduces the use of AXR. Setting Two acute teaching hospitals during August-September 2008 and February-March 2009. Audit of 355 patients (179 patients (50%) who underwent appendicectomy, 128 (36%) admitted with acute gallbladder disease and 48 (14%) with acute pancreatitis). AXR was performed in 53 patients (30%) who underwent appendicectomy, 73 (57%) with acute gallstone disease and 38 (78%) with acute pancreatitis. The useful abnormality pick-up rate was low; 9% (n=5), 5% (n=4) and 0% (n=0), respectively. When used, ultrasound confirmed the diagnosis in 84% (140/166) and CT scanning (either after AXR or as first line) in 97% (34/35). 42 patients underwent early ultrasound (n=27) or CT scanning (n=15), which together reduced the rate of AXR usage by 34% (14/42 early vs 107/159 delayed, p<0.001). AXR does not aid diagnosis of these conditions but is still performed. Early ultrasound or CT scanning reduces the use of AXR and are more sensitive; methods of providing these should be explored.

  4. Controlled mechnical modification of manganite surface with nanoscale resolution

    DOE PAGES

    Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...

    2014-11-07

    We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less

  5. Accuracy enhanced distance measurement system using double-sideband modulated frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Xilun; Wang, Xiangchuan; Pan, Shilong

    2017-03-01

    An implementation of a distance measurement system using double-sideband with suppressed carrier modulation (DSB-SC) frequency scanning interferometry is proposed to reduce the variations in the optical path and improve the measurement accuracy. In this proposed system, the electro-optic DSB-SC is used to create dual-swept signals with opposite scanning directions. For each swept signal, the relative distance between the reference arm and the measuring arm is determined by the beat frequency of signals from two arms. By multiplying both beat signals, measurement errors caused by variations in the optical path can be greatly reduced. As an experimental demonstration, a vibration was introduced in the optical path length. The experimental results show that the variations can be suppressed for over 19.9 dB.

  6. Ultrafast web inspection with hybrid dispersion laser scanner.

    PubMed

    Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram

    2013-06-10

    We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.

  7. Variability in CT lung-nodule volumetry: Effects of dose reduction and reconstruction methods.

    PubMed

    Young, Stefano; Kim, Hyun J Grace; Ko, Moe Moe; Ko, War War; Flores, Carlos; McNitt-Gray, Michael F

    2015-05-01

    Measuring the size of nodules on chest CT is important for lung cancer staging and measuring therapy response. 3D volumetry has been proposed as a more robust alternative to 1D and 2D sizing methods. There have also been substantial advances in methods to reduce radiation dose in CT. The purpose of this work was to investigate the effect of dose reduction and reconstruction methods on variability in 3D lung-nodule volumetry. Reduced-dose CT scans were simulated by applying a noise-addition tool to the raw (sinogram) data from clinically indicated patient scans acquired on a multidetector-row CT scanner (Definition Flash, Siemens Healthcare). Scans were simulated at 25%, 10%, and 3% of the dose of their clinical protocol (CTDIvol of 20.9 mGy), corresponding to CTDIvol values of 5.2, 2.1, and 0.6 mGy. Simulated reduced-dose data were reconstructed with both conventional filtered backprojection (B45 kernel) and iterative reconstruction methods (SAFIRE: I44 strength 3 and I50 strength 3). Three lab technologist readers contoured "measurable" nodules in 33 patients under each of the different acquisition/reconstruction conditions in a blinded study design. Of the 33 measurable nodules, 17 were used to estimate repeatability with their clinical reference protocol, as well as interdose and inter-reconstruction-method reproducibilities. The authors compared the resulting distributions of proportional differences across dose and reconstruction methods by analyzing their means, standard deviations (SDs), and t-test and F-test results. The clinical-dose repeatability experiment yielded a mean proportional difference of 1.1% and SD of 5.5%. The interdose reproducibility experiments gave mean differences ranging from -5.6% to -1.7% and SDs ranging from 6.3% to 9.9%. The inter-reconstruction-method reproducibility experiments gave mean differences of 2.0% (I44 strength 3) and -0.3% (I50 strength 3), and SDs were identical at 7.3%. For the subset of repeatability cases, inter-reconstruction-method mean/SD pairs were (1.4%, 6.3%) and (-0.7%, 7.2%) for I44 strength 3 and I50 strength 3, respectively. Analysis of representative nodules confirmed that reader variability appeared unaffected by dose or reconstruction method. Lung-nodule volumetry was extremely robust to the radiation-dose level, down to the minimum scanner-supported dose settings. In addition, volumetry was robust to the reconstruction methods used in this study, which included both conventional filtered backprojection and iterative methods.

  8. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    PubMed

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  9. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs

    PubMed Central

    Andreka, Gyorgy; Vertesaljai, Marton; Szantho, Gergely; Font, Gusztav; Piroth, Zsolt; Fontos, Geza; Juhasz, Eszter D; Szekely, Laszlo; Szelid, Zsolt; Turner, Mark S; Ashrafian, Houman; Frenneaux, Michael P

    2007-01-01

    Background Ischaemic preconditioning results in a reduction in ischaemic‐reperfusion injury to the heart. This beneficial effect is seen both with direct local preconditioning of the myocardium and with remote preconditioning of easily accessible distant non‐vital limb tissue. Ischaemic postconditioning with a comparable sequence of brief periods of local ischaemia, when applied immediately after the ischaemic insult, confers benefits similar to preconditioning. Objective To test the hypothesis that limb ischaemia induces remote postconditioning and hence reduces experimental myocardial infarct size in a validated swine model of acute myocardial infarction. Methods Acute myocardial infarction was induced in 24 pigs with 90 min balloon inflations of the left anterior descending coronary artery. Remote ischaemic postconditioning was induced in 12 of the pigs by four 5 min cycles of blood pressure cuff inflation applied to the lower limb immediately after the balloon deflation. Infarct size was assessed by measuring 72 h creatinine kinase release, MRI scan and immunohistochemical analysis. Results Area under the curve of creatinine kinase release was significantly reduced in the postconditioning group compared with the control group with a 26% reduction in the infarct size (p<0.05). This was confirmed by MRI scanning and immunohistochemical analysis that revealed a 22% (p<0.05) and a 47.52% (p<0.01) relative reduction in the infarct size, respectively. Conclusion Remote ischaemic postconditioning is a simple technique to reduce infarct size without the hazards and logistics of multiple coronary artery balloon inflations. This type of conditioning promises clear clinical potential. PMID:17449499

  10. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    PubMed Central

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-01-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation. PMID:21806256

  11. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    NASA Astrophysics Data System (ADS)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  12. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage.

    PubMed

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO(2) lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO(2) laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO(2) lasers with minimal peripheral thermal and mechanical damage and without excessive heat accumulation.

  13. Weight bearing cone beam CT scan versus gravity stress radiography for analysis of supination external rotation injuries of the ankle.

    PubMed

    Marzo, John M; Kluczynski, Melissa A; Clyde, Corey; Anders, Mark J; Mutty, Christopher E; Ritter, Christopher A

    2017-12-01

    For AO 44-B2 ankle fractures of uncertain stability, the current diagnostic standard is to obtain a gravity stress radiograph, but some have advocated for the use of weight-bearing radiographs. The primary aim was to compare measures of medial clear space (MCS) on weight-bearing cone beam computed tomography (CBCT) scans versus gravity stress radiographs for determining the state of stability of ankle fractures classified as AO SER 44-B2 or Weber B. The secondary aim was to evaluate the details offered by CBCT scans with respect to other findings that may be relevant to patient care. Nine patients were enrolled in this cross-sectional study between April 2016 and February 2017 if they had an AO SER 44-B2 fracture of uncertain stability, had a gravity stress radiograph, and were able to undergo CT scan within seven days. The width of the MCS was measured at the level of the talar dome on all radiographs and at the mid coronal slice on CT. Wilcoxon signed-ranks tests were used to compare MCS between initial radiographs, gravity stress radiographs and weight-bearing CBCT scans. MCS on weight-bearing CBCT scan (1.41±0.41 mm) was significantly less than standard radiographs (3.28±1.63 mm, P=0.004) and gravity stress radiographs (5.82±1.93 mm, P=0.02). There was no statistically significant difference in MCS measured on standard radiographs versus gravity stress radiographs (P=0.11). Detailed review of the multiplanar CT images revealed less than perfect anatomical reduction of the fractures, with residual fibular shortening, posterior displacement, and fracture fragments in the incisura as typical findings. Similar to weight-bearing radiographs, weight-bearing CBCT scan can predict stability of AO 44-B2 ankle fractures by showing restoration of the MCS, and might be used to indicate patients for non-operative treatment. None of the fractures imaged in this study were perfectly reduced however, and further clinical research is necessary to determine if any of the detailed weight-bearing CBCT findings are related to patient outcomes.

  14. I-ImaS: intelligent imaging sensors

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Royle, G.; Esbrand, C.; Hall, G.; Turchetta, R.; Speller, R.

    2010-08-01

    Conventional x-radiography uniformly irradiates the relevant region of the patient. Across that region, however, there is likely to be significant variation in both the thickness and pathological composition of the tissues present, which means that the x-ray exposure conditions selected, and consequently the image quality achieved, are a compromise. The I-ImaS concept eliminates this compromise by intelligently scanning the patient to identify the important diagnostic features, which are then used to adaptively control the x-ray exposure conditions at each point in the patient. In this way optimal image quality is achieved throughout the region of interest whilst maintaining or reducing the dose. An I-ImaS system has been built under an EU Framework 6 project and has undergone pre-clinical testing. The system is based upon two rows of sensors controlled via an FPGA based DAQ board. Each row consists of a 160 mm × 1 mm linear array of ten scintillator coated 3T CMOS APS devices with 32 μm pixels and a readable array of 520 × 40 pixels. The first sensor row scans the patient using a fraction of the total radiation dose to produce a preview image, which is then interrogated to identify the optimal exposure conditions at each point in the image. A signal is then sent to control a beam filter mechanism to appropriately moderate x-ray beam intensity at the patient as the second row of sensors follows behind. Tests performed on breast tissue sections found that the contrast-to-noise ratio in over 70% of the images was increased by an average of 15% at an average dose reduction of 9%. The same technology is currently also being applied to baggage scanning for airport security.

  15. Improving Inpatient Surveys: Web-Based Computer Adaptive Testing Accessed via Mobile Phone QR Codes

    PubMed Central

    2016-01-01

    Background The National Health Service (NHS) 70-item inpatient questionnaire surveys inpatients on their perceptions of their hospitalization experience. However, it imposes more burden on the patient than other similar surveys. The literature shows that computerized adaptive testing (CAT) based on item response theory can help shorten the item length of a questionnaire without compromising its precision. Objective Our aim was to investigate whether CAT can be (1) efficient with item reduction and (2) used with quick response (QR) codes scanned by mobile phones. Methods After downloading the 2008 inpatient survey data from the Picker Institute Europe website and analyzing the difficulties of this 70-item questionnaire, we used an author-made Excel program using the Rasch partial credit model to simulate 1000 patients’ true scores followed by a standard normal distribution. The CAT was compared to two other scenarios of answering all items (AAI) and the randomized selection method (RSM), as we investigated item length (efficiency) and measurement accuracy. The author-made Web-based CAT program for gathering patient feedback was effectively accessed from mobile phones by scanning the QR code. Results We found that the CAT can be more efficient for patients answering questions (ie, fewer items to respond to) than either AAI or RSM without compromising its measurement accuracy. A Web-based CAT inpatient survey accessed by scanning a QR code on a mobile phone was viable for gathering inpatient satisfaction responses. Conclusions With advances in technology, patients can now be offered alternatives for providing feedback about hospitalization satisfaction. This Web-based CAT is a possible option in health care settings for reducing the number of survey items, as well as offering an innovative QR code access. PMID:26935793

  16. Improving Inpatient Surveys: Web-Based Computer Adaptive Testing Accessed via Mobile Phone QR Codes.

    PubMed

    Chien, Tsair-Wei; Lin, Weir-Sen

    2016-03-02

    The National Health Service (NHS) 70-item inpatient questionnaire surveys inpatients on their perceptions of their hospitalization experience. However, it imposes more burden on the patient than other similar surveys. The literature shows that computerized adaptive testing (CAT) based on item response theory can help shorten the item length of a questionnaire without compromising its precision. Our aim was to investigate whether CAT can be (1) efficient with item reduction and (2) used with quick response (QR) codes scanned by mobile phones. After downloading the 2008 inpatient survey data from the Picker Institute Europe website and analyzing the difficulties of this 70-item questionnaire, we used an author-made Excel program using the Rasch partial credit model to simulate 1000 patients' true scores followed by a standard normal distribution. The CAT was compared to two other scenarios of answering all items (AAI) and the randomized selection method (RSM), as we investigated item length (efficiency) and measurement accuracy. The author-made Web-based CAT program for gathering patient feedback was effectively accessed from mobile phones by scanning the QR code. We found that the CAT can be more efficient for patients answering questions (ie, fewer items to respond to) than either AAI or RSM without compromising its measurement accuracy. A Web-based CAT inpatient survey accessed by scanning a QR code on a mobile phone was viable for gathering inpatient satisfaction responses. With advances in technology, patients can now be offered alternatives for providing feedback about hospitalization satisfaction. This Web-based CAT is a possible option in health care settings for reducing the number of survey items, as well as offering an innovative QR code access.

  17. Positioning accuracy during VMAT of gynecologic malignancies and the resulting dosimetric impact by a 6-degree-of-freedom couch in combination with daily kilovoltage cone beam computed tomography.

    PubMed

    Yao, Lihong; Zhu, Lihong; Wang, Junjie; Liu, Lu; Zhou, Shun; Jiang, ShuKun; Cao, Qianqian; Qu, Ang; Tian, Suqing

    2015-04-26

    To improve the delivery of radiotherapy in gynecologic malignancies and to minimize the irradiation of unaffected tissues by using daily kilovoltage cone beam computed tomography (kV-CBCT) to reduce setup errors. Thirteen patients with gynecologic cancers were treated with postoperative volumetric-modulated arc therapy (VMAT). All patients had a planning CT scan and daily CBCT during treatment. Automatic bone anatomy matching was used to determine initial inter-fraction positioning error. Positional correction on a six-degrees-of-freedom (6DoF) couch was followed by a second scan to calculate the residual inter-fraction error, and a post-treatment scan assessed intra-fraction motion. The margins of the planning target volume (MPTV) were calculated from these setup variations and the effect of margin size on normal tissue sparing was evaluated. In total, 573 CBCT scans were acquired. Mean absolute pre-/post-correction errors were obtained in all six planes. With 6DoF couch correction, the MPTV accounting for intra-fraction errors was reduced by 3.8-5.6 mm. This permitted a reduction in the maximum dose to the small intestine, bladder and femoral head (P=0.001, 0.035 and 0.032, respectively), the average dose to the rectum, small intestine, bladder and pelvic marrow (P=0.003, 0.000, 0.001 and 0.000, respectively) and markedly reduced irradiated normal tissue volumes. A 6DoF couch in combination with daily kV-CBCT can considerably improve positioning accuracy during VMAT treatment in gynecologic malignancies, reducing the MPTV. The reduced margin size permits improved normal tissue sparing and a smaller total irradiated volume.

  18. Data-driven inference for the spatial scan statistic.

    PubMed

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  19. Diagnostic accuracy of laparoscopy following computed tomography (CT) scanning for assessing the resectability with curative intent in pancreatic and periampullary cancer.

    PubMed

    Allen, Victoria B; Gurusamy, Kurinchi Selvan; Takwoingi, Yemisi; Kalia, Amun; Davidson, Brian R

    2016-07-06

    Surgical resection is the only potentially curative treatment for pancreatic and periampullary cancer. A considerable proportion of patients undergo unnecessary laparotomy because of underestimation of the extent of the cancer on computed tomography (CT) scanning. Laparoscopy can detect metastases not visualised on CT scanning, enabling better assessment of the spread of cancer (staging of cancer). This is an update to a previous Cochrane Review published in 2013 evaluating the role of diagnostic laparoscopy in assessing the resectability with curative intent in people with pancreatic and periampullary cancer. To determine the diagnostic accuracy of diagnostic laparoscopy performed as an add-on test to CT scanning in the assessment of curative resectability in pancreatic and periampullary cancer. We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via PubMed, EMBASE via OvidSP (from inception to 15 May 2016), and Science Citation Index Expanded (from 1980 to 15 May 2016). We included diagnostic accuracy studies of diagnostic laparoscopy in people with potentially resectable pancreatic and periampullary cancer on CT scan, where confirmation of liver or peritoneal involvement was by histopathological examination of suspicious (liver or peritoneal) lesions obtained at diagnostic laparoscopy or laparotomy. We accepted any criteria of resectability used in the studies. We included studies irrespective of language, publication status, or study design (prospective or retrospective). We excluded case-control studies. Two review authors independently performed data extraction and quality assessment using the QUADAS-2 tool. The specificity of diagnostic laparoscopy in all studies was 1 because there were no false positives since laparoscopy and the reference standard are one and the same if histological examination after diagnostic laparoscopy is positive. The sensitivities were therefore meta-analysed using a univariate random-effects logistic regression model. The probability of unresectability in people who had a negative laparoscopy (post-test probability for people with a negative test result) was calculated using the median probability of unresectability (pre-test probability) from the included studies, and the negative likelihood ratio derived from the model (specificity of 1 assumed). The difference between the pre-test and post-test probabilities gave the overall added value of diagnostic laparoscopy compared to the standard practice of CT scan staging alone. We included 16 studies with a total of 1146 participants in the meta-analysis. Only one study including 52 participants had a low risk of bias and low applicability concern in the patient selection domain. The median pre-test probability of unresectable disease after CT scanning across studies was 41.4% (that is 41 out of 100 participants who had resectable cancer after CT scan were found to have unresectable disease on laparotomy). The summary sensitivity of diagnostic laparoscopy was 64.4% (95% confidence interval (CI) 50.1% to 76.6%). Assuming a pre-test probability of 41.4%, the post-test probability of unresectable disease for participants with a negative test result was 0.20 (95% CI 0.15 to 0.27). This indicates that if a person is said to have resectable disease after diagnostic laparoscopy and CT scan, there is a 20% probability that their cancer will be unresectable compared to a 41% probability for those receiving CT alone.A subgroup analysis of people with pancreatic cancer gave a summary sensitivity of 67.9% (95% CI 41.1% to 86.5%). The post-test probability of unresectable disease after being considered resectable on both CT and diagnostic laparoscopy was 18% compared to 40.0% for those receiving CT alone. Diagnostic laparoscopy may decrease the rate of unnecessary laparotomy in people with pancreatic and periampullary cancer found to have resectable disease on CT scan. On average, using diagnostic laparoscopy with biopsy and histopathological confirmation of suspicious lesions prior to laparotomy would avoid 21 unnecessary laparotomies in 100 people in whom resection of cancer with curative intent is planned.

  20. Lugol's solution eradicates Staphylococcus aureus biofilm in vitro.

    PubMed

    Grønseth, Torstein; Vestby, Lene K; Nesse, Live L; Thoen, Even; Habimana, Olivier; von Unge, Magnus; Silvola, Juha T

    2017-12-01

    The aim of the study was to evaluate the antibacterial efficacy of Lugol's solution, acetic acid, and boric acid against Staphylococcus aureus biofilm. The efficacy of Lugol's solution 1%, 0.1%, and 0.05%, acetic acid 5% or boric acid 4.7% for treatment of Staphylococcus aureus biofilm in vitro was tested using 30 clinical strains. Susceptibility in the planktonic state was assessed by disk diffusion test. Antiseptic effect on bacteria in biofilm was evaluated by using a Biofilm-oriented antiseptic test (BOAT) based on metabolic activity, a biofilm bactericidal test based on culturing of surviving bacteria and confocal laser scanning microscopy combined with LIVE/DEAD staining. In the planktonic state, all tested S. aureus strains were susceptible to Lugol's solution and acetic acid, while 27 out of 30 tested strains were susceptible to boric acid. In biofilm the metabolic activity was significantly reduced following exposure to Lugol's solution and 5% acetic acid, while boric acid exposure led to no significant changes in metabolic activities. In biofilm, biocidal activity was observed for Lugol's solution 1% (30/30), 0.1% (30/30), and 0.05% (26/30). Acetic acid and boric acid showed no bactericidal activity in this test. Confocal laser scanning microscopy, assessed in 4/30 strains, revealed significantly fewer viable biofilm bacteria with Lugol's solution (1% p < 0.001, 0.1% p = 0.001 or 0.05% p = 0.001), acetic acid 5% for 10 min (p = 0.001) or 30 min (p = 0.015), but not for acetic acid for 1 min or boric acid. Lugol's solution 1.0% and 0.1% effectively eradicated S. aureus in biofilm and could be an alternative to conventional topical antibiotics where S. aureus biofilm is suspected such as external otitis, pharyngitis and wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

Top