Science.gov

Sample records for reducing stress hormones

  1. Massage Therapy for Reducing Stress Hormones and Enhancing Immune Function in Breast Cancer Survivors

    DTIC Science & Technology

    2003-08-01

    hormones and immune measures. Women in the massage therapy group reported 1) less depressed mood and reduced anxiety, and showed 2) increased dopamine levels...required. Taken together, these findings support a step effect with massage therapy having the greatest positive impact on the psychological

  2. Stress and hormones

    PubMed Central

    Ranabir, Salam; Reetu, K.

    2011-01-01

    In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves’ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm. PMID:21584161

  3. Hormone-injected gravid channel catfish held in individual mesh bag reduces handling stress and improves reproductive performance in hatcheries

    USDA-ARS?s Scientific Manuscript database

    This study compared holding hormone-injected female channel catfish in soft-mesh bags to communally held hormone-injected female catfish in a tank as a stress reduction strategy to improve reproductive performance. Fish held in tanks were crowded, handled multiple times to record weight prior to ho...

  4. Massage Therapy for Reducing Stress Hormones and Enhancing Immune Function in Breast Cancer Survivors

    DTIC Science & Technology

    2001-08-01

    massage therapy (n=20), a relaxation therapy (n=20) or a control group (n=20). Women in the massage and relaxation therapies will receive 3 sessions a...women reveal for the massage therapy group 1) reduced anxiety, 2) improved mood, 3) increased serotonin and dopamine levels and 4) increased Natural

  5. Massage Therapy for Reducing Stress Hormones and Enhancing Immune Function in Breast Cancer Survivors

    DTIC Science & Technology

    2000-08-01

    massage therapy (n=20), a relaxation therapy (n=20) or a control group (n=20). Women in the massage and relaxation therapies will receive 3 sessions a...women reveal that women in the massage therapy group showed (1) reduced anxiety, (2) improved mood, (3) increased serotonin levels and (4) increased...support for the hypotheses that massage therapy enhances mood and immune function for women with breast cancer.

  6. Fear, pain and stress hormones during childbirth.

    PubMed

    Alehagen, Siw; Wijma, Barbro; Lundberg, Ulf; Wijma, Klaas

    2005-09-01

    To investigate the course of fear, pain and stress hormones during labor, and the associations between fear, pain, stress hormones and duration of labor in nulliparous women with and without epidural analgesia (EDA). One day during gestation weeks 37-39, urinary and salivary samples were collected to measure catecholamines and cortisol. Hourly during labor, the participants answered the Delivery Fear Scale and a pain intensity scale, and urinary and salivary samples were collected to measure stress hormones. The course of fear, pain and stress hormones differed throughout labor in women with and without EDA. Pain and cortisol increased throughout labor in women without EDA. Women who received EDA had more fear, but not more pain, before the administration of the EDA than women who did not receive EDA. Pain, fear and catecholamines decreased when women received EDA, but fear and pain increased again later in labor. Fear and pain correlated, as well as levels of fear in the different phases of labor. During phase one of labor epinephrine and duration of the phase were negatively correlated. The course of fear, pain and concentrations of stress hormones differed, highly influenced by the administration of EDA. Fear and pain correlated more pronounced than stress hormones and fear, pain and duration of labor.

  7. [Dynamics of hormone secretion during chronic emotional stress].

    PubMed

    Amiragova, M G; Kovalev, S V; Svirskaia, R I

    1979-05-01

    Study of spontaneous secretion of corticosteroids and thyroid hormones and the direct hormonal response to stress revealed the pathogenic effect of chronic combined emotional stress upon the hormonal function of adrenal glands. The hippocampus takes part in formation of the emotional tension in response to stress stimulus and of the following hormonal secretion.

  8. Determining Baseline Stress-Related Hormone Values in Large Cetaceans

    DTIC Science & Technology

    2014-09-30

    reconstructed chemical profiles provided a unique window into stress-related hormone (cortisol, aldosterone , T3 and T4) concentrations and...Stress-related hormone radioimmunoassay technique Cortisol, aldosterone , hormones thyroxine (T4) and triiodothyronine (T3) levels in each identified...contaminant concentrations will be calculated using Pearson correlation coefficients. These measurements will include all hormones ( aldosterone , T3

  9. Hormonal control of cold stress responses in plants.

    PubMed

    Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte

    2016-02-01

    Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

  10. Determining Baseline Stress-Related Hormone Values in Large Cetaceans

    DTIC Science & Technology

    2015-09-30

    individual whale. These reconstructed chemical profiles provided a unique window into stress-related hormone (cortisol, aldosterone , T3 and T4...stored under nitrogen at -30 °C. Stress-related hormone radioimmunoassay technique Cortisol, aldosterone , hormones thyroxine (T4) and...coefficients. These measurements will include all hormones ( aldosterone , T3, T4, and cortisol) as well as contaminants. The age trends for the 6 hormones will

  11. Thyroid hormone-induced oxidative stress.

    PubMed

    Venditti, P; Di Meo, S

    2006-02-01

    Hypermetabolic state in hyperthyroidism is associated with tissue oxidative injury. Available data indicate that hyperthyroid tissues exhibit an increased ROS and RNS production. The increased mitochondrial ROS generation is a side effect of the enhanced level of electron carriers, by which hyperthyroid tissues increase their metabolic capacity. Investigations of antioxidant defence system have returned controversial results. Moreover, other thyroid hormone-linked biochemical changes increase tissue susceptibility to oxidative challenge, which exacerbates the injury and dysfunction they suffer under stressful conditions. Mitochondria, as a primary target for oxidative stress, might account for hyperthyroidism linked tissue dysfunction. This is consistent with the inverse relationship found between functional recovery of ischemic hyperthyroid hearts and mitochondrial oxidative damage and respiration impairment. However, thyroid hormone-activated mitochondrial mechanisms provide protection against excessive tissue dysfunction, including increased expression of uncoupling proteins, proteolytic enzymes and transcriptional coactivator PGC-1, and stimulate opening of permeability transition pores.

  12. Omnigen-AF reduces basal plasma cortisol, AWA cortisol release to adrencocorticotropic hormone or corticotrophin releasing hormone & vasopressin in lactating dairy cows under thermoneutral or acute heat stress conditions.

    USDA-ARS?s Scientific Manuscript database

    Differences in the adrenal cortisol response of OmniGen-AF (OG) supplemented dairy cows to a corticotrophin releasing hormone (CRH) and vasopressin (VP) or an adrenocorticotropic hormone (ACTH) challenge when housed at different temperature-humidity indices (THI) were studied. Holstein cows (n=12; 1...

  13. Headaches: Reduce Stress to Prevent the Pain

    MedlinePlus

    ... your ability to cope with stress. Lack of sleep puts your body under stress and may trigger the release of stress hormones, such as adrenaline and cortisol. Seek support. Talking things out with family or friends or allowing ...

  14. Plasma stress hormones in resting rats - Eighty four day study

    NASA Technical Reports Server (NTRS)

    Popovic, Vojin; Honeycutt, Clegg

    1989-01-01

    The effects of a repeated mild stress of handling and placing rats temporarily into unfamiliar cages on the blood-plasma concentration of the stress hormones (corticosterone, ACDH, and prolactin) were investigated in male Sprague-Dawley rats subjected to this type of stress once every week during a period of three months. Results showed that repeated mild stress of handling (as well as repeated blood sampling) did not affect the plasma stress-hormone concentrations in these animals.

  15. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Reducing Teacher Stress.

    ERIC Educational Resources Information Center

    Docking, R. A.; Docking, E.

    1984-01-01

    Reports on a case study of inservice training conducted to enhance the teacher/student relationship and reduce teacher anxiety. Found significant improvements in attitudes, classroom management activities, and lower anxiety among teachers. (MD)

  17. Hormonal treatment reduces psychobiological distress in gender identity disorder, independently of the attachment style.

    PubMed

    Colizzi, Marco; Costa, Rosalia; Pace, Valeria; Todarello, Orlando

    2013-12-01

    Gender identity disorder may be a stressful situation. Hormonal treatment seemed to improve the general health as it reduces psychological and social distress. The attachment style seemed to regulate distress in insecure individuals as they are more exposed to hypothalamic-pituitary-adrenal system dysregulation and subjective stress. The objectives of the study were to evaluate the presence of psychobiological distress and insecure attachment in transsexuals and to study their stress levels with reference to the hormonal treatment and the attachment pattern. We investigated 70 transsexual patients. We measured the cortisol levels and the perceived stress before starting the hormonal therapy and after about 12 months. We studied the representation of attachment in transsexuals by a backward investigation in the relations between them and their caregivers. We used blood samples for assessing cortisol awakening response (CAR); we used the Perceived Stress Scale for evaluating self-reported perceived stress and the Adult Attachment Interview to determine attachment styles. At enrollment, transsexuals reported elevated CAR; their values were out of normal. They expressed higher perceived stress and more attachment insecurity, with respect to normative sample data. When treated with hormone therapy, transsexuals reported significantly lower CAR (P < 0.001), falling within the normal range for cortisol levels. Treated transsexuals showed also lower perceived stress (P < 0.001), with levels similar to normative samples. The insecure attachment styles were associated with higher CAR and perceived stress in untreated transsexuals (P < 0.01). Treated transsexuals did not expressed significant differences in CAR and perceived stress by attachment. Our results suggested that untreated patients suffer from a higher degree of stress and that attachment insecurity negatively impacts the stress management. Initiating the hormonal treatment seemed to have a positive effect in

  18. Should fertilization treatment start with reducing stress?

    PubMed

    Campagne, Daniel M

    2006-07-01

    In the past few decades, new and more efficient techniques to help solve fertility problems have become widely available throughout the developed world. These techniques include hormonal stimulation, ICSI, gamete intra-Fallopian transfer (GIFT) and IVF, and their cost is, on average, considerable. There is substantial initial evidence that the psychological disposition of the parents-to-be influences their fertility and thus the outcome of fertilization techniques. Many fertility treatments include consultation with a psychologist and do try to keep the stress produced by the treatment itself to a minimum, using concurrent therapy. However, the accumulating evidence points to the need to program medical fertility treatment, bearing in mind both chronic and acute stress levels, and to treat for their reduction before commencing the (actual) fertility treatment. There is ample evidence that lower stress levels mean better female and male natural fertility, though there is as yet no conclusive experimental evidence that lower stress levels result in better fertility treatment outcome. However, first reducing stress may diminish the number of treatment cycles needed before pregnancy is obtained, may prepare the couple for an initial failure of treatment or even make the more invasive techniques unnecessary. Primary psychological treatment for trait and state stress, being a less invasive method than IVF, ICSI or GIFT, is to be applied whenever indicated. Also, treatment and therapy to reduce stress, and in so doing enhance fertility, do not provoke the ethical and religious objections raised by infertility treatments.

  19. Stress hormones, sleep deprivation and cognition in older adults.

    PubMed

    Maggio, Marcello; Colizzi, Elena; Fisichella, Alberto; Valenti, Giorgio; Ceresini, Graziano; Dall'Aglio, Elisabetta; Ruffini, Livia; Lauretani, Fulvio; Parrino, Liborio; Ceda, Gian Paolo

    2013-09-01

    Cognition can be deteriorated in older persons because of several potential mechanisms including the hormonal changes occurring with age. Stress events cause modification in hormonal balance with acute and chronic changes such as increase in cortisol and thyroid hormones, and simultaneous alterations in dehydroepiandrosterone sulphate, testosterone and insulin like growth factor-1 levels. The ability to cope with stress and regain previous healthy status, also called resiliency, is particularly impaired in older persons Thus, stressful conditions and hormonal dysregulation might concur to the onset of cognitive impairment in this population. In this review we address the relationship between stress hormones and cognitive function in older persons focusing on the role of one of the main stress factors, such as sleep deprivation (SD). We extracted and cross-checked data from 2000 to 2013 March and selected 112 full-text articles assessed for eligibility. In particular we considered 68 studies regarding the contribution of hormonal pathway to cognition in older adults, and 44 regarding hormones and SD both in rats and humans. We investigated how the activation of a stress-pattern response, like the one evoked from SD, can influence cognitive development and worsen cognitive status in the elderly. We will show the limited number of studies targeting the effects of SD and the consequent changes in stress hormones on cognitive function in this age group. We conclude that the current literature is not strong enough to give definitive answers on the role of stress hormonal pathway to the development of cognitive impairment in older individuals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Hormone supply of the organism in prolonged emotional stress

    NASA Technical Reports Server (NTRS)

    Amiragova, M. G.; Stulnikov, B. V.; Svirskaya, R. I.

    1980-01-01

    The effect of prolonged emotional stress of varying genesis on the hormonal function of the pancreas, thyroid gland, and adrenal cortex was studied. The amount of the hormonal secretion was found to depend on the type of adaptation activity and its duration. High secretion of the hormones observed outside the adaptation activity was examined as an index of the phase transition of defense reactions to the phase of overstress.

  1. Stress Hormones and their Regulation in a Captive Dolphin Population

    DTIC Science & Technology

    2013-09-30

    multiple environmental stressors, many of which are anthropogenic. The resulting stress response is mounted to manage immediate physiological needs. When...variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur during stress in bottlenose dolphin. The...specific research objectives of this effort are to (1) establish protocols for improved sensitivity of low-level corticosteroids ( aldosterone and

  2. Modulation of Fear Extinction by Stress, Stress Hormones and Estradiol: A Review

    PubMed Central

    Stockhorst, Ursula; Antov, Martin I.

    2016-01-01

    Fear acquisition and extinction are valid models for the etiology and treatment of anxiety, trauma- and stressor-related disorders. These disorders are assumed to involve aversive learning under acute and/or chronic stress. Importantly, fear conditioning and stress share common neuronal circuits. The stress response involves multiple changes interacting in a time-dependent manner: (a) the fast first-wave stress response [with central actions of noradrenaline, dopamine, serotonin, corticotropin-releasing hormone (CRH), plus increased sympathetic tone and peripheral catecholamine release] and (b) the second-wave stress response [with peripheral release of glucocorticoids (GCs) after activation of the hypothalamus-pituitary-adrenocortical (HPA) axis]. Control of fear during extinction is also sensitive to these stress-response mediators. In the present review, we will thus examine current animal and human data, addressing the role of stress and single stress-response mediators for successful acquisition, consolidation and recall of fear extinction. We report studies using pharmacological manipulations targeting a number of stress-related neurotransmitters and neuromodulators [monoamines, opioids, endocannabinoids (eCBs), neuropeptide Y, oxytocin, GCs] and behavioral stress induction. As anxiety, trauma- and stressor-related disorders are more common in women, recent research focuses on female sex hormones and identifies a potential role for estradiol in fear extinction. We will thus summarize animal and human data on the role of estradiol and explore possible interactions with stress or stress-response mediators in extinction. This also aims at identifying time-windows of enhanced (or reduced) sensitivity for fear extinction, and thus also for successful exposure therapy. PMID:26858616

  3. Plant hormone-mediated regulation of stress responses.

    PubMed

    Verma, Vivek; Ravindran, Pratibha; Kumar, Prakash P

    2016-04-14

    Being sessile organisms, plants are often exposed to a wide array of abiotic and biotic stresses. Abiotic stress conditions include drought, heat, cold and salinity, whereas biotic stress arises mainly from bacteria, fungi, viruses, nematodes and insects. To adapt to such adverse situations, plants have evolved well-developed mechanisms that help to perceive the stress signal and enable optimal growth response. Phytohormones play critical roles in helping the plants to adapt to adverse environmental conditions. The elaborate hormone signaling networks and their ability to crosstalk make them ideal candidates for mediating defense responses. Recent research findings have helped to clarify the elaborate signaling networks and the sophisticated crosstalk occurring among the different hormone signaling pathways. In this review, we summarize the roles of the major plant hormones in regulating abiotic and biotic stress responses with special focus on the significance of crosstalk between different hormones in generating a sophisticated and efficient stress response. We divided the discussion into the roles of ABA, salicylic acid, jasmonates and ethylene separately at the start of the review. Subsequently, we have discussed the crosstalk among them, followed by crosstalk with growth promoting hormones (gibberellins, auxins and cytokinins). These have been illustrated with examples drawn from selected abiotic and biotic stress responses. The discussion on seed dormancy and germination serves to illustrate the fine balance that can be enforced by the two key hormones ABA and GA in regulating plant responses to environmental signals. The intricate web of crosstalk among the often redundant multitudes of signaling intermediates is just beginning to be understood. Future research employing genome-scale systems biology approaches to solve problems of such magnitude will undoubtedly lead to a better understanding of plant development. Therefore, discovering additional crosstalk

  4. A specific area of olfactory cortex involved in stress hormone responses to predator odours.

    PubMed

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P; Lowell, Bradford B; Buck, Linda B

    2016-04-07

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising <5% of the olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.

  5. Adrenal-derived stress hormones modulate ozone-induced ...

    EPA Pesticide Factsheets

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM)prior to their exposure to air or ozone (1 ppm),4 h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and Pl3K-AKT.Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced Increases in lung 116 in SHAM rats coincided with neutrophilic Inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of lfny and 11-4, the IL-4 protein and ratio of IL-4 to IFNy (IL-4/IFNy) proteins increased suggesting a tendency for a Th2 response. This did not occur

  6. Contribution of stress and sex hormones to memory encoding.

    PubMed

    Merz, Christian J

    2017-08-01

    Distinct stages of the menstrual cycle and the intake of oral contraceptives (OC) affect sex hormone levels, stress responses, and memory processes critically involved in the pathogenesis of mental disorders. To characterize the interaction of sex and stress hormones on memory encoding, 30 men, 30 women in the early follicular phase of the menstrual cycle (FO), 30 women in the luteal phase (LU), and 30 OC women were exposed to either a stress (socially evaluated cold-pressor test) or a control condition prior to memory encoding and immediate recall of neutral, positive, and negative words. On the next day, delayed free and cued recall was tested. Sex hormone levels verified distinct estradiol, progesterone, and testosterone levels between groups. Stress increased blood pressure, cortisol concentrations, and ratings of stress appraisal in all four groups as well as cued recall performance of negative words in men. Stress exposure in OC women led to a blunted cortisol response and rather enhanced cued recall of neutral words. Thus, pre-encoding stress facilitated emotional cued recall performance in men only, but not women with different sex hormone statuses pointing to the pivotal role of circulating sex hormones in modulation of learning and memory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Stress Hormones and Their Regulation in a Captive Dolphin Population

    DTIC Science & Technology

    2014-09-30

    environmental stressors, many of which are anthropogenic. The resulting stress response provides for immediate physiological needs and manages recovery...of two broad components: 1) assessing baseline variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur...cortisol and aldosterone ) frequenctly observed in cetaceans; (2) determine the regulatory role of corticosteroid binding globulin (CBG) in

  8. Steroid hormones, stress and the adolescent brain: a comparative perspective.

    PubMed

    Brown, G R; Spencer, K A

    2013-09-26

    Steroid hormones, including those produced by the gonads and the adrenal glands, are known to influence brain development during sensitive periods of life. Until recently, most brain organisation was assumed to take place during early stages of development, with relatively little neurogenesis or brain re-organisation during later stages. However, an increasing body of research has shown that the developing brain is also sensitive to steroid hormone exposure during adolescence (broadly defined as the period from nutritional independence to sexual maturity). In this review, we examine how steroid hormones that are produced by the gonads and adrenal glands vary across the lifespan in a range of mammalian and bird species, and we summarise the evidence that steroid hormone exposure influences behavioural and brain development during early stages of life and during adolescence in these two taxonomic groups. Taking a cross-species, comparative perspective reveals that the effects of early exposure to steroid hormones depend upon the stage of development at birth or hatching, as measured along the altricial-precocial dimension. We then review the evidence that exposure to stress during adolescence impacts upon the developing neuroendocrine systems, the brain and behaviour. Current research suggests that the effects of adolescent stress vary depending upon the sex of the individual and type of stressor, and the effects of stress could involve several neural systems, including the serotonergic and dopaminergic systems. Experience of stressors during adolescence could also influence brain development via the close interactions between the stress hormone and gonadal hormone axes. While sensitivity of the brain to steroid hormones during early life and adolescence potentially leaves the developing organism vulnerable to external adversities, developmental plasticity also provides an opportunity for the developing organism to respond to current circumstances and for behavioural

  9. Arterial stress hormones during scuba diving with different breathing gases.

    PubMed

    Weist, Frank; Strobel, Günther; Hölzl, Mathias; Böning, Dieter

    2012-07-01

    The purpose of the study was to determine whether the conditions during scuba diving without exercise (e.g., submersion, restricted breathing) stimulate the activities of the sympathoadrenergic system and the hypothalamic-pituitary-adrenal axis. This might facilitate panic reactions in dangerous situations. Fifteen experienced rescue divers participated in three experiments with two submersions each in a diving tower where ambient pressure could be varied. During submersion (duration = 15 min), they were breathing either pure oxygen (ambient pressure = 1.1 bar) or air (1.1 and 5.3 bar) or Heliox21 (21% O(2) and 79% He, 1.1 and 5.3 bar). The subjects stayed upright immediately below the water surface holding one hand with a cannulated radial artery out in the air. Noradrenaline, adrenaline, and dopamine concentrations in arterial blood and heart rate (HR) variability as indicators of sympathoadrenergic activity and cortisol and adrenocorticotropic hormone concentrations as strain indicators were measured. [Noradrenaline] and [adrenaline] (initial values (mean ± SE) = 1616 ± 93 and 426 ± 38 pmol·L(-1)) decreased significantly by up to 30% and 50%, respectively, after 11 min of submersion, independent of pressure and inspired gas. HR variability showed roughly corresponding changes and also indications for parasympathetic stimulation, but artifacts by interference among HR monitors reduced the number of usable measurements. The other hormone concentrations did not change significantly. There was no increase of stress hormone concentrations in experienced subjects. The reduction of [noradrenaline] and [adrenaline] during scuba diving seems to be a reaction to orthostatic relief caused by external hydrostatic pressure on peripheral vasculature. The activity of the vegetative nervous system might be estimated from HR variability if interference among pulse watches can be avoided.

  10. Pituitary adenylate cyclase activating polypeptide (PACAP), stress, and sex hormones.

    PubMed

    King, S Bradley; Toufexis, Donna J; Hammack, Sayamwong E

    2017-09-01

    Stressor exposure is associated with the onset and severity of many psychopathologies that are more common in women than men. Moreover, the maladaptive expression and function of stress-related hormones have been implicated in these disorders. Evidence suggests that PACAP has a critical role in the stress circuits mediating stress-responding, and PACAP may interact with sex hormones to contribute to sex differences in stress-related disease. In this review, we describe the role of the PACAP/PAC1 system in stress biology, focusing on the role of stress-induced alterations in PACAP expression and signaling in the development of stress-induced behavioral change. Additionally, we present more recent data suggesting potential interactions between stress, PACAP, and circulating estradiol in pathological states, including PTSD. These studies suggest that the level of stress and circulating gonadal hormones may differentially regulate the PACAPergic system in males and females to influence anxiety-like behavior and may be one mechanism underlying the discrepancies in human psychiatric disorders.

  11. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish. Copyright © 2011 Elsevier Inc. All rights

  12. Brain Natriuretic Hormone Predicts Stress Induced Alterations in Diastolic Function

    PubMed Central

    Choksy, Pratik; Davis, Harry C.; Januzzi, James; Thayer, Julian; Harshfield, Gregory; Robinson, Vincent JB; Kapuku, Gaston K.

    2015-01-01

    Background Mental stress (MS) reduces diastolic function (DF) and may lead to congestive heart failure with preserved systolic function. Whether brain natriuretic hormone (BNP) mediates the relationship of MS with DF is unknown. Method and Results 160 individuals aged 30 to 50 years underwent 2 hour protocol of 40 minutes rest, videogame stressor and recovery. Hemodynamics, pro-BNP samples and DF indices were obtained throughout the protocol. Separate regression analyses were conducted using rest and stress E/A, E’ and E/E’ as dependent variables. Predictor variables were entered into the stepwise regression models in a hierarchical fashion. At the first level age, sex, race, height, BMI, pro-BNP, and LVM were permitted to enter the models. The second level consisted of SBP, DBP and HR. The final level contained cross-product terms of race by SBP, DBP and HR. E/A ratio was lower during stress compared to rest, and recovery (p<0.01). Resting E/A ratio was predicted by a regression model of age (−.31), pro-BNP (.16), HR (−.40) and DBP (−.23) with an R2 = .33. Stress E/A ratio was predicted by age (−.24), pro-BNP (.08), HR (−.38), and SBP (−.21), total R2 = .22. Resting E’ model consisted of age (−.22), pro-BNP (.26), DBP (−.27) and LVM (−.15) with an R2 = .29. Stress E’ was predicted by age (−.18), pro-BNP (.35) and LVM (−.18) with an R2 = .18. Resting E/E’ was predicted by race (.17, B>W) and DBP (.24) with an R2 = .10. Stress E/E’ consisted of pro-BNP (−.36), height (−.26) and HR (−.21) with R2 = .15. Conclusion pro-BNP predicts both resting and stress DF suggesting that lower BNP during MS may be a maker of diastolic dysfunction in apparently healthy individuals. PMID:24841419

  13. Stress Hormones and their Regulation in a Captive Dolphin Population

    DTIC Science & Technology

    2015-09-30

    dorian.houser@nmmf.org Award Number: N000141310770 http://www.nmmf.org/ physiology --ecology.html LONG-TERM GOALS The Navy requires an understanding...establish protocols for improved sensitivity of low-level corticosteroids (cortisol and aldosterone ) frequenctly observed in cetaceans; (2) determine the...assessing baseline variability in stress hormones and 2) evaluating physiological and metabolic alterations that occur during stress. This grant

  14. Sex, trauma, stress hormones and depression.

    PubMed

    Young, E; Korszun, A

    2010-01-01

    Although few studies dispute that there are gender differences in depression, the etiology is still unknown. In this review, we cover a number of proposed factors and the evidences for and against these factors that may account for gender differences in depression. These include the possible role of estrogens at puberty, differences in exposure to childhood trauma, differences in stress perception between men and women and the biological differences in stress response. None of these factors seem to explain gender differences in depression. Finally, we do know that when depressed, women show greater hypothalamic-pituitary-adrenal (HPA) axis activation than men and that menopause with loss of estrogens show the greatest HPA axis dysregulation. It may be the constantly changing steroid milieu that contributes to these phenomena and vulnerability to depression.

  15. Hormonal contraception use alters stress responses and emotional memory.

    PubMed

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women. Published by Elsevier B.V.

  16. Model approach for stress induced steroidal hormone cascade changes in severe mental diseases.

    PubMed

    Volko, Claus D; Regidor, Pedro A; Rohr, Uwe D

    2016-03-01

    Stress was described by Cushing and Selye as an adaptation to a foreign stressor by the anterior pituitary increasing ACTH, which stimulates the release of glucocorticoid and mineralocorticoid hormones. The question is raised whether stress can induce additional steroidal hormone cascade changes in severe mental diseases (SMD), since stress is the common denominator. A systematic literature review was conducted in PubMed, where the steroidal hormone cascade of patients with SMD was compared to the impact of increasing stress on the steroidal hormone cascade (a) in healthy amateur marathon runners with no overtraining; (b) in healthy well-trained elite soldiers of a ranger training unit in North Norway, who were under extreme physical and mental stress, sleep deprivation, and insufficient calories for 1 week; and, (c) in soldiers suffering from post traumatic stress disorder (PTSD), schizophrenia (SI), and bipolar disorders (BD). (a) When physical stress is exposed moderately to healthy men and women for 3-5 days, as in the case of amateur marathon runners, only few steroidal hormones are altered. A mild reduction in testosterone, cholesterol and triglycerides is detected in blood and in saliva, but there was no decrease in estradiol. Conversely, there is an increase of the glucocorticoids, aldosterone and cortisol. Cellular immunity, but not specific immunity, is reduced for a short time in these subjects. (b) These changes are also seen in healthy elite soldiers exposed to extreme physical and mental stress but to a somewhat greater extent. For instance, the aldosterone is increased by a factor of three. (c) In SMD, an irreversible effect on the entire steroidal hormone cascade is detected. Hormones at the top of the cascade, such as cholesterol, dehydroepiandrosterone (DHEA), aldosterone and other glucocorticoids, are increased. However, testosterone and estradiol and their metabolites, and other hormones at the lower end of the cascade, seem to be reduced. 1

  17. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward.

    PubMed

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja; Jensen, Peter; Knudsen, Gitte M; Frokjaer, Vibe G; Siebner, Hartwig R

    2016-03-01

    Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women's vulnerability for mood disorders is linked to sex-steroid dynamics by investigating the effects of a pharmacologically induced fluctuation in ovarian sex steroids on the brain response to monetary rewards. In a double-blinded placebo controlled study, healthy women were randomized to receive either placebo or the gonadotropin-releasing hormone agonist (GnRHa) goserelin, which causes a net decrease in sex-steroid levels. Fifty-eight women performed a gambling task while undergoing functional MRI at baseline, during the mid-follicular phase, and again following the intervention. The gambling task enabled us to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following a rapid decline in sex-steroid hormones may reflect a reduced engagement in positive experiences. Abnormal reward processing may constitute a neurobiological mechanism by which sex-steroid fluctuations provoke mood disorders in susceptible women.

  18. Acute stress reduces speech fluency.

    PubMed

    Buchanan, Tony W; Laures-Gore, Jacqueline S; Duff, Melissa C

    2014-03-01

    People often report word-finding difficulties and other language disturbances when put in a stressful situation. There is, however, scant empirical evidence to support the claim that stress affects speech productivity. To address this issue, we measured speech and language variables during a stressful Trier Social Stress Test (TSST) as well as during a less stressful "placebo" TSST (Het et al., 2009). Compared to the non-stressful speech, participants showed higher word productivity during the TSST. By contrast, participants paused more during the stressful TSST, an effect that was especially pronounced in participants who produced a larger cortisol and heart rate response to the stressor. Findings support anecdotal evidence of stress-impaired speech production abilities. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Psychological stress during exercise: cardiorespiratory and hormonal responses.

    PubMed

    Webb, Heather E; Weldy, Michael L; Fabianke-Kadue, Emily C; Orndorff, G R; Kamimori, Gary H; Acevedo, Edmund O

    2008-12-01

    The purpose of this study was to examine the cardiorespiratory (CR) and stress hormone responses to a combined physical and mental stress. Eight participants (VO2(max) = 41.24 +/- 6.20 ml kg(-1) min(-1)) completed two experimental conditions, a treatment condition including a 37 min ride at 60% of VO2(max) with participants responding to a computerized mental challenge dual stress condition (DSC) and a control condition of the same duration and intensity without the mental challenge exercise alone condition (EAC). Significant interactions across time were found for CR responses, with heart rate, ventilation, and respiration rate demonstrating higher increases in the DSC. Additionally, norepinephrine was significantly greater in the DSC at the end of the combined challenge. Furthermore, cortisol area-under-the-curve (AUC) was also significantly elevated during the DSC. These results demonstrate that a mental challenge during exercise can exacerbate the stress response, including the release of hormones that have been linked to negative health consequences (cardiovascular, metabolic, autoimmune illnesses).

  20. Stress hormones link food availability and population processes in seabirds

    USGS Publications Warehouse

    Kitaysky, A.S.; Piatt, John F.; Wingfield, J.C.

    2007-01-01

    Catastrophic population declines in marine top predators in the northern Pacific have been hypothesized to result from nutritional stress affecting reproduction and survival of individuals. However, empirical evidence for food-related stress in wild animals is frequently lacking or inconclusive. We used a field endocrinology approach to measure stress, identify its causes, and examine a link between stress and population processes in the common murre Uria aalge. We tested the empirical relationship between variations in the stress hormone corticosterone (CORT) and food abundance, reproduction, and persistence of individuals at declining and increasing colonies in Cook Inlet, Alaska, from 1996 to 2001. We found that CORT secretion in murres is independent of colony, reproductive stage effects, and gender of individuals, but is directly negatively correlated with abundance of their food. Baseline CORT reflected current food abundance, whereas acute stress-induced CORT reflected food abundance in the previous month. As food supply diminished, increased CORT secretion predicted a decrease in reproductive performance. At a declining colony, increased baseline levels of CORT during reproduction predicted disappearance of individuals from the population. Persistence of individuals in a growing colony was independent of CORT during reproduction. The obtained results support the hypothesis that nutritional stress during reproduction affects reproduction and survival in seabirds. This study provides the first unequivocal evidence for CORT secretion as a mechanistic link between fluctuations in food abundance and population processes in seabirds. ?? Inter-Research 2007.

  1. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    PubMed

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  2. Cytokine modulation by stress hormones and antagonist specific hormonal inhibition in rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) head kidney primary cell culture.

    PubMed

    Khansari, Ali Reza; Parra, David; Reyes-López, Felipe E; Tort, Lluís

    2017-09-01

    A tight interaction between endocrine and immune systems takes place mainly due to the key role of head kidney in both hormone and cytokine secretion, particularly under stress situations in which the physiological response promotes the synthesis and release of stress hormones which may lead into immunomodulation as side effect. Although such interaction has been previously investigated, this study evaluated for the first time the effect of stress-associated hormones together with their receptor antagonists on the expression of cytokine genes in head kidney primary cell culture (HKPCC) of the freshwater rainbow trout (Oncorhynchus mykiss) and the seawater gilthead sea bream (Sparus aurata). The results showed a striking difference when comparing the response obtained in trout and seabream. Cortisol and adrenocorticotropic hormone (ACTH) decreased the expression of immune-related genes in sea bream but not in rainbow trout and this cortisol effect was reverted by the antagonist mifepristone but not spironolactone. On the other hand, while adrenaline reduced the expression of pro-inflammatory cytokines (IL-1β, IL-6) in rainbow trout, the opposite effect was observed in sea bream showing an increased expression (IL-1β, IL-6). Interestingly, this effect was reverted by antagonist propranolol but not phentolamine. Overall, our results confirm the regional interaction between endocrine and cytokine messengers and a clear difference in the sensitivity to the hormonal stimuli between the two species. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Interventions: Employees' Perceptions of What Reduces Stress

    PubMed Central

    Boyd, Carolyn M.; Provis, Chris

    2017-01-01

    Objective To build upon research evaluating stress interventions, this qualitative study tests the framework of the extended Job Demands-Resources model to investigate employees' perceptions of the stress-reduction measures implemented at 13 Australian universities. Methods In a cross-sectional survey design, tenured and contract staff indicated whether their overall level of stress had changed during the previous three-four years, and, if so, they described the major causes. A total of 462 staff reported that their level of stress had decreased; the study examines commentary from 115 academic and 304 nonacademic staff who provided details of what they perceived to be effective in reducing stress. Results Thematic analyses show that the key perceived causes were changes in job or work role, new heads of departments or supervisors, and the use of organizational strategies to reduce or manage stress. A higher percentage of academic staff reported reduced stress due to using protective coping strategies or their increased recognition and/or success, whereas a higher percentage of nonacademic staff reported reduced stress due to increases in staffing resources and/or systems. Conclusion These results identify the importance of implementing multilevel strategies to enhance employees' well-being. Nonacademic staff, in particular, specified a variety of organizational stress-reduction interventions. PMID:29318146

  4. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    PubMed

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain.

    PubMed

    Sinclair, Duncan; Purves-Tyson, Tertia D; Allen, Katherine M; Weickert, Cynthia Shannon

    2014-04-01

    Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.

  6. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity

  7. The Effects of Stress and Stress Hormones on Human Cognition: Implications for the Field of Brain and Cognition

    ERIC Educational Resources Information Center

    Lupien, S. J.; Maheu, F.; Tu, M.; Fiocco, A.; Schramek, T. E.

    2007-01-01

    In this review, we report on studies that have assessed the effects of exogenous and endogenous increases in stress hormones on human cognitive performance. We first describe the history of the studies on the effects of using exogenous stress hormones such as glucocorticoids as anti-inflammatory medications on human cognition and mental health.…

  8. Telomere Length, Current Perceived Stress, and Urinary Stress Hormones in Women

    PubMed Central

    Parks, Christine G.; Miller, Diane B.; McCanlies, Erin C.; Cawthon, Richard M.; Andrew, Michael E.; DeRoo, Lisa A.; Sandler, Dale P.

    2009-01-01

    Telomeres are repetitive DNA sequences that cap and protect the ends of chromosomes; critically short telomeres may lead to cellular senescence or carcinogenic transformation. Previous findings suggest a link between psychosocial stress, shorter telomeres, and chronic disease risk. This cross-sectional study examined relative telomere length in relation to perceived stress and urinary stress hormones in a sample of participants (n = 647) in the National Institute of Environmental Health Sciences Sister Study, a cohort of women ages 35 to 74 years who have a sister with breast cancer. Average leukocyte telomere length was determined by quantitative PCR. Current stress was assessed using the Perceived Stress Scale and creatinine-adjusted neuroendocrine hormones in first morning urines. Linear regression models estimated differences in telomere length base pairs (bp) associated with stress measures adjusted for age, race, smoking, and obesity. Women with higher perceived stress had somewhat shorter telomeres [adjusted difference of −129bp for being at or above moderate stress levels; 95% confidence interval (CI), −292 to 33], but telomere length did not decrease monotonically with higher stress levels. Shorter telomeres were independently associated with increasing age (−27bp/year), obesity, and current smoking. Significant stress-related differences in telomere length were seen in women ages 55 years and older (−289bp; 95% CI, −519 to −59), those with recent major losses (−420bp; 95% CI, −814 to −27), and those with above-average urinary catecholamines (e.g., epinephrine: −484bp; 95% CI, −709 to −259). Although current perceived stress was only modestly associated with shorter telomeres in this broad sample of women, our findings suggest the effect of stress on telomere length may vary depending on neuroendocrine responsiveness, external stressors, and age. PMID:19190150

  9. Social information changes stress hormone receptor expression in the songbird brain.

    PubMed

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Effects of combined stress during intense training on cellular immunity, hormones and respiratory infections.

    PubMed

    Gomez-Merino, Danielle; Drogou, Catherine; Chennaoui, Mounir; Tiollier, Eve; Mathieu, Jacques; Guezennec, Charles Yannick

    2005-01-01

    This study was designed to determine immune and hormonal changes and their relationship with the incidence of upper respiratory tract infections (URTIs) during an extremely stressful military training (3 weeks of physical conditioning followed by a 5-day combat course with energy restriction, sleep deprivation and psychological stress). Blood samples were collected from 21 cadets (21 +/- 2 years old) before training and after the combat course for analysis of leukocyte and lymphocyte subpopulations, serum cytokines [interleukin-6 (IL-6), IL-1beta and IL-10], and hormones [catecholamines, cortisol, leptin, total insulin-like growth factor I (IGF-I), prolactin, dehydroepiandrosterone sulfate (DHEAS) and testosterone]. Symptoms of URTI were recorded from health logs and medical examinations during training. After the combat course, total leukocyte and neutrophil counts were significantly increased while total lymphocytes were unchanged. In lymphocyte subsets, NK cells were reduced (p < 0.01), while CD4+ and CD19+ (B) cells were increased. Levels of IL-6 were increased (p < 0.01), while those of IL-1beta and IL-10 were unchanged. Norepinephrine and dopamine levels were increased, while those of cortisol were reduced. Levels of leptin, testosterone, prolactin and total IGF-I were reduced, while those of DHEAS were increased. The incidence of URTI increased during the training (chi(2) = 53.48, p < 0.05). After training data analysis showed a significant correlation between URTIs and NK cells (p = 0.0023). Training-induced changes in immune and hormonal parameters were correlated. Blood NK cell levels are related to increased respiratory infections during physical training in a multistressor environment. The training-induced decreases in immunostimulatory hormone levels may have triggered immunosuppression. Copyright (c) 2005 S. Karger AG, Basel.

  11. Female Reproductive Hormones and Biomarkers of Oxidative Stress in Genital Chlamydia Infection in Tubal Factor Infertility

    PubMed Central

    Nsonwu-Anyanwu, Augusta Chinyere; Charles-Davies, Mabel Ayebantoyo; Taiwo, Victor Olusegun; Li, Bin; Oni, Anthony Alabar; Bello, Folashade Adenike

    2015-01-01

    Background Genital Chlamydia infection (GCI) and the associated pathologies have been implicated in tubal infertility. Though the actual pathologic mechanisms are still uncertain, oxidative stress and other factors have been implicated. The purpose of the study was to determine the possible contribution of female reproductive hormones and biomarkers of oxidative stress in genital Chlamydial infection to tubal occlusion. Methods This prospective case control study was carried out by recruiting 150 age matched women grouped into infertile Chlamydia positive women (n = 50), fertile Chlamydia positive women (n = 50) and fertile Chlamydia negative women as controls (n = 50). High vaginal swabs and endocervical swabs were collected for screening Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Treponema pallidum, Staphylococcus aureus, and Candida albicans. Sera were collected for estimation of Chlamydia trachomatis antibody, female reproductive hormones [Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Oestradiol (E2), Progesterone (P4), Prolactin (PRL)] and biomarkers of oxidative stress [Total Antioxidant Capacity (TAC) and 8-hydroxyl-2-deoxyguanosine (8-OHdG)] by enzyme immunoassay (EIA). Data were analyzed using chi square, analysis of variance and LSD Post hoc to determine mean differences at p = 0.05. Results Among women with GCI, higher levels of LH and 8-OHdG were observed in infertile Chlamydia positive women compared to fertile Chlamydia positive women (p < 0.05). Higher levels of LH and 8-OHdG and lower TAC levels were observed in infertile Chlamydia positive women compared to fertile Chlamydia negative controls (p < 0.05). Conclusion Mechanisms including oxidative DNA damage and reduced antioxidant capacity may be involved in the pathology of Chlamydia induced tubal damage. PMID:25927024

  12. Natural Variation in Stress Hormones, Comparisons Across Matrices, and Impacts Resulting from Induced Stress in the Bottlenose Dolphin.

    PubMed

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E; Kellar, Nicholas M; Cockrem, John; Romano, Tracy; Booth, Rebecca K; Wasser, Samuel K

    2016-01-01

    Knowledge regarding stress hormones and how they vary in response to seasonality, gender, age, and reproductive status for any marine mammal is limited. Furthermore, stress hormones may be measured in more than one matrix (e.g., feces, blood, blubber), but the relationships between levels of a given hormone across these matrices are unknown, further complicating the interpretations of hormones measured in samples collected from wild animals. A study is underway to address these issues in a population of bottlenose dolphins trained for voluntary participation in sample collections from different matrices and across season and time of day.

  13. The behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The regulation of fluid and electrolyte behavior during space flight is believed to be under control, in large part, of a group of hormones which have their major effects on renal excretion. The hormones studied include renin-angitensin, aldosterone, and antidiuretic hormone (ADH). The regulatory systems of these renal-regulating hormones as they act individually and in concert with each other are analyzed. The analysis is based on simulations of the mathematical model of Guyton. A generalized theory is described which accounts for both short-term and long-term behavior of this set of hormones.

  14. Stress hormones predict hyperbolic time-discount rates six months later in adults.

    PubMed

    Takahashi, Taiki; Shinada, Mizuho; Inukai, Keigo; Tanida, Shigehito; Takahashi, Chisato; Mifune, Nobuhiro; Takagishi, Haruto; Horita, Yutaka; Hashimoto, Hirofumi; Yokota, Kunihiro; Kameda, Tatsuya; Yamagishi, Toshio

    2010-01-01

    Stress hormones have been associated with temporal discounting. Although time-discount rate is shown to be stable over a long term, no study to date examines whether individual differences in stress hormones could predict individuals' time-discount rates in the relatively distant future (e.g., six month later), which is of interest in neuroeconomics of stress-addiction association. We assessed 87 participants' salivary stress hormone (cortisol, cortisone, and alpha-amylase) levels and hyperbolic discounting of delayed rewards consisting of three magnitudes, at the time-interval of six months. For salivary steroid assays, we employed a liquid chromatography/ mass spectroscopy (LC/MS) method. The correlations between the stress hormone levels and time-discount rates were examined. We observed that salivary alpha-amylase (sAA) levels were negatively associated with time-discount rates in never-smokers. Notably, salivary levels of stress steroids (i.e., cortisol and cortisone) negatively and positively related to time-discount rates in men and women, respectively, in never-smokers. Ever-smokers' discount rates were not predicted from these stress hormone levels. Individual differences in stress hormone levels predict impulsivity in temporal discounting in the future. There are sex differences in the effect of stress steroids on temporal discounting; while there was no sex defference in the relationship between sAA and temporal discounting.

  15. Acute sex hormone suppression reduces skeletal muscle sympathetic nerve activity.

    PubMed

    Day, Danielle S; Gozansky, Wendolyn S; Bell, Christopher; Kohrt, Wendy M

    2011-10-01

    Comparisons of sympathetic nervous system activity (SNA) between young and older women have produced equivocal results, in part due to inadequate control for potential differences in sex hormone concentrations, age, and body composition. The aim of the present study was to determine the effect of a short-term reduction in sex hormones on tonic skeletal muscle sympathetic nerve activity (MSNA), an indirect measure of whole body SNA, using an experimental model of sex hormone deficiency in young women. We also assessed the independent effects of estradiol and progesterone add-back therapy on MSNA. MSNA was measured in 9 women (30±2 years; mean±SE) on three separate occasions: during the mid-luteal menstrual cycle phase, on the fifth day of gonadotropin-releasing hormone antagonist (GnRHant) administration, and after 5 days add-back of either estradiol (n=4) or progesterone (n=3) during continued GnRHant administration. In response to GnRHant, there were significant reductions in serum estradiol and progesterone (both p<0.01) and MSNA (25.0±1.9 vs. 19.2±2.4 bursts/min, p=0.04). Continued GnRHant plus add-back estradiol or progesterone resulted in a nonsignificant decrease (19.2±1.7 vs. 12.1±1.9 bursts/min, p=0.07) or increase (16.2±1.7 vs. 21.0±6.0 bursts/min, p=0.39), respectively, in MSNA when compared with GnRHant alone. The findings of this preliminary study suggest that short-term ovarian hormone suppression attenuates MSNA and that this may be related to the suppression of progesterone rather than estradiol.

  16. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  17. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    DTIC Science & Technology

    2011-09-30

    massey.ac.nz Award Number: N000141110434 LONG-TERM GOALS Physiological indicators of stress in wild marine mammals, the interrelationships between...hormones (GC), aldosterone (A), thyroid hormones (TH), and catecholamines within a free-ranging northern elephant seal population and its...additional individuals per year). Serum samples will be processed for ACTH, cortisol, aldosterone , catecholamines (epinephrine, norepinephrine), and

  18. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    DTIC Science & Technology

    2013-09-30

    cortisol and aldosterone impacted glucose, lactate, NEFA , BUN and electrolyte levels. These data provide novel information on the physiological and...massey.ac.nz Award Number: N000141110434 LONG-TERM GOALS Physiological indicators of stress in wild marine mammals, the interrelationships...glucocorticoid hormones (GC), aldosterone (A), thyroid hormones (TH), and catecholamines within a free-ranging northern elephant seal population and its

  19. Acute stress selectively reduces reward sensitivity

    PubMed Central

    Berghorst, Lisa H.; Bogdan, Ryan; Frank, Michael J.; Pizzagalli, Diego A.

    2013-01-01

    Stress may promote the onset of psychopathology by disrupting reward processing. However, the extent to which stress impairs reward processing, rather than incentive processing more generally, is unclear. To evaluate the specificity of stress-induced reward processing disruption, 100 psychiatrically healthy females were administered a probabilistic stimulus selection task (PSST) that enabled comparison of sensitivity to reward-driven (Go) and punishment-driven (NoGo) learning under either “no stress” or “stress” (threat-of-shock) conditions. Cortisol samples and self-report measures were collected. Contrary to hypotheses, the groups did not differ significantly in task performance or cortisol reactivity. However, further analyses focusing only on individuals under “stress” who were high responders with regard to both cortisol reactivity and self-reported negative affect revealed reduced reward sensitivity relative to individuals tested in the “no stress” condition; importantly, these deficits were reward-specific. Overall, findings provide preliminary evidence that stress-reactive individuals show diminished sensitivity to reward, but not punishment, under stress. While such results highlight the possibility that stress-induced anhedonia might be an important mechanism linking stress to affective disorders, future studies are necessary to confirm this conjecture. PMID:23596406

  20. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction.

    PubMed

    Beldade, Ricardo; Blandin, Agathe; O'Donnell, Rory; Mills, Suzanne C

    2017-10-10

    Organisms can behaviorally, physiologically, and morphologically adjust to environmental variation via integrative hormonal mechanisms, ultimately allowing animals to cope with environmental change. The stress response to environmental and social changes commonly promotes survival at the expense of reproduction. However, despite climate change impacts on population declines and diversity loss, few studies have attributed hormonal stress responses, or their regulatory effects, to climate change in the wild. Here, we report hormonal and fitness responses of individual wild fish to a recent large-scale sea warming event that caused widespread bleaching on coral reefs. This 14-month monitoring study shows a strong correlation between anemone bleaching (zooxanthellae loss), anemonefish stress response, and reproductive hormones that decreased fecundity by 73%. These findings suggest that hormone stress responses play a crucial role in changes to population demography following climate change and plasticity in hormonal responsiveness may be a key mechanism enabling individual acclimation to climate change.Elevated temperatures can cause anemones to bleach, with unknown effects on their associated symbiotic fish. Here, Beldade and colleagues show that climate-induced bleaching alters anemonefish hormonal stress response, resulting in decreased reproductive hormones and severely impacted reproduction.

  1. Gender and stress perception based differences in BMI, hormonal response and appetite in adult Pakistani population.

    PubMed

    Haque, Zeba; Javed, Anum; Mehmood, Ahmar; Haque, Adiya; Haleem, Darakhshan J

    2014-10-01

    To evaluate and compare the gender based variations in stress perception induced changes in leptin, cortisol and serotonin (5-HT) trends, appetite and Body Mass Index (BMI). An analytical comparative study. Neurochemistry Laboratory, University of Karachi, from January to August 2013. Appetite, BMI and serum leptin, cortisol, and 5-HT were measured in 100 men and women of aged 30-60 years, working in teaching institutes of Karachi, to evaluate gender based, stress perception induced variations. The samples were identified by stratified random technique. The chemical variables were estimated through ELISA. RESULTS were analysed using one-way ANOVA and multivariate general linear model using SPSS version 17. Mean stress perception, BMI and serum leptin levels were significantly more in women (p<0.05). Serum cortisol and 5-HT were found significantly reduced in women (p<0.05). BMI, serum cortisol and leptin were found to be increased with increasing level of stress perception (p<0.05). VAS for hunger and desire to eat as the measure of appetite was significantly higher in men (p<0.05). Stress perception attenuates the positive effect of cortisol and negative effects of leptin and 5-HT on appetite through changes in their circulatory levels. Women perceive more stress and exhibit significantly attenuated changes in hormonal levels and appetite which may be the contributing factor towards obesity. Increased BMI in women despite decreased appetite merits more studies.

  2. Prolactin, thyrotropin, and growth hormone release during stress associated with parachute jumping.

    PubMed

    Noel, G L; Dimond, R C; Earll, J M; Frantz, A G

    1976-05-01

    Prolactin, growth hormone, and thyrotropin (TSH) release during the stress of parachute jumping has been evaluated in 14 male subjects. Subjects were studied at several times before and immediately after their first military parachute jump. All three hormones had risen significantly 1 to 14 min after the jump, compared to mean levels measured immediately beforehand. Earlier studies of physical exercise by ourselves and others would suggest that emotional stress played a role in producing changes of this magnitude. We conclude that prolactin, TSH, and growth hormone are released in physiologically significant amounts in association with the stress of parachute jumping.

  3. Stressed lungs: unveiling the role of circulating stress hormones in ozone-induced lung injury and inflammation

    EPA Science Inventory

    Our recent work demonstrated that circulating stress hormones, epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects through the activation of hypothalamus-pituitary-adrenal (HPA) axis. Adrenalectomy in Wistar Kyoto (WKY) rats diminished circu...

  4. Role of various hormones in photosynthetic responses of green plants under environmental stresses.

    PubMed

    Poonam; Bhardwaj, Renu; Kaur, Ravdeep; Bali, Shagun; Kaur, Parminder; Sirhindi, Geetika; Thukral, Ashwani K; Ohri, Puja; Vig, Adarsh P

    2015-01-01

    Environmental stress includes adverse factors like water deficit, high salinity, enhanced temperature and heavy metals etc. These stresses alter the normal growth and metabolic processes of plants including photosynthesis. Major photosynthetic responses under various stresses include inhibition of photosystems (I and II), changes in thylakoid complexes, decreased photosynthetic activity and modifications in structure and functions of chloroplasts etc. Various defense mechanisms are triggered inside the plants in response to these stresses that are regulated by plant hormones or plant growth regulators. These phytohormones include abscisic acid, auxins, cytokinins, ethylene, brassinosteroids, jasmonates and salicylic acid etc. The present review focuses on stress protective effects of plants hormones on the photosynthetic responses.

  5. Somatotype and stress hormone levels in young soccer players.

    PubMed

    Handziska, E; Handziski, Z; Gjorgoski, I; Dalip, M

    2015-11-01

    process (R=0.59; P<0.01) and some somatotypes (mesomorph ectomorph, mesomorph endomorph, balanced endomorph and endomorph mesomorph) and after the finishing of training process (R=0.62; P<0.01) and some somatotypes (central, balanced ectomorph and mesomorph ectomorph). The significant decreases of cortisol plasma levels during soccer training process could indicate a stagnation of training process, accordingly with insignificant changes of AnT. The significant correlations of some somatotypes with stress hormonal responses could only suggest that the somatotype characteristics of young soccer players could be of interest in process of selection and planning of soccer training process with an essential need for more studies.

  6. Dual-hormone stress reactivity predicts downstream war-zone stress-evoked PTSD.

    PubMed

    Josephs, Robert A; Cobb, Adam R; Lancaster, Cynthia L; Lee, Han-Joo; Telch, Michael J

    2017-04-01

    The crucial role of the hypothalamic-pituitary-adrenal axis (HPA) in stress-related homeostasis suggests dysregulated HPA involvement in the pathogenesis of post-traumatic stress disorder (PTSD), yet most studies examining linkages between HPA axis measures and PTSD have yielded null findings. One untested explanation for this inconsistency is a failure to account for simultaneous adrenal and gonadal influence. Here we tested the singular and interactive effects of cortisol (C R ) and testosterone (T R ) reactivity as moderators of war-zone stress evoked PTSD emergence in the war-zone. U.S. soldiers (N=120) scheduled for deployment to Iraq completed pre-deployment measures of C R and T R stress reactivity to a CO 2 inhalation challenge. Once deployed, monthly assessments of exposure to traumatic war-zone stressors and PTSD symptoms were collected via a web-based assessment system. Cortisol hypo-reactivity potentiated the pathogenic impact of war-zone stressors only in soldiers for whom the CO 2 challenge did not elevate testosterone, suggesting that the dual hormone stress reactivity profile of blunted cortisol and testosterone may confer increased risk for PTSD emergence by potentiating the pathogenic effects of war-zone stressors. Findings underscore the utility of assessing both HPA and HPG stress reactivity when assessing PTSD vulnerability and may help inform efforts for enhanced soldier screening and inoculation to war-zone stressors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Leptin, gastrointestinal and stress hormones in response to exercise in fasted or fed subjects and before or after blood donation.

    PubMed

    Sliwowski, Z; Lorens, K; Konturek, S J; Bielanski, W; Zoładź, J A

    2001-03-01

    Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that

  8. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    EPA Science Inventory

    RATIONALE: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and gluoose intolerance that are assoc...

  9. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    EPA Science Inventory

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  10. Stress hormones in health and illness: the roles of work and gender.

    PubMed

    Lundberg, Ulf

    2005-11-01

    Two neuroendocrine systems are of specific interest in the study of stress and health; the sympathetic adrenomedullary system with the secretion of epinephrine and norepinephrine, and the hypothalamic pituitary adrenocortical (HPA) system with the secretion of cortisol. These hormones have often been used as objective indicators of stress in the individual. However, through their bodily effects, they are also a link between the psychosocial environment and various health outcomes. From a series of studies of women and men, it was concluded that gender roles and psychological factors are more important than biological factors for the sex differences in stress responses. The stress responses have been important for human and animal survival and for protection of the body. However, in modern society, some of these bodily responses may cause harm rather than protection. The catecholamines have been linked to cardiovascular disorders such as hypertension, myocardial infarction and stroke, cortisol to cardiovascular disease, Type 2 diabetes, reduced immune function and cognitive impairment. An adequate balance between catabolic (mobilization of energy) and anabolic processes (growth, healing) is considered necessary for long term health and survival. In modern society, which is characterized by a rapid pace of life, high demands, efficiency and competitiveness in a global economy, it is likely that lack of rest, recovery and restitution is a greater health problem than the absolute level of stress.

  11. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    DTIC Science & Technology

    2014-09-30

    physiological indicators of stress in wild marine mammals and the interrelationships between different stress markers can be used to estimate the impact...and thyroid hormones via radioimmunoassay (RIA). The methods have been validated for cortisol and aldosterone in this species (Houser et al., 2011...measurement methods. Metabolites of cortisol, aldosterone and thyroid hormone will be extracted from fecal samples and measured via RIA using established

  12. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    DTIC Science & Technology

    2013-09-30

    physiological indicators of stress in wild marine mammals and the interrelationships between different stress markers can be used to estimate the impact...Radioimmunoassay methods have previously been validated for cortisol and aldosterone in this species (Houser et al., 2011). Parallel processing of...for these hormones.. Metabolites of cortisol, aldosterone and thyroid hormone will be extracted from fecal samples and measured via RIA using

  13. Improving the Nation's Health. Step One: Reduce Toxic Stress in Early Childhood. Perspectives

    ERIC Educational Resources Information Center

    Louv, Richard

    2006-01-01

    To reduce risk factors for adult disease in our society, we must tackle the problem of toxic stress in early childhood. This condition is associated with the excessive release of a stream of hormones whose persistent elevation can disrupt the wiring of the developing brain and the functioning of the immune system. Children who experience toxic…

  14. Leisure education reduces stress among older adults.

    PubMed

    Chang, Liang-Chih

    2014-01-01

    The objectives of this study were to examine whether a leisure education program could facilitate leisure competence among older adults and whether it could also reduce their stress. A pre-test-post-test randomized experimental design was conducted. Subjects were randomly assigned to either an experimental group (n = 30) or a control group (n = 30). A leisure education program was used to serve as the intervention. A day before this experiment was carried out, pre-test data were collected using leisure competence and stress scales. Thirty minutes after this experiment ended, post-test data were collected using the same scales. These data were analyzed using an analysis of covariance. The results indicated that the average post-test scores of leisure competence in the experimental group were significantly higher than those in the control group and that the average post-test scores of stress in the experimental group were significantly lower than those in the control group. Healthcare practitioners should adopt the provision of leisure education as a priority to facilitate leisure competence and reduce stress among older adults.

  15. Reducing interpersonal stress in dental practice.

    PubMed

    Katz, C A

    1978-07-01

    Inherent in the dental situation is the potential for a great deal of interpersonal stress. While the particular areas of stressful interaction are as numerous and varied as are the approaches to deal with such situations, what may be of ultimate importance is what an individual tells himself or herself about such situations. Stresses become distressful when we interpret them as terrible, unfair, or catastrophic, rather than an unfortunate or undersirable, perhaps the inevitable result of the general nature of the human condition. We may not have the power or ability to control many external stress-producing events, but we do indeed have the ability to alter how we feel about such events by becoming aware of our self-defeating beliefs and negative self-talk, and subsequently by finding more appropriate and positive messages to tell ourselves about such occurrences. In addition, the quality of the emotional environment established in the dental office can be altered to reduce the interpersonal stresses resulting from poor communication between dentist, staff, and patient. The end result will hopefully be a longer and happier relationship for all persons involved in dentistry and better realization of everyone's stated goal-improved dental health.

  16. A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear

    PubMed Central

    Meyer, Retsina M.; Burgos-Robles, Anthony; Liu, Elizabeth; Correia, Susana S.; Goosens, Ki A.

    2014-01-01

    Hormones in the hypothalamus-pituitary-adrenal (HPA) axis mediate many of the bodily responses to stressors, yet there is not a clear relationship between the levels of these hormones and stress-associated mental illnesses such as post-traumatic stress disorder (PTSD). Therefore, other hormones are likely to be involved in this effect of stress. Here we used a rodent model of PTSD in which rats repeatedly exposed to a stressor display heightened fear learning following auditory Pavlovian fear conditioning. Our results show that stress-related increases in circulating ghrelin, a peptide hormone, are necessary and sufficient for stress-associated vulnerability to exacerbated fear learning and these actions of ghrelin occur in the amygdala. Importantly, these actions are also independent of the classic HPA stress axis. Repeated systemic administration of a ghrelin receptor agonist enhanced fear memory but did not increase either corticotropin releasing factor (CRF) or corticosterone. Repeated intra-amygdala infusion of a ghrelin receptor agonist produced a similar enhancement of fear memory. Ghrelin receptor antagonism during repeated stress abolished stress-related enhancement of fear memory without blunting stress-induced corticosterone release. We also examined links between ghrelin and growth hormone (GH), a major downstream effector of the ghrelin receptor. GH protein was upregulated in the amygdala following chronic stress, and its release from amygdala neurons was increased by ghrelin receptor stimulation. Virus-mediated overexpression of GH in the amygdala was also sufficient to increase fear. Finally, virus-mediated overexpression of a GH receptor antagonist was sufficient to block the fear enhancing effects of repeated ghrelin receptor stimulation. Thus, ghrelin requires GH in the amygdala to exert fear-enhancing effects. These results suggest that ghrelin mediates a novel branch of the stress response and highlight a previously unrecognized role for ghrelin

  17. Prevention effect of rare ginsenosides against stress-hormone induced MTOC amplification

    PubMed Central

    Lee, Jee-Hyun; Cheong, Kyu Jin; Jung, Youn-Sang; Woo, Tae-Gyun; Yoon, Min-Ho; Oh, Ah-Young; Kang, So-Mi; Lee, Chunghui; Sun, Hokeun; Hwang, Jihwan; Song, Gyu-Yong; Park, Bum-Joon

    2016-01-01

    Stress has been suggested as one of important cause of human cancer without molecular biological evidence. Thus, we test the effect of stress-related hormones on cell viability and mitotic fidelity. Similarly to estrogen, stress hormone cortisol and its relative cortisone increase microtubule organizing center (MTOC) number through elevated expression of γ-tubulin and provide the Taxol resistance to human cancer cell lines. However, these effects are achieved by glucocorticoid hormone receptor (GR) but not by estrogen receptor (ER). Since ginsenosides possess steroid-like structure, we hypothesized that it would block the stress or estrogen-induced MTOC amplification and Taxol resistance. Among tested chemicals, rare ginsenoside, CSH1 (Rg6) shows obvious effect on inhibition of MTOC amplification, γ-tubulin induction and Taxol resistance. Comparing to Fulvestant (FST), ER-α specific inhibitor, this chemical can block the cortisol/cortisone-induced MTOC deregulation as well as ER-α signaling. Our results suggest that stress hormone induced tumorigenesis would be achieved by MTOC amplification, and CSH1 would be useful for prevention of stress-hormone or steroid hormone-induced chromosomal instability. PMID:27147573

  18. Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups.

    PubMed

    Takahashi, L K; Kalin, N H

    1991-08-30

    Previous experiments revealed that 14-day-old prenatally stressed rats have significantly elevated concentrations of plasma adrenocorticotrophic hormone (ACTH) and corticosterone suggesting these animals have an overactive hypothalamic-pituitary-adrenal (HPA) system. In these studies, however, stress-induced hormone levels were determined only immediately after exposure to an acute stressor. Therefore, in the current study, we examined in postnatal days 7, 14 and 21 prenatally stressed rats the stress-induced time course of this pituitary-adrenal hormone elevation. Plasma ACTH and corticosterone were measured in the basal state and at 0.0, 0.5, 1.0, 2.0 and 4.0 h after a 10-min exposure period to foot shocks administered in the context of social isolation. Results indicated that at all 3 ages, plasma ACTH in prenatally stressed rats was significantly elevated. Corticosterone concentrations were also significantly higher in prenatally stressed than in control rats, especially in day 14 rats. Analysis of stress-induced hormone fluctuations over time indicated that by 14 days of age, both prenatally stressed than in control and control rats had significant increases in plasma ACTH and corticosterone after exposure to stress. Furthermore, although prenatally stressed rats had significantly higher pituitary-adrenal hormone concentrations than control animals, the post-stress temporal patterns of decline in ACTH and corticosterone levels were similar between groups. Results suggest that throughout the preweaning period, prenatal stress produces an HPA system that functions in a manner similar to that of controls but at an increased level.

  19. Growth hormone distribution kinetics are markedly reduced in adults with growth hormone deficiency.

    PubMed

    Catalina, Pablo F; Páramo, Concepción; Andrade, Maria Amalia; Mallo, Federico

    2007-03-01

    Growth hormone (GH) circulating levels are highly dependent not only on GH secretion rate from the pituitary, but also on the hormone distribution in the compartments of the body and elimination phenomena. In adult GH-deficient patients these factors become critical nowadays, especially when recombinant human GH (rhGH) is available for replacement therapy. In the present study, we assess the influence of both distribution and elimination phenomena on GH pharmacokinetics in adult GH-deficient patients. We used a four-step methodology following a compartmental approach after an intravenous bolus of recombinant GH in adult GH-deficient patients. We found that GH kinetics are clearly explained by a bi-exponential, two-compartmental model in GH-deficient patients, similarly than in normal or diabetic subjects, as previously shown. We have also observed a marked delay in the whole GH elimination process in GH-deficient patients compared to normal adult subjects, as revealed by metabolic clearance ratio (MCR), elimination constant from central compartment (k(10)), and mean resident time in the body (MRT). Interestingly, such a delay appear to be caused by deep changes in the distribution phase (Mtt(1)- mean transit time-1; T(1/2alpha)- GH half-life at distribution phase), while the elimination phenomenon remains unaltered. Our results emphasize the relevance of distribution phenomena in GH pharmacokinetics, and indicates that studies avoiding data from the GH distribution phase, such as those carried out in steady-state conditions, or those using noncompartmental models, could easily miss relevant information. Our data should be taken into consideration when establishing the appropriate dosage for GH replacement treatments in GH-deficient patients, and calculations should include GH distribution kinetics.

  20. Sex hormones affect acute and chronic stress responses in sexually dimorphic patterns: Consequences for depression models.

    PubMed

    Guo, Lei; Chen, Yi-Xi; Hu, Yu-Ting; Wu, Xue-Yan; He, Yang; Wu, Juan-Li; Huang, Man-Li; Mason, Matthew; Bao, Ai-Min

    2018-05-21

    Alterations in peripheral sex hormones may play an important role in sex differences in terms of stress responses and mood disorders. It is not yet known whether and how stress-related brain systems and brain sex steroid levels fluctuate in relation to changes in peripheral sex hormone levels, or whether the different sexes show different patterns. We aimed to investigate systematically, in male and female rats, the effect of decreased circulating sex hormone levels following gonadectomy on acute and chronic stress responses, manifested as changes in plasma and hypothalamic sex steroids and hypothalamic stress-related molecules. Experiment (Exp)-1: Rats (14 males, 14 females) were gonadectomized or sham-operated (intact); Exp-2: gonadectomized and intact rats (28 males, 28 females) were exposed to acute foot shock or no stressor; and Exp-3: gonadectomized and intact rats (32 males, 32 females) were exposed to chronic unpredictable mild stress (CUMS) or no stressor. For all rats, plasma and hypothalamic testosterone (T), estradiol (E2), and the expression of stress-related molecules were determined, including corticotropin-releasing hormone, vasopressin, oxytocin, aromatase, and the receptors for estrogens, androgens, glucocorticoids, and mineralocorticoids. Surprisingly, no significant correlation was observed in terms of plasma sex hormones, brain sex steroids, and hypothalamic stress-related molecule mRNAs (p > 0.113) in intact or gonadectomized, male or female, rats. Male and female rats, either intact or gonadectomized and exposed to acute or chronic stress, showed different patterns of stress-related molecule changes. Diminished peripheral sex hormone levels lead to different peripheral and central patterns of change in the stress response systems in male and female rats. This has implications for the choice of models for the study of the different types of mood disorders which also show sex differences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects.

    PubMed

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, Branimir K; Kodrík, Dalibor

    2015-04-01

    Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. EFFECT OF ACUTE STRESS ON PLASMA CONCENTRATIONS OF SEX AND STRESS HORMONES IN JUVENILE ALLIGATORS LIVING IN CONTROL AND CONTAMINATED LAKES

    EPA Science Inventory

    Environmental contaminants can act as stressors, inducing elevated circulating concentrations of stress hormones such as corticosterone and cortisol. Development in contaminated eggs has been reported to modify circulating sex steroid hormone concentrations in alligators (Alligat...

  3. Adolescence and the Ontogeny of the Hormonal Stress Response in Male and Female Rats and Mice

    PubMed Central

    Romeo, Russell D.; Patel, Ravenna; Pham, Laurie; So, Veronica M.

    2016-01-01

    Adolescent development is marked by many changes in neuroendocrine function, resulting in both immediate and long-term influences on an individual’s physiology and behavior. Stress-induced hormonal responses are one such change, with adolescent animals often showing different patterns of hormonal reactivity following a stressor compared with adults. This review will describe the unique ways in which adolescent animals respond to a variety of stressors and how these adolescent-related changes in hormonal responsiveness can be further modified by the sex and previous experience of the individual. Potential central and peripheral mechanisms that contribute to these developmental shifts in stress reactivity are also discussed. Finally, the short- and long-term programming effects of chronic stress exposure during adolescence on later adult hormonal responsiveness are also examined. Though far from a clear understanding of the neurobehavioral consequences of these adolescent-related shifts in stress reactivity, continued study of developmental changes in stress-induced hormonal responses may shed light on the increased vulnerability to physical and psychological dysfunctions that often accompany a stressful adolescence. PMID:27235079

  4. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows.

    PubMed

    De Rensis, F; Garcia-Ispierto, I; López-Gatius, F

    2015-09-15

    Heat stress has consequences on both the physiology and reproductive performance of cows, but the most dramatic effect for dairy producers is the decrease produced in fertility. The effects of heat stress on fertility include an increased number of days open, reduced conception rate, and larger number of cows suffering different types of anestrus. Once becomes pregnant, heat stress affects also the reproductive success of the cow through its direct effects on the ovary, uterus, gametes, embryo, and early fetus. This article reviews current knowledge of the effects of heat stress on fertility in dairy cows and the hormonal strategies used to mitigate these effects at the farm level. Administration of GnRH at the moment of artificial insemination can improve the conception rate. Breeding synchronization protocols for fixed-time insemination may reduce the calving conception interval and the number of services per conception. Progesterone-based protocols seem resolve better the reproductive disorders related to a hot environment (anestrus) than GnRH-based protocols. The use of combinations of GnRH, eCG, and hCG in progesterone-based protocols can improve results. Progesterone supplementation during the late embryonic and/or early fetal period would be useful in curtailing pregnancy losses, mainly in single pregnancies, whereas a more positive effect of treatment with GnRH than progesterone has been found in twin pregnancies. Melatonin therapy is emerging as a promising strategy to improve the natural reproductive performance of cows suffering conditions of heat stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    DTIC Science & Technology

    2014-09-30

    hormones and function in elephant seals; 3) determine the impact of baseline variation in aldosterone on electrolyte balance in elephant seals; 4...may have broad implications for marine mammal species. Task 3 – Impact of aldosterone variability on osmolality Work on the Parent Project and...a parallel project on bottlenose dolphins has shown the importance of aldosterone as a stress hormone in marine mammals. Aldosterone covaries with

  6. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    DTIC Science & Technology

    2014-09-30

    cortisol and aldosterone impacted glucose, lactate, NEFA , BUN and electrolyte levels. These data provide novel information on the physiological and...massey.ac.nz Award Number: N000141110434 LONG-TERM GOALS Physiological indicators of stress in wild marine mammals, the interrelationships between...hormones (GC), aldosterone (A), thyroid hormones (TH), and catecholamines within a free-ranging northern elephant seal population and its dependence

  7. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    DTIC Science & Technology

    2015-09-30

    hormones and function in elephant seals; 3) determine the impact of baseline variation in aldosterone on electrolyte balance in elephant seals; 4...3 – Impact of aldosterone variability on osmolality Work on the Parent Project and a parallel project on bottlenose dolphins has shown the...importance of aldosterone as a stress hormone in marine mammals. Aldosterone covaries with cortisol in many groups (Figure 4) and ACTH challenges in the

  8. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    DTIC Science & Technology

    2011-09-30

    physiological indicators of stress in wild marine mammals and the interrelationships between different stress markers can be used to estimate the impact of...samples will be processed for adrenocorticosteroids (ACTH, cortisol, aldosterone ), catecholamines (epinephrine, norepinephrine), and thyroid hormones...T3 and T4) via radioimmunoassay (RIA). Radioimmunoassay methods have previously been validated for cortisol and aldosterone in this species (Houser

  9. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress.

    PubMed

    Sneideris, Larissa C; Gavassi, Marina A; Campos, Marcelo L; D'Amico-Damião, Victor; Carvalho, Rogério F

    2015-09-01

    In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress.

  10. Ethological endophenotypes are altered by elevated stress hormone levels in both Huntington's disease and wildtype mice.

    PubMed

    Mo, Christina; Renoir, Thibault; Hannan, Anthony J

    2014-11-01

    Huntington's disease (HD) is an autosomal dominant, neurodegenerative disorder with cognitive, psychiatric, motor, neuroendocrine and peripheral dysfunctions. Symptom onset and progression can be closely modeled in HD transgenic mice, which facilitate the search for therapeutics and environmental modulators. In the first investigation of chronic stress in HD, we have previously shown that administering a moderate dose of the stress hormone, corticosterone (CORT) had no effect on short-term memory in wildtype (WT) mice but accelerated the onset of the impairment in male R6/1 HD mice. We now extend this investigation to ethological dysfunctions in HD, which we hypothesized to be more susceptible to CORT treatment compared to the same functions in WT littermates. Both genotypes consumed similar doses of CORT dissolved in drinking water across 6-14 weeks of age and were assessed for olfactory sensitivity, nest-building, saccharin preference as well as vocal responses to sociosexual stimuli. In female HD and WT mice, olfactory sensitivity and saccharin preference were reduced by 2 and 4 weeks of CORT, respectively. In males, there was no effect of CORT on saccharin preference, however the number of vocalizations to a female mouse was transiently increased by CORT-drinking, regardless of genotype. Nest-building was severely impaired in HD mice at an early age, but was unaffected by CORT. Our results suggest that the presence of the HD mutation had no bearing on CORT-induced effects at this dose, suggesting that even moderately elevated stress hormone levels can impair ethological behaviors in both the HD and healthy brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Serum Levels of Stress Hormones and Oxidative Stress Biomarkers Differ according to Sasang Constitutional Type

    PubMed Central

    Kim, Hyeong Geug; Kim, Yoon Jung; Ahn, Yo Chan

    2015-01-01

    Objectives. This study investigated whether Sasang constitutional type is associated with differences in the serum levels of stress hormones and oxidative stress. Methods. A total of 236 participants (77 males and 159 females) were enrolled. The serum levels of cortisol, adrenaline, reactive oxygen species (ROS), and malondialdehyde (MDA) were analyzed. Results. The distribution of Sasang constitutional types was as follows: Taeumin, 35.6%; Soumin, 33.0%; and Soyangin, 31.4%. The serum cortisol levels of Taeumin were significantly lower than Soumin (p < 0.1 in both sexes) and Soyangin (p < 0.05 in males and p < 0.1 in females). The adrenaline levels were also significantly lower in Taeumin than in Soumin (p < 0.05 in males and p < 0.1 in females) and Soyangin (p < 0.1 in males). Serum ROS levels were significantly higher in Soyangin than in Taeumin and Soumin (p < 0.05 in males), whereas MDA levels were significantly lower in Taeumin compared with Soumin and Soyangin (p < 0.05 in males and p < 0.1 in females). Conclusion. Taeumin type may tolerate psychological or oxidative stress better than other types, which suggests a biological mechanism to explain the different pathophysiological features of Sasang constitutional types. PMID:26539232

  12. Pivagabine decreases stress-related hormone secretion in women with hypothalamic amenorrhea.

    PubMed

    Genazzani, A D; Stomati, M; Bersi, C; Luisi, S; Fedalti, M; Santuz, M; Esposito, G; Petraglia, F; Genazzani, A R

    2000-09-01

    Stress-induced neuroendocrine activities influence the regulation of endocrine glands and axes. Weight loss-related hypothalamic amenorrhea is a typical stress-induced physiopathological condition. It is characterized by increased adrenal cortex activation and by reduced GH, LH, FSH and gonadal steroid hormone levels. The aim of the present study was to investigate the effects of pivagabine, a neurotropic drug (1800 mg/day for 7 days) or placebo administration on ACTH, cortisol, GH, LH, FSH and PRL plasma levels in patients with hypothalamic amenorrhea related to weight loss. Hormonal parameters and the pulsatile release of cortisol (6-hour pulsatility, sampling every 10 minutes) were evaluated before and after 7 days of treatment. Pivagabine administration significantly reduced mean plasma ACTH (from 21.7+/-1.7 to 15.4+/-1.2 pg/ml, p<0.05) and cortisol levels (from 12.2+/-0.7 to 9.7+/-0.7 ng/ml, p<0.05) and increased GH levels (from 1.4+/-0.5 to 3.0+/-0.9 ng/ml, p<0.05). A significant reduction of cortisol pulse amplitude was observed (p<0.01) while no change in pulse frequency occurred. No changes were observed in placebo-treated subjects. LH, FSH and PRL levels were not modified by placebo or pivagabine administration. In conclusion, in patients with hypothalamic amenorrhea related to weight loss pivagabine induced a significant decrease of cortisol secretion and an increase of GH release by pivagabine administration, suggesting that this drug exerts a specific neuroendocrine modulatory role.

  13. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    PubMed Central

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  14. Jasmonate Hormone: Regulating Synthesis of Reduced Carbon Compounds in Plants

    SciTech Connect

    Browse, John

    Our original interest in understanding the role of jasmonate (JA) in regulating the final stages of stamen and pollen development led to our discovery of the JAZ repressors, and the molecular mechanism of JA action is now a second important focus of our research. The specific goals for this grant period are to: 1. Investigate the generation and clearance of the hormone with emphasis on the regulation of the OPR3 enzyme and the hydrolysis of JA-Ile. 2. Use dominant-negative and overexpression constructs to explore the role of the MYC5 transcription factor in initiating and regulating JA responses. 3. Investigate specificmore » JAZ protein interactions that will help us to recognize and understand the extended network of processes, such as sulfur nutrition, that interface with JA signaling. The COI1 F-Box protein is a JA-Ile coreceptor and coi1 mutant plants lack JA responses. We have tested the possibility that sites of JA action can be probed by using tissue-specific promoters to drive expression of a COI1-YFP fusion protein in coi1 mutant plants deficient in stamen and pollen function. When we expressed COI1 behind a filament-specific promoter (from the DAD1 gene), filament elongation was restored but not anther dehiscence or pollen function. Three tapetum specific promoters, all failed to restore any of these three functions but, unexpectedly, a promoter active in the stomium and epidermal cells, restored both pollen function and anther dehiscence. Most importantly, our results demonstrate the power of promoter::COI1-YFP constructs in revealing the primary sites of JA-regulated gene expression that control developmental and other responses in neighboring tissues. We now plan to use this new tool to test current hypotheses about JA action in other organs of the plant. The MYC2, MYC3, and MYC4 proteins are the primary transcription factors initiating defense and root growth responses to JA signaling. However, transgenic plants overexpressing these proteins do not

  15. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2.

    PubMed

    Coste, S C; Kesterson, R A; Heldwein, K A; Stevens, S L; Heard, A D; Hollis, J H; Murray, S E; Hill, J K; Pantely, G A; Hohimer, A R; Hatton, D C; Phillips, T J; Finn, D A; Low, M J; Rittenberg, M B; Stenzel, P; Stenzel-Poore, M P

    2000-04-01

    The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central functions for Crhr1 in anxiety and neuroendocrine stress responses. Here we generate Crhr2-/- mice and show that Crhr2 supplies regulatory features to the hypothalamic-pituitary-adrenal axis (HPA) stress response. Although initiation of the stress response appears to be normal, Crhr2-/- mice show early termination of adrenocorticotropic hormone (Acth) release, suggesting that Crhr2 is involved in maintaining HPA drive. Crhr2 also appears to modify the recovery phase of the HPA response, as corticosterone levels remain elevated 90 minutes after stress in Crhr2-/- mice. In addition, stress-coping behaviours associated with dearousal are reduced in Crhr2-/- mice. We also demonstrate that Crhr2 is essential for sustained feeding suppression (hypophagia) induced by Ucn. Feeding is initially suppressed in Crhr2-/- mice following Ucn, but Crhr2-/- mice recover more rapidly and completely than do wild-type mice. In addition to central nervous system effects, we found that, in contrast to wild-type mice, Crhr2-/- mice fail to show the enhanced cardiac performance or reduced blood pressure associated with systemic Ucn, suggesting that Crhr2 mediates these peripheral haemodynamic effects. Moreover, Crhr2-/- mice have elevated basal blood pressure, demonstrating that Crhr2 participates in cardiovascular homeostasis. Our results identify specific responses in the brain and periphery that involve Crhr2.

  16. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    DTIC Science & Technology

    2015-09-30

    GOALS Quantifying physiological indicators of stress in wild marine mammals and the interrelationships between different stress markers can be used...hormone analyses for all aspects of the parent project were completed except for the following: aldosterone remains to be processed for the diel...10.1016/j.ygcen.2013.11.021 4 PUBLICATIONS Atkinson, S., Crocker, D., Houser, D., and Mashburn, K. (2015). Stress physiology in marine

  17. Hormone levels in neonatal hair reflect prior maternal stress exposure during pregnancy

    PubMed Central

    Kapoor, Amita; Lubach, Gabriele R.; Ziegler, Toni E.; Coe, Christopher L.

    2016-01-01

    Hormones present in hair provide summative information about endocrine activity while the hair was growing. Therefore, it can be collected from an infant after birth and still provide retrospective information about hormone exposure during prenatal development. We employed this approach to determine whether a delimited period of maternal stress during pregnancy affected the concentrations of glucocorticoids and gonadal hormones in the hair of neonatal rhesus monkeys. Hair from 22 infant monkeys exposed to 5 weeks of gestational disturbance was compared to specimens from 13 infants from undisturbed control pregnancies. Using an LC/MS/MS based technique, which permitted seven steroid hormones to be quantified simultaneously, we found 2 hormones were significantly different in infants from disturbed pregnancies. Cortisol and testosterone levels were lower in the hair of both male and female neonates. Maternal hair hormone levels collected on the same day after delivery no longer showed effects of the disturbance earlier during pregnancy. This study documents that a period of acute stress, lasting for 20% of gestation, has sustained effects on the hormones to which a developing fetus is exposed. PMID:26802598

  18. Physical Exercise Counteracts Stress-induced Upregulation of Melanin-concentrating Hormone in the Brain and Stress-induced Persisting Anxiety-like Behaviors.

    PubMed

    Kim, Tae-Kyung; Han, Pyung-Lim

    2016-08-01

    Chronic stress induces anxiety disorders, whereas physical exercise is believed to help people with clinical anxiety. In the present study, we investigated the mechanisms underlying stress-induced anxiety and its counteraction by exercise using an established animal model of anxiety. Mice treated with restraint for 2 h daily for 14 days exhibited anxiety-like behaviors, including social and nonsocial behavioral symptoms, and these behavioral impairments lasted for more than 12 weeks after the stress treatment was removed. Despite these lasting behavioral changes, wheel-running exercise treatment for 1 h daily from post-stress days 1 - 21 counteracted anxiety-like behaviors, and these anxiolytic effects of exercise persisted for more than 2 months, suggesting that anxiolytic effects of exercise stably induced. Repeated restraint treatment up-regulated the expression of the neuropeptide, melanin-concentrating hormone (MCH), in the lateral hypothalamus, hippocampus, and basolateral amygdala, the brain regions important for emotional behaviors. In an in vitro study, treatment of HT22 hippocampal cells with glucocorticoid increased MCH expression, suggesting that MCH upregulation can be initially triggered by the stress hormone, corticosterone. In contrast, post-stress treatment with wheel-running exercise reduced the stress-induced increase in MCH expression to control levels in the lateral hypothalamus, hippocampus and basolateral amygdala. Administration of an MCH receptor antagonist (SNAP94847) to stress-treated mice was therapeutic against stress-induced anxiety-like behaviors. These results suggest that repeated stress produces long-lasting anxiety-like behaviors and upregulates MCH in the brain, while exercise counteracts stress-induced MCH expression and persisting anxiety-like behaviors.

  19. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.

    PubMed

    Gul, Sumera; Saleem, Darakhshan; Haleem, Muhammad A; Haleem, Darakhshan Jabeen

    2017-11-03

    Stress in known to alter hormonal systems. Pharmacological doses of tryptophan, the essential amino acid precursor of serotonin, increase circulating leptin and decrease ghrelin in normal healthy adults. Because systemically injected leptin inhibits stress-induced behavioral deficits and systemically injected serotonin modulates leptin release from the adipocytes, we used tryptophan as a pharmacological tool to modulate hormonal and behavioral responses in unstressed and stressed rats. Leptin, ghrelin, serotonin, tryptophan, and behavior were studied in unstressed and stressed rats following oral administration of 0, 100, 200, and 300 mg/kg of tryptophan. Following oral administration of tryptophan at a dose of 300 mg/kg, circulating levels of serotonin and leptin increased and those of ghrelin decreased in unstressed animals. No effect occurred on 24-hours cumulative food intake and elevated plus maze performance. Exposure to 2 hours immobilization stress decreased 24 hours cumulative food intake and impaired performance in elevated plus maze monitored next day. Serum serotonin decreased, leptin increased, and no effect occurred on ghrelin. Stress effects on serotonin, leptin, food intake, and elevated plus maze performance did not occur in tryptophan-pretreated animals. Tryptophan-induced decreases of ghrelin also did not occur in stressed animals. The findings show an important role of serum serotonin, leptin, and ghrelin in responses to stress and suggest that the essential amino acid tryptophan can improve therapeutics in stress-induced hormonal and behavioral disorders.

  20. HPA-Axis Hormone Modulation of Stress Response Circuitry Activity in Women with Remitted Major Depression

    PubMed Central

    Holsen, Laura M.; Lancaster, Katie; Klibanski, Anne; Whitfield-Gabrieli, Susan; Cherkerzian, Sara; Buka, Stephen; Goldstein, Jill M.

    2013-01-01

    Decades of clinical and basic research indicate significant links between altered hypothalamic-pituitary-adrenal (HPA)-axis hormone dynamics and major depressive disorder (MDD). Recent neuroimaging studies of MDD highlight abnormalities in stress response circuitry regions which play a role in the regulation of the HPA-axes. However, there is a dearth of research examining these systems in parallel, especially as related to potential trait characteristics. The current study addresses this gap by investigating neural responses to a mild visual stress challenge with real-time assessment of adrenal hormones in women with MDD in remission and controls. 15 women with recurrent MDD in remission (rMDD) and 15 healthy control women were scanned on a 3T Siemens MR scanner while viewing neutral and negative (stress-evoking) stimuli. Blood samples were obtained before, during, and after scanning for measurement of HPA-axis hormone levels. Compared to controls, rMDD women demonstrated higher anxiety ratings, increased cortisol levels, and hyperactivation in the amygdala and hippocampus, p<0.05, FWE-corrected in response to the stress challenge. Among rMDD women, amygdala activation was negatively related to cortisol changes and positively associated with duration of remission. Findings presented here provide evidence for differential effects of altered HPA-axis hormone dynamics on hyperactivity in stress response circuitry regions elicited by a well-validated stress paradigm in women with recurrent MDD in remission. PMID:23891965

  1. Extended and continuous use of hormonal contraceptives to reduce menstruation.

    PubMed

    Wiegratz, Inka; Kissler, Stefan; Kuhl, Herbert; Kaufmann, Manfred

    2006-09-01

    During the use of long-cycle regimens of monophasic oral contraceptives, the total number of bleeding and cycle-dependent complaints is considerably lower than during conventional treatment with oral contraceptives. Despite an initially higher rate of irregular bleeding, the majority of women prefer the long-cycle treatment since it may improve quality of life. As this regimen provides an enhanced ovarian suppression, it may prevent pregnancies, especially in noncompliant women or patients who are concomitantly treated with drugs that may impair the efficacy of oral contraceptives. Postponement or suppression of withdrawal bleeding also reduces menses-associated disorders such as menorrhagia and dysmenorrhea, and has beneficial effects in patients with hemorrhagic diathesis, endometriosis, uterine leiomyomas and polycystic ovary syndrome. Long-term studies are necessary to assess the impact of long-term use of extended regimens of oral contraceptives on safety, for example, the risk of cancer and cardiovascular disease, and on fertility after discontinuation of treatment.

  2. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation.

    PubMed

    Henriquez, Andres; House, John; Miller, Desinia B; Snow, Samantha J; Fisher, Anna; Ren, Hongzu; Schladweiler, Mette C; Ledbetter, Allen D; Wright, Fred; Kodavanti, Urmila P

    2017-08-15

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED) or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effects of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM) prior to their exposure to air or ozone (1ppm), 4h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and PI3K-AKT. Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced increases in lung Il6 in SHAM rats coincided with neutrophilic inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of Ifnγ and Il-4, the IL-4 protein and ratio of IL-4 to IFNγ (IL-4/IFNγ) proteins increased suggesting a tendency for a Th2 response. This did not occur in ADREX and DEMED rats. We demonstrate that ozone-induced lung injury and neutrophilic inflammation require the presence of circulating epinephrine and corticosterone, which transcriptionally regulates signaling mechanisms involved in this response. Published by Elsevier Inc.

  3. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling1

    PubMed Central

    Yang, Jianchang; Zhang, Jianhua; Wang, Zhiqing; Zhu, Qingsen; Wang, Wei

    2001-01-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed 14CO2 into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA1 + GA4) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed 14C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate. PMID:11553759

  4. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  5. Short communication: Effect of maternal heat stress in late gestation on blood hormones and metabolites of newborn calves.

    PubMed

    Guo, J-R; Monteiro, A P A; Weng, X-S; Ahmed, B M; Laporta, J; Hayen, M J; Dahl, G E; Bernard, J K; Tao, S

    2016-08-01

    Maternal heat stress alters immune function of the offspring, as well as metabolism and future lactational performance, but its effect on the hormonal and metabolic responses of the neonate immediately after birth is still not clear. The objective of this study was to investigate the blood profiles of hormones and metabolites of calves born to cows that were cooled (CL) or heat-stressed (HS) during the dry period. Within 2 h after birth, but before colostrum feeding, blood samples were collected from calves [18 bulls (HS: n=10; CL: n=8) and 20 heifers (HS: n=10; CL: n=10)] born to CL or HS dry cows, and hematocrit and plasma concentrations of total protein, prolactin, insulin-like growth factor-I, insulin, glucose, nonesterified fatty acid, and β-hydroxybutyrate were measured. Compared with CL, HS calves had lower hematocrit and tended to have lower plasma concentrations of insulin, prolactin, and insulin-like growth factor-I. However, maternal heat stress had no effect on plasma levels of total protein, glucose, fatty acid, and β-hydroxybutyrate immediately after birth. These results suggest that maternal heat stress desensitizes a calf's stress response and alters the fetal development by reducing the secretion of insulin-like growth factor-I, prolactin, and insulin. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    DTIC Science & Technology

    2012-09-30

    Award Number: N000141110434 LONG-TERM GOALS Physiological indicators of stress in wild marine mammals, the interrelationships between...populations. OBJECTIVES The objectives of this effort are to: 1) determine the variation in glucocorticoid hormones (GC), aldosterone (A), thyroid...will be processed for ACTH, cortisol, aldosterone , catecholamines (epinephrine, norepinephrine), and TH (T3 and T4) via radioimmunoassay (RIA). All

  7. Effects of Hormone Therapy on Oxidative Stress in Postmenopausal Women with Metabolic Syndrome.

    PubMed

    Sánchez-Rodríguez, Martha A; Zacarías-Flores, Mariano; Castrejón-Delgado, Lizett; Ruiz-Rodríguez, Ana Karen; Mendoza-Núñez, Víctor Manuel

    2016-08-24

    The aim of this study was to determine the effect of oral hormone therapy (HT) on oxidative stress (OS) in postmenopausal women with metabolic syndrome (MetS). A randomized, double blind, placebo-controlled trial was carried out. We formed four groups of 25 women each; healthy (HW) and MetS women (MSW) were assigned to HT (1 mg/day of estradiol valerate plus 5 mg/10 day of medroxiprogesterone) or placebo. We measured plasma lipoperoxides, erythrocyte superoxide dismutase and glutathione peroxidase, total plasma antioxidant status and uric acid, as OS markers. Alternative cut-off values of each parameter were defined and a stress score (SS) ranging from 0 to 7 was used as total OS. MetS was defined according to National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII) criteria. Participants were seen at baseline, 3 and 6 months. After 6 months, MetS decreased in MSW-HT (48%), their triglycerides and high-density lipoprotein cholesterol (HDL-c) improved; in the other groups no difference was found. SS in MSW-HT decreased (3.8 ± 0.3 to 1.7 ± 0.3, p < 0.05) and OS was also reduced (44%), this effect was evident since 3 mo. HW-HT with high OS also decreased (40%). In placebo groups there was no change. Our findings suggest that HT improve lipids and OS associated to MetS in postmenopausal women.

  8. Stress-related hormones and genetic diversity in sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Larson, Shawn E.; Monson, Daniel H.; Ballachey, Brenda E.; Jameson, Ronald J.; Wasser, S.K.

    2009-01-01

    Sea otters (Enhydra lutris) once ranged throughout the coastal regions of the north Pacific, but were extirpated throughout their range during the fur trade of the 18th and 19th centuries, leaving only small, widely scattered, remnant populations. All extant sea otter populations are believed to have experienced a population bottleneck and thus have lost genetic variation. Populations that undergo severe population reduction and associated inbreeding may suffer from a general reduction in fitness termed inbreeding depression. Inbreeding depression may result in decreased testosterone levels in males, and reduced ability to respond to stressful stimuli associated with an increase in the stress-related adrenal glucocorticoid hormones, cortisol and corticosterone. We investigated correlations of testosterone, cortisol, and corticosterone with genetic diversity in sea otters from five populations. We found a significant negative correlation between genetic diversity and both mean population-level (r2= 0.27, P < 0.001) and individual-level (r2= 0.54, P < 0.001) corticosterone values, as well as a negative correlation between genetic diversity and cortisol at the individual level (r2= 0.17, P= 0.04). No relationship was found between genetic diversity and testosterone (P= 0.57). The strength of the correlations, especially with corticosterone, suggests potential negative consequences for overall population health, particularly for populations with the lowest genetic diversity.

  9. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles

    PubMed Central

    Middlemis Maher, Jessica; Werner, Earl E.; Denver, Robert J.

    2013-01-01

    Amphibian tadpoles display extensive anti-predator phenotypic plasticity, reducing locomotory activity and, with chronic predator exposure, developing relatively smaller trunks and larger tails. In many vertebrates, predator exposure alters activity of the neuroendocrine stress axis. We investigated predator-induced effects on stress hormone production and the mechanistic link to anti-predator defences in Rana sylvatica tadpoles. Whole-body corticosterone (CORT) content was positively correlated with predator biomass in natural ponds. Exposure to caged predators in mesocosms caused a reduction in CORT by 4 hours, but increased CORT after 4 days. Tadpoles chronically exposed to exogenous CORT developed larger tails relative to their trunks, matching morphological changes induced by predator chemical cue; this predator effect was blocked by the corticosteroid biosynthesis inhibitor metyrapone. Tadpole tail explants treated in vitro with CORT increased tissue weight, suggesting that CORT acts directly on the tail. Short-term treatment of tadpoles with CORT increased predation mortality, likely due to increased locomotory activity. However, long-term CORT treatment enhanced survivorship, likely due to induced morphology. Our findings support the hypothesis that tadpole physiological and behavioural/morphological responses to predation are causally interrelated. Tadpoles initially suppress CORT and behaviour to avoid capture, but increase CORT with longer exposure, inducing adaptive phenotypic changes. PMID:23466985

  10. Effects of Hormone Therapy on Oxidative Stress in Postmenopausal Women with Metabolic Syndrome

    PubMed Central

    Sánchez-Rodríguez, Martha A.; Zacarías-Flores, Mariano; Castrejón-Delgado, Lizett; Ruiz-Rodríguez, Ana Karen; Mendoza-Núñez, Víctor Manuel

    2016-01-01

    The aim of this study was to determine the effect of oral hormone therapy (HT) on oxidative stress (OS) in postmenopausal women with metabolic syndrome (MetS). A randomized, double blind, placebo-controlled trial was carried out. We formed four groups of 25 women each; healthy (HW) and MetS women (MSW) were assigned to HT (1 mg/day of estradiol valerate plus 5 mg/10 day of medroxiprogesterone) or placebo. We measured plasma lipoperoxides, erythrocyte superoxide dismutase and glutathione peroxidase, total plasma antioxidant status and uric acid, as OS markers. Alternative cut-off values of each parameter were defined and a stress score (SS) ranging from 0 to 7 was used as total OS. MetS was defined according to National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATPIII) criteria. Participants were seen at baseline, 3 and 6 months. After 6 months, MetS decreased in MSW-HT (48%), their triglycerides and high-density lipoprotein cholesterol (HDL-c) improved; in the other groups no difference was found. SS in MSW-HT decreased (3.8 ± 0.3 to 1.7 ± 0.3, p < 0.05) and OS was also reduced (44%), this effect was evident since 3 mo. HW-HT with high OS also decreased (40%). In placebo groups there was no change. Our findings suggest that HT improve lipids and OS associated to MetS in postmenopausal women. PMID:27563883

  11. Hair follicle is a target of stress hormone and autoimmune reactions.

    PubMed

    Ito, Taisuke

    2010-11-01

    Interest in the hair follicle (HF) has recently increased, yet the detailed mechanisms of HF function and immune privilege (IP) have not yet been elucidated. This review discusses the critical points of immunobiology and hormonal aspects of HFs. The HF is a unique mini-organ because it has its own immune system and hormonal milieu. In addition, the HF immune and hormonal systems may greatly affect skin immunobiology. Therefore, knowledge of HF immunobiology and hormonal aspects will lead to a better understanding of skin biology. The HF has a unique hair cycle (anagen, catagen and telogen) and contains stem cells in the bulge area. The HF is closely related to sebaceous glands and the nervous system. This article reviews the interaction between the endocrine/immune system and HFs, including the pathogenesis of alopecia areata associated with stress. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Sex Differences in Anxiety Disorders: Interactions between Fear, Stress, and Gonadal Hormones

    PubMed Central

    Maeng, Lisa Y.; Milad, Mohammed R.

    2015-01-01

    Women are more vulnerable to stress- and fear-based disorders, such as anxiety and post-traumatic stress disorder. Despite the growing literature on this topic, the neural basis of these sex differences remains unclear, and the findings appear inconsistent. The neurobiological mechanisms of fear and stress in learning and memory processes have been extensively studied, and the crosstalk between these systems is beginning to explain the disproportionate incidence and differences in symptomatology and remission within these psychopathologies. In this review, we discuss the intersect between stress and fear mechanisms and their modulation by gonadal hormones and discuss the relevance of this information to sex differences in anxiety and fear-based disorders. Understanding these converging influences is imperative to the development of more effective, individualized treatments that take sex and hormones into account. PMID:25888456

  13. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones.

    PubMed

    Maeng, Lisa Y; Milad, Mohammed R

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Women are more vulnerable to stress- and fear-based disorders, such as anxiety and post-traumatic stress disorder. Despite the growing literature on this topic, the neural basis of these sex differences remains unclear, and the findings appear inconsistent. The neurobiological mechanisms of fear and stress in learning and memory processes have been extensively studied, and the crosstalk between these systems is beginning to explain the disproportionate incidence and differences in symptomatology and remission within these psychopathologies. In this review, we discuss the intersect between stress and fear mechanisms and their modulation by gonadal hormones and discuss the relevance of this information to sex differences in anxiety and fear-based disorders. Understanding these converging influences is imperative to the development of more effective, individualized treatments that take sex and hormones into account. Published by Elsevier Inc.

  14. Analysis of plant hormone profiles in response to moderate dehydration stress.

    PubMed

    Urano, Kaoru; Maruyama, Kyonoshin; Jikumaru, Yusuke; Kamiya, Yuji; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2017-04-01

    Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA 4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. Norepinephrine and Corticotropin-Releasing Hormone: Partners in the Neural Circuits that Underpin Stress and Anxiety.

    PubMed

    Sun, Yajie; Hunt, Sarah; Sah, Pankaj

    2015-08-05

    Norepinephrine and corticotropin-releasing hormone (CRH) have long been implicated in the response to stress. In this issue of Neuron, McCall et al. (2015) show that CRH projections from the central amygdala drive tonic locus coeruleus activity that evokes acute anxiety responses and place aversion. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    EPA Science Inventory

    Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED)or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effect of acute ozone exposure. To understand the influence of adre...

  17. Elevated stress hormone diminishes the strength of female preferences for acoustic signals in the green treefrog.

    PubMed

    Davis, A Gabriell; Leary, Christopher J

    2015-03-01

    Mate selection can be stressful; time spent searching for mates can increase predation risk and/or decrease food consumption, resulting in elevated stress hormone levels. Both high predation risk and low food availability are often associated with increased variation in mate choice by females, but it is not clear whether stress hormone levels contribute to such variation in female behavior. We examined how the stress hormone corticosterone (CORT) affects female preferences for acoustic signals in the green treefrog, Hyla cinerea. Specifically, we assessed whether CORT administration affects female preferences for call rate - an acoustic feature that is typically under directional selection via mate choice by females in most anurans and other species that communicate using acoustic signals. Using a dual speaker playback paradigm, we show that females that were administered higher doses of CORT were less likely to choose male advertisement calls broadcast at high rates. Neither CORT dose nor level was related to the latency of female phonotactic responses, suggesting that elevated CORT does not influence the motivation to mate. Results were also not related to circulating sex steroids (i.e., progesterone, androgens or estradiol) that have traditionally been the focus of studies examining the hormonal basis for variation in female mate choice. Our results thus indicate that elevated CORT levels decrease the strength of female preferences for acoustic signals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Hormonal Regulation of Response to Oxidative Stress in Insects—An Update

    PubMed Central

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-01-01

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed. PMID:26516847

  19. Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male wistar rats.

    PubMed

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan

    2014-11-01

    Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure.

  20. Effects of Electromagnetic Radiation Exposure on Stress-Related Behaviors and Stress Hormones in Male Wistar Rats

    PubMed Central

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Yaghmaei, Parichehreh; Tavakoli, Hassan

    2014-01-01

    Studies have demonstrated that electromagnetic waves, as the one of the most important physical factors, may alter cognitive and non-cognitive behaviors, depending on the frequency and energy. Moreover, non-ionizing radiation of low energy waves e.g. very low frequency waves could alter this phenomenon via alterations in neurotransmitters and neurohormones. In this study, short, medium, and long-term exposure to the extremely low frequency electromagnetic field (ELF-EMF) (1 and 5 Hz radiation) on behavioral, hormonal, and metabolic changes in male Wistar rats (250 g) were studied. In addition, changes in plasma concentrations for two main stress hormones, noradrenaline and adrenocorticotropic hormone (ACTH) were evaluated. ELF-EMF exposure did not alter body weight, and food and water intake. Plasma glucose level was increased and decreased in the groups which exposed to the 5 and 1Hz wave, respectively. Plasma ACTH concentration increased in both using frequencies, whereas nor-adrenaline concentration showed overall reduction. At last, numbers of rearing, sniffing, locomotor activity was increased in group receiving 5 Hz wave over the time. In conclusions, these data showed that the effects of 1 and 5 Hz on the hormonal, metabolic and stress-like behaviors may be different. Moreover, the influence of waves on stress system is depending on time of exposure. PMID:25489427

  1. Corticotropin-releasing hormone-binding protein and stress: from invertebrates to humans.

    PubMed

    Ketchesin, Kyle D; Stinnett, Gwen S; Seasholtz, Audrey F

    2017-09-01

    Corticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity. In this review, we discuss the current literature on CRH-BP and stress across multiple species, from insects to humans. We describe the regulation of CRH-BP in response to stress, as well as genetic mouse models that have been utilized to elucidate the in vivo role(s) of CRH-BP in modulating the stress response. Finally, the role of CRH-BP in the human stress response is examined, including single nucleotide polymorphisms in the human CRHBP gene that are associated with stress-related affective disorders and addiction. Lay summary The stress response is controlled by corticotropin-releasing hormone (CRH), acting via CRH receptors. However, the CRH system also includes a unique CRH-binding protein (CRH-BP) that binds CRH with an affinity greater than the CRH receptors. In this review, we discuss the role of this highly conserved CRH-BP in regulation of the CRH-mediated stress response from invertebrates to humans.

  2. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2013-09-30

    physiological processes driven by the GCs are essential for an individual’s ability to respond and adapt to stress, prolonged elevation of GC hormones...capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone, progesterone) have been routinely...ACE) Basin, also in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone , reproductive and thyroid hormones) in

  3. Reducing Stress of Farm Men and Women.

    ERIC Educational Resources Information Center

    Keating, Norah C.

    1987-01-01

    Questioned 753 farm men and women to identify factors associated with stress in farm families. Results suggest that high mastery provides the best buffer against stress for both farm men and women. The task of family life educators is to help farm families augment their personal and social resources while managing high financial and work demands.…

  4. Reducing Stress in Young Children's Lives.

    ERIC Educational Resources Information Center

    McCracken, Janet Brown, Ed.

    Few adults deliberately set out to cause children stress or to teach them how to deal with it, yet adults do just that with every word, action, and reaction. This book collects work in the field of human development on how adults can help children learn to cope with stress. Each of the 30 chapters previously appeared in "Young Children,"…

  5. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings

    PubMed Central

    da Costa, Cibele T.; de Almeida, Márcia R.; Ruedell, Carolina M.; Schwambach, Joseli; Maraschin, Felipe S.; Fett-Neto, Arthur G.

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  7. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings.

    PubMed

    da Costa, Cibele T; de Almeida, Márcia R; Ruedell, Carolina M; Schwambach, Joseli; Maraschin, Felipe S; Fett-Neto, Arthur G

    2013-01-01

    Adventitious rooting (AR) is a multifactorial response leading to new roots at the base of stem cuttings, and the establishment of a complete and autonomous plant. AR has two main phases: (a) induction, with a requirement for higher auxin concentration; (b) formation, inhibited by high auxin and in which anatomical changes take place. The first stages of this process in severed organs necessarily include wounding and water stress responses which may trigger hormonal changes that contribute to reprogram target cells that are competent to respond to rooting stimuli. At severance, the roles of jasmonate and abscisic acid are critical for wound response and perhaps sink strength establishment, although their negative roles on the cell cycle may inhibit root induction. Strigolactones may also inhibit AR. A reduced concentration of cytokinins in cuttings results from the separation of the root system, whose tips are a relevant source of these root induction inhibitors. The combined increased accumulation of basipetally transported auxins from the shoot apex at the cutting base is often sufficient for AR in easy-to-root species. The role of peroxidases and phenolic compounds in auxin catabolism may be critical at these early stages right after wounding. The events leading to AR strongly depend on mother plant nutritional status, both in terms of minerals and carbohydrates, as well as on sink establishment at cutting bases. Auxins play a central role in AR. Auxin transporters control auxin canalization to target cells. There, auxins act primarily through selective proteolysis and cell wall loosening, via their receptor proteins TIR1 (transport inhibitor response 1) and ABP1 (Auxin-Binding Protein 1). A complex microRNA circuitry is involved in the control of auxin response factors essential for gene expression in AR. After root establishment, new hormonal controls take place, with auxins being required at lower concentrations for root meristem maintenance and cytokinins

  8. Sleep deficit and stress hormones in helicopter pilots on 7-day duty for emergency medical services.

    PubMed

    Samel, Alexander; Vejvoda, Martin; Maass, Hartmut

    2004-11-01

    Helicopter-based emergency medical services in Germany operate from sunrise to sunset, requiring up to 15.5 h of continuous duty during the summer months for pilots, who work for seven consecutive days. Because of concerns regarding the safety of this procedure with respect to pilot fatigue and stress, the German Ministry of Transport asked our laboratory to investigate the risks involved. There were 13 pilots (mean age 38 yr) who were studied in the summer months for 2 d before, 7 d during, and 2 d after their duty cycle. Measured variables included sleep duration and quality, subjective fatigue, and heart rate, as well as 24-h excretion levels of stress hormones. During actual helicopter operations, maximum heart rates did not exceed 120 bpm. Over the 7-d duty period, mean sleep duration decreased from 7.8 h to 6 h or less, resulting in a cumulative sleep loss of about 15 h. Mean levels of excreted adrenalin, noradrenalin, and cortisol increased significantly by 50 to 80%; cortisol and noradrenalin excretion also remained elevated for the two post-duty days. Although the actual flights did not cause critical physiological responses, the acute and accumulated sleep deficit led to incomplete recuperation between duty hours and induced elevated stress indicators. It was, therefore, recommended that the duty cycle be amended as follows: 1.) enforce a 10-h rest period and at least an 8-h sleep opportunity per day; 2.) modify the duty period to allow no more than 3 consecutive rest periods of reduced sleep opportunities (8.5 h); and 3.) follow duty with several days that offer unrestricted sleep opportunities.

  9. Association of plasma hormones, nutritional status, and stressful life events in anorexia nervosa patients.

    PubMed

    Śmiarowska, Małgorzata; Safranow, Krzysztof; Dziedziejko, Violetta; Bialecka, Monika; Koziołek, Monika; Samochowiec, Jerzy

    2014-02-06

    The aim of the current study was to analyze the relationships between plasma hormones, body weight parameters and stressful life events in anorexia nervosa (AN). 72 females in the active phase of AN were evaluated. 52 healthy women constituted the control group. RIA kits were used to measure plasma hormone levels. The concentrations of leptin, insulin, IGF-1, triiodothyronine, LH, FSH, estradiol, and testosterone were significantly lower and those of cortisol and growth hormone significantly higher in the AN than the control group. No hormonal differences between restrictive and binge-purging AN subtypes were found. Leptin, IGF-1, gonadotropins, and sex steroids correlated significantly negatively and growth hormone positively with total reduction of body weight or the degree of undernutrition. Associations were also found between lower insulin concentration and family violence, lower cortisol and psychiatric diseases in the family, higher testosterone and patient's alcohol or drug abuse. The changed activity of the somatotropin-somatomedin, gonadal, and corticotrophin axes corresponds to the clinical stage of AN. Plasma IGF-1 seems to be the most sensitive and useful independent hormonal marker of cachexia.

  10. Influence of chewing rate on salivary stress hormone levels.

    PubMed

    Tasaka, Akinori; Tahara, Yasuaki; Sugiyama, Tetsuya; Sakurai, Kaoru

    2008-10-01

    The purpose of this study was to clarify the effect of different chewing rates on salivary cortisol levels as a stress indicator. The subject group consisted of 16 healthy males. They were required to rest for 30 min, and then given arithmetic calculations to perform for 30 min as stress loading. Immediately after, the first set of saliva specimens (S1) was collected over a period of 1 min to measure cortisol levels. Next, they were asked to chew a tasteless gum base for 10 min, and the second set of saliva specimens (S2) was collected in the same manner. They were then required to rest for 10 min, after which the third set of saliva specimens (S3) was collected. Chewing rates were set to slow, habitual, and fast in time with a metronome. Salivary cortisol levels were analyzed by radioimmunoassay. Changes in salivary cortisol levels comparing S1 with S2, and S1 with S3 were determined. Changes in salivary cortisol levels between S1 and S2 showed a reduction of 4.7%, 14.6%, and 16.2% with slow, habitual, and fast chewing, respectively. A significant difference was observed between slow and fast chewing. Changes in salivary cortisol levels between S1 and S3 showed a reduction of 14.4%, 22.2%, and 25.8% with slow, habitual, and fast chewing, respectively. A significant difference was observed between slow and fast chewing. This study showed that differences in chewing rate affected salivary cortisol levels as a stress indicator, and suggested that the effect on stress release with fast chewing is greater than that with slow chewing.

  11. Effect of psychological stress on fertility hormones and seminal quality in male partners of infertile couples.

    PubMed

    Bhongade, M B; Prasad, S; Jiloha, R C; Ray, P C; Mohapatra, S; Koner, B C

    2015-04-01

    The present study evaluated the effect of psychological stress on male fertility hormones and seminal quality in male partner of infertile couples. Seventy male partners of infertile couples were evaluated for level of psychological stress using Hospital Anxiety and Depression Score (HADS) questionnaire, serum total testosterone, luteinising hormone (LH) and follicle-stimulating hormone (FSH) by electrochemiluminescence assay and serum GnRH by ELISA. Seminal analysis was performed as per WHO guideline. Nineteen (27%) of them had HADS anxiety and depression score ≥8 (abnormal HADS score). The persons having abnormal HADS had lower serum total testosterone, higher serum FSH and LH than those of persons having normal HADS. Serum total testosterone correlated negatively with HADS, but LH and FSH correlated positively. There was no change in GnRH with the change in stress or testosterone levels. Sperm count, motility and morphologically normal spermatozoa were lower in persons having abnormal HADS. Sperm count correlated positively with total testosterone and negatively with FSH and LH. Abnormal sperm motility and morphology were related to lower testosterone and higher LH and FSH levels. Psychological stress primarily lowers serum total testosterone level with secondary rise in serum LH and FSH levels altering seminal quality. Stress management is warranted for male infertility cases. © 2014 Blackwell Verlag GmbH.

  12. Modulatory in vitro effect of stress hormones on the cytokine response of rainbow trout and gilthead sea bream head kidney stimulated with Vibrio anguillarum bacterin.

    PubMed

    Khansari, Ali Reza; Parra, David; Reyes-López, Felipe E; Tort, Lluís

    2017-11-01

    In fish, the stress response and their consequences in the immune system have been widely described. Recently, a differential cytokine regulation between rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata) was reported after treatment with stress hormones together with their receptor antagonists. Nevertheless, there is no evidence of whether antagonists for stress hormone receptors may influence the interaction between hormones and cytokines after bacterial administration. Thus, the aim of our study was to evaluate the cytokine expression in the presence of stress hormones (cortisol, ACTH, adrenaline), hormone receptor antagonists and inactivated Vibrio anguillarum bacterin in rainbow trout and gilthead sea bream head kidney primary cell culture (HKPCC). Mifepristone, spironolactone, propranolol and phentolamine were used to block GR, MR, MC2R, and β-/α-adrenoreceptors. Our results showed an expected increase of the pro-inflammatory and anti-inflammatory response after inactivated V. anguillarum bacterin treatment in both species. Cortisol, ACTH and adrenaline did not modulate the expression of immune-related genes in rainbow trout, while in sea bream cortisol was able to reduce the stimulated gene expression of all cytokines. This effect was only restored to basal expression level in IL-1β and TNF-α by mifepristone. ACTH reduced both pro-inflammatory and anti-inflammatory cytokine expression, excluding IL-1β, only in sea bream. Adrenaline enhanced the expression of IL-1β and TGF-β1 stimulated by inactivated V. anguillarum in sea bream, and the effect was diminished by propranolol. In sum, our results confirm that the immunoendocrine differences reported at gene expression profile between two teleost species are also observed after exposure to inactivated V. anguillarum bacterin, suggesting that stress hormones would differentially modulate the immune response against pathogens in teleost species. Copyright © 2017 Elsevier Ltd. All

  13. Hormonal responses of pilots to training flights: the effects of experience on apparent stress.

    PubMed

    Otsuka, Yasutami; Onozawa, Akihiko; Miyamoto, Yoshinori

    2006-04-01

    The levels of urinary noradrenaline (NAd), adrenaline (Ad) and salivary cortisol (Cor) were determined in student and instructor pilots during Phase 1 (training with propeller engine; PH1), and Phase 2 (training with jet engine; PH2) flight training. The subjects in PH1 were 30 students and 33 instructors, and in PH2 were 17 students and 15 instructors. Urine and saliva were collected approximately 30 min before and 20 min after the flights. The ratio (post/preflight) of the hormonal levels was calculated to compare the students with the instructors and/or PH1 with PH2. In PH1, the levels of all three hormones for postflight were significantly higher than for preflight in students, and the ratios of all three hormones in students were significantly higher than in instructors. In PH2, the ratios of all three hormones for students and instructors did not differ significantly, and the ratios of Ad and Cor levels in students for PH2 were significantly lower than for PH1 (Ad: 1.64 +/- 0.10 vs. 2.23 +/- 0.14; Cor: 0.86 +/- 0.16 vs. 1.68 +/- 0.11, respectively). The results from PH1 clearly demonstrated that flight stress for students was significantly higher than for instructors. The ratios might be regarded as result of adaptation to flight stress in students. We conclude that the ratios of Ad and Cor levels are a good indicator of stress coping in student pilots.

  14. Anabolic hormone profiles in elite military men: Robust associations with age, stress, and fatigue.

    PubMed

    Taylor, Marcus K; Padilla, Genieleah A; Hernández, Lisa M

    2017-08-01

    We recently established stable daily profiles of the anabolic hormones dehydroepiandrosterone (DHEA) and testosterone in 57 elite military men. In this follow-on study, we explored associations of salivary anabolic hormone profiles with demographic (i.e., age, body mass index [BMI]) and biobehavioral health indices (i.e., blood pressure, sleep, perceived stress, fatigue) via correlational models. Next, nuanced patterns were constructed using quartile splits followed by one-way analysis of variance and post hoc subgroup comparisons. Both DHEA (r range: -0.33 to -0.49) and testosterone (r range: -0.19 to -0.41) were inversely associated with age. Quartile comparisons revealed that age-related declines in DHEA were linear, curvilinear, or sigmoidal, depending on the summary parameter of interest. Anabolic hormone profiles did not associate with BMI, blood pressure, or sleep efficiency. Robust linear associations were observed between testosterone and perceived stress (r range: -0.29 to -0.36); concentration-dependent patterns were less discernible. Lower DHEA (r range: -0.22 to -0.30) and testosterone (r range: -0.22 to -0.36) concentrations associated with higher fatigue. Subsequent quartile comparisons suggested a concentration-dependent threshold with respect to evening testosterone. Specifically, those individuals within the lowest quartile (≤68.4pg/mL) endorsed the highest fatigue of the four groups (p=0.01), while the remaining three groups did not differ from each other. This study not only showed that anabolic hormone profiles have distinctive age trajectories, but are also valuable predictors of stress and fatigue in elite military men. This highlights the importance of routine monitoring of anabolic hormone profiles to sustain and optimize health and readiness in chronically stressed populations. Published by Elsevier Inc.

  15. Perceived stress, reproductive hormones, and ovulatory function: a prospective cohort study

    PubMed Central

    Schliep, Karen C.; Mumford, Sunni L.; Vladutiu, Catherine J.; Ahrens, Katherine A.; Perkins, Neil J.; Sjaarda, Lindsey A.; Kissell, Kerri A.; Prasad, Ankita; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2014-01-01

    Background Stress has been shown to suppress ovulation in experimental models, but its effect on human reproduction at the population level is unclear. Methods Healthy women (n=259), aged 18–44 years from Western New York, were followed for two menstrual cycles (2005–2007). Women completed daily perceived stress assessments, a 4-item Perceived Stress Scale (PSS-4) up to four times each cycle, and a 14-item PSS at baseline. Mixed model analyses were used to assess effects of stress on log reproductive hormone concentrations and sporadic anovulation. Results High versus low daily stress was associated with lower estradiol (-9.5%; 95% confidence interval (CI)= -15.6% to -3.0%), free estradiol (-10.4% [-16.5% to -3.9%]), and LH (-14.8% = [-21.3% to -7.7%]), and higher FSH (6.2% [2.0% to 10.5%]) after adjusting for age, race, percent body fat, depression score, and time-varying hormones and vigorous exercise. High versus low daily stress was also associated with lower luteal progesterone (-10.4% [-19.7% to -0.10%]) and higher odds of anovulation (adjusted OR = 2.2 [95% CI=1.0 to 4.7]). For each unit increase in daily stress level, women had a 70% higher odds of an anovulatory episode (OR=1.7 [1.1 to 2.4]). Similar but attenuated results were found for the association between the PSS-4 and reproductive hormones, while null findings were found for the baseline PSS. Conclusion Daily perceived stress does appear to interfere with menstrual cycle function among women with no known reproductive disorders, warranting further research to explore potential population-level impacts and causal biologic mechanisms. PMID:25643098

  16. Thermoregulation and Stress Hormone Recovery After Exercise Dehydration: Comparison of Rehydration Methods

    PubMed Central

    McDermott, Brendon P.; Casa, Douglas J.; Lee, Elaine; Yamamoto, Linda; Beasley, Kathleen; Emmanuel, Holly; Anderson, Jeffrey; Pescatello, Linda; Armstrong, Lawrence E.; Maresh, Carl

    2013-01-01

    Context: Athletic trainers recommend and use a multitude of rehydration (REHY) methods with their patients. The REHY modality that most effectively facilitates recovery is unknown. Objective: To compare 5 common REHY methods for thermoregulatory and stress hormone recovery after exercise dehydration (EXDE) in trained participants. Design: Randomized, cross-over, controlled study. Patients or Other Participants: Twelve physically active, non–heat-acclimatized men (age = 23 ± 4 years, height = 180 ± 6 cm, mass = 81.3 ± 3.7 kg, V̇o2max = 56.9 ± 4.4 mL·min−1·kg−1, body fat = 7.9% ± 3%) participated. Intervention(s): Participants completed 20-hour fluid restriction and 2-hour EXDE; they then received no fluid (NF) or REHY (half-normal saline) via ad libitum (AL), oral (OR), intravenous (IV), or combination IV and OR (IV + OR) routes for 30 minutes; and then were observed for another 30 minutes. Main Outcome Measure(s): Body mass, rectal temperature, 4-site mean weighted skin temperature, plasma stress hormone concentrations, and environmental symptoms questionnaire (ESQ) score. Results: Participants were hypohydrated (body mass −4.23% ± 0.22%) post-EXDE. Rectal temperature for the NF group was significantly greater than for the IV group (P = .023) at 30 minutes after beginning REHY (REHY30) and greater than OR, IV, and IV + OR (P ≤ .009) but not AL (P = .068) at REHY60. Mean weighted skin temperature during AL was less than during IV + OR at REHY5 (P = .019). The AL participants demonstrated increased plasma cortisol concentrations compared with IV + OR, independent of time (P = .015). No differences existed between catecholamine concentrations across treatments (P > .05). The ESQ score was increased at REHY60 for NF, AL, OR, and IV (P < .05) but not for IV + OR (P = .217). The NF ESQ score was greater than that of IV + OR at REHY60 (P = .012). Conclusions: Combination IV + OR REHY reduced body temperature to a greater degree than OR and AL REHY when

  17. Thermoregulation and stress hormone recovery after exercise dehydration: comparison of rehydration methods.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Lee, Elaine; Yamamoto, Linda; Beasley, Kathleen; Emmanuel, Holly; Anderson, Jeffrey; Pescatello, Linda; Armstrong, Lawrence E; Maresh, Carl

    2013-01-01

    Athletic trainers recommend and use a multitude of rehydration (REHY) methods with their patients. The REHY modality that most effectively facilitates recovery is unknown. To compare 5 common REHY methods for thermoregulatory and stress hormone recovery after exercise dehydration (EXDE) in trained participants. Randomized, cross-over, controlled study. Twelve physically active, non-heat-acclimatized men (age = 23 ± 4 years, height = 180 ± 6 cm, mass = 81.3 ± 3.7 kg, VO2max = 56.9 ± 4.4 mL·min(-1)·kg(-1), body fat = 7.9% ± 3%) participated. Participants completed 20-hour fluid restriction and 2-hour EXDE; they then received no fluid (NF) or REHY (half-normal saline) via ad libitum (AL), oral (OR), intravenous (IV), or combination IV and OR (IV + OR) routes for 30 minutes; and then were observed for another 30 minutes. Body mass, rectal temperature, 4-site mean weighted skin temperature, plasma stress hormone concentrations, and environmental symptoms questionnaire (ESQ) score. Participants were hypohydrated (body mass -4.23% ± 0.22%) post-EXDE. Rectal temperature for the NF group was significantly greater than for the IV group (P = .023) at 30 minutes after beginning REHY (REHY30) and greater than OR, IV, and IV + OR (P ≤ .009) but not AL (P = .068) at REHY60. Mean weighted skin temperature during AL was less than during IV + OR at REHY5 (P = .019). The AL participants demonstrated increased plasma cortisol concentrations compared with IV + OR, independent of time (P = .015). No differences existed between catecholamine concentrations across treatments (P > .05). The ESQ score was increased at REHY60 for NF, AL, OR, and IV (P < .05) but not for IV + OR (P = .217). The NF ESQ score was greater than that of IV + OR at REHY60 (P = .012). Combination IV + OR REHY reduced body temperature to a greater degree than OR and AL REHY when compared with NF. Future studies addressing clinical implications are needed.

  18. Stress hormones are associated with the neuronal correlates of instructed fear conditioning.

    PubMed

    Merz, Christian Josef; Stark, Rudolf; Vaitl, Dieter; Tabbert, Katharina; Wolf, Oliver Tobias

    2013-01-01

    The effects of sex and stress hormones on classical fear conditioning have been subject of recent experimental studies. A correlation approach between basal cortisol concentrations and neuronal activation in fear-related structures seems to be a promising alternative approach in order to foster our understanding of how cortisol influences emotional learning. In this functional magnetic resonance imaging study, participants with varying sex hormone status (20 men, 15 women taking oral contraceptives, 15 women tested in the luteal phase) underwent an instructed fear conditioning protocol with geometrical figures as conditioned stimuli and an electrical stimulation as unconditioned stimulus. Salivary cortisol concentrations were measured and afterwards correlated with fear conditioned brain responses. Results revealed a positive correlation between basal cortisol levels and differential activation in the amygdala in men and OC women only. These results suggest that elevated endogenous cortisol levels are associated with enhanced fear anticipation depending on current sex hormone availability. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E

    PubMed Central

    Karavolos, Michail H; Bulmer, David M; Spencer, Hannah; Rampioni, Giordano; Schmalen, Ira; Baker, Stephen; Pickard, Derek; Gray, Joe; Fookes, Maria; Winzer, Klaus; Ivens, Alasdair; Dougan, Gordon; Williams, Paul; Khan, C M Anjam

    2011-01-01

    Salmonella enterica serovar Typhi (S. typhi) causes typhoid fever. We show that exposure of S. typhi to neuroendocrine stress hormones results in haemolysis, which is associated with the release of haemolysin E in membrane vesicles. This effect is attributed to increased expression of the small RNA micA and RNA chaperone Hfq, with concomitant downregulation of outer membrane protein A. Deletion of micA or the two-component signal-transduction system, CpxAR, abolishes the phenotype. The hormone response is inhibited by the β-blocker propranolol. We provide mechanistic insights into the basis of neuroendocrine hormone-mediated haemolysis by S. typhi, increasing our understanding of inter-kingdom signalling. PMID:21331094

  20. Preeclampsia-Associated Hormonal Profiles and Reduced Breast Cancer Risk Among Older Mothers

    DTIC Science & Technology

    2003-04-01

    Preeclampsia has been linked to reduced breast cancer risk, and this reduction may be especially marked among women who bear their first child later...in life. In this ongoing case-control study, we examine the hormonal profiles of older Colorado mothers with and without a history of preeclampsia in...premenopausal, and are free of serious chronic disease. Cases are 14 Denver area women who experienced preeclampsia in their first pregnancy; controls are 13

  1. Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses.

    PubMed

    Goldstein, Jill M; Lancaster, Katie; Longenecker, Julia M; Abbs, Brandon; Holsen, Laura M; Cherkerzian, Sara; Whitfield-Gabrieli, Susan; Makris, Nicolas; Tsuang, Ming T; Buka, Stephen L; Seidman, Larry J; Klibanski, Anne

    2015-06-30

    Response to stress is dysregulated in psychosis (PSY). fMRI studies showed hyperactivity in hypothalamus (HYPO), hippocampus (HIPP), amygdala (AMYG), anterior cingulate (ACC), orbital and medial prefrontal (OFC; mPFC) cortices, with some studies reporting sex differences. We predicted abnormal steroid hormone levels in PSY would be associated with sex differences in hyperactivity in HYPO, AMYG, and HIPP, and hypoactivity in PFC and ACC, with more severe deficits in men. We studied 32 PSY cases (50.0% women) and 39 controls (43.6% women) using a novel visual stress challenge while collecting blood. PSY males showed BOLD hyperactivity across all hypothesized regions, including HYPO and ACC by FWE-correction. Females showed hyperactivity in HIPP and AMYG and hypoactivity in OFC and mPFC, the latter FWE-corrected. Interaction of group by sex was significant in mPFC (F = 7.00, p = 0.01), with PSY females exhibiting the lowest activity. Male hyperactivity in HYPO and ACC was significantly associated with hypercortisolemia post-stress challenge, and mPFC with low androgens. Steroid hormones and neural activity were dissociated in PSY women. Findings suggest disruptions in neural circuitry-hormone associations in response to stress are sex-dependent in psychosis, particularly in prefrontal cortex. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D.

    2001-01-01

    OBJECTIVE: The objective of this study was to determine the effects of stress and spaceflight on levels of neuroendocrine hormones and Epstein-Barr virus (EBV)-specific antibodies in astronauts. METHODS: Antiviral antibody titers and stress hormones were measured in plasma samples collected from 28 astronauts at their annual medical exam (baseline), 10 days before launch (L-10), landing day (R+0), and 3 days after landing (R+3). Urinary stress hormones were also measured at L-10 and R+0. RESULTS: Significant increases (p <.01) in EBV virus capsid antigen antibodies were found at all three time points (L-10, R+0, and R+3) as compared with baseline samples. Anti-EBV nuclear antigen antibodies were significantly decreased at L-10 (p <.05) and continued to decrease after spaceflight (R+0 and R+3, p <.01). No changes were found in antibodies to the nonlatent measles virus. The 11 astronauts who showed evidence of EBV reactivation had significant increases in urinary epinephrine and norepinephrine as compared with astronauts without EBV reactivation. CONCLUSION: These findings indicate that physical and psychological stresses associated with spaceflight resulted in decreased virus-specific T-cell immunity and reactivation of EBV.

  3. Associations of acute and chronic stress hormones with cognitive functions in autism spectrum disorder.

    PubMed

    Ogawa, Shino; Lee, Young-A; Yamaguchi, Yoshie; Shibata, Yuka; Goto, Yukiori

    2017-02-20

    Extensive studies have reported cognitive abnormalities in neurodevelopmental disorders, such as autism spectrum disorder (ASD). Another line of evidence suggests that stress also affects cognitive functions. In this study, we investigated whether there were associations between stress hormones and cognitive functions in ASD and typically developing (TD) children. Cognitive functions in ASD and TD children were evaluated with a battery of psychological tests for working memory, behavioral flexibility, and social cognition for emotional assessments of others. ASD children exhibited higher hair and salivary cortisol, which reflects chronic and acute stress hormone levels of subjects, respectively, than TD children. Autism-spectrum quotient (AQ) was positively correlated with hair cortisol and the scores of Spence Children's Anxiety Scale in ASD children. In addition, a negative correlation was present between spatial working memory performance and hair cortisol in ASD, but not in TD, children. These results suggest that chronic stress hormone elevation may have relationships with some aspects of cognitive dysfunction in ASD subjects. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Associations among dehydration, testosterone and stress hormones in terms of body weight loss before competition.

    PubMed

    İrfan, Yldrm

    2015-08-01

    In weight class sports, such as judo, taekwondo and wrestling, reducing body weight before competitions is common. However, it is recommended that weight loss per week should not exceed 1.5% of total body weight otherwise, athletes' metabolism and endocrine parameters are negatively affected, which will deteriorate their physiology and psychology and thus decrease their performance. The aim of this study was to determine weight loss and hydration levels after weight loss before competitions among the elite wrestlers and to explore the association between hydration levels, and stress and testosterone. This was an observational study. The study was undertaken with 56 voluntary athletes who participated in wrestling championship. With blood samples taken from the wrestlers, glucose, blood urea nitrogen, sodium (Na), cortisol, prolactin and testosterone hormone analyses were evaluated by a specialist at a biochemical laboratory. It was found out that according to plasma osmolarity levels, there were significant differences between those dehydrated and those who maintained euhydration in terms of cortisol and total testosterone levels (P < 0.001). It was detected that an association was present between plasma osmolarity, and cortisol (r = 0.667) and total testosterone levels (r = -0.627) among the elite wrestlers. It was discovered that elite wrestlers were subjected to quick and high level of weight losses before competitions in a very short time (1-5 days). It was seen that their hydration levels differed due to the weight loss, which was explored to be causing acute dehydration among the wrestlers.

  5. Reducing patient stress in theatre. Alison Bell Memorial Award.

    PubMed

    Welsh, J

    2000-06-01

    For most patients, admission to hospital for surgery can be very stressful. It is well recognised that stress, created by prolonged anxiety, can produce harmful effects and may even delay a patient's recovery following surgery. This article, submitted for the 1999 Alison Bell award (sponsored by NATN and Regent Medical), looks at key ways to reduce the effects of such stress.

  6. Understanding and Reducing Stress in the Superintendency

    ERIC Educational Resources Information Center

    Hawk, Nita; Martin, Barbara

    2011-01-01

    This study examined the ways and to what degree, if any, school superintendents perceive stress and what, if any, coping mechanisms were engaged. Study findings revealed that there is a statistical difference between the types of coping mechanisms utilized and effectiveness between male and female superintendents. While no significant difference…

  7. Sex differences in stress-induced social withdrawal: independence from adult gonadal hormones and inhibition of female phenotype by corncob bedding.

    PubMed

    Trainor, Brian C; Takahashi, Elizabeth Y; Campi, Katharine L; Florez, Stefani A; Greenberg, Gian D; Laman-Maharg, Abigail; Laredo, Sarah A; Orr, Veronica N; Silva, Andrea L; Steinman, Michael Q

    2013-03-01

    There is compelling evidence for important sex differences in behavioral and hormonal responses to psychosocial stress. Here we examined the effects of gonadal hormones on behavioral responses to social defeat stress in monogamous California mice (Peromyscus californicus). Three episodes of social defeat induced social withdrawal in intact females but not males. Gonadectomy blocked corticosterone responses to defeat in females and sensitized male corticosterone responses. However, gonadectomy had no effects on social interaction behavior, suggesting that social withdrawal is not dependent on gonadal hormones in the adult California mouse. In contrast, defeat reduced exploratory behavior in the open field test for intact but not castrated males. We also examined the effects of social defeat on social interaction behavior when California mice were raised on corncob bedding, which has estrogenic properties. In this dataset of over 300 mice, we observed that social defeat did not induce social withdrawal when females were raised on corncob bedding. This finding suggests that the use of corncob in rodent studies could mask important sex differences in the effects of stress on brain and behavior. Although gonadal hormones do not affect social withdrawal behavior in adults, our data suggest that hormones may act earlier in development to induce a more resilient social phenotype. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice.

    PubMed

    Wang, Lei A; de Kloet, Annette D; Smeltzer, Michael D; Cahill, Karlena M; Hiller, Helmut; Bruce, Erin B; Pioquinto, David J; Ludin, Jacob A; Katovich, Michael J; Raizada, Mohan K; Krause, Eric G

    2018-05-01

    This study used mice to evaluate whether coupling expression of corticotropin-releasing hormone (CRH) and angiotensin converting enzyme 2 (ACE2) creates central interactions that blunt endocrine and behavioral responses to psychogenic stress. Central administration of diminazene aceturate, an ACE2 activator, had no effect on restraint-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis; however, mice that ubiquitously overexpress ACE2 had reduced plasma corticosterone (CORT) and pituitary expression of POMC mRNA. The Cre-LoxP system was used to restrict ACE2 overexpression to CRH synthesizing cells and probe whether HPA axis suppression was the result of central ACE2 and CRH interactions. Within the paraventricular nucleus of the hypothalamus (PVN), mice with ACE2 overexpression directed to CRH had a ≈2.5 fold increase in ACE2 mRNA, which co-localized with CRH mRNA. Relative to controls, mice overexpressing ACE2 in CRH cells had a decreased CORT response to restraint as well as decreased CRH mRNA in the PVN and CEA and POMC mRNA in the pituitary. Administration of ACTH similarly increased plasma CORT, indicating that the blunted HPA axis activation that accompanies ACE2 overexpression in CRH cells is centrally mediated. Anxiety-like behavior was assessed to determine whether the decreased HPA axis activation was predictive of anxiolysis. Mice with ACE2 overexpression directed to CRH cells displayed decreased anxiety-like behavior in the elevated plus maze and open field when compared to that of controls. Collectively, these results suggest that exogenous ACE2 suppresses CRH synthesis, which alters the central processing of psychogenic stress, thereby blunting HPA axis activation and attenuating anxiety-like behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Relevance of stress and female sex hormones for emotion and cognition.

    PubMed

    ter Horst, J P; de Kloet, E R; Schächinger, H; Oitzl, M S

    2012-07-01

    There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders.

  10. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes

    PubMed Central

    Wen, Gaiping; Eder, Klaus

    2017-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of

  11. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes.

    PubMed

    Wen, Gaiping; Ringseis, Robert; Eder, Klaus

    2017-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of

  12. Sensitivity of anterior pituitary hormones to graded levels of psychological stress.

    PubMed

    Armario, A; Lopez-Calderón, A; Jolin, T; Castellanos, J M

    1986-08-04

    The effect of graded levels of stressor intensity on anterior pituitary hormones was studied in adult male rats. Corticosterone, considered as a reflection of ACTH release, and prolactin responses showed a good correlation with the intensity of the stressors. On the contrary, neither LH, GH nor TSH release showed a parallelism with the intensity of the stressors in spite of the fact that they clearly responded to all the stimuli. It appears that the hormones of the anterior pituitary might be divided into two groups: those whose response is sensitive to the levels of emotional arousal elicited by stress, and those displaying a clear but stereotyped response during stress. However, other alternative explanations might exist to justify the present results. The neural mechanisms underlying the two types of response are at present unknown. These data indicate that only the pituitary-adrenal axis and prolactin have some potential utilities as quantitative indices of emotional arousal elicited by currently applied stressors in the rat.

  13. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    PubMed

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  14. A Study on the Gastrointestinal Hormones and the Gastric Acid Secretion during Physical Stress in Man,

    DTIC Science & Technology

    1983-12-15

    meal and oral glucose during prolonged severe exercise, caloric deficit and sleep deprivation 43 Paper II Secretin - a new stress hormone? 49 8 Page...secretion (gastrin), and that are influenced by the amount of gastric acid produced (secretin, group I pepsinogens). Our subjects were in caloric deficit...response to a liquid meal and oral glucose during prolonged severe exercise, caloric deficit, and sleep deprivation. O Oektedalen, 0 Flaten, P K Opstad

  15. Sex Differences in Stress Response Circuitry Activation Dependent on Female Hormonal Cycle

    PubMed Central

    Goldstein, Jill M.; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-01

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this fMRI study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right-handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry (amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal and medial prefrontal cortices (OFC and mPFC), and anterior cingulate gyrus (ACG). Women were scanned twice based on normal variation in menstrual cycle hormones (i.e., early follicular (EF) compared with late follicular-midcycle menstrual phases (LF/MC)). Using SPM8b, there were few significant differences in BOLD signal changes in men compared to EF women, except ventromedial (VMN) and lateral (LHA) hypothalamus, left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males. PMID:20071507

  16. Sex differences in stress response circuitry activation dependent on female hormonal cycle.

    PubMed

    Goldstein, Jill M; Jerram, Matthew; Abbs, Brandon; Whitfield-Gabrieli, Susan; Makris, Nikos

    2010-01-13

    Understanding sex differences in stress regulation has important implications for understanding basic physiological differences in the male and female brain and their impact on vulnerability to sex differences in chronic medical disorders associated with stress response circuitry. In this functional magnetic resonance imaging study, we demonstrated that significant sex differences in brain activity in stress response circuitry were dependent on women's menstrual cycle phase. Twelve healthy Caucasian premenopausal women were compared to a group of healthy men from the same population, based on age, ethnicity, education, and right handedness. Subjects were scanned using negative valence/high arousal versus neutral visual stimuli that we demonstrated activated stress response circuitry [amygdala, hypothalamus, hippocampus, brainstem, orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and anterior cingulate gyrus (ACG)]. Women were scanned twice based on normal variation in menstrual cycle hormones [i.e., early follicular (EF) compared with late follicular-midcycle (LF/MC) menstrual phases]. Using SPM8b, there were few significant differences in blood oxygenation level-dependent (BOLD) signal changes in men compared to EF women, except ventromedial nucleus (VMN), lateral hypothalamic area (LHA), left amygdala, and ACG. In contrast, men exhibited significantly greater BOLD signal changes compared to LF/MC women on bilateral ACG and OFC, mPFC, LHA, VMN, hippocampus, and periaqueductal gray, with largest effect sizes in mPFC and OFC. Findings suggest that sex differences in stress response circuitry are hormonally regulated via the impact of subcortical brain activity on the cortical control of arousal, and demonstrate that females have been endowed with a natural hormonal capacity to regulate the stress response that differs from males.

  17. Effect of prolonged stress on the adrenal hormones of individuals with irritable bowel syndrome.

    PubMed

    Sugaya, Nagisa; Izawa, Shuhei; Saito, Keisuke; Shirotsuki, Kentaro; Nomura, Shinobu; Shimada, Hironori

    2015-01-01

    The purpose of this study was to investigate the effect of prolonged stress on the salivary adrenal hormones (cortisol, dehydroepiandrosterone [DHEA], DHEA-sulfate [DHEA-S]) of individuals with irritable bowel syndrome (IBS). The participants were female college students, including 10 with IBS and 16 without IBS (control group), who were scheduled for a 2-week teaching practice at a kindergarten. Participants were asked to collect saliva for determining adrenal hormones immediately and 30 min after awakening and before sleep, 2 weeks before the practice, the first week of the practice, the second week of the practice, and a few days after the practice. Regarding cortisol/DHEA ratio, significantly increased levels were found during the first week of the practice, and a significant interaction between group and time was found; the ratio at 30 min after awakening in the IBS group was higher than that in the control group. For the other adrenal hormone indexes, no significant differences due to the presence of IBS were found. Individuals with IBS showed an elevated cortisol/DHEA ratio after awakening compared with individuals without IBS, and the elevated ratio peaked under the prolonged stress. The present study suggests that the cortisol effect is dominant in individuals with IBS under prolonged stress.

  18. Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones.

    PubMed

    Fernández-Guasti, A; Fiedler, J L; Herrera, L; Handa, R J

    2012-07-01

    The risk for neuropsychiatric illnesses has a strong sex bias, and for major depressive disorder (MDD), females show a more than 2-fold greater risk compared to males. Such mood disorders are commonly associated with a dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis. Thus, sex differences in the incidence of MDD may be related with the levels of gonadal steroid hormone in adulthood or during early development as well as with the sex differences in HPA axis function. In rodents, organizational and activational effects of gonadal steroid hormones have been described for the regulation of HPA axis function and, if consistent with humans, this may underlie the increased risk of mood disorders in women. Other developmental factors, such as prenatal stress and prenatal overexposure to glucocorticoids can also impact behaviors and neuroendocrine responses to stress in adulthood and these effects are also reported to occur with sex differences. Similarly, in humans, the clinical benefits of antidepressants are associated with the normalization of the dysregulated HPA axis, and genetic polymorphisms have been found in some genes involved in controlling the stress response. This review examines some potential factors contributing to the sex difference in the risk of affective disorders with a focus on adrenal and gonadal hormones as potential modulators. Genetic and environmental factors that contribute to individual risk for affective disorders are also described. Ultimately, future treatment strategies for depression should consider all of these biological elements in their design. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring.

    PubMed

    Pallarés, María Eugenia; Adrover, Ezequiela; Baier, Carlos Javier; Bourguignon, Nadia S; Monteleone, Melisa C; Brocco, Marcela A; González-Calvar, Silvia I; Antonelli, Marta C

    2013-07-01

    Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.

  20. Dehydroepiandrosterone in relation to other adrenal hormones during an acute inflammatory stressful disease state compared with chronic inflammatory disease: role of interleukin-6 and tumour necrosis factor.

    PubMed

    Straub, Rainer H; Lehle, Karin; Herfarth, Hans; Weber, Markus; Falk, Werner; Preuner, Jurgen; Scholmerich, Jurgen

    2002-03-01

    Serum levels of dehydroepiandrosterone (DHEA) and DHEA sulphate (DHEAS) are low in chronic inflammatory diseases, although the reasons are unexplained. Furthermore, the behaviour of serum levels of these hormones during an acute inflammatory stressful disease state is not well known. In this study in patients with an acute inflammatory stressful disease state (13 patients undergoing cardiothoracic surgery) and patients with chronic inflammation (61 patients with inflammatory bowel diseases (IBD)) vs. 120 controls, we aimed to investigate adrenal hormone shifts looking at serum levels of DHEA in relation to other adrenal hormones. Furthermore, we tested the predictive role of serum tumour necrosis factor (TNF) and interleukin-6 (IL-6) for a change of serum levels of DHEA in relation to other adrenal hormones. The molar ratio of serum levels of DHEA/androstenedione (ASD) was increased in patients with an acute inflammatory stressful disease state and was decreased in patients with chronic inflammation. The molar ratio of serum levels of DHEAS/DHEA was reduced during an acute inflammatory stressful disease state and was increased in patients with chronic inflammation. A multiple linear regression analysis revealed that elevated serum levels of TNF were associated with a high ratio of serum levels of DHEA/ASD in all groups (for IL-6 in patients with an acute inflammatory stressful disease state only), and, similarly, elevated serum levels of TNF were associated with a high ratio of serum levels of DHEAS/DHEA only in IBD (for IL-6 only in healthy subjects). This study indicates that changes of serum levels of DHEA in relation to serum levels of other adrenal hormones are completely different in patients with an acute inflammatory stressful disease state compared with patients with chronic inflammation. The decrease of serum levels of DHEAS and DHEA is typical for chronic inflammation and TNF and IL-6 play a predictive role for these changes.

  1. Prospective inverse associations of sex hormone concentrations in men with biomarkers of inflammation and oxidative stress.

    PubMed

    Haring, Robin; Baumeister, Sebastian E; Völzke, Henry; Dörr, Marcus; Kocher, Thomas; Nauck, Matthias; Wallaschofski, Henri

    2012-01-01

    The suggested associations between sex hormone concentrations and inflammatory biomarkers in men originate from cross-sectional studies and small-scale clinical trials. But prior studies have not investigated longitudinal associations. Overall, 1344 men aged 20-79 years from the population-based cohort Study of Health in Pomerania were followed up for 5.0 (median) years. We used multivariable regression models to analyze cross-sectional and longitudinal associations of serum sex hormone concentrations (total testosterone [TT], sex hormone-binding globulin [SHBG], calculated free testosterone [free T], and dehydroepiandrosterone sulfate [DHEAS]) with biomarkers of inflammation (fibrinogen, high-sensitive C-reactive protein [hsCRP], and white blood cell count [WBC]) and oxidative stress (γ-glutamyl transferase [GGT]) using ordinary least square regression and generalized estimating equation models, respectively. Cross-sectional models revealed borderline associations of sex hormone concentrations with hsCRP, WBC, and GGT levels that were not retained after multivariable adjustment. Longitudinal multivariable analyses revealed an inverse association of baseline TT, free T, and DHEAS concentrations with change in fibrinogen levels (per SD decrement in TT, 0.25 [95% confidence interval, 0.04-0.45]; in free T, 0.30 [0.09-0.51]; and in DHEAS, 0.23 [0.11-0.36]). Furthermore, baseline DHEAS concentrations were inversely associated with change in WBC levels (per SD decrement, 0.53 [0.24-0.82]). Baseline TT, SHBG, free T, and DHEAS concentrations were also inversely associated with change in GGT after multivariable adjustment. The present study is the first to demonstrate prospective inverse associations between sex hormone concentrations and markers of inflammation and oxidative stress in men. Additional studies are warranted to elucidate potential mechanisms underlying the revealed associations.

  2. Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training.

    PubMed

    Lieberman, Harris R; Farina, Emily K; Caldwell, John; Williams, Kelly W; Thompson, Lauren A; Niro, Philip J; Grohmann, Kyle A; McClung, James P

    2016-10-15

    Stress influences numerous psychological and physiological processes, and its effects have practical implications in a variety of professions and real-world activities. However, few studies have concurrently assessed multiple behavioral, hormonal, nutritional and heart-rate responses of humans to acute, severe stress. This investigation simultaneously assessed cognitive, affective, hormonal, and heart-rate responses induced by an intensely stressful real-world environment designed to simulate wartime captivity. Sixty males were evaluated during and immediately following participation in U.S. Army Survival, Evasion, Resistance, and Escape (SERE) school, three weeks of intense but standardized training for Soldiers at risk of capture. Simulated captivity and intense mock interrogations degraded grammatical reasoning (p<0.005), sustained-attention (p<0.001), working memory (p<0.05) and all aspects of mood assessed by the Profile of Mood States (POMS) questionnaire: Tension/Anxiety, Depression/Dejection, Anger/Hostility, Vigor/Activity, Fatigue/Inertia; Confusion/Bewilderment, and Total Mood Disturbance (p<0.001) It also elevated heart rate (p<0.001); increased serum and salivary cortisol and dehydroepiandrosterone-sulfate (DHEA-s) (p<0.01); elevated serum epinephrine, norepinephrine, and soluble transferrin receptors (sTfR) (p<0.01); increased salivary neuropeptide-Y (NPY) (p<0.001); and decreased serum prolactin and serum and salivary testosterone (p<0.001). Partial recovery was observed immediately after training, but stress-induced changes, particularly in body weight and several of the biomarkers, persisted. This study demonstrates that when individuals were exposed to realistic and controlled simulated captivity, cognition, mood, stress hormones, nutritional status and heart rate are simultaneously altered, and each of these subsequently recovers at different rates. Published by Elsevier Inc.

  3. Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth.

    PubMed

    Yang, Cangjing; Liu, Jingjing; Dong, Xinran; Cai, Zhenying; Tian, Weidong; Wang, Xuelu

    2014-05-01

    The stress phytohormone, abscisic acid (ABA), plays important roles in facilitating plants to survive and grow well under a wide range of stress conditions. Previous gene expression studies mainly focused on plant responses to short-term ABA treatment, but the effect of sustained ABA treatment and their difference are poorly studied. Here, we treated plants with ABA for 1 h or 9 d, and our genome-wide analysis indicated the differentially regulated genes under the two conditions were tremendously different. We analyzed other hormones' signaling changes by using their whole sets of known responsive genes as reporters and integrating feedback regulation of their biosynthesis. We found that, under short-term ABA treatment, signaling outputs of growth-promoting hormones, brassinosteroids and gibberellins, and a biotic stress-responsive hormone, jasmonic acid, were significantly inhibited, while auxin and ethylene signaling outputs were promoted. However, sustained ABA treatment repressed cytokinin and gibberellin signaling, but stimulated auxin signaling. Using several sets of hormone-related mutants, we found candidates in corresponding hormonal signaling pathways, including receptors or transcription regulators, are essential in responding to ABA. Our findings indicate interactions of ABA-dependent stress signals with hormones at different levels are involved in plants to survive under transient stress and to adapt to continuing stressful environments.

  4. Impact of wastewater treatment configuration and seasonal conditions on thyroid hormone disruption and stress effects in Rana catesbeiana tailfin.

    PubMed

    Wojnarowicz, Pola; Ogunlaja, Olumuyiwa O; Xia, Chen; Parker, Wayne J; Helbing, Caren C

    2013-12-03

    Improved endocrine disrupting compound (EDC) removal is desirable in municipal wastewater treatment plants (MWWTPs) although increased removal does not always translate into reduced biological activity. Suitable methods for determining reduction in biological activity of effluents are needed. In order to determine which MWWTPs are the most effective at removing EDC activities, we operated three configurations of pilot sized biological reactors (conventional activated sludge, CAS; nitrifying activated sludge, NAS; and biological nutrient removal, BNR) receiving the same influent under simulated winter and summer conditions. As frogs are model organisms for the study of thyroid hormone (TH) action, we used the North American species Rana catesbeiana in a cultured tadpole tailfin (C-fin) assay to compare the effluents. TH-responsive (thyroid hormone receptors alpha (thra) and beta (thrb)) and stress-responsive (superoxide dismutase, catalase, and heat shock protein 30) mRNA transcript levels were examined. Effluents infrequently perturbed stress-responsive transcript abundance but thra/thrb levels were significantly altered. In winter conditions, CAS caused frequent TH perturbations while BNR caused none. In summer conditions, however, BNR caused substantial TH perturbations while CAS caused few. Our findings contrast other studies of seasonal variations of EDC removal and accentuate the importance of utilizing appropriate biological readouts for assessing EDC activities.

  5. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats.

    PubMed

    Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C

    2015-07-01

    Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Stress and puberty-related hormone reactivity, negative emotionality, and parent--adolescent relationships.

    PubMed

    Marceau, Kristine; Dorn, Lorah D; Susman, Elizabeth J

    2012-08-01

    Hormone reactivity to stressors and hormones that rapidly change at puberty are hypothesized to influence moods, which may in turn affect parent-child relationship quality. The present study investigated whether reactivity of testosterone, DHEA, and cortisol in a clinic setting (venipuncture paradigm) predicted negative emotionality and family problems at Time 1 (0 months), Time 2 (6 months), and Time 3 (12 months) in a sample of 56 boys (M = 12.72, SD = 1.32 years) and 52 girls (M = 11.99, SD = 1.55 years). Reactivity of each hormone, negative emotionality, and family problems were measured at each of three laboratory visits. Testosterone reactivity at the first assessment predicted family problems one year later. DHEA stress reactivity was related to concurrent negative emotionality at six and 12 months. Cortisol reactivity did not predict negative emotionality or family problems. Reactivity of different hormones that change at puberty may play an important role in adolescent moods and family processes during puberty. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2015-09-30

    ranging individuals support the existence of these same stress response pathways in marine mammals. 2 While the HPA axis and physiological processes...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone...Analyses Hormone concentrations (cortisol, aldosterone , reproductive and thyroid hormones) in serum samples were analyzed by Cornell’s Animal Health

  8. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2014-09-30

    axis and physiological processes driven by the GCs are essential for an individual’s ability to respond and adapt to stress, prolonged elevation of...health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone, progesterone) have been routinely measured in blood...in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone , reproductive and thyroid hormones) in serum samples have

  9. Arabidopsis Reduces Growth Under Osmotic Stress by Decreasing SPEECHLESS Protein

    PubMed Central

    Kumari, Archana; Jewaria, Pawan K.; Bergmann, Dominique C.; Kakimoto, Tatsuo

    2014-01-01

    Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK–SPEECHLESS core developmental pathway. PMID:25381317

  10. Chronopharmacological effects of growth hormone on the executive function and oxidative stress response in rats.

    PubMed

    Ferrari, Carlos K B; França, Eduardo L; Monteiro, Luciane A; Santos, Bruno L; Pereira-Junior, Alfredo; Honorio-França, Adenilda C

    2017-01-01

    To investigate the chronopharmacological effects of growth hormone on executive function and the oxidative stress response in rats. Fifty male Wistar rats (36-40 weeks old) had ad libitum access to water and food and were separated into four groups: diurnal control, nocturnal control, diurnal GH-treated, and nocturnal GH-treated animals. Levels of Cu, Zn superoxide dismutase (Cu, Zn-SOD), and superoxide release by spleen macrophages were evaluated. For memory testing, adaptation and walking in an open field platform was used. GH-treated animals demonstrated better performance in exploratory and spatial open-field tests. The latency time in both GH-treated groups was significantly lower compared with the latency time of the control groups. The diurnal GH treatment did not stimulate superoxide release but increased the CuZn-SOD enzyme levels. The nocturnal GH treatment did not influence the superoxide release and CuZn-SOD concentration. GH treatment also resulted in heart atrophy and lung hypertrophy. Growth hormone treatment improved the performance of executive functions at the cost of oxidative stress triggering, and this effect was dependent on the circadian period of hormone administration. However, GH treatment caused damaging effects such as lung hypertrophy and heart atrophy.

  11. Stress hormones at rest and following exercise testing predict coronary artery disease severity and outcome.

    PubMed

    Popovic, Dejana; Damjanovic, Svetozar; Djordjevic, Tea; Martic, Dejana; Ignjatovic, Svetlana; Milinkovic, Neda; Banovic, Marko; Lasica, Ratko; Petrovic, Milan; Guazzi, Marco; Arena, Ross

    2017-09-01

    Despite considerable knowledge regarding the importance of stress in coronary artery disease (CAD) pathogenesis, its underestimation persists in routine clinical practice, in part attributable to lack of a standardized, objective assessment. The current study examined the ability of stress hormones to predict CAD severity and prognosis at basal conditions as well as during and following an exertional stimulus. Forty Caucasian subjects with significant coronary artery lesions (≥50%) were included. Within 2 months of coronary angiography, cardiopulmonary exercise testing (CPET) on a recumbent ergometer was performed in conjunction with stress echocardiography (SE). At rest, peak and after 3 min of recovery following CPET, plasma levels of cortisol, adrenocorticotropic hormone (ACTH) and NT-pro-brain natriuretic peptide (NT-pro-BNP) were measured by immunoassay sandwich technique, radioimmunoassay, and radioimmunometric technique, respectively. Subjects were subsequently followed a mean of 32 ± 10 months. Mean ejection fraction was 56.7 ± 9.6%. Subjects with 1-2 stenotic coronary arteries (SCA) demonstrated a significantly lower plasma cortisol levels during CPET compared to those with 3-SCA (p < .05), whereas ACTH and NT-pro-BNP were not significantly different (p > .05). Among CPET, SE, and hormonal parameters, cortisol at rest and during CPET recovery demonstrated the best predictive value in distinguishing between 1-, 2-, and 3-SCA [area under ROC curve 0.75 and 0.77 (SE = 0.11, 0.10; p = .043, .04) for rest and recovery, respectively]. ΔCortisol peak/rest predicted cumulative cardiac events (area under ROC curve 0.75, SE = 0.10, p = .049). Cortisol at rest and following an exercise test holds predictive value for CAD severity and prognosis, further demonstrating a link between stress and unwanted cardiac events.

  12. Stress hormone levels in a freshwater turtle from sites differing in human activity.

    PubMed

    Polich, Rebecca L

    2016-01-01

    Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.

  13. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves.

    PubMed

    Yan, Hui; Filardo, Fiona; Hu, Xiaotao; Zhao, Xiaomin; Fu, DongHui

    2016-02-01

    In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O2(• -)) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.

  14. Reducing Stressful Aspects of Information Technology in Public Services.

    ERIC Educational Resources Information Center

    Quinn, Brian

    1995-01-01

    Identifies sources of technological stress for public services librarians and patrons and proposes ways to reduce stress, including communicating with staff, implementing a system gradually, providing adequate training, creating proper documentation, planning, considering ergonomics in hardware and software selection, selecting a good interface,…

  15. ACTION OF CHEMICALLY DIFFERENT PROSTAGLANDIN BLOCKERS ON THE ADRENAL HORMONES IN PIGEONS DURING STRESS.

    PubMed

    Sarkar, S; Ghosh, S; Sengupta, S; Dasadhikari, S; Ghosh, A

    1999-01-01

    The effect of prostaglandin (PG) inhibitors differing in their chemical nature, viz. Aspirin (acetylsalicylic acid), Mefenamic acid (fenamates), Diclofenac (phenylacetic acid derivative) and Piroxicam (oxicam derivative) on the adrenal hormones was studied in acutely stressed pigeons. None of these PG blockers exerted any significant effect on the catecholamine and corticosterone content of the control, i.e. unstressed pigeon adrenal gland excepting mefenamic acid which caused a release of epinephrine. Aspirin, diclofenac and piroxicam did not modulate the catecholamine or corticosterone secretion whereas mefenamic acid caused a released of both epinephrine and norepinephrine and increased the adrenal corticosterone content in the acutely stressed pigeons. These results were compared with those obtained from studies on the effects of other chemically different PG blockers, indomethacin (a methylated indole derivative) and ibuprofen (a propionic acid derivative). It is suggested that chemically and structurally different PG inhibitors show diverse action in the same species under similar stress conditions.

  16. Effectiveness of a mental skills curriculum to reduce novices' stress.

    PubMed

    Anton, Nicholas E; Howley, Lisa D; Pimentel, Manuel; Davis, Cameron K; Brown, Charles; Stefanidis, Dimitrios

    2016-11-01

    Stress has been shown to negatively impact surgical performance, and surgical novices are particularly susceptible to its effects. Mental skills are psychological strategies designed to enhance performance and reduce the impact of stress to consistently facilitate the ideal mental conditions that enable performers to perform their best. Mental skills have been used routinely in other high-stress domains (e.g., with Navy SEALs, military pilots, elite athletes, and so forth) to facilitate optimal performance in challenging situations. We have developed a novel mental skills curriculum (MSC) to aid surgical trainees in optimizing their performance under stressful conditions. The purpose of this study was to determine the effectiveness of this MSC in reducing novices' stress. The MSC was implemented with a convenience sample of surgical novices over 8 wk. Two stress tests were administered before and after completion of the MSC to assess its effectiveness in reducing trainee stress. The Trier Social Stress Test (TSST) is a validated method of measuring participants' stress responses; it was implemented by giving participants 10 min to prepare for an impromptu presentation and 5 min to present it in front of a medical education expert who would be assessing them. The O'Connor Tweezer Dexterity Test (OTDT) is a test of fine motor dexterity; participants competed against each other in small groups who would complete the test the fastest. Such competition has been shown to cause acute stress in performers. To assess stress, heart rate (HR), perceived stress (STAI-6), and perceived workload (NASA-TLX) were completed during all testing sessions. Nine novices (age 23 ± 7 y, 55% women) completed the MSC. HR increased significantly from resting to performance during the TSST and from early during competition (at 2 min and 30 s of elapsed time) to immediately after completing the task. However, participants perceived less stress during and immediately after the TSST

  17. Thermal-Stress Reducer For Metal/Composite Joint

    NASA Technical Reports Server (NTRS)

    Glinski, Robert L.

    1993-01-01

    Simple insert called "thermal link" reduces stresses caused by mismatches between thermal expansions of metal part and nonmetallic part made of fiber/matrix composite material. Link conceived for use in casing of advanced jet engine.

  18. Dry Priming of Maize Seeds Reduces Aluminum Stress

    PubMed Central

    Alcântara, Berenice Kussumoto; Machemer-Noonan, Katja; Silva Júnior, Francides Gomes; Azevedo, Ricardo Antunes

    2015-01-01

    Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming. PMID:26714286

  19. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis

    PubMed Central

    Tönük, Şükrü Burak; Serin, Erdinc; Ayhan, Fikriye Figen; Yorgancioglu, Zeynep Rezan

    2016-01-01

    Abstract To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA). Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period. After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P < 0.05, respectively). Throughout the 10-session therapy period, the INS levels increased, whereas the ACTH and COR levels decreased (P < 0.05 for all). The VAS-spine, RMDQ, VAS-knee, and WOMAC scores decreased (P = 0.001 for VAS-spine and P < 0.001 for all others). A positive correlation was detected between the changes in serum COR and WOMAC-pain score (P < 0.05). Although the combination therapy caused changes in INS level accompanied with steady glucose levels, the application of physical agents did not adversely affect the hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action. PMID:27583888

  20. Sex Hormones Protect Against Amyloid-β Induced Oxidative Stress in the Choroid Plexus Cell Line Z310.

    PubMed

    Costa, A R; Marcelino, H; Gonçalves, I; Quintela, T; Tomás, J; Duarte, A C; Fonseca, A M; Santos, C R A

    2016-09-01

    The choroid plexus (CP) epithelium is a unique structure in the brain that forms an interface between the peripheral blood on the basal side and the cerebrospinal fluid (CSF) on the apical side. It is a relevant source of many polypeptides secreted to the CSF with neuroprotective functions and also participates in the elimination and detoxification of brain metabolites, such as β-amyloid (Aβ) removal from the CSF through transporter-mediated influx. The CP is also a target tissue for sex hormones (SHs) that have recognised neuroprotective effects against a variety of insults, including Aβ toxicity and oxidative stress in the central nervous system. The present study aimed to understand how SHs modulate Aβ-induced oxidative stress in a CP cell line (Z310 cell line) by analysing the effects of Aβ1-42 on oxidative stress, mitochondrial function and apoptosis, as well as by assessing how 17β-oestradiol (E2 ) and 5α-dihydrotestosterone (DHT) modulated these effects and the cellular uptake of Aβ1-42 by CP cells. Our findings show that E2 and DHT treatment reduce Aβ1-42 -induced oxidative stress and the internalisation of Aβ1-42 by CP epithelial cells, highlighting the importance of considering the background of SHs and therefore sex-related differences in Aβ metabolism and clearance by CP cells. © 2016 British Society for Neuroendocrinology.

  1. Acute psychosocial stress reduces pain modulation capabilities in healthy men.

    PubMed

    Geva, Nirit; Pruessner, Jens; Defrin, Ruth

    2014-11-01

    Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Abiotic Stress Signaling in Wheat – An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat

    PubMed Central

    Abhinandan, Kumar; Skori, Logan; Stanic, Matija; Hickerson, Neil M. N.; Jamshed, Muhammad; Samuel, Marcus A.

    2018-01-01

    Rapid global warming directly impacts agricultural productivity and poses a major challenge to the present-day agriculture. Recent climate change models predict severe losses in crop production worldwide due to the changing environment, and in wheat, this can be as large as 42 Mt/°C rise in temperature. Although wheat occupies the largest total harvested area (38.8%) among the cereals including rice and maize, its total productivity remains the lowest. The major production losses in wheat are caused more by abiotic stresses such as drought, salinity, and high temperature than by biotic insults. Thus, understanding the effects of these stresses becomes indispensable for wheat improvement programs which have depended mainly on the genetic variations present in the wheat genome through conventional breeding. Notably, recent biotechnological breakthroughs in the understanding of gene functions and access to whole genome sequences have opened new avenues for crop improvement. Despite the availability of such resources in wheat, progress is still limited to the understanding of the stress signaling mechanisms using model plants such as Arabidopsis, rice and Brachypodium and not directly using wheat as the model organism. This review presents an inclusive overview of the phenotypic and physiological changes in wheat due to various abiotic stresses followed by the current state of knowledge on the identified mechanisms of perception and signal transduction in wheat. Specifically, this review provides an in-depth analysis of different hormonal interactions and signaling observed during abiotic stress signaling in wheat. PMID:29942321

  3. [Change of endogenous hormone around sprout tumble of Pinellia ternata under high temperature stress].

    PubMed

    Xue, Jian-Ping; Zhang, Ai-Min; Yang, Jian; Chang, Li; Huang, Yue-Qin

    2007-12-01

    To study the change of endogenous hormone (ABA, IAA, JA, GA3, ZR) in the leaves, petioles, tubers of Pinellia ternate around sprout tumble. It also provided some valuable information to prevent sprout tumble and increase production. Tubers of P. ternata were cultured firstly at (23 +/- 1) degree C for certain days, and then they were coerced under (30 +/- 1 ) degree C stress in the same artificial climate boxes. The endogenous hormones in leaves, petioles and tubers during different stages of high temperature stress were determined with Enzyme-linked Immunosorbent Assays (ELISA). After under high temperature stress, ABA content in leaves, petioles and tubers increased obviously. Similarly, JA content rose all in the leaves, petioles and tubers. But in the same conditions IAA content declined significantly in the leaves and petioles. In the tubers, IAA content also decreased, but not quickly. With the extension of high temperature coercion, the leaves, petioles, tubers, ZR content were gradually falling off. In the leaves of GA3 content rose markedly at the third day, fell down at the sixth day, but remained higher than before treatment. With the extension of the processing time, GA3 content fell off in the petioles and tubers. ABA, JA, ZT and GA3 played an important role in controlling sprout tumble of P. ternata.

  4. Influence of adrenal hormones in the occurrence and prevention of stress ulcers.

    PubMed

    Yigiter, Murat; Albayrak, Yavuz; Polat, Beyzagul; Suleyman, Bahadır; Salman, Ahmet Bedii; Suleyman, Halis

    2010-11-01

    The aim of the study was to examine whether endogenous cortisol and adrenalin have a role in the formation of stress ulcers in intact and adrenalectomized rats. The study was composed of 4 experiments: ulcerated areas in stomachs of adrenalectomized and intact rats were measured, adrenaline (100 μg/kg) and prednisolone (5 mg/kg) were injected intraperitoneally in adrenalectomized rats, metyrapone (200 mg/kg) and metyrosine (200 mg/kg) were administered to intact rats, and metyrapone (200 mg/kg) and metyrosine (200 mg/kg) were administered orally with yohimbine (10 mg/kg) and yohimbine (10 mg/kg) alone were administered to intact rats. After 24-hour restraint stress, ulcerated areas were measured. In the stomach of intact rats, the degree of stress ulcer was 7.25 times more severe than that noted in adrenalectomized rats. Furthermore, stress ulcers in adrenalectomized rats that received adrenaline or prednisolone only were fewer and less severe than rats receiving both adrenaline and prednisolone. Simultaneous administration of adrenaline and prednisolone did not prevent the formation of stress ulcers. However, either of these hormones alone (adrenaline or prednisolone), in the absence of the other, repressed the formation of stress ulcers. This antiulcer activity may be related to α2-adrenergic receptor activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Ozone modifies the metabolic and endocrine response to glucose: Reproduction of effects with the stress hormone corticosterone.

    PubMed

    Thomson, Errol M; Pilon, Shinjini; Guénette, Josée; Williams, Andrew; Holloway, Alison C

    2018-03-01

    Air pollution is associated with increased incidence of metabolic disease (e.g. metabolic syndrome, obesity, diabetes); however, underlying mechanisms are poorly understood. Air pollutants increase the release of stress hormones (human cortisol, rodent corticosterone), which could contribute to metabolic dysregulation. We assessed acute effects of ozone, and stress axis involvement, on glucose tolerance and on the metabolic (triglyceride), endocrine/energy regulation (insulin, glucagon, GLP-1, leptin, ghrelin, corticosterone), and inflammatory/endothelial (TNF, IL-6, VEGF, PAI-1) response to exogenous glucose. Male Fischer-344 rats were exposed to clean air or 0.8 ppm ozone for 4 h in whole body chambers. Hypothalamic-pituitary-adrenal (HPA) axis involvement in ozone effects was tested through subcutaneous administration of the glucocorticoid synthesis inhibitor metyrapone (50 mg/kg body weight), corticosterone (10 mg/kg body weight), or vehicle (40% propylene glycol) prior to exposure. A glucose tolerance test (2 g/kg body weight glucose) was conducted immediately after exposure, with blood samples collected at 0, 30, 60, 90, and 120 min. Ozone exposure impaired glucose tolerance, an effect accompanied by increased plasma triglycerides but no impairment of insulin release. Ozone diminished glucagon, GLP-1, and ghrelin responses to glucose, but did not significantly impact inflammatory/endothelial analytes. Metyrapone reduced corticosterone but increased glucose and triglycerides, complicating evaluation of the impact of glucocorticoid inhibition. However, administration of corticosterone reproduced the profile of ozone effects, supporting a role for the HPA axis. The results show that ozone-dependent changes in glucose tolerance are accompanied by altered metabolic and endocrine responses to glucose challenge that are reproduced by exogenous stress hormone. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  6. Reducing Stress in Schools: A School Administrators' Guide to Managing Personal and Building-Level Stress.

    ERIC Educational Resources Information Center

    Cohen, Allan

    This guidebook provides the principal with some fundamental tools for reducing stress and preventing professional burnout. Chapter 1 offers strategies for identifying and reducing personal stress. Cognitive restructuring is advocated as an effective, permanent approach, in which the individual changes patterns of thinking about stressful…

  7. Effect of social isolation on 24-h pattern of stress hormones and leptin in rats.

    PubMed

    Perelló, Mario; Chacon, Fernando; Cardinali, Daniel P; Esquifino, Ana I; Spinedi, Eduardo

    2006-03-13

    This work analyzes the effect of social isolation of growing male rats on 24-h changes of plasma prolactin, growth hormone, ACTH and leptin, and on plasma and adrenal corticosterone concentrations. At 35 days of life, rats were either individually caged or kept in groups (6-8 animals per cage) under a 12:12 h light/dark schedule (lights on at 08:00 h). A significant arrest of body weight gain regardless of unchanged daily food intake was found in isolated rats after 2 weeks of isolation. On the 4th week, rats were killed at 6 time intervals during a 24-h cycle, beginning at 09:00 h. In isolated rats the 24-h pattern of all parameters tested became distorted, as assessed by Cosinor analysis. When analyzed as a main factor in a factorial analysis of variance, isolation decreased plasma prolactin and growth hormone, increased plasma leptin and corticosterone while decreased adrenal corticosterone. Plasma corticosterone levels correlated significantly with plasma ACTH and with adrenal corticosterone levels in group-caged rats only. These changes can be attributed to an effect of mild stress on the endogenous clock that modulates the circadian hormone release.

  8. Sex and Stress Hormone Influences on the Expression and Activity of Brain-Derived Neurotrophic Factor

    PubMed Central

    Carbone, David L.; Handa, Robert J.

    2012-01-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562

  9. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans[S

    PubMed Central

    Bonde, Ylva; Breuer, Olof; Lütjohann, Dieter; Sjöberg, Stefan; Angelin, Bo; Rudling, Mats

    2014-01-01

    Reduced plasma LDL-cholesterol is a hallmark of hyperthyroidism and is caused by transcriptional stimulation of LDL receptors in the liver. Here, we investigated whether thyroid hormone (TH) actions involve other mechanisms that may also account for the reduction in LDL-cholesterol, including effects on proprotein convertase subtilisin/kexin type 9 (PCSK9) and bile acid synthesis. Twenty hyperthyroid patients were studied before and after clinical normalization, and the responses to hyperthyroidism were compared with those in 14 healthy individuals after 14 days of treatment with the liver-selective TH analog eprotirome. Both hyperthyroidism and eprotirome treatment reduced circulating PCSK9, lipoprotein cholesterol, apoB and AI, and lipoprotein(a), while cholesterol synthesis was stable. Hyperthyroidism, but not eprotirome treatment, markedly increased bile acid synthesis and reduced fibroblast growth factor (FGF) 19 and dietary cholesterol absorption. Eprotirome treatment, but not hyperthyroidism, reduced plasma triglycerides. Neither hyperthyroidism nor eprotirome treatment altered insulin, glucose, or FGF21 levels. TH reduces circulating PSCK9, thereby likely contributing to lower plasma LDL-cholesterol in hyperthyroidism. TH also stimulates bile acid synthesis, although this response is not critical for its LDL-lowering effect. PMID:25172631

  10. Neurochemical, hormonal, and behavioral effects of chronic unpredictable stress in the rat

    PubMed Central

    Cox, Brittney M.; Alsawah, Fares; McNeill, Peter C.; Galloway, Matthew P.; Perrine, Shane A.

    2011-01-01

    The high comorbidity of anxiety and depression suggests a potential degree of commonality in their etiologies. The chronic unpredictable stress (CUS) model effectively replicates depressive-like phenotypes; however, the ability of CUS to produce anxiety-like behaviors has not been adequately addressed. Using the CUS paradigm (2 stressors per day for 10 days) in adult Sprague Dawley rats we identified behavioral, hormonal, and neurochemical changes one day after the cessation of treatment. Stress attenuated weight gain throughout the study and increased locomotor activity one day after treatment, but had no effect on anxiety-behavior as measured by the elevated plus maze. In addition, plasma corticosterone levels were positively correlated with hypothalamic serotonin (5-HT) activity one day after stress treatment as determined by the ratio of the metabolite 5-hydroxyindoleacetic acid (5-HIAA) to the parent compound (5-HIAA/5-HT ratio). These data suggest behavioral phenotypes associated with depression, but not comorbid anxiety, emerge in the immediate period after cessation of stress and that stress related physiology is related to 5-HT activity in the hypothalamus. PMID:21277333

  11. THYROID HORMONE REPLACEMENT REDUCES THE RISK OF CARDIOVASCULAR DISEASES IN DIABETIC NEPHROPATHY PATIENTS WITH SUBCLINICAL HYPOTHYROIDISM.

    PubMed

    Seo, Changhwan; Kim, Seonghun; Lee, Misol; Cha, Min-Uk; Kim, Hyoungnae; Park, Seohyun; Yun, Hae-Ryong; Jhee, Jong Hyun; Kee, Youn Kyung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook; Park, Jung Tak

    2018-03-01

    Patients with diabetic nephropathy (DMN) have an increased risk of cardiovascular disease (CVD). However, strategies to reduce this risk are limited. Thyroid hormone replacement therapy (THRT) in patients with hypothyroidism has been shown to reduce several surrogate markers of CVD. Therefore, we performed a study to determine if THRT would reduce CVD risk in patients with subclinical hypothyroidism (SCH) and DMN. This was a retrospective, nonrandomized study of patients with type 2 diabetes, DMN, and SCH. Those with known thyroid dysfunction or taking THRT at baseline were excluded. Patients receiving THRT for at least 180 days were included in the THRT group, while the remaining patients were assigned to the non-THRT group. The primary outcome was CVD events, which included coronary syndrome, cerebrovascular events, and peripheral artery diseases. Among the 257 patients, 83 (32.3%) were in the THRT group. The mean ages were 62.7 ± 12.3 and 66.8 ± 12.4 years in the THRT and non-THRT groups, respectively. The corresponding numbers of male patients were 32 (40.0%) and 94 (53.1%). During a mean follow-up of 38.0 ± 29.2 months, 98 CVD events were observed. Acute coronary syndrome and cerebrovascular event prevalence rates were lower in the THRT group than the non-THRT group, but there was no difference for peripheral artery diseases. Multivariate Cox analysis revealed that THRT was independently associated with a decreased CVD event risk. THRT may decrease the risk of CVD in DMN patients with SCH. Randomized trials are needed to verify this finding. CV = cardiovascular DMN = diabetic nephropathy eGFR = estimated glomerular filtration rate fT4 = free thyroxine HbA1c = glycosylated hemoglobin HR = hazard ratio hs-CRP = high-sensitivity C-reactive protein LDL-C = low-density lipoprotein cholesterol SCH = subclinical hypothyroidism T2DM = type 2 diabetes THRT = thyroid hormone replacement therapy TSH = thyroid-stimulating hormone.

  12. The role of stress hormones in the relationship between resting blood pressure and coagulation activity.

    PubMed

    Wirtz, Petra H; Ehlert, Ulrike; Emini, Luljeta; Rüdisüli, Katharina; Groessbauer, Sara; Mausbach, Brent T; von Känel, Roland

    2006-12-01

    Systemic hypertension confers a hypercoagulable state. We hypothesized that resting mean blood pressure (MBP) interacts with stress hormones in predicting coagulation activity at rest and with acute mental stress. We measured plasma clotting factor VII activity (FVII:C), FVIII:C, fibrinogen, D-dimer, epinephrine and norepinephrine, and saliva cortisol in 42 otherwise healthy normotensive and hypertensive medication-free men (mean age 43 +/- 14 years) at rest, immediately after stress, and twice during 60 min of recovery from stress. At rest, the MBP-by-epinephrine interaction predicted FVII:C (beta = -0.33, P < 0.04) and D-dimer (beta = 0.26, P < 0.05), and the MBP-by-cortisol interaction predicted D-dimer (beta = 0.43, P = 0.001), all independent of age and body mass index (BMI). Resting norepinephrine predicted fibrinogen (beta = 0.42, P < 0.01) and D-dimer (beta = 0.37, P < 0.03), both independent of MBP. MBP predicted FVIII:C change from rest to immediately post-stress independent of epinephrine (beta = -0.37, P < 0.03) and norepinephrine (beta = -0.38, P < 0.02). Cortisol change predicted FVIII:C change (beta = -0.30, P < 0.05) independent of age, BMI and MBP. Integrated norepinephrine change from rest to recovery (area under the curve, AUC) predicted D-dimer AUC (beta = 0.34, P = 0.04) independent of MBP. The MBP-by-epinephrine AUC interaction predicted FVII:C AUC (beta = 0.28) and fibrinogen AUC (beta = -0.30), and the MBP-by-norepinephrine AUC interaction predicted FVIII:C AUC (beta = -0.28), all with borderline significance (Ps < 0.09) and independent of age and BMI. MBP significantly altered the association between stress hormones and coagulation activity at rest and, with borderline significance, across the entire stress and recovery interval. Independent of MBP, catecholamines were associated with procoagulant effects and cortisol reactivity dampened the acute procoagulant stress response.

  13. Oxytocin reduces a chemosensory-induced stress bias in social perception.

    PubMed

    Maier, Ayline; Scheele, Dirk; Spengler, Franny B; Menba, Tugba; Mohr, Franziska; Güntürkün, Onur; Stoffel-Wagner, Birgit; Kinfe, Thomas M; Maier, Wolfgang; Khalsa, Sahib S; Hurlemann, René

    2018-04-12

    Social transmission of fear is not restricted to visual or auditory cues, but extends to the phylogenetically more ancient olfactory domain. Anxious individuals exhibit heightened sensitivity towards chemosensory stress signals in sweat; however, it is still unknown whether endogenous neuromodulators such as the peptide hormone oxytocin (OXT) influence the chemosensory communication of stress. Here, we investigated whether OXT selectively diminishes behavioral and neural responses to social chemosensory stress cues utilizing a randomized, double-blind, placebo (PLC)-controlled, within-subject functional MRI study design. Axillary sweat was obtained from 30 healthy male donors undergoing the Trier Social Stress Test (stress) and bicycle ergometer training (sport). Subsequently, 58 healthy participants (30 females) completed a forced-choice emotional face recognition task with stimuli of varying intensities (neutral to fearful) while they were exposed to both sweat stimuli and a non-social control odor following intranasal OXT or PLC administration, respectively. OXT diminished stress-induced recognition accuracy and response time biases towards fear. On the neural level, OXT reduced stress-evoked responses in the amygdala in both sexes, the anterior cingulate cortex (ACC) in females, and the hippocampus in males. Furthermore, OXT reinstated the functional connectivity between the ACC and the fusiform face area that was disrupted by stress odors under PLC. Our findings reveal a new role for OXT signaling in the modulation of chemosensory communication of stress in humans. Mechanistically, this effect appears to be rooted in a downregulation of stress-induced limbic activations and concomitant strengthening of top-down control descending from the ACC to the fusiform face area.

  14. Hyper-G stress-induced hyperglycemia in rats mediated by glucoregulatory hormones

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1985-01-01

    The present investigation is concerned with possible relations of the hyperglycemic response of rats exposed to hyper-G stress to (1) alterations in blood levels of the glucoregulatory hormones and gluconeogenic substrates, and (2) changes in insulin response on muscle glucose uptake. Male Sprague-Dawley rats weighing 250-300 g were used in the study. The results of the experiments indicate that the initial rapid rise in blood glucose of rats exposed to hyper-G stress is mediated by increases in circulating catecholamines and glucagon, both potent stimulators of hepatic gluconeogenesis. Lactate, derived from epinephrine stimulation of muscle glycogenolysis, appears to be a major precursor for the initial rise in blood glucose. The inhibition of the insulin-stimulated glucose uptake by muscle tissues may be a factor in the observed sustained hyperglycemia.

  15. Seasonal Patterns of Hormones, Macroparasites, and Microparasites in Wild African Ungulates: The Interplay among Stress, Reproduction, and Disease

    PubMed Central

    Cizauskas, Carrie A.; Turner, Wendy C.; Pitts, Neville; Getz, Wayne M.

    2015-01-01

    Sex hormones, reproductive status, and pathogen load all affect stress. Together with stress, these factors can modulate the immune system and affect disease incidence. Thus, it is important to concurrently measure these factors, along with their seasonal fluctuations, to better understand their complex interactions. Using steroid hormone metabolites from fecal samples, we examined seasonal correlations among zebra and springbok stress, reproduction, gastrointestinal (GI) parasite infections, and anthrax infection signatures in zebra and springbok in Etosha National Park (ENP), Namibia, and found strong seasonal effects. Infection intensities of all three GI macroparasites examined (strongyle helminths, Strongyloides helminths, and Eimeria coccidia) were highest in the wet season, concurrent with the timing of anthrax outbreaks. Parasites also declined with increased acquired immune responses. We found hormonal evidence that both mares and ewes are overwhelmingly seasonal breeders in ENP, and that reproductive hormones are correlated with immunosuppression and higher susceptibility to GI parasite infections. Stress hormones largely peak in the dry season, particularly in zebra, when parasite infection intensities are lowest, and are most strongly correlated with host mid-gestation rather than with parasite infection intensity. Given the evidence that GI parasites can cause host pathology, immunomodulation, and immunosuppression, their persistence in ENP hosts without inducing chronic stress responses supports the hypothesis that hosts are tolerant of their parasites. Such tolerance would help to explain the ubiquity of these organisms in ENP herbivores, even in the face of their potential immunomodulatory trade-offs with anti-anthrax immunity. PMID:25875647

  16. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease.

    PubMed

    Cizauskas, Carrie A; Turner, Wendy C; Pitts, Neville; Getz, Wayne M

    2015-01-01

    Sex hormones, reproductive status, and pathogen load all affect stress. Together with stress, these factors can modulate the immune system and affect disease incidence. Thus, it is important to concurrently measure these factors, along with their seasonal fluctuations, to better understand their complex interactions. Using steroid hormone metabolites from fecal samples, we examined seasonal correlations among zebra and springbok stress, reproduction, gastrointestinal (GI) parasite infections, and anthrax infection signatures in zebra and springbok in Etosha National Park (ENP), Namibia, and found strong seasonal effects. Infection intensities of all three GI macroparasites examined (strongyle helminths, Strongyloides helminths, and Eimeria coccidia) were highest in the wet season, concurrent with the timing of anthrax outbreaks. Parasites also declined with increased acquired immune responses. We found hormonal evidence that both mares and ewes are overwhelmingly seasonal breeders in ENP, and that reproductive hormones are correlated with immunosuppression and higher susceptibility to GI parasite infections. Stress hormones largely peak in the dry season, particularly in zebra, when parasite infection intensities are lowest, and are most strongly correlated with host mid-gestation rather than with parasite infection intensity. Given the evidence that GI parasites can cause host pathology, immunomodulation, and immunosuppression, their persistence in ENP hosts without inducing chronic stress responses supports the hypothesis that hosts are tolerant of their parasites. Such tolerance would help to explain the ubiquity of these organisms in ENP herbivores, even in the face of their potential immunomodulatory trade-offs with anti-anthrax immunity.

  17. Characterization of seasonal reproductive and stress steroid hormones in wild Radiated Tortoises, Astrochelys radiata.

    PubMed

    Currylow, Andrea F T; Rafeliarisoa, Tsilavo H; Louis, Edward E; Stanford, Craig B; Randrianjafizanaka, Soary T; Chinn, Sarah M; Crocker, Daniel E

    2017-11-01

    The critically endangered Radiated Tortoise (Astrochelys radiata) is endemic to the southern coastlines of Madagascar. Once common, wild populations of this tortoise have undergone dramatic declines in recent years. Although there have been studies documenting reproductive activities, reproductive physiological parameters are unknown yet may be crucial in the recovery of the species. Over four research seasons in remote field locations native to A. radiata, we surveyed for, radio-tracked, and sampled wild, free ranging tortoises. We sampled and measured stress and reproductive parameters (corticosterone [CORT], testosterone [T], estradiol-17β [E2], and progesterone [P]) in 311 plasma samples from 203 wild A. radiata, capturing their active period. Generally, hormone concentrations were associated with body condition, temperature, and humidity. There was wide variation in CORT that varied monthly and by group. Juvenile tortoises maintained more than twice the mean basal CORT concentrations than either adult sex, with the most dramatic distinctions in the middle of the wet season. For adult sex hormones, the last months of the dry season and into the wet season when ground humidities are low and just begin to rise prior to temperature declines, male T concentrations gradually increased to a peak before returning to near undetectable values into the dry season. We had limited data for T concentrations in females, but found average T concentrations were much lower than in males and positively correlated with larger female home range sizes. For female hormone cycles, E2 also peaked in the early 1/3 of the wet season along with male T, and was followed by an uptick in P which correlates to the putative ovulatory cycle. Females tracked over four years showed variation in patterns of P, indicating that number and frequency of clutches vary. Our results suggest that 1) there is high species plasticity in response to stress; 2) A. radiata reproductive cycling is somewhat

  18. Variations of melatonin and stress hormones under extended shifts and radiofrequency electromagnetic radiation.

    PubMed

    Vangelova, Katia Koicheva; Israel, Mishel Salvador

    2005-01-01

    We studied the time-of-day variations in urinary levels of 6-sulphatoxy-melatonin and three stress hormones in operators working fast-rotating extended shifts under radiofrequency electromagnetic radiation (EMR). The excretion rate of the hormones was monitored by radioimmunoassay and spectrofluorimetry at 4-hour intervals in a group of 36 male operators comprising 12 broadcasting station operators, 12 TV station operators, and a control group of 12 satellite station operators. Measuring the time-weighted average (TWA) of EMR exposure revealed a high-level of exposure in broadcasting station operators (TWAmean= 3.10 microW/ cm2, TWAmax = 137.00 microW/cm2), a low-level in TV station operators (TWAmean = 1.89 microW/cm2, TWAmax = 5.24 microW/cm2), and a very low level in satellite station operators. The differences among the groups remained the same after confounding factors were taken into account. Radiofrequency EMR had no effect on the typical diurnal pattern of 6-sulphatoxymelatonin. High-level radiofrequency EMR exposure significantly increased the excretion rates of cortisol (p < 0.001), adrenaline (p = 0.028), and noradrenaline (p < 0.000), whereas changes under low-level exposure did not reach significance. The 24-hour excretion of cortisol and noradrenaline correlated with TWAmean and TWAmax. In conclusion, the excretion of 6-sulphatoxymelatonin retained a typical diurnal pattern under fast-rotating extended shifts and radiofrequency EMR, but showed an exposure-effect relation with stress hormones.

  19. Stress hormones predict a host superspreader phenotype in the West Nile virus system

    USGS Publications Warehouse

    Gervasi, Stephanie; Burgan, Sarah; Hofmeister, Erik K.; Unnasch, Thomas R.; Martin, Lynn B.

    2017-01-01

    Glucocorticoid stress hormones, such as corticosterone (CORT), have profound effects on the behaviour and physiology of organisms, and thus have the potential to alter host competence and the contributions of individuals to population- and community-level pathogen dynamics. For example, CORT could alter the rate of contacts among hosts, pathogens and vectors through its widespread effects on host metabolism and activity levels. CORT could also affect the intensity and duration of pathogen shedding and risk of host mortality during infection. We experimentally manipulated songbird CORT, asking how CORT affected behavioural and physiological responses to a standardized West Nile virus (WNV) challenge. Although all birds became infected after exposure to the virus, only birds with elevated CORT had viral loads at or above the infectious threshold. Moreover, though the rate of mortality was faster in birds with elevated CORT compared with controls, most hosts with elevated CORT survived past the day of peak infectiousness. CORT concentrations just prior to inoculation with WNV and anti-inflammatory cytokine concentrations following viral exposure were predictive of individual duration of infectiousness and the ability to maintain physical performance during infection (i.e. tolerance), revealing putative biomarkers of competence. Collectively, our results suggest that glucocorticoid stress hormones could directly and indirectly mediate the spread of pathogens.

  20. Thyroid hormones effects on oxidative stress and cardiac remodeling in the right ventricle of infarcted rats.

    PubMed

    Corssac, Giana B; de Castro, Alexandre L; Tavares, Angela V; Campos, Cristina; Fernandes, Rafael O; Ortiz, Vanessa D; Siqueira, Rafaela; Fernandes, Tânia Regina G; Belló-Klein, Adriane; Araujo, Alex Sander R

    2016-02-01

    Right ventricle (RV) dysfunction post-myocardial infarction (MI) was associated with a worsened prognosis. In this scenario, reactive oxygen species (ROS) are related with the progression from MI to heart failure. Previous work showed that thyroid hormones (TH) are cardioprotective after MI. This study aims to investigate the effect of T3 and T4 administration on oxidative stress and angiogenesis parameters in the RV after MI. Wistar rats were allocated into four groups: Sham-operated (SHAM), infarcted (AMI), sham-operated + TH (SHAMT), and infarcted+TH (AMIT). The treated groups received T3 (2 μg/100g/day) and T4 (8 μg/100g/day) by gavage for 26 days. After this, echocardiographic analysis was performed and the RV was collected to western blot and biochemical analysis. Infarcted treated rats showed RV hypertrophy compared with AMI and SHAMT. Hydrogen peroxide levels were decrease and SOD activity and expression were increased in the infarcted treated rats. Besides that, the hormonal administration increased eNOS expression and prevented the reduction of VEGF levels in AMIT rats. In conclusion, TH seems to improve oxidative stress parameters, to promote physiological hypertrophy and to increase the expression of proteins involved with angiogenesis in the right heart. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria.

    PubMed

    Boyanova, Lyudmila

    2017-04-01

    Microbial endocrinology is a relatively new research area that already encompasses the anaerobes. Stress hormones, epinephrine and norepinephrine, can affect the growth of anaerobic bacteria such as Fusobacterium nucleatum, Prevotella spp., Porhyromonas spp., Tanerella forsythia and Propionibacterium acnes and can increase virulence gene expression, iron acquisition and many virulence factors of some anaerobic species such as Clostridium perfringens, Porphyromonas gingivalis and Brachyspira pilosicoli. Epinephrine and norepinephrine effects can lead to a growth increase or decrease, or no effect on the growth of the anaerobes. The effects are species-specific and perhaps strain-specific. Discrepancies in the results of some studies can be due to the different methods and media used, catecholamine concentrations, measurement techniques and the low number of strains tested. Biological effects of the stress hormones on the anaerobes may range from halitosis and a worsening of periodontal diseases to tissue damages and atherosclerotic plaque ruptures. Optimizations of the research methods and a detailed assessment of the catecholamine effects in conditions mimicking those in affected organs and tissues, as well as the effects on the quorum sensing and virulence of the anaerobes and the full spectrum of biological consequences of the effects are interesting topics for further evaluation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Role of Thyroid Hormones as Inductors of Oxidative Stress and Neurodegeneration

    PubMed Central

    Villanueva, I.; Alva-Sánchez, C.; Pacheco-Rosado, J.

    2013-01-01

    Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases. PMID:24386502

  3. Hormonal and hydroxycinnamic acids profiles in banana leaves in response to various periods of water stress.

    PubMed

    Mahouachi, Jalel; López-Climent, María F; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. "Grand Nain") subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress.

  4. Twenty-four-hour profiles of metabolic and stress hormones in sheep selected for a calm or nervous temperament.

    PubMed

    Rietema, S E; Blackberry, M A; Maloney, S K; Martin, G B; Hawken, P A R; Blache, D

    2015-10-01

    Even in the absence of stressors, temperament is associated with changes in the concentration of stress-responsive hormones and, possibly because of such changes, temperament can affect metabolism. We tested whether, in sheep bred for temperament for 14 generations, "nervous" females have greater concentrations of stress-responsive hormones in the absence of stressors than "calm" females, and whether these differences are associated with changes in the concentrations of metabolic hormones. In resting "calm" (n = 8) and "nervous" (n = 8) sheep, concentrations of cortisol, prolactin, leptin, and insulin were measured in blood plasma sampled via jugular catheter every 20 min for 24 h. The animals were individually penned, habituated to their housing and human handling over 7 wk, and fed before sampling began. Diurnal variation was evident for all hormones, but a 24-h cortisol pattern was detected in only 7 individuals. There was no effect of temperament on any aspect of concentrations of cortisol or prolactin, but "calm" animals had greater concentrations of insulin in the early afternoon than "nervous" animals (14.5 ± 1.1 vs 10.0 ± 1.6 μU/mL; P = 0.038), and a similar tendency was seen for leptin (P = 0.092). We conclude that selection for temperament affects the concentration of metabolic hormones in the absence of stressors, but this effect is independent of stress-responsive hormones. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    PubMed Central

    Elnakish, Mohammad T.; Ahmed, Amany A. E.; Mohler, Peter J.; Janssen, Paul M. L.

    2015-01-01

    Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models. PMID:26146529

  6. Soybean TCP transcription factors: Evolution, classification, protein interaction and stress and hormone responsiveness.

    PubMed

    Feng, Zhi-Juan; Xu, Sheng-Chun; Liu, Na; Zhang, Gu-Wen; Hu, Qi-Zan; Gong, Ya-Ming

    2018-06-01

    TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, a family of plant-specific proteins, play crucial roles in plant growth and development and stress response. However, systematical information is unknown regarding the TCP gene family in soybean. In the present study, a total of 54 GmTCPs were identified in soybean, which were grouped into 11 groups with the typical TCP conserved domains. Phylogenetic relationship, protein motif and gene structure analyses distinguished the GmTCPs into two homology classes: Class I and Class II. Class II was then differentiated into two subclasses: CIN and CYC/TB1. Unique cis-element number and composition existed in the promoter regions which might be involved in the gene transcriptional regulation of different GmTCPs. Tissue expression analysis demonstrated the diverse spatiotemporal expression profiles of GmTCPs. Furthermore, the interaction protein of one previously functionally unknown TCP protein-GmTCP8 was investigated. Yeast two-hybrid assay showed the interaction between GmTCP8 and an abscisic acid receptor (GmPYL10). QRT-PCR assays indicated the distinct expression profiles of GmTCPs in response to abiotic stresses (heat, drought and salt) and stress-related signals (abscisic acid, brassinolide, salicylicacid and methyl jasmonate). These results will facilitate to uncover the possible roles of GmTCPs under abiotic stress and hormone signal responses in soybean. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Stress hormonal changes in the brain and plasma after acute noise exposure in mice.

    PubMed

    Jin, Sang Gyun; Kim, Min Jung; Park, So Young; Park, Shi Nae

    2017-06-01

    To investigate the effects of acute noise stress on two amine stress hormones, norepinephrine (NE) and 5-hydroxyindoleacetic acid (5-HIAA) in the brain and plasma of mice after noise exposure. Mice were grouped into the control and noise groups. Mice in the noise group were exposed to white noise of 110dB sound pressure level for 60min. Auditory brainstem response thresholds, distortion product otoacoustic emissions, the organ of Corti grading scores, western blots of NE/5-HIAA in the whole brain and hippocampus, and the plasma levels of NE/5-HIAA were compared between the two groups. Significant hearing loss and cochlear damage were demonstrated in the noise group. NE and 5-HIAA in the hippocampus were elevated in the noise group (p=0.019/0.022 for NE/5-HIAA vs. the control). Plasma levels of NE and 5-HIAA were not statistically different between the groups (p=0.052/0.671 for NE/5-HIAA). Hearing loss with outer hair cell dysfunction and morphological changes of the organ of Corti after noise exposure in C57BL/6 mice proved the reliability of our animal model as an acute noise stress model. NE and 5-HIAA are suggested to be the potential biomarkers for acute noise stress in the hippocampus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance.

    PubMed

    Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Foyer, Christine H; Yu, Jing-Quan

    2015-05-01

    As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Expression of stress hormones AVP and CRH in the hypothalamus of Mus musculus following water and food deprivation.

    PubMed

    Yadawa, Arun Kumar; Chaturvedi, Chandra Mohini

    2016-12-01

    Neurohypophyseal hormone, arginine vasopressin (AVP), in addition to acting as antidiuretic hormone is also considered to be stress hormone like hypothalamic corticotropin-releasing hormone (CRH). Present study was designed to investigate the relative response of these stress hormones during water and food deprivation. In this study, male laboratory mice of Swiss strain were divided in 5 groups, control - provided water and food ad libitum, two experimental groups water deprived for 2 and 4days respectively (WD2 and WD4) and another two groups food deprived for 2 and 4days respectively (FD2 and FD4). Results indicate an increased expression of AVP mRNA as well as peptide in the hypothalamus of WD2 mice and the expression was further upregulated after 4days of water deprivation but the expression of CRH remained unchanged compare to their respective controls. On the other hand no change was observed in the expression of hypothalamic AVP mRNA while AVP peptide increased significantly in FD2 and FD4 mice compare to control. Further, the expression of CRH mRNA although increased in hypothalamus of both FD2 and FD4 mice, the immunofluorescent staining shows decreased expression of CRH in PVN of food deprived mice. Based on these findings it is concluded that since during osmotic stress only AVP expression is upregulated but during metabolic stress i.e. food deprivation transcription and translation of both the stress hormones are differentially regulated. Further, it is suggested that role of AVP and CRH may be stress specific. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ozone Exposure Increases Circulating Stress Hormones and Lipid Metabolites in Humans

    PubMed Central

    Miller, Desinia B.; Ghio, Andrew J.; Karoly, Edward D.; Bell, Lauren N.; Snow, Samantha J.; Madden, Michael C.; Soukup, Joleen; Cascio, Wayne E.; Gilmour, M. Ian

    2016-01-01

    Rationale: Air pollution has been associated with increased prevalence of type 2 diabetes; however, the mechanisms remain unknown. We have shown that acute ozone exposure in rats induces release of stress hormones, hyperglycemia, leptinemia, and glucose intolerance that are associated with global changes in peripheral glucose, lipid, and amino acid metabolism. Objectives: To examine ozone-induced metabolic derangement in humans using serum metabolomic assessment, establish human-to-rodent coherence, and identify novel nonprotein biomarkers. Methods: Serum samples were obtained from a crossover clinical study that included two clinic visits (n = 24 each) where each subject was blindly exposed in the morning to either filtered air or 0.3 parts per million ozone for 2 hours during 15-minute on-off exercise. Serum samples collected within 1 hour after exposure were assessed for changes in metabolites using a metabolomic approach. Measurements and Main Results: Metabolomic analysis revealed that ozone exposure markedly increased serum cortisol and corticosterone together with increases in monoacylglycerol, glycerol, and medium- and long-chain free fatty acids, reflective of lipid mobilization and catabolism. Additionally, ozone exposure increased serum lysolipids, potentially originating from membrane lipid breakdown. Ozone exposure also increased circulating mitochondrial β-oxidation–derived metabolites, such as acylcarnitines, together with increases in the ketone body 3-hydroxybutyrate. These changes suggested saturation of β-oxidation by ozone in exercising humans. Conclusions: As in rodents, acute ozone exposure increased stress hormones and globally altered peripheral lipid metabolism in humans, likely through activation of a neurohormonally mediated stress response pathway. The metabolomic assessment revealed new biomarkers and allowed for establishment of rodent-to-human coherence. Clinical trial registered with www.clinicaltrials.gov (NCT 01492517

  11. Cumulative stress and maternal prenatal corticotropin-releasing hormone in an urban U.S. cohort.

    PubMed

    Tse, Alison C; Rich-Edwards, Janet W; Koenen, Karestan; Wright, Rosalind J

    2012-07-01

    To date, there have been conflicting reports of the association of psychosocial stressors with prenatal corticotropin-releasing hormone (CRH) levels. We examined whether racial discrimination, community violence, interpersonal violence (IPV), negative life events, considered independently, and as a composite measure of cumulative stress, were associated with prenatal CRH levels in the Asthma Coalition on Community, Environment, and Social Stress (ACCESS) project, a multiethnic pre-birth cohort in urban Boston. Blood was collected between 20 and 37 weeks gestation (Mean=28.1, SD=4.6 weeks gestation). During pregnancy, women were administered the Conflict Tactics Scale survey to assess IPV, the Crisis in Family Systems-Revised survey to assess negative life events, the My Exposure to Violence survey to assess community violence, and the Experiences of Discrimination survey. A cumulative stress measure was derived from these instruments to characterize exposure to high levels of multiple stressors. None of the individual stressors or cumulative stress was associated with CRH in combined analyses including Whites (n=20), Blacks (n=46), and Hispanics (n=110). In separate analyses of Blacks and Hispanics, racial discrimination, community violence, and cumulative stress were associated with CRH in Blacks, but were not associated with CRH in Hispanics. Though these results require replication, they suggest that the effects of stress on prenatal CRH levels may be mediated by factors that differ between racial/ethnic groups. Further studies in larger samples are warranted to clarify whether associations of chronic stressors and prenatal CRH levels differ by race/ethnicity and to better understand underlying mechanisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. The effects of captivity survival training on mood, dissociation, PTSD symptoms, cognitive performance and stress hormones.

    PubMed

    Suurd Ralph, Cindy; Vartanian, Oshin; Lieberman, Harris R; Morgan, Charles A; Cheung, Bob

    2017-07-01

    In the Canadian Armed Forces (CAF), Conduct After Capture (CAC) training is a 4-day captivity survival course during which soldiers are exposed to increasing stress, and evaluated on their ability to accomplish military objectives. We hypothesized that: (a) compared to baseline, CAC training would cause significant, reversible perturbations in measures of psychological functioning and serum and salivary stress hormone levels relevant to models of stress hardiness and vulnerability; and (b) deviations from baseline would be maximal at the time point of most intense stress during training. CAF personnel were assessed at baseline, twice during training (immediately prior to a less challenging interrogation role-play scenario and again following another much more intense interrogation role-play scenario), and after completion of training. At each occasion, mood, fatigue, dissociation, PTSD symptoms, short-term and working memory, and salivary cortisol and dehydroepiandrosterone (DHEA) were assessed. As predicted, scores on all measures were degraded during CAC but recovered after completion of training, and almost all measures were most degraded at the more intense interrogation role-play scenario. Unexpectedly, memory performance was unaffected by training, suggesting that a short duration of intense stress might be insufficient for degrading it. Another unexpected finding was that mood assessed prior to training predicted successful completion of training, which bears important practical implications for increasing the success rate of training in similar environments. These results demonstrate that despite its relative brevity, CAC training nevertheless induces significant but reversible effects on psychological and physiological function-necessary preconditions for stress inoculation training. Copyright © 2017. Published by Elsevier B.V.

  13. Link Between Increased Satiety Gut Hormones and Reduced Food Reward After Gastric Bypass Surgery for Obesity.

    PubMed

    Goldstone, Anthony P; Miras, Alexander D; Scholtz, Samantha; Jackson, Sabrina; Neff, Karl J; Pénicaud, Luc; Geoghegan, Justin; Chhina, Navpreet; Durighel, Giuliana; Bell, Jimmy D; Meillon, Sophie; le Roux, Carel W

    2016-02-01

    Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.

  14. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs.

    PubMed

    Koopmans, Sietse Jan; Ruis, Marko; Dekker, Ruud; van Diepen, Hans; Korte, Mechiel; Mroz, Zdzislaw

    2005-07-21

    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress hormones in catheterized pigs ( approximately 50 kg BW), which were exposed to social stress by placing them twice into the territory of a dominant pig ( approximately 60 kg) for 15 min. Pre-stress plasma TRP concentrations were 156+/-15 vs. 53+/-6 micromol/l (p<0.01) in pigs on the high vs. normal TRP diets, respectively. Pre-stress plasma cortisol and noradrenaline concentrations were twofold (p<0.01) and 1.4-fold (p<0.05) lower but plasma adrenaline concentration was similar in pigs on the high vs. normal TRP diets, respectively. During the social confrontations, pigs on the high vs. normal TRP diets show a tendency towards reduced active avoidance behavior (3.2+/-1.1 vs. 6.7+/-1.2 min, p<0.1) but their physical activity (8.5+/-0.6 vs. 10.2+/-0.8 min) and aggressive attitude towards the dominant pig (11+/-3 vs. 7+/-2 times biting) were similar. Immediate (+5 min) post-stress plasma cortisol, noradrenaline and adrenaline responses were similar among dietary groups. After the social confrontations, the post-stress plasma cortisol, noradrenaline and adrenaline concentrations and/or curves (from +5 min to 2 h) were lower/steeper (p<0.05) in pigs on the high vs. normal TRP diets. In summary, surplus TRP in diets for pigs (1) does not significantly affect behavior when exposed to social stress, (2) reduces basal plasma cortisol and noradrenaline concentrations, (3) does not affect the immediate hormonal response to stress, and (4) reduces the long-term hormonal response to stress. In general, pigs receiving high dietary TRP were found to be less affected by stress.

  15. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    PubMed Central

    Chamine, Irina; Oken, Barry S.

    2015-01-01

    Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention. PMID:25802539

  16. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice.

    PubMed

    Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling

    2018-01-01

    Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone ( GnRH ) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  17. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    PubMed Central

    Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling

    2018-01-01

    Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone (GnRH) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function. PMID:29403355

  18. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans.

    PubMed

    Iguchi, Masaki; Littmann, Andrew E; Chang, Shuo-Hsiu; Wester, Lydia A; Knipper, Jane S; Shields, Richard K

    2012-01-01

    Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extracellular protein responses of exercise. Randomized controlled trial. University research laboratory. Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F₆,₂₄ = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F₆,₂₄ = 10.1, P < .001) and 5 mm Hg (F₆,₂₄ = 5.4, P < .001), respectively. Norepinephrine (F₁,₁₂ = 12.1, P = .004) and prolactin (F₁,₁₂ = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F₁,₁₂ = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether

  19. Method to reduce dislocation density in silicon using stress

    DOEpatents

    Buonassisi, Anthony; Bertoni, Mariana; Argon, Ali; Castellanos, Sergio; Fecych, Alexandria; Powell, Douglas; Vogl, Michelle

    2013-03-05

    A crystalline material structure with reduced dislocation density and method of producing same is provided. The crystalline material structure is annealed at temperatures above the brittle-to-ductile transition temperature of the crystalline material structure. One or more stress elements are formed on the crystalline material structure so as to annihilate dislocations or to move them into less harmful locations.

  20. WATER STRESS REDUCES OZONE INJURY VIA A STOMATAL MECHANISM

    EPA Science Inventory

    Various studies have shown that water-stressed plants are more tolerant of ozone exposures than are unstressed plants. Two probable explanations for this tolerance are (a) stomatal closure which reduces ozone uptake and (b) biochemical or anatomical changes within the leaves. Pha...

  1. Controlling Technically Produced Noise to Reduce Psychological Stress

    ERIC Educational Resources Information Center

    Carlestam, Gosta

    1973-01-01

    Discusses the causes and problems associated with increasing levels of noise pollution in urban societies. Particular attention is given to noise emanating from aircraft and to possible means of reducing this problem and its resulting psychological stress and social strain. (JR)

  2. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    PubMed

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  3. Stress hormone concentration in Rocky Mountain populations of the American pika (Ochotona princeps)

    PubMed Central

    Wilkening, Jennifer L.; Ray, Chris; Sweazea, Karen L.

    2013-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, but previous studies have focused only on local pika extinction as a metric of change. We designed a procedure which can provide an earlier warning signal, based on non-invasive sampling and analysis of physiological stress in living pikas. Pikas were sampled at several locations in the Rocky Mountains for the measurement of glucocorticoid metabolites (GCMs) in faeces. Using a time series of faecal pellets from 12 individuals, we detected a significant increase in faecal GCM level in response to capture, thus biologically validating the use of a corticosterone enzyme immunoassay. We also established baseline, peak, and post-peak GCM concentrations for pikas in the Rocky Mountains, which varied according to gender and individual. This is the first study to measure stress hormone metabolites in any species of pika. The methods developed and validated in this study can be used to add non-invasive measurements of physiological stress to pika monitoring programmes and other research designed to assess pika vulnerability to predicted changes in climate. Pika monitoring programmes currently in place use a protocol that relates current site use by pikas with data on local habitat characteristics, such as elevation, to infer potential effects of climate change. Data generated by these monitoring studies can be used to identify the trends in site use by pikas in relationship to habitat covariates. However, this approach does not take into account the role of behavioural thermoregulation and the pika's use of microhabitats to ameliorate variations in climate. Incorporating a stress metric, such as GCM concentration, will provide relatively direct evidence for or against the hypothesis that pikas can be stressed by climate regardless of behavioural adaptations. PMID:27293611

  4. Under a neighbour's influence: public information affects stress hormones and behaviour of a songbird

    PubMed Central

    Cornelius, Jamie M.; Breuner, Creagh W.; Hahn, Thomas P.

    2010-01-01

    Socially acquired information improves the accuracy and efficiency of environmental assessments and can increase fitness. Public information may be especially useful during unpredictable food conditions, or for species that depend on resources made less predictable by human disturbance. However, the physiological mechanisms by which direct foraging assessments and public information are integrated to affect behaviour remain largely unknown. We tested for potential effects of public information on the behavioural and hormonal response to food reduction by manipulating the social environment of captive red crossbills (Loxia curvirostra). Red crossbills are irruptive migrants that are considered sensitive to changes in food availability and use public information in decision making. Here, we show that public information can attenuate or intensify the release of glucocorticoids (i.e. stress hormones) during food shortage in red crossbills. The observed modulation of corticosterone may therefore be a physiological mechanism linking public information, direct environmental assessments and behavioural change. This mechanism would not only allow for public information to affect individual behaviour, but might also facilitate group decision making by bringing group members into more similar physiological states. The results further suggest that stressors affecting entire populations may be magnified in individual physiology through social interactions. PMID:20356895

  5. Adrenal hormones in rats before and after stress-experience: effects of ipsapirone.

    PubMed

    Korte, S M; Bouws, G A; Bohus, B

    1992-06-01

    The present study was designed to investigate the effects of the anxiolytic 5-HT1A receptor agonist ipsapirone on the hormonal responses in rats under nonstress and stress conditions by means of repeated blood sampling through an intracardiac catheter. Ipsapirone was given in doses of 2.5, 5, 10, and 20 mg/kg (IP) under nonstress conditions in the home cages of the rats. Plasma corticosterone levels increased in a dose-dependent way in the dose range of 5 to 20 mg/kg, whereas the plasma catecholamines were only significantly increased with the highest dose of the drug. The effect of ipsapirone in control and in stressed rats was studied with the selected dose of 5 mg/kg. Conditioned fear of inescapable electric footshock (0.6 mA, AC for 3 s) given one day earlier was used as stressor. Surprisingly, ipsapirone potentiated the magnitude of the neuroendocrine responses. Rats receiving an inescapable footshock 1 day earlier showed a further elevated corticosterone response to the 5-HT1A receptor agonist ipsapirone even before exposing them to the conditioned stress situation. The present findings suggest that if an animal has no possibilities to escape or avoid a noxious event, functional hypersensitivity will develop in the serotonergic neuronal system, which is reflected in the increased responsiveness of the HPA axis to a 5-HT1A agonist challenge.

  6. Stress-related hormones in horses before and after stunning by captive bolt gun.

    PubMed

    Micera, Elisabetta; Albrizio, Maria; Surdo, Nicoletta C; Moramarco, Angela M; Zarrilli, Antonia

    2010-04-01

    In this work the slaughter-linked plasma modifications of some stress-related hormones in horses subject to standardized butchering procedures were investigated in order to highlight the compromised animal welfare during pre-slaughter handling. During pre-slaughter, animals show strong hardship behavioural patterns, probably due to being under life-threatening conditions. Blood samples from 12 male horses, ageing from 3 to 5 years, were collected before slaughtering in lairage, and during exsanguination after stunning. Catecholamines, cortisol and beta-endorphin concentrations were assessed in plasma samples by EIA. Results show that plasma beta-endorphin concentration did not increase significantly after stunning, while cortisol (P<0.05) and catecholamines (P<0.001) increased significantly. The ratio between the plasma level of norepinephrine and epinephrine decreased significantly (P<0.001) during the time considered for observation underlining a greater involvement of adrenal medulla in the stress response. Moreover these results suggest that, under stress, the release of beta-endorphin could be different from that of ACTH. 2009 Elsevier Ltd. All rights reserved.

  7. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2012-09-30

    support the existence of these same stress response pathways in marine mammals. While the HPA axis and physiological processes driven by the GCs are...characterization of stress and stressors, provides unique opportunities to address questions related to stress. Serum hormones (cortisol, aldosterone , thyroid...during the workshop held in late-August. For all stress-related hormones (cortisol, aldosterone , T3, T4, and Free T4), correlational tests and

  8. Post-inflammatory fatigue in sarcoidosis: personality profiles, psychological symptoms and stress hormones.

    PubMed

    Korenromp, Ingrid H E; Grutters, Jan C; van den Bosch, Jules M M; Heijnen, Cobi J

    2012-02-01

    Chronic fatigue following inflammatory diseases has been well documented. However, little is known about possible risk factors of chronic post-inflammatory fatigue. The aim of this study was to investigate whether chronic post-inflammatory fatigue after clinical remission of the disease sarcoidosis is associated with specific dimensions of personality, psychological symptoms and baseline levels of stress hormones. Thirty-seven non-fatigued and 33 fatigued patients in clinical remission of sarcoidosis were evaluated with the Temperament and Character Inventory-short form (TCI); the Symptom CheckList-90 (SCL), and the Checklist Individual Strength (CIS). Baseline levels of ACTH and cortisol were measured in plasma. Principal component analysis with orthogonal rotation (varimax) was conducted on all personality, psychological and stress hormone data in order to obtain a smaller set of components. Logistic regression was performed to associate these components with chronic post-inflammatory fatigue. Principal component analyses identified 5 components, of which two components were significantly associated with chronic post-inflammatory fatigue. The first component comprised the personality trait Harm Avoidance and all SCL-subscales except Sleep. The second component consisted of baseline levels ACTH and cortisol, and showed an inverse association with chronic post-inflammatory fatigue. The 3 other components, consisting of respectively SCL-Sleep, TCI-Novelty Seeking-Reward Dependence-Self Transcendence, and TCI-Persistence, were not significantly associated with chronic fatigue. Chronic post-inflammatory fatigue after clinical remission of sarcoidosis is associated with a triad of risk factors: a specific personality profile with profound neurotic characteristics in combination with high levels of psychological distress, and decreased baseline ACTH/cortisol levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormones Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2014-09-30

    While the HPA axis and physiological processes driven by the GCs are essential for an individual’s ability to respond and adapt to stress, prolonged...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone...the Ashepoo, Combahee and Edisto (ACE) Basin, also in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone

  10. Callous-unemotional traits and early life stress predict treatment effects on stress and sex hormone functioning in incarcerated male adolescents.

    PubMed

    Johnson, Megan; Vitacco, Michael J; Shirtcliff, Elizabeth A

    2018-03-01

    The stress response system is highly plastic, and hormone rhythms may "adaptively calibrate" in response to treatment. This investigation assessed whether stress and sex hormone diurnal rhythms changed over the course of behavioral treatment, and whether callous-unemotional (CU) traits and history of early adversity affected treatment results on diurnal hormone functioning in a sample of 28 incarcerated adolescent males. It was hypothesized that the treatment would have beneficial effects, such that healthier diurnal rhythms would emerge post-treatment. Diurnal cortisol, testosterone, and dehydroepiandrosterone (DHEA) were sampled two weeks after admission to the correctional/treatment facility, and again approximately four months later. Positive treatment effects were detected for the whole sample, such that testosterone dampened across treatment. CU traits predicted a non-optimal hormone response to treatment, potentially indicating biological preparedness to respond to acts of social dominance and aggression. The interaction between CU traits and adversity predicted a promising and sensitized response to treatment including increased cortisol and a steeper testosterone drop across treatment. Results suggest that stress and sex hormones are highly receptive to treatment during this window of development.

  11. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs

    USDA-ARS?s Scientific Manuscript database

    The temporal pattern and gender effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 increased in a time-dependent manner f...

  12. STRESS-INDUCED REDISTRIBUTION OF IMMUNE CELLS - FROM BARRACKS TO BOULEVARDS TO BATTLEFIELDS: A TALE OF THREE HORMONES - CURT RICHTER AWARD WINNER

    PubMed Central

    Dhabhar, Firdaus S.; Malarkey, William B.; Neri, Eric; McEwen, Bruce S.

    2012-01-01

    biphasic decrease on monocytes & B cells, suggesting that CD62L is involved in mediating the redistribution effects of stress. Additionally, we observed significant differences in the direction, magnitude, and subpopulation specificity of the effects of each hormone: NE increased leukocyte numbers, most notably CD62L−/+ neutrophils and CD62L− B cells. EPI increased monocyte and neutrophil numbers, most notably CD62L−/+ neutrophils and CD62L− monocytes, but decreased lymphocyte numbers with CD62L−/+ CTL and CD62L+ B cells being especially sensitive. CORT decreased monocyte, lymphocyte, Th, CTL, and B cell numbers with CD62L− and CD62L+ cells being equally affected. Thus, naïve (CD62L+) vs. memory (CD62L−) T cells, classical (CD62L+) vs. non-classical (CD62L−) monocytes, and similarly distinct functional subsets of other leukocyte populations are differentially mobilized into the blood and trafficked to tissues by stress hormones. Conclusion Stress hormones orchestrate a large-scale redistribution of immune cells in the body. NE and EPI mobilize immune cells into the bloodstream, and EPI and CORT induce traffic out of the blood possibly to tissue surveillance pathways, lymphoid tissues, and sites of ongoing or de novo immune activation. Immune cell subpopulations appear to show differential sensitivities and redistribution responses to each hormone depending on the type of leukocyte (neutrophil, monocyte or lymphocyte) and its maturation/functional characteristics (e.g., resident or inflammatory monocyte, naïve or central/effector memory T cell). Thus, stress hormones could be administered simultaneously or sequentially to induce specific leukocyte subpopulations to be mobilized into the blood, or to traffic from blood to tissues. Stress hormone-mediated changes in immune cell distribution could be clinically harnessed to: 1) Direct leukocytes to sites of vaccination, wound healing, infection, or cancer and thereby enhance protective immunity. 2) Reduce

  13. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    NASA Astrophysics Data System (ADS)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  14. Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments.

    PubMed

    Lee, Sanghyeob; Choi, Doil

    2013-09-01

    Global transcriptome analysis revealed common regulons for biotic/abiotic stresses, and some of these regulons encoding signaling components in both stresses were newly identified in this study. In this study, we aimed to identify plant responses to multiple stress conditions and discover the common regulons activated under a variety of stress conditions. Global transcriptome analysis revealed that salicylic acid (SA) may affect the activation of abiotic stress-responsive genes in pepper. Our data indicate that methyl jasmonate (MeJA) and ethylene (ET)-responsive genes were primarily activated by biotic stress, while abscisic acid (ABA)-responsive genes were activated under both types of stresses. We also identified differentially expressed gene (DEG) responses to specific stress conditions. Biotic stress induces more DEGs than those induced by abiotic and hormone applications. The clustering analysis using DEGs indicates that there are common regulons for biotic or abiotic stress conditions. Although SA and MeJA have an antagonistic effect on gene expression levels, SA and MeJA show a largely common regulation as compared to the regulation at the DEG expression level induced by other hormones. We also monitored the expression profiles of DEG encoding signaling components. Twenty-two percent of these were commonly expressed in both stress conditions. The importance of this study is that several genes commonly regulated by both stress conditions may have future applications for creating broadly stress-tolerant pepper plants. This study revealed that there are complex regulons in pepper plant to both biotic and abiotic stress conditions.

  15. Are stress hormone levels a good proxy of foraging success? An experiment with king penguins, Aptenodytes patagonicus.

    PubMed

    Angelier, Frédéric; Giraudeau, Mathieu; Bost, Charles-André; Le Bouard, Fabrice; Chastel, Olivier

    2009-09-01

    In seabirds, variations in stress hormone (corticosterone; henceforth CORT) levels have been shown to reflect changing marine conditions and, especially, changes in food availability. However, it remains unclear how CORT levels can be mechanistically affected by these changes at the individual level. Specifically, the influence of food acquisition and foraging success on CORT secretion is poorly understood. In this study, we tested whether food acquisition can reduce baseline CORT levels (;the food intake hypothesis') by experimentally reducing foraging success of King Penguins (Aptenodytes patagonicus). Although CORT levels overall decreased during a foraging trip, CORT levels did not differ between experimental birds and controls. These results demonstrate that mass gain at sea is not involved in changes in baseline CORT levels in this species. The overall decrease in CORT levels during a foraging trip could result from CORT-mediated energy regulation (;the energy utilisation hypothesis'). Along with other evidence, we suggest that the influence of foraging success and food intake on CORT levels is complex and that the ecological meaning of baseline CORT levels can definitely vary between species and ecological contexts. Therefore, further studies are needed to better understand (1) how baseline CORT levels are functionally regulated according to energetic status and energetic demands and (2) to what extent CORT can be used to aid in the conservation of seabird populations.

  16. Skills-based childbirth preparation reduces stress for midwives.

    PubMed

    Howarth, Anne M; Scott, Kate M; Swain, Nicola R

    2017-07-01

    to explore the potential benefits of skills-based childbirth preparation on the work related stress levels of midwives. a questionnaire was sent out to midwives who had clients participating in an RCT of an education package for childbirth preparation (The Pink Kit (PK) Method for Birthing Better®) delivered to parents. midwives were in private practice and acted as lead maternity carers to New Zealand first time mothers. one hundred and four independent midwives participated. a brief questionnaire using a Visual Analogue Scale to portray perceptions of work-related stress and a yes/no question about expected and/or unexpected physical complications. midwives working with clients in the intervention group experienced less work-related stress after correction for medical complications compared to the two control groups. working with mothers who have used a programme that increased their childbirth self-efficacy decreased the work-related stress experienced by midwives. encouraging pregnant women to develop childbirth skills merits further investigation in an effort to reduce the work-related stress experienced by midwives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hyperosmotic Stress Reduces Melanin Production by Altering Melanosome Formation

    PubMed Central

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure. PMID:25170965

  18. Hyperosmotic stress reduces melanin production by altering melanosome formation.

    PubMed

    Bin, Bum-Ho; Bhin, Jinhyuk; Yang, Seung Ha; Choi, Dong-Hwa; Park, Kyuhee; Shin, Dong Wook; Lee, Ai-Young; Hwang, Daehee; Cho, Eun-Gyung; Lee, Tae Ryong

    2014-01-01

    Many tissues of the human body encounter hyperosmotic stress. The effect of extracellular osmotic changes on melanin production has not yet been elucidated. In this study, we determined that hyperosmotic stress induced by organic osmolytes results in reduced melanin production in human melanoma MNT-1 cells. Under hyperosmotic stress, few pigmented mature melanosomes were detected, but there was an increase in swollen vacuoles. These vacuoles were stained with an anti-M6PR antibody that recognizes late endosomal components and with anti-TA99 and anti-HMB45 antibodies, implying that melanosome formation was affected by hyperosmotic stress. Electron microscopic analysis revealed that the M6PR-positive swollen vacuoles were multi-layered and contained melanized granules, and they produced melanin when L-DOPA was applied, indicating that these vacuoles were still capable of producing melanin, but the inner conditions were not compatible with melanin production. The vacuolation phenomenon induced by hyperosmotic conditions disappeared with treatment with the PI3K activator 740 Y-P, indicating that the PI3K pathway is affected by hyperosmotic conditions and is responsible for the proper formation and maturation of melanosomes. The microarray analysis showed alterations of the vesicle organization and transport under hyperosmotic stress. Our findings suggest that melanogenesis could be regulated by physiological conditions, such as osmotic pressure.

  19. Water stress, CO2 and photoperiod influence hormone levels in wheat

    NASA Technical Reports Server (NTRS)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  20. Stress and self-injurious behavior; hormonal and serotonergic parameters in mentally retarded subjects.

    PubMed

    Verhoeven, W M; Tuinier, S; van den Berg, Y W; Coppus, A M; Fekkes, D; Pepplinkhuizen, L; Thijssen, J H

    1999-01-01

    Self-injurious behavior (SIB) and stereotyped behavior (SB) are major challenges for professionals in the field of mental retardation. From animal experiments it has become obvious that these behavioral disturbances are not purposeless but may emerge secondary to restrictive environment and may serve de-arousing objectives. In mentally retarded subjects, several hypotheses have been formulated concerning the pathogenesis of SIB, particularly about the involvement of serotonin and beta-endorphin, which are supported by beneficial treatment effects of the opiate antagonist naltrexone and serotonin modulating compounds, respectively. The present study was designed to investigate basal levels of stress-hormonal and serotonergic parameters as well as plasma levels of amino-acids and the beta-carboline norharman in a group of 64 mentally retarded subjects with SB and/or SIB. Allocation to three different groups comprising 17 retarded controls, 26 subjects with mainly SIB and 21 subjects with mainly SB, was originally performed using the scores on the factors Irritability, Stereotypic Behaviour and Hyperactivity of the Aberrant Behavioral Checklist. Because of the overlapping nature of the behavioral parameters, subjects were subsequently divided into three maximally contrasting groups, viz. predominantly SIB, predominantly SB and retarded controls, each comprising 11 subjects. With respect to beta-endorphin, no differences were found either between both the original and maximally contrasting groups or in comparison to nonretarded controls. As compared to retarded controls, a tendency to lower values for total cortisol and cortisol binding globulin appeared to be present in the SIB group, whereas in the SB group a tendency toward higher levels of the major serotonin metabolite 5-HIAA was found. In the contrasting SB group, a trend toward decreased total cortisol level was observed as compared to the retarded control group. In addition, significantly lower values for

  1. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    PubMed

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Roles of oxidative stress, adiponectin, and nuclear hormone receptors in obesity-associated insulin resistance and cardiovascular risk.

    PubMed

    Matsuda, Morihiro; Shimomura, Iichiro

    2014-08-01

    Obesity leads to the development of type 2 diabetes mellitus, which is a strong risk factor for cardiovascular disease. A better understanding of the molecular basis of obesity will lead to the establishment of effective prevention strategies for cardiovascular diseases. Adipocytes have been shown to generate a variety of endocrine factors termed adipokines/adipocytokines. Obesity-associated changes to these adipocytokines contribute to the development of cardiovascular diseases. Adiponectin, which is one of the most well-characterized adipocytokines, is produced exclusively by adipocytes and exerts insulin-sensitizing and anti-atherogenic effects. Obese subjects have lower levels of circulating adiponectin, and this is recognized as one of the factors involved in obesity-induced insulin resistance and atherosclerosis. Another pathophysiological feature of obesity may involve the low-grade chronic inflammation in adipose tissue. This inflammatory process increases oxidative stress in adipose tissue, which may affect remote organs, leading to the development of diabetes, hypertension, and atherosclerosis. Nuclear hormone receptors (NRs) regulate the transcription of the target genes in response to binding with their ligands, which include metabolic and nutritional substrates. Among the various NRs, peroxisome proliferator-activated receptor γ promotes the transcription of adiponectin and antioxidative enzymes, whereas mineralocorticoid receptor mediates the effects of aldosterone and glucocorticoid to induce oxidative stress in adipocytes. It is hypothesized that both play crucial roles in the pathophysiology of obesity-associated insulin resistance and cardiovascular diseases. Thus, reduced adiponectin and increased oxidative stress play pathological roles in obesity-associated insulin resistance to increase the cardiovascular disease risk, and various NRs may be involved in this pathogenesis.

  3. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    EPA Science Inventory

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  4. Stress Can Be a Friend: Approaches to Producing Good Stresses That Reduce and Control Bad Stresses.

    ERIC Educational Resources Information Center

    Demery, Marie

    Individuals can produce good stresses that will inhibit or eliminate the bad stresses of anxiety, depression, resentment, and hopelessness. This can be accomplished as individuals learn to include in their lifestyles these nine approaches: self-talk, commitment, self-control, challenge, interpersonal relations, time management, relaxation,…

  5. [Effect of treatment with diet on reducing levels of sex hormones in perimenopausal women with overweight and obesity].

    PubMed

    Łokieć, Katarzyna; Błońska, Aleksandra; Walecka-Kapica, Ewa; Stec-Michalska, Krystyna

    2016-06-01

    Nowadays, fight against obesity is a big challenge for the developed countries. Perimenopausal women are especially prone to becoming overweight and obese. This is due to changes in hormone levels and alterations in the sex hormones synthesis pathway. The aim of this study was to evaluate the levels of sex hormones in overweight and obese women during menopause following the three month period of reducing diet. The study involved women aged 55±4,75 years. Group I - 33 overweight women (BMI 28,06±1,00 kg/m(2)). Group II - 32 obese women (BMI 34,22±3,79 kg/m(2)). Anthropometric measurements, body composition tested with Bodystat QuadScan 4000 analyzer and levels of sex hormones in the blood was determined before and after the three-months of reducing diet in both groups. Statistical data analysis was performed. After three-months of reducing diet it was noticed that levels of BMI, body fat, FSH, DHEA-S and androstenedione were decreased in a statistically significant manner. A significant increase in estradiol levels after reduction of visceral adipose tissue in both groups, overweight and obese women, was observed. However, only in the group of obese women, a decrease in BMI correlated with a significant increase in estradiol levels. Application of appropriate reducing diet in perimenopausal overweight and obese women has positive impact on visceral adipose tissue distribution and causes an increase in sex hormones levels. Perimenopausal overweight and obese women should pursue weight reduction to improve their chances of contracting cardiovascular diseases. © 2016 MEDPRESS.

  6. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats.

    PubMed

    Markov, Dmitrii D; Yatsenko, Ksenia A; Inozemtseva, Lyudmila S; Grivennikov, Igor A; Myasoedov, Nikolai F; Dolotov, Oleg V

    2017-08-01

    Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Behavioural and hormonal stress responses during chick rearing do not predict brood desertion by female in a small Arctic seabird.

    PubMed

    Wojczulanis-Jakubas, Katarzyna; Jakubas, Dariusz; Chastel, Olivier

    2013-08-01

    We examined behavioural and hormonal stress responses in a small seabird (little auk, Alle alle), which exhibits a transition from biparental to male-only care towards the end of the nesting period, in order to understand the mechanisms underlying this parental strategy. We hypothesized that the male staying with the chick should be less sensitive to stressors. As such the male might offer the offspring more efficient protection during the fledging period than the female. We tested this hypothesis by observing male and female behaviour in a neophobia test. We also measured the birds' baseline and stress-induced levels of corticosterone and prolactin using the standardized capture-and-restraint protocol. Both sexes respond rapidly to foreign objects, delaying the entry time to the nest with food, consuming the food load, and/or temporarily abandoning feeding. However, we did not find any differences between the sexes in the frequency of each behaviour or in the time of the first reaction to the experimental treatment. Level of both corticosterone and prolactin increased after the experimental treatment. However, we did not find sex differences in baseline and stress-induced hormone levels. The results indicate that the males are as much sensitive to the stress situation as the females. Thus, the pattern of male and female behavioural and hormonal responses to stress does not predict their behaviour at the final breeding stage. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The effect of a scalp massage on stress hormone, blood pressure, and heart rate of healthy female

    PubMed Central

    Kim, In-Hong; Kim, Tae-Young; Ko, Young-Wan

    2016-01-01

    [Purpose] A scalp massage was conducted on female office workers divided into a 15 minute group and 25 minute group and its effect on stress hormone, blood pressure and heart rate was analyzed in order to provide a theoretical rationale to apply scalp massage as stress therapy. [Subjects and Methods] A scalp massage was applied to 34 female office workers twice a week for a total of 10 weeks; the subjects were classified into 15 min., 25 min. and control groups, and their stress hormone levels, blood pressure and heart rate were evaluated. [Results] Significant differences in norepinephrine, cortisol and blood pressure (SBP & DBP) were found in terms of interaction by time interval and between groups. [Conclusion] As a result of applying scalp massage to female office workers for 15 and 25 minutes, positive effects were observed on stress hormone, blood pressure and heart rate. Therefore, scalp massage can be used for stress control with no spatial or time limit. PMID:27821918

  9. Postlearning stress differentially affects memory for emotional gist and detail in naturally cycling women and women on hormonal contraceptives.

    PubMed

    Nielsen, Shawn E; Ahmed, Imran; Cahill, Larry

    2014-08-01

    Sex differences in emotional memory have received increasing interest over the past decade. However, to date, no work has explored how a postlearning stressor might modulate the influence of sex hormone status on memory for gist and peripheral detail in an emotional versus neutral context. Here, we tested 3 predictions. First, compared with naturally cycling (NC) women in the luteal phase, women on hormonal contraception (HC) would have significantly blunted hypothalamic-pituitary-adrenal reactivity to physical stress. Second, postlearning stress would enhance detail and gist memory from an emotional story in NC women, and finally, postlearning stress would not affect emotional memory for details or gist in HC women. Healthy NC and HC women viewed a brief, narrated story containing neutral or emotionally arousing elements. Immediately after, cold pressor stress (CPS) or a control procedure was administered. One week later, participants received a surprise free recall test for story elements. NC women exhibited significantly greater cortisol increases to CPS compared with HC women. NC women who viewed the emotional story and were administered CPS recalled the most peripheral details overall and more gist from the emotional compared with the neutral story. In HC women, however, the postlearning cortisol release did not affect memory for gist or peripheral details from the emotional or neutral story in any way. Additionally, NC and HC women performed similarly on measures of attention and arousal. These findings suggest that in women, postlearning stress differentially affects memory for emotional information depending on their hormonal contraceptive status.

  10. The effect of a scalp massage on stress hormone, blood pressure, and heart rate of healthy female.

    PubMed

    Kim, In-Hong; Kim, Tae-Young; Ko, Young-Wan

    2016-10-01

    [Purpose] A scalp massage was conducted on female office workers divided into a 15 minute group and 25 minute group and its effect on stress hormone, blood pressure and heart rate was analyzed in order to provide a theoretical rationale to apply scalp massage as stress therapy. [Subjects and Methods] A scalp massage was applied to 34 female office workers twice a week for a total of 10 weeks; the subjects were classified into 15 min., 25 min. and control groups, and their stress hormone levels, blood pressure and heart rate were evaluated. [Results] Significant differences in norepinephrine, cortisol and blood pressure (SBP & DBP) were found in terms of interaction by time interval and between groups. [Conclusion] As a result of applying scalp massage to female office workers for 15 and 25 minutes, positive effects were observed on stress hormone, blood pressure and heart rate. Therefore, scalp massage can be used for stress control with no spatial or time limit.

  11. Hormone regulates endometrial function via cooperation of endoplasmic reticulum stress and mTOR-autophagy.

    PubMed

    Yang, Diqi; Jiang, Tingting; Liu, Jianguo; Hong, Jin; Lin, Pengfei; Chen, Huatao; Zhou, Dong; Tang, Keqiong; Wang, Aihua; Jin, Yaping

    2017-12-05

    In ruminant, the receptive endometrium and the elongation of the hatched blastocyst are required to complete the process of implantation. However, the mechanisms regulating goat endometrial function during the peri-implantation period of pregnancy are still unclear. In this study, EECs were treated with progesterone, estradiol, and interferon-tau (IFNT). We have found that endoplasmic reticulum (ER) stress was activated under hormones treatment. To identify the cellular mechanism of regulation of endometrial function, we investigated the effect of ER stress activator thapsigargin (TG) and inhibitor 4 phenyl butyric acid (4-PBA) on EECs. We found that TG, which activated the three branches of UPR, increased the expression of genes associated with promoting conceptus elongation and cellular attachment, significantly up-regulated the spheroid attachment rate and PGE 2 /PGF 2α ratio. 4-PBA pre-treatment inhibited UPR and inhibited promoting conceptus elongation and cellular attachment related genes, but the spheroid attachment rate and PGE 2 /PGF 2α ratio were not changed significantly. Moreover, knockdown of ATF6 via shATF6 promoted the conceptus elongation related genes, but increased the dissolution of the corpus luteum. Besides, blocking ATF6 attenuated autophagy by activating mammalian target of rapamycin (mTOR) pathway. Moreover, rapamycin (mTOR inhibitor) pre-treatment inhibited the expression of promoting conceptus elongation and increased PGE 2 /PGF 2α ratio. Taken together, our study indicated that physiological level of ER stress may contribute to early pregnancy success, and ATF6 signaling pathway cooperated with autophagy to regulate endometrial function by modulating mTOR pathway. © 2017 Wiley Periodicals, Inc.

  12. Association of HPA axis hormones with copeptin after psychological stress differs by sex.

    PubMed

    Spanakis, Elias K; Wand, Gary S; Ji, Nan; Golden, Sherita Hill

    2016-01-01

    Copeptin levels are elevated in severe medical conditions, an effect that is attributed to elevated arginine vasopressin (AVP) levels in response to physiological stress, resulting in activation of hypothalamus-pituitary-adrenal (HPA) axis. In the current study, we wanted to determine if copeptin is responsive to psychological stress, correlates with cortisol and adrenocorticotropin hormone (ACTH), and if associations differed by sex. In a cross-sectional study that included 100 healthy men (41%) and women (59%) (aged 18-30 years; mean 24.6 ± 3 years), who underwent the Trier Social Stress Test (TSST), we examined the association between percent change (peak-baseline/baseline) in copeptin levels and percent change in log ACTH and cortisol. Three baselines samples were drawn followed by blood sampling at 20, 35, 50, 65 and 85 min after TSST. There was a significant positive association between the percent change in copeptin and the percent change in log-transformed salivary cortisol (β-coefficient=0.95; p=0.02). The association between percent change in copeptin and log-transformed serum cortisol was not statistically significant in the overall population. There was a trend for a non-significant association between percent change in copeptin and percent change in log-transformed ACTH (β-coefficient=1.14; p=0.06). In males, there was a significant positive association between the percent change in copeptin levels and log-transformed salivary (β-coefficient=1.33, p=0.016) and serum cortisol (β-coefficient=0.69, p=0.01), whereas in women there was no statistically significant association. We found a significant positive association between percent change in copeptin and percent change in salivary and serum cortisol among males only. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. BioCycle study: design of the longitudinal study of the oxidative stress and hormone variation during the menstrual cycle

    PubMed Central

    Wactawski-Wende, Jean; Schisterman, Enrique F.; Hovey, Kathleen M.; Howards, Penelope P.; Browne, Richard W.; Hediger, Mary; Liu, Aiyi; Trevisan, Maurizio

    2009-01-01

    Summary Studies in both human and animal species have suggested that oxidative stress may be associated with health outcomes, including the risk of infertility in both males and females. Sex hormones have been shown to have antioxidant properties. The difficulty in studying the role of oxidative stress in females is partly due to fluctuation in these endogenous sex hormones across the menstrual cycle. The aim of this study was to determine the association of oxidative stress levels with endogenous reproductive hormone levels and antioxidants, including vitamin levels, across the menstrual cycle in a prospective cohort of premenopausal women. The goal was to enrol 250 healthy, regularly menstruating premenopausal women for two menstrual cycles. Participants visited the clinic up to 8 times per cycle, at which time blood and urine were collected. The visits occurred at key hormonally defined phases of the menstrual cycle, with the help of an algorithm based on cycle length and data from a fertility monitor. In addition, participants were administered standardised questionnaires, had various physical measures taken, and had other pertinent data collected. A total of 259 women were enrolled in this study, with 250 completing two cycles, despite a demanding study protocol which participants were required to follow. This report describes the study design, baseline characteristics and visit completion rate for the BioCycle study. PMID:19159403

  14. Reduced-Calorie Dietary Weight Loss, Exercise, and Sex Hormones in Postmenopausal Women: Randomized Controlled Trial

    PubMed Central

    Campbell, Kristin L.; Foster-Schubert, Karen E.; Alfano, Catherine M.; Wang, Chia-Chi; Wang, Ching-Yun; Duggan, Catherine R.; Mason, Caitlin; Imayama, Ikuyo; Kong, Angela; Xiao, Liren; Bain, Carolyn E.; Blackburn, George L.; Stanczyk, Frank Z.; McTiernan, Anne

    2012-01-01

    Purpose Estrogens and androgens are elevated in obesity and associated with increased postmenopausal breast cancer risk, but the effect of weight loss on these biomarkers is unknown. We evaluated the individual and combined effects of a reduced-calorie weight loss diet and exercise on serum sex hormones in overweight and obese postmenopausal women. Patients and Methods We conducted a single-blind, 12-month, randomized controlled trial from 2005 to 2009. Participants (age 50 to 75 years; body mass index > 25.0 kg/m2, exercising < 100 minutes/wk) were randomly assigned using a computer-generated sequence to (1) reduced-calorie weight loss diet (“diet”; n = 118), (2) moderate- to vigorous-intensity aerobic exercise (“exercise”; n = 117), (3) combined reduced-calorie weight loss diet and moderate- to vigorous-intensity aerobic exercise (“diet + exercise”; n = 117), or (4) control (n = 87). Outcomes were estrone concentration (primary) and estradiol, free estradiol, total testosterone, free testosterone, androstenedione, and sex hormone–binding globulin (SHBG) concentrations (secondary). Results Mean age and body mass index were 58 years and 30.9 kg/m2, respectively. Compared with controls, estrone decreased 9.6% (P = .001) with diet, 5.5% (P = .01) with exercise, and 11.1% (P < .001) with diet + exercise. Estradiol decreased 16.2% (P < .001) with diet, 4.9% (P = .10) with exercise, and 20.3% (P < .001) with diet + exercise. SHBG increased 22.4% (P < .001) with diet and 25.8% (P < .001) with diet + exercise. Free estradiol decreased 21.4% (P < .001) with diet and 26.0% (P < .001) with diet + exercise. Free testosterone decreased 10.0% (P < .001) with diet and 15.6% (P < .001) with diet + exercise. Greater weight loss produced stronger effects on estrogens and SHBG. Conclusion Weight loss significantly lowered serum estrogens and free testosterone, supporting weight loss for risk reduction through lowering exposure to breast cancer biomarkers. PMID:22614972

  15. Septic shock non-thyroidal illness syndrome causes hypothyroidism and conditions for reduced sensitivity to thyroid hormone.

    PubMed

    Castro, Isabel; Quisenberry, Leah; Calvo, Rosa-Maria; Obregon, Maria-Jesus; Lado-Abeal, Joaquin

    2013-04-01

    Non-thyroidal illness syndrome (NTIS) is part of the neuroendocrine response to stress, but the significance of this syndrome remains uncertain. The aim of this study was to investigate the effect of lipopolysaccharide (LPS)-induced NTIS on thyroid hormone (TH) levels and TH molecular targets, as well as the relationship between septic shock nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and TH receptor β (THRB) gene expression at a multi-tissue level in a pig model. Prepubertal domestic pigs were given i.v. saline or LPS for 48 h. Serum and tissue TH was measured by chemiluminescence and RIA. Expression of THRs and cofactors was measured by real-time PCR, and deiodinase (DIO) activity was measured by enzyme assays. Tissue NF-kB nuclear binding activity was evaluated by EMSA. LPS-treated pigs had decreased TH levels in serum and most tissues. DIO1 expression in liver and kidney and DIO1 activity in kidney decreased after LPS. No changes in DIO2 activity were observed between groups. LPS induced an increase in hypothalamus, thyroid, and liver DIO3 activity. Among the other studied genes, monocarboxylate transporter 8 and THRB were the most commonly repressed in endotoxemic pigs. LPS-induced NF-kB activation was associated with a decrease in THRB gene expression only in frontal lobe, adrenal gland, and kidney cortex. We conclude that LPS-induced NTIS in pigs is characterized by hypothyroidism and tissue-specific reduced TH sensitivity. The role of NF-kB in regulating THRB expression during endotoxemia, if any, is restricted to a limited number of tissues.

  16. Growth retardation and reduced growth hormone secretion in cystic fibrosis. Clinical observations from three CF centers.

    PubMed

    Ciro, D'Orazio; Padoan, Rita; Blau, Hannah; Marostica, Anna; Fuoti, Maurizio; Volpi, Sonia; Pilotta, Alba; Meyerovitch, Joseph; Sher, Daniel; Assael, Baroukh M

    2013-03-01

    Growth delay in cystic fibrosis is frequent and is usually the result of several interacting causes. It most often derives from severe respiratory impairment and severe malabsorption. There are however patients whose clinical condition is not severe enough to be held accountable for this phenomenon. We aimed at describing patients who showed growth delay, who were not affected by severe pulmonary disease or malabsorption and who, when tested, showed a reduced GH secretion after stimulation with conventional agents. We noticed a disproportionately large prevalence of growth hormone (GH) release deficit (GHRD) in pediatric cystic fibrosis (CF) patients. We examined all patients under our care in the period 2006-11, who were older than 5 and younger than 16 years old. We focussed on those who fell below the 3rd height percentile, or whose growth during the previous 18 months faltered by >2SD, and who did not present clinical conditions that could reasonably explain their failure to thrive. These patients were subjected to standard GH provocative tests. Out of 285 who matched the age criterion, 33 patients also matched the height percentile criterion. While 15/33 suffered clinical conditions that could reasonably explain their failure to thrive, 18/33 underwent GH release provocative tests and 12/18 showed a release deficit. We conclude that impaired GH secretion is more frequent among CF patients compared to the prevalence of GH deficiency in the general population and that GH release impairment may be an independent cause of growth delay in CF. Our findings are in agreement with recent studies that have described low GH levels in CF piglets and in neonates with CF [1]. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Exogenous stress hormones alter energetic and nutrient costs of development and metamorphosis.

    PubMed

    Kirschman, Lucas J; McCue, Marshall D; Boyles, Justin G; Warne, Robin W

    2017-09-15

    Variation in environmental conditions during larval life stages can shape development during critical windows and have lasting effects on the adult organism. Changes in larval developmental rates in response to environmental conditions, for example, can trade off with growth to determine body size and condition at metamorphosis, which can affect adult survival and fecundity. However, it is unclear how use of energy and nutrients shape trade-offs across life-stage transitions because no studies have quantified these costs of larval development and metamorphosis. We used an experimental approach to manipulate physiological stress in larval amphibians, along with respirometry and 13 C-breath testing to quantify the energetic and nutritional costs of development and metamorphosis. Central to larval developmental responses to environmental conditions is the hypothalamic-pituitary-adrenal/interrenal (HPA/I) axis, which regulates development, as well as energy homeostasis and stress responses across many taxa. Given these pleiotropic effects of HPA/I activity, manipulation of the HPA/I axis may provide insight into costs of metamorphosis. We measured the energetic and nutritional costs across the entire larval period and metamorphosis in a larval amphibian exposed to exogenous glucocorticoid (GC) hormones - the primary hormone secreted by the HPA/I axis. We measured metabolic rates and dry mass across larval ontogeny, and quantified lipid stores and nutrient oxidation via 13 C-breath testing during metamorphosis, under control and GC-exposed conditions. Changes in dry mass match metamorphic states previously reported in the literature, but dynamics of metabolism were influenced by the transition from aquatic to terrestrial respiration. GC-treated larvae had lower dry mass, decreased fat stores and higher oxygen consumption during stages where controls were conserving energy. GC-treated larvae also oxidized greater amounts of 13 C-labelled protein stores. These results

  18. Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity.

    PubMed

    Cheserek, Maureen Jepkorir; Wu, Guirong; Li, Longnan; Li, Lirong; Karangwa, Eric; Shi, Yonghui; Le, Guowei

    2016-07-01

    This study investigated possible mechanisms for cardioprotective effects of lipoic acid (LA), quercetin (Q) and resveratrol (R) on oxidative stress related to thyroid hormone alterations in long-term obesity. Female C57BL/6 mice were fed on high-fat diet (HFD), HFD+LA, HFD+R, HFD+Q and normal diet for 26weeks. Body weight, blood pressure, thyroid hormones, oxidative stress markers, angiotensin converting enzyme (ACE), nitric oxide synthase (NOS) and ion pump activities were measured, and expression of cardiac genes was analyzed by real-time polymerase chain reaction. HFD induced marked increase (P<.05) in body weight, blood pressure and oxidative stress, while plasma triidothyronine levels reduced. ACE activity increased (P<.05) in HFD mice (0.69±0.225U/mg protein) compared with controls (0.28±0.114U/mg protein), HFD+LA (0.231±0.02U/mg protein) and HFD+Q (0.182±0.096U/mg protein) at 26weeks. Moreover, Na(+)/K(+)-ATPase and Ca(2+)-ATPase activities increased in HFD mice whereas NOS reduced. A 1.5-fold increase in TRα1 and reduction in expression of the deiodinase iodothyronine DIO1, threonine protein kinase and NOS3 as well as up-regulation of AT1α, ACE, ATP1B1, GSK3β and Cja1 genes also occurred in HFD mice. Conversely, LA, Q and R inhibited weight gain; reduced TRα1 expression as well as increased DIO1; reduced ACE activity and AT1α, ATP1B1 and Cja1 gene expression as well as inhibited GSK3β; increased total antioxidant capacity, GSH and catalase activity; and reduced blood pressure. In conclusion, LA, resveratrol and quercetin supplementation reduces obesity thereby restoring plasma thyroid hormone levels and attenuating oxidative stress in the heart and thus may have therapeutic potential in heart diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hormone replacement therapy may reduce the return of endogenous lead from bone to the circulation.

    PubMed Central

    Webber, C E; Chettle, D R; Bowins, R J; Beaumont, L F; Gordon, C L; Song, X; Blake, J M; McNutt, R H

    1995-01-01

    Hormone replacement therapy (HRT) in postmenopausal women suppresses the increase in bone resorption expected as circulating levels of endogenous estrogen decline. We tested the hypothesis that bone lead content might remain elevated in women on HRT. Fifty six women who at recruitment were on average 35 years postmenopausal were placed on calcium supplementation. Six months later 33 of these women were prescribed either low dose or moderate dose hormone replacement in addition to the calcium supplementation. After approximately 4 years of hormone replacement, lead content was measured at the tibia and calcaneus by in vivo fluorescence excitation, and lead concentrations were measured in serum, whole blood, and urine. Women not taking hormones had significantly lower lead concentrations in cortical bone compared to all women on HRT (p = 0.007). Tibia lead content (mean +/- SD) for women on calcium only was 11.13 +/- 6.22 microgram/g bone mineral. For women on HRT, tibia bone lead was 19.37 +/- 8.62 micrograms/g bone mineral on low-dose HRT and 16.87 +/- 11.68 micrograms/g bone mineral on moderate-dose HRT. There were no differences between groups for lead concentrations measured in trabecular bone, whole blood, serum or urine. Hormone replacement maintains cortical bone lead content. In women not on HRT, there will be a perimenopausal release of lead from bone. Images Figure 1. PMID:8747022

  20. Maternal defense: breast feeding increases aggression by reducing stress.

    PubMed

    Hahn-Holbrook, Jennifer; Holt-Lunstad, Julianne; Holbrook, Colin; Coyne, Sarah M; Lawson, E Thomas

    2011-10-01

    Mothers in numerous species exhibit heightened aggression in defense of their young. This shift typically coincides with the duration of lactation in nonhuman mammals, which suggests that human mothers may display similarly accentuated aggressiveness while breast feeding. Here we report the first behavioral evidence for heightened aggression in lactating humans. Breast-feeding mothers inflicted louder and longer punitive sound bursts on unduly aggressive confederates than did formula-feeding mothers or women who had never been pregnant. Maternal aggression in other mammals is thought to be facilitated by the buffering effect of lactation on stress responses. Consistent with the animal literature, our results showed that while lactating women were aggressing, they exhibited lower systolic blood pressure than did formula-feeding or never-pregnant women while they were aggressing. Mediation analyses indicated that reduced arousal during lactation may disinhibit female aggression. Together, our results highlight the contributions of breast feeding to both protecting infants and buffering maternal stress.

  1. Maternal Defense: Breast Feeding Increases Aggression by Reducing Stress

    PubMed Central

    Hahn-Holbrook, Jennifer; Holt-Lunstad, Julianne; Holbrook, Colin; Coyne, Sarah M.; Lawson, E. Thomas

    2012-01-01

    Mothers in numerous species exhibit heightened aggression in defense of their young. This shift typically coincides with the duration of lactation in nonhuman mammals, which suggests that human mothers may display similarly accentuated aggressiveness while breast feeding. Here we report the first behavioral evidence for heightened aggression in lactating humans. Breast-feeding mothers inflicted louder and longer punitive sound bursts on unduly aggressive confederates than did formula-feeding mothers or women who had never been pregnant. Maternal aggression in other mammals is thought to be facilitated by the buffering effect of lactation on stress responses. Consistent with the animal literature, our results showed that while lactating women were aggressing, they exhibited lower systolic blood pressure than did formula-feeding or never-pregnant women while they were aggressing. Mediation analyses indicated that reduced arousal during lactation may disinhibit female aggression. Together, our results highlight the contributions of breast feeding to both protecting infants and buffering maternal stress. PMID:21873570

  2. [A case of dwarfism with severely reduced activity of growth hormone-binding protein].

    PubMed

    Igarashi, N; Sato, T

    1991-10-20

    We presented a 16-year-old boy with severe growth retardation and markedly decreased levels of growth hormone-binding protein (GHBP) in plasma, which was shown to correspond to the extracellular composition of hepatic GH receptor and suggested to reflect tissue concentration of the receptor. His height was 92.5 cm (-13.5 SD), the weight 9.6kg (-5.8 SD) and Tanner stage was I. His bone age was 3.5 years old at 16 years of age. Karyotype was 46,XY and thyroid function was normal. SM-C levels, determined by Nichols RIA using unextracted plasma, were within the low normal range, 0.67/0.68U/ml. In contrast, using a method of acid-ethanol extraction, IGF-I and IGF-II levels were definitely low, 29ng/ml (normal 88-240) and 165ng/ml (374-804) respectively. GH responses in various provocation tests, including insulin, arginine and GRF, were within normal. Basal GH levels were 20 +/- 12ng/ml and urinary GH excretion rates 217 +/- 85pg/mg. Cr, which were elevated compared to age-matched control. Molecular size of his circulating GH was similar to control subjects. The biological activities of GH, evaluated by radioreceptor assay and Nb2 cell bioassay, were proportional to the immunoactivities of GH. SM bioactivities, which were determined by the stimulatory effects on DNA synthesis of rabbit costal chondrocytes and human fibroblasts, were apparently reduced. Electrophoretic patterns of IGF-binding protein was similar to those of GH deficient cases. Daily administration of hGH (4U/day) for 5 days resulted in a poor response of SM-C production (before 0.68, after 0.77U/ml). GHBP activities were definitely low by gel-filtration, immunoprecipitation and charcoal methods, as seen in Laron dwarfism which is defined as a syndrome of congenital GH receptor defects. These results indicate that the tissue content of GH receptor in this case was quantitatively reduced and as a result, he showed a resistance to endogenous and exogenous GH. It remains to be elucidated whether the GH

  3. Effects of preemptive analgesia with parecoxib sodium on haemodynamics and plasma stress hormones in surgical patients with thyroid carcinoma.

    PubMed

    Wang, Lian-Dong; Gao, Xia; Li, Jun-Ying; Yu, Hong-Yan; Su, Hai-Wen; Liu, Lian-Zhong; Qi, Jun

    2015-01-01

    parecoxib sodium for preemptive analgesia before anesthesia and after surgery can effectively reduce the levels of plasma stress hormones and improve analgesic effects in surgical patients with thyroid carcinoma, and without conspicuous impact on haemodynamics.

  4. Starved Escherichia coli preserve reducing power under nitric oxide stress

    SciTech Connect

    Gowers, Glen-Oliver F.; Robinson, Jonathan L.; Brynildsen, Mark P., E-mail: mbrynild@princeton.edu

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availabilitymore » in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.« less

  5. Lifelong Aerobic Exercise Reduces the Stress Response in Rats.

    PubMed

    Pietrelli, A; Di Nardo, M; Masucci, A; Brusco, A; Basso, N; Matkovic, L

    2018-04-15

    The aim of this study was to analyze the effects of lifelong aerobic exercise (AE) on the adaptive response of the stress system in rats. It is well known that hypothalamic-pituitary-adrenal axis (HPA) activity differs when triggered by voluntary or forced exercise models. Male Wistar rats belonging to exercise (E) or control (C) groups were subjected to chronic AE, and two cutoff points were established at 8 (middle age) and 18 months (old age). Behavioral, biochemical and histopathological studies were performed on the main components/targets of the stress system. AE increased adrenal sensitivity (AS), brain corticosterone (CORT) and corticotropin-releasing factor (CRF), but had no effect on the thymus, adrenal glands (AGs) weight or plasma CORT. In addition, AE exerted no effect on the sympathetic tone, but significantly reduced anxiety-related behavior and emotionality. Aging decreased AS and deregulated neuroendocrine feedback, leading to an anxiogenic state which was mitigated by AE. Histopathological and morphometric analysis of AGs showed no alterations in middle-aged rats but adrenal vacuolization in approximately 20% old rats. In conclusion, lifelong AE did not produce adverse effects related to a chronic stress state. On the contrary, while AE upregulated some components of the HPA axis, it generated an adaptive response to cumulative changes, possibly through different compensatory and/or super compensatory mechanisms, modulated by age. The long-term practice of AE had a strong positive impact on stress resilience so that it could be recommended as a complementary therapy in stress and depression disease. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    PubMed

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2017-04-01

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Nonlinear Reduced-Order Simulation Using Stress-Free and Pre-Stressed Modal Bases

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Stover, Michael A.; Rizzi, Stephen A.

    2009-01-01

    A study is undertaken to determine the advantages and disadvantages associated with application of stress-free and pre-stressed modal bases in a reduced-order finite-element-based nonlinear simulation. A planar beam is chosen as an application example and its response due to combined thermal and random pressure loadings is examined. Combinations of two random pressure levels and two thermal conditions are investigated. The latter consists of an ambient temperature condition and an elevated temperature condition in the post-buckled regime. It is found that stress-free normal modes establish a broadly applicable modal basis yielding accurate results for all the loading regimes considered. In contrast, the range of applicability for a thermally pre-stressed modal basis is found to be limited. The behavior is explained by scrutinizing the coupling found in the linear stiffness and the effect this coupling has on the structural response characteristics under the range of loading conditions considered.

  8. Growth hormone-releasing hormone antagonists reduce prostatic enlargement and inflammation in carrageenan-induced chronic prostatitis.

    PubMed

    Popovics, Petra; Cai, Renzhi; Sha, Wei; Rick, Ferenc G; Schally, Andrew V

    2018-05-21

    Inflammation plays a key role in the etiology of benign prostatic hyperplasia (BPH) through multiple pathways involving the stimulation of proliferation by cytokines and growth factors as well as the induction of the focal occurrence of epithelial-to-mesenchymal transition (EMT). We have previously reported that GHRH acts as a prostatic growth factor in experimental BPH and in autoimmune prostatitis models and its blockade with GHRH antagonists offer therapeutic approaches for these conditions. Our current study was aimed at the investigation of the beneficial effects of GHRH antagonists in λ-carrageenan-induced chronic prostatitis and at probing the downstream molecular pathways that are implicated in GHRH signaling. To demonstrate the complications triggered by recurrent/chronic prostatic inflammation in Sprague-Dawley rats, 50 μL 3% carrageenan was injected into both ventral prostate lobes two times, 3 weeks apart. GHRH antagonist, MIA-690, was administered 5 days after the second intraprostatic injection at 20 μg daily dose for 4 weeks. GHRH-induced signaling events were identified in BPH-1 and in primary prostate epithelial (PrEp) cells at 5, 15, 30, and 60 min with Western blot. Inflammation induced prostatic enlargement and increased the area of the stromal compartment whereas treatment with the GHRH antagonist significantly reduced these effects. This beneficial activity was consistent with a decrease in prostatic GHRH, inflammatory marker COX-2, growth factor IGF-1 and inflammatory and EMT marker TGF-β1 protein levels and the expression of multiple genes related to EMT. In vitro, GHRH stimulated multiple pathways involved in inflammation and growth in both BPH-1 and PrEp cells including NFκB p65, AKT, ERK1/2, EGFR, STAT3 and increased the levels of TGF-β1 and Snail/Slug. Most interestingly, GHRH also stimulated the transactivation of the IGF receptor. The study demonstrates that GHRH antagonists could be beneficial for the treatment of

  9. The hypothalamic–pituitary–adrenal axis and sex hormones in chronic stress and obesity: pathophysiological and clinical aspects

    PubMed Central

    Pasquali, Renato

    2012-01-01

    Obesity, particularly the abdominal phenotype, has been ascribed to an individual maladaptation to chronic environmental stress exposure mediated by a dysregulation of related neuroendocrine axes. Alterations in the control and action of the hypothalamic–pituitary–adrenal axis play a major role in this context, with the participation of the sympathetic nervous system. The ability to adapt to chronic stress may differ according to sex, with specific pathophysiological events leading to the development of stress-related chronic diseases. This seems to be influenced by the regulatory effects of sex hormones, particularly androgens. Stress may also disrupt the control of feeding, with some differences according to sex. Finally, the amount of experimental data in both animals and humans may help to shed more light on specific phenotypes of obesity, strictly related to the chronic exposure to stress. This challenge may potentially imply a different pathophysiological perspective and, possibly, a specific treatment. PMID:22612409

  10. Involvement of central, but not placental corticotropin releasing hormone (CRH) in heat stress induced immunosuppression during pregnancy.

    PubMed

    Nakamura, H; Nagase, H; Ogino, K; Hatta, K; Matsuzaki, I

    2001-03-01

    To clarify whether corticotropin releasing hormone (CRH) and beta-endorphin (betaEP) system mediate maternal immunosuppression in pregnant rats exposed to heat through central or placental pathway, we examined the effects of intravenous (iv) (100 or 500 microg) or intracerebroventricular (icv) (5 microg) administration of CRH receptor antagonist alpha-helical CRH (9-41) on splenic natural killer cell activity (NKCA) as well as betaEP in blood, pituitary lobes, and placenta in pregnant rats at 15 to 16 days gestation. Two-way ANOVA revealed that heat reduced NKCA and elevated blood and pituitary betaEP but did not change placental betaEP. Iv administered 500 microg and icv administered alpha-helical CRH reversed the reduced NKCA and the elevated pituitary betaEP, while iv administration of 100 microg alpha-helical CRH did not. The increased blood betaEP was reversed by iv 100 and 500 microg alpha-helical CRH and icv administration. Both iv and icv administrations reduced placental betaEP independent of heat exposure. Thus, the response of placental betaEP to iv administration of alpha-helical CRH seemed to be stronger than that of pituitary betaEP. These results indicate that alpha-helical CRH which acts on pituitary betaEP antagonizes heat-induced immunosuppression during pregnancy, suggesting that immunosuppression produced by heat stress during pregnancy is mediated by the central CRH system. The placental CRH-betaEP system seems unlikely to be involved in the immunosuppression. Physiologic roles of placental CRH and opioid system should be clarified by future in vitro experiments using placenta specimen including placental immunocyte.

  11. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders.

    PubMed

    Kino, Tomoshige

    2015-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.

  12. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    PubMed

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The influence of occupational heat exposure on cognitive performance and blood level of stress hormones: a field study report.

    PubMed

    Mazlomi, Adel; Golbabaei, Farideh; Farhang Dehghan, Somayeh; Abbasinia, Marzieh; Mahmoud Khani, Somayeh; Ansari, Mohammad; Hosseini, Mostafa

    2017-09-01

    This article aimed to investigate the effect of heat stress on cognitive performance and the blood concentration of stress hormones among workers of a foundry plant. Seventy workers within the exposed (35 people) and unexposed (35 people) groups were studied. The wet bulb globe temperature (WBGT) index was measured for heat stress assessment. The cognitive performance tests were conducted using the Stroop color word test (SCWT) before and during working hours. For the assessment of the serum level of cortisol and the plasma level of adrenaline and noradrenaline, blood samples were taken during working hours from both groups. Only for SCWT III was there a significant relationship between heat stress and test duration, error rate and reaction time. The laboratory test results revealed significantly higher concentrations of cortisol, adrenaline and noradrenaline in the exposed subjects than in the unexposed group. There existed a positive correlation between cortisol, adrenaline, noradrenaline and WBGT index and also test duration and reaction time of SCWT III, and number of errors of SCWT I, SCWT II and SCWT III during work. Heat stress can lead to an increase in the blood level of stress hormones, resulting in cognitive performance impairment.

  14. Preoperative oral feeding reduces stress response after laparoscopic cholecystectomy.

    PubMed

    Zelić, Marko; Štimac, Davor; Mendrila, Davor; Tokmadžić, Vlatka Sotošek; Fišić, Elizabeta; Uravić, Miljenko; Šustić, Alan

    2013-10-01

    Fasting period before surgery may change metabolic status of the patient and have influence on perioperative stress response. The aim of the study was to investigate effects of preoperative carbohydrate-rich beverage on stress response after laparoscopic cholecystectomy. Patients admitted for laparoscopic cholecystectomy were included into study and they were randomized into a group that was fed prior to surgery and in a group that was in the regime of nothing by mouth from the evening one day before surgery. Concentrations of C-reactive protein and cortisol, were measured before and subsequently up to 48 h postoperatively. Postoperative serum C-reactive protein increased significantly in both groups, but the increase was more evident in the group with fasting protocol both 24 and 48 hours postoperatively. In fed patients cortisol concentration measured in the afternoon immediately after the operation showed physiological decline. In patients with fasting protocol postoperative cortisol values rise above the values measured in the morning. Preoperative feeding has advantage over overnight fasting by reducing preoperative discomfort in patients after laparoscopic cholecystectomy. In fed patients, smaller increase in C-reactive protein and better regulation of cortisol levels are an indicator of decreased perioperative stress response.

  15. Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius.

    PubMed

    Aquilino, Mónica; Sánchez-Argüello, Paloma; Martínez-Guitarte, José-Luis

    2016-05-01

    Vinclozolin is a fungicide used in agriculture that can reach aquatic ecosystems and affect the organisms living there. Its effects have been intensively studied in vertebrates, where it acts as an antiandrogen, but there is a lack of information about its mechanistic effects on invertebrates. In this work, we analyzed the response of genes related to the endocrine system, the stress response, and the detoxification mechanisms of Chironomus riparius fourth instar larvae after 24h and 48h exposures to 20 (69.9nM), 200 (699nM), and 2000μg/L (6.99μM) of Vinclozolin. Survival analysis showed that this compound has low toxicity, as it was not lethal for this organism at the concentrations used. However, this fungicide was shown to modify the transcriptional activity of the ecdysone response pathway genes EcR, E74, and Kr-h1 by increasing their mRNA levels. While no changes were observed in disembodied, a gene related with the ecdysone synthesis metabolic pathway, Cyp18A1, which is involved in the inactivation of the active form of ecdysone, was upregulated. Additionally, the expression of two genes related to other hormones, FOXO and MAPR, did not show any changes when Vinclozolin was present. The analysis of stress response genes showed significant changes in the mRNA levels of Hsp70, Hsp24, and Gp93, indicating that Vinclozolin activates the cellular stress mechanisms. Finally, the expressions of the genes Cyp4G and GstD3, which encode enzymes involved in phase I and phase II detoxification, respectively, were analyzed. It was found that their mRNA levels were altered by Vinclozolin, suggesting their involvement in the degradation of this compound. For the first time, these results show evidence that Vinclozolin can modulate gene expression, leading to possible significant endocrine alterations of the insect endocrine system. These results also offer new clues about the mode of action of this compound in invertebrates. Copyright © 2016 Elsevier B.V. All rights

  16. Stress-related hormonal alterations, growth and pelleted starter intake in pre-weaning Holstein calves in response to thermal stress.

    PubMed

    López, E; Mellado, M; Martínez, A M; Véliz, F G; García, J E; de Santiago, A; Carrillo, E

    2018-04-01

    This study aimed to investigate the effect of heat stress and month of birth on growth performance, pelleted starter intake, and stress-related hormones in Holstein calves. Birth weight and growth records, representing 4735 Holstein calves from a large commercial dairy herd in northern Mexico (25° N; 22.3 °C mean annual temperature) from 2013 to 2015, were analyzed. Temperature-humidity index (THI) at calving, season of birth, and month of birth were the independent variables, whereas growth traits were the dependent variables. Increased THI at birth from < 65 to > 85 units was associated with a decrease in birth weight from 39.3 to 38.7 kg. Calves subjected to high THI (> 75 units) at calving showed lesser (P < 0.01) pre-weaning gains (405 ± 97 g/calf/day), whereas those calves born with THI < 70 units presented the highest gains (466 ± 112 g/calf/day). Birth during the fall months reduced (P < 0.01) weaning weight by about 5 kg compared with winter months. Also, the pre-weaning average daily gain for calves born in the fall was about 70 g less (P < 0.01) than calves delivered in winter months. Plasma triiodothyronine and tetraiodothyronine levels were lower (1.02 ± 0.21 and 48 ± 7.9 ng/mL, respectively; P < 0.01) in summer and highest in winter (1.64 ± 0.48 and 66 ± 11 ng/mL, respectively). Mean plasma cortisol concentration was higher in heat-stressed calves born in summer (59 ± 40 ng/mL) than calves born in winter (20 ± 28 ng/mL). Pelleted starter intake 1 week before weaning was lowest (P < 0.01) in the fall (0.82 ± 0.26 kg/calf/day; mean ± SD) and highest in spring (1.26 ± 0.43 kg/calf/day). It was concluded that in this particular environment, heat stress affects birth weight and growth rate of Holstein calves. Thus, environmental management of the newborn calf during hot spring and summer months is warranted to optimize pelleted starter intake and calf growth rates.

  17. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  18. Relationships between the pituitary-adrenal hormones, insulin, and glucose in middle-aged men: moderating influence of psychosocial stress.

    PubMed

    Keltikangas-Järvinen, L; Ravaja, N; Räikkönen, K; Hautanen, A; Adlercreutz, H

    1998-12-01

    We examined whether the relationships between the pituitary-adrenal hormones (corticotropin [ACTH) and cortisol), insulin, and glucose differ as a function of psychosocial stress defined in terms of vital exhaustion (VE) and depressive behavior (DB). The participants were 69 normotensive and 21 unmedicated borderline hypertensive (BH) middle-aged men whose work is stressful. Hormonal and metabolic variables were measured during an oral glucose tolerance test (OGTT), and the cortisol response to dexamethasone (DXM) suppression and intravenous ACTH stimulation was also measured. We found that the basal ACTH level during the OGTT was positively associated with the cortisol response to ACTH at 60 minutes, the fasting insulin level, and the insulin to glucose ratio among exhausted and high DB men, while the reverse was true for nonexhausted and low DB men. Also, a high cortisol response to ACTH, a low cortisol level during the OGTT, and a high ratio of these cortisol determinations (cortisol ratio) were associated with high fasting insulin and glucose levels, the summed insulin values, and the insulin to glucose ratio only among nonexhausted and low DB men; among exhausted and high DB men, these associations were less pronounced, absent, or in the opposite direction. The findings suggest that VE and DB have a moderating influence on the relationships among the hormonal and metabolic parameters studied. Psychosocial stress may affect the pituitary-adrenocortical system in complex ways, contributing thereby to insulin resistance, hyperinsulinemia, and coronary heart disease (CHD) risk.

  19. Flow cytometry analysis of hormone receptors on human peripheral blood mononuclear cells to identify stress-induced neuroendocrine effects

    NASA Technical Reports Server (NTRS)

    Meehan, R. T.

    1986-01-01

    Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.

  20. Study Protocol on Hormonal Mediation of Exercise on Cognition, Stress and Immunity (PRO-HMECSI): Effects of Different Exercise Programmes in Institutionalized Elders

    PubMed Central

    Teixeira, Ana Maria; Ferreira, José Pedro; Hogervorst, Eef; Braga, Margarida Ferreira; Bandelow, Stephan; Rama, Luís; Figueiredo, António; Campos, Maria João; Furtado, Guilherme Eustáquio; Chupel, Matheus Uba; Pedrosa, Filipa Martins

    2016-01-01

    Physical activity (PA) in elders has been shown to have positive effects on a plethora of chronic diseases and to improve immunity, mental health, and cognition. Chronic stress has also been shown to have immuno-suppressive effects and to accelerate immunosenescence. Exercise could be a significant factor in ameliorating the deleterious effects of chronic stress, but variables such as the type, intensity, and frequency of exercise that should be performed in order to effectively reduce the stress burden need to be defined clearly. PRO-HMECSI will allow us to investigate which hormonal and immunological parameters are able to mediate the effects of exercise on mucosal immunity, psychological/biological stress, and cognitive functioning in older people. Phase I consists of an observational cross-sectional study that compares elders groups (n = 223, >65 years) by functional fitness levels aiming to identify biomarkers involved in maintaining immune and mental health. Neuroendocrine and immune biomarkers of stress, psychological well-being related to mental health, neurocognitive function, functional fitness, and daily PA will be evaluated. Phase II consists of a 28-week intervention in elders with mild cognitive impairment (MCI) profile (n = 149, >65 years, divided in three groups of exercise and one control group), aiming to investigate whether the positive effect of three different types of chair-based exercise programs on physical and psychological health is mediated by an optimal endocrine environment. Primary outcomes are measures of cognitive function and global health. Secondary outcomes include the evaluation the other dimensions such as immune function, psychological health, and depression. Few studies addressed the effects of different types of exercise interventions in older population samples with MCI. We will also be able to determine which type of exercise is more effective in the immune and hormonal function of this population. PMID:27446898

  1. Evaluation of the influence of prenatal transportation stress on GnRH-stimulated luteinizing hormone and testosterone secretion in sexually mature Brahman bulls

    USDA-ARS?s Scientific Manuscript database

    This study examined the relationships of prenatal transportation stress (PNS) with cortisol, luteinizing hormone (LH), and testosterone secretion before and after gonadotrophin releashing hormone (GnRH) stimulation of sexually mature Brahman bulls derived from the calf crop of 96 Brahman cows (48 co...

  2. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2013-09-30

    establishment of homeostasis. While the HPA axis and physiological processes driven by the GCs are essential for an individual’s ability to respond and...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid...in the Ashepoo, Combahee and Edisto (ACE) Basin, also in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone

  3. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  4. Passive heat stress reduces circulating endothelial and platelet microparticles.

    PubMed

    Bain, Anthony R; Ainslie, Philip N; Bammert, Tyler D; Hijmans, Jamie G; Sekhon, Mypinder; Hoiland, Ryan L; Flück, Daniela; Donnelly, Joseph; DeSouza, Christopher A

    2017-06-01

    What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl -1 ; P < 0.05) and apoptosis-derived EMPs by ∼45% (from 46 ± 7 to 23 ± 3 microparticles μl -1 ; P < 0.05). Likewise, circulating PMPs were reduced by ∼75% in response to hyperthermia

  5. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Drosophila melanogaster.

    PubMed

    Erkosar, Berra; Kolly, Sylvain; van der Meer, Jan R; Kawecki, Tadeusz J

    2017-10-24

    Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster , microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. IMPORTANCE Animals depend on gut microbiota for various metabolic tasks, particularly under conditions of nutritional stress, a relationship usually regarded as an inherent aspect of animal physiology. Here, we use experimental evolution in fly populations to show that the degree of host dependence on microbiota can substantially and rapidly change as the host population evolves in response to poor diet. Our results suggest that, although microbiota may initially greatly facilitate coping with suboptimal diets, chronic nutritional stress experienced over multiple generations leads to evolutionary adaptation in physiology and gut digestive properties that reduces dependence on the microbiota for growth and

  6. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2012-09-30

    and free- ranging individuals support the existence of these same stress response pathways in marine mammals. While the HPA axis and physiological ... aldosterone , thyroid and reproductive hormones) have been routinely measured in blood as part of the health assessment which also includes a complete...was developed during the workshop held in late-August. For all stress-related hormones (cortisol, aldosterone , T3, T4, and Free T4), correlational

  7. Multiple Reaction Monitoring Mode Based Liquid Chromatography-Mass Spectrometry Method for Simultaneous Quantification of Brassinolide and Other Plant Hormones Involved in Abiotic Stresses.

    PubMed

    Kasote, Deepak M; Ghosh, Ritesh; Chung, Jun Young; Kim, Jonggeun; Bae, Inhwan; Bae, Hanhong

    2016-01-01

    Plant hormones are the key regulators of adaptive stress response. Abiotic stresses such as drought and salt are known to affect the growth and productivity of plants. It is well known that the levels of plant hormones such as zeatin (ZA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and brassinolide (BR) fluctuate upon abiotic stress exposure. At present, there is not any single suitable liquid chromatography-mass spectrometry (LC-MS) method for simultaneous analysis of BR and other plant hormones involved in abiotic stresses. In the present study, we developed a simple, sensitive, and rapid method for simultaneous analysis of five major plant hormones, ZA, ABA, JA, SA, and BR, which are directly or indirectly involved in drought and salt stresses. The optimized extraction procedure was simple and easy to use for simultaneous measurement of these plant hormones in Arabidopsis thaliana. The developed method is highly reproducible and can be adapted for simultaneous measurement of changes in plant hormones (ZA, ABA, JA, SA, and BR) in response to abiotic stresses in plants like A. thaliana and tomato.

  8. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis.

    PubMed

    Denver, R J

    1997-04-01

    Environmentally induced phenotypic plasticity allows developing organisms to respond adaptively to changes in their habitat. Desert amphibians have evolved traits which allow successful development in unpredictable environments. Tadpoles of these species can accelerate metamorphosis as their pond dries, thus escaping mortality in the larval habitat. This developmental response can be replicated in the laboratory, which allows elucidation of the underlying physiological mechanisms. Here I demonstrate a link between a classical neurohormonal stress pathway (involving corticotropin-releasing hormone, CRH) and the developmental response to habitat desiccation. Injections of CRH-like peptides accelerated metamorphosis in western spadefoot toad tadpoles. Conversely, treatment with two CRH antagonists, the CRH receptor antagonist alpha-helical CRH(9-41) and anti-CRH serum, attenuated the developmental acceleration induced by habitat desiccation. Tadpoles subjected to habitat desiccation exhibited elevated hypothalamic CRH content at the time when they responded developmentally to the declining water level. CRH injections elevated whole-body thyroxine, triiodothyronine, and corticosterone content, the primary hormonal regulators of metamorphosis. In contrast, alpha-helical CRH(9-41) reduced thyroid activity. These results support a central role for CRH as a neurohormonal transducer of environmental stimuli into the endocrine response which modulates the rate of metamorphosis. Because in mammals, increased fetal/placental CRH production may initiate parturition, and CRH has been implicated in precipitating preterm birth arising from fetal stress, this neurohormonal pathway may represent a phylogenetically ancient developmental regulatory system that allows the organism to escape an unfavorable larval/fetal habitat.

  9. Stress, cortisol, and other appetite-related hormones: Prospective prediction of 6-month changes in food cravings and weight

    PubMed Central

    Chao, Ariana M.; Jastreboff, Ania M.; White, Marney A.; Grilo, Carlos M.; Sinha, Rajita

    2017-01-01

    Objective To examine whether baseline chronic stress, morning cortisol, and other appetite-related hormones (leptin, ghrelin, and insulin) predict future weight gain and food cravings in a naturalistic longitudinal 6-month follow-up study. Methods A prospective community cohort of three hundred and thirty-nine adults (age=29.1± 9.0 years; BMI=26.7±5.4 kg/m2; 56.9% female; 70.2% White) completed assessments at baseline and 6-month follow-up. Fasting blood draws were used to assess cortisol and other appetite-related hormones levels at baseline. At baseline and follow-up, body weight was measured and the Cumulative Adversity Interview and Food Craving Inventory were administered. Data were analyzed using linear mixed models adjusting for demographic and clinical covariates. Results Over the 6-month period, 49.9% of the sample gained weight. Food cravings and chronic stress decreased over 6 months (ps<0.05). However, after adjusting for covariates, individuals with higher baseline total ghrelin had significantly higher food cravings at 6 months (p=0.04). Furthermore, higher cortisol, insulin, and chronic stress were each predictive of greater future weight gain (ps<0.05). Conclusions These results suggest that ghrelin plays a role in increased food cravings and reward-driven eating behaviors. Studies are needed that examine the utility of stress reduction methods for normalizing disrupted cortisol responses and preventing future weight gain. PMID:28349668

  10. Zingerone ameliorates cisplatin-induced ovarian and uterine toxicity via suppression of sex hormone imbalances, oxidative stress, inflammation and apoptosis in female wistar rats.

    PubMed

    Kaygusuzoglu, Erdal; Caglayan, Cuneyt; Kandemir, Fatih Mehmet; Yıldırım, Serkan; Kucukler, Sefa; Kılınc, Mehmet Akif; Saglam, Yavuz Selim

    2018-06-01

    Cisplatin (CP) is a widely used chemotherapeutic drug, effective against a variety of solid tumours, though its utility is limited due to its multiple organ toxicity. Zingerone (ZO), one of the most important components of dry ginger root, has several pharmacological activities, such as antioxidant, anti-inflammatory and anti-apoptotic properties. This study aimed to investigate the ameliorative effect of ZO on CP-induced ovarian and uterine toxicity in female rats. The rats were subjected to a prophylactic oral treatment of ZO (25 and 50 mg/kg body weight) for seven days to measure the protective effect against ovarian and uterine toxicity induced by a single (i.p.) of CP (7 mg/kg body weight) on the first day whereas the rats were sacrificed on the eighth day. The results showed that ZO decreased the serum FSH hormone level, increased the serum E2 hormone level, and also maintained the ovarian and uterine histological architecture and integrity. In addition, ZO obviously increased the measured activity of antioxidant enzymes (SOD, CAT and GPx) and the GSH content, and significantly reduced MDA levels. ZO was able to reduce the levels of the inflammatory markers NF-κB, TNF-α, IL-1β, IL-6, COX-2 and iNOS in CP-induced ovarian and uterine damage. It also inhibited apoptosis and reduced oxidative DNA damage markers by the downregulation of caspase-3 and 8-OHdG expression coupled with an upregulated Bcl-2 level. The results indicate that ZO may be beneficial in ameliorating CP-induced oxidative stress, sex hormone imbalances, inflammation and apoptosis in ovarian and uterine tissues of female rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    PubMed Central

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example. PMID:26287175

  12. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    PubMed

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation. Copyright

  13. In vitro reduction of antibacterial activity of tigecycline against multidrug-resistant Acinetobacter baumannii with host stress hormone norepinephrine.

    PubMed

    Inaba, Masato; Matsuda, Naoyuki; Banno, Hirotsugu; Jin, Wanchun; Wachino, Jun-Ichi; Yamada, Keiko; Kimura, Kouji; Arakawa, Yoshichika

    2016-12-01

    The host stress hormone norepinephrine (NE), also called noradrenaline, is reported to augment bacterial growth and pathogenicity, but few studies have focused on the effect of NE on the activity of antimicrobials. The aim of this study was to clarify whether NE affects antimicrobial activity against multidrug-resistant Acinetobacter baumannii (MDR-AB). Time-kill studies of tigecycline (TIG) and colistin (COL) against MDR-AB as well as assays for factors contributing to antibiotic resistance were performed using MDR-AB clinical strains both in the presence and absence of 10 µM NE. In addition, expression of three efflux pump genes (adeB, adeJ and adeG) in the presence and absence of NE was analysed by quantitative reverse transcription PCR. Viable bacterial cell counts in TIG-supplemented medium containing NE were significantly increased compared with those in medium without NE. In contrast, NE had little influence on viable bacterial cell counts in the presence of COL. NE-supplemented medium resulted in an ca. 2 log increase in growth and in bacterial cell numbers adhering on polyurethane, silicone and polyvinylchloride surfaces. Amounts of biofilm in the presence of NE were ca. 3-fold higher than without NE. Expression of the adeG gene was upregulated 4-6-fold in the presence of NE. In conclusion, NE augmented factors contributing to antibiotic resistance and markedly reduced the in vitro antibacterial activity of TIG against MDR-AB. These findings suggest that NE treatment may contribute to the failure of TIG therapy in patients with MDR-AB infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  14. [Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala].

    PubMed

    Isakova, L S; Danilov, G E; Egorkina, S B; Butolin, E G

    1989-01-01

    Changes in intraocular pressure, eye hydrodynamics and the amount of hypophyseal, thyroid, adrenal and pancreatic hormones were studied during continuous stimulation of amygdaloid complex or after administration of angiotensin II into the structure in rabbits. The effects involved changes in hormonal homeostasis and elevation of intraocular pressure due to a hypersecretion of intraocular fluid. The administration of angiotensin II during the amygdala stimulation enhanced the changes.

  15. Preconditioning to Reduce Decompression Stress in Scuba Divers.

    PubMed

    Germonpré, Peter; Balestra, Costantino

    2017-02-01

    Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.

  16. Effects of forced swimming stress on thyroid function, pituitary thyroid-stimulating hormone and hypothalamus thyrotropin releasing hormone expression in adrenalectomy Wistar rats.

    PubMed

    Sun, Qiuyan; Liu, Aihua; Ma, Yanan; Wang, Anyi; Guo, Xinhong; Teng, Weiping; Jiang, Yaqiu

    2016-11-01

    In order to study the impact that is imposed on the hypothalamic-pituitary-thyroid (HPT) axis of adrenalectomy male Wistar rats by stress caused by swimming, the blood level of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH), the expression of TSHβ mRNA at the pituitary and thyrotropin releasing hormone (TRH) expression at the paraventricular nucleus (PVN) were measured. A total of 50 male Wistar rats of 6-8 weeks of age and with an average weight of 190-210 grams were randomly divided into the following two groups: The surgical (without adrenal glands) and non-surgical (adrenalectomy) group. These two groups were then divided into the following five groups, according to the time delay of sacrifice following forced swim (10 min, 2 h, 12 h and 24 h) and control (not subjected to swimming) groups. A bilateral adrenalectomy animal model was established. Serum TSH in the blood was measurement by chemiluminescent immunoassay, and cerebrum tissue were excised for the measurement of TRH expression using an immunohistochemistry assay. In addition, pituitaries were excised for the extraction of total RNA. Finally, reverse transcription-quantitative polymerase chain reaction was performed for quantitation of TSHβ. Following swimming, the serum T3, T4 and TSH, the TSHβ mRNA expression levels in the pituitary and the TRH expression in the PVN of the surgical group were gradually increased. In the non-surgical group, no significant differences were observed in the serum T3, T4 and TSH levels compared with the control group. The TSHβ mRNA expression at the pituitary showed a similar result. Furthermore, the TRH expression at PVN was gradually increased and stress from swimming could increase the blood T4, T3 and TSH levels, TSHβ mRNA expression at the pituitary and TRH expression at the PVN in adrenalectomy Wistar rats. Moreover, the index in the surgical group changed significantly compared with the non-surgical group. In conclusion, the results

  17. Improving Health by Reducing Stress: An Experiential Activity

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Moore, Michele J.; Barr, Elissa M.

    2011-01-01

    Stress is a leading health issue among college students. Managing stress involves enhancing resources necessary to cope with life's demands. Relaxation techniques are especially critical coping strategies when stress is chronic and coping resources are overused and fatigued. Methods: This article describes a research-based relaxation technique…

  18. The Principal: An Agent for Reducing Teacher Stress.

    ERIC Educational Resources Information Center

    Calabrese, Raymond L.

    1987-01-01

    Teachers often cite stress as a reason for leaving the teaching profession. Stress does not have to be a negative factor. Discusses ways that principals can use their leadership skills to make stress a positive force. Includes five references. (Author/MD)

  19. Stress-related hormonal and psychological changes to official youth Taekwondo competitions.

    PubMed

    Chiodo, S; Tessitore, A; Cortis, C; Cibelli, G; Lupo, C; Ammendolia, A; De Rosas, M; Capranica, L

    2011-02-01

    The aim of this study was to evaluate the effects of an official Taekwondo competition on the heart rate (HR), salivary α-amylase (sA-A), salivary free cortisol (sC), and Profile of Mood States (POMS) in 10 young male (14±0 years) and six female (13±1 years) athletes. POMS and hormones were measured 15 min before and directly after the competition. During the recovery phase (30 and 90 min), sA-A and sC were also measured. HR measured during the competition was expressed as a percentage of individual's maximal heart rate (%HR(max) ) to evaluate the intensity of exercise. During the competition, athletes spent 65% of the time working at HR>90% of individuals HR(max). A significant increase (P<0.0001) in sA-A (115%) was observed at the end of the match. At 30 min of recovery, sA-A returned to the pre-competition level. The peak sC values were observed at 30 min of recovery (P<0.001), returning to the pre-competition level at 90 min of recovery. A gender difference (P=0.01) emerged only for sC, although a similar trend was observed for female and male athletes. Significantly higher post-match scores emerged for Anger-hostility (pre: 6.1±1.1, post: 11.2±1.9; P=0.03) and Depression-dejection (pre: 4.5±0.5, post: 10.2±1.9; P=0.006), whereas the reverse picture was observed for Vigour-activity (pre: 23.2±1.2, post: 16.3±1.7; P=0.0006). Taekwondo competition results in temporary changes in the stress-related parameters measured in this study. The present findings suggest that this experimental paradigm can represent a useful model for further research on the effects of various stressors (i.e., training and competition) in Taekwondo athletes of different levels (i.e., novice, international). © 2009 John Wiley & Sons A/S.

  20. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones.

    PubMed

    Stephens, Mary Ann C; Mahon, Pamela B; McCaul, Mary E; Wand, Gary S

    2016-04-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to the

  1. Hypothalamic-pituitary-adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones

    PubMed Central

    Stephens, Mary Ann C.; Mahon, Pamela B.; McCaul, Mary E.; Wand, Gary S.

    2016-01-01

    Summary Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis influences the risk for developing stress-related disorders. Sex-dependent differences in the HPA axis stress response are believed to contribute to the different prevalence rates of stress-related disorders found in men and women. However, studies examining the HPA axis stress response have shown mixed support for sex differences, and the role of endogenous sex hormones on HPA axis response has not been adequately examined in humans. This study utilized the largest sample size to date to analyze the effects of biological sex and sex hormones on HPA axis social stress responses. Healthy, 18- to 30- year-old community volunteers (N=282) completed the Trier Social Stress Test (TSST), a widely used and well-validated stress-induction laboratory procedure. All women (n=135) were tested during the follicular phase of their menstrual cycle (when progesterone levels are most similar to men). Adrenocorticotropic hormone (ACTH) and cortisol measures were collected at multiple points throughout pre- and post-TSST. Testosterone and progesterone (in men) and progesterone and estradiol (in women) were determined pre-TSST. Following the TSST, men had greater ACTH and cortisol levels than women. Men had steeper baseline-to-peak and peak-to-end ACTH and cortisol response slopes than women; there was a trend for more cortisol responders among men than women. Testosterone negatively correlated with salivary cortisol response in men, while progesterone negatively correlated with ACTH and cortisol responses in women. These data confirm that men show more robust activation of the HPA axis response to the TSST than do women in the follicular phase of the menstrual cycle. Testosterone results suggest an inhibitory effect on HPA axis reactivity in men. Progesterone results suggest an inhibitory effect on HPA axis reactivity in women. Future work is needed to explain why men mount a greater ACTH and cortisol response to

  2. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.

    PubMed

    Finiti, Ivan; de la O Leyva, María; Vicedo, Begonya; Gómez-Pastor, Rocío; López-Cruz, Jaime; García-Agustín, Pilar; Real, Maria Dolores; González-Bosch, Carmen

    2014-08-01

    Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  3. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction.

    PubMed

    Creel, Scott; Winnie, John A; Christianson, David

    2009-07-28

    Predators affect prey demography through direct predation and through the costs of antipredator behavioral responses, or risk effects. Experiments have shown that risk effects can comprise a substantial proportion of a predator's total effect on prey dynamics, but we know little about their strength in wild populations, or the physiological mechanisms that mediate them. When wolves are present, elk alter their grouping patterns, vigilance, foraging behavior, habitat selection, and diet. These responses are associated with decreased progesterone levels, decreased calf production, and reduced population size [Creel S, Christianson D, Liley S, Winnie JA (2007) Science 315:960]. Two general mechanisms for the effect of predation risk on reproduction have been proposed: the predation stress hypothesis and the predator-sensitive-food hypothesis. Here, we used enzyme immunoassay to measure fecal glucocorticoid metabolite concentrations for 1,205 samples collected from 4 elk populations over 4 winters to test the hypothesis that the effect of predation risk on elk reproduction is mediated by chronic stress. Across populations and years, fecal glucocorticoid concentrations were not related to predator-prey ratios, progesterone concentrations or calf-cow ratios. Overall, the effect of wolf presence on elk reproduction is better explained by changes in foraging patterns that carry nutritional costs than by changes in glucocorticoid concentrations.

  4. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction

    PubMed Central

    Creel, Scott; Winnie, John A.; Christianson, David

    2009-01-01

    Predators affect prey demography through direct predation and through the costs of antipredator behavioral responses, or risk effects. Experiments have shown that risk effects can comprise a substantial proportion of a predator's total effect on prey dynamics, but we know little about their strength in wild populations, or the physiological mechanisms that mediate them. When wolves are present, elk alter their grouping patterns, vigilance, foraging behavior, habitat selection, and diet. These responses are associated with decreased progesterone levels, decreased calf production, and reduced population size [Creel S, Christianson D, Liley S, Winnie JA (2007) Science 315:960]. Two general mechanisms for the effect of predation risk on reproduction have been proposed: the predation stress hypothesis and the predator-sensitive-food hypothesis. Here, we used enzyme immunoassay to measure fecal glucocorticoid metabolite concentrations for 1,205 samples collected from 4 elk populations over 4 winters to test the hypothesis that the effect of predation risk on elk reproduction is mediated by chronic stress. Across populations and years, fecal glucocorticoid concentrations were not related to predator-prey ratios, progesterone concentrations or calf-cow ratios. Overall, the effect of wolf presence on elk reproduction is better explained by changes in foraging patterns that carry nutritional costs than by changes in glucocorticoid concentrations. PMID:19617549

  5. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice.

    PubMed

    Zhang, R; Asai, M; Mahoney, C E; Joachim, M; Shen, Y; Gunner, G; Majzoub, J A

    2017-05-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.

  6. Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells.

    PubMed

    Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing

    2017-12-01

    The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.

  7. Evaluation of immune and stress status in harbour porpoises (Phocoena phocoena): can hormones and mRNA expression levels serve as indicators to assess stress?

    PubMed Central

    2013-01-01

    Background The harbour porpoise is exposed to increasing pressure caused by anthropogenic activities in its marine environment. Numerous offshore wind farms are planned or under construction in the North and Baltic Seas, which will increase underwater noise during both construction and operation. A better understanding of how anthropogenic impacts affect the behaviour, health, endocrinology, immunology and physiology of the animals is thus needed. The present study compares levels of stress hormones and mRNA expression of cytokines and acute-phase proteins in blood samples of harbour porpoises exposed to different levels of stress during handling, in rehabilitation or permanent human care. Free-ranging harbour porpoises, incidentally caught in pound nets in Denmark, were compared to harbour porpoises in rehabilitation at SOS Dolfijn in Harderwijk, the Netherlands, and individuals permanently kept in human care in the Dolfinarium Harderwijk and Fjord & Belt Kerteminde, Denmark. Blood samples were investigated for catecholamines, adrenaline, noradrenaline and dopamine, as well as for adrenocorticotropic hormone (ACTH), cortisol, metanephrine and normetanephrine. mRNA expression levels of relevant cell mediators (cytokines IL-10 and TNFα, acute-phase proteins haptoglobin and C-reactive protein and the heat shock protein HSP70) were measured using real-time PCR. Results Biomarker expression levels varied between free-ranging animals and porpoises in human care. Hormone and cytokine ranges showed correlations to each other and to the health status of investigated harbour porpoises. Hormone concentrations were higher in free-ranging harbour porpoises than in animals in human care. Adrenaline can be used as a parameter for the initial reaction to acute stress situations; noradrenaline, dopamine, ACTH and cortisol are more likely indicators for the following minutes of acute stress. There is evidence for different correlations between production of normetanephrine

  8. Changes in stress hormones and metabolism during a 105-day simulated Mars mission.

    PubMed

    Strollo, Felice; Vassilieva, Galina; Ruscica, Massimiliano; Masini, Mariangela; Santucci, Daniela; Borgia, Luisa; Magni, Paolo; Celotti, Fabio; Nikiporuc, Igor

    2014-08-01

    The Mars-105 project was aimed at simulating crew's activities, workload, and communication during a mission to Mars, evaluating the homeostatic adaptations to prolonged confinement and cohabitation. Fasting plasma glucose (FPG) and insulin, C-peptide, leptin, cortisol, and NGF and BDNF plasma levels were monitored in six healthy nonsmoking male subjects taking part in a 105-d Mars mission simulation. Samples were collected from each subject before (0 wk), during (2.5 wk; 5 wk; 10 wk; 15 wk), and after confinement (+1 wk). Confinement resulted in impaired glucometabolic parameters, since FPG increased during the first 5 wk (baseline: 85.2 ± 10.8 mg · dl⁻¹; 2.5 wk: 98.4 ± 4.7 mg · dl⁻¹; 5 wk: 92.5 ± 6.0 mg · dl⁻¹) and insulin dropped at 2.5 wk (baseline: 14.4 ± 4.8 mU · L⁻¹; 2.5 wk: 7.7 ± 2.1 mU · L⁻¹), subsequently returning to baseline values. HOMA-IR paralleled plasma insulin, dropping to 1.8 ± 0.5 at 2.5 wk (baseline: 3.0 ± 1.2). At all time-points tested, plasma leptin levels were decreased (baseline: 4.4 ± 3.3 ng · dl⁻¹; 2.5 wk: 1.6 ± 1.2 ng · dl⁻¹; 5 wk: 1.3 ± 0.8 ng · dl⁻¹; 10 wk: 1.5 ± 1.1 ng · dl⁻¹; 15 wk:1.7 ± 0.8 ng · dl⁻¹), whereas cortisol levels were increased (baseline: 10.8 ± 4.9 ng · dl⁻¹; 2.5 wk: 16.8 ± 3.5 ng · dl⁻¹; 5 wk: 18.1 ± 7.6 ng · dl⁻¹; 10 wk: 18.1 ± 8.3 ng · dl⁻¹; 15 wk:14.2 ± 4.4 ng · dl⁻¹), resulting in a negative correlation between these hormones. BDNF levels increased only at 5 and 10 wk (baseline: 67.1 ± 36.0 pg · ml⁻¹; 5 wk: 164 ± 54 pg · ml⁻¹; and 10 wk: 110.2 ± 28.9 pg · ml⁻¹). The data obtained with the Mars-105 experiment suggest that environmental stress has a strong impact upon metabolic and stress response, indicating the need for further studies and the implementation of specific countermeasures.

  9. The action of stress hormones on the structure and function of erythrocyte membrane.

    PubMed

    Mokrushnikov, Pavel V; Panin, Lev E; Zaitsev, Boris N

    2015-07-01

    The action of a mixture of hormones (cortisol and adrenaline) on erythrocyte membrane during their binding was investigated. Changes in the membrane structure were elucidated by atomic force microscopy; microviscosity of the lipid bilayer and changes in the activity of Na(+),K(+)-ATPase at different concentrations of the hormones in erythrocyte suspension were estimated by the fluorescence method. Cortisol and adrenaline were shown to compete for the binding sites. A hormone that managed to bind nonspecifically to the membrane hindered the binding of another hormone. In a mixture of these hormones, cortisol won a competition for the binding sites; therewith, microviscosity of the membranes increased by 25%, which corresponds to a change in microviscosity produced by the action of cortisol alone. The competitive relationships affected also the Na(+),K(+)-ATPase activity, which was indicated by appearance of the second maximum of enzyme activity. It is assumed that an increase in microviscosity of erythrocyte membrane first raises the Na(+),K(+)-ATPase activity due to a growth of the maximum energy of membrane phonons, and then decreases the activity due to hindering of conformational transitions in the enzyme molecule.

  10. Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: A case series analysis.

    PubMed

    Ranganathan, Prerna; Kumar, Raj G; Davis, Kendra; McCullough, Emily H; Berga, Sarah L; Wagner, Amy K

    2016-01-01

    To describe hormone profiles for pre-/post-menopausal women, to monitor time to resumption of menstruation among pre-menopausal women and to describe cortisol associated LH suppression and phasic variation in other sex hormones over timeMethods and procedures: This study determined amenorrhea duration and characterized acute (days 0-7) and chronic (months 1-6) gonadotropins [luteinizing hormone and follicle stimulating hormone (LH, FSH)], sex hormones (progesterone, estradiol) and stress hormone (cortisol) profiles. Women were pre-menopausal (n = 3) or post-menopausal (n = 3). Among pre-menopausal women, menstrual cycle resolution and phase association (luteal/follicular) was monitored using self-report monthly reproductive history questionnaires. This study compared post-TBI hormone profiles, stratified by menopausal status, to hormone levels from seven controls and described 6- and 12-month outcomes for these women. Consistent with functional hypothalamic amenorrhea (FHA), menstruation resumption among pre-menopausal women occurred when serum cortisol normalized to luteal phase control levels. For post-menopausal women, serum cortisol reductions corresponded with resolution of suppressed LH levels. The stress of TBI results in anovulation and central hypothalamic-pituitary-ovarian (HPG) axis suppression. Future work will examine acute/chronic consequences of post-TBI hypercortisolemia and associated HPG suppression, the temporal association of HPG suppression with other neuroendocrine adaptations and how HPG suppression impacts multidimensional recovery for women with TBI.

  11. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  12. Computer simulation analysis of the behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    A computer simulation of a mathematical circulation model is used to study the alterations of body fluids and their electrolyte composition that occur in weightlessness. The behavior of the renal-regulating hormones which control these alterations is compared in simulations of several one-g analogs of weightlessness and space flight. It is shown that the renal-regulating hormones represent a tightly coupled system that responds acutely to volume disturbances and chronically to electrolyte disturbances. During hypogravic conditions these responses lead to an initial suppression of hormone levels and a long-term effect which varies depending on metabolic factors that can alter the plasma electrolytes. In addition, it is found that if pressure effects normalize rapidly, a transition phase may exist which leads to a dynamic multiphasic endocrine response.

  13. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems.

    PubMed

    Spencer, Robert L; Chun, Lauren E; Hartsock, Matthew J; Woodruff, Elizabeth R

    2018-04-01

    Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Association of Hormonal Contraceptive Use With Reduced Levels of Depressive Symptoms: A National Study of Sexually Active Women in the United States

    PubMed Central

    Keyes, Katherine M.; Cheslack-Postava, Keely; Westhoff, Carolyn; Heim, Christine M.; Haloossim, Michelle; Walsh, Kate; Koenen, Karestan

    2013-01-01

    An estimated 80% of sexually active young women in the United States use hormonal contraceptives during their reproductive years. Associations between hormonal contraceptive use and mood disturbances remain understudied, despite the hypothesis that estrogen and progesterone play a role in mood problems. In this study, we used data from 6,654 sexually active nonpregnant women across 4 waves of the National Longitudinal Study of Adolescent Health (1994–2008), focusing on women aged 25–34 years. Women were asked about hormonal contraceptive use in the context of a current sexual partnership; thus, contraceptive users were compared with other sexually active women who were using either nonhormonal contraception or no contraception. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale. At ages 25–34 years, hormonal contraceptive users had lower mean levels of concurrent depressive symptoms (β = −1.04, 95% confidence interval: −1.73, −0.35) and were less likely to report a past-year suicide attempt (odds ratio = 0.37, 95% confidence interval: 0.14, 0.95) than women using low-efficacy contraception or no contraception, in models adjusted for propensity scores for hormonal contraceptive use. Longitudinal analyses indicated that associations between hormonal contraception and depressive symptoms were stable. Hormonal contraception may reduce levels of depressive symptoms among young women. Systematic investigation of exogenous hormones as a potential preventive factor in psychiatric epidemiology is warranted. PMID:24043440

  15. Effects of Combined General/Epidural Anesthesia on Hemodynamics, Respiratory Function, and Stress Hormone Levels in Patients with Ovarian Neoplasm Undergoing Laparoscopy.

    PubMed

    Xu, Qiang; Zhang, Hao; Zhu, Yan-Mei; Shi, Nian-Jun

    2016-11-08

    BACKGROUND The aim of this study was to evaluate the influence of combined general/epidural anesthesia (GEA) on hemodynamics, respiratory function and stress hormone levels in patients with ovarian neoplasm undergoing laparoscopy. MATERIAL AND METHODS A total of 177 patients with ovarian neoplasm (screened by inclusion/exclusion criteria) receiving laparoscopy were divided into groups G (general anesthesia alone), L1.0 (GEA with 1.0% lidocaine), and L1.5 (GEA with 1.5% lidocaine). Hemodynamics, respiratory parameters and stress hormone levels in the 3 groups were recorded and analyzed. RESULTS Hemodynamic indexes and PaO2/PaCO2 in group L1.0 showed no differences at each time point (all P>0.05). At the end of anesthesia tracheal intubation (T1), 10 min after pneumoperitoneum (T2) and the end of anesthesia tracheal extubation (T3), there were significant differences in hemodynamic indexes, respiratory parameters, epinephrine (E), and noradrenalin (NE) of group G/L1.5, compared with before anesthesia induction (T0) (all P<0.05). Compared with group G, there were big differences in dosage of anesthetics (sufentanil, vecuronium, and propofol) and pharmaceutic adjuvants (ephedrine, atropine, and nitroglycerin), postoperative recovery time, extubation time, and incidence of agitation in group L1.0/L1.5 (all P<0.05). CONCLUSIONS GEA can improve the quality and efficiency in laparoscopy for ovarian neoplasm, with the advantages of reduced anesthetics dosage, satisfactory postoperative analgesia, maintained hemodynamic stability, excellent uterine relaxation, and reduced time of anesthesia induction, surgery, recovery, and extubation. In addition, compared with group L1.5, group L1.0 was more secure and worthy of clinical promotion in laparoscopy.

  16. Adaptation to Chronic Nutritional Stress Leads to Reduced Dependence on Microbiota in Drosophila melanogaster

    PubMed Central

    Kolly, Sylvain; van der Meer, Jan R.; Kawecki, Tadeusz J.

    2017-01-01

    ABSTRACT Numerous studies have shown that animal nutrition is tightly linked to gut microbiota, especially under nutritional stress. In Drosophila melanogaster, microbiota are known to promote juvenile growth, development, and survival on poor diets, mainly through enhanced digestion leading to changes in hormonal signaling. Here, we show that this reliance on microbiota is greatly reduced in replicated Drosophila populations that became genetically adapted to a poor larval diet in the course of over 170 generations of experimental evolution. Protein and polysaccharide digestion in these poor-diet-adapted populations became much less dependent on colonization with microbiota. This was accompanied by changes in expression levels of dFOXO transcription factor, a key regulator of cell growth and survival, and many of its targets. These evolutionary changes in the expression of dFOXO targets to a large degree mimic the response of the same genes to microbiota, suggesting that the evolutionary adaptation to poor diet acted on mechanisms that normally mediate the response to microbiota. Our study suggests that some metazoans have retained the evolutionary potential to adapt their physiology such that association with microbiota may become optional rather than essential. PMID:29066546

  17. Breeding status affects the hormonal and metabolic response to acute stress in a long-lived seabird, the king penguin.

    PubMed

    Viblanc, Vincent A; Gineste, Benoit; Robin, Jean-Patrice; Groscolas, René

    2016-09-15

    Stress responses are suggested to physiologically underlie parental decisions promoting the redirection of behaviour away from offspring care when survival is jeopardized (e.g., when facing a predator). Besides this classical view, the "brood-value hypothesis" suggests that parents' stress responses may be adaptively attenuated to increase fitness, ensuring continued breeding when the relative value of the brood is high. Here, we test the brood-value hypothesis in breeding king penguins (Aptenodytes patagonicus), long-lived seabirds for which the energy commitment to reproduction is high. We subjected birds at different breeding stages (courtship, incubation and chick brooding) to an acute 30-min capture stress and measured their hormonal (corticosterone, CORT) and metabolic (non-esterified fatty acid, NEFA) responses to stress. We found that CORT responses were markedly attenuated in chick-brooding birds when compared to earlier stages of breeding (courtship and incubation). In addition, NEFA responses appeared to be rapidly attenuated in incubating and brooding birds, but a progressive increase in NEFA plasma levels in courting birds suggested energy mobilization to deal with the threat. Our results support the idea that stress responses may constitute an important life-history mechanism mediating parental reproductive decisions in relation to their expected fitness outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.).

    PubMed

    Ubaidillah, Mohammad; Safitri, Fika Ayu; Jo, Jun-Hyeon; Lee, Sang-Kyu; Hussain, Adil; Mun, Bong-Gyu; Chung, Il Kyung; Yun, Byung-Wook; Kim, Kyung-Min

    2016-12-01

    We previously identified the rice (Oryza sativa) senescence-associated gene OsSAP which encodes a highly conserved protein involved in anti-apoptotic activity. This novel Bax suppressor-related gene regulates tolerance to multiple stresses in yeast. Here, we show the effects of drought stress on leaf and root tissues of plants over-expressing OsSAP in relation to the levels of phytohormones, abscisic acid (ABA), jasmonic acid (JA), indole-3-carboxylic acid (ICA), gibberellic acid (GA 3 ), and zeatin. Results showed that rice plants over-expressing SAP were tolerant to drought stress compared to wild type and the plants over-expressing AtBI-1, which is a homolog of the human Bax inhibitor-1 in Arabidopsis. ABA and JA levels in OsSAP and AtBI-1 transgenic plants consistently increased up to at least 3 days after drought treatment, whereas lower GA 3 levels were recorded during early drought period. Comparison between control and transgenic plants overexpressing anti-apoptosis genes OsSAP and AtBI-1 resulted in different patterns of hormone levels, indicating that these genes are involved in the plant responses to drought stress and present an opportunity for further study on drought stress tolerance in rice and other plant species.

  19. Sleep, Dreams, and Memory Consolidation: The Role of the Stress Hormone Cortisol

    ERIC Educational Resources Information Center

    Payne, Jessica D.; Nadel, Lynn

    2004-01-01

    We discuss the relationship between sleep, dreams, and memory, proposing that the content of dreams reflects aspects of memory consolidation taking place during the different stages of sleep. Although we acknowledge the likely involvement of various neuromodulators in these phenomena, we focus on the hormone cortisol, which is known to exert…

  20. Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses.

    PubMed

    Chang, E S; Keller, R; Chang, S A

    1998-09-01

    An ELISA was developed for the crustacean hyperglycemic hormone (CHH) from the lobster, Homarus americanus. It is sensitive to as little as 0.2 fmol of peptide. The assay was used to measure CHH in the hemolymph of intact lobsters after various environmental stresses. Increases in CHH were observed following emersion, exposure to high temperatures (23 degrees and 28 degreesC), and salinity stress (50 and 150% seawater). During emersion, concentrations of hemolymph glucose increased concomitantly with increases in CHH. Significant levels of hemolymph CHH were also measured in lobsters that had been eyestalk-ablated. These latter observations indicate that there may be a source of CHH other than the X-organ/sinus gland in the lobster. Copyright 1998 Academic Press.

  1. Effects of itopride hydrochloride on plasma gut-regulatory peptide and stress-related hormone levels in healthy human subjects.

    PubMed

    Katagiri, Fumihiko; Shiga, Toru; Inoue, Shin; Sato, Yuhki; Itoh, Hiroki; Takeyama, Masaharu

    2006-01-01

    Itopride hydrochloride (itopride), a gastrokinetic drug, has recently been evaluated for its clinical usefulness in functional dyspepsia. We investigated effects of itopride on human plasma gastrin-, somatostatin-, motilin-, and cholecystokinin (CCK)-like immunoreactive substances (IS); adrenocorticotropic hormone (ACTH)-immunoreactive substances (IS), and cortisol under stress conditions in healthy subjects. A single administration of itopride caused significant increases in plasma somatostatin- and motilin-IS levels compared to placebo. Itopride significantly decreased plasma CCK-IS, and suppressed the ACTH-IS level compared to placebo. We hypothesize that itopride may have an accelerating gastric emptying effect, and a modulatory effect on the hypothalamo-pituitary-adrenal axis and autonomic nervous functions. These effects might be beneficial in stress-related diseases, suggesting that itopride has clinicopharmacological activities.

  2. Reproductive toxicity after levetiracetam administration in male rats: Evidence for role of hormonal status and oxidative stress.

    PubMed

    Baysal, Merve; Ilgin, Sinem; Kilic, Gozde; Kilic, Volkan; Ucarcan, Seyda; Atli, Ozlem

    2017-01-01

    Levetiracetam (LEV) is an antiepileptic drug commonly used in the treatment of epilepsy because of its excellent safety profile in all age groups. It is remarkable that there are no studies evaluating the toxic effects of this drug on the male reproductive system, as it is commonly used in male patients of reproductive age. From this point of view, our aim was to evaluate the possible toxic effects of LEV on the male reproductive system. Therefore, LEV was administered to male rats orally at 50, 150, and 300 mg/kg for 70 consecutive days. At the end of this period, alterations to body and organ weights were calculated, and sperm concentration, motility, and morphology were investigated by a computer-assisted sperm analysis system. Sperm DNA damage was determined by comet assay and histopathological examination of the testes was carried out. Serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were measured by ELISAs to determine the effects of hormonal status, while glutathione, superoxide dismutase, catalase, and malondialdehyde levels in the testes were measured by colorimetric assay kits to determine the role of oxidative status in potential toxicity. According to the results, sperm quality was decreased by LEV treatment in a dose-dependent manner. LEV induced significant DNA damage in the 150 and 300 mg/kg LEV-administered groups. Histopathology of the testes showed that LEV resulted in testicular injury in the 300 mg/kg LEV-administered group. Serum testosterone, FSH, and LH levels were significantly decreased in the 300 mg/kg LEV-administered group. Glutathione, superoxide dismutase, and catalase levels were significantly decreased in all experimental groups while malondialdehyde levels were significantly increased in 150 and 300 mg/kg LEV-administered groups. According to these results, it was determined that LEV administration decreased sperm quality and it was alleged that hormonal alteration and oxidative stress are

  3. Reproductive toxicity after levetiracetam administration in male rats: Evidence for role of hormonal status and oxidative stress

    PubMed Central

    Kilic, Gozde; Kilic, Volkan; Ucarcan, Seyda; Atli, Ozlem

    2017-01-01

    Levetiracetam (LEV) is an antiepileptic drug commonly used in the treatment of epilepsy because of its excellent safety profile in all age groups. It is remarkable that there are no studies evaluating the toxic effects of this drug on the male reproductive system, as it is commonly used in male patients of reproductive age. From this point of view, our aim was to evaluate the possible toxic effects of LEV on the male reproductive system. Therefore, LEV was administered to male rats orally at 50, 150, and 300 mg/kg for 70 consecutive days. At the end of this period, alterations to body and organ weights were calculated, and sperm concentration, motility, and morphology were investigated by a computer-assisted sperm analysis system. Sperm DNA damage was determined by comet assay and histopathological examination of the testes was carried out. Serum testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were measured by ELISAs to determine the effects of hormonal status, while glutathione, superoxide dismutase, catalase, and malondialdehyde levels in the testes were measured by colorimetric assay kits to determine the role of oxidative status in potential toxicity. According to the results, sperm quality was decreased by LEV treatment in a dose-dependent manner. LEV induced significant DNA damage in the 150 and 300 mg/kg LEV-administered groups. Histopathology of the testes showed that LEV resulted in testicular injury in the 300 mg/kg LEV-administered group. Serum testosterone, FSH, and LH levels were significantly decreased in the 300 mg/kg LEV-administered group. Glutathione, superoxide dismutase, and catalase levels were significantly decreased in all experimental groups while malondialdehyde levels were significantly increased in 150 and 300 mg/kg LEV-administered groups. According to these results, it was determined that LEV administration decreased sperm quality and it was alleged that hormonal alteration and oxidative stress are

  4. Central neuropeptide B administration activates stress hormone secretion and stimulates feeding in male rats.

    PubMed

    Samson, W K; Baker, J R; Samson, C K; Samson, H W; Taylor, M M

    2004-10-01

    Neuropeptide B (NPB) was identified to be an endogenous, peptide ligand for the orphan receptors GPR7 and GPR8. Because GPR7 is expressed in rat brain and, in particular, in the hypothalamus, we hypothesized that NPB might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPB were observed on the in vitro releases of prolactin, adrenocorticotropic hormone (ACTH) or growth hormone (GH) when log molar concentrations ranging from 1 pM to 100 nM NPB were incubated with dispersed anterior pituitary cells harvested from male rats. In addition NPB (100 nM) did not alter the concentration response stimulation of prolactin secretion by thyrotropin-releasing hormone, ACTH secretion by corticotropin-releasing factor (CRF) and GH secretion by GH-releasing hormone. However, NPB, when injected into the lateral cerebroventricle (i.c.v.) of conscious, unrestrained male rats, elevated prolactin and corticosterone, and lowered GH levels in circulation. The threshold dose for the effect on corticosterone and prolactin levels was 1.0 nmol, while that for the effect on GH release was 3.0 nmol NPB. Pretreatment with a polyclonal anti-CRF antiserum completely blocked the ability of NPB to stimulate ACTH release and significantly inhibited the effect of NPB on plasma corticosterone levels. NPB administration i.c.v. did not significantly alter plasma vasopressin and oxytocin levels in conscious rats. It did stimulate feeding (minimum effective dose 1.0 nmol) in sated animals in a manner similar to that of the other endogenous ligand for GPR7, neuropeptide W. We conclude that NPB can act in the brain to modulate neuroendocrine signals accessing the anterior pituitary gland, but does not itself act as a releasing or inhibiting factor in the gland, at least with regard to prolactin, ACTH and GH secretion.

  5. Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6- and glutathione-dependent mechanism.

    PubMed

    Valles, Soraya L; Benlloch, María; Rodriguez, María L; Mena, Salvador; Pellicer, José A; Asensi, Miguel; Obrador, Elena; Estrela, José M

    2013-03-22

    Interleukin (IL)-6 (mainly of tumor origin) activates glutathione (GSH) release from hepatocytes and its interorgan transport to B16-F10 melanoma metastatic foci. We studied if this capacity to overproduce IL-6 is regulated by cancer cell-independent mechanisms. Murine B16-F10 melanoma cells were cultured, transfected with red fluorescent protein, injected i.v. into syngenic C57BL/6J mice to generate lung and liver metastases, and isolated from metastatic foci using high-performance cell sorting. Stress hormones and IL-6 levels were measured by ELISA, and CRH expression in the brain by in situ hybridization. DNA binding activity of NF-κB, CREB, AP-1, and NF-IL-6 was measured using specific transcription factor assay kits. IL-6 expression was measured by RT-PCR, and silencing was achieved by transfection of anti-IL-6 small interfering RNA. GSH was determined by HPLC. Cell death analysis was distinguished using fluorescence microscopy, TUNEL labeling, and flow cytometry techniques. Statistical analyses were performed using Student's t test. Plasma levels of stress-related hormones (adrenocorticotropin hormone, corticosterone, and noradrenaline) increased, following a circadian pattern and as compared to non-tumor controls, in mice bearing B16-F10 lung or liver metastases. Corticosterone and noradrenaline, at pathophysiological levels, increased expression and secretion of IL-6 in B16-F10 cells in vitro. Corticosterone- and noradrenaline-induced transcriptional up-regulation of IL-6 gene involves changes in the DNA binding activity of nuclear factor-κB, cAMP response element-binding protein, activator protein-1, and nuclear factor for IL-6. In vivo inoculation of B16-F10 cells transfected with anti-IL-6-siRNA, treatment with a glucocorticoid receptor blocker (RU-486) or with a β-adrenoceptor blocker (propranolol), increased hepatic GSH whereas decreased plasma IL-6 levels and metastatic growth. Corticosterone, but not NORA, also induced apoptotic cell death in

  6. Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction

    PubMed Central

    Guarnieri, Douglas J.; Brayton, Catherine E.; Richards, Sarah M.; Maldonado-Aviles, Jaime; Trinko, Joseph R.; Nelson, Jessica; Taylor, Jane R.; Gourley, Shannon L.; DiLeone, Ralph J.

    2011-01-01

    Background Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Methods Analysis of gene expression profiles in male C57BL6/J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a five day food restriction. Quantitative PCR was used to validate these findings and determine the time-course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by ELISA. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Results Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to non-restricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. Conclusions These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. PMID:21855858

  7. Gene profiling reveals a role for stress hormones in the molecular and behavioral response to food restriction.

    PubMed

    Guarnieri, Douglas J; Brayton, Catherine E; Richards, Sarah M; Maldonado-Aviles, Jaime; Trinko, Joseph R; Nelson, Jessica; Taylor, Jane R; Gourley, Shannon L; DiLeone, Ralph J

    2012-02-15

    Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Analysis of gene expression profiles in male C57BL/6J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a 5-day food restriction. Quantitative polymerase chain reaction was used to validate these findings and determine the time course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by enzyme-linked immunosorbent assay. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to nonrestricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Stress, cortisol, and other appetite-related hormones: Prospective prediction of 6-month changes in food cravings and weight.

    PubMed

    Chao, Ariana M; Jastreboff, Ania M; White, Marney A; Grilo, Carlos M; Sinha, Rajita

    2017-04-01

    To examine whether baseline chronic stress, morning cortisol, and other appetite-related hormones (leptin, ghrelin, and insulin) predict future weight gain and food cravings in a naturalistic, longitudinal, 6-month follow-up study. A prospective community cohort of 339 adults (age 29.1 ± 9.0 years; BMI = 26.7 ± 5.4 kg/m 2 ; 56.9% female; 70.2% white) completed assessments at baseline and 6-month follow-up. Fasting blood draws were used to assess cortisol and other appetite-related hormone levels at baseline. At baseline and follow-up, body weight was measured, and the Cumulative Adversity Interview and Food Craving Inventory were administered. Data were analyzed using linear mixed models adjusting for demographic and clinical covariates. Over the 6-month period, 49.9% of the sample gained weight. Food cravings and chronic stress decreased over 6 months (Ps < 0.05). However, after adjusting for covariates, individuals with higher baseline total ghrelin had significantly higher food cravings at 6 months (P = 0.04). Furthermore, higher cortisol, insulin, and chronic stress were each predictive of greater future weight gain (Ps < 0.05). These results suggest that ghrelin plays a role in increased food cravings and reward-driven eating behaviors. Studies are needed that examine the utility of stress reduction methods for normalizing disrupted cortisol responses and preventing future weight gain. © 2017 The Obesity Society.

  9. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli

    PubMed Central

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley. PMID:27746803

  10. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    PubMed

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  11. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress.

    PubMed

    Bale, T L; Contarino, A; Smith, G W; Chan, R; Gold, L H; Sawchenko, P E; Koob, G F; Vale, W W; Lee, K F

    2000-04-01

    Corticotropin-releasing hormone (Crh) is a critical coordinator of the hypothalamic-pituitary-adrenal (HPA) axis. In response to stress, Crh released from the paraventricular nucleus (PVN) of the hypothalamus activates Crh receptors on anterior pituitary corticotropes, resulting in release of adrenocorticotropic hormone (Acth) into the bloodstream. Acth in turn activates Acth receptors in the adrenal cortex to increase synthesis and release of glucocorticoids. The receptors for Crh, Crhr1 and Crhr2, are found throughout the central nervous system and periphery. Crh has a higher affinity for Crhr1 than for Crhr2, and urocortin (Ucn), a Crh-related peptide, is thought to be the endogenous ligand for Crhr2 because it binds with almost 40-fold higher affinity than does Crh. Crhr1 and Crhr2 share approximately 71% amino acid sequence similarity and are distinct in their localization within the brain and peripheral tissues. We generated mice deficient for Crhr2 to determine the physiological role of this receptor. Crhr2-mutant mice are hypersensitive to stress and display increased anxiety-like behaviour. Mutant mice have normal basal feeding and weight gain, but decreased food intake following food deprivation. Intravenous Ucn produces no effect on mean arterial pressure in the mutant mice.

  12. The relationships among acculturation, biobehavioral risk, stress, corticotropin-releasing hormone, and poor birth outcomes in Hispanic women.

    PubMed

    Ruiz, R Jeanne; Dolbier, Christyn L; Fleschler, Robin

    2006-01-01

    To determine the predictive ability of acculturation as an antecedent of stress, biobehavioral risk, corticotropin-releasing hormone levels, and poor birth outcomes in pregnant Hispanic women. A prospective, observational design with data collected at 22-25 weeks of gestation and at birth through medical record review. Public prenatal health clinics in south Texas serving low-income women. Self-identified Hispanic women who had singleton pregnancies, no major medical risk complications, and consented to answer questionnaires as well as a venipuncture and review of their prenatal and birth medical records. Gestational age, Apgar scores, length, weight, percentile size, and head circumference of the infant at birth. Significant differences were seen in infant birth weight, head circumference, and percentile size by acculturation. English acculturation predicted stress, corticotropin-releasing hormone, biobehavioral risk, and decreased gestational age at birth. Investigation must continue to understand the circumstances that give rise to the decline in birth outcomes observed in Hispanics with acculturation to the dominant English culture in the United States.

  13. History of child maltreatment and telomere length in immune cell subsets: Associations with stress- and attachment-related hormones.

    PubMed

    Boeck, Christina; Krause, Sabrina; Karabatsiakis, Alexander; Schury, Katharina; Gündel, Harald; Waller, Christiane; Kolassa, Iris-Tatjana

    2018-05-01

    Experiencing maltreatment during childhood can have long-lasting consequences for both mental and physical health. Immune cell telomere length (TL) shortening might be one link between child maltreatment (CM) experiences and adverse health outcomes later in life. While the stress hormone cortisol has been associated with TL attrition, the attachment-related hormone oxytocin may promote resilience. In 15 mothers with and 15 age- and body mass index-matched mothers without CM, we assessed TL in peripheral blood mononuclear cells and selected immune cell subsets (monocytes, naive, and memory cytotoxic T cells) by quantitative fluorescence in situ hybridization, as well as peripheral cortisol and oxytocin levels. Memory cytotoxic T cells showed significantly shorter TL in association with CM, whereas TL in monocytes and naive cytotoxic T cells did not significantly differ between the two groups. Across both groups, cortisol was negatively associated with TL, while oxytocin was positively associated with TL in memory cytotoxic T cells. These results indicate that long-lived memory cytotoxic T cells are most affected by the increased biological stress state associated with CM. Keeping in mind the correlational and preliminary nature of the results, the data suggest that cortisol may have a damaging and oxytocin a protective function on TL.

  14. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    PubMed Central

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  15. Reduced Cortisol Output during Public Speaking Stress in Ostracized Women

    PubMed Central

    Weik, Ulrike; Ruhweza, Jennifer; Deinzer, Renate

    2017-01-01

    Ostracism (being excluded or ignored) is experienced as unpleasant and distressing. In previous studies, an immediate pre-stress experience of ostracism induced by Cyberball, a virtual ball-tossing game, was found to inhibit cortisol reactivity to public speaking stress in female students. The present study examines whether the effect will persist when a 15-min time gap between the Cyberball experience and subsequent psychological stress is introduced. N = 84 women were randomly assigned to Cyberball ostracism vs. inclusion. 15 min after playing Cyberball, all women were subjected to public speaking stress. Salivary cortisol and mood were repeatedly assessed during the course of the experiment. These are the main findings of the study: Repeated measures ANCOVA revealed that public speaking stress resulted in a significant increase of cortisol in both groups (inclusion vs. ostracism). However, cortisol levels were significantly lower in the ostracism group. In earlier studies when Cyberball was played immediately before public speaking stress, the cortisol response to public speaking was completely suppressed in ostracized women. By introducing a waiting period between Cyberball and public speaking stress in the present study, the main effect of an ostracism induced reduction of cortisol remained, although both groups showed an increase of cortisol as a response to public speaking. These results again suggest that the experience of ostracism might inhibit hypothalamic-pituitary-adrenal (HPA) axis activity, thereby confirming previous results. The formerly observed total suppression of HPA axis responsiveness to public speaking, however, seems to be a rather short-term effect. PMID:28228738

  16. Reduced Cortisol Output during Public Speaking Stress in Ostracized Women.

    PubMed

    Weik, Ulrike; Ruhweza, Jennifer; Deinzer, Renate

    2017-01-01

    Ostracism (being excluded or ignored) is experienced as unpleasant and distressing. In previous studies, an immediate pre-stress experience of ostracism induced by Cyberball, a virtual ball-tossing game, was found to inhibit cortisol reactivity to public speaking stress in female students. The present study examines whether the effect will persist when a 15-min time gap between the Cyberball experience and subsequent psychological stress is introduced. N = 84 women were randomly assigned to Cyberball ostracism vs. inclusion. 15 min after playing Cyberball, all women were subjected to public speaking stress. Salivary cortisol and mood were repeatedly assessed during the course of the experiment. These are the main findings of the study: Repeated measures ANCOVA revealed that public speaking stress resulted in a significant increase of cortisol in both groups (inclusion vs. ostracism). However, cortisol levels were significantly lower in the ostracism group. In earlier studies when Cyberball was played immediately before public speaking stress, the cortisol response to public speaking was completely suppressed in ostracized women. By introducing a waiting period between Cyberball and public speaking stress in the present study, the main effect of an ostracism induced reduction of cortisol remained, although both groups showed an increase of cortisol as a response to public speaking. These results again suggest that the experience of ostracism might inhibit hypothalamic-pituitary-adrenal (HPA) axis activity, thereby confirming previous results. The formerly observed total suppression of HPA axis responsiveness to public speaking, however, seems to be a rather short-term effect.

  17. The impact of long-lasting preemptive epidural analgesia before total hip replacement on the hormonal stress response. A prospective, randomized, double-blind study.

    PubMed

    Al Oweidi, Abdelkarim S; Klasen, Joachim; Al-Mustafa, Mahmoud M; Abu-Halaweh, Sami A; Al-Zaben, Khaled R; Massad, Islam M; Qudaisat, Ibrahim Y

    2010-06-01

    Recent studies suggest that preemptive analgesia may be effective in reducing postoperative pain. One physiologic explanation may be interference with the endogenous opioid response. We investigated whether long-lasting preoperative preemptive analgesia may have an effect on the hormonal stress response after total hip replacement. 42 patients scheduled for elective hip replacement for coxarthrosis were randomized to receive, on the day before the operation, either 5 ml*h(-1) ropivacaine 0.2% (study group, n = 21) or 5 ml*h(-1) saline (control group, n = 21). Postoperative analgesia was achieved in both groups by patient-controlled epidural analgesia (PCEA) with ropivacaine 0.2%. The main outcome measure was the concentration of authentic beta-endorphin [1-31] in plasma up to 4 days after surgery. Additional parameters included concentrations of adrenocorticotrope hormone and cortisol. Both groups were comparable concerning preoperative parameters and pain scores. Epidural blocks were sufficient in all patients for operative analgesia. Preemptive analgesia was performed for 11-20 hours in both groups and led to significantly decreased pain scores before surgery. Preemptive analgesia with epidural ropivacaine did not lead to decreased concentrations of beta-endorphin [1-31] before the start of surgery or in the postoperative period. Furthermore, no differences could be detected in the time course of beta-endorphin and adrenocorticotrope hormone after surgery. However, cortisol concentrations differed significantly between groups before the operation, but showed a comparable rise after surgery. Differences in postoperative pain after preemptive analgesia do not seem to be due to an altered endogenous opioid response.

  18. Women with previous stress fractures show reduced bone material strength

    PubMed Central

    Duarte Sosa, Daysi; Fink Eriksen, Erik

    2016-01-01

    Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443

  19. Salinity reduces 2,4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation.

    PubMed

    Islam, Faisal; Xie, Yuan; Farooq, Muhammad A; Wang, Jian; Yang, Chong; Gill, Rafaqat A; Zhu, Jinwen; Zhou, Weijun

    2018-05-01

    Distinct salinity levels have been reported to enhance plants tolerance to different types of stresses. The aim of this research is to assess the interaction of saline stress and the use of 2,4-D as a means of controlling the growth of Echinochloa crusgalli. The resultant effect of such interaction is vital for a sustainable approach of weed management and food production. The results showed that 2,4-D alone treatment reduces the chlorophyll contents, photosynthetic capacity, enhanced MDA, electrolyte leakage, and ROS production (H 2 O 2 , O 2 ·- ) and inhibited the activities of ROS scavenging enzymes. Further analysis of the ultrastructure of chloroplasts indicated that 2,4-D induced severe damage to the ultrastructure of chloroplasts and thylakoids. Severe saline stress (8 dS m -1 ) followed by mild saline stress treatments (4 dS m -1 ) also reduced the E. crusgalli growth, but had the least impact as compared to the 2,4-D alone treatment. Surprisingly, under combined treatments (salinity + 2,4-D), the phytotoxic effect of 2,4-D was reduced on saline-stressed E. crusgalli plants, especially under mild saline + 2,4-D treatment. This stimulated growth of E. crusgalli is related to the higher activities of enzymatic and non-enzymatic antioxidants and dynamic regulation of IAA, ABA under mild saline + 2,4-D treatment. This shows that 2,4-D efficacy was affected by salinity in a stress intensity-dependent manner, which may result in the need for greater herbicide application rates, additional application times, or more weed control operations required for controlling salt-affected weed.

  20. Acute response of hypophysiotropic thyrotropin releasing hormone neurons and thyrotropin release to behavioral paradigms producing varying intensities of stress and physical activity.

    PubMed

    Gutiérrez-Mariscal, Mariana; Sánchez, Edith; García-Vázquez, Arlene; Rebolledo-Solleiro, Daniela; Charli, Jean-Louis; Joseph-Bravo, Patricia

    2012-11-10

    The activity of the hypothalamus-pituitary-thyroid (HPT) axis is essential for energy homeostasis and is differentially modulated by physical and by psychological stress. Contradictory effects of stressful behavioral paradigms on TSH or thyroid hormone release are due to type, length and controllability of the stressor. We hypothesized that an additional determinant of the activity of the HPT axis is the energy demand due to physical activity. We thus evaluated the response of thyrotropin releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus (PVN) in Wistar male rats submitted to the elevated plus maze (EPM), the open field test (OFT), or restraint, and sacrificed within 1h after test completion; the response to OFT was compared during light (L) or dark (D) phases. Locomotion and anxiety behaviors were similar if animals were tested in L or D phases but their relation to the biochemical parameters differed. All paradigms increased serum corticosterone concentration; the levels of corticotropin releasing hormone receptor 1 and of glucocorticoid receptor (GR) mRNAs in the PVN were enhanced after restraint or OFT-L. Levels of proTRH mRNA increased in the PVN after exposure to EPM-L or OFT-D; serum levels of thyrotropin (TSH) and T(4) only after OFT-D. In contrast, restraint decreased TRH mRNA and serum TSH levels, while it increased TRH content in the mediobasal hypothalamus, implying reduced release. Expression of proTRH in the PVN varied proportionally to the degree of locomotion in OFT-D, while inversely to anxiety in the EPM-L, and to corticosterone in EPM-L and OFT-D. TRH mRNA levels were analyzed by in situ hybridization in the rostral, middle and caudal zones of the PVN in response to OFT-D; they increased in the middle PVN, where most TRH hypophysiotropic neurons reside; levels correlated positively with the velocity attained in the periphery of the OF and negatively, with anxiety. Variations of serum TSH levels correlated positively with

  1. Effects of 2G on Gene Expression of Stress-Related Hormones in Rat Placenta

    NASA Technical Reports Server (NTRS)

    Benson, S.; Talyansky, Y.; Moyer, E. L.; Lowe, M.; Baer, L. A.; Ronca, A. E.

    2017-01-01

    Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and

  2. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    SciTech Connect

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitivemore » skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress.« less

  3. Reduced risk of apoptosis: mechanisms of stress responses.

    PubMed

    Milisav, Irina; Poljšak, Borut; Ribarič, Samo

    2017-02-01

    Apoptosis signaling pathways are integrated into a wider network of interconnected apoptotic and anti-apoptotic pathways that regulate a broad range of cell responses from cell death to growth, development and stress responses. An important trigger for anti- or pro-apoptotic cell responses are different forms of stress including hypoxia, energy deprivation, DNA damage or inflammation. Stress duration and intensity determine whether the cell's response will be improved cell survival, due to stress adaptation, or cell death by apoptosis, necrosis or autophagy. Although the interplay between enhanced stress tolerance and modulation of apoptosis triggering is not yet fully understood, there is a substantial body of experimental evidence demonstrating that apoptosis and anti-apoptosis signaling pathways can be manipulated to trigger or delay apoptosis in vitro or in vivo. Anti-apoptotic strategies cover a broad range of approaches. These interventions include mediators that prevent apoptosis (trophic factors and cytokines), apoptosis inhibition (caspase inhibition, stimulation of anti-apoptotic or inhibition of pro-apoptotic proteins and elimination of apoptotic stimulus), adaptive stress responses (induction of maintenance and repair, caspase inactivation) and cell-cell interactions (blocking engulfment and modified micro environment). There is a consensus that preclinical efficacy and safety evaluations of anti-apoptotic strategies should be performed with protocols that simulate as closely as possible the effects of aging, gender, risk factors, comorbidities and co-medications.

  4. The effects of ryanodine receptor (RYR1) mutation on natural killer cell cytotoxicity, plasma cytokines and stress hormones during acute intermittent exercise in pigs.

    PubMed

    Ciepielewski, Z M; Stojek, W; Borman, A; Myślińska, D; Pałczyńska, P; Kamyczek, M

    2016-04-01

    Stress susceptibility has been mapped to a single recessive gene, the ryanodine receptor 1 (RYR1) gene or halothane (Hal) gene. Homozygous (Hal(nn)), mutated pigs are sensitive to halothane and susceptible to Porcine Stress Syndrome (PSS). Previous studies have shown that stress-susceptible RYR1 gene mutated homozygotes in response to restraint stress showed an increase in natural killer cell cytotoxicity (NKCC) accompanied by more pronounced stress-related hormone and anti-inflammatory cytokine changes. In order to determine the relationship of a RYR1 gene mutation with NKCC, plasma cytokines and stress-related hormones following a different stress model - exercise - 36 male pigs (representing different genotypes according to RYR1 gene mutation: NN, homozygous dominant; Nn, heterozygous; nn, homozygous recessive) were submitted to an intermittent treadmill walking. During the entire experiment the greatest level of NKCC and the greatest concentrations of interleukin (IL-) 6, IL-10, IL-12, interferon (IFN-)γ and tumor necrosis factor-α and stress-related hormones (adrenaline, prolactin, beta-endorphin) were observed in nn pigs, and the greatest concentration of IL-1 and growth hormone in NN pigs. Immunostimulatory effects of intermittent exercise on NKCC in nn pigs were concomitant with increases in IL-2, IL-12 and IFN-γ, the potent NKCC activators. Our findings suggest that stress-susceptible pigs RYR1 gene mutated pigs develop a greater level of NKCC and cytokine production in response to exercise stress. These results suggest that the heterogeneity of immunological and neuroendocrine response to exercise stress in pigs could be influenced by RYR1 gene mutation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    DTIC Science & Technology

    2015-09-30

    546-7090 email: Nick.Kellar@noaa.gov Award Number: N000141110436 http://www.nmmf.org/ LONG-TERM GOALS Quantifying physiological ...methods. Metabolites of cortisol, aldosterone and thyroid hormone will be extracted from fecal samples and measured via RIA using established...have been analyzed, except for serum aldosterone (to be processed under the extension grant described in RELATED PROJECTS). Age (yrs) Male Female 5

  6. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    PubMed

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. Sex differences in activated CRF neurons within stress-related neurocircuitry and HPA axis hormones following restraint in rats

    PubMed Central

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-01-01

    Women may be more vulnerable to certain stress-related psychiatric illnesses than men due to differences in hypothalamic-pituitary-adrenocortical (HPA) axis function. To investigate potential sex differences in forebrain regions associated with HPA axis activation in rats, these experiments utilized acute exposure to a psychological stressor. Male and female rats in various stages of the estrous cycle were exposed to 30 min of restraint, producing a robust HPA axis hormonal response in all animals, the magnitude of which was significantly higher in female rats. Although both male and female animals displayed equivalent c-fos expression in many brain regions known to be involved in the detection of threatening stimuli, three regions had significantly higher expression in females: the paraventricular nucleus of the hypothalamus (PVN), the anteroventral division of the bed nucleus of the stria terminalis (BSTav), and the medial preoptic area (MPOA). Dual fluorescence in-situ hybridization analysis of neurons containing c-fos and corticotropin-releasing factor (CRF) mRNA in these regions revealed significantly more c-fos and CRF single-labeled neurons, as well as significantly more double-labeled neurons in females. Surprisingly, there was no effect of the estrous cycle on any measure analyzed, and an additional experiment revealed no demonstrable effect of estradiol replacement following ovariectomy on HPA axis hormone induction following stress. Taken together, these data suggest sex differences in HPA axis activation in response to perceived threat may be influenced by specific populations of CRF neurons in key stress-related brain regions, the BSTav, MPOA, and PVN, which may be independent of circulating sex steroids. PMID:23305762

  8. Do Hormones, Telomere Lengths, and Oxidative Stress form an Integrated Phenotype? A Case Study in Free-Living Tree Swallows.

    PubMed

    Ouyang, J Q; Lendvai, Á Z; Moore, I T; Bonier, F; Haussmann, M F

    2016-08-01

    Synopsis All organisms must anticipate and balance energetic demands and available resources in order to maximize fitness. As hormones coordinate many interactions between an organism's internal condition and the external environment, they may be key in mediating the allocation of resources to meet these demands. However, given that individuals differ considerably in how they react to changes in energetic demand, we asked whether variations in endocrine traits also correspond with life history variation. We tested whether natural variation in glucocorticoid hormone levels, oxidative stress measurements, and condition related to reproductive effort in a free-living songbird, the tree swallow, Tachycineta bicolor We then tested whether any of these traits predicted the probability of a particular individual's return to the local population in the following two years, an indicator of survival in this philopatric species. We found that males and females with longer telomeres had lighter nestlings. Moreover, individuals with lower plasma antioxidant capacity and higher reactive oxygen metabolites (i.e., greater oxidative stress) were less likely to return to the population. However, none of these traits were related to glucocorticoid levels. Our findings suggest a trade-off between reproduction and survival, with individuals with shorter telomeres having heavier nestlings but potentially paying a cost in terms of higher oxidative stress and lower survival. Interestingly, the evidence of this trade-off was unrelated to natural variation in glucocorticoids. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Baleen hormones: a novel tool for retrospective assessment of stress and reproduction in bowhead whales (Balaena mysticetus).

    PubMed

    Hunt, Kathleen E; Stimmelmayr, Raphaela; George, Craig; Hanns, Cyd; Suydam, Robert; Brower, Harry; Rolland, Rosalind M

    2014-01-01

    Arctic marine mammals are facing increasing levels of many anthropogenic stressors. Novel tools are needed for assessment of stress physiology and potential impacts of these stressors on health, reproduction and survival. We have investigated baleen as a possible novel tissue type for retrospective assessment of stress and reproductive hormones. We found that pulverized baleen powder from bowhead whales (Balaena mysticetus) contained immunoreactive cortisol and progesterone that were detectable with commercially available enzyme immunoassay kits. Both assays passed parallelism and accuracy validations using baleen extracts. We analysed cortisol and progesterone at the base of the baleen plate (most recently grown baleen) from 16 bowhead whales of both sexes. For a subset of 11 whales, we also analysed older baleen from 10, 20 and 30 cm distal to the base of the baleen plate. Immunoreactive cortisol and progesterone were detectable in all baleen samples tested. In base samples, females had significantly higher concentrations of cortisol and progesterone compared with males. Cortisol concentrations in older baleen (10, 20 and 30 cm locations) were significantly lower than at the base and did not exhibit correlations with age-class or sex. Progesterone concentrations were significantly higher in females than in males at all baleen locations tested and were significantly higher in pregnant females than in non-pregnant females. Four of five mature females showed dramatic variation in progesterone concentrations at different locations along the baleen plate that may be indicative of previous pregnancies or luteal phases. In contrast, all males and all immature females had uniformly low progesterone. Baleen hormone analysis is a novel approach that, with further methodological development, may be useful for determining individual longitudinal profiles of reproductive cycles and stress responses.

  10. Stress hormones in relation to breeding status and territory location in colonial king penguin: a role for social density?

    PubMed

    Viblanc, Vincent A; Gineste, Benoit; Stier, Antoine; Robin, Jean-Patrice; Groscolas, René

    2014-07-01

    Because glucocorticoid (stress) hormones fundamentally affect various aspects of the behaviour, life history and fitness of free-living vertebrates, there is a need to understand the environmental factors shaping their variation in natural populations. Here, we examined whether spatial heterogeneity in breeding territory quality affected the stress of colonial king penguin (Aptenodytes patagonicus). We assessed the effects of local climate (wind, sun and ambient temperature) and social conditions (number of neighbours, distance to neighbours) on the baseline levels of plasma total corticosterone (CORT) in 77 incubating and 42 chick-brooding birds, breeding on territories of central or peripheral colony location. We also assessed the oxidative stress status of a sub-sample of central vs. peripheral chick-brooders to determine whether chronic stress arose from breeding on specific territories. On average, we found that brooders had 55% higher CORT levels than incubators. Regardless of breeding status, central birds experienced greater social density (higher number of neighbours, shorter distance between territories) and had higher CORT levels than peripheral birds. Increasing social density positively explained 40% of the variation in CORT levels of both incubators and brooders, but the effect was more pronounced in brooders. In contrast, climate was similar among breeding territories and did not significantly affect the CORT levels of breeding birds. In brooders, oxidative stress status was not affected by local density or weather conditions. These results highlight that local heterogeneity in breeding (including social) conditions may strongly affect the stress levels of breeding seabirds. The fitness consequences of such variation remain to be investigated.

  11. Behavioral and hormonal responses to stress in binge-like eating prone female rats.

    PubMed

    Calvez, Juliane; Timofeeva, Elena

    2016-04-01

    Binge eating episodes are frequently stimulated by stress. We developed a model of binge eating proneness based on individual sensitivity of young female Sprague Dawley rats to significantly increase sucrose consumption in response to stress. The rats were subjected to unpredictable intermittent 1-h access to 10% sucrose. After the stabilization of sucrose intake, rats were assessed for consistency of higher (for binge-like eating prone, BEP) or lower (for binge-like eating resistant, BER) sucrose intake in response to unpredictable episodes of foot-shock stress. The objectives of this study included demonstrating face validity of the BEP model and determining if some of the features of this model were pre-existing before exposure to intermittent access to sucrose and repeated stress. The BEP rats consumed a larger (20%>BER) amount of sucrose in a discrete (1-h) period of time compared to the BER phenotype in non-stressful conditions and significantly increased sucrose intake (50%>BER) under stress. Conversely, stress did not affect sucrose intake in BER rats. BEP rats showed higher sucrose intake compared to BER rats at the beginning of darkness as well as during the light period when they were sated and not physically hungry. Analyses of the sucrose licking microstructure revealed that BEP rats had a high motivational drive to consume sucrose in non-stressful condition and an increased hedonic value of sucrose when they were exposed to stressful conditions. BEP rats consumed sucrose much more rapidly under stressful conditions compared to BER rats. Finally, BEP rats demonstrated compulsive-like intake of sucrose (assessed in the light-dark box) and a blunted stress-induced increase in plasma corticosterone levels. Body weight and chow intake were not different between the phenotypes. Before exposure to intermittent access to sucrose and repeated stress, the BEP rats showed no clear evidence for compulsive sucrose intake. However, from the first 1-h access to

  12. Reduced α-MSH Underlies Hypothalamic ER-Stress-Induced Hepatic Gluconeogenesis.

    PubMed

    Schneeberger, Marc; Gómez-Valadés, Alicia G; Altirriba, Jordi; Sebastián, David; Ramírez, Sara; Garcia, Ainhoa; Esteban, Yaiza; Drougard, Anne; Ferrés-Coy, Albert; Bortolozzi, Analía; Garcia-Roves, Pablo M; Jones, John G; Manadas, Bruno; Zorzano, Antonio; Gomis, Ramon; Claret, Marc

    2015-07-21

    Alterations in ER homeostasis have been implicated in the pathophysiology of obesity and type-2 diabetes (T2D). Acute ER stress induction in the hypothalamus produces glucose metabolism perturbations. However, the neurobiological basis linking hypothalamic ER stress with abnormal glucose metabolism remains unknown. Here, we report that genetic and induced models of hypothalamic ER stress are associated with alterations in systemic glucose homeostasis due to increased gluconeogenesis (GNG) independent of body weight changes. Defective alpha melanocyte-stimulating hormone (α-MSH) production underlies this metabolic phenotype, as pharmacological strategies aimed at rescuing hypothalamic α-MSH content reversed this phenotype at metabolic and molecular level. Collectively, our results posit defective α-MSH processing as a fundamental mediator of enhanced GNG in the context of hypothalamic ER stress and establish α-MSH deficiency in proopiomelanocortin (POMC) neurons as a potential contributor to the pathophysiology of T2D. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus aurata) exposed to acute confinement: differential stress response of growth hormone receptors.

    PubMed

    Saera-Vila, Alfonso; Calduch-Giner, Josep Alvar; Prunet, Patrick; Pérez-Sánchez, Jaume

    2009-10-01

    The time courses of liver GH/IGF axis and selected stress markers were analyzed in juvenile gilthead sea bream (Sparus aurata) sampled at zero time and at fixed intervals (1.5, 3, 6, 24, 72 and 120 h) after acute confinement (120 kg/m(3)). Fish remained unfed throughout the course of the confinement study, and the fasting-induced increases in plasma growth hormone (GH) levels were partially masked by the GH-stress inhibitory tone. Hepatic mRNA levels of growth hormone receptor-I (GHR-I) were not significantly altered by confinement, but a persistent 2-fold decrease in GHR-II transcripts was found at 24 and 120 h. A consistent decrease in circulating levels of insulin-like growth factor-I (IGF-I) was also found through most of the experimental period, and the down-regulated expression of GHR-II was positively correlated with changes in hepatic IGF-I and IGF-II transcripts. This stress-specific response was concurrent with plasma increases in cortisol and glucose levels, reflecting the cortisol peak (60-70 ng/mL), the intensity and duration of the stressor when data found in the literature were compared. Adaptive responses against oxidative damage were also found, and a rapid enhanced expression was reported in the liver tissue for mitochondrial heat-shock proteins (glucose regulated protein 75). At the same time, the down-regulated expression of proinflammatory cytokines (tumour necrosis factor-alpha) and detoxifying enzymes (cytochrome P450 1A1) might dictate the hepatic depletion of potential sources of reactive oxygen species. These results provide suitable evidence for a functional partitioning of hepatic GHRs under states of reduced IGF production and changing cellular environment resulting from acute confinement.

  14. Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L.

    PubMed

    Kanwar, Mukesh Kumar; Bhardwaj, Renu; Arora, Priya; Chowdhary, Sikandar Pal; Sharma, Priyanka; Kumar, Subodh

    2012-01-01

    Brassinosteroids (BRs) are involved in the amelioration of various biotic and abiotic stresses. With an aim to explore the role of BRs under heavy metal stress, plants of Brassica juncea L. were grown in pots. The plants were subjected to various concentrations of Nickel metal (0.0, 0.2, 0.4 and 0.6 mM) and harvested on 60th day in order to observe the expression of these hormones. The isolated BRs from the leaves of Brassica plants characterized by GC-MS include 24-Epibrassinolide (24-EBL), Castasterone, Dolicholide and Typhasterole. The effect of isolated 24-EBL was studied on Ni metal uptake and antioxidative defense system in 60 d old plants of Brassica. It was observed that 24-EBL significantly increased the activities of stress ameliorating enzymes and lowered the metal uptake in plants. This is the first report in B. juncea L. plants showing the expression of BRs under metal treatments and effect of the isolated 24-EBL on metal uptake and in oxidative stress management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Mechanics of external fixation device of spine: reducing the mounting stress

    NASA Astrophysics Data System (ADS)

    Piven, V. V.; Lyulin, S. V.; Kovalenko, P. I.; Mushtaeva, Yu A.

    2018-03-01

    During the installation of the external fixation device on the spine, there is an occurrence of mounting stress due to misalignment of the rod-screws. To determine the magnitude of the mounting stresses, mathematical dependencies are sometimes used. The proposed technical solution is to reduce stress in the external fixation device.

  16. Inhibitory Effect of NMDA Receptors in the Ventral Tegmental Area on Hormonal and Eating Behavior Responses to Stress in Rats

    PubMed Central

    Nasihatkon, Zohreh Sadat; Khosravi, Maryam; Bourbour, Zahra; Hassantash, Seyedeh Maryam; Sahraei, Mohammad; Baghlani, Kefayat

    2014-01-01

    Background. Stress and its consequences are among the causes of accidents. Objective. The effects of intraventral tegmental area (I-VTA) memantine on the plasma corticosterone and eating parameters disturbance induced by acute stress were investigated. Methods. Male Wistar rats (W: 250–300 g) were divided into control and experiential groups, each of which received memantine either intra-VTA or peripherally. One week after bilateral cannulation, the rats received memantine (1 and 5 μg/Rat) five min before electroshock stress. The other experimental groups received memantine (1 and 5 mg/kg) intraperitoneally 30 min before stress. The control groups received saline or memantine but did not experience stress. Food and water intake and plasma corticosterone level were recorded. Results. Results showed that stress decreases food intake but does not change water intake and increase in plasma corticosterone level. Intraperitoneal memantine administration slightly inhibits the stress effects on food intake. However, water intake and plasma corticosterone level were increased. Intra-VTA memantine reduces the effects of stress on corticosterone and water intake. Conclusion. It could be concluded that inhibition of glutamate NMDA receptors in the VTA by memantine leads to the inhibition of the eating behavior parameters and plasma corticosterone level disturbance induced by stress in rats. PMID:25177106

  17. Piano Playing Reduces Stress More than Other Creative Art Activities

    ERIC Educational Resources Information Center

    Toyoshima, Kumiko; Fukui, Hajime; Kuda, Kiyoto

    2011-01-01

    Few studies have been conducted on the physiological effects of creative art activities. In this study, the effects of creative art activities on human stress were investigated, and their effects were compared in 57 healthy college students (27 males and 30 females). Subjects were divided into four groups, each of which participated in 30-minute…

  18. Two Counseling Interventions to Reduce Teacher-Child Relationship Stress

    ERIC Educational Resources Information Center

    Ray, Dee C.

    2007-01-01

    This article discusses a study investigating the impact of two school counseling interventions, child-centered play therapy (CCPT) and teacher consultation, on teacher-child relationship stress. CCPT and teacher consultation were conducted with 93 (pre-kindergarten to fifth grade) elementary school students across three elementary schools deemed…

  19. Stress Reduces the Incorporation of Misinformation into an Established Memory

    ERIC Educational Resources Information Center

    Schmidt, Pia-Isabell; Rosga, Kristin; Schatto, Celina; Breidenstein, Anja; Schwabe, Lars

    2014-01-01

    Memory can be distorted by misleading post-event information. These memory distortions may have serious consequences, for example in eyewitness testimony. Many situations in which memory reports are solicited, and suggestive or misleading information is presented, are highly stressful for the respondent, yet little is known about how stress…

  20. Treatment Based on Cinacalcet Reduces Oxidative Stress in Hemodialysis Patients with Secondary Hyperparathyroidism.

    PubMed

    Kuczera, Piotr; Adamczak, Marcin; Machnik, Grzegorz; Okopien, Boguslaw; Wiecek, Andrzej

    2018-06-07

    Oxidative stress is one of the leading factors contributing to increased mortality in patients with chronic kidney disease (CKD) and secondary hyperparathyroidism (sHPT). Cinacalcet is now commonly used in the treatment of sHPT in patients with CKD. The aim of this study was to assess the influence of treatment with cinacalcet on the oxidative stress markers in patients on hemodialysis with sHPT. In 58 hemodialysed patients with sHPT (parathyroid hormone [PTH] > 300 pg/mL) plasma Advanced Oxidation Protein Products (AOPP), serum total antioxidant capacity - ImAnOx (TAS/TAC), serum PTH, calcium and phosphate concentrations were assessed before the first dose of cinacalcet and after 6 months of treatment. Serum PTH concentration decreased significantly from 895 (748-1,070) to 384 (289-510) pg/mL after 6 months of treatment; p < 0.0001. Mean serum concentrations of -calcium and phosphate remained stable. Plasma AOPP concentration decreased significantly from 152 (126-185) to 49 -(43-57) µmol/L after 6 months of treatment; p < 0.0001. ImAnOx significantly increased from 260 (251-270) to 272 (264-280) µmol/L; p = 0.04. After 6 months of treatment, a significant, positive correlation was found between ImAnOx and the daily dose of cinacalcet (r = 0.30; p = 0.02). Also, the change of serum ImAnOx during treatment with cinacalcet significantly correlated with the daily dose of cinacalcet r = 0.35; p = 0.01. No significant correlations were found between plasma AOPP concentration or ImAnOx and PTH, or their changes in time. (1) Six-month treatment based on cinacalcet seems to reduce oxidative stress markers in maintenance hemodialysis patients with sHPT. (2) This benefit may be related rather to the direct action of cinacalcet than to the serum PTH concentration decrease. © 2018 S. Karger AG, Basel.

  1. Reduced exercise capacity in untreated adults with primary growth hormone resistance (Laron syndrome).

    PubMed

    Ben-Dov, Issahar; Gaides, Mark; Scheinowitz, Mickey; Wagner, Rivka; Laron, Zvi

    2003-12-01

    Primary IGF-I deficiency (Laron syndrome, LS) may decrease exercise capacity as a result of a lack of an IGF-I effect on heart, peripheral muscle or lung structure and/or function. Eight patients (six females) who had never received treatment with IGF-I, with mean age of 36 +/- 10 (SD) years (range 21-48), weight 47 +/- 9 kg (31-61), height 126 +/- 12 cm (112-140) and body mass index of 29 +/- 4 kg/m2 (24-34), and 12 age-matched controls, underwent lung function tests and incremental cycling to the limit of tolerance (CPX, MedGraphics). Predicted values for the patients were derived from adult equations based on height. In LS patients, lung function was near normal; vital capacity was 84 +/- 11% of expected (66-103). Peak exercise O2-uptake and the anaerobic threshold were reduced, 57 +/- 20% of predicted and 33 +/- 9% of predicted peak (P = 0.005 vs. controls), despite normal mean exercise breathing reserve. All parameters were normal in the controls. Exercise capacity in untreated adults with LS is significantly reduced. The limitation for most patients was not ventilatory but resulted either from low cardiac output and/or from dysfunction of the peripheral muscles. However, the relative contribution of each of these elements and/or the role of poor fitness needs further study.

  2. Sleep, dreams, and memory consolidation: The role of the stress hormone cortisol

    PubMed Central

    Payne, Jessica D.; Nadel, Lynn

    2004-01-01

    We discuss the relationship between sleep, dreams, and memory, proposing that the content of dreams reflects aspects of memory consolidation taking place during the different stages of sleep. Although we acknowledge the likely involvement of various neuromodulators in these phenomena, we focus on the hormone cortisol, which is known to exert influence on many of the brain systems involved in memory. The concentration of cortisol escalates over the course of the night's sleep, in ways that we propose can help explain the changing nature of dreams across the sleep cycle. PMID:15576884

  3. Stress Hormones Epinephrine and Corticosterone Selectively Modulate Herpes Simplex Virus 1 (HSV-1) and HSV-2 Productive Infections in Adult Sympathetic, but Not Sensory, Neurons

    PubMed Central

    Ives, Angela M.

    2017-01-01

    ABSTRACT Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect and establish latency in peripheral neurons, from which they can reactivate to cause recurrent disease throughout the life of the host. Stress is associated with the exacerbation of clinical symptoms and the induction of recurrences in humans and animal models. The viruses preferentially replicate and establish latency in different subtypes of sensory neurons, as well as in neurons of the autonomic nervous system that are highly responsive to stress hormones. To determine if stress-related hormones modulate productive HSV-1 and HSV-2 infections within sensory and autonomic neurons, we analyzed viral DNA and the production of viral progeny after treatment of primary adult murine neuronal cultures with the stress hormones epinephrine and corticosterone. Both sensory trigeminal ganglion (TG) and sympathetic superior cervical ganglion (SCG) neurons expressed adrenergic receptors (activated by epinephrine) and the glucocorticoid receptor (activated by corticosterone). Productive HSV infection colocalized with these receptors in SCG but not in TG neurons. In productively infected neuronal cultures, epinephrine treatment significantly increased the levels of HSV-1 DNA replication and production of viral progeny in SCG neurons, but no significant differences were found in TG neurons. In contrast, corticosterone significantly decreased the levels of HSV-2 DNA replication and production of viral progeny in SCG neurons but not in TG neurons. Thus, the stress-related hormones epinephrine and corticosterone selectively modulate acute HSV-1 and HSV-2 infections in autonomic, but not sensory, neurons. IMPORTANCE Stress exacerbates acute disease symptoms resulting from HSV-1 and HSV-2 infections and is associated with the appearance of recurrent skin lesions in millions of people. Although stress hormones are thought to impact HSV-1 and HSV-2 through immune system suppression, sensory and autonomic neurons that

  4. Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones

    PubMed Central

    Armstrong, Sandra K.; Brickman, Timothy J.; Suhadolc, Ryan J.

    2012-01-01

    Summary Bordetella bronchiseptica is a pathogen that can acquire iron using its native alcaligin siderophore system, but can also use the catechol xenosiderophore enterobactin via the BfeA outer membrane receptor. Transcription of bfeA is positively controlled by a regulator that requires induction by enterobactin. Catecholamine hormones also induce bfeA transcription and B. bronchiseptica can use the catecholamine norepinephrine for growth on transferrin. In this study, B. bronchiseptica was shown to use catecholamines to obtain iron from both transferrin and lactoferrin in the absence of siderophore. In the presence of siderophore, norepinephrine augmented transferrin utilization by B. bronchiseptica, as well as siderophore function in vitro. Genetic analysis identified BfrA, BfrD and BfrE as TonB dependent outer membrane catecholamine receptors. The BfeA enterobactin receptor was found to not be involved directly in catecholamine utilization; however, the BfrA, BfrD and BfrE catecholamine receptors could serve as receptors for enterobactin and its degradation product 2,3-dihydroxybenzoic acid. Thus, there is a functional link between enterobactin-dependent and catecholamine-dependent transferrin utilization. This investigation characterizes a new B. bronchiseptica mechanism for iron uptake from transferrin that uses host stress hormones that not only deliver iron directly to catecholamine receptors, but also potentiate siderophore activity by acting as iron shuttles. PMID:22458330

  5. Genetic selection for temperament affects behaviour and the secretion of adrenal and reproductive hormones in sheep subjected to stress.

    PubMed

    Hawken, P A R; Luckins, N; Tilbrook, A; Fiol, C; Martin, G B; Blache, D

    2013-01-01

    We investigated the effect of genetic selection for temperament on the way that stressors affect the behaviour and the adrenal and reproductive axes of sheep. We tested three hypotheses: (i) isolation would increase cortisol secretion and decrease luteinising hormone (LH) secretion more in nervous sheep than in calm sheep; (ii) isolation combined with simulated human presence would increase cortisol secretion and decrease LH secretion more in nervous sheep than in calm sheep and (iii) isolation combined with stressors that were not specific to the selection process (i.e. non-selection stressors) would increase cortisol secretion and decrease LH secretion equally in calm and nervous sheep. Isolation alone increased cortisol secretion and decreased LH secretion in nervous sheep but not in calm sheep. Compared to calm sheep, nervous sheep were more agitated during the first 2 h of isolation but not during the second 2 h of isolation. Exposure to non-selection stressors increased cortisol secretion, decreased LH pulse amplitude and the mean plasma concentrations of LH in both calm and nervous sheep. We conclude that genetic selection for temperament affects the behavioural expression of the stress response and the secretion of adrenal and reproductive hormones during isolation, but has less impact on their reactivity to non-selection stressors.

  6. Non-invasive monitoring of reproductive and stress hormones in the endangered red panda (Ailurus fulgens fulgens).

    PubMed

    Beaulah Budithi, Neema Raja; Kumar, Vinod; Yalla, Suneel Kumar; Rai, Upashna; Umapathy, Govindhaswamy

    2016-09-01

    The red panda (Ailurus fulgens fulgens) is classified as endangered due to its declining population, habitat fragmentation and poaching. Efforts are being made to breed them in captivity as part of nationwide conservation breeding program. This study aimed to standardize Enzyme immunoassays (EIAs) to monitor reproductive (Progesterone metabolite, Testosterone) and stress hormone (Cortisol) in red panda. For this purpose, we collected 1471 faecal samples from four females and one male over a period of one year from Padmaja Naidu Himalayan Zoological Park, Darjeeling, India. HPLC confirmed the presence of immunoreactive 5α-pregnan-3α-ol-20-one, testosterone and cortisol metabolites in faecal samples. Using 5α-pregnan-3α-ol-20-one EIA, we were able to monitor reproduction and detect pregnancy in one of the females, which successfully conceived and delivered during the study period. We were also able to monitor testosterone and cortisol in faecal samples of the red panda. Faecal testosterone levels were found in higher concentration in breeding season than in non-breeding season. Faecal cortisol concentrations showed a negative relationship with ambient temperature and peaked during winter months in all animals. Standardization of EIAs and faecal hormone monitoring would facilitate red panda conservation breeding programs in India and elsewhere. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Molt-associated changes in hematologic and plasma biochemical values and stress hormone levels in African penguins (Spheniscus demersus).

    PubMed

    Mazzaro, Lisa M; Meegan, Jenny; Sarran, Delphine; Romano, Tracy A; Bonato, Vinicius; Deng, Shibing; Dunn, J Lawrence

    2013-12-01

    Handling, including blood collection, has often been discouraged in molting penguins because it is considered an additional stress imposed on birds already experiencing major physiologic stress associated with molting. To evaluate the degree of physiologic stress posed by molting, we compared the hematologic and plasma biochemical values and hormone levels of molting and nonmolting African penguins, Spheniscus demersus. Five male and 5 female penguins randomly chosen were given complete physical examinations, were weighed, and blood samples were taken at 7 time points before, during, and after the molt. Data were analyzed by linear mixed-model analysis of variance. Throughout the study, behavior and appetite remained normal. Catecholamine levels were highly variable within and among subjects, whereas mean corticosterone levels were significantly different between baseline, molt, and postmolt values. Significant differences from baseline values were observed in many of the hematologic analytes; however, only decreases in hematocrit and red blood cell count values were considered clinically significant. Anemia due to experimentally induced blood loss as a possible cause of the significant hematologic changes was ruled out based on results of a follow-up control study during the nonmolt season, which showed no significant changes in hematocrit level or total red blood cell counts when using similar sampling protocols, which indicates that these changes were associated with molt.

  8. Influence of Regularity of Exposure to Chronic Stress on the Pattern of Habituation of Pituitary-Adrenal Hormones, Prolactin and Glucose.

    PubMed

    Martí; Armario

    1997-05-01

    The effect of regularity of exposure to two different chronic stressors (noise or immobilization (IMO)) on the pattern of habituation of pituitary-adrenal (PA) hormones, prolactin and glucose was evaluated in adult male rats. Animals were chronically subjected to either regular or irregular time schedule of noise (30 min/day) or IMO (2 h/day) for two weeks. The day after the last stress session the rats were killed without stress or after having been subjected to 30 min of the homotypic stressor. Whereas regular noise did not affect food intake, body weight gain or adrenal weight, irregular noise decreased body weight gain and induced a moderate adrenal hypertrophy. In addition, previous daily exposure to regular but not to irregular noise reduced both prolactin and corticosterone responses to acute noise. In contrast, glucose response to acute noise was reduced after both regular and irregular exposure to chronic noise. Either regular or irregular exposure to chronic IMO decreased food intake and body weight and increased adrenal weight to the same extent. Likewise, no influence of regularity of exposure to chronic IMO on corticosterone and prolactin responses to acute IMO was observed. However, habituation of the ACTH response to acute IMO was observed in rats subjected to chronic regular IMO, but not in rats subjected to chronic irregular IMO. Finally, acute IMO-induced hyperglycemia diminished to the same extent after regular and irregular IMO. From these results we can conclude that: first, the process of habituation of the PA axis to chronic stress is greatly dependent upon factors such as regularity of exposure to the stressor and stressor intensity, and second, the influence of regularity on the pattern of habituation to a repeated stressor is dependent on the physiological variable we are dealing with.

  9. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior.

    PubMed

    Moura Santos, Danielle; Ribeiro Marins, Fernanda; Limborço-Filho, Marcelo; de Oliveira, Marilene Luzia; Hamamoto, Daniele; Xavier, Carlos Henrique; Moreira, Fabrício Araújo; Santos, Robson Augusto Souza; Campagnole-Santos, Maria José; Peliky Fontes, Marco Antonio

    2017-03-01

    Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can

  10. β-Endorphin Neuronal Cell Transplant Reduces Corticotropin Releasing Hormone Hyperresponse to Lipopolysaccharide and Eliminates Natural Killer Cell Functional Deficiencies in Fetal Alcohol Exposed Rats

    PubMed Central

    Boyadjieva, Nadka I.; Ortigüela, María; Arjona, Alvaro; Cheng, Xiaodong; Sarkar, Dipak K.

    2010-01-01

    Background Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of β-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-γ (IFN-γ) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-γ in control and fetal alcohol exposed rats. Conclusions These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyper-response and immune deficiency in fetal alcohol exposed subjects. PMID:19320628

  11. Low lifetime stress exposure is associated with reduced stimulus–response memory

    PubMed Central

    Goldfarb, Elizabeth V.; Shields, Grant S.; Daw, Nathaniel D.; Slavich, George M.; Phelps, Elizabeth A.

    2017-01-01

    Exposure to stress throughout life can cumulatively influence later health, even among young adults. The negative effects of high cumulative stress exposure are well-known, and a shift from episodic to stimulus–response memory has been proposed to underlie forms of psychopathology that are related to high lifetime stress. At the other extreme, effects of very low stress exposure are mixed, with some studies reporting that low stress leads to better outcomes, while others demonstrate that low stress is associated with diminished resilience and negative outcomes. However, the influence of very low lifetime stress exposure on episodic and stimulus–response memory is unknown. Here we use a lifetime stress assessment system (STRAIN) to assess cumulative lifetime stress exposure and measure memory performance in young adults reporting very low and moderate levels of lifetime stress exposure. Relative to moderate levels of stress, very low levels of lifetime stress were associated with reduced use and retention (24 h later) of stimulus–response (SR) associations, and a higher likelihood of using context memory. Further, computational modeling revealed that participants with low levels of stress exhibited worse expression of memory for SR associations than those with moderate stress. These results demonstrate that very low levels of stress exposure can have negative effects on cognition. PMID:28298555

  12. Thyroid hormone improves insulin signaling and reduces the activation of neurodegenerative pathway in the hippocampus of diabetic adult male rats.

    PubMed

    Prieto-Almeida, Fernanda; Panveloski-Costa, Ana Carolina; Crunfli, Fernanda; da Silva Teixeira, Silvania; Nunes, Maria Tereza; Torrão, Andréada Silva

    2018-01-01

    Diabetes mellitus (DM) and impairments of glucose metabolism and insulin resistance in the brain have been suggested as a likely etiology of Alzheimer's disease (AD). Studies have shown that thyroid hormones (THs) improve insulin sensitivity in DM rats and act as mediators of the plasticity of the nervous system altering behavior and cognitive function. Based on these findings, this study aimed to evaluate the effects of diabetes and triiodothyronine (T3) treatment upon proteins associated with DM and AD in the central nervous system. Euglycemic and Diabetic (alloxan-induced) male Wistar rats were daily treated with T3 (1.5μg/100g body weight) or vehicle (saline) for a 4-week period and subdivided into the following groups: euglycemic treated with saline (Control=C); diabetic treated with saline (Diabetic=D); euglycemic treated with T3 (T3); diabetic treated with T3 (DT3). The expression of insulin signaling, neurodegenerative and neuron survival markers was evaluated in the hippocampus by immunoblotting, ELISA, and RT-PCR. T3 treatment decreased glycemia, restored the insulin signaling and reduced the activation of glycogen synthase kinase 3 (GSK3) and tau proteins content in the hippocampus of diabetic rats. The present data provide evidence that T3 treatment of diabetic rats is able to improve insulin sensitivity and reduce the activation of the neurodegenerative pathway in the brain, which might provide neuroprotection in this experimental model. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage.

    PubMed

    Akıncı, Ayşin; Eşrefoğlu, Mukaddes; Taşlıdere, Elif; Ateş, Burhan

    2017-01-01

    Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Animal experimentation. Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ) groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals' stomachs were arranged for microscopic and biochemical examinations. Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57) was higher than that of the control group (1.50±0.22) (p<0.05). Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05), the stress and stress + standard diet groups (p<0.05), and the stress and stress + LPZ groups (p<0.05). The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05). Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50) and superoxide dismutase (15.18±1.05) and catalase (16.68±2.29) activities. Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system.

  15. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    PubMed Central

    Akıncı, Ayşin; Eşrefoğlu, Mukaddes; Taşlıdere, Elif; Ateş, Burhan

    2017-01-01

    Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum) contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ) groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57) was higher than that of the control group (1.50±0.22) (p<0.05). Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05), the stress and stress + standard diet groups (p<0.05), and the stress and stress + LPZ groups (p<0.05). The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05). Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50) and superoxide dismutase (15.18±1.05) and catalase (16.68±2.29) activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system. PMID:28251024

  16. Stress during simulated emergency transportation in a rescue helicopter: cross-correlation between stress hormones, vital functions and subjective well-being.

    PubMed

    Witzel, K; Elzer, M; Koch, Horst J

    2009-06-01

    Vital functions and stress hormone levels during simulated emergency helicopter transport in healthy volunteers. Twenty-three volunteers were subjected to a simulated 15 minute rescue helicopter transport. We determined vital functions, ACTH, cortisol and prolactin during the flight and filled in a standardized questionnaire before and after the flight. Data were analysed descriptively, by means of cross tabulation, Spearman rank correlation and cross-correlation technique. During take-off we recorded a significant increase of vital parameters such as heart rate. Prolactin concentration rose slightly after the start. Maximum cortisol and ACTH levels were found before take-off and then they decreased gradually. As expected, ACTH and cortisol cross-correlated significantly without any relevant time lag. Test items showed a feeling of fear and concern before take off. After the flight the volunteers reported having less stress than expected. Particularly, diastolic blood pressure and prolactin levels were markedly associated with questionnaire items such as behaviour of the staff or nausea. Heart rate significantly correlated with anxiety scores. Helicopter transportation induced a marked stress reaction in healthy volunteers, which speaks in favour of smooth transports in modern helicopters and adequate behaviour towards the patient of the staff.

  17. Telomere length is inversely correlated with urinary stress hormone levels in healthy controls but not in un-medicated depressed individuals-preliminary findings.

    PubMed

    Fair, Brittany; Mellon, Synthia H; Epel, Elissa S; Lin, Jue; Révész, Dóra; Verhoeven, Josine E; Penninx, Brenda W; Reus, Victor I; Rosser, Rebecca; Hough, Christina M; Mahan, Laura; Burke, Heather M; Blackburn, Elizabeth H; Wolkowitz, Owen M

    2017-08-01

    Leukocyte telomere length (LTL) is a biomarker of cellular aging affected by chronic stress. The relationship of LTL to the stress hormones, cortisol and catecholamines, is unclear, as are possible differences between healthy controls (HC) and individuals with Major Depressive Disorder (MDD). This small pilot study is the first to examine the relationship between cortisol, catecholamines and LTL specifically in un-medicated MDD in comparison with HC. Participants included 16 un-medicated MDD subjects and 15 HC for assay of LTL, 12-hour overnight urinary free cortisol and catecholamine levels. LTL, cortisol and catecholamine levels did not significantly differ between groups. In HC, a hierarchical regression analysis indicated that higher levels of cortisol were correlated with shorter LTL (p=0.003) above and beyond age and sex. Higher catecholamine levels were nearly-significant with shorter LTL (p=0.055). Neither hormone was correlated with shorter LTL in MDD (p's>0.28). To assess a possible cumulative effect of stress hormone activation, a summary score was calculated for each subject based on the number of stress hormone levels above the median for that group (HC or MDD). A significant inverse graded relationship was observed between LTL and the number of activated systems in HC (p=0.001), but not in MDD (p=0.96). This pilot study provides preliminary evidence that stress hormone levels, especially cortisol, are inversely related to LTL in HC, but not in un-medicated MDD. Clarification of these relationships in larger samples could aid in understanding differential mechanisms underlying stress-related cellular aging in healthy and depressed populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.

    PubMed

    Zhang, Lianbing; Laug, Linda; Münchgesang, Wolfram; Pippel, Eckhard; Gösele, Ulrich; Brandsch, Matthias; Knez, Mato

    2010-01-01

    The great potential for medical applications of inorganic nanoparticles in living organisms is severely restricted by the concern that nanoparticles can harmfully interact with biological systems, such as lipid membranes or cell proteins. To enable an uptake of such nanoparticles by cells without harming their membranes, platinum nanoparticles were synthesized within cavities of hollow protein nanospheres (apoferritin). In vitro, the protein-platinum nanoparticles show good catalytic efficiency and long-term stability. Subsequently the particles were tested after ferritin-receptor-mediated incorporation in human intestinal Caco-2 cells. Upon externally induced stress, for example, with hydrogen peroxide, the oxygen species in the cells decreased and the viability of the cells increased.

  19. Mindfulness interventions to reduce stress among nursing personnel: an occupational health perspective.

    PubMed

    Zeller, Janice M; Levin, Pamela F

    2013-02-01

    Workplace stress within health care settings is rampant and predicted to increase in coming years. The profound effects of workplace stress on the health and safety of nursing personnel and the financial impact on organizations are well documented. Although organizational modification can reduce some sources of stress, several unique stress-producing factors inherent in the work of nursing personnel are immutable to such approaches. Mindfulness training, an evidence-based approach to increase situational awareness and positive responses to stressful situations, is an inexpensive strategy to reduce stress and improve the quality of nurses' work lives. Several approaches to training, such as mindfulness-based stress reduction, can be tailored to health care settings. Considerations for occupational health nurses in incorporating mindfulness training as an aspect of a comprehensive work site health promotion program for nursing and other hospital personnel are discussed. Copyright 2013, SLACK Incorporated.

  20. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  1. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2011-09-30

    support the existence of these same stress response pathways in marine mammals. While the HPA axis and physiological processes driven by the GCs are...cortisol, aldosterone , thyroid and reproductive hormones) have been routinely measured in blood as part of the health assessment which also includes a

  2. Probiotics reduce psychological stress in patients before laryngeal cancer surgery.

    PubMed

    Yang, Hui; Zhao, Xiaoyun; Tang, Shan; Huang, Hua; Zhao, Xiulan; Ning, Zhuohui; Fu, Xiurong; Zhang, Caihong

    2016-03-01

    Laryngeal cancer is a common malignancy; surgery is the preferred treatment. Psychosocial stress is one of the negative impacts on patient recovery. This study aimed to elucidate the effect of probiotics on ameliorating anxiety, and on serum corticotropin-releasing factor (CRF) in laryngeal cancer patients before surgery. A total 30 patients with laryngeal cancer and 20 healthy volunteers were recruited. During the 2 weeks before surgery, 20 patients were randomly allocated to receive probiotics or placebo twice a day. Heart rate was recorded daily. The degree of anxiety was assessed by the Hamilton Anxiety Scale (HAMA). Serum CRF levels in laryngeal cancer patients increased significantly in approaching surgery. After ingestion of probiotics, serum levels of CRF and heart rate did not increase before surgery. In addition, taking probiotics relieved the degree of anxiety of the patients from HAMA 19.8 to 10.2. Probiotics can ameliorate the clinical anxiety and biochemical features of stress in patients scheduled for laryngectomy. © 2014 Wiley Publishing Asia Pty Ltd.

  3. Stress, burnout, and strategies for reducing them: what's the situation among Canadian family physicians?

    PubMed

    Lee, F Joseph; Stewart, Moira; Brown, Judith Belle

    2008-02-01

    To ascertain Canadian family physicians' levels of stress and burnout and the strategies they use to reduce these problems. Census survey. Kitchener-Waterloo, an urban area with a population of approximately 300 000 in southwestern Ontario. Family physicians. Scores on the Family Physician Stress Inventory, scores on strategies to reduce personal stress, scores on strategies to reduce stress on the job, and scores on the Maslach Burnout Inventory. Participation rate was 77.8% (123 of 158 surveys returned). About 42.5% of participants had high stress levels. Burnout was defined by 3 components: emotional exhaustion, depersonalization (going through the day like an "automaton"), and perceived lack of personal accomplishment. Many respondents scored high on the burnout inventory, and almost half had high levels of emotional exhaustion and depersonalization (47.9% and 46.3%, respectively). No demographic factors were associated with high scores on these components. Use of strategies to reduce personal and occupational stress was associated with lower levels of burnout. Scores on the Family Physician Stress Inventory correlated highly with scores on the Maslach Burnout Inventory. Regardless of demographic factors, family physicians are at risk of having high levels of stress and burnout. Classic burnout is related to stress brought on by factors such as too much paperwork, long waits for specialists and tests, feeling undervalued, feeling unsupported, and having to abide by rules and regulations. Common strategies for reducing personal stress included eating nutritiously and spending time with family and friends. Common strategies for reducing stress on the job included valuing relationships with patients and participating in continuing medical education. Stress and burnout are related to the desire to give up practice and are, therefore, a human resources issue for the entire health care system.

  4. Vinclozolin Exposure in Utero Induces Postpubertal Prostatitis and Reduces Sperm Production via a Reversible Hormone-Regulated Mechanism

    PubMed Central

    Cowin, Prue A.; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K.; Foster, Paul M. D.; Scott, Hamish S.; Risbridger, Gail P.

    2010-01-01

    Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-κB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, −3A, −3B, and −3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-κB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression. PMID:20056826

  5. Vinclozolin exposure in utero induces postpubertal prostatitis and reduces sperm production via a reversible hormone-regulated mechanism.

    PubMed

    Cowin, Prue A; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K; Foster, Paul M D; Scott, Hamish S; Risbridger, Gail P

    2010-02-01

    Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-kappaB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, -3A, -3B, and -3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-kappaB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression.

  6. [Effect of emotional-algesic stress on the hormonal function of thyroid and parathyroid glands].

    PubMed

    Kuripka, V I; Belokon', L E; Iakushev, V S

    1989-01-01

    Experiments on 215 Wistar rats have revealed that the state of the endured stress is an essential factor inducing disturbance in functioning of the hypothalamus-adenohypophysis-thyroid gland system accompanied by disturbance in regulation of the thyrotropin and triiodothyronine formation under conditions of myocardium necrosis development.

  7. The stress hormone cortisol: a (co)regulator of biofilm formation in Flavobacterum columnare?

    USDA-ARS?s Scientific Manuscript database

    Previously, we demonstrated a direct effect of cortisol on Flavobacterium columnare, a notorious fish pathogenic bacterium, engendering a new perspective to bacteria-host communication in aquaculture. As stressed fish harbour increased cortisol levels in the skin and gill mucus, highly virulent F. c...

  8. The effect of Brazilian propolis on serum thyroid hormones in broilers reared under chronic heat stress

    USDA-ARS?s Scientific Manuscript database

    This experiment evaluated the effect of dietary supplement with green Brazilian propolis on serum thyroxin (T4) and tri-iodothyronine (T3) levels in broiler chickens exposed to chronic heat stress for 4 wks (from 15 to 42 d of age). Five hundred and four 15-d-old, male broiler chickens (Ross 708) w...

  9. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats

    PubMed Central

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A.; Ulrich-Lai, Yvonne M.; Herman, James P.

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. Here, we tested the hypothesis that NTS noradrenergic A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n= 5; HPA study, n= 5], or vehicle [cardiovascular study, n= 6; HPA study, n= 4]. Rats were exposed to acute restraint stress followed by 14 days of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low frequency to high frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress. PMID:25765732

  10. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    PubMed

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  11. The misleading nature of in vitro and ex vivo findings in studying the impact of stress hormones on NK cell cytotoxicity.

    PubMed

    Gotlieb, Neta; Rosenne, Ella; Matzner, Pini; Shaashua, Lee; Sorski, Liat; Ben-Eliyahu, Shamgar

    2015-03-01

    In vitro and ex vivo studies assessing the impact of stress hormones on immune competence commonly replace the natural milieu of leukocytes with an artificial medium, excluding plasma factors, hormones, and cytokines. Given prevalent inconsistencies between in vitro, ex vivo, and in vivo findings, we studied whether such procedures could yield misleading outcomes regarding the impact of stress hormones on NK cell cytotoxicity (NKCC), using fresh human whole blood samples. We found that in the presence of plasma 10-30-fold higher concentrations of cortisol, epinephrine, and prostaglandin-E2 (PGE2) were required to reach suppression levels evident in the context of artificial medium. Importantly, whereas the NK suppressive effects of PGE2 occurred immediately and remained stable upon prolonged exposure, the suppressive effects of cortisol slowly increased over time. Last, to simulate the exclusion of stress factors in the ex vivo approach, we subjected whole blood to stress hormones (as occurs in vivo), and abruptly removed them. We found that the effects of epinephrine and PGE2 quickly disappeared, while the effects of cortisol persisted. Overall, these findings demonstrate the potential misleading nature of in vitro and ex vivo procedures, and specifically suggest that (i) the common in vitro findings of profound suppression of NKCC by stress hormones are overestimation of their direct effects expected in vivo; and (ii) the common ex vivo approach cannot reflect the direct in vivo suppressive effects of epinephrine and PGE2 on NKCC, while inflating the effects of glucocorticoids. Some of these fallacies may be circumvented by using non-delayed whole blood NKCC assays in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Chlorogenic Acid from Hawthorn Berry (Crataegus pinnatifida Fruit) Prevents Stress Hormone-Induced Depressive Behavior, Through Monoamine Oxidase B-reactive Oxygen Species Signaling in Hippocampal Astrocytes of Mice.

    PubMed

    Lim, Dong Wook; Han, Taewon; Jung, Jonghoon; Song, Yuri; Um, Min Young; Yoon, Minseok; Kim, Yun Tai; Cho, Seungmok; Kim, In-Ho; Han, Daeseok; Lee, Changho; Lee, Jaekwang

    2018-06-12

    Oxidative stress has been implicated in mental disorders, including depression. Chlorogenic acid (CGA), a phenolic compound abundant in herbs and fruits, has been reported to have antioxidant and free-radical scavenging properties. In this study, we investigated the antidepressant-like effects and active mechanisms of CGA from the extract of Crataegus pinnatifida (CP) fruit. Depression-like phenotypes were induced in mice by daily injection of stress hormone for 1-2 weeks. The brains of these animals exhibited reduced brain-derived neurotrophic factor (BDNF) expression and increased astrocytic hypertrophy, which are typical markers of depression in animal models. Stress hormone injection 1) upregulated monoamine oxidase B (MAOB) expression and 2) reduced spine numbers along neuronal dendrites, which indicates synaptic depression. The oral administration of CGA (30 mg/kg) or CP (300 mg/kg) prevented MAOB activation following reactive oxygen species (ROS) production and had an ameliorative effect on depressive behavioral tests (e.g., tail suspension and forced swim tests). In vitro assays performed on cultured C8-D1A cells revealed that CGA and CP inhibited MAOB activity and ROS production. Our study indicates that CGA and CP extracts prevented depressive behavior and thereby have potential as natural antidepressants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Activation of mGluR2/3 following stress hormone exposure restores sensitivity to alcohol in rats.

    PubMed

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Fisher, Kristen R; Besheer, Joyce

    2015-09-01

    Sensitivity to the interoceptive effects of alcohol is blunted following a period of exposure to the stress hormone corticosterone (CORT), an effect that is suggested to be related, in part, to glutamatergic neuroadaptations. Group II metabotropic glutamate receptors (subtypes 2 and 3; mGluR2/3) modulate several drug- and alcohol-related behaviors, including the interoceptive (discriminative stimulus) effects of alcohol. Therefore, we sought to determine if manipulation of mGluR2/3 would restore sensitivity to the interoceptive effects of alcohol following CORT exposure. Using a two-lever drug discrimination task, male Long-Evans rats were trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water. First, the effect of mGluR2/3 antagonism on the discriminative stimulus effects of alcohol was determined using LY341495 (0.3-3.0 mg/kg; intraperitoneal [IP]). Next, the effects of mGluR2/3 antagonism and activation were assessed in discrimination-trained animals exposed to CORT (300 μg/mL) in the home cage drinking water or water only, for 7 days. Following CORT exposure, decreased sensitivity to alcohol (1 g/kg) was observed. Pretreatment with the mGluR2/3 agonist LY379268 (1.0-3.0 mg/kg; IP), but not the mGluR2/3 antagonist (0.3-1.0 mg/kg; IP), restored sensitivity to alcohol. Additionally, in water controls, mGluR2/3 antagonism and mGluR2/3 activation disrupted expression of the discriminative stimulus effects of alcohol. Together, these findings suggest that blunted sensitivity to the interoceptive effects of alcohol following an episode of heightened stress hormone levels may be due to adaptations in mGluR2/3-related systems. The ability of mGluR2/3 activation to restore sensitivity to alcohol under these conditions lends further support for the importance of these receptors under stress-related conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Noise stress changes mRNA expressions of corticotropin-releasing hormone, its receptors in amygdala, and anxiety-related behaviors.

    PubMed

    Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal

    2015-01-01

    Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.

  15. Reduced NK cell IFN-γ secretion and psychological stress are independently associated with herpes zoster

    PubMed Central

    Kim, Choon Kwan; Choi, Youn Mi; Bae, Eunsin; Jue, Mihn Sook; So, Hyung Seok

    2018-01-01

    The pathogenesis of herpes zoster is closely linked to reduced varicella-zoster virus-specific cell-mediated immunity. However, little is known about the interplay between natural killer cells and psychological stress in the pathogenesis of herpes zoster. This study aimed to investigate possible associations among natural killer cells, T cells and psychological stress in herpes zoster. Interferon-gamma secretion from natural killer cell, psychological stress events, stress cognition scale scores and cytomegalovirus-specific cell-mediated immunity were compared between 44 patients with herpes zoster and 44 age- and gender-matched control subjects. A significantly lower median level of interferon-gamma secreted by natural killer cells was observed in patients with a recent diagnosis of herpes zoster than in control subjects (582.7 pg/ml vs. 1783 pg/ml; P = 0.004), whereas cytomegalovirus-specific cell-mediated immunity was not associated with herpes zoster. Psychological stress events and high stress cognition scale scores were significantly associated in patients with herpes zoster (P<0.001 and P = 0.037, respectively). However, reduced interferon-gamma secretion from natural killer cell and psychological stress were not associated. In conclusion, patients with a recent diagnosis of herpes zoster display reduced interferon-gamma secretion from natural killer cells and frequent previous psychological stress events compared with controls. However, reduced natural killer cell activity is not an immunological mediator between psychological stress and herpes zoster. PMID:29466462

  16. Reduced NK cell IFN-γ secretion and psychological stress are independently associated with herpes zoster.

    PubMed

    Kim, Choon Kwan; Choi, Youn Mi; Bae, Eunsin; Jue, Mihn Sook; So, Hyung Seok; Hwang, Eung-Soo

    2018-01-01

    The pathogenesis of herpes zoster is closely linked to reduced varicella-zoster virus-specific cell-mediated immunity. However, little is known about the interplay between natural killer cells and psychological stress in the pathogenesis of herpes zoster. This study aimed to investigate possible associations among natural killer cells, T cells and psychological stress in herpes zoster. Interferon-gamma secretion from natural killer cell, psychological stress events, stress cognition scale scores and cytomegalovirus-specific cell-mediated immunity were compared between 44 patients with herpes zoster and 44 age- and gender-matched control subjects. A significantly lower median level of interferon-gamma secreted by natural killer cells was observed in patients with a recent diagnosis of herpes zoster than in control subjects (582.7 pg/ml vs. 1783 pg/ml; P = 0.004), whereas cytomegalovirus-specific cell-mediated immunity was not associated with herpes zoster. Psychological stress events and high stress cognition scale scores were significantly associated in patients with herpes zoster (P<0.001 and P = 0.037, respectively). However, reduced interferon-gamma secretion from natural killer cell and psychological stress were not associated. In conclusion, patients with a recent diagnosis of herpes zoster display reduced interferon-gamma secretion from natural killer cells and frequent previous psychological stress events compared with controls. However, reduced natural killer cell activity is not an immunological mediator between psychological stress and herpes zoster.

  17. Hormonal control of implantation.

    PubMed

    Sandra, Olivier

    2016-06-01

    In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  19. Variability of Hormonal Stress Markers Collected from a Managed Dolphin Population

    DTIC Science & Technology

    2012-09-30

    production and subsequent cortisol and aldosterone release, a condition that is physiologically similar to Addison’s disease. The long-term impact of this...phone: (858) 546-7090 Award Number: N000141110436 http://www.nmmf.org/ LONG-TERM GOALS Quantifying physiological indicators of stress in...cortisol and aldosterone in this species (Houser et al., 2011). Parallel processing of serum catecholamines will be performed via high-performance

  20. Neither Milk Production, Milk Transfer Nor Pup Growth Hormone Account for Reduced Body Weights of Rat Pups Reared In Hypergravity

    NASA Technical Reports Server (NTRS)

    Bear, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Studies spanning the gravity continuum from 0 to 2-g are revealing new insights into how mammalian reproduction and development may proceed in the microgravity of space. Rat pups reared from either conception or midgestation in hypergravity (hg) weigh 6-15% less than 1-g controls. In the present study we analyzed maternal and pup factors that may account for reduced body weight of hg reared pups. Beginning on Gestational day (G)11 of the rats' 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g, 1.75-g or 2.0-g. Prolaction (Prl) and oxytocin (OT) were measured in hg-exposed dams during either pregnancy (G20) or lactation (Postnatal day [P] 10). Gravity related differences in Prl were not observed whereas OT was depressed during lactation in hg dams relative to controls (p less than 0.05). Milk transfer measured during a discrete suckling episode was actually increased in hg-reared litters and comparable numbers of milk-letdowns were observed in the two conditions. Recent reports using dwarfing phenotypes in mouse mutants have provided evidence for postnatal dependence on growth hormone (GH) and insulin-like growth factors (IGFs). Plasma GH measured in P10 pups using enzyme immunoassay (EIA) was significantly elevated in hg pups relative to 1-g controls (mean +/- sd., ng/ml: 2.0-g, 10.6 [3.0], 1.5-g 8.9 [4.0], 1.0-g, 7.95 [3.1]). Together, these findings suggest that neither milk production, milk transfer nor pup GH play significant roles in reduced body weights of hg-reared pups. Studies underway are focused on insulin-like growth factors.

  1. Anti-Mullerian hormone-tailored stimulation protocols improve outcomes whilst reducing adverse effects and costs of IVF.

    PubMed

    Yates, A P; Rustamov, O; Roberts, S A; Lim, H Y N; Pemberton, P W; Smith, A; Nardo, L G

    2011-09-01

    Anti-Müllerian hormone (AMH) is increasingly used to quantify ovarian reserve, but it has not yet realized its full clinical potential in assisted reproduction technology. We investigated the possible benefits of using novel, stratified ovarian hyperstimulation protocols, tailored to individual AMH levels, compared with conventional stimulation. Retrospective data were collected from 769 women (first cycle of IVF, using fresh embryos), in a UK tertiary care unit: 346 women using conventional stimulation protocols; 423 women treated under new AMH-tailored protocols. Embryo transfer rates increased significantly (79-87%: P= 0.002) after the introduction of AMH-tailored stimulation protocols. Pregnancy rate per cycle started and live birth rate also increased significantly compared with conventionally treated women (17.9-27.7%, P= 0.002 and 15.9-23.9%, P = 0.007, respectively). Moreover, in the AMH group, the incidence of the ovarian hyperstimulation syndrome (OHSS) fell significantly (6.9-2.3%, P = 0.002) and failed fertilization fell from 7.8 to 4.5%. The cost of fertility drug treatment fell by 29% per patient and the overall cost of clinical management of OHSS fell by 43% in the AMH group. GnRH antagonist protocols, introduced as part of AMH-tailored treatment, may have contributed to the observed improvements: however, within the AMH-tailored group, the live birth rate was not significantly different between agonist and antagonist-treated groups. Although large, prospective, multicentre studies are indicated, we have clearly demonstrated that individualized, AMH-guided, controlled ovarian hyperstimulation protocols significantly improved positive clinical outcomes, reduced the incidence of complications and reduced the financial burden associated with assisted reproduction.

  2. Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes.

    PubMed

    Lalubin, Fabrice; Delédevant, Aline; Glaizot, Olivier; Christe, Philippe

    2014-07-01

    In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  3. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects.

    PubMed

    Bednářová, Andrea; Kodrík, Dalibor; Krishnan, Natraj

    2013-01-01

    Glucagon is conventionally regarded as a hormone, counter regulatory in function to insulin and plays a critical anti-hypoglycemic role by maintaining glucose homeostasis in both animals and humans. Glucagon performs this function by increasing hepatic glucose output to the blood by stimulating glycogenolysis and gluconeogenesis in response to starvation. Additionally it plays a homeostatic role by decreasing glycogenesis and glycolysis in tandem to try and maintain optimal glucose levels. To perform this action, it also increases energy expenditure which is contrary to what one would expect and has actions which are unique and not entirely in agreement with its role in protection from hypoglycemia. Interestingly, glucagon-like peptides (GLP-1 and GLP-2) from the major fragment of proglucagon (in non-mammalian vertebrates, as well as in mammals) may also modulate response to stress in addition to their other physiological actions. These unique modes of action occur in response to psychological, metabolic and other stress situations and mirror the role of adipokinetic hormones (AKHs) in insects which perform a similar function. The findings on the anti-stress roles of glucagon and glucagon-like peptides in mammalian and non-mammalian vertebrates may throw light on the multiple stress responsive mechanisms which operate in a concerted manner under regulation by AKH in insects thus functioning as a stress responsive hormone while also maintaining organismal homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Involvement of microglial cells in infrasonic noise-induced stress via upregulated expression of corticotrophin releasing hormone type 1 receptor.

    PubMed

    Du, F; Yin, L; Shi, M; Cheng, H; Xu, X; Liu, Z; Zhang, G; Wu, Z; Feng, G; Zhao, G

    2010-05-19

    Infrasound is a kind of environmental noise and threatens the public health as a nonspecific biological stressor. Upregulated expression of corticotrophin releasing hormone (CRH) and its receptor CRH-R1 in the neurons of hypothalamic paraventricular nucleus (PVN) was reported to be responsible for infrasonic noise-induced stress and injuries. Recent studies revealed that CRH-R1 is expressed in activated microglial cells, lending support to the hypothesis that microglial cells may be also responsible for infrasonic noise-induced stress. In this work, we exposed Sprague-Dawley rats and in vitro cultured microglial cells to infrasound with a main frequency of 16 Hz and a sound pressure level of 130 dB for 2 h, and examined the changes in the expression of CRH-R1 at different time points after infrasound exposure by immunohistochemistry and semi-quantitative RT-PCR. We found that infrasound exposure resulted in a significant activation of microglia cells and upregulated their expression of CRH-R1 in the PVN in vivo. Upregulated expression of CRH-R1 can be blocked by antalarmin, a selective CRH-R1 antagonist. Our in vitro data further revealed that in the absence of neurons, infrasound can directly induce microglial activation and upregulate their CRH-R1 expression. These findings suggest that in addition to the PVN neurons, microglial cells are the effector cells for infrasound as well, and involve in the infrasound-induced stress through upregulated expression of CRH-R1. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Effectiveness of a Comprehensive Stress Management Program to Reduce Work-Related Stress in a Medium-Sized Enterprise

    PubMed Central

    2014-01-01

    Objectives To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. Methods A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker’s Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Results Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. Conclusions In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan. PMID:24524591

  6. Estrogen and Progestin (Hormone Replacement Therapy)

    MedlinePlus

    ... progestin are two female sex hormones. Hormone replacement therapy works by replacing estrogen hormone that is no ... Progestin is added to estrogen in hormone replacement therapy to reduce the risk of uterine cancer in ...

  7. The stress-reducing effect of music listening varies depending on the social context.

    PubMed

    Linnemann, Alexandra; Strahler, Jana; Nater, Urs M

    2016-10-01

    Given that music listening often occurs in a social context, and given that social support can be associated with a stress-reducing effect, it was tested whether the mere presence of others while listening to music enhances the stress-reducing effect of listening to music. A total of 53 participants responded to questions on stress, presence of others, and music listening five times per day (30min after awakening, 1100h, 1400h, 1800h, 2100h) for seven consecutive days. After each assessment, participants were asked to collect a saliva sample for the later analysis of salivary cortisol (as a marker for the hypothalamic-pituitary-adrenal axis) and salivary alpha-amylase (as a marker for the autonomic nervous system). Hierarchical linear modeling revealed that music listening per se was not associated with a stress-reducing effect. However, listening to music in the presence of others led to decreased subjective stress levels, attenuated secretion of salivary cortisol, and higher activity of salivary alpha-amylase. When listening to music alone, music that was listened to for the reason of relaxation predicted lower subjective stress. The stress-reducing effect of music listening in daily life varies depending on the presence of others. Music listening in the presence of others enhanced the stress-reducing effect of music listening independently of reasons for music listening. Solitary music listening was stress-reducing when relaxation was stated as the reason for music listening. Thus, in daily life, music listening can be used for stress reduction purposes, with the greatest success when it occurs in the presence of others or when it is deliberately listened to for the reason of relaxation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Training Program to Reduce "Visitation Stress" in Single Parents and Their Latency Age Children.

    ERIC Educational Resources Information Center

    Clark, Ron

    This practicum was designed to decrease single parent and latency age child stress associated with child and noncustodial parent visitations, and to improve children's school behaviors. A 9-session, 12-week education and training program for single mothers (N=6) and their elementary school age children (N=15), designed to reduce stress by…

  9. Effectiveness of a Multiple Family Group Intervention for Juvenile First Offenders in Reducing Parent Stress

    ERIC Educational Resources Information Center

    Caldwell, Christopher Les; Horne, Arthur M.; Davidson, Bernard; Quinn, William H.

    2007-01-01

    Parenting practices are major influences on incidents of juvenile delinquency. Stress experienced by parents of children with behavioral problems is a leading contributor to parenting practices. We investigated the extent to which parental stress was reduced by participation in an established multiple group family intervention, the Family…

  10. Tart cherry extracts reduce inflammatory and oxidative stress signaling in microglial cells

    USDA-ARS?s Scientific Manuscript database

    Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglia...

  11. Reducing Listening-Related Stress in School-Aged Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Rance, Gary; Chisari, Donella; Saunders, Kerryn; Rault, Jean-Loup

    2017-01-01

    High levels of stress and anxiety are common in children with Autism Spectrum Disorder (ASD). Within this study of school-aged children (20 male, 6 female) we hypothesised that functional hearing deficits (also pervasive in ASD) could be ameliorated by auditory interventions and that, as a consequence, stress levels would be reduced. The use of…

  12. Reducing Stress within the Rehabilitative Work Setting - A Report on the ROSE Project

    NASA Astrophysics Data System (ADS)

    Wells, John S. G.; Denny, Margaret

    Reducing Occupational Stress in Employment (ROSE) is an EU funded project which aims to develop a combined person and work directed stress management programme in order to improve the long-term retention of staff in the vocational rehabilitation sector for mental health and intellectual disabilities.

  13. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines.

    PubMed

    Starr, Lisa M; Scott, Marilyn E; Koski, Kristine G

    2015-01-01

    Protein deficiency (PD) and intestinal nematode infections commonly co-occur during pregnancy and impair fetal growth, but the complex network of signals has not been explored. Our objective was to assess those stress hormones, growth factors, and cytokines affected by maternal PD and nematode infection and associated with fetal growth. Using a 2 × 2 factorial design, CD-1 mice, fed protein-sufficient (PS; 24%) or protein-deficient (PD; 6%) isoenergetic diets, were either uninfected or infected every 5 d with Heligmosomoides bakeri, beginning on gestational day (GD) 5. Biomarker concentrations were measured on GD 18 in maternal serum (m), fetal serum (f), and amniotic fluid (af) by using Luminex. Maternal PD lowered fetal body mass (PS/uninfected 1.25 ± 0.02 g, PS/infected 1.19 ± 0.02 g vs. PD/uninfected 1.11 ± 0.02 g, PD/infected 0.97 ± 0.02 g; P = 0.02), fetal lung (P = 0.005), and liver (P = 0.003) but not brain mass, whereas maternal infection lowered fetal length (PS/uninfected 2.28 ± 0.02 cm, PD/uninfected 2.27 ± 0.03 cm vs. PS/infected 2.21 ± 0.03 cm, PD/infected 2.11 ± 0.02 cm; P = 0.05) and kidney mass (P = 0.04). PD elevated stress hormones (m-adrenocortiotropic hormone, f-corticosterone, af-corticosterone) and reduced insulin-like growth factor 1 in all compartments (P ≤ 0.01), but these were unassociated with fetal mass or length. Fetal mass was positively associated with f-leptin (R(2) = 0.71, P = 0.0001) and negatively with fetal cytokines [tumor necrosis factor-α: R(2) = 0.62, P = 0.001; interleukin-4 (IL-4): R(2) = 0.63, P = 0.0004]. In contrast, maternal infection lowered f-prolactin (P = 0.02) that was positively associated with fetal length (R(2) = 0.43; P = 0.03); no other biomarker was affected by infection. Regression analyses showed associations between organ growth, cytokines, and growth factors: 1) thymus, spleen, heart, and brain with m-IL-10; 2) brain and kidney with f-vascular endothelial growth factor, af

  14. Brief, pre-learning stress reduces false memory production and enhances true memory selectively in females.

    PubMed

    Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N

    2014-04-10

    Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Parabolic flight experience is related to increased release of stress hormones.

    PubMed

    Schneider, Stefan; Brümmer, Vera; Göbel, Simon; Carnahan, Heather; Dubrowski, Adam; Strüder, Heiko K

    2007-06-01

    Numerous studies have shown significant effects of weightlessness on adaptational processes of the CNS, cardiovascular and/or muscular system. Most of these studies have been carried out during parabolic flights, using the recurring 20 s of weightlessness at each parabola. Although some of these studies reported on potential influences not only of weightlessness but also of the stressful situation within a parabolic flight, especially provoked by the ongoing changes between 1.8, 1 and 0 G, so far there seems to be only marginal information about objective parameters of stress evoked by parabolic flights. By collecting blood samples from a permanent venous catheter several times during parabolic flights, we were able to show an increase of prolactin, cortisol and ACTH in the course of a 120 min flight. We conclude, therefore, that previous reported effects of weightlessness on adaptational processes may be affected not only by weightlessness but also by the exposure to other stressors experienced within the environment of a Zero-G airbus.

  16. Interplay between plasma hormone profiles, sex and body condition in immature hawksbill turtles (Eretmochelys imbricata) subjected to a capture stress protocol.

    PubMed

    Jessop, Tim S; Sumner, Joanna M; Limpus, Colin J; Whittier, Joan M

    2004-01-01

    We investigated plasma hormone profiles of corticosterone and testosterone in immature hawksbill turtles (Eretmochelys imbricata) in response to a capture stress protocol. Further, we examined whether sex and body condition were covariates associated with variation in the adrenocortical response of immature turtles. Hawksbill turtles responded to the capture stress protocol by significantly increasing plasma levels of corticosterone over a 5 h period. There was no significant sex difference in the corticosterone stress response of immature turtles. Plasma testosterone profiles, while significantly different between the sexes, did not exhibit a significant change during the 5 h capture stress protocol. An index of body condition was not significantly associated with a turtle's capacity to produce plasma corticosterone both prior to and during exposure to the capture stress protocol. In summary, while immature hawksbill turtles exhibited an adrenocortical response to a capture stress protocol, neither their sex nor body condition was responsible for variation in endocrine responses. This lack of interaction between the adrenocortical response and these internal factors suggests that the inactive reproductive- and the current energetic- status of these immature turtles are important factors that could influence plasma hormone profiles during stress.

  17. Bonded joint and method. [for reducing peak shear stress in adhesive bonds

    NASA Technical Reports Server (NTRS)

    Sainsbury-Carter, J. B. (Inventor)

    1974-01-01

    An improved joint is described for reducing the peak shear stress in adhesive bonds when adhesives are used to bond two materials which are in a lapped relationship and which differ in value of modulus of elasticity. An insert placed between the adhesive and one of the two materials acts to cushion the discontinuity of material stiffness thereby reducing the peak shear stress in the adhesive bond.

  18. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro.

    PubMed

    Stapelfeld, Claudia; Maser, Edmund

    2017-10-01

    Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer. Copyright © 2017 Elsevier B

  19. Enhanced Stress Relaxation and Reduced Cure Stress in Thermosets with Ferrocene-Based Crosslinkers

    NASA Astrophysics Data System (ADS)

    Jones, Brad; Wheeler, David; Stavig, Mark; Black, Hayden; Sawyer, Patricia; Giron, Nicholas; Celina, Mathias; Alam, Todd

    Organometallic sandwich compounds are characterized by facile isomerization among a variety of unique states. For example, ferrocene exhibits an extraordinarily low barrier to rotation of its cyclopentadienyl (Cp) ligands about the metal-Cp axis. We propose that this phenomenon can be exploited to enhance stress relaxation of polymers containing organometallic sandwich backbone moieties. Here, we describe the synthesis and characterization of several thermosets that employ ferrocene derivatives as crosslinkers. In particular, we compare a ferrocene diamine to several conventional diamines in the crosslinking of epoxy resin. Stress relaxation and dynamic mechanical analyses reveal that the ferrocene-based thermosets are distinguished from conventional thermosets by their capacity for physical relaxation. More importantly, these materials exhibit markedly different residual stress evolution during cure. For example, the cure stress in ferrocene-based thermosets drops precipitously with decreasing crosslink density. Our results highlight the unique role organometallic chemistry can play for stress management of thermosets and, more broadly, in manipulating their structure-property relationships. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. NAD Kinases: Metabolic Targets Controlling Redox Co-enzymes and Reducing Power Partitioning in Plant Stress and Development

    PubMed Central

    Li, Bin-Bin; Wang, Xiang; Tai, Li; Ma, Tian-Tian; Shalmani, Abdullah; Liu, Wen-Ting; Li, Wen-Qiang; Chen, Kun-Ming

    2018-01-01

    NAD(H) and NADP(H) are essential co-enzymes which dominantly control a number of fundamental biological processes by acting as reducing power and maintaining the intracellular redox balance of all life kingdoms. As the only enzymes that catalyze NAD(H) and ATP to synthesize NADP(H), NAD Kinases (NADKs) participate in many essential metabolic reactions, redox sensitive regulation, photosynthetic performance and also reactive oxygen species (ROS) homeostasis of cells and therefore, play crucial roles in both development and stress responses of plants. NADKs are highly conserved enzymes in amino acid sequences but have multiple subcellular localization and diverse functions. They may function as monomers, dimers or multimers in cells but the enzymatic properties in plants are not well elucidated yet. The activity of plant NADK is regulated by calcium/calmodulin and plays crucial roles in photosynthesis and redox co-enzyme control. NADK genes are expressed in almost all tissues and developmental stages of plants with specificity for different members. Their transcripts can be greatly stimulated by a number of environmental factors such as pathogenic attack, irritant applications and abiotic stress treatments. Using transgenic approaches, several studies have shown that NADKs are involved in chlorophyll synthesis, photosynthetic efficiency, oxidative stress protection, hormone metabolism and signaling regulation, and therefore contribute to the growth regulation and stress tolerance of plants. In this review, the enzymatic properties and functional mechanisms of plant NADKs are thoroughly investigated based on literature and databases. The results obtained here are greatly advantageous for further exploration of NADK function in plants. PMID:29662499

  1. Bariatric Surgery Reduces Serum Anti-mullerian Hormone Levels in Obese Women With and Without Polycystic Ovarian Syndrome.

    PubMed

    Chiofalo, Francesco; Ciuoli, Cristina; Formichi, Caterina; Selmi, Federico; Forleo, Raffaella; Neri, Ornella; Vuolo, Giuseppe; Paffetti, Patrizia; Pacini, Furio

    2017-07-01

    Obesity in fertile women has negative effect on fertility. Anti-mullerian hormone (AMH) represents a good index of fertility, and it is considered a marker of ovarian reserve and of polycystic ovarian syndrome (PCOS) gravity. Previous studies evaluated the relationship between obesity and AMH with contradictory results. The aim of the study was to investigate the relationship between obesity and AMH and the changes of AMH in obese women in reproductive age submitted to bariatric surgery. Fifty-five obese patients between 18 and 39 years with (29 patients) and without PCOS (26 patients) were compared with a control group of normal weight women with (24 patients) and without PCOS (19 patients). Fourteen obese women with PCOS and 18 without PCOS underwent to bariatric surgery. Serum AMH, testosterone, androstenedione, and DHEAS were performed in all patients before and 1 year after surgical intervention. AMH was significantly higher in the PCOS groups (p < 0.001), both in obese (5.84 ± 3.94 ng/ml) and non-obese women (7.35 ± 4.39 ng/ml). AMH was positively related to testosterone (p < 0.0001), androstenedione (p = 0.0005), and DHEAS (p = 0.003). After bariatric surgery, AMH levels were reduced in the both PCOS (p = 0.02) and non-PCOS group (p = 0.04). AMH levels are elevated in PCOS patients regardless of the body weight. Bariatric surgery is effective in the normalization of AMH levels (a possible indirect marker of better fertility) only in obese patients with PCOS.

  2. Aqueous seed extract of Cola nitida rubra reduces serum reproductive hormone concentrations and sperm count in adult male albino Wistar rats.

    PubMed

    Umoh, I O; Emmanuel, O A; Nna, V U

    2014-11-01

    Following the high rate of consumption of Cola nitida (cola nut) among the male population in Nigeria, this study seeks to determine the effects of consumption of Cola nitida on serum reproductive hormones and sperm count, which are major determinants of male fertility. Thirty-two male albino wistar rats weighing 180-220 g were used for this study and were divided into 4 groups of eight animals each. Group 1 served as control, group 2 received 2 mg/kg Cola nitida extract (Test 1), group 3 received 6 mg/kg Cola nitida extract (Test 2) and group 4 received 10 mg/kg Cola nitida extract (Test 3). After 6 weeks of treatment, reproductive hormonal assay was carried out using the rat serum. Epididymal spermatozoa were collected and sperm count determined. Serum concentrations of luteinizing hormone (LH) and testosterone were significantly (P < 0.05) reduced in test 2 and 3, compared with control. Sperm count was significantly lower in test group 1 (P < 0.05), 2 (P < 0.001) and 3 (P < 0.001) compared with control, with test 3 significantly (P < 0.05) lower compared with test 1. There was no significant difference in testicular and epididymis weight in the different experimental groups studied. Aqueous seed extract of Cola nitida rubra resulted in reduced serum reproductive hormone concentrations and sperm count in male wistar rats, and may therefore be detrimental to reproductive health, hence the need for regulation of its consumption.

  3. Blunted neuroactive steroid and HPA axis responses to stress are associated with reduced sleep quality and negative affect in pregnancy: a pilot study.

    PubMed

    Crowley, Shannon K; O'Buckley, Todd K; Schiller, Crystal E; Stuebe, Alison; Morrow, A Leslie; Girdler, Susan S

    2016-04-01

    Anxiety during pregnancy has been linked to adverse maternal health outcomes, including postpartum depression (PPD). However, there has been limited study of biological mechanisms underlying behavioral predictors of PPD during pregnancy. Considering the shared etiology of chronic stress amongst antenatal behavioral predictors, the primary goal of this pilot study was to examine associations among stress-related physiological factors (including GABA-ergic neurosteroids) and stress-related behavioral indices of anxiety during pregnancy. Fourteen nulliparous women in their second trimester of a singleton pregnancy underwent speech and mental arithmetic stress, following a 2-week subjective and objective recording of sleep-wake behavior. Lower cortisol, progesterone, and a combined measure of ALLO + pregnanolone throughout the entire stressor protocol (area under the curve, AUC) were associated with greater negative emotional responses to stress, and lower cortisol AUC was associated with worse sleep quality. Lower adrenocorticotropic hormone was associated with greater anxious and depressive symptoms. Stress produced paradoxical reductions in cortisol, progesterone, and a combined measure of allopregnanolone + pregnanolone, while tetrahydrodeoxycorticosterone levels were elevated. These data suggest that cortisol, progesterone, and ALLO + pregnanolone levels in the second trimester of pregnancy are inversely related to negative emotional symptoms, and the negative impact of acute stress challenge appears to exert its effects by reducing these steroids to further promote negative emotional responses.

  4. Altered levels of sex and stress steroid hormones assessed daily over a 28-day cycle in early abstinent cocaine-dependent females

    PubMed Central

    Hong, Kwangik A.; Paliwal, Prashni; Morgan, Peter T.; Sinha, Rajita

    2009-01-01

    Rationale There is growing evidence of alterations in brain stress and reward circuits associated with cocaine dependence. Sex differences are also documented and sex steroid hormones have been linked to cocaine reinforcement. Objectives The current study therefore assessed daily fluctuations in stress and sex hormones in cocaine-dependent females compared with healthy females. Method Daily salivary samples of cortisol, progesterone, and estradiol were collected at waking across 28 days from 12 cocaine-dependent females receiving inpatient treatment and 10 healthy females. Participants also completed mood-rating scales each week corresponding to four phases of the menstrual cycle and cocaine craving was monitored in cocaine patients at each phase. Results Cocaine-dependent females in their first month of abstinence demonstrated significantly higher levels of both cortisol and progesterone across the menstrual cycle and significantly lower estradiol/progesterone (E2/P) ratios compared to healthy controls. They also showed significantly increased negative mood compared with controls, but no variation in cocaine craving across the menstrual cycle. Conclusions Findings indicate altered stress and sex hormones suggestive of an overactive stress system during the first month of cocaine abstinence after chronic cocaine abuse. These increased levels of cortisol and progesterone could impact both abstinence-related symptoms such as negative mood and susceptibility to drug-seeking behavior in cocaine-dependent females. PMID:17891383

  5. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  6. Reducing university students' stress through a drop-in canine-therapy program.

    PubMed

    Binfet, John-Tyler; Passmore, Holli-Anne; Cebry, Alex; Struik, Kathryn; McKay, Carson

    2018-06-01

    Increasingly colleges and universities are offering canine therapy to help students de-stress as a means of supporting students' emotional health and mental well-being. Despite the popularity of such programs, there remains a dearth of research attesting to their benefits. Participants included 1960 students at a mid-size western Canadian University. The study's aims were to assess the stress-reducing effects of a weekly drop-in, canine-therapy program and to identify how long participants spent with therapy canines to reduce their stress. Demographic information was gathered, length of visit documented and a visual analog scale (VAS) was used to assess entry and exit self-reports of stress. Participants' self-reported stress levels were significantly lower after the canine therapy intervention. Participants spent an average of 35 min per session. This study supports the use of drop-in, canine therapy as a means of reducing university students' stress. The findings hold applied significance for both counseling and animal therapy practitioners regarding the dose intervention participants seek to reduce their stress.

  7. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-02-23

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Involvement of the crustacean hyperglycemic hormone (CHH) in the physiological compensation of the freshwater crayfish Cherax quadricarinatus to low temperature and high salinity stress.

    PubMed

    Prymaczok, Natalia C; Pasqualino, Valeria M; Viau, Verónica E; Rodríguez, Enrique M; Medesani, Daniel A

    2016-02-01

    This study was aimed at determining the role of the crustacean hyperglycemic hormone (CHH) in the physiological compensation to both saline and thermal stress, in the freshwater crayfish Cherax quadricarinatus. By determining the expression of the CHH gene in the eyestalk of juvenile crayfish, we found that maximal induction of CHH was induced at high salinity (10 g/L) and low temperature (20 °C). In order to investigate the role of CHH in the physiological compensation to such stressful conditions, recombinant CHH was supplied to stressed animals. CHH-injected crayfish showed increased hemolymphatic levels of glucose, in accordance with a significant utilization of glycogen reserves from the hepatopancreas. Furthermore, CHH administration allowed stressed animals to regulate hemolymphatic sodium and potassium at more constant levels than controls. Taken together, these results suggest a relevant role of CHH in increasing the energy available intended for processes involved in the physiological compensation of C. quadricarinatus to both saline and thermal stress.

  9. Reduced Stress and Improved Sleep Quality Caused by Green Tea Are Associated with a Reduced Caffeine Content.

    PubMed

    Unno, Keiko; Noda, Shigenori; Kawasaki, Yohei; Yamada, Hiroshi; Morita, Akio; Iguchi, Kazuaki; Nakamura, Yoriyuki

    2017-07-19

    Caffeine, one of the main components in green tea, can interfere with sleep and block the effect of theanine. Since theanine, the main amino acid in tea leaves, has significant anti-stress effects in animals and humans, we examined the effects of green tea with lowered caffeine content, i.e., low-caffeine green tea (LCGT), on stress and quality of sleep of middle-aged individuals ( n = 20, mean age 51.3 ± 6.7 years) in a double-blind crossover design. Standard green tea (SGT) was used as the control. These teas (≥300 mL/day), which were eluted with room temperature water, were consumed over a period of seven days after a single washout term. The level of salivary α-amylase activity (sAA), a stress marker, was significantly lower in participants that consumed LCGT (64.7 U/mL) than in those that consumed SGT (73.9 U/mL). Sleep quality was higher in participants that consumed a larger quantity of LCGT. In addition, a self-diagnostic check for accumulated fatigue was significantly lower in those participants that consumed LCGT than SGT. These results indicate that LCGT intake can reduce stress in middle-aged individuals and improve their quality of sleep. The reduction in caffeine is suggested to be a valid reason for enhancing the anti-stress effect of green tea.

  10. Reduced Stress and Improved Sleep Quality Caused by Green Tea Are Associated with a Reduced Caffeine Content

    PubMed Central

    Unno, Keiko; Noda, Shigenori; Kawasaki, Yohei; Yamada, Hiroshi; Morita, Akio; Iguchi, Kazuaki; Nakamura, Yoriyuki

    2017-01-01

    Caffeine, one of the main components in green tea, can interfere with sleep and block the effect of theanine. Since theanine, the main amino acid in tea leaves, has significant anti-stress effects in animals and humans, we examined the effects of green tea with lowered caffeine content, i.e., low-caffeine green tea (LCGT), on stress and quality of sleep of middle–aged individuals (n = 20, mean age 51.3 ± 6.7 years) in a double-blind crossover design. Standard green tea (SGT) was used as the control. These teas (≥300 mL/day), which were eluted with room temperature water, were consumed over a period of seven days after a single washout term. The level of salivary α-amylase activity (sAA), a stress marker, was significantly lower in participants that consumed LCGT (64.7 U/mL) than in those that consumed SGT (73.9 U/mL). Sleep quality was higher in participants that consumed a larger quantity of LCGT. In addition, a self-diagnostic check for accumulated fatigue was significantly lower in those participants that consumed LCGT than SGT. These results indicate that LCGT intake can reduce stress in middle-aged individuals and improve their quality of sleep. The reduction in caffeine is suggested to be a valid reason for enhancing the anti-stress effect of green tea. PMID:28753943

  11. Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure.

    PubMed

    Snyder, M J; Mulder, E P

    2001-11-12

    A variety of enzymes and other proteins are produced by organisms in response to xenobiotic exposures. Cytochrome P450s (CYP) are one of the major phase I-type classes of detoxification enzymes found in terrestrial and aquatic organisms ranging from bacteria to vertebrates. One of the primary functions of stress proteins (HSPs) is to aid in the recovery of damaged proteins by chaperoning their refolding. These and other biomarkers of xenobiotic exposure and resulting effects have not been studied in crustacean larvae. This information is of potential importance for environmental management and risk assessment. In this work, we have given Homarus americanus larvae single 24 h exposures to the cyclodiene pesticide heptachlor, a known environmental endocrine disruptor (EDC) on different days of the 1st larval instar. We followed these larvae during the first larval stage for effects on timing of ecdysis to 2nd stage, ecdysteroid molting hormone titers, and alterations in the levels of cytochrome P450 CYP45 and HSP70 proteins. Delays in ecdysis were correlated with alterations in ecdysteroid levels. This result provides clues that this pesticide may function as an environmental endocrine disruptor in crustaceans. CYP45 and HSP70 levels were significantly elevated for several days following heptachlor exposure. The elevation in HSP70 was prolonged depending on the day of pesticide exposure and this was directly related to the increase in mortality. These results demonstrate the utility of these measurements as potential biomarkers in crustacean larval developmental toxicology and EDC effects research.

  12. Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance.

    PubMed

    Martínez-Sánchez, Noelia; Seoane-Collazo, Patricia; Contreras, Cristina; Varela, Luis; Villarroya, Joan; Rial-Pensado, Eva; Buqué, Xabier; Aurrekoetxea, Igor; Delgado, Teresa C; Vázquez-Martínez, Rafael; González-García, Ismael; Roa, Juan; Whittle, Andrew J; Gomez-Santos, Beatriz; Velagapudi, Vidya; Tung, Y C Loraine; Morgan, Donald A; Voshol, Peter J; Martínez de Morentin, Pablo B; López-González, Tania; Liñares-Pose, Laura; Gonzalez, Francisco; Chatterjee, Krishna; Sobrino, Tomás; Medina-Gómez, Gema; Davis, Roger J; Casals, Núria; Orešič, Matej; Coll, Anthony P; Vidal-Puig, Antonio; Mittag, Jens; Tena-Sempere, Manuel; Malagón, María M; Diéguez, Carlos; Martínez-Chantar, María Luz; Aspichueta, Patricia; Rahmouni, Kamal; Nogueiras, Rubén; Sabio, Guadalupe; Villarroya, Francesc; López, Miguel

    2017-07-05

    Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Neuropeptide Receptors NPR-1 and NPR-2 Regulate Caenorhabditis elegans Avoidance Response to the Plant Stress Hormone Methyl Salicylate

    PubMed Central

    Luo, Jintao; Xu, Zhaofa; Tan, Zhiping; Zhang, Zhuohua; Ma, Long

    2015-01-01

    Methyl salicylate (MeSa) is a stress hormone released by plants under attack by pathogens or herbivores . MeSa has been shown to attract predatory insects of herbivores and repel pests. The molecules and neurons underlying animal response to MeSa are not known. Here we found that the nematode Caenorhabditis elegans exhibits a strong avoidance response to MeSa, which requires the activities of two closely related neuropeptide receptors NPR-1 and NPR-2. Molecular analyses suggest that NPR-1 expressed in the RMG inter/motor neurons is required for MeSa avoidance. An NPR-1 ligand FLP-18 is also required. Using a rescuing npr-2 promoter to drive a GFP transgene, we identified that NPR-2 is expressed in multiple sensory and interneurons. Genetic rescue experiments suggest that NPR-2 expressed in the AIZ interneurons is required for MeSa avoidance. We also provide evidence that the AWB sensory neurons might act upstream of RMGs and AIZs to detect MeSa. Our results suggest that NPR-2 has an important role in regulating animal behavior and that NPR-1 and NPR-2 act on distinct interneurons to affect C. elegans avoidance response to MeSa. PMID:25527285

  14. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    PubMed

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  15. Transcriptome Analysis of Arabidopsis GCR1 Mutant Reveals Its Roles in Stress, Hormones, Secondary Metabolism and Phosphate Starvation

    PubMed Central

    Chakraborty, Navjyoti; Sharma, Priyanka; Kanyuka, Kostya; Pathak, Ravi R.; Choudhury, Devapriya; Hooley, Richard A.; Raghuram, Nandula

    2015-01-01

    The controversy over the existence or the need for G-protein coupled receptors (GPCRs) in plant G-protein signalling has overshadowed a more fundamental quest for the role of AtGCR1, the most studied and often considered the best candidate for GPCR in plants. Our whole transcriptome microarray analysis of the GCR1-knock-out mutant (gcr1-5) in Arabidopsis thaliana revealed 350 differentially expressed genes spanning all chromosomes. Many of them were hitherto unknown in the context of GCR1 or G-protein signalling, such as in phosphate starvation, storage compound and fatty acid biosynthesis, cell fate, etc. We also found some GCR1-responsive genes/processes that are reported to be regulated by heterotrimeric G-proteins, such as biotic and abiotic stress, hormone response and secondary metabolism. Thus, GCR1 could have G-protein-mediated as well as independent roles and regardless of whether it works as a GPCR, further analysis of the organism-wide role of GCR1 has a significance of its own. PMID:25668726

  16. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    PubMed Central

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  17. Effects of preoperative carprofen on cardio-respiratory, hormonal and metabolic stress response in calves during umbilical surgery under isoflurane inhalation anaesthesia.

    PubMed

    Schulze, I; Poos, E M; Meyer, H; List, A K; Kaestner, S B R; Rehage, J

    2016-10-01

    The aim of this study was to examine the effects of preoperative carprofen on the cardiorespiratory, hormonal and metabolic stress response during umbilical surgery under isoflurane anaesthesia combined with local anaesthesia, in calves. A randomised, blinded experimental study was conducted in 24 calves. Carprofen (n = 12; 1.4 mg/kg) or physiological saline solution (controls; n = 12) was administered 1 h prior to surgery. Anaesthesia was induced with xylazine (0.1 mg/kg, IM) and, after the onset of sedation (i.e. after 5-8 min), ketamine was administered (2 mg/kg, IV). Anaesthesia was then maintained with isoflurane (ISO) in oxygen to effect and completed by infiltration of the incision line with 20 mL of 2% procaine. Cardiorespiratory, endocrine and metabolic parameters were examined before, during and after surgery at short intervals. In both groups, anaesthesia appeared adequate for the surgical intervention. Heart rate, stroke index and arterial blood pressure were significantly elevated after the onset of surgery. Oxygen partial pressure and oxygen delivery increased, while the oxygen extraction ratio decreased intraoperatively, ensuring sufficient oxygen supply. In the control group, the mean surge in serum cortisol concentrations tended to be higher (P = 0.089) and systemic vascular resistance (SVR) was significantly greater (P <0.05) than in the carprofen group during surgery. In conclusion, the anaesthetic protocol used in this study induced reliable analgesia in both groups. The lower serum cortisol levels and SVR may indicate a reduced surgical stress response in calves undergoing umbilical surgery under ISO anaesthesia after administering carprofen preoperatively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Exploring the Functions of 9-Lipoxygenase (DkLOX3) in Ultrastructural Changes and Hormonal Stress Response during Persimmon Fruit Storage

    PubMed Central

    Meng, Kun; Hou, Yali; Han, Ye; Ban, Qiuyan; He, Yiheng; Suo, Jiangtao; Rao, Jingping

    2017-01-01

    Lipoxygenase (LOX) initiates the hydroperoxidation of polyunsaturated fatty acids and is involved in multiple physiological processes. In this study, investigation of various microscopic techniques showed that the fruit peel cellular microstructure of the two persimmon cultivars differed after 12 days of storage, resulting in fruit weight loss and an increased number and depth of microcracks. Analysis of subcellular localization revealed that greater amounts of DkLOX3-immunolabelled gold particles accumulated in “Fupingjianshi” than in “Ganmaokui” during storage. In addition, the expression of DkLOX3 was positively up-regulated by abscisic acid (ABA), concomitant with the promotion of ethylene synthesis and loss of firmness, and was suppressed by salicylic acid (SA), concomitant with the maintenance of fruit firmness, inhibition of ethylene production and weight loss. In particular, the expression of DkLOX3 differed from the ethylene trajectory after methyl jasmonate (MeJA) treatment. Furthermore, we isolated a 1105 bp 5′ flanking region of DkLOX3 and the activity of promoter deletion derivatives was induced through various hormonal treatments. Promoter sequence cis-regulatory elements were analysed, and two conserved hormone-responsive elements were found to be essential for responsiveness to hormonal stress. Overall, these results will provide us with new clues for exploring the functions of DkLOX3 in fruit ripening and hormonal stress response. PMID:28294971

  19. Effect of dietary γ-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens.

    PubMed

    Zhang, Min; Zou, Xiao-Ting; Li, Hui; Dong, Xin-Yang; Zhao, Wenjing

    2012-02-01

    This study was conducted to evaluate the effect of γ-aminobutyric acid (GABA) on laying performance, egg quality, digestive enzyme activity, hormone level and immune activities in Roman hens under heat stress. Roman hens (320 days old) were fed with 0, 25, 50, 75 and 100 mg/kg GABA, respectively during a 60-day experiment. Compared with control, supplementation of 50 mg/kg GABA improved the laying performance and egg quality by significantly increasing egg production, average egg weight and shell strength (P < 0.05), while decreasing the feed-egg ratio and cholesterol level. Anti-oxidation activity was improved by significantly increasing the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), but decreasing malondialdehyde level in serum (P < 0.05), while significantly increasing the glucose and total protein (TP) level, follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E(2) ), insulin, triiodothyronine (T(3) ) and free triiodothyronine (FT(3) ) levels, and IgG, IgA and complement (C3)activity in serum (P < 0.05). The results indicated that oral GABA improved laying performance and physical condition mainly by modulating hormone secretion, enhancing anti-oxidation and immune activity, and maintaining electrolyte balance. Fifty mg/kg was the optimum level for laying hens under heat stress in the present study. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  20. Coloration signals the ability to cope with elevated stress hormones: effects of corticosterone on growth of barn owls are associated with melanism.

    PubMed

    Almasi, B; Roulin, A; Korner-Nievergelt, F; Jenni-Eiermann, S; Jenni, L

    2012-06-01

    Stressful situations during development can shape the phenotype for life by provoking a trade-off between development and survival. Stress hormones, mainly glucocorticoids, play an important orchestrating role in this trade-off. Hence, how stress sensitive an animal is critically determines the phenotype and ultimately fitness. In several species, darker eumelanic individuals are less sensitive to stressful conditions than less eumelanic conspecifics, which may be due to the pleiotropic effects of genes affecting both coloration and physiological traits. We experimentally tested whether the degree of melanin-based coloration is associated with the sensitivity to an endocrine response to stressful situations in the barn owl. We artificially administered the mediator of a hormonal stress response, corticosterone, to nestlings to examine the prediction that corticosterone-induced reduction in growth rate is more pronounced in light eumelanic nestlings than in darker nest mates. To examine whether such an effect may be genetically determined, we swapped hatchlings between randomly chosen pairs of nests. We first showed that corticosterone affects growth and, thus, shapes the phenotype. Second, we found that under corticosterone administration, nestlings with large black spots grew better than nestlings with small black spots. As in the barn owl the expression of eumelanin-based coloration is heritable and not sensitive to environmental conditions, it is therefore a reliable, genetically based sign of the ability to cope with an increase in blood corticosterone level. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  1. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood

    PubMed Central

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  2. Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses.

    PubMed

    Pinheiro, Carla; António, Carla; Ortuño, Maria Fernanda; Dobrev, Petre I; Hartung, Wolfram; Thomas-Oates, Jane; Ricardo, Cândido Pinto; Vanková, Radomira; Chaves, M Manuela; Wilson, Julie C

    2011-10-01

    The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the

  3. Reduced sensitivity of the hepatic adenylate cyclase-cyclic AMP system to glucagon during sustained hormonal stimulation.

    PubMed Central

    DeRubertis, F R; Craven, P

    1976-01-01

    Hormone-induced desensitization of hormonal regulation of cyclic AMP (cAMP) content has been described in a number of tissues. In the present study, we examined responses of rat liver to glucagon after periods of sustained exposure to the hormone in vivo and in vitro. In intact anesthetized rats infused with glucagon (50 ng/min) for 1 h or more and in liver slices incubated with the hormone (10 muM) for this period, hepatic cAMP responsiveness to glucagon was significantly blunted compared with that of tissue exposed to the hormone for shorter periods. The reduction in hepatic cAMP responsiveness to glucagon appeared to be fully expressed by 2 h. With the doses of hormone employed, the sequential alterations in hepatic responsiveness seemed to be limited to the cAMP system, since other parameters of glucagon action did not wane with time. Diminished hepatic cAMP responsiveness during sustained hormonal exposure could not be attributed to decreased glucagon availability, accelerated extracellular release of cAMP, hepatic ATP depletion, or enhanced phosphodiesterase activity. Studies in vitro suggested that modulation of the cAMP response occurred at the level of adenylate cyclase (AC). During sustained exposure of hepatic slices to glucagon, reductions in glucagon-responsive AC correlated temporally with those in cAMP and both changes were reversible. Alterations in glucagon-responsive AC were demonstrated over a wide range of ATP (10 muM-0.1 mM) and glucagon (10 nM-5 MM) concentrations in the cyclase reaction mixture, and appeared to be a noncompetitive phenomenon relative to glucagon. Maximal NaF-responsive AC did not fall concomitantly with time. Thus, the reduction in glucagon-responsive AC was probably not related to a reduction in the catalytic unit of the enzyme, but could have been due to an alteration in glucagon binding to its receptor sites, or in the coupling mechanism involved in transmission of the hormonal signal to the catalytic unit. Images PMID

  4. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    PubMed

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  5. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum

    PubMed Central

    Clark, Peter J.; Amat, Jose; McConnell, Sara O.; Ghasem, Parsa R.; Greenwood, Benjamin N.; Maier, Steven F.; Fleshner, Monika

    2015-01-01

    Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress). Impaired escape behavior is a result of stress-sensitized serotonin (5-HT) neuron activity in the dorsal raphe (DRN) and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA) levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS) and lateral (DLS) dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress. PMID:26555633

  6. Collective hormonal profiles predict group performance.

    PubMed

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H; Lu, Jackson G

    2016-08-30

    Prior research has shown that an individual's hormonal profile can influence the individual's social standing within a group. We introduce a different construct-a collective hormonal profile-which describes a group's hormonal make-up. We test whether a group's collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group's standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies.

  7. Collective hormonal profiles predict group performance

    PubMed Central

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H.; Lu, Jackson G.

    2016-01-01

    Prior research has shown that an individual’s hormonal profile can influence the individual’s social standing within a group. We introduce a different construct—a collective hormonal profile—which describes a group’s hormonal make-up. We test whether a group’s collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revea