Sample records for reducing zero-point systematics

  1. Effect of sintering atmosphere on the hardness of ThO2

    NASA Astrophysics Data System (ADS)

    Baena, Angela; Cardinaels, Thomas; Van Eyken, Jelle; Puzzolante, Jean Louis; Binnemans, Koen; Verwerft, Marc

    2016-08-01

    The hardness and toughness of ThO2 sintered under reducing and oxidizing conditions has been investigated and, quite unexpectedly, a significant difference in hardness was observed for the entire range of porosities studied. Reducing conditions systematically yielded higher hardness values than oxidizing conditions. Extrapolated to zero porosity, the hardness for ThO2 is H0 = 10.5 ± 0.3 GPa for oxidizing conditions and H0 = 12.4 ± 0.7 GPa for reducing conditions. Toughness values have been derived from Vickers indentations; differences in toughness were insignificant and only a single value is proposed: KIC = 0.97 ± 0.12 MPa √m. The difference in hardness is attributed to the presence of point defects, also acting as color centers and causing grey coloration of ThO2 sintered under reducing conditions. Furthermore, and of interest for nuclear fuel production, is the finding that ThO2 sintered under reducing conditions is significantly easier to grind compared to material sintered under oxidizing conditions.

  2. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    PubMed

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of the KP theory is further examined in comparison with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic calculations, including to systematically determine the exact value of zero-point energy and to study kinetic isotope effects for chemical reactions in solution and in enzymes.

  3. Computer Algorithms for Measurement Control and Signal Processing of Transient Scattering Signatures

    DTIC Science & Technology

    1988-09-01

    CURVE * C Y2 IS THE BACKGROUND CURVE * C NSHIF IS THE NUMBER OF POINT TO SHIFT * C SET IS THE SUM OF THE POINT TO SHIFT * C IN ORDER TO ZERO PADDING ...reduces the spec- tral content in both the low and high frequency regimes. If the threshold is set to zero , a "naive’ deconvolution results. This provides...side of equation 5.2 was close to zero , so it can be neglected. As a result, the expected power is equal to the variance. The signal plus noise power

  4. Zero-Point Spin-Fluctuations of Single Adatoms.

    PubMed

    Ibañez-Azpiroz, Julen; Dos Santos Dias, Manuel; Blügel, Stefan; Lounis, Samir

    2016-07-13

    Stabilizing the magnetic signal of single adatoms is a crucial step toward their successful usage in widespread technological applications such as high-density magnetic data storage devices. The quantum mechanical nature of these tiny objects, however, introduces intrinsic zero-point spin-fluctuations that tend to destabilize the local magnetic moment of interest by dwindling the magnetic anisotropy potential barrier even at absolute zero temperature. Here, we elucidate the origins and quantify the effect of the fundamental ingredients determining the magnitude of the fluctuations, namely, the (i) local magnetic moment, (ii) spin-orbit coupling, and (iii) electron-hole Stoner excitations. Based on a systematic first-principles study of 3d and 4d adatoms, we demonstrate that the transverse contribution of the fluctuations is comparable in size to the magnetic moment itself, leading to a remarkable ≳50% reduction of the magnetic anisotropy energy. Our analysis gives rise to a comprehensible diagram relating the fluctuation magnitude to characteristic features of adatoms, providing practical guidelines for designing magnetically stable nanomagnets with minimal quantum fluctuations.

  5. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    PubMed

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  6. Electrical stimulation as a treatment intervention to improve function, edema or pain following acute lateral ankle sprains: A systematic review.

    PubMed

    Feger, Mark A; Goetschius, John; Love, Hailey; Saliba, Sue A; Hertel, Jay

    2015-11-01

    The purpose of this systematic review was to assess whether electrical stimulation (ES), when used in conjunction with a standard treatment, can reduce levels of functional impairment, edema, and pain compared to a standard treatment alone, in patients following a lateral ankle sprain. We searched PubMed, CINAHL, SportDiscus, and Medline (OVID) databases through June 2014 using the terms "ankle sprain or ankle sprains or ligament injury or ligamentous injury," and "electric stimulation or electric stimulation or electrotherapy." Our search identified four randomized control trials, of which, neuromuscular ES and high-voltage pulsed stimulation were the only two ES modalities utilized. Effect sizes and 95% confidence intervals (CI) were estimated using Cohen's d for comparison between treatment groups. Three of four effect sizes for function had 95% CI that crossed zero. Twenty-four of the thirty-two effect sizes for edema had 95% CI that crossed zero. All effect sizes for pain had 95% CI that crossed zero. Therefore, the use of ES is not recommended as a means to improve function, reduce edema, or decrease pain in the treatment of acute lateral ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Zero-Profile Spacer Versus Cage-Plate Construct in Anterior Cervical Diskectomy and Fusion for Multilevel Cervical Spondylotic Myelopathy: Systematic Review and Meta-Analysis.

    PubMed

    Tong, Min-Ji; Xiang, Guang-Heng; He, Zi-Li; Chen, De-Heng; Tang, Qian; Xu, Hua-Zi; Tian, Nai-Feng

    2017-08-01

    Anterior cervical diskectomy and fusion with plate-screw construct has been gradually applied for multilevel cervical spondylotic myelopathy in recent years. However, long cervical plate was associated with complications including breakage or loosening of plate and screws, trachea-esophageal injury, neurovascular injury, and postoperative dysphagia. To reduce these complications, the zero-profile spacer has been introduced. This meta-analysis was performed to compare the clinical and radiologic outcomes of zero-profile spacer versus cage-plate construct for the treatment of multilevel cervical spondylotic myelopathy. We systematically searched MEDLINE, Springer, and Web of Science databases for relevant studies that compared the clinical and radiologic outcomes of zero-profile spacer versus cage and plate for multilevel cervical spondylotic myelopathy. Risk of bias in included studies was assessed. Pooled estimates and corresponding 95% confidence intervals were calculated. On the basis of predefined inclusion criteria, 7 studies with a total of 409 patients were included in this analysis. The pooled data revealed that zero-profile spacer was associated with a decreased dysphagia rate at 2, 3, and 6 months postoperatively when compared with the cage-plate group. Both techniques had similar perioperative outcomes, functional outcome, radiologic outcome, and dysphagia rate immediately and at >1-year after operation. On the basis of available evidence, zero-profile spacer was more effective in reducing postoperative dysphagia rate for multilevel cervical spondylotic myelopathy. Both devices were safe in anterior cervical surgeries, and they had similar efficacy in improving the functional and radiologic outcomes. More randomized controlled trials are needed to compare these 2 devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Electronic Zero-Point Oscillations in the Strong-Interaction Limit of Density Functional Theory.

    PubMed

    Gori-Giorgi, Paola; Vignale, Giovanni; Seidl, Michael

    2009-04-14

    The exchange-correlation energy in Kohn-Sham density functional theory can be expressed exactly in terms of the change in the expectation of the electron-electron repulsion operator when, in the many-electron Hamiltonian, this same operator is multiplied by a real parameter λ varying between 0 (Kohn-Sham system) and 1 (physical system). In this process, usually called adiabatic connection, the one-electron density is kept fixed by a suitable local one-body potential. The strong-interaction limit of density functional theory, defined as the limit λ→∞, turns out to be like the opposite noninteracting Kohn-Sham limit (λ→0) mathematically simpler than the physical (λ = 1) case and can be used to build an approximate interpolation formula between λ→0 and λ→∞ for the exchange-correlation energy. Here we extend the systematic treatment of the λ→∞ limit [Phys. Rev. A 2007, 75, 042511] to the next leading term, describing zero-point oscillations of strictly correlated electrons, with numerical examples for small spherical atoms. We also propose an improved approximate functional for the zero-point term and a revised interpolation formula for the exchange-correlation energy satisfying more exact constraints.

  9. The Charge Transfer Efficiency and Calibration of WFPC2

    NASA Technical Reports Server (NTRS)

    Dolphin, Andrew E.

    2000-01-01

    A new determination of WFPC2 photometric corrections is presented, using HSTphot reduction of the WFPC2 Omega Centauri and NGC 2419 observations from January 1994 through March 2000 and a comparison with ground-based photometry. No evidence is seen for any position-independent photometric offsets (the "long-short anomaly"); all systematic errors appear to be corrected with the CTE and zero point solution. The CTE loss time dependence is determined to be very significant in the Y direction, causing time-independent CTE solutions to be valid only for a small range of times. On average, the present solution produces corrections similar to Whitmore, Heyer, & Casertano, although with an improved functional form that produces less scatter in the residuals and determined with roughly a year of additional data. In addition to the CTE loss characterization, zero point corrections are also determined as functions of chip, gain, filter, and temperature. Of interest, there are chip-to-chip differences of order 0.01 - 0.02 magnitudes relative to the Holtzman et al. calibrations, and the present study provides empirical zero point determinations for the non-standard filters such as the frequently-used F450W, F606W, and F702W.

  10. Vertebral body fracture after anterior cervical discectomy and fusion with zero-profile anchored cages in adjacent levels: a cautionary tale.

    PubMed

    Mattei, Tobias A; Teles, Alisson R; Dinh, Dzung H

    2016-01-05

    Zero-profile (also called self-locking, anchored or stand-alone cages) have been recently proposed as an interesting alternative for anterior cervical discectomy and fusion (ACDF), as they are supposed to reduce the rates of post-operative cage extrusion without necessarily incurring in the additional surgical time and increased rates of dysphagia associated with plating. Nevertheless, the exact indications of zero-profile anchored cages have not yet been established in the literature. To report the first case of a vertebral body fracture between the blades of zero-profile anchored cages after ACDFs in adjacent levels and to review the available literature on hardware-related complications after multi-level ACDFs with zero-profile anchored cages. Case report and systematic literature review. The authors report the first case of a vertebral body fracture between the blades of zero-profile anchored cages after ACDFs in adjacent levels. The patient presented with refractory mechanical neck pain at the 1-month post-operative follow-up, ultimately requiring a posterior instrumented fusion. A comprehensive systematic literature review on the available data regarding the safety, complications as well as radiological and clinical outcomes of zero-profile anchored cages is also performed. In the reported case, the use of zero-profile anchored cages in adjacent levels on the cervical spine led to a fracture of the vertebral body between the cages at the 1-month follow-up, with anterior avulsion of the part of the vertebral body where the blades from the two cages converged. According to the systematic literature review which included 409 patients from 10 different clinical series (with a total cumulative follow-up of approximately 535 patients-year), there were only two reported hardware-related complications after ACDF with zero-profile anchored cages, none of them involving fracture at the level of convergence of blades or screws. Although hardware-related complications after the use of zero-profile anchored cages seem to be rare events, future biomechanical and clinical studies are warranted in order to evaluate the safety of employing such devices for the treatment of multilevel degenerative disc disease in the cervical spine.

  11. Meshless Local Petrov-Galerkin Method for Solving Contact, Impact and Penetration Problems

    DTIC Science & Technology

    2006-11-30

    Crack Growth 3 point of view, this approach makes the full use of the ex- isting FE models to avoid any model regeneration , which is extremely high in...process, at point C, the pressure reduces to zero, but the volumet- ric strain does not go to zero due to the collapsed void volume. 2.2 Damage...lease rate to go beyond the critical strain energy release rate. Thus, the micro-cracks begin to growth inside these areas. At 10 micro-seconds, these

  12. Controlled release of B-carotene in B-lactoglobulin-dextran conjugates nanoparticles in vitro digestion and the transport with Caco-2 monolayers

    USDA-ARS?s Scientific Manuscript database

    Undesirable aggregation of nanoparticles stabilized by proteins may may occur at the protein’s isoelectric point when the particle has zero net charge. Aggregation may be reduced bychanging the isoelectric point by conjugation of free amino groups with reducing sugars (Maillard reaction). Alternativ...

  13. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein.

    PubMed

    Salis, Andrea; Boström, Mathias; Medda, Luca; Cugia, Francesca; Barse, Brajesh; Parsons, Drew F; Ninham, Barry W; Monduzzi, Maura

    2011-09-20

    The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential). © 2011 American Chemical Society

  14. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement. 2. Evidence from continuous potentiometric titrations.

    PubMed

    Duc, Myriam; Gaboriaud, Fabien; Thomas, Fabien

    2005-09-01

    The effects of experimental procedures on the acid-base consumption titration curves of montmorillonite suspension were studied using continuous potentiometric titration. For that purpose, the hysteresis amplitudes between the acid and base branches were found to be useful to systematically evaluate the impacts of storage conditions (wet or dried), the atmosphere in titration reactor, the solid-liquid ratio, the time interval between successive increments, and the ionic strength. In the case of storage conditions, the increase of the hysteresis was significantly higher for longer storage of clay in suspension and drying procedures compared to "fresh" clay suspension. The titration carried out under air demonstrated carbonate contamination that could only be cancelled by performing experiments under inert gas. Interestingly, the increase of the time intervals between successive increments of titrant strongly emphasized the amplitude of hysteresis, which could be correlated with the slow kinetic process specifically observed for acid addition in acid media. Thus, such kinetic behavior is probably associated with dissolution processes of clay particles. However, the resulting curves recorded at different ionic strengths under optimized conditions did not show the common intersection point required to define point of zero charge. Nevertheless, the ionic strength dependence of the point of zero net proton charge suggested that the point of zero charge of sodic montmorillonite could be estimated as lower than 5.

  15. Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team

    2018-01-01

    We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.

  16. Effects of electron doping on the stability of the metal hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, M. A.; Rivas-Silva, J. F.; de la Peña-Seaman, O.; Heid, R.; Bohnen, K. P.

    2017-04-01

    Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

  17. Optical truss and retroreflector modeling for picometer laser metrology

    NASA Astrophysics Data System (ADS)

    Hines, Braden E.

    1993-09-01

    Space-based astrometric interferometer concepts typically have a requirement for the measurement of the internal dimensions of the instrument to accuracies in the picometer range. While this level of resolution has already been achieved for certain special types of laser gauges, techniques for picometer-level accuracy need to be developed to enable all the various kinds of laser gauges needed for space-based interferometers. Systematic errors due to retroreflector imperfections become important as soon as the retroreflector is allowed to either translate in position or articulate in angle away from its nominal zero-point. Also, when combining several laser interferometers to form a three-dimensional laser gauge (a laser optical truss), systematic errors due to imperfect knowledge of the truss geometry are important as the retroreflector translates away from its nominal zero-point. In order to assess the astrometric performance of a proposed instrument, it is necessary to determine how the effects of an imperfect laser metrology system impact the astrometric accuracy. This paper show the development of an error propagation model from errors in the 1-D metrology measurements through the impact on the overall astrometric accuracy for OSI. Simulations are then presented based on this development which were used to define a multiplier which determines the 1-D metrology accuracy required to produce a given amount of fringe position error.

  18. 40 CFR 86.1333 - Transient test cycle generation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... zero percent speeds, zero percent torque points, but may be engaged up to two points preceding a non-zero point, and may be engaged for time segments with zero percent speed and torque points of durations...

  19. Measurement of entropy generation within bypass transitional flow

    NASA Astrophysics Data System (ADS)

    Skifton, Richard; Budwig, Ralph; McEligot, Donald; Crepeau, John

    2012-11-01

    A flat plate made from quartz was submersed in the Idaho National Laboratory's Matched Index of Refraction (MIR) flow facility. PIV was utilized to capture spatial vectors maps at near wall locations with five to ten points within the viscous sublayer. Entropy generation was calculated directly from measured velocity fluctuation derivatives. Two flows were studied: a zero pressure gradient and an adverse pressure gradient (β = -0.039). The free stream turbulence intensity to drive bypass transition ranged between 3% (near trailing edge) and 8% (near leading edge). The pointwise entropy generation rate will be utilized as a design parameter to systematically reduce losses. As a second observation, the pointwise entropy can be shown to predict the onset of transitional flow. This research was partially supported by the DOE EPSCOR program, grant DE-SC0004751 and by the Idaho National Laboratory. Center for Advanced Energy Studies.

  20. The Sun-Earth saddle point: characterization and opportunities to test general relativity

    NASA Astrophysics Data System (ADS)

    Topputo, Francesco; Dei Tos, Diogene A.; Rasotto, Mirco; Nakamiya, Masaki

    2018-04-01

    The saddle points are locations where the net gravitational accelerations balance. These regions are gathering more attention within the astrophysics community. Regions about the saddle points present clean, close-to-zero background acceleration environments where possible deviations from General Relativity can be tested and quantified. Their location suggests that flying through a saddle point can be accomplished by leveraging highly nonlinear orbits. In this paper, the geometrical and dynamical properties of the Sun-Earth saddle point are characterized. A systematic approach is devised to find ballistic orbits that experience one or multiple passages through this point. A parametric analysis is performed to consider spacecraft initially on L_{1,2} Lagrange point orbits. Sun-Earth saddle point ballistic fly-through trajectories are evaluated and classified for potential use. Results indicate an abundance of short-duration, regular solutions with a variety of characteristics.

  1. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries.

    PubMed

    Alecu, I M; Zheng, Jingjing; Zhao, Yan; Truhlar, Donald G

    2010-09-14

    Optimized scale factors for calculating vibrational harmonic and fundamental frequencies and zero-point energies have been determined for 145 electronic model chemistries, including 119 based on approximate functionals depending on occupied orbitals, 19 based on single-level wave function theory, three based on the neglect-of-diatomic-differential-overlap, two based on doubly hybrid density functional theory, and two based on multicoefficient correlation methods. Forty of the scale factors are obtained from large databases, which are also used to derive two universal scale factor ratios that can be used to interconvert between scale factors optimized for various properties, enabling the derivation of three key scale factors at the effort of optimizing only one of them. A reduced scale factor optimization model is formulated in order to further reduce the cost of optimizing scale factors, and the reduced model is illustrated by using it to obtain 105 additional scale factors. Using root-mean-square errors from the values in the large databases, we find that scaling reduces errors in zero-point energies by a factor of 2.3 and errors in fundamental vibrational frequencies by a factor of 3.0, but it reduces errors in harmonic vibrational frequencies by only a factor of 1.3. It is shown that, upon scaling, the balanced multicoefficient correlation method based on coupled cluster theory with single and double excitations (BMC-CCSD) can lead to very accurate predictions of vibrational frequencies. With a polarized, minimally augmented basis set, the density functionals with zero-point energy scale factors closest to unity are MPWLYP1M (1.009), τHCTHhyb (0.989), BB95 (1.012), BLYP (1.013), BP86 (1.014), B3LYP (0.986), MPW3LYP (0.986), and VSXC (0.986).

  2. Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.

    NASA Astrophysics Data System (ADS)

    Stossel, Bryan Joseph

    1995-01-01

    Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.

  3. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2016-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.

  4. Symmetrical group theory for mathematical complexity reduction of digital holograms

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, A.; Guerrero-Juk, J.; Sanchez-Lara, R.; Perez-Ramirez, M.; Rodriguez-Blanco, M. A.; May-Alarcon, M.

    2017-10-01

    This work presents the use of mathematical group theory through an algorithm to reduce the multiplicative computational complexity in the process of creating digital holograms. An object is considered as a set of point sources using mathematical symmetry properties of both the core in the Fresnel integral and the image, where the image is modeled using group theory. This algorithm has multiplicative complexity equal to zero and an additive complexity ( k - 1) × N for the case of sparse matrices and binary images, where k is the number of pixels other than zero and N is the total points in the image.

  5. The Schrödinger Equation, the Zero-Point Electromagnetic Radiation, and the Photoelectric Effect

    NASA Astrophysics Data System (ADS)

    França, H. M.; Kamimura, A.; Barreto, G. A.

    2016-04-01

    A Schrödinger type equation for a mathematical probability amplitude Ψ( x, t) is derived from the generalized phase space Liouville equation valid for the motion of a microscopic particle, with mass M and charge e, moving in a potential V( x). The particle phase space probability density is denoted Q( x, p, t), and the entire system is immersed in the "vacuum" zero-point electromagnetic radiation. We show, in the first part of the paper, that the generalized Liouville equation is reduced to a simpler Liouville equation in the equilibrium limit where the small radiative corrections cancel each other approximately. This leads us to a simpler Liouville equation that will facilitate the calculations in the second part of the paper. Within this second part, we address ourselves to the following task: Since the Schrödinger equation depends on hbar , and the zero-point electromagnetic spectral distribution, given by ρ 0{(ω )} = hbar ω 3/2 π 2 c3, also depends on hbar , it is interesting to verify the possible dynamical connection between ρ 0( ω) and the Schrödinger equation. We shall prove that the Planck's constant, present in the momentum operator of the Schrödinger equation, is deeply related with the ubiquitous zero-point electromagnetic radiation with spectral distribution ρ 0( ω). For simplicity, we do not use the hypothesis of the existence of the L. de Broglie matter-waves. The implications of our study for the standard interpretation of the photoelectric effect are discussed by considering the main characteristics of the phenomenon. We also mention, briefly, the effects of the zero-point radiation in the tunneling phenomenon and the Compton's effect.

  6. Wave-CAIPI ViSTa: highly accelerated whole-brain direct myelin water imaging with zero-padding reconstruction.

    PubMed

    Wu, Zhe; Bilgic, Berkin; He, Hongjian; Tong, Qiqi; Sun, Yi; Du, Yiping; Setsompop, Kawin; Zhong, Jianhui

    2018-09-01

    This study introduces a highly accelerated whole-brain direct visualization of short transverse relaxation time component (ViSTa) imaging using a wave controlled aliasing in parallel imaging (CAIPI) technique, for acquisition within a clinically acceptable scan time, with the preservation of high image quality and sufficient spatial resolution, and reduced residual point spread function artifacts. Double inversion RF pulses were applied to preserve the signal from short T 1 components for directly extracting myelin water signal in ViSTa imaging. A 2D simultaneous multislice and a 3D acquisition of ViSTa images incorporating wave-encoding were used for data acquisition. Improvements brought by a zero-padding method in wave-CAIPI reconstruction were also investigated. The zero-padding method in wave-CAIPI reconstruction reduced the root-mean-square errors between the wave-encoded and Cartesian gradient echoes for all wave gradient configurations in simulation, and reduced the side-main lobe intensity ratio from 34.5 to 16% in the thin-slab in vivo ViSTa images. In a 4 × acceleration simultaneous-multislice scenario, wave-CAIPI ViSTa achieved negligible g-factors (g mean /g max  = 1.03/1.10), while retaining minimal interslice artifacts. An 8 × accelerated acquisition of 3D wave-CAIPI ViSTa imaging covering the whole brain with 1.1 × 1.1 × 3 mm 3 voxel size was achieved within 15 minutes, and only incurred a small g-factor penalty (g mean /g max  = 1.05/1.16). Whole-brain ViSTa images were obtained within 15 minutes with negligible g-factor penalty by using wave-CAIPI acquisition and zero-padding reconstruction. The proposed zero-padding method was shown to be effective in reducing residual point spread function for wave-encoded images, particularly for ViSTa. © 2018 International Society for Magnetic Resonance in Medicine.

  7. 76 FR 79177 - Policy Statement Concerning Adjustments to the Insurance Premiums and Policy Statement on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Credit System Financial Assistance Corporation (FAC) stockholders; allocate any excess balances above the... between zero and the statutory rate of 20 basis points. The Board will not reduce the 10 basis points...; allocate any excess balances above the SBA to these AIRAs; and make partial distributions of the excess...

  8. Net Zero Energy Military Installations: A Guide to Assessment and Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, S.; Barnett, J.; Burman, K.

    2010-08-01

    The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zeromore » energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.« less

  9. A two-point diagnostic for the H II galaxy Hubble diagram

    NASA Astrophysics Data System (ADS)

    Leaf, Kyle; Melia, Fulvio

    2018-03-01

    A previous analysis of starburst-dominated H II galaxies and H II regions has demonstrated a statistically significant preference for the Friedmann-Robertson-Walker cosmology with zero active mass, known as the Rh = ct universe, over Λcold dark matter (ΛCDM) and its related dark-matter parametrizations. In this paper, we employ a two-point diagnostic with these data to present a complementary statistical comparison of Rh = ct with Planck ΛCDM. Our two-point diagnostic compares, in a pairwise fashion, the difference between the distance modulus measured at two redshifts with that predicted by each cosmology. Our results support the conclusion drawn by a previous comparative analysis demonstrating that Rh = ct is statistically preferred over Planck ΛCDM. But we also find that the reported errors in the H II measurements may not be purely Gaussian, perhaps due to a partial contamination by non-Gaussian systematic effects. The use of H II galaxies and H II regions as standard candles may be improved even further with a better handling of the systematics in these sources.

  10. Vibrational zero point energy for H-doped silicon

    NASA Astrophysics Data System (ADS)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  11. Threshold-adaptive canny operator based on cross-zero points

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Zhang, Xiuhua; Hong, Hanyu

    2018-03-01

    Canny edge detection[1] is a technique to extract useful structural information from different vision objects and dramatically reduce the amount of data to be processed. It has been widely applied in various computer vision systems. There are two thresholds have to be settled before the edge is segregated from background. Usually, by the experience of developers, two static values are set as the thresholds[2]. In this paper, a novel automatic thresholding method is proposed. The relation between the thresholds and Cross-zero Points is analyzed, and an interpolation function is deduced to determine the thresholds. Comprehensive experimental results demonstrate the effectiveness of proposed method and advantageous for stable edge detection at changing illumination.

  12. Improving Photometric Calibration of Meteor Video Camera Systems.

    PubMed

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-09-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  13. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  14. The new Zero-P implant can effectively reduce the risk of postoperative dysphagia and complications compared with the traditional anterior cage and plate: a systematic review and meta-analysis.

    PubMed

    Yin, Mengchen; Ma, Junming; Huang, Quan; Xia, Ye; Shen, Qixing; Zhao, Chenglong; Tao, Jun; Chen, Ni; Yu, Zhingxing; Ye, Jie; Mo, Wen; Xiao, Jianru

    2016-10-18

    The low-profile angle-stable spacer Zero-P is a new kind of cervical fusion system that is claimed to limit the potential drawbacks and complications. The purpose of this meta-analysis was to compare the clinical and radiological results of the new Zero-P implant with those of the traditional anterior cage and plate in the treatment of symptomatic cervical spondylosis, and provides clinicians with evidence on which to base their clinical decision making. The following electronic databases were searched: PMedline, PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, Evidence Based Medicine Reviews, VIP, and CNKI. Conference posters and abstracts were also electronically searched. The efficacy was evaluated in intraoperative time, intraoperative blood loss, fusion rate and dysphagia. For intraoperative time and intraoperative blood loss, the meta-analysis revealed that the Zero-P surgical technique is not superior to the cage and plate technique . For fusion rate, the two techniques both had good bone fusion, however, this difference is not statistically significant. For decrease of JOA and dysphagia, the pooled data showed that the Zero-P surgical technique is superior to the cage and plate technique. Zero-P interbody fusion can attain good clinical efficacy and a satisfactory fusion rate in the treatment of symptomatic cervical spondylosis. It also can effectively reduce the risk of postoperative dysphagia and its complications. However, owing to the lack of long-term follow-up, its long-term efficacy remains unknown.

  15. Uncertainties in scaling factors for ab initio vibrational zero-point energies

    NASA Astrophysics Data System (ADS)

    Irikura, Karl K.; Johnson, Russell D.; Kacker, Raghu N.; Kessel, Rüdiger

    2009-03-01

    Vibrational zero-point energies (ZPEs) determined from ab initio calculations are often scaled by empirical factors. An empirical scaling factor partially compensates for the effects arising from vibrational anharmonicity and incomplete treatment of electron correlation. These effects are not random but are systematic. We report scaling factors for 32 combinations of theory and basis set, intended for predicting ZPEs from computed harmonic frequencies. An empirical scaling factor carries uncertainty. We quantify and report, for the first time, the uncertainties associated with scaling factors for ZPE. The uncertainties are larger than generally acknowledged; the scaling factors have only two significant digits. For example, the scaling factor for B3LYP/6-31G(d) is 0.9757±0.0224 (standard uncertainty). The uncertainties in the scaling factors lead to corresponding uncertainties in predicted ZPEs. The proposed method for quantifying the uncertainties associated with scaling factors is based upon the Guide to the Expression of Uncertainty in Measurement, published by the International Organization for Standardization. We also present a new reference set of 60 diatomic and 15 polyatomic "experimental" ZPEs that includes estimated uncertainties.

  16. Gravity and Zero Point Energy

    NASA Astrophysics Data System (ADS)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  17. Theory of point contact spectroscopy in correlated materials

    DOE PAGES

    Lee, Wei-Cheng; Park, Wan Kyu; Arham, Hamood Z.; ...

    2015-01-05

    Here, we developed a microscopic theory for the point-contact conductance between a metallic electrode and a strongly correlated material using the nonequilibrium Schwinger-Kadanoff-Baym-Keldysh formalism. We explicitly show that, in the classical limit, contact size shorter than the scattering length of the system, the microscopic model can be reduced to an effective model with transfer matrix elements that conserve in-plane momentum. We found that the conductance dI/dV is proportional to the effective density of states, that is, the integrated single-particle spectral function A(ω = eV) over the whole Brillouin zone. From this conclusion, we are able to establish the conditions undermore » which a non-Fermi liquid metal exhibits a zero-bias peak in the conductance. Lastly, this finding is discussed in the context of recent point-contact spectroscopy on the iron pnictides and chalcogenides, which has exhibited a zero-bias conductance peak.« less

  18. Targeting Net Zero Energy for Military Installations (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burman, K.

    2012-05-01

    Targeting Net Zero Energy for Military Installations in Kaneohe Bay, Hawaii. A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  19. Experience theory, or How desserts are like losses.

    PubMed

    Martin, Jolie M; Reimann, Martin; Norton, Michael I

    2016-11-01

    Although many experiments have explored risk preferences for money, few have systematically assessed risk preferences for everyday experiences. We propose a conceptual model and provide convergent evidence from 7 experiments to suggest that, in contrast to a typical "zero" reference point for choices on money, reference points for choices of experiences are set at more extreme outcomes, leading to concave utility for negative experiences but convex utility for positive experiences. As a result, people are more risk-averse for negative experiences such as disgusting foods-as for monetary gains-but more risk-seeking for positive experiences such as desserts-as for monetary losses. These risk preferences for experiences are robust to different methods of elicitation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torcellini, Paul A.; Bonnema, Eric; Goldwasser, David

    Building energy consumption can only be measured at the site or at the point of utility interconnection with a building. Often, to evaluate the total energy impact, this site-based energy consumption is translated into source energy, that is, the energy at the point of fuel extraction. Consistent with this approach, the U.S. Department of Energy's (DOE) definition of zero energy buildings uses source energy as the metric to account for energy losses from the extraction, transformation, and delivery of energy. Other organizations, as well, use source energy to characterize the energy impacts. Four methods of making the conversion from sitemore » energy to source energy were investigated in the context of the DOE definition of zero energy buildings. These methods were evaluated based on three guiding principles--improve energy efficiency, reduce and stabilize power demand, and use power from nonrenewable energy sources as efficiently as possible. This study examines relative trends between strategies as they are implemented on very low-energy buildings to achieve zero energy. A typical office building was modeled and variations to this model performed. The photovoltaic output that was required to create a zero energy building was calculated. Trends were examined with these variations to study the impacts of the calculation method on the building's ability to achieve zero energy status. The paper will highlight the different methods and give conclusions on the advantages and disadvantages of the methods studied.« less

  1. Ambiguity of non-systematic chemical identifiers within and between small-molecule databases.

    PubMed

    Akhondi, Saber A; Muresan, Sorel; Williams, Antony J; Kors, Jan A

    2015-01-01

    A wide range of chemical compound databases are currently available for pharmaceutical research. To retrieve compound information, including structures, researchers can query these chemical databases using non-systematic identifiers. These are source-dependent identifiers (e.g., brand names, generic names), which are usually assigned to the compound at the point of registration. The correctness of non-systematic identifiers (i.e., whether an identifier matches the associated structure) can only be assessed manually, which is cumbersome, but it is possible to automatically check their ambiguity (i.e., whether an identifier matches more than one structure). In this study we have quantified the ambiguity of non-systematic identifiers within and between eight widely used chemical databases. We also studied the effect of chemical structure standardization on reducing the ambiguity of non-systematic identifiers. The ambiguity of non-systematic identifiers within databases varied from 0.1 to 15.2 % (median 2.5 %). Standardization reduced the ambiguity only to a small extent for most databases. A wide range of ambiguity existed for non-systematic identifiers that are shared between databases (17.7-60.2 %, median of 40.3 %). Removing stereochemistry information provided the largest reduction in ambiguity across databases (median reduction 13.7 percentage points). Ambiguity of non-systematic identifiers within chemical databases is generally low, but ambiguity of non-systematic identifiers that are shared between databases, is high. Chemical structure standardization reduces the ambiguity to a limited extent. Our findings can help to improve database integration, curation, and maintenance.

  2. Progressing beyond SLMTA: Are internal audits and corrective action the key drivers of quality improvement?

    PubMed

    Maina, Robert N; Mengo, Doris M; Mohamud, Abdikher D; Ochieng, Susan M; Milgo, Sammy K; Sexton, Connie J; Moyo, Sikhulile; Luman, Elizabeth T

    2014-01-01

    Kenya has implemented the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme to facilitate quality improvement in medical laboratories and to support national accreditation goals. Continuous quality improvement after SLMTA completion is needed to ensure sustainability and continue progress toward accreditation. Audits were conducted by qualified, independent auditors to assess the performance of five enrolled laboratories using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. End-of-programme (exit) and one year post-programme (surveillance) audits were compared for overall score, star level (from zero to five, based on scores) and scores for each of the 12 Quality System Essential (QSE) areas that make up the SLIPTA checklist. All laboratories improved from exit to surveillance audit (median improvement 38 percentage points, range 5-45 percentage points). Two laboratories improved from zero to one star, two improved from zero to three stars and one laboratory improved from three to four stars. The lowest median QSE scores at exit were: internal audit; corrective action; and occurrence management and process improvement (< 20%). Each of the 12 QSEs improved substantially at surveillance audit, with the greatest improvement in client management and customer service, internal audit and information management (≥ 50 percentage points). The two laboratories with the greatest overall improvement focused heavily on the internal audit and corrective action QSEs. Whilst all laboratories improved from exit to surveillance audit, those that focused on the internal audit and corrective action QSEs improved substantially more than those that did not; internal audits and corrective actions may have acted as catalysts, leading to improvements in other QSEs. Systematic identification of core areas and best practices to address them is a critical step toward strengthening public medical laboratories.

  3. Progressing beyond SLMTA: Are internal audits and corrective action the key drivers of quality improvement?

    PubMed Central

    Mengo, Doris M.; Mohamud, Abdikher D.; Ochieng, Susan M.; Milgo, Sammy K.; Sexton, Connie J.; Moyo, Sikhulile; Luman, Elizabeth T.

    2014-01-01

    Background Kenya has implemented the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme to facilitate quality improvement in medical laboratories and to support national accreditation goals. Continuous quality improvement after SLMTA completion is needed to ensure sustainability and continue progress toward accreditation. Methods Audits were conducted by qualified, independent auditors to assess the performance of five enrolled laboratories using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. End-of-programme (exit) and one year post-programme (surveillance) audits were compared for overall score, star level (from zero to five, based on scores) and scores for each of the 12 Quality System Essential (QSE) areas that make up the SLIPTA checklist. Results All laboratories improved from exit to surveillance audit (median improvement 38 percentage points, range 5–45 percentage points). Two laboratories improved from zero to one star, two improved from zero to three stars and one laboratory improved from three to four stars. The lowest median QSE scores at exit were: internal audit; corrective action; and occurrence management and process improvement (< 20%). Each of the 12 QSEs improved substantially at surveillance audit, with the greatest improvement in client management and customer service, internal audit and information management (≥ 50 percentage points). The two laboratories with the greatest overall improvement focused heavily on the internal audit and corrective action QSEs. Conclusion Whilst all laboratories improved from exit to surveillance audit, those that focused on the internal audit and corrective action QSEs improved substantially more than those that did not; internal audits and corrective actions may have acted as catalysts, leading to improvements in other QSEs. Systematic identification of core areas and best practices to address them is a critical step toward strengthening public medical laboratories. PMID:29043193

  4. The Andrews’ Principles of Risk, Need, and Responsivity as Applied in Drug Abuse Treatment Programs: Meta-Analysis of Crime and Drug Use Outcomes

    PubMed Central

    Prendergast, Michael L.; Pearson, Frank S.; Podus, Deborah; Hamilton, Zachary K.; Greenwell, Lisa

    2013-01-01

    Objectives The purpose of the present meta-analysis was to answer the question: Can the Andrews principles of risk, needs, and responsivity, originally developed for programs that treat offenders, be extended to programs that treat drug abusers? Methods Drawing from a dataset that included 243 independent comparisons, we conducted random-effects meta-regression and ANOVA-analog meta-analyses to test the Andrews principles by averaging crime and drug use outcomes over a diverse set of programs for drug abuse problems. Results For crime outcomes, in the meta-regressions the point estimates for each of the principles were substantial, consistent with previous studies of the Andrews principles. There was also a substantial point estimate for programs exhibiting a greater number of the principles. However, almost all of the 95% confidence intervals included the zero point. For drug use outcomes, in the meta-regressions the point estimates for each of the principles was approximately zero; however, the point estimate for programs exhibiting a greater number of the principles was somewhat positive. All of the estimates for the drug use principles had confidence intervals that included the zero point. Conclusions This study supports previous findings from primary research studies targeting the Andrews principles that those principles are effective in reducing crime outcomes, here in meta-analytic research focused on drug treatment programs. By contrast, programs that follow the principles appear to have very little effect on drug use outcomes. Primary research studies that experimentally test the Andrews principles in drug treatment programs are recommended. PMID:24058325

  5. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    NASA Astrophysics Data System (ADS)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  6. Study of the dislocation contribution to the internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  7. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  8. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  9. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A of Part 1209—Zero Reference Point Related to Detecting...

  10. The motion near L{sub 4} equilibrium point under non-point mass primaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id; Utama, J. A.; Madley, D.

    2015-09-30

    The Circular Restricted Three-Body Problem (CRTBP) possesses five equilibrium points, that comprise three collinear (L{sub 1}, L{sub 2}, and L{sub 3}) and two triangular points (L{sub 4} and L{sub 5}). The classical study (with the primaries are point mass) suggests that the equilibrium points may cause the velocity of infinitesimal object relatively becomes zero and reveals the zero velocity curve. We study the motion of infinitesimal object near triangular equilibrium point (L{sub 4}) and determine its zero velocity curve. We extend the study by taking into account the effects of radiation of the bigger primary (q{sub 1} ≠ 1, q{submore » 2} = 1) and oblateness of the smaller primary (A{sub 1} = 0, A{sub 2} ≠ 0). The location of L{sub 4} is analytically derived then the stability of L{sub 4} and its zero velocity curves are studied numerically. Our study suggests that the oblateness and the radiation of primaries may affect the stability and zero velocity curve around L{sub 4}.« less

  11. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  12. Precision zero-home locator

    DOEpatents

    Stone, W.J.

    1983-10-31

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  13. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage

    NASA Astrophysics Data System (ADS)

    Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru

    Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.

  14. Computer Analysis of 400 HZ Aircraft Electrical Generator Test Data.

    DTIC Science & Technology

    1980-06-01

    Data Acquisition System. ............ 6 3 Voltage Waveform with Data Points. ....... 19 14 Zero Crossover Interpolation. ........ 20 5 Numerical...difference between successive positive-sloped zero crossovers of the waveform. However, the exact time of zero crossover is not known. This is because...data sampling and the generator output are not synchronized. This unsynchronization means that data points which correspond with an exact zero crossover

  15. Zero-point term and quantum effects in the Johnson noise of resistors: a critical appraisal

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes G.

    2016-05-01

    There is a longstanding debate about the zero-point term in the Johnson noise voltage of a resistor. This term originates from a quantum-theoretical treatment of the fluctuation-dissipation theorem (FDT). Is the zero-point term really there, or is it only an experimental artifact, due to the uncertainty principle, for phase-sensitive amplifiers? Could it be removed by renormalization of theories? We discuss some historical measurement schemes that do not lead to the effect predicted by the FDT, and we analyse new features that emerge when the consequences of the zero-point term are measured via the mean energy and force in a capacitor shunting the resistor. If these measurements verify the existence of a zero-point term in the noise, then two types of perpetual motion machines can be constructed. Further investigation with the same approach shows that, in the quantum limit, the Johnson-Nyquist formula is also invalid under general conditions even though it is valid for a resistor-antenna system. Therefore we conclude that in a satisfactory quantum theory of the Johnson noise, the FDT must, as a minimum, include also the measurement system used to evaluate the observed quantities. Issues concerning the zero-point term may also have implications for phenomena in advanced nanotechnology.

  16. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.

    PubMed

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2014-11-07

    Zero-point and excited level splittings due to double-proton tunneling are calculated for porphycene and the results are compared with experiment. The calculation makes use of a multidimensional imaginary-mode Hamiltonian, diagonalized directly by an effective reduction of its dimensionality. Porphycene has a complex potential energy surface with nine stationary configurations that allow a variety of tunneling paths, many of which include classically accessible regions. A symmetry-based approach is used to show that the zero-point level, although located above the cis minimum, corresponds to concerted tunneling along a direct trans - trans path; a corresponding cis - cis path is predicted at higher energy. This supports the conclusion of a previous paper [Z. Smedarchina, W. Siebrand, and A. Fernández-Ramos, J. Chem. Phys. 127, 174513 (2007)] based on the instanton approach to a model Hamiltonian of correlated double-proton transfer. A multidimensional tunneling Hamiltonian is then generated, based on a double-minimum potential along the coordinate of concerted proton motion, which is newly evaluated at the RI-CC2/cc-pVTZ level of theory. To make it suitable for diagonalization, its dimensionality is reduced by treating fast weakly coupled modes in the adiabatic approximation. This results in a coordinate-dependent mass of tunneling, which is included in a unique Hermitian form into the kinetic energy operator. The reduced Hamiltonian contains three symmetric and one antisymmetric mode coupled to the tunneling mode and is diagonalized by a modified Jacobi-Davidson algorithm implemented in the Jadamilu software for sparse matrices. The results are in satisfactory agreement with the observed splitting of the zero-point level and several vibrational fundamentals after a partial reassignment, imposed by recently derived selection rules. They also agree well with instanton calculations based on the same Hamiltonian.

  17. The Lyman-α power spectrum—CMB lensing convergence cross-correlation

    DOE PAGES

    Chiang, Chi-Ting; Slosar, Anže

    2018-01-11

    We investigate the three-point correlation between the Lyman-α forest and the CMB weak lensing (δ Fδ FΚ) expressed as the cross-correlation between the CMB weak lensing field and local variations in the forest power spectrum. In addition to the standard gravitational bispectrum term, we note the existence of a non-standard systematic term coming from mis-estimation of the mean flux over the finite length of Lyman-α skewers. We numerically calculate the angular cross-power spectrum and discuss its features. We integrate it into zero-lag correlation function and compare our predictions with recent results by Doux et al.. We nd that our predictionsmore » are statistically consistent with the measurement, and including the systematic term improves the agreement with the measurement. We comment on the implication of the response of the Lyman-α forest power spectrum to the long-wavelength density perturbations.« less

  18. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  19. The Lyman-α power spectrum—CMB lensing convergence cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Slosar, Anže

    We investigate the three-point correlation between the Lyman-α forest and the CMB weak lensing (δ Fδ FΚ) expressed as the cross-correlation between the CMB weak lensing field and local variations in the forest power spectrum. In addition to the standard gravitational bispectrum term, we note the existence of a non-standard systematic term coming from mis-estimation of the mean flux over the finite length of Lyman-α skewers. We numerically calculate the angular cross-power spectrum and discuss its features. We integrate it into zero-lag correlation function and compare our predictions with recent results by Doux et al.. We nd that our predictionsmore » are statistically consistent with the measurement, and including the systematic term improves the agreement with the measurement. We comment on the implication of the response of the Lyman-α forest power spectrum to the long-wavelength density perturbations.« less

  20. Fixing the reference frame for PPMXL proper motions using extragalactic sources

    DOE PAGES

    Grabowski, Kathleen; Carlin, Jeffrey L.; Newberg, Heidi Jo; ...

    2015-05-27

    In this study, we quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Vèron-Cetty & Vèron Catalog of Quasars. Although the majority of the sources are from the Vèron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measurable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu et al.,more » and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. Finally, we average the proper motions of 158 106 extragalactic objects in bins of 3° × 3° and present a table of proper motion corrections.« less

  1. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    NASA Astrophysics Data System (ADS)

    Uddin, Iftikhar; Khan, Muhammad Altaf; Ullah, Saif; Islam, Saeed; Israr, Muhammad; Hussain, Fawad

    2018-03-01

    This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution.

  2. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  3. The Carnegie Hubble Program

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Vicky; Mnso, Andy; Persson, S. E.; Rigby, Jane; Sturch, Laura; Stetson, Peter

    2011-01-01

    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies.

  4. Measurements of the electric field of zero-point optical phonons in GaAs quantum wells support the Urbach rule for zero-temperature lifetime broadening.

    PubMed

    Bhattacharya, Rupak; Mondal, Richarj; Khatua, Pradip; Rudra, Alok; Kapon, Eli; Malzer, Stefan; Döhler, Gottfried; Pal, Bipul; Bansal, Bhavtosh

    2015-01-30

    We study a specific type of lifetime broadening resulting in the well-known exponential "Urbach tail" density of states within the energy gap of an insulator. After establishing the frequency and temperature dependence of the Urbach edge in GaAs quantum wells, we show that the broadening due to the zero-point optical phonons is the fundamental limit to the Urbach slope in high-quality samples. In rough analogy with Welton's heuristic interpretation of the Lamb shift, the zero-temperature contribution to the Urbach slope can be thought of as arising from the electric field of the zero-point longitudinal-optical phonons. The value of this electric field is experimentally measured to be 3  kV cm-1, in excellent agreement with the theoretical estimate.

  5. Student Teaching at Ground Zero: One Muslim Woman's Challenge

    ERIC Educational Resources Information Center

    Atiyat, Zareen Niazi

    2006-01-01

    In this article, the author, who is a Muslim English teacher shares her teaching experiences after the events of September 11, 2001 and shares her views on Islam. She points out that her appearance and clothing do not represent oppression and restriction but the liberation of her body from the unwanted gazes of those who reduce women from people…

  6. Edgewood Area - Aberdeen Proving Ground Five-Year Review

    DTIC Science & Technology

    2008-10-01

    27 / 2001 Reduce the contaminant mass in the J-Field surficial aquifer through DNAPL recovery, phytoremediation , and natural processes; Eliminate...exposure to groundwater; and Control off-site contaminant migration from the confined aquifer. Institutional Controls Phytoremediation Monitoring... phytoremediation and natural degradaton processes. 2. Monitoring of MCLs and non-zero MCLGs at points outside of the designated TI Zone. J-Field

  7. Different Modes of Feedback and Peak Vertical Ground Reaction Force During Jump Landing: A Systematic Review

    PubMed Central

    Ericksen, Hayley M.; Gribble, Phillip A.; Pfile, Kate R.; Pietrosimone, Brian G.

    2013-01-01

    Context: Excessive ground reaction force when landing from a jump may result in lower extremity injuries. It is important to better understand how feedback can influence ground reaction force (GRF) and potentially reduce injury risk. Objective: To determine the effect of expert-provided (EP), self-analysis (SA), and combination EP and SA (combo) feedback on reducing peak vertical GRF during a jump-landing task. Data Sources: We searched the Web of Science database on July 1, 2011; using the search terms ground reaction force, landing biomechanics, and feedback elicited 731 initial hits. Study Selection: Of the 731 initial hits, our final analysis included 7 studies that incorporated 32 separate data comparisons. Data Extraction: Standardized effect sizes and 95% confidence intervals (CIs) were calculated between pretest and posttest scores for each feedback condition. Data Synthesis: We found a homogeneous beneficial effect for combo feedback, indicating a reduction in GRF with no CIs crossing zero. We also found a homogeneous beneficial effect for EP feedback, but the CIs from 4 of the 10 data comparisons crossed zero. The SA feedback showed strong, definitive effects when the intervention included a videotape SA, with no CIs crossing zero. Conclusions: Of the 7 studies reviewed, combo feedback seemed to produce the greatest decrease in peak vertical GRF during a jump-landing task. PMID:24067153

  8. The serpentine optical waveguide: engineering the dispersion relations and the stopped light points.

    PubMed

    Scheuer, Jacob; Weiss, Ori

    2011-06-06

    We present a study a new type of optical slow-light structure comprising a serpentine shaped waveguide were the loops are coupled. The dispersion relation, group velocity and GVD are studied analytically using a transfer matrix method and numerically using finite difference time domain simulations. The structure exhibits zero group velocity points at the ends of the Brillouin zone, but also within the zone. The position of mid-zone zero group velocity point can be tuned by modifying the coupling coefficient between adjacent loops. Closed-form analytic expressions for the dispersion relations, group velocity and the mid-zone zero v(g) points are found and presented.

  9. Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.

    PubMed

    Zhenwei Miao; Xudong Jiang; Kim-Hui Yap

    2016-01-01

    The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.

  10. Multibody Parachute Flight Simulations for Planetary Entry Trajectories Using "Equilibrium Points"

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Ben

    2003-01-01

    A method has been developed to reduce numerical stiffness and computer CPU requirements of high fidelity multibody flight simulations involving parachutes for planetary entry trajectories. Typical parachute entry configurations consist of entry bodies suspended from a parachute, connected by flexible lines. To accurately calculate line forces and moments, the simulations need to keep track of the point where the flexible lines meet (confluence point). In previous multibody parachute flight simulations, the confluence point has been modeled as a point mass. Using a point mass for the confluence point tends to make the simulation numerically stiff, because its mass is typically much less that than the main rigid body masses. One solution for stiff differential equations is to use a very small integration time step. However, this results in large computer CPU requirements. In the method described in the paper, the need for using a mass as the confluence point has been eliminated. Instead, the confluence point is modeled using an "equilibrium point". This point is calculated at every integration step as the point at which sum of all line forces is zero (static equilibrium). The use of this "equilibrium point" has the advantage of both reducing the numerical stiffness of the simulations, and eliminating the dynamical equations associated with vibration of a lumped mass on a high-tension string.

  11. Large magnetoresistance dips and perfect spin-valley filter induced by topological phase transitions in silicene

    NASA Astrophysics Data System (ADS)

    Prarokijjak, Worasak; Soodchomshom, Bumned

    2018-04-01

    Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.

  12. Reducing injection loss in drill strings

    DOEpatents

    Drumheller, Douglas S.

    2004-09-14

    A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.

  13. Analytic second derivatives of the energy in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2013-04-01

    We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.

  14. Thermal/vacuum vs. thermal atmospheric testing of space flight electronic assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark

    1990-01-01

    For space flight hardware, the thermal vacuum environmental test is the best test of a system's flight worthiness. Substituting an atmospheric pressure thermal test for a thermal/vacuum test can effectively reduce piece part temperatures by 20 C or more, even for low power density designs. Similar reductions in test effectiveness can also result from improper assembly level T/V test boundary conditions. The net result of these changes may reduce the effective test temperatures to the point where there is zero or negative margin over the flight thermal environment.

  15. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.

    PubMed

    Mancini, John S; Bowman, Joel M

    2013-03-28

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.

  16. Social Welfare Control in Mobile Crowdsensing Using Zero-Determinant Strategy.

    PubMed

    Hu, Qin; Wang, Shengling; Bie, Rongfang; Cheng, Xiuzhen

    2017-05-03

    As a promising paradigm, mobile crowdsensing exerts the potential of widespread sensors embedded in mobile devices. The greedy nature of workers brings the problem of low-quality sensing data, which poses threats to the overall performance of a crowdsensing system. Existing works often tackle this problem with additional function components. In this paper, we systematically formulate the problem into a crowdsensing interaction process between a requestor and a worker, which can be modeled by two types of iterated games with different strategy spaces. Considering that the low-quality data submitted by the workers can reduce the requestor's payoff and further decrease the global income, we turn to controlling the social welfare in the games. To that aim, we take advantage of zero-determinant strategy, based on which we propose two social welfare control mechanisms under both game models. Specifically, we consider the requestor as the controller of the games and, with proper parameter settings for the to-be-adopted zero-determinant strategy, social welfare can be optimized to the desired level no matter what strategy the worker adopts. Simulation results demonstrate that the requestor can achieve the maximized social welfare and keep it stable by using our proposed mechanisms.

  17. Social Welfare Control in Mobile Crowdsensing Using Zero-Determinant Strategy

    PubMed Central

    Hu, Qin; Wang, Shengling; Bie, Rongfang; Cheng, Xiuzhen

    2017-01-01

    As a promising paradigm, mobile crowdsensing exerts the potential of widespread sensors embedded in mobile devices. The greedy nature of workers brings the problem of low-quality sensing data, which poses threats to the overall performance of a crowdsensing system. Existing works often tackle this problem with additional function components. In this paper, we systematically formulate the problem into a crowdsensing interaction process between a requestor and a worker, which can be modeled by two types of iterated games with different strategy spaces. Considering that the low-quality data submitted by the workers can reduce the requestor’s payoff and further decrease the global income, we turn to controlling the social welfare in the games. To that aim, we take advantage of zero-determinant strategy, based on which we propose two social welfare control mechanisms under both game models. Specifically, we consider the requestor as the controller of the games and, with proper parameter settings for the to-be-adopted zero-determinant strategy, social welfare can be optimized to the desired level no matter what strategy the worker adopts. Simulation results demonstrate that the requestor can achieve the maximized social welfare and keep it stable by using our proposed mechanisms. PMID:28467370

  18. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity

    NASA Astrophysics Data System (ADS)

    Huang, Bing; von Lilienfeld, O. Anatole

    2016-10-01

    The predictive accuracy of Machine Learning (ML) models of molecular properties depends on the choice of the molecular representation. Inspired by the postulates of quantum mechanics, we introduce a hierarchy of representations which meet uniqueness and target similarity criteria. To systematically control target similarity, we simply rely on interatomic many body expansions, as implemented in universal force-fields, including Bonding, Angular (BA), and higher order terms. Addition of higher order contributions systematically increases similarity to the true potential energy and predictive accuracy of the resulting ML models. We report numerical evidence for the performance of BAML models trained on molecular properties pre-calculated at electron-correlated and density functional theory level of theory for thousands of small organic molecules. Properties studied include enthalpies and free energies of atomization, heat capacity, zero-point vibrational energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential, electron affinity, and electronic excitations. After training, BAML predicts energies or electronic properties of out-of-sample molecules with unprecedented accuracy and speed.

  19. POLARBEAR constraints on cosmic birefringence and primordial magnetic fields

    DOE PAGES

    Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; ...

    2015-12-08

    Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magneticmore » field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.« less

  20. Adaptive Dynamic Programming for Discrete-Time Zero-Sum Games.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Qiao; Song, Ruizhuo

    2018-04-01

    In this paper, a novel adaptive dynamic programming (ADP) algorithm, called "iterative zero-sum ADP algorithm," is developed to solve infinite-horizon discrete-time two-player zero-sum games of nonlinear systems. The present iterative zero-sum ADP algorithm permits arbitrary positive semidefinite functions to initialize the upper and lower iterations. A novel convergence analysis is developed to guarantee the upper and lower iterative value functions to converge to the upper and lower optimums, respectively. When the saddle-point equilibrium exists, it is emphasized that both the upper and lower iterative value functions are proved to converge to the optimal solution of the zero-sum game, where the existence criteria of the saddle-point equilibrium are not required. If the saddle-point equilibrium does not exist, the upper and lower optimal performance index functions are obtained, respectively, where the upper and lower performance index functions are proved to be not equivalent. Finally, simulation results and comparisons are shown to illustrate the performance of the present method.

  1. 40 CFR 86.540-90 - Exhaust sample analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., if appropriate, NOX: (1) Zero the analyzers and obtain a stable zero reading. Recheck after tests. (2... actual concentrations on chart. (3) Check zeros; repeat the procedure in paragraphs (a) (1) and (2) of... appropriate, NOX. concentrations of samples. (6) Check zero and span points. If difference is greater than 2...

  2. The pH-dependent surface charging and points of zero charge: V. Update.

    PubMed

    Kosmulski, Marek

    2011-01-01

    The points of zero charge (PZC) and isoelectric points (IEP) from the recent literature are discussed. This study is an update of the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC, Boca Raton, FL, 2009] and of its previous update [J. Colloid Interface Sci. 337 (2009) 439]. In several recent publications, the terms PZC/IEP have been used outside their usual meaning. Only the PZC/IEP obtained according to the methods recommended by the present author are reported in this paper, and the other results are ignored. PZC/IEP of albite, sepiolite, and sericite, which have not been studied before, became available over the past 2 years. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Comment on ‘The paradoxical zero reflection at zero energy’

    NASA Astrophysics Data System (ADS)

    van Dijk, W.; Nogami, Y.

    2017-05-01

    We point out that the anomalous threshold effect in one dimension occurs when the reflection probability at zero energy R(0) has some other value than unity, rather than R(0)=0 or R(0)\\ll 1 as implied by Ahmed et al in their paper entitled ‘The paradoxical zero reflection at zero energy’ (2017 Eur. J. Phys. 38 025401).

  4. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  5. Theory of the magnetic susceptibility including zero-point spin fluctuations of itinerant nearly ferromagnetic compounds

    NASA Astrophysics Data System (ADS)

    Konno, Rikio; Hatayama, Nobukuni; Takahashi, Yoshinori

    2018-05-01

    We have investigated the temperature dependence of the magnetic susceptibility of itinerant nearly ferromagnetic compounds based on the spin fluctuation theory. It is based on the conservation of the local spin amplitude that consists of both the thermal and the zero-point components. The linear dependence of the zero-point spin fluctuation amplitude on the inverse of magnetic susceptibility is usually assumed. The purpose of our present study is to include its higher order terms and to see their effects on the magnetic susceptibility. For the thermal amplitude, it shows T2-linear temperature dependence at low temperatures.

  6. Small-aperture seismic array data processing using a representation of seismograms at zero-crossing points

    NASA Astrophysics Data System (ADS)

    Brokešová, Johana; Málek, Jiří

    2018-07-01

    A new method for representing seismograms by using zero-crossing points is described. This method is based on decomposing a seismogram into a set of quasi-harmonic components and, subsequently, on determining the precise zero-crossing times of these components. An analogous approach can be applied to determine extreme points that represent the zero-crossings of the first time derivative of the quasi-harmonics. Such zero-crossing and/or extreme point seismogram representation can be used successfully to reconstruct single-station seismograms, but the main application is to small-aperture array data analysis to which standard methods cannot be applied. The precise times of the zero-crossing and/or extreme points make it possible to determine precise time differences across the array used to retrieve the parameters of a plane wave propagating across the array, namely, its backazimuth and apparent phase velocity along the Earth's surface. The applicability of this method is demonstrated using two synthetic examples. In the real-data example from the Příbram-Háje array in central Bohemia (Czech Republic) for the Mw 6.4 Crete earthquake of October 12, 2013, this method is used to determine the phase velocity dispersion of both Rayleigh and Love waves. The resulting phase velocities are compared with those obtained by employing the seismic plane-wave rotation-to-translation relations. In this approach, the phase velocity is calculated by obtaining the amplitude ratios between the rotation and translation components. Seismic rotations are derived from the array data, for which the small aperture is not only an advantage but also an applicability condition.

  7. 40 CFR 89.324 - Calibration of other equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and operation. Adjust the analyzer to optimize performance. (2) Zero the methane analyzer with zero...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3 percent of full scale on the zero, concentration values may be calculated by use of a single calibration...

  8. 40 CFR 89.324 - Calibration of other equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and operation. Adjust the analyzer to optimize performance. (2) Zero the methane analyzer with zero...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3 percent of full scale on the zero, concentration values may be calculated by use of a single calibration...

  9. 40 CFR 89.324 - Calibration of other equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and operation. Adjust the analyzer to optimize performance. (2) Zero the methane analyzer with zero...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3 percent of full scale on the zero, concentration values may be calculated by use of a single calibration...

  10. 40 CFR 89.324 - Calibration of other equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and operation. Adjust the analyzer to optimize performance. (2) Zero the methane analyzer with zero...-fit straight line is 2 percent or less of the value at each non-zero data point and within ± 0.3 percent of full scale on the zero, concentration values may be calculated by use of a single calibration...

  11. Spectral Irradiance Calibration in the Infrared. XVII. Zero-Magnitude Broadband Flux Reference for Visible-to-Infrared Photometry

    DTIC Science & Technology

    2010-12-01

    Air Force Reseach Laboratory, Hanscom AFB, MA 928, 2010 December © 2010, The American Astronomical Society. 14. ABSTRACT The absolutely calibrated...the visible and Sirius (a CMa) in the infrared. The resulting zero-point SED tests well against solar analog data presented by Rieke et al. while also...resulting zero-point SED tests well against solar analog data presented by Rieke et al. while also maintaining an unambiguous link to specific

  12. Zero-Point Calibration for AGN Black-Hole Mass Estimates

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Onken, C. A.

    2004-01-01

    We discuss the measurement and associated uncertainties of AGN reverberation-based black-hole masses, since these provide the zero-point calibration for scaling relationships that allow black-hole mass estimates for quasars. We find that reverberation-based mass estimates appear to be accurate to within a factor of about 3.

  13. Zero-point energy constraint in quasi-classical trajectory calculations.

    PubMed

    Xie, Zhen; Bowman, Joel M

    2006-04-27

    A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.

  14. Sampling command generator corrects for noise and dropouts in recorded data

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.

    1973-01-01

    Generator measures period between zero crossings of reference signal and accepts as correct timing points only those zero crossings which occur acceptably close to nominal time predicted from last accepted command. Unidirectional crossover points are used exclusively so errors from analog nonsymmetry of crossover detector are avoided.

  15. Economic opportunity survey of small scale dairy farms of the north west province of Cameroon.

    PubMed

    Bayemi, P H; Webb, E C; Manjeli, Y; Naoussi, P

    2007-12-01

    An Economic Opportunity Survey was conducted on dairy farms in the North West Province of Cameroon. Results showed that median (range) number of cows in milk per farm was zero point six (0-4) and six (3-12) in the zero grazing and transhumance systems, respectively. Medians (range) of three (0-24) and four (3-10) litres of milk were sold per farm per day, corresponding to 30% and 60% of milk produced. 24% and 13% of total cattle per herd were milking cows in the zero grazing and transhumance systems respectively. Median milk production per cow on one day was two (0-25) and two (1-3) litres. Median calf production interval was 14.5 (12-25) and. 21.5 (14-29) months. More milk produced per day represented the best economic opportunity in both systems while reduced age at first calving and longer lactation length were the next in both. Wastage of milk through spoilage from poor hygiene and lack of cooling was a major problem. Holstein cows, which were in the zero grazing system, had unexpectedly short lactations. Constraints identified led to the setting up of interventions of training and advice for farmers and of better nutrition.

  16. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.

    PubMed

    Jackson, Rachel W; Collins, Steven H

    2015-09-01

    Techniques proposed for assisting locomotion with exoskeletons have often included a combination of active work input and passive torque support, but the physiological effects of different assistance techniques remain unclear. We performed an experiment to study the independent effects of net exoskeleton work and average exoskeleton torque on human locomotion. Subjects wore a unilateral ankle exoskeleton and walked on a treadmill at 1.25 m·s(-1) while net exoskeleton work rate was systematically varied from -0.054 to 0.25 J·kg(-1)·s(-1), with constant (0.12 N·m·kg(-1)) average exoskeleton torque, and while average exoskeleton torque was systematically varied from approximately zero to 0.18 N·m·kg(-1), with approximately zero net exoskeleton work. We measured metabolic rate, center-of-mass mechanics, joint mechanics, and muscle activity. Both techniques reduced effort-related measures at the assisted ankle, but this form of work input reduced metabolic cost (-17% with maximum net work input) while this form of torque support increased metabolic cost (+13% with maximum average torque). Disparate effects on metabolic rate seem to be due to cascading effects on whole body coordination, particularly related to assisted ankle muscle dynamics and the effects of trailing ankle behavior on leading leg mechanics during double support. It would be difficult to predict these results using simple walking models without muscles or musculoskeletal models that assume fixed kinematics or kinetics. Data from this experiment can be used to improve predictive models of human neuromuscular adaptation and guide the design of assistive devices. Copyright © 2015 the American Physiological Society.

  17. 20 CFR 345.303 - Computation of rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a percentage rate, and then round such rate to the nearest 100th of one percent. If the rate so computed is zero or less than zero, the percentage rate will be deemed zero at this point; (5) Step 5. Add...

  18. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    NASA Astrophysics Data System (ADS)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  19. Simple tunnel diode circuit for accurate zero crossing timing

    NASA Technical Reports Server (NTRS)

    Metz, A. J.

    1969-01-01

    Tunnel diode circuit, capable of timing the zero crossing point of bipolar pulses, provides effective design for a fast crossing detector. It combines a nonlinear load line with the diode to detect the zero crossing of a wide range of input waveshapes.

  20. HIV, HBV and HCV Coinfection Prevalence in Iran--A Systematic Review and Meta-Analysis.

    PubMed

    Bagheri Amiri, Fahimeh; Mostafavi, Ehsan; Mirzazadeh, Ali

    2016-01-01

    worldwide, hepatitis C and B virus infections (HCV and HCV), are the two most common coinfections with human immunodeficiency virus (HIV) and has become a major threat to the survival of HIV-infected persons. The review aimed to estimate the prevalence of HIV, HBV, HCV, HIV/HCV and HIV/HBV and triple coinfections in different subpopulations in Iran. Following PRISMA guidelines, we conducted a systematic review and meta-analysis of reports on prevalence of HIV, HBV, HCV and HIV coinfections in different subpopulations in Iran. We systematically reviewed the literature to identify eligible studies from January 1996 to March 2012 in English or Persian/Farsi databases. We extracted the prevalence of HIV antibodies (diagnosed by Elisa confirmed with Western Blot test), HCV antibodies and HBsAg (with confirmatory laboratory test) as the main primary outcome. We reported the prevalence of the three infections and coinfections as point and 95% confidence intervals. HIV prevalence varied from %0.00 (95% CI: 0.00-0.003) in the general population to %17.25 (95% CI: 2.94-31.57) in people who inject drugs (PWID). HBV prevalence ranged from % 0.00 (95% CI: 0.00-7.87) in health care workers to % 30.9 (95% CI: 27.88-33.92) in PWID. HCV prevalence ranged from %0.19 (95% CI: 0.00-0.66) in health care workers to %51.46 (95% CI: 34.30-68.62) in PWID. The coinfection of HIV/HBV and also HIV/HCV in the general population and in health care workers was zero, while the most common coinfections were HIV/HCV (10.95%), HIV/HBV (1.88%) and triple infections (1.25%) in PWID. We found that PWID are severely and disproportionately affected by HIV and the other two infections, HCV and HBV. Screenings of such coinfections need to be reinforced to prevent new infections and also reduce further transmission in their community and to others.

  1. Finding Planets in K2: A New Method of Cleaning the Data

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Mullally, Fergal; Thompson, Susan E.

    2017-01-01

    We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.

  2. The pH dependent surface charging and points of zero charge. VII. Update.

    PubMed

    Kosmulski, Marek

    2018-01-01

    The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides). IEP of (nominally) Gd 2 O 3 , NaTaO 3 , and SrTiO 3 have been reported in the recent literature. Their IEP were not reported in older studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Reconstruction phases in the planar three- and four-vortex problems

    NASA Astrophysics Data System (ADS)

    Hernández-Garduño, Antonio; Shashikanth, Banavara N.

    2018-03-01

    Pure reconstruction phases—geometric and dynamic—are computed in the N-point-vortex model in the plane, for the cases N=3 and N=4 . The phases are computed relative to a metric-orthogonal connection on appropriately defined principal fiber bundles. The metric is similar to the kinetic energy metric for point masses but with the masses replaced by vortex strengths. The geometric phases are shown to be proportional to areas enclosed by the closed orbit on the symmetry reduced spaces. More interestingly, simple formulae are obtained for the dynamic phases, analogous to Montgomery’s result for the free rigid body, which show them to be proportional to the time period of the symmetry reduced closed orbits. For the case N = 3 a non-zero total vortex strength is assumed. For the case N = 4 the vortex strengths are assumed equal.

  4. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    PubMed Central

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889

  5. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, W.

    1985-02-08

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.

  6. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  7. 40 CFR 63.10023 - How do I establish my PM CPMS operating limit and determine compliance with it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the PM compliance test, the milliamp equivalent of zero output from your PM CPMS, and the average PM... establishing a relationship of PM CPMS signal to PM concentration using the PM CPMS instrument zero, the...) Determine your PM CPMS instrument zero output with one of the following procedures. (1) Zero point data for...

  8. The multichannel n-propyl + O2 reaction surface: Definitive theory on a model hydrocarbon oxidation mechanism

    NASA Astrophysics Data System (ADS)

    Bartlett, Marcus A.; Liang, Tao; Pu, Liang; Schaefer, Henry F.; Allen, Wesley D.

    2018-03-01

    The n-propyl + O2 reaction is an important model of chain branching reactions in larger combustion systems. In this work, focal point analyses (FPAs) extrapolating to the ab initio limit were performed on the n-propyl + O2 system based on explicit quantum chemical computations with electron correlation treatments through coupled cluster single, double, triple, and perturbative quadruple excitations [CCSDT(Q)] and basis sets up to cc-pV5Z. All reaction species and transition states were fully optimized at the rigorous CCSD(T)/cc-pVTZ level of theory, revealing some substantial differences in comparison to the density functional theory geometries existing in the literature. A mixed Hessian methodology was implemented and benchmarked that essentially makes the computations of CCSD(T)/cc-pVTZ vibrational frequencies feasible and thus provides critical improvements to zero-point vibrational energies for the n-propyl + O2 system. Two key stationary points, n-propylperoxy radical (MIN1) and its concerted elimination transition state (TS1), were located 32.7 kcal mol-1 and 2.4 kcal mol-1 below the reactants, respectively. Two competitive β-hydrogen transfer transition states (TS2 and TS2') were found separated by only 0.16 kcal mol-1, a fact unrecognized in the current combustion literature. Incorporating TS2' in master equation (ME) kinetic models might reduce the large discrepancy of 2.5 kcal mol-1 between FPA and ME barrier heights for TS2. TS2 exhibits an anomalously large diagonal Born-Oppenheimer correction (ΔDBOC = 1.71 kcal mol-1), which is indicative of a nearby surface crossing and possible nonadiabatic reaction dynamics. The first systematic conformational search of three hydroperoxypropyl (QOOH) intermediates was completed, uncovering a total of 32 rotamers lying within 1.6 kcal mol-1 of their respective lowest-energy minima. Our definitive energetics for stationary points on the n-propyl + O2 potential energy surface provide key benchmarks for future studies of hydrocarbon oxidation.

  9. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.

    2017-04-01

    In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.

  10. Effect of rotation zero-crossing on single-fluid plasma response to three-dimensional magnetic perturbations

    DOE PAGES

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...

    2017-02-14

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  11. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli, E-mail: zhongliliu@yeah.net

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach).more » The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.« less

  12. Aperture shape dependencies in extended depth of focus for imaging camera by wavefront coding

    NASA Astrophysics Data System (ADS)

    Sakita, Koichi; Ohta, Mitsuhiko; Shimano, Takeshi; Sakemoto, Akito

    2015-02-01

    Optical transfer functions (OTFs) on various directional spatial frequency axes for cubic phase mask (CPM) with circular and square apertures are investigated. Although OTF has no zero points, it has a very close value to zero for a circular aperture at low frequencies on diagonal axis, which results in degradation of restored images. The reason for close-to-zero value in OTF is also analyzed in connection with point spread function profiles using Fourier slice theorem. To avoid close-to-zero condition, square aperture with CPM is indispensable in WFC. We optimized cubic coefficient α of CPM and coefficients of digital filter, and succeeded to get excellent de-blurred images at large depth of field.

  13. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.

  14. Compositional tuning in sputter-grown highly-oriented Bi-Te films and their optical and electronic structures.

    PubMed

    Saito, Yuta; Fons, Paul; Makino, Kotaro; Mitrofanov, Kirill V; Uesugi, Fumihiko; Takeguchi, Masaki; Kolobov, Alexander V; Tominaga, Junji

    2017-10-12

    Growth of Bi-Te films by helicon-wave magnetron sputtering is systematically explored using alloy targets. The film compositions obtained are found to strongly depend on both the sputtering and antenna-coil powers. The obtainable film compositions range from Bi 55 Te 45 to Bi 43 Te 57 when a Bi 2 Te 3 alloy target is used, and from Bi 42 Te 58 to Bi 40 Te 60 (Bi 2 Te 3 ) for a Te-rich Bi 30 Te 70 target. All films show strong orientation of the van der Waals layers (00l planes) parallel to the substrate. The atomic level stacking of Bi 2 Te 3 quintuple and Bi bi-layers has been directly observed by high resolution transmission electron microscopy. Band structure simulations reveal that Bi-rich Bi 4 Te 3 bulk is a zero band gap semimetal with a Dirac cone at the Gamma point when spin-orbit coupling is included. Optical measurements also confirm that the material has a zero band gap. The tunability of the composition and the topological insulating properties of the layers will enable the use of these materials for future electronics applications on an industrial scale.

  15. Curvature facilitates prey fixation in predatory insect claws.

    PubMed

    Petie, Ronald; Muller, Mees

    2007-02-21

    Insects show a large variety in prey capture strategies, with a correspondingly large diversity in predatory adaptations. We studied a specific type of predatory claws, these can for example be found in praying mantis species. The claw is closeable over its entire length and the prey is fixed between the femur (upper arm) and the tibia (lower arm) of the insect leg. The morphology of these predatory claws is diverse. Some species have straight claws covered with spines, while other species have smooth, curved claws. We have studied the mechanics of this femur-tibia type of predatory insect claws, by making a physical model, eventually trying to explain why in some insect species the claws are curved instead of straight. The main results are (1) when comparing curved claws to straight claws, curvature leads to a strong reduction of forces driving the prey away from the pivoting point, thereby reducing the need for friction generating structures. (2) In the curved claw model a position exists where the resulting force on the prey is exactly zero. This is because the normal forces on the femur and tibia are opposed, and in line. At this position the prey is perfectly clamped and not driven out of the claw. This feature does not exist in straight claws. (3) In the curved claw, the prey cannot be placed at a position further than a certain maximum distance from the pivoting point. Near this maximum position, the resulting force on the prey reaches high values because moment arms are near zero. (4) Between the zero position and the maximum position the resulting force is directed toward the pivoting point, which stabilizes prey fixation.

  16. 24 CFR 902.62 - Failure to submit data.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... receive a presumptive rating of failure for its unaudited information and shall receive zero points for... timely submission of audited information does not negate the score of zero received for the unaudited... subindicator(s) shall receive a score of zero for the relevant indicator(s) or subindicator(s) and its overall...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAEZAWA,Y.; AOKI, S.; EJIRI, S.

    The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.

  18. Uncertainty relations, zero point energy and the linear canonical group

    NASA Technical Reports Server (NTRS)

    Sudarshan, E. C. G.

    1993-01-01

    The close relationship between the zero point energy, the uncertainty relations, coherent states, squeezed states, and correlated states for one mode is investigated. This group-theoretic perspective enables the parametrization and identification of their multimode generalization. In particular the generalized Schroedinger-Robertson uncertainty relations are analyzed. An elementary method of determining the canonical structure of the generalized correlated states is presented.

  19. Dissociation energies of six NO2 isotopologues by laser induced fluorescence spectroscopy and zero point energy of some triatomic molecules.

    PubMed

    Michalski, G; Jost, R; Sugny, D; Joyeux, M; Thiemens, M

    2004-10-15

    We have measured the rotationless photodissociation threshold of six isotopologues of NO2 containing 14N, 15N, 16O, and 18O isotopes using laser induced fluorescence detection and jet cooled NO2 (to avoid rotational congestion). For each isotopologue, the spectrum is very dense below the dissociation energy while fluorescence disappears abruptly above it. The six dissociation energies ranged from 25 128.56 cm(-1) for 14N16O2 to 25 171.80 cm(-1) for 15N18O2. The zero point energy for the NO2 isotopologues was determined from experimental vibrational energies, application of the Dunham expansion, and from canonical perturbation theory using several potential energy surfaces. Using the experimentally determined dissociation energies and the calculated zero point energies of the parent NO2 isotopologue and of the NO product(s) we determined that there is a common De = 26 051.17+/-0.70 cm(-1) using the Born-Oppenheimer approximation. The canonical perturbation theory was then used to calculate the zero point energy of all stable isotopologues of SO2, CO2, and O3, which are compared with previous determinations.

  20. Computation of deuterium isotope perturbation of 13C NMR chemical shifts of alkanes: a local mode zero-point level approach.

    PubMed

    Yang, Kin S; Hudson, Bruce

    2010-11-25

    Replacement of H by D perturbs the (13)C NMR chemical shifts of an alkane molecule. This effect is largest for the carbon to which the D is attached, diminishing rapidly with intervening bonds. The effect is sensitive to stereochemistry and is large enough to be measured reliably. A simple model based on the ground (zero point) vibrational level and treating only the C-H(D) degrees of freedom (local mode approach) is presented. The change in CH bond length with H/D substitution as well as the reduction in the range of the zero-point level probability distribution for the stretch and both bend degrees of freedom are computed. The (13)C NMR chemical shifts are computed with variation in these three degrees of freedom, and the results are averaged with respect to the H and D distribution functions. The resulting differences in the zero-point averaged chemical shifts are compared with experimental values of the H/D shifts for a series of cycloalkanes, norbornane, adamantane, and protoadamantane. Agreement is generally very good. The remaining differences are discussed. The proton spectrum of cyclohexane- is revisited and updated with improved agreement with experiment.

  1. Performance of the Zeeman analyzer system of the McDonald Observatory 2.7 meter telescope

    NASA Technical Reports Server (NTRS)

    Vogt, S. S.; Tull, R. G.; Kelton, P. W.

    1980-01-01

    The paper describes a multichannel photoelectric Zeeman analyzer at the coude spectrograph of the McDonald 2.7 m reflector. A comparison of Lick and McDonald observations of HD 153882 reveals no significant difference in slopes or zero points of the two magnetic fields indicating that the systematic scale difference of 30-40% is probably instrumental in origin. Observations of the magnetic variable beta Cor Bor revealed a more nearly sinusoidal magnetic curve with less internal scatter than the photographically determined field measures of the Lick and Mauna Kea Zeeman systems. Investigation of periodicity in the secularly varying magnetic minima of beta Cor Bor did not yield evidence of previously noted periodicities other than that expected from the time structure of the data sampling.

  2. The vibrationally adiabatic torsional potential energy surface of trans-stilbene

    NASA Astrophysics Data System (ADS)

    Chowdary, Praveen D.; Martinez, Todd J.; Gruebele, Martin

    2007-05-01

    The effect of vibrational Zero Point Energy (ZPE) on the torsional barriers of trans-stilbene is studied in the adiabatic approximation. The two torsional modes corresponding to phenyl rotation are explicitly separated, and the remaining modes are treated as normal coordinates. ZPE reduces the adiabatic barrier along the in-phase torsion from 198 to 13 cm -1. A one-dimensional adiabatic potential for the anti-phase torsion, including the ZPE of the in-phase torsion, reduces the adiabatic barrier from 260 to 58 cm -1. Comparison with recent electronic structure benchmark calculations suggests that vibrational corrections play a significant role in trans-stilbene's experimentally observed planar structure.

  3. Criticality in the slowed-down boiling crisis at zero gravity.

    PubMed

    Charignon, T; Lloveras, P; Chatain, D; Truskinovsky, L; Vives, E; Beysens, D; Nikolayev, V S

    2015-05-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are carried out in the reduced gravity to preserve the conventional bubble geometry. Weightlessness is created artificially in two-phase hydrogen by compensating gravity with magnetic forces. We were able to reveal the fractal structure of the contour of the percolating cluster of the dry areas at the heater that precedes the boiling crisis. We provide a direct statistical analysis of dry spot areas that confirms the boiling crisis at zero gravity as a scale-free phenomenon. It was observed that, in agreement with theoretical predictions, saturated boiling CHF tends to zero (within the precision of our thermal control system) in zero gravity, which suggests that the boiling crisis may be observed at any heat flux provided the experiment lasts long enough.

  4. Reduced bispectrum seeded by helical primordial magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hortúa, Héctor Javier; Castañeda, Leonardo, E-mail: hjhortuao@unal.edu.co, E-mail: lcastanedac@unal.edu.co

    In this paper, we investigate the effects of helical primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) reduced bispectrum. We derive the full three-point statistics of helical magnetic fields and numerically calculate the even contribution in the collinear configuration. We then numerically compute the CMB reduced bispectrum induced by passive and compensated PMF modes on large angular scales. There is a negative signal on the bispectrum due to the helical terms of the fields and we also observe that the biggest contribution to the bispectrum comes from the non-zero IR cut-off for causal fields, unlike the two-point correlationmore » case. For negative spectral indices, the reduced bispectrum is enhanced by the passive modes. This gives a lower value of the upper limit for the mean amplitude of the magnetic field on a given characteristic scale. However, high values of IR cut-off in the bispectrum, and the helical terms of the magnetic field relaxes this bound. This demonstrates the importance of the IR cut-off and helicity in the study of the nature of PMFs from CMB observations.« less

  5. Electronic zero-point fluctuation forces inside circuit components

    PubMed Central

    Leonhardt, Ulf

    2018-01-01

    One of the most intriguing manifestations of quantum zero-point fluctuations are the van der Waals and Casimir forces, often associated with vacuum fluctuations of the electromagnetic field. We study generalized fluctuation potentials acting on internal degrees of freedom of components in electrical circuits. These electronic Casimir-like potentials are induced by the zero-point current fluctuations of any general conductive circuit. For realistic examples of an electromechanical capacitor and a superconducting qubit, our results reveal the possibility of tunable forces between the capacitor plates, or the level shifts of the qubit, respectively. Our analysis suggests an alternative route toward the exploration of Casimir-like fluctuation potentials, namely, by characterizing and measuring them as a function of parameters of the environment. These tunable potentials may be useful for future nanoelectromechanical and quantum technologies. PMID:29719863

  6. Coexistence Curve of Perfluoromethylcyclohexane-Isopropyl Alcohol

    NASA Technical Reports Server (NTRS)

    Jacobs, D. T.; Kuhl, D. E.; Selby, C. E.

    1996-01-01

    The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol was determined by precisely measuring the refractive index both above and below its upper critical consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced temperatures, 10(exp -5) less than t less than 2.5 x 10(exp -1), to determine the location of the critical point: critical temperature=89.901 C, and critical composition = 62.2% by volume perfluoromethylcyclohexane. These data were analyzed to determine the critical exponent 8 close to the critical point, the amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to be as symmetric as any composition like variable. Correction to scaling is investigated as well as the need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of the effective exponent Beta, which allows an estimation of the temperature regime free of crossover effects.

  7. The Design of an Experimental Apparatus to Measure the Motions of a Towed Submersible Environmental Sensor Vehicle.

    DTIC Science & Technology

    1983-06-01

    obtained by the vertical excitation apparatus, keeping the horizontal excitation apparatus .4 at zero frequ ncy. The model c.g. moves in a sinusoidal...point between the support plates and the rail module, foam rubber pads were inserted.. These pads increased the coefficient of friction and reduced the...involved the CADIG 4051 Tektronix computer data SI acquistion and graphic display system. The Tektronix 4050 series computers can be used as stand alone

  8. Variation of Wall Shear Stress and Reynolds Stress over a Flat Plate Downstream of a Boundary Layer Manipulator

    DTIC Science & Technology

    1990-06-01

    Layer Manipulator is placed AP differential pressure across the surface fence e, IC, mean and turbulent viscous dissipation Rt absolute viscosity of...feet long. The zero point for the traversing system is situated 3.3 feet from the inlet end of the blockhouse and ranges over 90% of the semi-open...tenth the absolute air pressure in millimeters of water. A voltage divider further reduces CD23 output voltage by one-half to accommodate the MASSCOMP

  9. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    NASA Astrophysics Data System (ADS)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  10. 40 CFR 91.321 - NDIR analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curve for each range used as follows: (1) Zero the analyzer. (2) Span the analyzer to give a response of approximately 90 percent of full-scale chart deflection. (3) Recheck the zero response. If it has changed more... the form of equation (1) or (2). Include zero as a data point. Compensation for known impurities in...

  11. 40 CFR 90.321 - NDIR analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... the form of the following equation (1) or (2). Include zero as a data point. Compensation for known...

  12. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  13. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  14. Community-based Interventions to Prevent Skin Cancer: Two Community Guide Systematic Reviews

    PubMed Central

    Sandhu, Paramjit K.; Elder, Randy; Patel, Mona; Saraiya, Mona; Holman, Dawn M.; Perna, Frank; Smith, Robert A.; Buller, David; Sinclair, Craig; Reeder, Anthony; Makin, Jen; McNoe, Bronwen; Glanz, Karen

    2016-01-01

    Context Skin cancer is a preventable and commonly diagnosed cancer in the U.S. Excessive ultraviolet radiation exposure is a known cause of skin cancer. This article presents updated results of two types of interventions evaluated in a previously published Community Guide systematic review: multicomponent community-wide (MCCW) interventions and mass media (MM) interventions when used alone. Evidence acquisition Studies assessing MCCW and MM interventions to prevent skin cancer by reducing ultraviolet radiation exposure were evaluated using Community Guide systematic review methods. Relevant studies published between 1966 and 2013 were included and analyzed for this review. Evidence synthesis Seven studies evaluating the effectiveness of MCCW interventions showed a median increase in sunscreen use of 10.8 percentage points (interquartile interval=7.3, 23.2); a small decrease in ultraviolet radiation exposure; a decrease in indoor tanning device use of 4.0 percentage points (95% CI=2.5, 5.5); and mixed results for other protective behaviors. Four studies evaluating the effectiveness of MM interventions found that they generally led to improved ultraviolet protection behaviors among children and adults. Conclusions The available evidence showed that MCCW interventions are effective in reducing ultraviolet radiation exposure by increasing sunscreen use. There was, however, insufficient evidence to determine the effectiveness of MM interventions alone in reducing ultraviolet radiation exposure, indicating a continuing need for more research in this field to improve assessment of effectiveness. PMID:27647053

  15. 16 CFR Figure 5 to Subpart A of... - Zero Reference Point Related to Detecting Plane

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Zero Reference Point Related to Detecting Plane 5 Figure 5 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 5 Figure 5 to Subpart A o...

  16. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  17. Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor.

    PubMed

    Jarlborg, Thomas; Bianconi, Antonio

    2016-04-20

    While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable. We show that the neglected hydrogen zero-point motion ZPM, plays a key role at Lifshitz transitions. It induces an energy shift of about 600 meV of the vHs. The other Lifshitz-transition (of type 1) for the appearing of a new Fermi surface occurs at 130 GPa where new Fermi surfaces appear at the Γ point of the Brillouin zone here the Migdal-approximation breaks down and the zero-point-motion induces large fluctuations. The maximum Tc = 203 K occurs at 160 GPa where EF/ω0 = 1 in the small Fermi surface pocket at Γ. A Feshbach-like resonance between a possible BEC-BCS condensate at Γ and the BCS condensate in different k-space spots is proposed.

  18. A survey of noninteractive zero knowledge proof system and its applications.

    PubMed

    Wu, Huixin; Wang, Feng

    2014-01-01

    Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions.

  19. Lean, Mean and Green: An Affordable Net Zero School

    ERIC Educational Resources Information Center

    Stanfield, Kenneth

    2010-01-01

    From its conception, Richardsville Elementary was designed to be an affordable net zero facility. The design team explored numerous energy saving strategies to dramatically reduce energy consumption. By reducing energy use to 19.31 kBtus annually, the net zero goal could be realized through the implementation of a solar array capable of producing…

  20. Effective response theory for zero-energy Majorana bound states in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei

    2015-05-01

    We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.

  1. Multiple scattered radiation emerging from Rayleigh and continental haze layers. I - Radiance, polarization, and neutral points

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.

    1976-01-01

    The matrix operator method was used to calculate the polarization of radiation scattered on layers of various optical thicknesses, with results compared for Rayleigh scattering and for scattering from a continental haze. In both cases, there are neutral points arising from the zeros of the polarization of single scattered photons at scattering angles of zero and 180 degrees. The angular position of these Rayleigh-like neutral points (RNP) in the sky shows appreciable variation with the optical thickness of the scattering layer for a Rayleigh phase matrix, but only a small variation for haze L phase matrix. Another type of neutral point exists for non-Rayleigh phase functions that is associated with the zeros of the polarization for single scattering which occurs between the end points of the curve. A comparison of radiances calculated from the complete theory of radiative transfer using Stokes vectors with those obtained from the scalar theory shows that differences of the order of 23% may be obtained for Rayleigh scattering, while the largest difference found for a haze L phase function was of the order of 0.1%.

  2. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  3. Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite

    NASA Astrophysics Data System (ADS)

    Butkevich, Alexey G.; Klioner, Sergei A.; Lindegren, Lennart; Hobbs, David; van Leeuwen, Floor

    2017-07-01

    Context. Determination of absolute parallaxes by means of a scanning astrometric satellite such as Hipparcos or Gaia relies on the short-term stability of the so-called basic angle between the two viewing directions. Uncalibrated variations of the basic angle may produce systematic errors in the computed parallaxes. Aims: We examine the coupling between a global parallax shift and specific variations of the basic angle, namely those related to the satellite attitude with respect to the Sun. Methods: The changes in observables produced by small perturbations of the basic angle, attitude, and parallaxes were calculated analytically. We then looked for a combination of perturbations that had no net effect on the observables. Results: In the approximation of infinitely small fields of view, it is shown that certain perturbations of the basic angle are observationally indistinguishable from a global shift of the parallaxes. If these kinds of perturbations exist, they cannot be calibrated from the astrometric observations but will produce a global parallax bias. Numerical simulations of the astrometric solution, using both direct and iterative methods, confirm this theoretical result. For a given amplitude of the basic angle perturbation, the parallax bias is smaller for a larger basic angle and a larger solar aspect angle. In both these respects Gaia has a more favourable geometry than Hipparcos. In the case of Gaia, internal metrology is used to monitor basic angle variations. Additionally, Gaia has the advantage of detecting numerous quasars, which can be used to verify the parallax zero point.

  4. Broken symmetries, zero-energy modes, and quantum transport in disordered graphene: from supermetallic to insulating regimes.

    PubMed

    Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan

    2013-05-10

    The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

  5. Nonlinear system guidance in the presence of transmission zero dynamics

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  6. Systematics-insensitive Periodic Signal Search with K2

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Foreman-Mackey, Daniel; Johnson, John A.

    2016-02-01

    From pulsating stars to transiting exoplanets, the search for periodic signals in K2 data, Kepler’s two-wheeled extension, is relevant to a long list of scientific goals. Systematics affecting K2 light curves due to the decreased spacecraft pointing precision inhibit the easy extraction of periodic signals from the data. We here develop a method for producing periodograms of K2 light curves that are insensitive to pointing-induced systematics; the Systematics-insensitive Periodogram (SIP). Traditional sine-fitting periodograms use a generative model to find the frequency of a sinusoid that best describes the data. We extend this principle by including systematic trends, based on a set of “eigen light curves,” following Foreman-Mackey et al., in our generative model as well as a sum of sine and cosine functions over a grid of frequencies. Using this method we are able to produce periodograms with vastly reduced systematic features. The quality of the resulting periodograms are such that we can recover acoustic oscillations in giant stars and measure stellar rotation periods without the need for any detrending. The algorithm is also applicable to the detection of other periodic phenomena such as variable stars, eclipsing binaries and short-period exoplanet candidates. The SIP code is available at https://github.com/RuthAngus/SIPK2.

  7. Hydrogen bonding and interparticle forces in platelet alpha-Al2O3 dispersions: yield stress and zeta potential.

    PubMed

    Khoo, Kay-Sen; Teh, E-Jen; Leong, Yee-Kwong; Ong, Ban Choon

    2009-04-09

    Adsorbed phosphate on smooth platelet alpha-Al2O3 particles at saturation surface coverage gives rise to strong interparticle attractive forces in dispersion. The maximum yield stress at the point of zero charge was increased by 2-fold. This was attributed to a high density of intermolecular hydrogen bonding between the adsorbed phosphate layers of the interacting particles. Adsorbed citrate at saturation surface coverage, however, reduced the maximum yield stress by 50%. It adsorbed to form a very effective steric barrier as intramolecular hydrogen bonding between -OH and the free terminal carboxylic group prevented strong interactions with other adsorbed citrate molecules residing on the second interacting particle. This steric barrier kept the interacting platelet particles further apart, thereby weakening the van der Waals attraction. The platelet alpha-Al2O3 dispersions were flocculated at all pH level. These dispersions displayed a maximum yield stress at the point of zero zeta potential at the pH approximately 8.0. They also obeyed the yield stress-DLVO force model as characterized by a linear decrease in the yield stress with the square of the zeta potential.

  8. Iterative direct inversion: An exact complementary solution for inverting fault-slip data to obtain palaeostresses

    NASA Astrophysics Data System (ADS)

    Mostafa, Mostafa E.

    2005-10-01

    The present study shows that reconstructing the reduced stress tensor (RST) from the measurable fault-slip data (FSD) and the immeasurable shear stress magnitudes (SSM) is a typical iteration problem. The result of direct inversion of FSD presented by Angelier [1990. Geophysical Journal International 103, 363-376] is considered as a starting point (zero step iteration) where all SSM are assigned constant value ( λ=√{3}/2). By iteration, the SSM and RST update each other until they converge to fixed values. Angelier [1990. Geophysical Journal International 103, 363-376] designed the function upsilon ( υ) and the two estimators: relative upsilon (RUP) and (ANG) to express the divergence between the measured and calculated shear stresses. Plotting individual faults' RUP at successive iteration steps shows that they tend to zero (simulated data) or to fixed values (real data) at a rate depending on the orientation and homogeneity of the data. FSD of related origin tend to aggregate in clusters. Plots of the estimators ANG versus RUP show that by iteration, labeled data points are disposed in clusters about a straight line. These two new plots form the basis of a technique for separating FSD into homogeneous clusters.

  9. Net Zero Ft. Carson: making a greener Army base

    EPA Science Inventory

    The US Army Net Zero program seeks to reduce the energy, water, and waste footprint of bases. Seventeen pilot bases aim to achieve 100% renewable energy, zero depletion of water resources, and/or zero waste to landfill by 2020. Some bases are pursuing Net Zero in a single secto...

  10. Rotating Casimir systems: Magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.

    2013-01-01

    Recently, we have demonstrated that for a certain class of Casimir-type systems (“devices”) the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested “zero-point-driven” devices—which have no internally moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.

  11. Cosmological constraints from the convergence 1-point probability distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Kenneth; Blazek, Jonathan; Honscheid, Klaus

    2017-06-29

    Here, we examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast l-picola simulations and a Fisher analysis. We find competitive constraints in the Ωm–σ8 plane from the convergence PDF with 188 arcmin 2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is lessmore » susceptible, and improves the total figure of merit by a factor of 2–3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.« less

  12. Cosmological constraints from the convergence 1-point probability distribution

    NASA Astrophysics Data System (ADS)

    Patton, Kenneth; Blazek, Jonathan; Honscheid, Klaus; Huff, Eric; Melchior, Peter; Ross, Ashley J.; Suchyta, Eric

    2017-11-01

    We examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast L-PICOLA simulations and a Fisher analysis. We find competitive constraints in the Ωm-σ8 plane from the convergence PDF with 188 arcmin2 pixels compared to the cosmic shear power spectrum with an equivalent number of modes (ℓ < 886). The convergence PDF also partially breaks the degeneracy cosmic shear exhibits in that parameter space. A joint analysis of the convergence PDF and shear 2-point function also reduces the impact of shape measurement systematics, to which the PDF is less susceptible, and improves the total figure of merit by a factor of 2-3, depending on the level of systematics. Finally, we present a correction factor necessary for calculating the unbiased Fisher information from finite differences using a limited number of cosmological simulations.

  13. Nonequilibrium magnetic properties in a two-dimensional kinetic mixed Ising system within the effective-field theory and Glauber-type stochastic dynamics approach.

    PubMed

    Ertaş, Mehmet; Deviren, Bayram; Keskin, Mustafa

    2012-11-01

    Nonequilibrium magnetic properties in a two-dimensional kinetic mixed spin-2 and spin-5/2 Ising system in the presence of a time-varying (sinusoidal) magnetic field are studied within the effective-field theory (EFT) with correlations. The time evolution of the system is described by using Glauber-type stochastic dynamics. The dynamic EFT equations are derived by employing the Glauber transition rates for two interpenetrating square lattices. We investigate the time dependence of the magnetizations for different interaction parameter values in order to find the phases in the system. We also study the thermal behavior of the dynamic magnetizations, the hysteresis loop area, and dynamic correlation. The dynamic phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane and we observe that the system exhibits dynamic tricritical and reentrant behaviors. Moreover, the system also displays a double critical end point (B), a zero-temperature critical point (Z), a critical end point (E), and a triple point (TP). We also performed a comparison with the mean-field prediction in order to point out the effects of correlations and found that some of the dynamic first-order phase lines, which are artifacts of the mean-field approach, disappeared.

  14. Inter- and Intrafraction Target Motion in Highly Focused Single Vocal Cord Irradiation of T1a Larynx Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwa, Stefan L.S., E-mail: s.kwa@erasmusmc.nl; Al-Mamgani, Abrahim; Osman, Sarah O.S.

    2015-09-01

    Purpose: The purpose of this study was to verify clinical target volume–planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion. Methods and Materials: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and aftermore » dose delivery. A mixed online-offline setup correction protocol (“O2 protocol”) was designed to compensate for both inter- and intrafraction motion. Results: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm). Conclusions: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.« less

  15. 43 CFR 2806.34 - How will BLM calculate the rent for a grant or lease authorizing a multiple-use communication...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... whose rent has been waived or reduced to zero under § 2806.15 of this subpart: (1) BLM will exclude exempted uses or uses whose rent has been waived or reduced to zero (see §§ 2806.14 and 2806.15 of this... from rent or whose rent has been waived or reduced to zero (see §§ 2806.14 and 2806.15 of this subpart...

  16. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide

    PubMed Central

    Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping

    2017-01-01

    Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105

  17. Temperature and magnetic field effects on electron transport through DNA molecules in a two-dimensional four-channel system.

    PubMed

    Joe, Yong S; Lee, Sun H; Hedin, Eric R; Kim, Young D

    2013-06-01

    We utilize a two-dimensional four-channel DNA model, with a tight-binding (TB) Hamiltonian, and investigate the temperature and the magnetic field dependence of the transport behavior of a short DNA molecule. Random variation of the hopping integrals due to the thermal structural disorder, which partially destroy phase coherence of electrons and reduce quantum interference, leads to a reduction of the localization length and causes suppressed overall transmission. We also incorporate a variation of magnetic field flux density into the hopping integrals as a phase factor and observe Aharonov-Bohm (AB) oscillations in the transmission. It is shown that for non-zero magnetic flux, the transmission zero leaves the real-energy axis and moves up into the complex-energy plane. We also point out that the hydrogen bonds between the base pair with flux variations play a role to determine the periodicity of AB oscillations in the transmission.

  18. Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory

    NASA Astrophysics Data System (ADS)

    Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi

    2017-02-01

    This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.

  19. Modeling Systematic Change in Stopover Duration Does Not Improve Bias in Trends Estimated from Migration Counts.

    PubMed

    Crewe, Tara L; Taylor, Philip D; Lepage, Denis

    2015-01-01

    The use of counts of unmarked migrating animals to monitor long term population trends assumes independence of daily counts and a constant rate of detection. However, migratory stopovers often last days or weeks, violating the assumption of count independence. Further, a systematic change in stopover duration will result in a change in the probability of detecting individuals once, but also in the probability of detecting individuals on more than one sampling occasion. We tested how variation in stopover duration influenced accuracy and precision of population trends by simulating migration count data with known constant rate of population change and by allowing daily probability of survival (an index of stopover duration) to remain constant, or to vary randomly, cyclically, or increase linearly over time by various levels. Using simulated datasets with a systematic increase in stopover duration, we also tested whether any resulting bias in population trend could be reduced by modeling the underlying source of variation in detection, or by subsampling data to every three or five days to reduce the incidence of recounting. Mean bias in population trend did not differ significantly from zero when stopover duration remained constant or varied randomly over time, but bias and the detection of false trends increased significantly with a systematic increase in stopover duration. Importantly, an increase in stopover duration over time resulted in a compounding effect on counts due to the increased probability of detection and of recounting on subsequent sampling occasions. Under this scenario, bias in population trend could not be modeled using a covariate for stopover duration alone. Rather, to improve inference drawn about long term population change using counts of unmarked migrants, analyses must include a covariate for stopover duration, as well as incorporate sampling modifications (e.g., subsampling) to reduce the probability that individuals will be detected on more than one occasion.

  20. Many Molecular Properties from One Kernel in Chemical Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole

    We introduce property-independent kernels for machine learning modeling of arbitrarily many molecular properties. The kernels encode molecular structures for training sets of varying size, as well as similarity measures sufficiently diffuse in chemical space to sample over all training molecules. Corresponding molecular reference properties provided, they enable the instantaneous generation of ML models which can systematically be improved through the addition of more data. This idea is exemplified for single kernel based modeling of internal energy, enthalpy, free energy, heat capacity, polarizability, electronic spread, zero-point vibrational energy, energies of frontier orbitals, HOMOLUMO gap, and the highest fundamental vibrational wavenumber. Modelsmore » of these properties are trained and tested using 112 kilo organic molecules of similar size. Resulting models are discussed as well as the kernels’ use for generating and using other property models.« less

  1. Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Niravkumar D.; Mukherjee, Anamitra; Kaushal, Nitin

    Here, we employ a recently developed computational many-body technique to study for the first time the half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation U and disorder V strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from the Mott insulator expands with increasing temperature in a manner resembling a quantum critical point. Our study of the resistivity temperature scaling T α for this metal reveals non-Fermi liquid characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic is observed. We argue that these exotic results arise from a systematic changemore » with U and V of the “effective” disorder, a combination of quenched disorder and intrinsic localized spins.« less

  2. Volume integrals associated with the inhomogeneous Helmholtz equation. Part 1: Ellipsoidal region

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Mura, T.

    1983-01-01

    Problems of wave phenomena in fields of acoustics, electromagnetics and elasticity are often reduced to an integration of the inhomogeneous Helmholtz equation. Results are presented for volume integrals associated with the Helmholtz operator, nabla(2) to alpha(2), for the case of an ellipsoidal region. By using appropriate Taylor series expansions and multinomial theorem, these volume integrals are obtained in series form for regions r 4' and r r', where r and r' are distances from the origin to the point of observation and source, respectively. Derivatives of these integrals are easily evaluated. When the wave number approaches zero, the results reduce directly to the potentials of variable densities.

  3. Nematic quantum critical point without magnetism in FeSe1-xSx superconductors.

    PubMed

    Hosoi, Suguru; Matsuura, Kohei; Ishida, Kousuke; Wang, Hao; Mizukami, Yuta; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2016-07-19

    In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

  4. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    DOE PAGES

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...

    2016-02-02

    Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe 2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe 2 are not only protected by the reflection symmetry butmore » also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less

  5. Random Matrix Theory and Elliptic Curves

    DTIC Science & Technology

    2014-11-24

    distribution is unlimited. 1 ELLIPTIC CURVES AND THEIR L-FUNCTIONS 2 points on that curve. Counting rational points on curves is a field with a rich ...deficiency of zeros near the origin of the histograms in Figure 1. While as d becomes large this discretization becomes smaller and has less and less effect...order of 30), the regular oscillations seen at the origin become dominated by fluctuations of an arithmetic origin, influenced by zeros of the Riemann

  6. Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P

    NASA Astrophysics Data System (ADS)

    Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol

    2018-05-01

    Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.

  7. Zero-point fluctuations in naphthalene and their effect on charge transport parameters.

    PubMed

    Kwiatkowski, Joe J; Frost, Jarvist M; Kirkpatrick, James; Nelson, Jenny

    2008-09-25

    We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene, between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations cause wide distributions of both energies and couplings. We show that these distributions have a small temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy modes may be significant, even though these modes are never thermally activated. Our results have implications for the temperature dependence of charge mobilities in organic semiconductors.

  8. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    PubMed

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion. Copyright © 2015, American Association for the Advancement of Science.

  9. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  10. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    DOE PAGES

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; ...

    2015-08-26

    In this paper, we study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. Finally, wemore » find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge “melting” above a critical temperature at which the magnetic symmetry is restored.« less

  11. Identification of bearing faults using time domain zero-crossings

    NASA Astrophysics Data System (ADS)

    William, P. E.; Hoffman, M. W.

    2011-11-01

    In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.

  12. A Survey of Noninteractive Zero Knowledge Proof System and Its Applications

    PubMed Central

    Wu, Huixin; Wang, Feng

    2014-01-01

    Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions. PMID:24883407

  13. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  14. Comparison of zero-profile anchored spacer versus plate-cage construct in treatment of cervical spondylosis with regard to clinical outcomes and incidence of major complications: a meta-analysis

    PubMed Central

    Liu, Weijun; Hu, Ling; Wang, Junwen; Liu, Ming; Wang, Xiaomei

    2015-01-01

    Purpose Meta-analysis was conducted to evaluate whether zero-profile anchored spacer (Zero-P) could reduce complication rates, while maintaining similar clinical outcomes compared to plate-cage construct (PCC) in the treatment of cervical spondylosis. Methods All prospective and retrospective comparative studies published up to May 2015 that compared the clinical outcomes of Zero-P versus PCC in the treatment of cervical spondylosis were acquired by a comprehensive search in PubMed and EMBASE. Exclusion criteria were non-English studies, noncomparative studies, hybrid surgeries, revision surgeries, and surgeries with less than a 12-month follow-up period. The main end points including Japanese Orthopedic Association (JOA) and Neck Disability Index (NDI) scores, cervical lordosis, fusion rate, subsidence, and dysphagia were analyzed. All studies were analyzed with the RevMan 5.2.0 software. Publication biases of main results were examined using Stata 12.0. Results A total of 12 studies were included in the meta-analysis. No statistical difference was observed with regard to preoperative or postoperative JOA and NDI scores, cervical lordosis, and fusion rate. The Zero-P group had a higher subsidence rate than the PCC group (P<0.05, risk difference =0.13, 95% confidence interval [CI] 0.00–0.26). However, the Zero-P group had a significantly lower postoperative dysphagia rate than the PCC group within the first 2 weeks (P<0.05, odds ratio [OR] =0.64, 95% CI 0.45–0.91), at the 6th month [P<0.05, OR =0.20, 95% CI 0.04–0.90], and at the final follow-up time [P<0.05, OR =0.13, 95% CI 0.04–0.45]. Conclusion Our meta-analysis suggested that surgical treatments of single or multiple levels of cervical spondylosis using Zero-P and PCC were similar in terms of JOA score, NDI score, cervical lordosis, and fusion rate. Although the Zero-P group had a higher subsidence rate than the PCC group, Zero-P had a lower postoperative dysphagia rate and might have a lower adjacent-level ossification rate. PMID:26445543

  15. Comparison of zero-profile anchored spacer versus plate-cage construct in treatment of cervical spondylosis with regard to clinical outcomes and incidence of major complications: a meta-analysis.

    PubMed

    Liu, Weijun; Hu, Ling; Wang, Junwen; Liu, Ming; Wang, Xiaomei

    2015-01-01

    Meta-analysis was conducted to evaluate whether zero-profile anchored spacer (Zero-P) could reduce complication rates, while maintaining similar clinical outcomes compared to plate-cage construct (PCC) in the treatment of cervical spondylosis. All prospective and retrospective comparative studies published up to May 2015 that compared the clinical outcomes of Zero-P versus PCC in the treatment of cervical spondylosis were acquired by a comprehensive search in PubMed and EMBASE. Exclusion criteria were non-English studies, noncomparative studies, hybrid surgeries, revision surgeries, and surgeries with less than a 12-month follow-up period. The main end points including Japanese Orthopedic Association (JOA) and Neck Disability Index (NDI) scores, cervical lordosis, fusion rate, subsidence, and dysphagia were analyzed. All studies were analyzed with the RevMan 5.2.0 software. Publication biases of main results were examined using Stata 12.0. A total of 12 studies were included in the meta-analysis. No statistical difference was observed with regard to preoperative or postoperative JOA and NDI scores, cervical lordosis, and fusion rate. The Zero-P group had a higher subsidence rate than the PCC group (P<0.05, risk difference =0.13, 95% confidence interval [CI] 0.00-0.26). However, the Zero-P group had a significantly lower postoperative dysphagia rate than the PCC group within the first 2 weeks (P<0.05, odds ratio [OR] =0.64, 95% CI 0.45-0.91), at the 6th month [P<0.05, OR =0.20, 95% CI 0.04-0.90], and at the final follow-up time [P<0.05, OR =0.13, 95% CI 0.04-0.45]. Our meta-analysis suggested that surgical treatments of single or multiple levels of cervical spondylosis using Zero-P and PCC were similar in terms of JOA score, NDI score, cervical lordosis, and fusion rate. Although the Zero-P group had a higher subsidence rate than the PCC group, Zero-P had a lower postoperative dysphagia rate and might have a lower adjacent-level ossification rate.

  16. The running coupling of the minimal sextet composite Higgs model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, Zoltan; Holland, Kieran; Kuti, Julius

    We compute the renormalized running coupling of SU(3) gauge theory coupled to N f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the β-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop β-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop β-functions in themore » $$\\overline{MS}$$ scheme. The absence of a non-trivial zero in the β-function in the explored range of the coupling is consistent with our earlier findings based on hadronic observables, the chiral condensate and the GMOR relation. The present work is the first to report continuum non-perturbative results for the sextet model.« less

  17. Using Laser Scanners to Augment the Systematic Error Pointing Model

    NASA Astrophysics Data System (ADS)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  18. A General Theory of Unsteady Compressible Potential Aerodynamics

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1974-01-01

    The general theory of potential aerodynamic flow around a lifting body having arbitrary shape and motion is presented. By using the Green function method, an integral representation for the potential is obtained for both supersonic and subsonic flow. Under small perturbation assumption, the potential at any point, P, in the field depends only upon the values of the potential and its normal derivative on the surface, sigma, of the body. Hence, if the point P approaches the surface of the body, the representation reduces to an integro-differential equation relating the potential and its normal derivative (which is known from the boundary conditions) on the surface sigma. For the important practical case of small harmonic oscillation around a rest position, the equation reduces to a two-dimensional Fredholm integral equation of second-type. It is shown that this equation reduces properly to the lifting surface theories as well as other classical mathematical formulas. The question of uniqueness is examined and it is shown that, for thin wings, the operator becomes singular as the thickness approaches zero. This fact may yield numerical problems for very thin wings.

  19. Killings, duality and characteristic polynomials

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; Borlaf, Javier; León, José H.

    1998-03-01

    In this paper the complete geometrical setting of (lowest order) abelian T-duality is explored with the help of some new geometrical tools (the reduced formalism). In particular, all invariant polynomials (the integrands of the characteristic classes) can be explicitly computed for the dual model in terms of quantities pertaining to the original one and with the help of the canonical connection whose intrinsic characterization is given. Using our formalism the physically, and T-duality invariant, relevant result that top forms are zero when there is an isometry without fixed points is easily proved. © 1998

  20. Go out or stay in? The effects of zero tolerance laws on alcohol use and drinking and driving patterns among college students.

    PubMed

    Liang, Lan; Huang, Jidong

    2008-11-01

    Zero tolerance laws make it illegal per se for anyone under age 21 to drive with any measurable amount of blood alcohol. Although a link has been established between zero tolerance laws and lower motor vehicle fatalities, research has not produced strong evidence on how zero tolerance laws influence individual alcohol use and drinking and driving behaviors. Using a unique data set and a difference-in-difference-in-difference-type research design, we are able to analyze a number of pathways through which zero tolerance laws can work among an important underage population, college students. We find that zero tolerance laws reduce drinking and driving among college students. Further analysis of our detailed alcohol use measures suggests that zero tolerance laws are particularly effective at reducing the probability of driving after drinking for those who reported drinking away from home.

  1. Perpetual Points: New Tool for Localization of Coexisting Attractors in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dudkowski, Dawid; Prasad, Awadhesh; Kapitaniak, Tomasz

    Perpetual points (PPs) are special critical points for which the magnitude of acceleration describing the dynamics drops to zero, while the motion is still possible (stationary points are excluded), e.g. considering the motion of the particle in the potential field, at perpetual point, it has zero acceleration and nonzero velocity. We show that using PPs we can trace all the stable fixed points in the system, and that the structure of trajectories leading from former points to stable equilibria may be similar to orbits obtained from unstable stationary points. Moreover, we argue that the concept of perpetual points may be useful in tracing unexpected attractors (hidden or rare attractors with small basins of attraction). We show potential applicability of this approach by analyzing several representative systems of physical significance, including the damped oscillator, pendula, and the Henon map. We suggest that perpetual points may be a useful tool for localizing coexisting attractors in dynamical systems.

  2. Levels of CDDs, CDFs, PCBs and Hg in Rural Soils of US (Project Overview)

    EPA Science Inventory

    No systematic survey of dioxins in soil has been conducted in the US. Soils represent the largest reservoir source of dioxins. As point source emissions are reduced emissions from soils become increasingly important. Understanding the distribution of dioxin levels in soils is ...

  3. Experimental Robot Model Adjustments Based on Force–Torque Sensor Information

    PubMed Central

    2018-01-01

    The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force–torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamics. PMID:29534477

  4. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Loffreda, David

    2006-05-01

    Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.

  5. On the contribution of intramolecular zero point energy to the equation of state of solid H2

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, V.; Etters, R. D.

    1978-01-01

    Experimental evidence shows that the internal zero-point energy of the H2 molecule exhibits a relatively strong pressure dependence in the solid as well as changing considerably upon condensation. It is shown that these effects contribute about 6% to the total sublimation energy and to the pressure in the solid state. Methods to modify the ab initio isolated pair potential to account for these environmental effects are discussed.

  6. A hierarchical model combining distance sampling and time removal to estimate detection probability during avian point counts

    USGS Publications Warehouse

    Amundson, Courtney L.; Royle, J. Andrew; Handel, Colleen M.

    2014-01-01

    Imperfect detection during animal surveys biases estimates of abundance and can lead to improper conclusions regarding distribution and population trends. Farnsworth et al. (2005) developed a combined distance-sampling and time-removal model for point-transect surveys that addresses both availability (the probability that an animal is available for detection; e.g., that a bird sings) and perceptibility (the probability that an observer detects an animal, given that it is available for detection). We developed a hierarchical extension of the combined model that provides an integrated analysis framework for a collection of survey points at which both distance from the observer and time of initial detection are recorded. Implemented in a Bayesian framework, this extension facilitates evaluating covariates on abundance and detection probability, incorporating excess zero counts (i.e. zero-inflation), accounting for spatial autocorrelation, and estimating population density. Species-specific characteristics, such as behavioral displays and territorial dispersion, may lead to different patterns of availability and perceptibility, which may, in turn, influence the performance of such hierarchical models. Therefore, we first test our proposed model using simulated data under different scenarios of availability and perceptibility. We then illustrate its performance with empirical point-transect data for a songbird that consistently produces loud, frequent, primarily auditory signals, the Golden-crowned Sparrow (Zonotrichia atricapilla); and for 2 ptarmigan species (Lagopus spp.) that produce more intermittent, subtle, and primarily visual cues. Data were collected by multiple observers along point transects across a broad landscape in southwest Alaska, so we evaluated point-level covariates on perceptibility (observer and habitat), availability (date within season and time of day), and abundance (habitat, elevation, and slope), and included a nested point-within-transect and park-level effect. Our results suggest that this model can provide insight into the detection process during avian surveys and reduce bias in estimates of relative abundance but is best applied to surveys of species with greater availability (e.g., breeding songbirds).

  7. Rare-Region-Induced Avoided Quantum Criticality in Disordered Three-Dimensional Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Huse, David A.; Das Sarma, S.

    2016-04-01

    We numerically study the effect of short-ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed (and extensively theoretically studied) quantum critical point separating semimetal and diffusive-metal phases. We determine the properties of the eigenstates of the disordered Dirac Hamiltonian (H ) and exactly calculate the density of states (DOS) near zero energy, using a combination of Lanczos on H2 and the kernel polynomial method on H . We establish the existence of two distinct types of low-energy eigenstates contributing to the disordered density of states in the weak-disorder semimetal regime. These are (i) typical eigenstates that are well described by linearly dispersing perturbatively dressed Dirac states and (ii) nonperturbative rare eigenstates that are weakly dispersive and quasilocalized in the real-space regions with the largest (and rarest) local random potential. Using twisted boundary conditions, we are able to systematically find and study these two (essentially independent) types of eigenstates. We find that the Dirac states contribute low-energy peaks in the finite-size DOS that arise from the clean eigenstates which shift and broaden in the presence of disorder. On the other hand, we establish that the rare quasilocalized eigenstates contribute a nonzero background DOS which is only weakly energy dependent near zero energy and is exponentially small at weak disorder. We also find that the expected semimetal to diffusive-metal quantum critical point is converted to an avoided quantum criticality that is "rounded out" by nonperturbative effects, with no signs of any singular behavior in the DOS at the energy of the clean Dirac point. However, the crossover effects of the avoided (or hidden) criticality manifest themselves in a so-called quantum critical fan region away from the Dirac energy. We discuss the implications of our results for disordered Dirac and Weyl semimetals, and reconcile the large body of existing numerical work showing quantum criticality with the existence of these nonperturbative effects.

  8. Germylenes: structures, electron affinities, and singlet-triplet gaps of the conventional XGeCY(3) (X = H, F, Cl, Br, and I; Y = F and Cl) species and the unexpected cyclic XGeCY(3) (Y = Br and I) systems.

    PubMed

    Bundhun, Ashwini; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2010-12-23

    A systematic investigation of the X-Ge-CY(3) (X = H, F, Cl, Br, and I; Y = F, Cl, Br, and I) species is carried out using density functional theory. The basis sets used for all atoms (except iodine) in this work are of double-ζ plus polarization quality with additional s- and p-type diffuse functions, and denoted DZP++. Vibrational frequency analyses are performed to evaluate zero-point energy corrections and to determine the nature of the stationary points located. Predicted are four different forms of neutral-anion separations: adiabatic electron affinity (EA(ad)), zero-point vibrational energy corrected EA(ad(ZPVE)), vertical electron affinity (EA(vert)), and vertical detachment energy (VDE). The electronegativity (χ) reactivity descriptor for the halogens (X = F, Cl, Br, and I) is used as a tool to assess the interrelated properties of these germylenes. The topological position of the halogen atom bound to the divalent germanium center is well correlated with the trend in the electron affinities and singlet-triplet gaps. For the expected XGeCY(3) structures (X = H, F, Cl, Br, and I; Y = F and Cl), the predicted trend in the electron affinities is well correlated with simpler germylene derivatives (J. Phys. Chem. A 2009, 113, 8080). The predicted EA(ad(ZPVE)) values with the BHLYP functional range from 1.66 eV (FGeCCl(3)) to 2.20 eV (IGeCF(3)), while the singlet-triplet splittings range from 1.28 eV (HGeCF(3)) to 2.22 eV (FGeCCl(3)). The XGeCY(3) (Y = Br and I) species are most often characterized by three-membered cyclic systems involving the divalent germanium atom, the carbon atom, and a halogen atom.

  9. Nanotexturing of surfaces to reduce melting point.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Zubia, David; Mireles, Jose

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understandingmore » and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.

    In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less

  11. Cost Benefit Analysis of a Utility Scale Waste-to-Energy/Concentrating Solar Power Hybrid Facility at Fort Bliss

    DTIC Science & Technology

    2012-06-01

    installations for Energy, Waste, and Water. This means Fort Bliss will strive to become Net Zero Energy, Net Zero Waste , and Net Zero Water in the coming...years. Net Zero Energy requires Fort Bliss to produce as much energy on-installation as it consumes annually. Net Zero Waste aims to reduce, reuse...become Net Zero Energy and Net Zero Waste by 2020. A WtE facility actually goes well beyond Fort Bliss’ Net Zero Energy mission. That mission

  12. Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1: Radiance, polarization, and neutral points.

    PubMed

    Kattawar, G W; Plass, G N; Hitzfelder, S J

    1976-03-01

    The complete radiation field including polarization is calculated by the matrix operator method for scattering layers of various optical thicknesses. Results obtained for Rayleigh scattering are compared with those for scattering from a continental haze. Radiances calculated using Stokes vectors show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are only of the order of 0.1% for a continental haze phase function. The polarization of the reflected and transmitted radiation is given for a wide range of optical thicknesses of the scattering layer, for various solar zenith angles, and various surface albedos. Two entirely different types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points (RNP) arise from the zero polarization in single scattering that occurs for all phase functions at scattering angles of 0 degrees and 180 degrees . For Rayleigh phase functions, the position of the RNP varies appreciably with the optical thickness of the scattering layer. At low solar elevations there may be four RNP. For a continental haze phase function the position of the RNP in the reflected radiation shows only a small variation with the optical thickness, and the RNP exists in the transmitted radiation only for extremely small optical thicknesses. Another type of neutral point (NRNP) exists for aerosol phase functions. It is associated with the zeros of the single scattered polarization, which occur between the end points of the curve; these are called non-Rayleigh neutral points (NRNP). There may be from zero to four of these neutral points associated with each zero of the single scattering curve. They occur over a range of azimuthal angles, unlike the RNP that are in the principal plane only. The position of these neutral points is given as a function of solar angle and optical thickness.

  13. Constraints on texture zero and cofactor zero models for neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whisnant, K.; Liao, Jiajun; Marfatia, D.

    2014-06-24

    Imposing a texture or cofactor zero on the neutrino mass matrix reduces the number of independent parameters from nine to seven. Since five parameters have been measured, only two independent parameters would remain in such models. We find the allowed regions for single texture zero and single cofactor zero models. We also find strong similarities between single texture zero models with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy. We show that this correspondence can be generalized to texture-zero and cofactor-zero models with the same homogeneous costraints on the elements and cofactors.

  14. pH-dependent surface charging and points of zero charge. IV. Update and new approach.

    PubMed

    Kosmulski, Marek

    2009-09-15

    The recently published points of zero charge (PZC) and isoelectric points (IEPs) of various materials are compiled to update the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC Press, Boca Raton, FL, 2009]. Unlike in previous compilations by the same author [Chemical Properties of Material Surfaces, Dekker, New York, 2001; J. Colloid Interface Sci. 253 (2002) 77; J. Colloid Interface Sci. 275 (2004) 214; J. Colloid Interface Sci. 298 (2006) 730], the materials are sorted not only by the chemical formula, but also by specific product, that is, by brand name (commercially available materials), and by recipe (home-synthesized materials). This new approach indicated that the relatively consistent PZC/IEP reported in the literature for materials having the same chemical formula are due to biased choice of specimens to be studied. Specimens which have PZC/IEP close to the "recommended" value are selected more often than other specimens (PZC/IEP not reported before or PZC/IEP reported, but different from the "recommended" value). Thus, the previously published PZC/IEP act as a self-fulfilling prophecy.

  15. HIV, HBV and HCV Coinfection Prevalence in Iran - A Systematic Review and Meta-Analysis

    PubMed Central

    Bagheri Amiri, Fahimeh; Mostafavi, Ehsan; Mirzazadeh, Ali

    2016-01-01

    Background worldwide, hepatitis C and B virus infections (HCV and HCV), are the two most common coinfections with human immunodeficiency virus (HIV) and has become a major threat to the survival of HIV-infected persons. The review aimed to estimate the prevalence of HIV, HBV, HCV, HIV/HCV and HIV/HBV and triple coinfections in different subpopulations in Iran. Method Following PRISMA guidelines, we conducted a systematic review and meta-analysis of reports on prevalence of HIV, HBV, HCV and HIV coinfections in different subpopulations in Iran. We systematically reviewed the literature to identify eligible studies from January 1996 to March 2012 in English or Persian/Farsi databases. We extracted the prevalence of HIV antibodies (diagnosed by Elisa confirmed with Western Blot test), HCV antibodies and HBsAg (with confirmatory laboratory test) as the main primary outcome. We reported the prevalence of the three infections and coinfections as point and 95% confidence intervals. Findings HIV prevalence varied from %0.00 (95% CI: 0.00–0.003) in the general population to %17.25 (95% CI: 2.94–31.57) in people who inject drugs (PWID). HBV prevalence ranged from % 0.00 (95% CI: 0.00–7.87) in health care workers to % 30.9 (95% CI: 27.88–33.92) in PWID. HCV prevalence ranged from %0.19 (95% CI: 0.00–0.66) in health care workers to %51.46 (95% CI: 34.30–68.62) in PWID. The coinfection of HIV/HBV and also HIV/HCV in the general population and in health care workers was zero, while the most common coinfections were HIV/HCV (10.95%), HIV/HBV (1.88%) and triple infections (1.25%) in PWID. Conclusions We found that PWID are severely and disproportionately affected by HIV and the other two infections, HCV and HBV. Screenings of such coinfections need to be reinforced to prevent new infections and also reduce further transmission in their community and to others. PMID:27031352

  16. Apollo-Soyuz pamphlet no. 8: Zero-g technology. [experimental designispace processing and aerospace engineering

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The behavior of liquids in zero gravity environments is discussed with emphasis on foams, wetting, and wicks. A multipurpose electric furnace (MA-010) for the high temperature processing of metals and salts in zero-g is described. Experiments discussed include: monolectic and synthetic alloys (MA-041); multiple material melting point (MA-150); zero-g processing of metals (MA-070); surface tension induced convection (MA-041); halide eutectic growth; interface markings in crystals (MA-060); crystal growth from the vapor phase (MA-085); and photography of crystal growth (MA-028).

  17. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    PubMed

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  18. Quantitative Analysis of Clopidogrel Bisulphate and Aspirin by First Derivative Spectrophotometric Method in Tablets

    PubMed Central

    Game, Madhuri D.; Gabhane, K. B.; Sakarkar, D. M.

    2010-01-01

    A simple, accurate and precise spectrophotometric method has been developed for simultaneous estimation of clopidogrel bisulphate and aspirin by employing first order derivative zero crossing method. The first order derivative absorption at 232.5 nm (zero cross point of aspirin) was used for clopidogrel bisulphate and 211.3 nm (zero cross point of clopidogrel bisulphate) for aspirin.Both the drugs obeyed linearity in the concentration range of 5.0 μg/ml to 25.0 μg/ml (correlation coefficient r2<1). No interference was found between both determined constituents and those of matrix. The method was validated statistically and recovery studies were carried out to confirm the accuracy of the method. PMID:21969765

  19. Time delay of critical images in the vicinity of cusp point of gravitational-lens systems

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-12-01

    We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.

  20. Suez Canal Clearance Operation, Task Force 65

    DTIC Science & Technology

    1975-05-01

    supporting minesweepers, GARDENIA, GIROFLEE, AJONC, and LILAS, and two minehunters CERES and CALLIOPE. TG SIX FIVE POINT ZERO . This Task Group designation...circle search line, buoy line, tether, zero visibility, and no communication with the surface, created a hazardous situation for open circuit scuba...from essentially zero to several hut7Ared thousand in Port Said and Suez City, and to a lesser degree in Ismailia. This occurred without a concomitant

  1. Determination of point of zero charge of natural organic materials.

    PubMed

    Bakatula, Elisee Nsimba; Richard, Dominique; Neculita, Carmen Mihaela; Zagury, Gerald J

    2018-03-01

    This study evaluates different methods to determine points of zero charge (PZCs) on five organic materials, namely maple sawdust, wood ash, peat moss, compost, and brown algae, used for the passive treatment of contaminated neutral drainage effluents. The PZC provides important information about metal sorption mechanisms. Three methods were used: (1) the salt addition method, measuring the PZC; (2) the zeta potential method, measuring the isoelectric point (IEP); (3) the ion adsorption method, measuring the point of zero net charge (PZNC). Natural kaolinite and synthetic goethite were also tested with both the salt addition and the ion adsorption methods in order to validate experimental protocols. Results obtained from the salt addition method in 0.05 M NaNO 3 were the following: 4.72 ± 0.06 (maple sawdust), 9.50 ± 0.07 (wood ash), 3.42 ± 0.03 (peat moss), 7.68 ± 0.01 (green compost), and 6.06 ± 0.11 (brown algae). Both the ion adsorption and the zeta potential methods failed to give points of zero charge for these substrates. The PZC of kaolinite (3.01 ± 0.03) was similar to the PZNC (2.9-3.4) and fell within the range of values reported in the literature (2.7-4.1). As for the goethite, the PZC (10.9 ± 0.05) was slightly higher than the PZNC (9.0-9.4). The salt addition method has been found appropriate and convenient to determine the PZC of natural organic substrates.

  2. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  3. Semiclassical wave packet treatment of scattering resonances: application to the delta zero-point energy effect in recombination reactions.

    PubMed

    Vetoshkin, Evgeny; Babikov, Dmitri

    2007-09-28

    For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.

  4. Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo.

    PubMed

    Harding, Lawrence B; Georgievskii, Yuri; Klippenstein, Stephen J

    2017-06-08

    Full-dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion-related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic zero-point energies. The resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower-level electronic structure methods (B3LYP and MP2).

  5. Accurate anharmonic zero-point energies for some combustion-related species from diffusion Monte Carlo

    DOE PAGES

    Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.

    2017-05-17

    Full dimensional analytic potential energy surfaces based on CCSD(T)/cc-pVTZ calculations have been determined for 48 small combustion related molecules. The analytic surfaces have been used in Diffusion Monte Carlo calculations of the anharmonic, zero point energies. Here, the resulting anharmonicity corrections are compared to vibrational perturbation theory results based both on the same level of electronic structure theory and on lower level electronic structure methods (B3LYP and MP2).

  6. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation parameters, and demonstrate the ability of this approach to optimize MQC-IVR simulations.

  7. Establishing a Network of faint DA white dwarfs as Spectrophotometric Standards

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Narayan, Gautham; Holberg, Jay; Matheson, Thomas; Olszewski, Edward; Stubbs, Christopher; Bohlin, Ralph; Sabbi, Elena; Deustua, Susana; Rest, Armin; Axelrod, Tim; MacKenty, John W.; Camarota, Larry; Gilliland, Ron

    2015-08-01

    Systematic uncertainties in photometric calibration are the dominant source of error in current type Ia supernova dark energy studies, as well as other forefront cosmology efforts, e.g. photo-redshift determinations for weak lensing mass tomography. Current and next-generation ground-based all-sky surveys require a network of calibration stars with 1) known SEDs (to properly and unambiguously take into account filter differences), and 2) that are on a common photometric zeropoint scale across the sky to sub-percent accuracy. We are using a combination of HST panchromatic photometry and ground based spectroscopy to establish such an essential network of faint primary photometric standards, exploiting the well-understood spectral energy distributions of DA white dwarf stars that are free from the complications of observing through the Earth's time-variable atmosphere. The Balmer features in the spectra are used to deduce the two parameters (temperature and log(g)) from which we model the spectral energy distribution (SED) from these stars which have pure hydrogen atmospheres. By comparing against panchromatic broadband HST photometry, and allowing for an achromatic zero-point adjustment and mild scaling of the interstellar reddening, we find that model prediction and observation agree to a few milli-mag. By combining the zero-point and reddening adjustments with the modeled SED, for each star we obtain the incident SED above the terrestrial atmosphere, thus establishing these objects as spectrophotometric standards. We are pursuing 23 objects between 16 and 19 mag spread over the sky uniformly around the equator and northern mid-latitudes, with plans to extend this to southern latitudes. This precision photometric heritage from HST will benefit essentially all existing and upcoming survey projects, and in prticular, directly addresses one of the current barriers to understanding the nature of dark energy.

  8. Multiple scattered radiation emerging from continental haze layers. 1: Radiance, polarization, and neutral points

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.

    1975-01-01

    The complete radiation field is calculated for scattering layers of various optical thicknesses. Results obtained for Rayleigh and haze scattering are compared. Calculated radiances show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are approximately 0.1% for a continental haze phase function. The polarization of reflected and transmitted radiation is given for various optical thicknesses, solar zenith angles, and surface albedos. Two types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points arise from zero polarization that occurs at scattering angles of 0 deg and 180 deg. For Rayleigh phase functions, the position of these points varies with the optical thickness of the scattering layer. Non-Rayleigh neutral points are associated with the zeros of polarization which occur between the end points of the single scattering curve, and are found over a wide range of azimuthal angles.

  9. Development of an algorithm to provide awareness in choosing study designs for inclusion in systematic reviews of healthcare interventions: a method study

    PubMed Central

    Peinemann, Frank; Kleijnen, Jos

    2015-01-01

    Objectives To develop an algorithm that aims to provide guidance and awareness for choosing multiple study designs in systematic reviews of healthcare interventions. Design Method study: (1) To summarise the literature base on the topic. (2) To apply the integration of various study types in systematic reviews. (3) To devise decision points and outline a pragmatic decision tree. (4) To check the plausibility of the algorithm by backtracking its pathways in four systematic reviews. Results (1) The results of our systematic review of the published literature have already been published. (2) We recaptured the experience from our four previously conducted systematic reviews that required the integration of various study types. (3) We chose length of follow-up (long, short), frequency of events (rare, frequent) and types of outcome as decision points (death, disease, discomfort, disability, dissatisfaction) and aligned the study design labels according to the Cochrane Handbook. We also considered practical or ethical concerns, and the problem of unavailable high-quality evidence. While applying the algorithm, disease-specific circumstances and aims of interventions should be considered. (4) We confirmed the plausibility of the pathways of the algorithm. Conclusions We propose that the algorithm can assist to bring seminal features of a systematic review with multiple study designs to the attention of anyone who is planning to conduct a systematic review. It aims to increase awareness and we think that it may reduce the time burden on review authors and may contribute to the production of a higher quality review. PMID:26289450

  10. Zero energy resonance and the logarithmically slow decay of unstable multilevel systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Manabu

    2006-08-15

    The long time behavior of the reduced time evolution operator for unstable multilevel systems is studied based on the N-level Friedrichs model in the presence of a zero energy resonance. The latter means the divergence of the resolvent at zero energy. Resorting to the technique developed by Jensen and Kato [Duke Math. J. 46, 583 (1979)], the zero energy resonance of this model is characterized by the zero energy eigenstate that does not belong to the Hilbert space. It is then shown that for some kinds of the rational form factors the logarithmically slow decay proportional to (log t){sup -1}more » of the reduced time evolution operator can be realized.« less

  11. 20 CFR 725.539 - More than one reduction event.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... first reduced (but not below zero) by the amount of the State or Federal benefits, and the remainder of the benefit for such month, if any, is then reduced (but not below zero) by the amount of excess...

  12. 20 CFR 725.539 - More than one reduction event.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... first reduced (but not below zero) by the amount of the State or Federal benefits, and the remainder of the benefit for such month, if any, is then reduced (but not below zero) by the amount of excess...

  13. 20 CFR 725.539 - More than one reduction event.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... first reduced (but not below zero) by the amount of the State or Federal benefits, and the remainder of the benefit for such month, if any, is then reduced (but not below zero) by the amount of excess...

  14. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  15. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  16. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    PubMed

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm -1 and the barrier for the double-proton transfer on the PES is 2848 cm -1 , in good agreement with the directly-calculated ab initio value of 2853 cm -1 . The zero-point vibrational energy of 15 337 ± 7 cm -1 is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm -1 , which is roughly twice the experimental value. The tunneling splittings of (DCOOH) 2 and (DCOOD) 2 from one to three mode calculations are, as expected, smaller than that for (HCOOH) 2 and consistent with experiment.

  17. Small massless excitations against a nontrivial background

    NASA Astrophysics Data System (ADS)

    Khariton, N. G.; Svetovoy, V. B.

    1994-03-01

    We propose a systematic approach for finding bosonic zero modes of nontrivial classical solutions in a gauge theory. The method allows us to find all the modes connected with the broken space-time and gauge symmetries. The ground state is supposed to be dependent on some space coordinates yα and independent of the rest of the coordinates xi. The main problem which is solved is how to construct the zero modes corresponding to the broken xiyα rotations in vacuum and which boundary conditions specify them. It is found that the rotational modes are typically singular at the origin or at infinity, but their energy remains finite. They behave as massless vector fields in x space. We analyze local and global symmetries affecting the zero modes. An algorithm for constructing the zero mode excitations is formulated. The main results are illustrated in the Abelian Higgs model with the string background.

  18. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-04-21

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show thatmore » anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.« less

  19. In Situ Magnetic Field Measurement using the Hanle Effect

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2016-05-01

    We have developed a simple method of in situ magnetic field mapping near zero points in magnetic fields. It is ideal for measuring trapping parameters such the field gradient and curvature, and should be applicable in most experiments with a magneto-optical trap (MOT) or similar setup. This method works by probing atomic transitions in a vacuum, and is based on the Hanle effect, which alters the polarization of spontaneous emission in the presence of a magnetic field. Unlike most techniques based on the Hanle effect, however, we look only at intensity. Instead of measuring polarization we use the change in directional radiation patterns caused by a magnetic field. Using one of the cooling beams for our MOT, along with a linear polarizer, a narrow slit, and an inexpensive webcam, we measure the three dimensional position of a magnetic field zero point within our vacuum to within +/-1 mm and the gradient through the zero point to an accuracy of 4%. This work was supported by NSF Grant Number PHY-1205736.

  20. A temperature characteristic research and compensation design for micro-machined gyroscope

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; di, Xin-Peng; Chen, Wei-Ping; Yin, Liang; Liu, Xiao-Wei

    2017-02-01

    The all temperature range stability is the most important technology of MEMS angular velocity sensor according to the principle of capacity detecting. The correlation between driven force and zero-point of sensor is summarized according to the temperature characteristic of the air-damping and resonant frequency of sensor header. A constant trans-conductance high-linearity amplifier is designed to realize the low phase-drift and low amplitude-drift interface circuit at all-temperature range. The chip is fabricated in a standard 0.5 μm CMOS process. Compensation achieved by driven force to zero-point drift caused by the stiffness of physical construction and air-damping is adopted. Moreover, the driven force can be obtained from the drive-circuit to avoid the complex sampling. The test result shows that the zero-point drift is lower than 30∘/h (1-sigma) at the temperature range from -40∘C to 60∘C after three-order compensation made by driven force.

  1. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  2. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-09

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

  3. Land Management Panel: Army’s Net Zero Installation Initiative

    DTIC Science & Technology

    2012-05-24

    same watershed so not to deplete the groundwater and surface water resources of that region in quantity or quality.  A Net Zero WASTE Installation...0.15 0.2 0.25 Assistant Secretary of the Army (Installations, Energy & Environment) Net Zero Waste A Net Zero WASTE Installation reduces, reuses...Net Zero Waste Strategy 17 Assistant Secretary of the Army (Installations, Energy & Environment) Waste Roadmaps Material flow analysis

  4. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant

    NASA Technical Reports Server (NTRS)

    Freedman, Wendy L.; Madore, Barry F.; Scowcroft, Victoria; Burns, Chris; Monson, Andy; Persson, S. Eric; Seibert, Mark; Rigby, Jane

    2012-01-01

    Using a mid-infrared calibration of the Cepheid distance scale based on recent observations at 3.6 micrometers with the Spitzer Space Telescope, we have obtained a new, high-accuracy calibration of the Hubble constant. We have established the mid-IR zero point of the Leavitt law (the Cepheid period-luminosity relation) using time-averaged 3.6 micrometers data for 10 high-metallicity, MilkyWay Cepheids having independently measured trigonometric parallaxes. We have adopted the slope of the PL relation using time-averaged 3.6micrometers data for 80 long-period Large Magellanic Cloud (LMC) Cepheids falling in the period range 0.8 < log(P) < 1.8.We find a new reddening-corrected distance to the LMC of 18.477 +/- 0.033 (systematic) mag. We re-examine the systematic uncertainties in H(sub 0), also taking into account new data over the past decade. In combination with the new Spitzer calibration, the systematic uncertainty in H(sub 0) over that obtained by the Hubble Space Telescope Key Project has decreased by over a factor of three. Applying the Spitzer calibration to the Key Project sample, we find a value of H(sub 0) = 74.3 with a systematic uncertainty of +/-2.1 (systematic) kilometers per second Mpc(sup -1), corresponding to a 2.8% systematic uncertainty in the Hubble constant. This result, in combination with WMAP7measurements of the cosmic microwave background anisotropies and assuming a flat universe, yields a value of the equation of state for dark energy, w(sub 0) = -1.09 +/- 0.10. Alternatively, relaxing the constraints on flatness and the numbers of relativistic species, and combining our results with those of WMAP7, Type Ia supernovae and baryon acoustic oscillations yield w(sub 0) = -1.08 +/- 0.10 and a value of N(sub eff) = 4.13 +/- 0.67, mildly consistent with the existence of a fourth neutrino species.

  5. USAF Test Pilot School. Performance Phase Textbook. Volume 1

    DTIC Science & Technology

    1986-04-01

    60" is twice as hot as 30* even though 60’ $ 30’ = 2. The reason is that our zero point is arbitrary. Zero degrees Farenheit does not mean the...by absolute mvaitude, ignoring t0* zero differ- Sence gives: Rank 2.5 2.5 2.5 2,5 6 6 6 8.5 8,5 Difference -1 1 1 -1 2 2 2 3 3 • ,•eAXe now .W+ 2.5...uti•n . . . . . . . . . . . . . . 3.24 3.11 goe Lift• • ..... • • 3.29 4-! Table of Contents (continued) Chapter Page 3.12 Zero Lift Line

  6. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province.

    PubMed

    Sullivan, Timothy J; Cosby, Bernard J; Jackson, William A

    2011-11-01

    An important tool in the evaluation of acidification damage to aquatic and terrestrial ecosystems is the critical load (CL), which represents the steady-state level of acidic deposition below which ecological damage would not be expected to occur, according to current scientific understanding. A deposition load intended to be protective of a specified resource condition at a particular point in time is generally called a target load (TL). The CL or TL for protection of aquatic biota is generally based on maintaining surface water acid neutralizing capacity (ANC) at an acceptable level. This study included calibration and application of the watershed model MAGIC (Model of Acidification of Groundwater in Catchments) to estimate the target sulfur (S) deposition load for the protection of aquatic resources at several future points in time in 66 generally acid-sensitive watersheds in the southern Blue Ridge province of North Carolina and two adjoining states. Potential future change in nitrogen leaching is not considered. Estimated TLs for S deposition ranged from zero (ecological objective not attainable by the specified point in time) to values many times greater than current S deposition depending on the selected site, ANC endpoint, and evaluation year. For some sites, one or more of the selected target ANC critical levels (0, 20, 50, 100μeq/L) could not be achieved by the year 2100 even if S deposition was reduced to zero and maintained at that level throughout the simulation. Many of these highly sensitive streams were simulated by the model to have had preindustrial ANC below some of these target values. For other sites, the watershed soils contained sufficiently large buffering capacity that even very high sustained levels of atmospheric S deposition would not reduce stream ANC below common damage thresholds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions.

    PubMed

    Rançon, A; Kodio, O; Dupuis, N; Lecheminant, P

    2013-07-01

    We study the thermodynamics of the relativistic quantum O(N) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form P(T)=P(0)+N(T(3)/c(2))F(N)(Δ/T), where c is the velocity of the excitations at the QCP and |Δ| a characteristic zero-temperature energy scale. Using both a large-N approach to leading order and the nonperturbative renormalization group, we compute the universal scaling function F(N). For small values of N (N/~1) regimes, but fails to describe the nonmonotonic behavior of F(N) in the quantum critical regime. We discuss the renormalization-group flows in the various regimes near the QCP and make the connection with the quantum nonlinear sigma model in the renormalized classical regime. We compute the Berezinskii-Kosterlitz-Thouless transition temperature in the quantum O(2) model and find that in the vicinity of the QCP the universal ratio T(BKT)/ρ(s)(0) is very close to π/2, implying that the stiffness ρ(s)(T(BKT)(-)) at the transition is only slightly reduced with respect to the zero-temperature stiffness ρ(s)(0). Finally, we briefly discuss the experimental determination of the universal function F(2) from the pressure of a Bose gas in an optical lattice near the superfluid-Mott-insulator transition.

  8. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  9. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  10. Initial data for two Kerr-like black holes.

    PubMed

    Dain, S

    2001-09-17

    We prove the existence of a family of initial data for the Einstein vacuum equation which can be interpreted as the data for two Kerr-like black holes in an arbitrary location and with spins pointing in arbitrary directions. We also provide a method to compute them. If the mass parameter of one of the black holes is zero, then this family reduces exactly to the Kerr initial data. The existence proof is based on a general property of the Kerr metric which can be used in other constructions as well. Further generalizations are also discussed.

  11. VizieR Online Data Catalog: Spectra of KIC10661783 (Lehmann+, 2013)

    NASA Astrophysics Data System (ADS)

    Lehmann, H.; Southworth, J.; Tkachenko, A.; Pavlovski, K.

    2013-08-01

    In 2010, we obtained 26 high-resolution spectra of KIC 10661783 in seven almost consecutive nights using the Coude-echelle spectrograph at the 2-m telescope of the Thueringer Landessternwarte Tautenburg. The spectra have a resolving power of 64000 and cover the wavelength range 470-740nm. The exposure time was 30 min and the spectra have a signal-to-noise ratio of 90 on average. They were reduced using standard ESO-MIDAS packages and a routine for the calibration of the instrumental radial velocity zero-point using O2 telluric lines. (2 data files).

  12. Highly Adjustable Systems: An Architecture for Future Space Observatories

    NASA Astrophysics Data System (ADS)

    Arenberg, Jonathan; Conti, Alberto; Redding, David; Lawrence, Charles R.; Hachkowski, Roman; Laskin, Robert; Steeves, John

    2017-06-01

    Mission costs for ground breaking space astronomical observatories are increasing to the point of unsustainability. We are investigating the use of adjustable or correctable systems as a means to reduce development and therefore mission costs. The poster introduces the promise and possibility of realizing a “net zero CTE” system for the general problem of observatory design and introduces the basic systems architecture we are considering. This poster concludes with an overview of our planned study and demonstrations for proving the value and worth of highly adjustable telescopes and systems ahead of the upcoming decadal survey.

  13. Effect of the next-nearest-neighbor hopping on the charge collective modes in the paramagnetic phase of the Hubbard model

    NASA Astrophysics Data System (ADS)

    Dao, Vu Hung; Frésard, Raymond

    2017-10-01

    The charge dynamical response function of the t-t'-U Hubbard model is investigated on the square lattice in the thermodynamical limit. The correlation function is calculated from Gaussian fluctuations around the paramagnetic saddle-point within the Kotliar and Ruckenstein slave-boson representation. The next-nearest-neighbor hopping only slightly affects the renormalization of the quasiparticle mass. In contrast a negative t'/t notably decreases (increases) their velocity, and hence the zero-sound velocity, at positive (negative) doping. For low (high) density n ≲ 0.5 (n ≳ 1.5) we find that it enhances (reduces) the damping of the zero-sound mode. Furthermore it softens (hardens) the upper-Hubbard-band collective mode at positive (negative) doping. It is also shown that our results differ markedly from the random-phase approximation in the strong-coupling limit, even at high doping, while they compare favorably with existing quantum Monte Carlo numerical simulations.

  14. An 1.4 ppm/°C bandgap voltage reference with automatic curvature-compensation technique

    NASA Astrophysics Data System (ADS)

    Zhou, Zekun; Yu, Hongming; Shi, Yue; Zhang, Bo

    2017-12-01

    A high-precision Bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. Firstly, an exponential curvature compensation method is adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Experiment results of the BGR proposed in this paper, which is implemented in 0.35-μm BCD process, illustrate that the TC of 1.4ppm/°C is realized under the power supply voltage of 3.6V and the power supply rejection of the proposed circuit is -67dB.

  15. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Singleton, John; ...

    2017-01-05

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states andmore » highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.« less

  16. Systematic Error Study for ALICE charged-jet v2 Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz, M.; Soltz, R.

    We study the treatment of systematic errors in the determination of v 2 for charged jets in √ sNN = 2:76 TeV Pb-Pb collisions by the ALICE Collaboration. Working with the reported values and errors for the 0-5% centrality data we evaluate the Χ 2 according to the formulas given for the statistical and systematic errors, where the latter are separated into correlated and shape contributions. We reproduce both the Χ 2 and p-values relative to a null (zero) result. We then re-cast the systematic errors into an equivalent co-variance matrix and obtain identical results, demonstrating that the two methodsmore » are equivalent.« less

  17. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.

  18. Energy of the quasi-free electron in supercritical krypton near the critical point.

    PubMed

    Li, Luxi; Evans, C M; Findley, G L

    2005-12-01

    Field ionization measurements of high-n CH(3)I and C(2)H(5)I Rydberg states doped into krypton are presented as a function of krypton number density along the critical isotherm. These data exhibit a decrease in the krypton-induced shift of the dopant ionization energy near the critical point. This change in shift is modeled to within +/-0.2% of experiment using a theory that accounts for the polarization of krypton by the dopant ion, the polarization of krypton by the quasi-free electron that arises from field ionization of the dopant, and the zero point kinetic energy of the free electron. The overall decrease in the shift of the dopant ionization energy near the critical point of krypton, which is a factor of 2 larger than that observed in argon, is dominated by the increase in the zero point kinetic energy of the quasi-free electron.

  19. Ubiquity of quantum zero-point fluctuations in dislocation glide

    NASA Astrophysics Data System (ADS)

    Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent

    2017-03-01

    Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.

  20. Water Electrolyzers and the Zero-Point Energy

    NASA Astrophysics Data System (ADS)

    King, M. B.

    The gas emitted from popular water electrolyzer projects manifests unusual energetic anomalies, which include vaporizing tungsten when used in a welding torch and running internal combustion engines on small quantities of the gas. Some claim to run generators in closed loop fashion solely on the gas from the electrolyzer, which is powered solely from the generator. Most investigators believe the energy is from burning hydrogen. A hypothesis is proposed that the dominant energy is not coming from hydrogen, but rather it is coming from charged water gas clusters, which activate and coherently trap zero-point energy.

  1. The Market Need for Off-Campus Cable-Based Higher Education.

    ERIC Educational Resources Information Center

    McBride, Jack

    A study was made of the market need for cable television-based higher education from an off-campus and non-traditional point of view. State University of Nebraska (SUN) is such an endeavor. Reduced to its essence, SUN is three things: (1) an extensive investigation into non-traditional education; (2) a new exportable model for systematized design…

  2. Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi 2–δAs 2

    DOE PAGES

    Luo, Yongkang; Ronning, F.; Wakeham, N.; ...

    2015-10-19

    The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi 2–δAs 2 (δ ≈ 0.28) as its antiferromagnetic order is tunedmore » by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 e –/formular unit in CeNi 2–δAs 2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. Here, the small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.« less

  3. Ping-pong auto-zero amplifier with glitch reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Mark R

    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  4. Exploring soft constraints on effective actions

    NASA Astrophysics Data System (ADS)

    Bianchi, Massimo; Guerrieri, Andrea L.; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao

    2016-10-01

    We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order s n ˜ ∂2 n are completely determined in terms of the k-point amplitudes at order s k with k ≤ n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.

  5. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoshchekov, Sergey V.; Stepanov, Nikolay F.

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys.more » 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.« less

  6. When zero is greater than one: consumer misinterpretations of nutrition labels.

    PubMed

    Graham, Dan J; Mohr, Gina S

    2014-12-01

    Front-of-package (FOP) nutrition labels are increasingly used by food manufacturers. A call to regulate the content and format of these labels resulted in recommendations by the Institute of Medicine (IOM) for standardized FOP labels that clearly communicate packaged foods' healthfulness. It is currently unclear how consumers would interpret and use these proposed labels. This research addresses psychological factors affecting the efficacy of FOP label use. It was hypothesized that IOM's proposed 0- to 3-point rating scale would produce the zero-comparison effect, leading to more favorable evaluations than are warranted for the least healthful products (i.e., those earning zero nutritional points). In two studies (Study 1, n = 68; Study 2, n = 101), participants evaluated products containing FOP labels on the basis of IOM recommendations. Primary outcomes were perceived product healthfulness and purchase intentions. Study 1 demonstrated that less-healthful products were rated by study participants to be equally healthful as more-healthful products. The relationship between FOP rating and purchase intentions was mediated by perceived healthfulness. Biases in product healthfulness ratings were exacerbated for consumers with higher (vs. lower) health concern. Study 2 demonstrated that by changing the rating scale from 0-3 to 1-4, consumers avoid the zero-comparison effect and accurately evaluate products' healthfulness. This research has implications for theory and policy in the domains of nutrition labeling and consumer health. Specifically, FOP labels can help consumers identify healthful options, but products receiving zero nutritional points may be misidentified as healthful; a simple label modification can prevent this confusion.

  7. Evaluation of the Washington State Target Zero teams project.

    DOT National Transportation Integrated Search

    2015-01-01

    As part of its Target Zero strategic highway safety plan that has the goal to reduce traffic fatalities in Washington to zero by the year 2030, the State of Washington established three detachments of Washington State Patrol (WSP) troopers to f...

  8. Reducing symptoms of major depressive disorder through a systematic training of general emotion regulation skills: protocol of a randomized controlled trial.

    PubMed

    Ehret, Anna M; Kowalsky, Judith; Rief, Winfried; Hiller, Wolfgang; Berking, Matthias

    2014-01-27

    Major Depressive Disorder is one of the most challenging mental health problems of our time. Although effective psychotherapeutic treatments are available, many patients fail to demonstrate clinically significant improvements. Difficulties in emotion regulation have been identified as putative risk and maintaining factors for Major Depressive Disorder. Systematically enhancing adaptive emotion regulation skills should thus help reduce depressive symptom severity. However, at this point, no study has systematically evaluated effects of increasing adaptive emotion regulation skills application on symptoms of Major Depressive Disorder. In the intended study, we aim to evaluate stand-alone effects of a group-based training explicitly and exclusively targeting general emotion regulation skills on depressive symptom severity and assess whether this training augments the outcome of subsequent individual cognitive behavioral therapy for depression. In the evaluation of the Affect Regulation Training, we will conduct a prospective randomized-controlled trial. Effects of the Affect Regulation Training on depressive symptom severity and outcomes of subsequent individual therapy for depression will be compared with an active, common factor based treatment and a waitlist control condition. The study sample will include 120 outpatients meeting criteria for Major Depressive Disorder. Depressive symptom severity as assessed by the Hamilton Rating Scale will serve as our primary study outcome. Secondary outcomes will include further indicators of mental health and changes in adaptive emotion regulation skills application. All outcomes will be assessed at intake and at 10 points in time over the course of the 15-month study period. Measures will include self-reports, observer ratings, momentary ecological assessments, and will be complemented in subsamples by experimental investigations and the analysis of hair steroids. If findings should support the hypothesis that enhancing regulation skills reduces symptom severity in Major Depressive Disorder, systematic emotion regulation skills training can enhance the efficacy and efficiency of current treatments for this severe and highly prevalent disorder. This study is registered with ClinicalTrials.gov, number NCT01330485.

  9. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases

    NASA Astrophysics Data System (ADS)

    Carlson, R. L.

    2014-12-01

    velocities in the lavas that cap normal oceanic crust are affected by both crack porosity and alteration of the primary mineral phases, chiefly to clays. Porosity accounts for 75-80% of the velocity variation in sonic log velocities in the lava sections of Holes 504B and 1256D, but the effect of alteration on the properties of the basalts has not been assessed. In this analysis, the grain velocities in basalt and diabase samples are estimated from an empirical linear relationship between grain density and the P wave modulus. The theoretical velocity in fresh, zero-porosity basalt, or diabase is 6.96 ± 0.07 km/s. Grain velocities in the diabase samples are statistically indistinguishable from the theoretical velocity, and show no variation with depth; alteration does not significantly affect the velocities in the diabase samples from Hole 504B. This result is consistent with previous analyses, which demonstrated that velocities in the dikes are controlled by crack porosity. In basalt lab samples, alteration reduces the average sample grain velocity to 6.74 ± 0.02 km/s; cracks at the sample scale further reduce the velocity to 5.86 ± 0.03 km/s, and large-scale cracks in the lavas reduce the average in situ velocity to 5.2 ± 0.3 km/s. Cracks account for nearly 90% of the difference between seismic (in situ) velocities and the theoretical velocity in the unaltered solid material. Basalt grain velocities show a small, but significant systematic increase with depth; the influence of alteration decreases with depth in the lavas, reaching near zero at the base of the lavas in Holes 504B and 1256D. This article was corrected on 16 JAN 2015. See the end of the full text for details.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhoufei; Ouyang, Xiaolong; Gong, Zhihao

    An extended hierarchy equation of motion (HEOM) is proposed and applied to study the dynamics of the spin-boson model. In this approach, a complete set of orthonormal functions are used to expand an arbitrary bath correlation function. As a result, a complete dynamic basis set is constructed by including the system reduced density matrix and auxiliary fields composed of these expansion functions, where the extended HEOM is derived for the time derivative of each element. The reliability of the extended HEOM is demonstrated by comparison with the stochastic Hamiltonian approach under room-temperature classical ohmic and sub-ohmic noises and the multilayermore » multiconfiguration time-dependent Hartree theory under zero-temperature quantum ohmic noise. Upon increasing the order in the hierarchical expansion, the result obtained from the extended HOEM systematically converges to the numerically exact answer.« less

  11. Reducing Waste from Military Facility Programs...Shed Those Ugly Tons

    DTIC Science & Technology

    2011-05-01

    USACE guidance 5 BUILDING STRONG® Sustainability Drivers • Net Zero Waste – Assistant Secretary of the Army for Installations, Energy and Environment...Garrison Grafenwoehr, Germany.  Fort Bliss and Carson (energy, water, waste)  “A net zero waste installation is an installation that reduces

  12. A new method to reduce the statistical and systematic uncertainty of chance coincidence backgrounds measured with waveform digitizers

    DOE PAGES

    O'Donnell, John M.

    2015-06-30

    We present a new method for measuring chance-coincidence backgrounds during the collection of coincidence data. The method relies on acquiring data with near-zero dead time, which is now realistic due to the increasing deployment of flash electronic-digitizer (waveform digitizer) techniques. An experiment designed to use this new method is capable of acquiring more coincidence data, and a much reduced statistical fluctuation of the measured background. A statistical analysis is presented, and us ed to derive a figure of merit for the new method. Factors of four improvement over other analyses are realistic. The technique is illustrated with preliminary data takenmore » as part of a program to make new measurements of the prompt fission neutron spectra at Los Alamo s Neutron Science Center. In conclusion, it is expected that the these measurements will occur in a regime where the maximum figure of merit will be exploited« less

  13. Zero-field quantum critical point in Ce0.91Yb0.09CoIn5

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Adhikari, R. B.; Haney, D. J.; White, B. D.; Maple, M. B.; Dzero, M.; Almasan, C. C.

    2018-05-01

    We present results of specific heat, electrical resistance, and magnetoresistivity measurements on single crystals of the heavy-fermion superconducting alloy Ce0.91Yb0.09CoIn5 . Non-Fermi-liquid to Fermi-liquid crossovers are clearly observed in the temperature dependence of the Sommerfeld coefficient γ and resistivity data. Furthermore, we show that the Yb-doped sample with x =0.09 exhibits universality due to an underlying quantum phase transition without an applied magnetic field by utilizing the scaling analysis of γ . Fitting of the heat capacity and resistivity data based on existing theoretical models indicates that the zero-field quantum critical point is of antiferromagnetic origin. Finally, we found that at zero magnetic field the system undergoes a third-order phase transition at the temperature Tc 3≈7 K.

  14. Zero frequency modes of the Maclaurin spheroids

    NASA Astrophysics Data System (ADS)

    Baumgart, D.; Friedman, J. L.

    1986-05-01

    The location of all zero-frequency modes of oscillation along the Maclaurin sequence are found for modes corresponding to oblate spheroidal harmonics with indices (l,m) where l less than 6 (equivalently, for modes described by Lagrangian displacements whose components in Cartesian coordinates are polynomials of degree less than or equal to 5). These points of zero frequency mark the onset of instability in each mode in the context of general relativity, or when a gravitational radiation reaction term is adjointed to the Newtonian theory.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veklenko, B. A., E-mail: veklenkoba@yandex.ru

    It is shown theoretically that the electromagnetic background of longitudinal zero oscillations of a temperature-degenerate electron–ion plasma in a thermodynamic equilibrium state resonantly distorts the wave functions of its electrons. This gives rise to a characteristic quantum frequency that nonanalytically depends on Planck’s constant ℏ. Vacuum phenomena in plasma attributed to zero oscillations turn out to be anomalously large. Quantum corrections to the transverse dielectric permittivity of a degenerate electron–ion plasma, which are nonanalytic with respect to ℏ and are attributed to the zero-point oscillations of the plasma, are determined.

  16. Using PS1 and Type Ia Supernovae To Make Most Precise Measurement of Dark Energy To Date

    NASA Astrophysics Data System (ADS)

    Scolnic, Daniel; Pan-STARRS

    2018-01-01

    I will review recent results that present optical light curves, redshifts, and classifications for 361 spectroscopically confirmed Type Ia supernovae (SNeIa) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. I will go over improvements to the PS1 SN photometry, astrometry and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combined distances of PS1 SNe with distance estimates of SNIa from SDSS, SNLS, various low-z and HST samples to form the largest combined sample of SN Ia consisting of a total of ~1050 SN Ia ranging from 0.01 < z < 2.3, which we call the ‘Pantheon Sample’. Photometric calibration uncertainties have long dominated the systematic error budget of every major analysis of cosmological parameters with SNIa. Using the PS1 relative calibration, we have reduced these calibration systematics to the point where they are similar in magnitude to the other major sources of known systematic uncertainties: the nature of the intrinsic scatter of SNIa and modeling of selection effects. I will present measurements of dark energy which are now the most precise measurements of dark energy to date.

  17. G3X-K theory: A composite theoretical method for thermochemical kinetics

    NASA Astrophysics Data System (ADS)

    da Silva, Gabriel

    2013-02-01

    A composite theoretical method for accurate thermochemical kinetics, G3X-K, is described. This method is accurate to around 0.5 kcal mol-1 for barrier heights and 0.8 kcal mol-1 for enthalpies of formation. G3X-K is a modification of G3SX theory using the M06-2X density functional for structures and zero-point energies and parameterized for a test set of 223 heats of formation and 23 barrier heights. A reduced perturbation-order variant, G3X(MP3)-K, is also developed, providing around 0.7 kcal mol-1 accuracy for barrier heights and 0.9 kcal mol-1 accuracy for enthalpies, at reduced computational cost. Some opportunities to further improve Gn composite methods are identified and briefly discussed.

  18. The Financial Impact of the ‘Zero-Markup Policy for Essential Drugs’ on Patients in County Hospitals in Western Rural China

    PubMed Central

    Zhou, Zhongliang; Su, Yanfang; Campbell, Benjamin; Zhou, Zhiying; Gao, Jianmin; Yu, Qiang; Chen, Jiuhao; Pan, Yishan

    2015-01-01

    Objective With a quasi-experimental design, this study aims to assess whether the Zero-markup Policy for Essential Drugs (ZPED) reduces the medical expense for patients at county hospitals, the major healthcare provider in rural China. Methods Data from Ningshan county hospital and Zhenping county hospital, China, include 2014 outpatient records and 9239 inpatient records. Quantitative methods are employed to evaluate ZPED. Both hospital-data difference-in-differences and individual-data regressions are applied to analyze the data from inpatient and outpatient departments. Results In absolute terms, the total expense per visit reduced by 19.02 CNY (3.12 USD) for outpatient services and 399.6 CNY (65.60 USD) for inpatient services. In relative terms, the expense per visit was reduced by 11% for both outpatient and inpatient services. Due to the reduction of inpatient expense, the estimated reduction of outpatient visits is 2% among the general population and 3.39% among users of outpatient services. The drug expense per visit dropped by 27.20 CNY (4.47 USD) for outpatient services and 278.7 CNY (45.75 USD) for inpatient services. The proportion of drug expense out of total expense per visit dropped by 11.73 percentage points in outpatient visits and by 3.92 percentage points in inpatient visits. Conclusion Implementation of ZPED is a benefit for patients in both absolute and relative terms. The absolute monetary reduction of the per-visit inpatient expense is 20 times of that in outpatient care. According to cross-price elasticity, the substitution between inpatient and outpatient due to the change in inpatient price is small. Furthermore, given that the relative reductions are the same for outpatient and inpatient visits, according to relative thinking theory, the incentive to utilize outpatient or inpatient care attributed to ZPED is equivalent, regardless of the 20-times price difference in absolute terms. PMID:25790443

  19. The financial impact of the 'zero-markup policy for essential drugs' on patients in county hospitals in western rural China.

    PubMed

    Zhou, Zhongliang; Su, Yanfang; Campbell, Benjamin; Zhou, Zhiying; Gao, Jianmin; Yu, Qiang; Chen, Jiuhao; Pan, Yishan

    2015-01-01

    With a quasi-experimental design, this study aims to assess whether the Zero-markup Policy for Essential Drugs (ZPED) reduces the medical expense for patients at county hospitals, the major healthcare provider in rural China. Data from Ningshan county hospital and Zhenping county hospital, China, include 2014 outpatient records and 9239 inpatient records. Quantitative methods are employed to evaluate ZPED. Both hospital-data difference-in-differences and individual-data regressions are applied to analyze the data from inpatient and outpatient departments. In absolute terms, the total expense per visit reduced by 19.02 CNY (3.12 USD) for outpatient services and 399.6 CNY (65.60 USD) for inpatient services. In relative terms, the expense per visit was reduced by 11% for both outpatient and inpatient services. Due to the reduction of inpatient expense, the estimated reduction of outpatient visits is 2% among the general population and 3.39% among users of outpatient services. The drug expense per visit dropped by 27.20 CNY (4.47 USD) for outpatient services and 278.7 CNY (45.75 USD) for inpatient services. The proportion of drug expense out of total expense per visit dropped by 11.73 percentage points in outpatient visits and by 3.92 percentage points in inpatient visits. Implementation of ZPED is a benefit for patients in both absolute and relative terms. The absolute monetary reduction of the per-visit inpatient expense is 20 times of that in outpatient care. According to cross-price elasticity, the substitution between inpatient and outpatient due to the change in inpatient price is small. Furthermore, given that the relative reductions are the same for outpatient and inpatient visits, according to relative thinking theory, the incentive to utilize outpatient or inpatient care attributed to ZPED is equivalent, regardless of the 20-times price difference in absolute terms.

  20. Quantum principle of sensing gravitational waves: From the zero-point fluctuations to the cosmological stochastic background of spacetime

    NASA Astrophysics Data System (ADS)

    Quiñones, Diego A.; Oniga, Teodora; Varcoe, Benjamin T. H.; Wang, Charles H.-T.

    2017-08-01

    We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zero-point fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N2. Using such favorable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity.

  1. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  2. Mass media health communication campaigns combined with health-related product distribution: a community guide systematic review.

    PubMed

    Robinson, Maren N; Tansil, Kristin A; Elder, Randy W; Soler, Robin E; Labre, Magdala P; Mercer, Shawna L; Eroglu, Dogan; Baur, Cynthia; Lyon-Daniel, Katherine; Fridinger, Fred; Sokler, Lynn A; Green, Lawrence W; Miller, Therese; Dearing, James W; Evans, William D; Snyder, Leslie B; Kasisomayajula Viswanath, K; Beistle, Diane M; Chervin, Doryn D; Bernhardt, Jay M; Rimer, Barbara K

    2014-09-01

    Health communication campaigns including mass media and health-related product distribution have been used to reduce mortality and morbidity through behavior change. The intervention is defined as having two core components reflecting two social marketing principles: (1) promoting behavior change through multiple communication channels, one being mass media, and (2) distributing a free or reduced-price product that facilitates adoption and maintenance of healthy behavior change, sustains cessation of harmful behaviors, or protects against behavior-related disease or injury. Using methods previously developed for the Community Guide, a systematic review (search period, January 1980-December 2009) was conducted to evaluate the effectiveness of health communication campaigns that use multiple channels, including mass media, and distribute health-related products. The primary outcome of interest was use of distributed health-related products. Twenty-two studies that met Community Guide quality criteria were analyzed in 2010. Most studies showed favorable behavior change effects on health-related product use (a median increase of 8.4 percentage points). By product category, median increases in desired behaviors ranged from 4.0 percentage points for condom promotion and distribution campaigns to 10.0 percentage points for smoking-cessation campaigns. Health communication campaigns that combine mass media and other communication channels with distribution of free or reduced-price health-related products are effective in improving healthy behaviors. This intervention is expected to be applicable across U.S. demographic groups, with appropriate population targeting. The ability to draw more specific conclusions about other important social marketing practices is constrained by limited reporting of intervention components and characteristics. Published by Elsevier Inc.

  3. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron.

    PubMed

    Feng, Yinghong; Zhang, Yaobin; Quan, Xie; Chen, Suo

    2014-04-01

    Anaerobic digestion is promising technology to recover energy from waste activated sludge. However, the sludge digestion is limited by its low efficiency of hydrolysis-acidification. Zero valent iron (ZVI) as a reducing material is expected to enhance anaerobic process including the hydrolysis-acidification process. Considering that, ZVI was added into an anaerobic sludge digestion system to accelerate the sludge digestion in this study. The results indicated that ZVI effectively enhanced the decomposition of protein and cellulose, the two main components of the sludge. Compared to the control test without ZVI, the degradation of protein increased 21.9% and the volatile fatty acids production increased 37.3% with adding ZVI. More acetate and less propionate are found during the hydrolysis-acidification with ZVI. The activities of several key enzymes in the hydrolysis and acidification increased 0.6-1 time. ZVI made the methane production raise 43.5% and sludge reduction ratio increase 12.2 percent points. Fluorescence in situ hybridization analysis showed that the abundances of hydrogen-consuming microorganisms including homoacetogens and hydrogenotrophic methanogens with ZVI were higher than the control, which reduced the H2 accumulation to create a beneficial condition for the sludge digestion in thermodynamics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modeling and Control of a Delayed Hepatitis B Virus Model with Incubation Period and Combination Treatment.

    PubMed

    Sun, Deshun; Liu, Fei

    2018-06-01

    In this paper, a hepatitis B virus (HBV) model with an incubation period and delayed state and control variables is firstly proposed. Furthermore, the combination treatment is adopted to have a longer-lasting effect than mono-therapy. The equilibrium points and basic reproduction number are calculated, and then the local stability is analyzed on this model. We then present optimal control strategies based on the Pontryagin's minimum principle with an objective function not only to reduce the levels of exposed cells, infected cells and free viruses nearly to zero at the end of therapy, but also to minimize the drug side-effect and the cost of treatment. What's more, we develop a numerical simulation algorithm for solving our HBV model based on the combination of forward and backward difference approximations. The state dynamics of uninfected cells, exposed cells, infected cells, free viruses, CTL and ALT are simulated with or without optimal control, which show that HBV is reduced nearly to zero based on the time-varying optimal control strategies whereas the disease would break out without control. At last, by the simulations, we prove that strategy A is the best among the three kinds of strategies we adopt and further comparisons have been done between model (1) and model (2).

  5. Benefits, challenges and critical factors of success for Zero Waste: A systematic literature review.

    PubMed

    Pietzsch, Natália; Ribeiro, José Luis Duarte; de Medeiros, Janine Fleith

    2017-09-01

    Considering the growing concern with solid wastes problems and the pressing need for a holistic approach to their management, this study developed a literature review about the subject "Zero Waste". To that end, a systematic literature review was executed, through which 102 published articles were analyzed with the aim to, initially, comprehend the concept of Zero Waste, and, then, map its benefits, challenges, and critical success factors. The results show that scholars have not reached a consensus regarding the concept of ZW. While some studies fully address this philosophy, other studies are based on just one or on some of its topics. The benefits were grouped and organized into four dimensions: benefits to the community, financial-economic benefits, benefits to the environment and benefits to the industry and stakeholders. As to the challenges, barriers were identified both in the macro environment (mainly political and cultural) and in the meso and micro environments (stakeholders, industries, and municipalities). The analysis of the articles enabled listing critical success factors, supported by a set of activities that must be carried out. Regarding future studies, it is worth noting that more empirical studies about ZW implementation are necessary, particularly with regard to educational practices designed to promote changes in user behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Life Goals Matter to Happiness: A Revision of Set-Point Theory

    ERIC Educational Resources Information Center

    Headey, Bruce

    2008-01-01

    Using data from the long-running German Socio-Economic Panel Survey (SOEP), this paper provides evidence that life goals matter substantially to subjective well-being (SWB). Non-zero sum goals, which include commitment to family, friends and social and political involvement, promote life satisfaction. Zero sum goals, including commitment to career…

  7. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    NASA Astrophysics Data System (ADS)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  8. Aspects of the zero Λ limit in the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Caldeira Costa, R. N.

    2014-11-01

    We examine the correspondence between QFT observables and bulk solutions in the context of AdS/CFT in the limit as the cosmological constant Λ →0 . We focus specifically on the spacetime metric and a nonbackreacting scalar in the bulk, compute the one-point functions of the dual operators, and determine the necessary conditions for the correspondence to admit a well-behaved zero-Λ limit. We discuss holographic renormalization in this limit and find that it requires schemes that partially break diffeomorphism invariance of the bulk theory. In the specific case of three bulk dimensions, we compute the zero-Λ limit of the holographic Weyl anomaly and reproduce the central charge that arises in the central extension of bms3 . We compute holographically the energy and momentum of those QFT states dual to flat cosmological solutions and to the Kerr solution and find an agreement with the bulk theory. We also compute holographically the renormalized two-point function of a scalar operator in the zero-Λ limit and find it to be consistent with that of a conformal operator in two dimensions fewer. Finally, our results can be used in a new definition of asymptotic Ricci flatness at null infinity based on the zero-Λ limit of asymptotically Einstein manifolds.

  9. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  10. Torsional energy levels of CH₃OH⁺/CH₃OD⁺/CD₃OD⁺ studied by zero-kinetic energy photoelectron spectroscopy and theoretical calculations.

    PubMed

    Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang

    2014-10-14

    The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.

  11. Absolute frequency of cesium 6S-8S 822 nm two-photon transition by a high-resolution scheme.

    PubMed

    Wu, Chien-Ming; Liu, Tze-Wei; Wu, Ming-Hsuan; Lee, Ray-Kuang; Cheng, Wang-Yau

    2013-08-15

    We present an alternative scheme for determining the frequencies of cesium (Cs) atom 6S-8S Doppler-free transitions. With the use of a single electro-optical crystal, we simultaneously narrow the laser linewidth, lock the laser frequency, and resolve a narrow spectrum point by point. The error budget for this scheme is presented, and we prove that the transition frequency obtained from the Cs cell at room temperature and with one-layer μ-metal shielding is already very near that for the condition of zero collision and zero magnetic field. We point out that a sophisticated linewidth measurement could be a good guidance for choosing a suitable Cs cell for better frequency accuracy.

  12. Solving differential equations for Feynman integrals by expansions near singular points

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  13. Zero field reversal probability in thermally assisted magnetization reversal

    NASA Astrophysics Data System (ADS)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  14. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  15. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Rasskazov, Andrey; Chertovskih, Roman; Zheligovsky, Vladislav

    2018-04-01

    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic α -effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.

  16. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures.

    PubMed

    Gibert, O; de Pablo, J; Cortina, J-L; Ayora, C

    2010-08-01

    In this study, two mixtures of municipal compost, limestone and, optionally, zero-valent iron were assessed in two column experiments on acid mine treatment. The effluent solution was systematically analysed throughout the experiment and precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry analysis and, from the column containing zero-valent iron, solid digestion and sequential extraction analysis. The results showed that waters were cleaned of arsenic, metals and acidity, but chemical and morphological analysis suggested that metal removal was not due predominantly to biogenic sulphide generation but to pH increase, i.e. metal (oxy)hydroxide and carbonate precipitation. Retained arsenic and metal removal were clearly associated to co-precipitation with and/or sorption on iron and aluminum (oxy)hydroxides. An improvement on the arsenic removal efficiency was achieved when the filling mixture contained zero-valent iron. Values of arsenic concentrations were then always below 10 microg/L.

  17. The Effects of Systematic Desensitization on Test-Anxious Students in an Urban Community College: Learning Theory and Applications.

    ERIC Educational Resources Information Center

    Woods, Nathaniel A.

    A study involving 97 students (79 females and 18 males) at New York City Technical College was undertaken to determine the effectiveness of desensitization in reducing test anxiety and improving grade point averages (GPAs). The study compared the GPAs of students who completed workshops using the desensitization hierarchy developed by R. Strieby…

  18. Defending Collegiality

    ERIC Educational Resources Information Center

    Fischer, Michael

    2009-01-01

    In his provocatively titled recent book, "The No Asshole Rule: Building a Civilized Workplace and Surviving One That Isn't", Robert I. Sutton argues for zero tolerance of "bullies, creeps, jerks, weasels, tormentors, tyrants, serial slammers, despots, [and] unconstrained egomaniacs" in the workplace. These individuals systematically prey on their…

  19. Workshop: Promoting Sustainability Through Net Zero Strategies

    EPA Science Inventory

    In 2011, EPA’s Office of Research and Development (ORD) signed an MOU with the U.S. Army to support the Army’s Net Zero initiative. The 17 Net Zero pilot installations aim to produce as much energy as used; limit freshwater use and increase water reuse; and reduce the generation ...

  20. Zero-sulfur diesel fuel from non-petroleum resources : the key to reducing U.S. oil imports.

    DOT National Transportation Integrated Search

    2012-09-01

    Zero-sulfur diesel fuel of the highest quality, the fuel used in this project, can be made by Fischer-Tropsch (FT) synthesis from many non-petroleum resources, including natural gas, which is increasingly abundant in the United States. Zero-sulfur FT...

  1. Effect of the focal plane position on CO2 laser beam cutting of injection molded polycarbonate sheets

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2016-11-01

    In the present research, the effect of laser beam focal plane position (FPP) on the kerf quality of the polycarbonate laser cutting is investigated. Low power CO2 laser is used as the heat source of the cutting runs. In the experiments, FPP is varied from 0 to -4mm while other processing parameters (i.e. laser power, cutting speed and gas pressure) are considered constant. Upper and lower kerf width, kerf taper, upper heat affected zone and surface roughness of the kerf wall are also considered as the responses. Observations signified that reducing the position of the laser beam focal point from zero to - 3mm reduces the upper and lower kerf width. However reducing FPP below -3mm leads to an increase in the kerf width. Results also reveals that upper heat affected zone value reduces by reduction in FPP. Moreover the best kerf wall surface roughness occurred at FPP= -3mm.

  2. Medical male circumcision: How does price affect the risk-profile of take-up?

    PubMed

    Thornton, Rebecca; Godlonton, Susan

    2016-11-01

    The benefit of male circumcision is greatest among men who are most at risk of HIV infection. Encouraging this population of men to get circumcised maximizes the benefit that can be achieved through the scale-up of circumcision programs. This paper examines how the price of circumcision affects the risk profile of men who receive a voluntary medical circumcision. In 2010, 1649 uncircumcised adult men in urban Malawi were interviewed and provided a voucher for a subsidized voluntary medical male circumcision, at randomly assigned prices. Clinical data were collected indicating whether the men in the study received a circumcision. Men who took-up circumcision with a zero-priced voucher were 25 percentage points less likely than those who took-up with a positive-price voucher, to be from a tribe that traditionally circumcises (p=0.101). Zero-priced vouchers also brought in men with more sexual partners in the past year (p=0.075) and past month (p=0.003). None of the men who were most at risk of HIV at baseline (those with multiple partners and who did not use a condom the last time they had sex) received a circumcision if they were offered a positive-priced voucher. Lowering the price to zero increased circumcision take-up to 25% for men of this risk group. The effect of price on take-up was largest among those at highest risk (p=0.096). Reducing the price of circumcision surgery to zero can increase take-up among those who are most at risk of HIV infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  4. Chaos in a restricted problem of rotation of a rigid body with a fixed point

    NASA Astrophysics Data System (ADS)

    Borisov, A. V.; Kilin, A. A.; Mamaev, I. S.

    2008-06-01

    In this paper, we consider the transition to chaos in the phase portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotization are indicated: (1) the growth of the homoclinic structure and (2) the development of cascades of period doubling bifurcations. On the zero level of the area integral, an adiabatic behavior of the system (as the energy tends to zero) is noted. Meander tori induced by the break of the torsion property of the mapping are found.

  5. Computational and Matrix Isolation Studies of (2- and 3-Furyl)methylene

    DTIC Science & Technology

    1994-01-01

    ynal, (Appendix 3) Simple HF calculations using the 6-31 G basis set + ZPE (zero point energy correction applied) predict 2.2 to be more stable in both...QCISD(T)/6-31 1 G** + ZPE predict the triplet to more stable by 2.9 Kcal/mol. However, calculations using MP4SDTQ/6-31 1 G + ZPE predict the singlet to...calculated frequencies were scaled by a factor of 0.9. 53 Table 2.30 Calculated ZPE for 2-Oxabicyclo(3.1.0]hexa-3,5-diene.a Zero Point Energy 49.9 (KcaVmol

  6. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  7. Gas-liquid coexistence in a system of dipolar soft spheres.

    PubMed

    Jia, Ran; Braun, Heiko; Hentschke, Reinhard

    2010-12-01

    The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Here we compute the gas-liquid critical point in a system of dipolar soft spheres subject to an external electric field using molecular dynamics computer simulation. Tracking the critical point as the field strength is approaching zero we find the following limiting values: T(c)=0.063 and ρ(c)=0.0033 (dipole moment μ=1). These values are confirmed by independent simulation at zero field strength.

  8. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point.

    PubMed

    Quan, Yundi; Pickett, Warren E

    2018-02-21

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ±[Formula: see text] form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  9. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pickett, Warren E.

    2018-02-01

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ± \\sqrt{k_x2n +k_y2m} form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  10. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Franz, M.

    2017-07-01

    A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti-de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  11. Comparative study of clinical and radiological outcomes of a zero-profile device concerning reduced postoperative Dysphagia after single level anterior cervical discectomy and fusion.

    PubMed

    Son, Doo Kyung; Son, Dong Wuk; Kim, Ho Sang; Sung, Soon Ki; Lee, Sang Weon; Song, Geun Sung

    2014-08-01

    This study analyzed clinical and radiological outcomes of a zero-profile anchored spacer (Zero-P) and conventional cage-plate (CCP) for single level anterior cervical discectomy and fusion (ACDF) to compare the incidence and difference of postoperative dysphagia with both devices. We retrospectively reviewed our experiences of single level ACDF with the CCP and Zero-P. From January 2011 to December 2013, 48 patients who had single level herniated intervertebral disc were operated on using ACDF, with CCP in 27 patients and Zero-P in 21 patients. Patients who received more than double-level ACDF or combined circumferential fusion were excluded. Age, operation time, estimated blood loss (EBL), pre-operative modified Japanese Orthopaedic Association (mJOA) scores, post-operative mJOA scores, achieved mJOA scores and recovery rate of mJOA scores were assessed. Prevertebral soft tissue thickness and postoperative dysphagia were analyzed on the day of surgery, and 2 weeks and 6 months postoperatively. The Zero-P group showed same or favorable clinical and radiological outcomes compared with the CCP group. Postoperative dysphagia was significantly low in the Zero-P group. Application of Zero-P may achieve favorable outcomes and reduce postoperative dysphagia in single level ACDF.

  12. Analgesic effect of intraperitoneal local anesthetic in surgery: an overview of systematic reviews.

    PubMed

    Hamill, James K; Rahiri, Jamie-Lee; Hill, Andrew G

    2017-05-15

    Intraperitoneal local anesthetic (IPLA) reduces postoperative pain as shown by previous systematic reviews. The purpose of this review was to compare the efficacy of IPLA between different types of procedure and to formulate GRADE recommendations for the use of IPLA. A systematic search for systematic reviews of the effect of IPLA, versus no IPLA or placebo, on pain after any surgical procedure. Databases included in the study were MEDLINE, EMBASE, CDSR, and DARE. Two reviewers independently undertook searches, selected studies, extracted data, and assessed the risk of bias. Meta-analysis was by random effects. Recommendation was by GRADE. The main outcome measure was self-reported early postoperative pain scores. Searches uncovered nine systematic reviews. This study included randomized trials numbered 76, representing 4000 participants, 2022 in IPLA and 1978 in control groups. Six reviews scored at low risk of bias and three at high risk. Meta-analysis demonstrated that IPLA reduced the mean pain score (0-10 scale) by 0.95 point (95% confidence interval: 0.73-1.17). Excluding laparoscopic cholecystectomy, the effect size increased to 1.52 (95% confidence interval: 1.15-1.88). Heterogeneity was high overall at I 2  = 91.7% but on excluding laparoscopic cholecystectomy trials reduced to I 2  = 31.3%. IPLA could be considered a viable option for early postoperative analgesia in certain laparoscopic operations. Further research on the effect of IPLA on procedures other than laparoscopic cholecystectomy would help clarify its place in a postoperative analgesia protocol. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. ON THE DISTANCE OF THE MAGELLANIC CLOUDS USING CEPHEID NIR AND OPTICAL-NIR PERIOD-WESENHEIT RELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inno, L.; Bono, G.; Buonanno, R.

    2013-02-10

    We present the largest near-infrared (NIR) data sets, JHKs, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2-3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical VI photometry from OGLE-III. NIR and optical-NIR Period-Wesenheit (PW) relations are linear over the entire period range (0.0 < log P {sub FU} {<=} 1.65) and their slopesmore » are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. By using FU Cepheids we found a true distance moduli of 18.45 {+-} 0.02(random) {+-} 0.10(systematic) mag (LMC) and 18.93 {+-} 0.02(random) {+-} 0.10(systematic) mag (SMC). These estimates are the weighted mean over 10 PW relations and the systematic errors account for uncertainties in the zero point and in the reddening law. We found similar distances using FO Cepheids (18.60 {+-} 0.03(random) {+-} 0.10(systematic) mag (LMC) and 19.12 {+-} 0.03(random) {+-} 0.10(systematic) mag (SMC)). These new MC distances lead to the relative distance, {Delta}{mu} = 0.48 {+-} 0.03 mag (FU, log P = 1) and {Delta}{mu} = 0.52 {+-} 0.03 mag (FO, log P = 0.5), which agrees quite well with previous estimates based on robust distance indicators.« less

  14. Rigorous derivation of electromagnetic self-force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gralla, Samuel E.; Harte, Abraham I.; Wald, Robert M.

    2009-07-15

    During the past century, there has been considerable discussion and analysis of the motion of a point charge in an external electromagnetic field in special relativity, taking into account 'self-force' effects due to the particle's own electromagnetic field. We analyze the issue of 'particle motion' in classical electromagnetism in a rigorous and systematic way by considering a one-parameter family of solutions to the coupled Maxwell and matter equations corresponding to having a body whose charge-current density J{sup a}({lambda}) and stress-energy tensor T{sub ab}({lambda}) scale to zero size in an asymptotically self-similar manner about a worldline {gamma} as {lambda}{yields}0. In thismore » limit, the charge, q, and total mass, m, of the body go to zero, and q/m goes to a well-defined limit. The Maxwell field F{sub ab}({lambda}) is assumed to be the retarded solution associated with J{sup a}({lambda}) plus a homogeneous solution (the 'external field') that varies smoothly with {lambda}. We prove that the worldline {gamma} must be a solution to the Lorentz force equations of motion in the external field F{sub ab}({lambda}=0). We then obtain self-force, dipole forces, and spin force as first-order perturbative corrections to the center-of-mass motion of the body. We believe that this is the first rigorous derivation of the complete first-order correction to Lorentz force motion. We also address the issue of obtaining a self-consistent perturbative equation of motion associated with our perturbative result, and argue that the self-force equations of motion that have previously been written down in conjunction with the 'reduction of order' procedure should provide accurate equations of motion for a sufficiently small charged body with negligible dipole moments and spin. (There is no corresponding justification for the non-reduced-order equations.) We restrict consideration in this paper to classical electrodynamics in flat spacetime, but there should be no difficulty in extending our results to the motion of a charged body in an arbitrary globally hyperbolic curved spacetime.« less

  15. The environmental zero-point problem in evolutionary reaction norm modeling.

    PubMed

    Ergon, Rolf

    2018-04-01

    There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state-space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero-point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state-space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero-point problem is present in all types of reaction norm models, parametrized as well as function-valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.

  16. Dynamical signature of localization-delocalization transition in a one-dimensional incommensurate lattice

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Yucheng; Wang, Pei; Gao, Xianlong; Chen, Shu

    2017-05-01

    We investigate the quench dynamics of a one-dimensional incommensurate lattice described by the Aubry-André model by a sudden change of the strength of incommensurate potential Δ and unveil that the dynamical signature of localization-delocalization transition can be characterized by the occurrence of zero points in the Loschmidt echo. For the quench process with quenching taking place between two limits of Δ =0 and Δ =∞ , we give analytical expressions of the Loschmidt echo, which indicate the existence of a series of zero points in the Loschmidt echo. For a general quench process, we calculate the Loschmidt echo numerically and analyze its statistical behavior. Our results show that if both the initial and post-quench Hamiltonian are in extended phase or localized phase, Loschmidt echo will always be greater than a positive number; however if they locate in different phases, Loschmidt echo can reach nearby zero at some time intervals.

  17. [Development of residual voltage testing equipment].

    PubMed

    Zeng, Xiaohui; Wu, Mingjun; Cao, Li; He, Jinyi; Deng, Zhensheng

    2014-07-01

    For the existing measurement methods of residual voltage which can't turn the power off at peak voltage exactly and simultaneously display waveforms, a new residual voltage detection method is put forward in this paper. First, the zero point of the power supply is detected with zero cross detection circuit and is inputted to a single-chip microcomputer in the form of pulse signal. Secend, when the zero point delays to the peak voltage, the single-chip microcomputer sends control signal to power off the relay. At last, the waveform of the residual voltage is displayed on a principal computer or oscilloscope. The experimental results show that the device designed in this paper can turn the power off at peak voltage and is able to accurately display the voltage waveform immediately after power off and the standard deviation of the residual voltage is less than 0.2 V at exactly one second and later.

  18. Comparison Between One-Point Calibration and Two-Point Calibration Approaches in a Continuous Glucose Monitoring Algorithm

    PubMed Central

    Mahmoudi, Zeinab; Johansen, Mette Dencker; Christiansen, Jens Sandahl

    2014-01-01

    Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420

  19. West Carter Middle School: A Failure-Free Zone

    ERIC Educational Resources Information Center

    Principal Leadership, 2012

    2012-01-01

    No student has been retained at West Carter Middle School in Olive Hill, Kentucky, in the last five years. Staff members proudly point to that fact as evidence that their decision to not permit zeros is working. That's a bit misleading, because coupled with the no-zero policy were a number of programmatic initiatives and supports that allowed all…

  20. The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases.

    PubMed

    Healy, Thomas W; Fuerstenau, Douglas W

    2007-05-01

    From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0-3.0, dependent on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain (>C8) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material-water interfaces.

  1. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    NASA Astrophysics Data System (ADS)

    Sunardi; Ashadi; Budi Rahardjo, Sentot; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M - 0.005 M aqueous of FeSO4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV-visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001-0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm.

  2. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    NASA Astrophysics Data System (ADS)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  3. [Visual cues as a therapeutic tool in Parkinson's disease. A systematic review].

    PubMed

    Muñoz-Hellín, Elena; Cano-de-la-Cuerda, Roberto; Miangolarra-Page, Juan Carlos

    2013-01-01

    Sensory stimuli or sensory cues are being used as a therapeutic tool for improving gait disorders in Parkinson's disease patients, but most studies seem to focus on auditory stimuli. The aim of this study was to conduct a systematic review regarding the use of visual cues over gait disorders, dual tasks during gait, freezing and the incidence of falls in patients with Parkinson to obtain therapeutic implications. We conducted a systematic review in main databases such as Cochrane Database of Systematic Reviews, TripDataBase, PubMed, Ovid MEDLINE, Ovid EMBASE and Physiotherapy Evidence Database, during 2005 to 2012, according to the recommendations of the Consolidated Standards of Reporting Trials, evaluating the quality of the papers included with the Downs & Black Quality Index. 21 articles were finally included in this systematic review (with a total of 892 participants) with variable methodological quality, achieving an average of 17.27 points in the Downs and Black Quality Index (range: 11-21). Visual cues produce improvements over temporal-spatial parameters in gait, turning execution, reducing the appearance of freezing and falls in Parkinson's disease patients. Visual cues appear to benefit dual tasks during gait, reducing the interference of the second task. Further studies are needed to determine the preferred type of stimuli for each stage of the disease. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  4. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.

    PubMed

    Xiao, Qing; Hu, Jianxin; Liu, Hao

    2014-03-01

    Micro air vehicle-motivated aerodynamics in biological flight has been an important subject in the past decade. Inspired by the novel flapping wing mechanisms in insects, birds and bats, we have carried out a numerical study systematically investigating a three-dimensional flapping rigid wing with passively actuated lateral and rotational motion. Distinguishing it from the limited existing studies, this work performs a systematic examination on the effects of wing aspect ratio (AR = 1.0 to infinity), inertia (density ratio σ = 4-32), torsional stiffness (frequency ratio F = 1.5-10 and infinity) and pivot point (from chord-center to leading edge) on the dynamics response of a low AR rectangular wing under an initial zero speed flow field condition. The simulation results show that the symmetry breakdown of the flapping wing results in a forward/backward motion with a rotational pitching. When the wing reaches its stable periodic state, the induced pitching frequency is identical to its forced flapping frequency. However, depending on various kinematic and dynamic system parameters, (i.e. flapping frequency, density ratio and pitching axis), the lateral induced velocity shows a number of different oscillating frequencies. Furthermore, compared with a one degree of freedom (DoF) wing in the lateral direction only, the propulsion performance of such a two DoF wing relies very much on the magnitude of torsional stiffness adding on the pivot point, as well as its pitching axis. In all cases examined here, thrust force and moment generated by a long span wing is larger than that of a short wing, which is remarkably linked to the strong reverse von Kármán vortex street formed in the wake of a wing.

  5. Effectiveness of the ZeroFly® storage bag fabric against stored-product insects

    USDA-ARS?s Scientific Manuscript database

    The ZeroFly® Storage Bag is a polypropylene bag (PP) which has deltamethrin incorporated in its fibers, and represents a novel approach to reducing stored-product insect pest-related postharvest losses. Fabric samples from ZeroFly bags, polypropylene (PP) bags, jute bags, malathion-treated PP bags, ...

  6. A distance scale from the infrared magnitude/H I velocity-width relation. III - The expansion rate outside the local supercluster

    NASA Astrophysics Data System (ADS)

    Aaronson, M.; Mould, J.; Huchra, J.; Sullivan, W. T., III; Schommer, R. A.; Bothun, G. D.

    1980-07-01

    Infrared magnitudes and 21 cm H I velocity widths are presented for galaxies in the Pegasus I cluster (V ≍ 4000 km s-1), the Cancer cluster (V ≍ 4500 km s-1), cluster Zwicky 1400.4 ± 0949 (Z74-23) (V ≍ 6000 km s-1), and the Perseus supercluster (V ≍ 5500 km s-1). The data are used to determine redshift-independent distances from which values of the Hubble ratio can be derived. With a zero point based solely on the Sandage-Tammann distances to M3 1 and M33, the following results are obtained (zero-point error excluded): Pegasus I.--r = 42 ± 4 Mpc, V/r = 91 ± 8 km s-1 Mpc-1; Cancer.--r = = 49 ± 6 Mpc, V/r = 89 ± 11 km s-1 Mpc-1; Z74-23.--r = 6l ± 4 Mpc, V/r = 96 ± 7 km s-1 Mpc-1; Perseus supercluster.--r = 53 ± 2 Mpc, V/r = 104 ± 6 km s-1 Mpc-1; The closely similar value of the Hubble ratio found in the four independent samples suggests that the zero-point calibration in the IR/H I technique does not depend on environment. The difference between the mean of these Hubble ratios, V/r = 95 ± 4 km s-1 Mpc -1, and that measured for Virgo in Paper II, V/r = 65 ±4 km s-1 Mpc-1, is significant at a formal level of 5 σ. The simplest explanation of the discrepancy is to postulate a Local Group component of motion in the direction of Virgo. The resulting velocity perturbation is ΔV = 480 ± 75 km s-1. This value agrees well with recent observations of a dipole term in the 3 K microwave background, the only other anisotropy test for which a detection significance of 5 σ or more is claimed. We are thus led to a preliminary estimate for the value of the Hubble constant of H0 = 95 ± 4 km s-1 Mpc-1. If a zero point based on de Vaucouleurs's distances to M31 and M33 is adopted instead, all distances decrease by , and the Hubble constant increases by a similar amount. A variety of possible systematic errors which might affect the present conclusions are investigated, but we can find none that are relevant. In particular, because the galaxy samples are chosen from a cluster population which is generally all at the same distance, Malmquist bias does not occur. In fact, two of the clusters (Pegasus I and Z74-23) are sampled in both magnitude and velocity width to a level as deep as Virgo itself. Other observational data related to the value of H0 are examined, as are a number of previously used anisotropy tests, including color-luminosity relations, brightest cluster member(s), central surface brightnesses, and supernovae. We find that some of these tests support the present results, while contrary evidence is currently weak. A model in which Virgo gravitationally retards the Hubble flow of galaxies within the Local Supercluster provides a natural interpretation of our findings. A range of 1.5-3 in local density contrast then leads to a value of the density parameter Ω ≍ 0.7-0.2. The deceleration parameter q0 is then 0.35-0.1 for a simple Friedmann-type expanding universe.

  7. Zero-point corrections and temperature dependence of HD spin-spin coupling constants of heavy metal hydride and dihydrogen complexes calculated by vibrational averaging.

    PubMed

    Mort, Brendan C; Autschbach, Jochen

    2006-08-09

    Vibrational corrections (zero-point and temperature dependent) of the H-D spin-spin coupling constant J(HD) for six transition metal hydride and dihydrogen complexes have been computed from a vibrational average of J(HD) as a function of temperature. Effective (vibrationally averaged) H-D distances have also been determined. The very strong temperature dependence of J(HD) for one of the complexes, [Ir(dmpm)Cp*H2]2 + (dmpm = bis(dimethylphosphino)methane) can be modeled simply by the Boltzmann average of the zero-point vibrationally averaged JHD of two isomers. For this complex and four others, the vibrational corrections to JHD are shown to be highly significant and lead to improved agreement between theory and experiment in most cases. The zero-point vibrational correction is important for all complexes. Depending on the shape of the potential energy and J-coupling surfaces, for some of the complexes higher vibrationally excited states can also contribute to the vibrational corrections at temperatures above 0 K and lead to a temperature dependence. We identify different classes of complexes where a significant temperature dependence of J(HD) may or may not occur for different reasons. A method is outlined by which the temperature dependence of the HD spin-spin coupling constant can be determined with standard quantum chemistry software. Comparisons are made with experimental data and previously calculated values where applicable. We also discuss an example where a low-order expansion around the minimum of a complicated potential energy surface appears not to be sufficient for reproducing the experimentally observed temperature dependence.

  8. Intensity-corrected Herschel Observations of Nearby Isolated Low-mass Clouds

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Keto, Eric; Bourke, Tyler L.; Dunham, Michael M.; Myers, Philip C.; Stephens, Ian W.; Di Francesco, James; Webb, Kristi; Stutz, Amelia M.; Launhardt, Ralf; Tobin, John J.

    2018-01-01

    We present intensity-corrected Herschel maps at 100, 160, 250, 350, and 500 μm for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel Photodetector Array Camera and Spectrometer (PACS) and Spectral Photometric Imaging Receiver (SPIRE) maps from the Herschel Science Archive (HSA) using Planck data. Since these HSA maps are small, we cannot correct them using typical methods. Here we introduce a technique to measure the zero-point corrections for small Herschel maps. We use radial profiles to identify offsets between the observed HSA intensities and the expected intensities from Planck. Most clouds have reliable offset measurements with this technique. In addition, we find that roughly half of the clouds have underestimated HSA-SPIRE intensities in their outer envelopes relative to Planck, even though the HSA-SPIRE maps were previously zero-point corrected. Using our technique, we produce corrected Herschel intensity maps for all 56 clouds and determine their line-of-sight average dust temperatures and optical depths from modified blackbody fits. The clouds have typical temperatures of ∼14–20 K and optical depths of ∼10‑5–10‑3. Across the whole sample, we find an anticorrelation between temperature and optical depth. We also find lower temperatures than what was measured in previous Herschel studies, which subtracted out a background level from their intensity maps to circumvent the zero-point correction. Accurate Herschel observations of clouds are key to obtaining accurate density and temperature profiles. To make such future analyses possible, intensity-corrected maps for all 56 clouds are publicly available in the electronic version. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. Two-nucleon S10 amplitude zero in chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.

    2018-02-01

    We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.

  10. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling

    NASA Astrophysics Data System (ADS)

    Li, Zhidan; Han, Qiang

    2018-04-01

    The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.

  11. Effect of Chlorine Substitution on Sulfide Reactivity with OH Radicals

    DTIC Science & Technology

    2008-09-01

    Single point energy: MP2/6-311+G(3df,2p) (LRG) • Zero Point Energy from a vibrational frequency analysis: MP2/6-31++G** ( ZPE ) • Extrapolated energy...E(QCI) + E(LARG) – E(SML) + ZPE • Characterize the TS • Use a three-point fit methodology – fit a harmonic potential to three CCSD single point

  12. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations.

    PubMed

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c=1. The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  13. Inertial Mass Viewed as Reaction of the Vacuum to Accelerated Motion

    NASA Technical Reports Server (NTRS)

    Rueda, Alfonso; Haisch, Bernhard

    1999-01-01

    Preliminary analysis of the momentum flux (or of the Poynting vector) of the classical electromagnetic version of the quantum vacuum consisting of zero-point radiation impinging on accelerated objects as viewed by an inertial observer suggests that the resistance to acceleration attributed to inertia may be a force of opposition originating in the vacuum. This analysis avoids the ad hoc modeling of particle-field interaction dynamics used previously by Haisck Rueda and Puthoff (1994) to derive a similar result. This present approach is not dependent upon what happens at the particle point but on how an external observer assesses the kinematical characteristics of the zero-point radiation impinging on the accelerated object. A relativistic form of the equation of motion results from the present analysis.

  14. Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations

    NASA Astrophysics Data System (ADS)

    Lv, Jian-Ping; Deng, Youjin; Jacobsen, Jesper Lykke; Salas, Jesús; Sokal, Alan D.

    2018-04-01

    We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former case occurs for quadrangulations of self-dual type, and the zero-temperature critical point has central charge c =1 . The latter case occurs for quadrangulations of non-self-dual type, and the critical point belongs to the universality class of the three-state Potts ferromagnet. We have tested this criterion against high-precision computations on four lattices of each type, with very good agreement. We have also found that the Wang-Swendsen-Kotecký algorithm has no critical slowing-down in the former case, and critical slowing-down in the latter.

  15. Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Lindenbergh, R.; Pu, S.

    2016-06-01

    This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.

  16. Topology of Large-Scale Structures of Galaxies in two Dimensions—Systematic Effects

    NASA Astrophysics Data System (ADS)

    Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan

    2017-02-01

    We study the two-dimensional topology of galactic distribution when projected onto two-dimensional spherical shells. Using the latest Horizon Run 4 simulation data, we construct the genus of the two-dimensional field and consider how this statistic is affected by late-time nonlinear effects—principally gravitational collapse and redshift space distortion (RSD). We also consider systematic and numerical artifacts, such as shot noise, galaxy bias, and finite pixel effects. We model the systematics using a Hermite polynomial expansion and perform a comprehensive analysis of known effects on the two-dimensional genus, with a view toward using the statistic for cosmological parameter estimation. We find that the finite pixel effect is dominated by an amplitude drop and can be made less than 1% by adopting pixels smaller than 1/3 of the angular smoothing length. Nonlinear gravitational evolution introduces time-dependent coefficients of the zeroth, first, and second Hermite polynomials, but the genus amplitude changes by less than 1% between z = 1 and z = 0 for smoothing scales {R}{{G}}> 9 {Mpc}/{{h}}. Non-zero terms are measured up to third order in the Hermite polynomial expansion when studying RSD. Differences in the shapes of the genus curves in real and redshift space are small when we adopt thick redshift shells, but the amplitude change remains a significant ˜ { O }(10 % ) effect. The combined effects of galaxy biasing and shot noise produce systematic effects up to the second Hermite polynomial. It is shown that, when sampling, the use of galaxy mass cuts significantly reduces the effect of shot noise relative to random sampling.

  17. Dynamical systems theory for nonlinear evolution equations.

    PubMed

    Choudhuri, Amitava; Talukdar, B; Das, Umapada

    2010-09-01

    We observe that the fully nonlinear evolution equations of Rosenau and Hymann, often abbreviated as K(n,m) equations, can be reduced to Hamiltonian form only on a zero-energy hypersurface belonging to some potential function associated with the equations. We treat the resulting Hamiltonian equations by the dynamical systems theory and present a phase-space analysis of their stable points. The results of our study demonstrate that the equations can, in general, support both compacton and soliton solutions. For the K(2,2) and K(3,3) cases one type of solutions can be obtained from the other by continuously varying a parameter of the equations. This is not true for the K(3,2) equation for which the parameter can take only negative values. The K(2,3) equation does not have any stable point and, in the language of mechanics, represents a particle moving with constant acceleration.

  18. Quantum Quenches in a Spinor Condensate

    NASA Astrophysics Data System (ADS)

    Lamacraft, Austen

    2007-04-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the “light-cone” correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al.

  19. Research of the cold shield in cryogenic liquid storage

    NASA Astrophysics Data System (ADS)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  20. Electromagnetic radiation in a semi-compact space

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Kitazawa, Noriaki; Yokoo, Sumito

    2018-02-01

    In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a compact space. If the point charge is circulating with an angular frequency ω0 on the (x , y)-plane at z = 0 with boundary conditions, x ∼ x + 2 πR and y ∼ y + 2 πR, it emits radiation into the z-direction of z ∈ [ - ∞ , + ∞ ]. We find that the radiation shows discontinuities as a function of ω0 R at which a new propagating mode with a different Fourier component appears. For a small radius limit ω0 R ≪ 1, all the Fourier modes except the zero mode on (x , y)-plane are killed, but an effect of squeezing the electric field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation reduces to the expected Larmor formula.

  1. Implementation of a MFAC based position sensorless drive for high speed BLDC motors with nonideal back EMF.

    PubMed

    Li, Haitao; Ning, Xin; Li, Wenzhuo

    2017-03-01

    In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Propagation in and scattering from a matched metamaterial having a zero index of refraction.

    PubMed

    Ziolkowski, Richard W

    2004-10-01

    Planar metamaterials that exhibit a zero index of refraction have been realized experimentally by several research groups. Their existence stimulated the present investigation, which details the properties of a passive, dispersive metamaterial that is matched to free space and has an index of refraction equal to zero. Thus, unlike previous zero-index investigations, both the permittivity and permeability are zero here at a specified frequency. One-, two-, and three-dimensional source problems are treated analytically. The one- and two-dimensional source problem results are confirmed numerically with finite difference time domain (FDTD) simulations. The FDTD simulator is also used to treat the corresponding one- and two-dimensional scattering problems. It is shown that in both the source and scattering configurations the electromagnetic fields in a matched zero-index medium take on a static character in space, yet remain dynamic in time, in such a manner that the underlying physics remains associated with propagating fields. Zero phase variation at various points in the zero-index medium is demonstrated once steady-state conditions are obtained. These behaviors are used to illustrate why a zero-index metamaterial, such as a zero-index electromagnetic band-gap structured medium, significantly narrows the far-field pattern associated with an antenna located within it. They are also used to show how a matched zero-index slab could be used to transform curved wave fronts into planar ones.

  3. Trending in Pc Measurements via a Bayesian Zero-Inflated Mixed Model

    NASA Technical Reports Server (NTRS)

    Vallejo, Jonathon; Hejduk, Matthew; Stamey, James

    2015-01-01

    Two satellites predicted to come within close proximity of one another, usually a high-value satellite and a piece of space debris moving the active satellite is a means of reducing collision risk but reduces satellite lifetime, perturbs satellite mission, and introduces its own risks. So important to get a good statement of the risk of collision in order to determine whether a maneuver is truly necessary. Two aspects of this Calculation of the Probability of Collision (Pc) based on the most recent set of position velocity and uncertainty data for both satellites. Examination of the changes in the Pc value as the event develops. Events should follow a canonical development (Pc vs time to closest approach (TCA)). Helpful to be able to guess where the present data point fits in the canonical development in order to guide operational response.

  4. 12 CFR 327.11 - Special assessments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... basis points based on the institution's total assets less Tier 1 capital as reported on the report of... exceed 10 basis points times the institution's assessment base for the second quarter 2009 risk-based... or below zero at the end of a calendar quarter, a special assessment of up to 5 basis points on total...

  5. Cooling in reduced period optical lattices: Non-zero Raman detuning

    NASA Astrophysics Data System (ADS)

    Malinovsky, V. S.; Berman, P. R.

    2006-08-01

    In a previous paper [Phys. Rev. A 72 (2005) 033415], it was shown that sub-Doppler cooling occurs in a standing-wave Raman scheme (SWRS) that can lead to reduced period optical lattices. These calculations are extended to allow for non-zero detuning of the Raman transitions. New physical phenomena are encountered, including cooling to non-zero velocities, combinations of Sisyphus and "corkscrew" polarization cooling, and somewhat unusual origins of the friction force. The calculations are carried out in a semi-classical approximation and a dressed state picture is introduced to aid in the interpretation of the results.

  6. Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of crash frequency estimates.

    PubMed

    Aguero-Valverde, Jonathan

    2013-01-01

    In recent years, complex statistical modeling approaches have being proposed to handle the unobserved heterogeneity and the excess of zeros frequently found in crash data, including random effects and zero inflated models. This research compares random effects, zero inflated, and zero inflated random effects models using a full Bayes hierarchical approach. The models are compared not just in terms of goodness-of-fit measures but also in terms of precision of posterior crash frequency estimates since the precision of these estimates is vital for ranking of sites for engineering improvement. Fixed-over-time random effects models are also compared to independent-over-time random effects models. For the crash dataset being analyzed, it was found that once the random effects are included in the zero inflated models, the probability of being in the zero state is drastically reduced, and the zero inflated models degenerate to their non zero inflated counterparts. Also by fixing the random effects over time the fit of the models and the precision of the crash frequency estimates are significantly increased. It was found that the rankings of the fixed-over-time random effects models are very consistent among them. In addition, the results show that by fixing the random effects over time, the standard errors of the crash frequency estimates are significantly reduced for the majority of the segments on the top of the ranking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Zero modes of the non-relativistic self-dual Chern-Simons vortices on the Toda backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yongsung

    The two-dimensional self-dual equations are the governing equations of the static zero-energy vortex solutions for the non-relativistic, non-Abelian Chern-Simons models. The zero modes of the non-relativistic vortices are examined by index calculation for the self-dual equations. The index for the self-dual equations is zero for non-Abelian groups, but a non-zero index is obtained by the Toda Ansatz which reduces the self-dual equations to the Toda equations. The number of zero modes for the non-relativistic Toda vortices is 2 {Sigma}{sub {alpha},{beta}}{sup r}K{sub {alpha}{beta}}Q{sup {beta}} which is twice the total number of isolated zeros of the vortex functions. For the affine Todamore » system, there are additional adjoint zero modes which give a zero index for the SU(N) group.« less

  8. How effective are patient-based educational interventions in the management of cancer pain? Systematic review and meta-analysis.

    PubMed

    Bennett, Michael I; Bagnall, Anne-Marie; José Closs, S

    2009-06-01

    This review aimed to quantify the benefit of patient-based educational interventions in the management of cancer pain. We undertook a systematic review and meta-analysis of experimentally randomised and non-randomised controlled clinical trials identified from six databases from inception to November 2007.Two reviewers independently selected trials comparing intervention (formal instruction on cancer pain and analgesia on an individual basis using any medium) to usual care or other control in adults with cancer pain. Methodological quality was assessed, and data extraction undertaken by one reviewer with a second reviewer checking for accuracy. We used random effects model to combine the effect estimates from studies. Main outcome measures were effects on knowledge and attitudes towards cancer pain and analgesia, and pain intensity. Twenty-one trials (19 randomised) totalling 3501 patients met inclusion criteria, and 15 were included in the meta-analysis. Compared to usual care or control, educational interventions improved knowledge and attitudes by half a point on 0-5 rating scale (weighted mean difference 0.52, 95% confidence interval 0.04-1.0), reduced average pain intensity by over one point on 0-10 rating scale (WMD -1.1, -1.8 to -0.41) and reduced worst pain intensity by just under one point (WMD -0.78, -1.21 to -0.35). We found equivocal evidence for the effect of education on self-efficacy, but no significant benefit on medication adherence or on reducing interference with daily activities. Patient-based educational interventions can result in modest but significant benefits in the management of cancer pain, and are probably underused alongside more traditional analgesic approaches.

  9. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

    PubMed Central

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  10. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    Electron-phonon interactions are of fundamental importance in the study of the optical properties of solids at finite temperatures. Here we present a new first-principles computational technique based on the Williams-Lax theory for performing predictive calculations of the optical spectra, including quantum zero-point renormalization and indirect absorption. The calculation of the Williams-Lax optical spectra is computationally challenging, as it involves the sampling over all possible nuclear quantum states. We develop an efficient computational strategy for performing ''one-shot'' finite-temperature calculations. These require only a single optimal configuration of the atomic positions. We demonstrate our methodology for the case of Si, C, and GaAs, yielding absorption coefficients in good agreement with experiment. This work opens the way for systematic calculations of optical spectra at finite temperature. This work was supported by the UK EPSRC (EP/J009857/1 and EP/M020517/) and the Leverhulme Trust (RL-2012-001), and the Graphene Flagship (EU-FP7-604391).

  11. UVBY beta photometry of the young southern cluster NGC3293 and comparison with other young clusters

    NASA Astrophysics Data System (ADS)

    Shobbrook, R. R.

    1980-09-01

    Stromgren uvby photometry has been obtained for 42 members and beta photometry for 37 members of the young southern galactic cluster NGC 3293. The distance modulus obtained from using Crawford's beta/M(V) calibration is 12.75 mag, corresponding to a distance of 3.55 kpc. Comparison of the colour/colour and the HR diagrams of NGC 3293 with those of the five other young northern and southern clusters reveals large differences between the clusters which may possibly be due to metal abundance variations across the Galaxy. Apparently correlated with this effect is a variation of the luminosities of the lower main sequences over about 1 mag. The fainter stars in the southern clusters appear to be an average of 0.7 mag brighter than those in the northern clusters, but it is not certain at present how much of this difference is due to possible systematic errors in the beta index zero point between the northern and southern hemispheres.

  12. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  13. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration.

    PubMed

    Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François

    2016-08-01

    The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dense Chern-Simons matter with fermions at large N

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-01

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.

  15. Systematics of nuclear ground state properties in 78-100Sr by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Buchinger, F.; Ramsay, E. B.; Arnold, E.; Neu, W.; Neugart, R.; Wendt, K.; Silverans, R. E.; Lievens, P.; Vermeeren, L.; Berdichevsky, D.; Fleming, R.; Sprung, D. W. L.; Ulm, G.

    1990-06-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=98 and A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii are compared with predictions of the droplet model and of Hartree-Fock-plus-BCS calculations. For the isotopes in the transitional regions below and above the N=50 shell closure, the inclusion of quadrupole zero point motion in the Droplet model describes part of the observed shell effect. An additional change in the surface region of the charge distribution at spherical shape is suggested by the microscopic model. Furthermore, we propose that the isotopes 78Sr and 80Sr may show an unusual shape-sharing structure, with different mean deformations in the ground and 2+1 excited states.

  16. Flare cue symbology and EVS for zero-zero weather landing

    NASA Astrophysics Data System (ADS)

    French, Guy A.; Murphy, David M.; Ercoline, William R.

    2006-05-01

    When flying an airplane, landing is arguably the most difficult task a pilot can do. This applies to pilots of all skill levels particularly as the level of complexity in both the aircraft and environment increase. Current navigational aids, such as an instrument landing system (ILS), do a good job of providing safe guidance for an approach to an airfield. These aids provide data to primary flight reference (PFR) displays on-board the aircraft depicting through symbology what the pilot's eyes should be seeing. Piloting an approach under visual meteorological conditions (VMC) is relatively easy compared to the various complex instrument approaches under instrument meteorological conditions (IMC) which may include flying in zero-zero weather. Perhaps the most critical point in the approach is the transition to landing where the rate of closure between the wheels and the runway is critical to a smooth, accurate landing. Very few PFR's provide this flare cue information. In this study we will evaluate examples of flare cueing symbology for use in landing an aircraft in the most difficult conditions. This research is a part of a larger demonstration effort using sensor technology to land in zero-zero weather at airfields that offer no or unreliable approach guidance. Several problems exist when landing without visual reference to the outside world. One is landing with a force greater than desired at touchdown and another is landing on a point of the runway other than desired. We compare different flare cueing systems to one another and against a baseline for completing this complex approach task.

  17. Fault current limiter with shield and adjacent cores

    DOEpatents

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  18. Zeroing in on Number and Operations, Grades 7-8: Key Ideas and Common Misconceptions

    ERIC Educational Resources Information Center

    Collins, Anne; Dacey, Linda

    2010-01-01

    "The Zeroing in on Number and Operations" series, which aligns with the Common Core State Standards and the NCTM Standards and Focal Points, features easy-to-use tools for teaching key concepts in number and operations and for addressing common misconceptions. Sharing the insights they've gained in decades of mathematics teaching and research,…

  19. Zeroing in on Number and Operations, Grades 3-4: Key Ideas and Common Misconceptions

    ERIC Educational Resources Information Center

    Dacey, Linda; Collins, Anne

    2010-01-01

    "The Zeroing in on Number and Operations" series, which aligns with the Common Core State Standards and the NCTM Standards and Focal Points, features easy-to-use tools for teaching key concepts in number and operations and for addressing common misconceptions. Sharing the insights they've gained in decades of mathematics teaching and research,…

  20. Zeroing in on Number and Operations, Grades 5-6: Key Ideas and Common Misconceptions

    ERIC Educational Resources Information Center

    Collins, Anne; Dacey, Linda

    2010-01-01

    "The Zeroing in on Number and Operations" series, which aligns with the Common Core State Standards and the NCTM Sandards and Focal Points, features easy-to-use tools for teaching key concepts in number and operations and for addressing common misconceptions. Sharing the insights they've gained through decades of mathematics teaching and research,…

  1. Quantum effects of translational motions in solid para-hydrogen and ortho-deuterium: anharmonic extension of the Einstein model.

    PubMed

    Kühn, O; Manz, J; Schild, A

    2010-04-07

    An anharmonic extension of the Einstein model is developed in order to describe the effect of translational zero point motion on structural and thermodynamic properties of para-H(2) and ortho-D(2) crystals in the zero temperature limit. Accordingly, the molecules carry out large amplitude translational motions in their matrix cage, which are formed by the frozen environment of all other molecules. These translations lead from the molecular equilibrium positions via the harmonic to the anharmonic domain of the potential energy surface. The resulting translational distributions are roughly isotropic, and they have approximately Gaussian shapes, with rather broad full widths at half-maximum, FWHM(para-H(2)/ortho-D(2)) = 1.36/1.02 Å. The translational zero point energies induce expansions of the crystals, in nearly quantitative agreement with experimental results. Furthermore, they make significant contributions to the sublimation energies and zero pressure bulk moduli. These quantum effects decrease with heavier molecular masses. The corresponding isotope effects for ortho-D(2) compared to para-H(2) are confirmed by application of the model to Ar crystals. The results imply consequences for laser induced reaction dynamics of dopants with their host crystals.

  2. Identifying microturbulence regimes in a TCV discharge making use of physical constraints on particle and heat fluxes

    DOE PAGES

    Mariani, Alberto; Brunner, S.; Dominski, J.; ...

    2018-01-17

    Reducing the uncertainty on physical input parameters derived from experimental measurements is essential towards improving the reliability of gyrokinetic turbulence simulations. This can be achieved by introducing physical constraints. Amongst them, the zero particle flux condition is considered here. A first attempt is also made to match as well the experimental ion/electron heat flux ratio. This procedure is applied to the analysis of a particular Tokamak à Configuration Variable discharge. A detailed reconstruction of the zero particle flux hyper-surface in the multi-dimensional physical parameter space at fixed time of the discharge is presented, including the effect of carbon as themore » main impurity. Both collisionless and collisional regimes are considered. Hyper-surface points within the experimental error bars are found. In conclusion, the analysis is done performing gyrokinetic simulations with the local version of the GENE code, computing the fluxes with a Quasi-Linear (QL) model and validating the QL results with non-linear simulations in a subset of cases.« less

  3. Comparison of Chromatic Dispersion Compensation Method Efficiency for 10 Gbit/S RZ-OOK and NRZ-OOK Wdm-Pon Transmission Systems

    NASA Astrophysics Data System (ADS)

    Alsevska, A.; Dilendorfs, V.; Spolitis, S.; Bobrovs, Vj.

    2017-12-01

    In the paper, the authors compare efficiency of two physical dispersion compensation methods for single channel and 8-channel WDM fibre-optical transmission systems using return-to-zero (RZ) and non-return-to-zero (NRZ) line codes for operation within optical C-band frequencies by means of computer simulations. As one of the most important destructive effects in fibre optical transmission systems (FOTS) is chromatic dispersion (CD), it is very important to reduce its negative effect on a transmitted signal. Dispersion compensation methods that were implemented in the research were dispersion compensating fibre (DCF) and fibre Bragg grating (FBG). The main goal of the paper was to find out which dispersion compensation method (DCF or FBG) provided the highest performance increase for fibre-optical transmission system and provided the longest transmission distance after dispersion compensation was implemented at different locations in the fibre-optical line while RZ or NRZ line codes were used. In the paper the reference point of signal quality for all measurements, which were obtained at the receiver, was BER<10-12.

  4. Identifying microturbulence regimes in a TCV discharge making use of physical constraints on particle and heat fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, Alberto; Brunner, S.; Dominski, J.

    Reducing the uncertainty on physical input parameters derived from experimental measurements is essential towards improving the reliability of gyrokinetic turbulence simulations. This can be achieved by introducing physical constraints. Amongst them, the zero particle flux condition is considered here. A first attempt is also made to match as well the experimental ion/electron heat flux ratio. This procedure is applied to the analysis of a particular Tokamak à Configuration Variable discharge. A detailed reconstruction of the zero particle flux hyper-surface in the multi-dimensional physical parameter space at fixed time of the discharge is presented, including the effect of carbon as themore » main impurity. Both collisionless and collisional regimes are considered. Hyper-surface points within the experimental error bars are found. In conclusion, the analysis is done performing gyrokinetic simulations with the local version of the GENE code, computing the fluxes with a Quasi-Linear (QL) model and validating the QL results with non-linear simulations in a subset of cases.« less

  5. Reducing Recreational Sedentary Screen Time: A Community Guide Systematic Review.

    PubMed

    Ramsey Buchanan, Leigh; Rooks-Peck, Cherie R; Finnie, Ramona K C; Wethington, Holly R; Jacob, Verughese; Fulton, Janet E; Johnson, Donna B; Kahwati, Leila C; Pratt, Charlotte A; Ramirez, Gilbert; Mercer, Shawna L; Glanz, Karen

    2016-03-01

    Sedentary time spent with screen media is associated with obesity among children and adults. Obesity has potentially serious health consequences, such as heart disease and diabetes. This Community Guide systematic review examined the effectiveness and economic efficiency of behavioral interventions aimed at reducing recreational (i.e., neither school- nor work-related) sedentary screen time, as measured by screen time, physical activity, diet, and weight-related outcomes. For this review, an earlier ("original") review (search period, 1966 through July 2007) was combined with updated evidence (search period, April 2007 through June 2013) to assess effectiveness of behavioral interventions aimed at reducing recreational sedentary screen time. Existing Community Guide systematic review methods were used. Analyses were conducted in 2013-2014. The review included 49 studies. Two types of behavioral interventions were evaluated that either (1) focus on reducing recreational sedentary screen time only (12 studies); or (2) focus equally on reducing recreational sedentary screen time and improving physical activity or diet (37 studies). Most studies targeted children aged ≤13 years. Children's composite screen time (TV viewing plus other forms of recreational sedentary screen time) decreased 26.4 (interquartile interval= -74.4, -12.0) minutes/day and obesity prevalence decreased 2.3 (interquartile interval= -4.5, -1.2) percentage points versus a comparison group. Improvements in physical activity and diet were reported. Three study arms among adults found composite screen time decreased by 130.2 minutes/day. Among children, these interventions demonstrated reduced screen time, increased physical activity, and improved diet- and weight-related outcomes. More research is needed among adolescents and adults. Published by Elsevier Inc.

  6. Observable consequences of zero-point energy

    NASA Astrophysics Data System (ADS)

    Sen, Siddhartha; Gupta, Kumar S.

    2017-12-01

    Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid-liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.

  7. Influence of Fröhlich polaron coupling on renormalized electron bands in polar semiconductors: Results for zinc-blende GaN

    NASA Astrophysics Data System (ADS)

    Nery, Jean Paul; Allen, Philip B.

    2016-09-01

    We develop a simple method to study the zero-point and thermally renormalized electron energy ɛk n(T ) for k n the conduction band minimum or valence maximum in polar semiconductors. We use the adiabatic approximation, including an imaginary broadening parameter i δ to suppress noise in the density-functional integrations. The finite δ also eliminates the polar divergence which is an artifact of the adiabatic approximation. Nonadiabatic Fröhlich polaron methods then provide analytic expressions for the missing part of the contribution of the problematic optical phonon mode. We use this to correct the renormalization obtained from the adiabatic approximation. Test calculations are done for zinc-blende GaN for an 18 ×18 ×18 integration grid. The Fröhlich correction is of order -0.02 eV for the zero-point energy shift of the conduction band minimum, and +0.03 eV for the valence band maximum; the correction to renormalization of the 3.28 eV gap is -0.05 eV, a significant fraction of the total zero point renormalization of -0.15 eV.

  8. Singularity-driven second- and third-harmonic generation at {epsilon}-near-zero crossing points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincenti, M. A.; Ceglia, D. de; Ciattoni, A.

    We show an alternative path to efficient second- and third-harmonic generation in proximity of the zero crossing points of the dielectric permittivity in conjunction with low absorption. Under these circumstances, any material, either natural or artificial, will show similar degrees of field enhancement followed by strong harmonic generation, without resorting to any resonant mechanism. The results presented in this paper provide a general demonstration of the potential that the zero-crossing-point condition holds for nonlinear optical phenomena. We investigate a generic Lorentz medium and demonstrate that a singularity-driven enhancement of the electric field may be achieved even in extremely thin layersmore » of material. We also discuss the role of nonlinear surface sources in a realistic scenario where a 20-nm layer of CaF{sub 2} is excited at 21 {mu}m, where {epsilon}{approx} 0. Finally, we show similar behavior in an artificial composite material that includes absorbing dyes in the visible range, provide a general tool for the improvement of harmonic generation using the {epsilon}{approx} 0 condition, and illustrate that this singularity-driven enhancement of the field lowers the thresholds for a plethora of nonlinear optical phenomena.« less

  9. Tsallis entropy and decoherence of CsI quantum pseudo dot qubit

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-05-01

    Polaron in CsI quantum pseudo dot under an electromagnetic field was considered, and the ground and first excited state energies were derived by employing the combining Pekar variational and unitary transformation methods. With the two-level system obtained, single qubit was envisioned and the decoherence was studied using non-extensive entropy (Tsallis entropy). Numerical results showed: (i) the increase (decrease) of the energy levels (period of oscillation) with the increase of chemical potential, the zero point of pseudo dot, cyclotron frequency, and transverse and longitudinal confinements; (ii) the Tsallis entropy evolved as a wave envelop that increase with the increase of non-extenxive parameter and with the increase of electric field strength, zero point of pseudo dot and cyclotron frequency the wave envelop evolve periodically with reduction of period; (iii) The transition probability increases from the boundary to the centre of the dot where it has its maximum value. It was also noted that the probability density oscillate with period T0 = ℏ / Δ Ε with the tunnelling of the chemical potential and zero point of the pseudo dot. These results are helpful in the control of decoherence in quantum systems and may also be useful for the design of quantum computers.

  10. Solid-like features in dense vapors near the fluid critical point

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry

    2017-06-01

    The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.

  11. On a method for generating inequalities for the zeros of certain functions

    NASA Astrophysics Data System (ADS)

    Gatteschi, Luigi; Giordano, Carla

    2007-10-01

    In this paper we describe a general procedure which yields inequalities satisfied by the zeros of a given function. The method requires the knowledge of a two-term approximation of the function with bound for the error term. The method was successfully applied many years ago [L. Gatteschi, On the zeros of certain functions with application to Bessel functions, Nederl. Akad. Wetensch. Proc. Ser. 55(3)(1952), Indag. Math. 14(1952) 224-229] and more recently too [L. Gatteschi and C. Giordano, Error bounds for McMahon's asymptotic approximations of the zeros of the Bessel functions, Integral Transform Special Functions, 10(2000) 41-56], to the zeros of the Bessel functions of the first kind. Here, we present the results of the application of the method to get inequalities satisfied by the zeros of the derivative of the function . This function plays an important role in the asymptotic study of the stationary points of the solutions of certain differential equations.

  12. TOPICAL REVIEW: Experimental study of organic zero-gap conductor α-(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Tajima, Naoya; Kajita, Koji

    2009-04-01

    A zero-gap state with a Dirac cone type energy dispersion was discovered in the organic conductor α-(BEDT-TTF)2I3 under high hydrostatic pressures. This is the first two-dimensional (2D) zero-gap state discovered in bulk crystals with a layered structure. In contrast to the case of graphene, the Dirac cone in this system is highly anisotropic. The present system, therefore, provides a new type of massless Dirac fermion system with anisotropic Fermi velocity. This system exhibits remarkable transport phenomena characteristic to electrons on the Dirac cone type energy structure. The carrier density, written as n~T2, is a characteristic feature of the 2D zero-gap structure. On the other hand, the resistivity per layer (sheet resistance RS) is given as RS=h/e2 and is independent of temperature. The effect of a magnetic field on samples in the zero-gap system was examined. The difference between zero-gap conductors and conventional conductors is the appearance of a Landau level called the zero mode at the contact points when a magnetic field is applied normal to the conductive layer. Zero-mode Landau carriers give rise to strong negative out-of-plane magnetoresistance.

  13. International approaches to driving under the influence of cannabis: A review of evidence on impact.

    PubMed

    Watson, Tara Marie; Mann, Robert E

    2016-12-01

    There are knowledge gaps regarding the effectiveness of different approaches designed to prevent and deter driving under the influence of cannabis (DUIC). Policymakers are increasingly interested in evidence-based responses to DUIC as numerous jurisdictions worldwide have legally regulated cannabis or are debating such regulation. We contribute a comprehensive review of international literature on countermeasures that address DUIC, and identify where and how such measures have been evaluated. The following databases were systematically searched from 1995 to present: Medline, Embase, PsycINFO, CINAHL, Sociological Abstracts, and Criminal Justice Abstracts. Hand searching of relevant documents, internet searches for grey literature, and review of ongoing email alerts were conducted to capture any emerging literature and relevant trends. Numerous international jurisdictions have introduced a variety of measures designed to deter DUIC. Much interest has been generated regarding non-zero per se laws that set fixed legal limits for tetrahydrocannabinol and/or its metabolites detected in drivers. Other approaches include behavioural impairment laws, zero-tolerance per se laws, roadside drug testing, graduated licensing system restrictions, and remedial programs. However, very few evaluations have appeared in the literature. Although some promising results have been reported (e.g., roadside testing), it is premature to draw firm conclusions regarding the broader impacts of general deterrent approaches to DUIC. This review points to the need for a long-term commitment to rigorously evaluate, using multiple methods, the impact of general and specific deterrent DUIC countermeasures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Conductive metal oxide film and method of making

    DOEpatents

    Windisch, Jr., Charles F.; Exarhos, Gregory J.

    1999-01-01

    The present invention is a method for reducing a dopant in a film of a metal oxide wherein the dopant is reduced and the first metal oxide is substantially not reduced. The method of the present invention relies upon exposing the film to reducing conditions for a predetermined time and reducing a valence of the metal from a positive valence to a zero valence and maintaining atoms with a zero valence in an atomic configuration within the lattice structure of the metal oxide. According to the present invention, exposure to reducing conditions may be achieved electrochemically or achieved in an elevated temperature gas phase.

  15. Conductive metal oxide film and method of making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windisch, C.F. Jr.; Exarhos, G.J.

    1999-11-23

    The present invention is a method for reducing a dopant in a film of a metal oxide wherein the dopant is reduced and the first metal oxide is substantially not reduced. The method of the present invention relies upon exposing the film to reducing conditions for a predetermined time and reducing a valence of the metal from a positive valence to a zero valence and maintaining atoms with a zero valence in an atomic configuration within the lattice structure of the metal oxide. According to the present invention, exposure to reducing conditions may be achieved electrochemically or achieved in anmore » elevated temperature gas phase.« less

  16. Dark Energy Survey Year 1 Results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannantonio, T.; et al.

    Optical imaging surveys measure both the galaxy density and the gravitational lensing-induced shear fields across the sky. Recently, the Dark Energy Survey (DES) collaboration used a joint fit to two-point correlations between these observables to place tight constraints on cosmology (DES Collaboration et al. 2017). In this work, we develop the methodology to extend the DES Collaboration et al. (2017) analysis to include cross-correlations of the optical survey observables with gravitational lensing of the cosmic microwave background (CMB) as measured by the South Pole Telescope (SPT) and Planck. Using simulated analyses, we show how the resulting set of five two-pointmore » functions increases the robustness of the cosmological constraints to systematic errors in galaxy lensing shear calibration. Additionally, we show that contamination of the SPT+Planck CMB lensing map by the thermal Sunyaev-Zel'dovich effect is a potentially large source of systematic error for two-point function analyses, but show that it can be reduced to acceptable levels in our analysis by masking clusters of galaxies and imposing angular scale cuts on the two-point functions. The methodology developed here will be applied to the analysis of data from the DES, the SPT, and Planck in a companion work.« less

  17. Remote preconditioning and major clinical complications following adult cardiovascular surgery: systematic review and meta-analysis.

    PubMed

    Healy, D A; Khan, W A; Wong, C S; Moloney, M Clarke; Grace, P A; Coffey, J C; Dunne, C; Walsh, S R; Sadat, U; Gaunt, M E; Chen, S; Tehrani, S; Hausenloy, D J; Yellon, D M; Kramer, R S; Zimmerman, R F; Lomivorotov, V V; Shmyrev, V A; Ponomarev, D N; Rahman, I A; Mascaro, J G; Bonser, R S; Jeon, Y; Hong, D M; Wagner, R; Thielmann, M; Heusch, G; Zacharowski, K; Meybohm, P; Bein, B; Tang, T Y

    2014-09-01

    A number of 'proof-of-concept' trials suggest that remote ischaemic preconditioning (RIPC) reduces surrogate markers of end-organ injury in patients undergoing major cardiovascular surgery. To date, few studies have involved hard clinical outcomes as primary end-points. Randomised clinical trials of RIPC in major adult cardiovascular surgery were identified by a systematic review of electronic abstract databases, conference proceedings and article reference lists. Clinical end-points were extracted from trial reports. In addition, trial principal investigators provided unpublished clinical outcome data. In total, 23 trials of RIPC in 2200 patients undergoing major adult cardiovascular surgery were identified. RIPC did not have a significant effect on clinical end-points (death, peri-operative myocardial infarction (MI), renal failure, stroke, mesenteric ischaemia, hospital or critical care length of stay). Pooled data from pilot trials cannot confirm that RIPC has any significant effect on clinically relevant end-points. Heterogeneity in study inclusion and exclusion criteria and in the type of preconditioning stimulus limits the potential for extrapolation at present. An effort must be made to clarify the optimal preconditioning stimulus. Following this, large-scale trials in a range of patient populations are required to ascertain the role of this simple, cost-effective intervention in routine practice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Landscape Response to the 1980 Eruption of Mount St. Helens: Using Historical Aerial Photography to Measure Surface Change

    NASA Astrophysics Data System (ADS)

    Sweeney, K.; Major, J. J.

    2016-12-01

    Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.

  19. Investigating the significance of zero-point motion in small molecular clusters of sulphuric acid and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2014-01-14

    The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei (CCN), and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems.more » The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics (PIMD) method at the density functional theory (DFT) level of theory. We observe a small zero-point effect on the the equilibrium structures of certain clusters. One configuration is found to display a bimodal behaviour at 300 K in contrast to the stable ionised state suggested from a zero temperature classical geometry optimisation. The general effect of zero-point motion is to promote the extent of proton transfer with respect to classical behaviour. We thank Prof. Angelos Michaelides and his group in University College London (UCL) for practical advice and helpful discussions. This work benefited from interactions with the Thomas Young Centre through seminar and discussions involving the PIMD method. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. JLS and IJF were supported by the IMPACT scheme at UCL and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. We are grateful for use of the UCL Legion High Performance Computing Facility and the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the U.S. Department of Energy, Office of Science of the under Contract No. DE-AC02-05CH11231.« less

  20. The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at z ≃ 1.80 in JKCS 041

    NASA Astrophysics Data System (ADS)

    Prichard, Laura J.; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, J. Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael

    2017-12-01

    We present data for 16 galaxies in the overdensity JKCS 041 at z≃ 1.80 as part of the K-band Multi-Object Spectrograph (KMOS) Cluster Survey (KCS). With 20 hr integrations, we have obtained deep absorption-line spectra from which we derived velocity dispersions for seven quiescent galaxies. We combined photometric parameters derived from Hubble Space Telescope images with the dispersions to construct a fundamental plane (FP) for quiescent galaxies in JKCS 041. From the zero-point evolution of the FP, we derived a formation redshift for the galaxies of {z}{form}=3.0+/- 0.3, corresponding to a mean age of 1.4 ± 0.2 Gyr. We tested the effect of structural and velocity dispersion evolution on our FP zero-point and found a negligible contribution when using dynamical mass-normalized parameters (˜ 3 % ) but a significant contribution from stellar-mass-normalized parameters (˜ 42 % ). From the relative velocities of the galaxies, we probed the 3D structure of these 16 confirmed members of JKCS 041 and found that a group of galaxies in the southwest of the overdensity had systematically higher velocities. We derived ages for the galaxies in the different groups from the FP. We found that the east-extending group had typically older galaxies ({2.1}-0.2+0.3 Gyr) than those in the southwest group (0.3 ± 0.2 Gyr). Although based on small numbers, the overdensity dynamics, morphology, and age results could indicate that JKCS 041 is in formation and may comprise two merging groups of galaxies. This result could link large-scale structure to ages of galaxies for the first time at this redshift. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs: 095.A-0137(A) and 096.A-0189(A)).

  1. The Araucaria Project: The Distance to the Local Group Galaxy NGC 6822 from Cepheid Variables Discovered in a Wide-Field Imaging Survey

    NASA Astrophysics Data System (ADS)

    Pietrzyński, Grzegorz; Gieren, Wolfgang; Udalski, Andrzej; Bresolin, Fabio; Kudritzki, Rolf-Peter; Soszyński, Igor; Szymański, Michał; Kubiak, Marcin

    2004-12-01

    We have obtained mosaic images of NGC 6822 in the V and I bands on 77 nights. From these data, we have conducted an extensive search for Cepheid variables over the entire field of the galaxy, and we have found 116 such variables with periods ranging from 1.7 to 124 days. We used the long-period (>5.6 days) Cepheids to establish the period-luminosity (PL) relations in V, I, and in the reddening-independent Wesenheit index, which are all very tightly defined. Fitting the OGLE LMC slopes in the various bands to our data, we have derived distance values for NGC 6822 in V, I, and WI, which agree very well among themselves. Our adopted best distance value from the reddening-free Wesenheit index is 23.34+/-0.04 (statistical) +/-0.05 (systematic) mag. This value agrees within the combined 1 σ uncertainties with a previous distance value derived for NGC 6822 by McAlary and coworkers from near-IR photometry of nine Cepheids, but our new value is significantly more accurate. We compare the slopes of the Cepheid PL relation in V and I as determined in the five best-observed nearby galaxies, which span a metallicity range from -1.0 to -0.3 dex, and find the data consistent with no metallicity dependence of the PL relation slope in this range. Comparing the magnitudes of 10 day Cepheids with the I-band magnitudes of the tip of the red giant branch in the same set of galaxies, there is no evidence either for a significant variation of the PL zero points in V and I. The available data limit such a zero-point variation to less than 0.03 mag in the considered low-metallicity regime. Based on observations obtained with the 1.3 m telescope at the Las Campanas Observatory.

  2. Solving Simple Kinetics without Integrals

    ERIC Educational Resources Information Center

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  3. Observation of acoustic Dirac-like cone and double zero refractive index

    PubMed Central

    Dubois, Marc; Shi, Chengzhi; Zhu, Xuefeng; Wang, Yuan; Zhang, Xiang

    2017-01-01

    Zero index materials where sound propagates without phase variation, holds a great potential for wavefront and dispersion engineering. Recently explored electromagnetic double zero index metamaterials consist of periodic scatterers whose refractive index is significantly larger than that of the surrounding medium. This requirement is fundamentally challenging for airborne acoustics because the sound speed (inversely proportional to the refractive index) in air is among the slowest. Here, we report the first experimental realization of an impedance matched acoustic double zero refractive index metamaterial induced by a Dirac-like cone at the Brillouin zone centre. This is achieved in a two-dimensional waveguide with periodically varying air channel that modulates the effective phase velocity of a high-order waveguide mode. Using such a zero-index medium, we demonstrated acoustic wave collimation emitted from a point source. For the first time, we experimentally confirm the existence of the Dirac-like cone at the Brillouin zone centre. PMID:28317927

  4. Effect of chiral symmetry on chaotic scattering from Majorana zero modes.

    PubMed

    Schomerus, H; Marciani, M; Beenakker, C W J

    2015-04-24

    In many of the experimental systems that may host Majorana zero modes, a so-called chiral symmetry exists that protects overlapping zero modes from splitting up. This symmetry is operative in a superconducting nanowire that is narrower than the spin-orbit scattering length, and at the Dirac point of a superconductor-topological insulator heterostructure. Here we show that chiral symmetry strongly modifies the dynamical and spectral properties of a chaotic scatterer, even if it binds only a single zero mode. These properties are quantified by the Wigner-Smith time-delay matrix Q=-iℏS^{†}dS/dE, the Hermitian energy derivative of the scattering matrix, related to the density of states by ρ=(2πℏ)^{-1}TrQ. We compute the probability distribution of Q and ρ, dependent on the number ν of Majorana zero modes, in the chiral ensembles of random-matrix theory. Chiral symmetry is essential for a significant ν dependence.

  5. [Design and research progress of zero profile cervical Interbody cage].

    PubMed

    Zhu, Jia; Wang, Song; Liao, Zhenhua; Liu, Weiqiang

    2017-02-01

    Zero profile cervical interbody cage is an improvement of traditional fusion products and necessary supplement of emerging artificial intervertebral disc products. When applied in Anterior Cervical Decompression Fusion(ACDF), zero profile cervical interbody cage can preserve the advantages of traditional fusion and reduce the incidence of postoperative complications. Moreover, zero profile cervical interbody cage can be applied under the tabu symptoms of Artificial Cervical Disc Replacement(ACDR). This article summarizes zero profile interbody cage products that are commonly recognized and widely used in clinical practice in recent years, and reviews the progress of structure design and material research of zero profile cervical interbody cage products. Based on the latest clinical demands and research progress, this paper also discusses the future development directions of zero profile interbody cage.

  6. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter

    PubMed Central

    Angrisani, Leopoldo; Simone, Domenico De

    2018-01-01

    This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input. PMID:29735956

  7. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter.

    PubMed

    Fontanella, Rita; Accardo, Domenico; Moriello, Rosario Schiano Lo; Angrisani, Leopoldo; Simone, Domenico De

    2018-05-07

    This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input.

  8. Bit Grooming: Statistically accurate precision-preserving quantization with compression, evaluated in the netCDF operators (NCO, v4.4.8+)

    DOE PAGES

    Zender, Charles S.

    2016-09-19

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits ofmore » consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25–80 and 5–65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1–5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1–2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.« less

  9. A novel quantum-mechanical interpretation of the Dirac equation

    NASA Astrophysics Data System (ADS)

    K-H Kiessling, M.; Tahvildar-Zadeh, A. S.

    2016-04-01

    A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.

  10. Analytic Description of Critical Point Nuclei in a Spherical-Axially Deformed Shape Phase Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iachello, F.

    2001-07-30

    An approximate solution at the critical point of the spherical to axially deformed shape phase transition in nuclei is presented. The eigenvalues of the Hamiltonian are expressed in terms of zeros of Bessel functions of irrational order.

  11. Assessing the greenhouse impact of natural gas

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.

    2012-06-01

    The global warming impact of substituting natural gas for coal and oil is currently in debate. We address this question here by comparing the reduction of greenhouse warming that would result from substituting gas for coal and some oil to the reduction which could be achieved by instead substituting zero carbon energy sources. We show that substitution of natural gas reduces global warming by 40% of that which could be attained by the substitution of zero carbon energy sources. At methane leakage rates that are ˜1% of production, which is similar to today's probable leakage rate of ˜1.5% of production, the 40% benefit is realized as gas substitution occurs. For short transitions the leakage rate must be more than 10 to 15% of production for gas substitution not to reduce warming, and for longer transitions the leakage must be much greater. But even if the leakage was so high that the substitution was not of immediate benefit, the 40%-of-zero-carbon benefit would be realized shortly after methane emissions ceased because methane is removed quickly from the atmosphere whereas CO2 is not. The benefits of substitution are unaffected by heat exchange to the ocean. CO2 emissions are the key to anthropogenic climate change, and substituting gas reduces them by 40% of that possible by conversion to zero carbon energy sources. Gas substitution also reduces the rate at which zero carbon energy sources must eventually be introduced.

  12. Origin of the low-frequency internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1986-11-01

    The internal friction (IF) background of gold is studied in the kHz frequency range. Systematic measurements of IF as a function of frequency, strain amplitude, and temperature show that the IF is due to the superposition of two contributions: the thermoelastic effect and a dislocation effect. The thermoelastic effect is responsible for the IF background observed when the strain amplitude tends to zero. It is the only contribution to the IF background which is strain amplitude independent. On the contrary, the dislocation effect contributes only to the strain amplitude-dependent IF background. This effect is proportional to the strain amplitude. In particular, it is zero when the strain amplitude tends to zero. Furthermore, the dislocation contribution is frequency independent. The experimental results show that the dislocation effect cannot be explained by a viscous damping of dislocation motion, but must be related to an hysteretic and athermal motion of dislocations.

  13. Two-nucleon S 0 1 amplitude zero in chiral effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, M. Sanchez; Yang, C. -J.; Long, Bingwei

    We present a new rearrangement of short-range interactions in the 1S 0 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg’s scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to themore » pion-production threshold. As a result, an approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.« less

  14. Two-nucleon S 0 1 amplitude zero in chiral effective field theory

    DOE PAGES

    Sanchez, M. Sanchez; Yang, C. -J.; Long, Bingwei; ...

    2018-02-05

    We present a new rearrangement of short-range interactions in the 1S 0 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg’s scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to themore » pion-production threshold. As a result, an approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.« less

  15. Did Ontario's Zero Tolerance & Graduated Licensing Law Reduce Youth Drunk Driving?

    ERIC Educational Resources Information Center

    Carpenter, Christopher

    2006-01-01

    On April 1, 1994, Ontario, Canada, instituted a new graduated driver license (GDL) system that effectively set the legal blood alcohol content (BAC) threshold at zero for the first few years of a youth's driving eligibility. I use data from the 1983-2001 Ontario Student Drug Use Surveys (OSDUS) to examine whether the Zero Tolerance (ZT) policy…

  16. Field evaluation of the long-lasting treated storage bag, deltamethrin-incorporated (ZeroFly® Storage Bag) as a barrier to insect pest infestation

    USDA-ARS?s Scientific Manuscript database

    The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...

  17. Effect of Zero-Valent Iron on Removal of Escherichia coli O157:H7 from Agricultural Waters

    USDA-ARS?s Scientific Manuscript database

    A novel water filtration system using zero-valent iron (ZVI) is being investigated as a simple and inexpensive approach to reducing E. coli O157:H7 in water for both pre- and post-harvest processes. Purpose: This study was initiated to determine the effectiveness of zero-valent iron in the removal ...

  18. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Creation of quasi-Dirac points in the Floquet band structure of bilayer graphene.

    PubMed

    Cheung, W M; Chan, K S

    2017-06-01

    We study the Floquet quasi-energy band structure of bilayer graphene when it is illuminated by two laser lights with frequencies [Formula: see text] and [Formula: see text] using Floquet theory. We focus on the dynamical gap formed by the conduction band with Floquet index  =  -1 and the valence band with Floquet index  =  +1 to understand how Dirac points can be formed. It is found that the dynamical gap does not have rotation symmetry in the momentum space, and quasi-Dirac points, where the conduction and valence bands almost touch, can be created when the dynamical gap closes along some directions with suitably chosen radiation parameters. We derive analytical expressions for the direction dependence of the dynamical gaps using Lowdin perturbation theory to gain a better understanding of the formation of quasi-Dirac points. When both radiations are circularly polarized, the gap can be exactly zero along some directions, when only the first and second order perturbations are considered. Higher order perturbations can open a very small gap in this case. When both radiations are linearly polarized, the gap can be exactly zero up to the fourth order perturbation and more than one quasi-Dirac point is formed. We also study the electron velocity around a dynamical gap and show that the magnitude of the velocity drops to values close to zero when the k vector is near to the gap minimum. The direction of the velocity also changes around the gap minimum, and when the gap is larger in value the change in the velocity direction is more gradual. The warping effect does not affect the formation of a Dirac point along the k x axis, while it prevents its formation when there is phase shift between the two radiations.

  20. The Zero-Base Budget: A New Management Tool. Information Series, Volume 6, Number 4. Bulletin No. 7430.

    ERIC Educational Resources Information Center

    Buchmiller, Archie A.

    All indicators appear to point to a continuing and increased public interest in zero-based budgeting (ZBB). Despite its present popularity, ZBB is not new. The theory has been around for more than a decade and it draws heavily on existing systems, particularly on planning, programming, and budgeting systems. ZBB has two phases. The first is the…

  1. Multipoint propagators in cosmological gravitational instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardeau, Francis; Crocce, Martin; Scoccimarro, Roman

    2008-11-15

    We introduce the concept of multipoint propagators between linear cosmic fields and their nonlinear counterparts in the context of cosmological perturbation theory. Such functions express how a nonlinearly evolved Fourier mode depends on the full ensemble of modes in the initial density field. We identify and resum the dominant diagrams in the large-k limit, showing explicitly that multipoint propagators decay into the nonlinear regime at the same rate as the two-point propagator. These analytic results generalize the large-k limit behavior of the two-point propagator to arbitrary order. We measure the three-point propagator as a function of triangle shape in numericalmore » simulations and confirm the results of our high-k resummation. We show that any n-point spectrum can be reconstructed from multipoint propagators, which leads to a physical connection between nonlinear corrections to the power spectrum at small scales and higher-order correlations at large scales. As a first application of these results, we calculate the reduced bispectrum at one loop in renormalized perturbation theory and show that we can predict the decrease in its dependence on triangle shape at redshift zero, when standard perturbation theory is least successful.« less

  2. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.

    2017-01-01

    Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.

  3. Experiments with conjugate gradient algorithms for homotopy curve tracking

    NASA Technical Reports Server (NTRS)

    Irani, Kashmira M.; Ribbens, Calvin J.; Watson, Layne T.; Kamat, Manohar P.; Walker, Homer F.

    1991-01-01

    There are algorithms for finding zeros or fixed points of nonlinear systems of equations that are globally convergent for almost all starting points, i.e., with probability one. The essence of all such algorithms is the construction of an appropriate homotopy map and then tracking some smooth curve in the zero set of this homotopy map. HOMPACK is a mathematical software package implementing globally convergent homotopy algorithms with three different techniques for tracking a homotopy zero curve, and has separate routines for dense and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy Jacobian matrix, a required linear algebra step for homotopy curve tracking. Here, variants of the conjugate gradient algorithm are implemented in the context of homotopy curve tracking and compared with Craig's preconditioned conjugate gradient method used in HOMPACK. The test problems used include actual large scale, sparse structural mechanics problems.

  4. Meta-Analysis of Zero or Near-Zero Fluoroscopy Use During Ablation of Cardiac Arrhythmias.

    PubMed

    Yang, Li; Sun, Ge; Chen, Xiaomei; Chen, Guangzhi; Yang, Shanshan; Guo, Ping; Wang, Yan; Wang, Dao Wen

    2016-11-15

    Data regarding the efficacy and safety of zero or near-zero fluoroscopic ablation of cardiac arrhythmias are limited. A literature search was conducted using PubMed and Embase for relevant studies through January 2016. Ten studies involving 2,261 patients were identified. Compared with conventional radiofrequency ablation method, zero or near-zero fluoroscopy ablation significantly showed reduced fluoroscopic time (standard mean difference [SMD] -1.62, 95% CI -2.20 to -1.05; p <0.00001), ablation time (SMD -0.16, 95% CI -0.29 to -0.04; p = 0.01), and radiation dose (SMD -1.94, 95% CI -3.37 to -0.51; p = 0.008). In contrast, procedure duration was not significantly different from that of conventional radiofrequency ablation (SMD -0.03, 95% CI -0.16 to 0.09; p = 0.58). There were no significant differences between both groups in immediate success rate (odds ratio [OR] 0.99, 95% CI 0.49 to 2.01; p = 0.99), long-term success rate (OR 1.13, 95% CI 0.42 to 3.02; p = 0.81), complication rates (OR 0.98, 95% CI 0.49 to 1.96; p = 0.95), and recurrence rates (OR 1.29, 95% CI 0.74 to 2.24; p = 0.37). In conclusion, radiation was significantly reduced in the zero or near-zero fluoroscopy ablation groups without compromising efficacy and safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Expanding space-time and variable vacuum energy

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2017-08-01

    The paper describes a cosmological model which contemplates the presence of a vacuum energy varying, very slightly (now), with time. The constant part of the vacuum energy generated, some 6 Gyr ago, a deceleration/acceleration transition of the metric expansion; so now, in an aged Universe, the expansion is inexorably accelerating. The vacuum energy varying part is instead assumed to be eventually responsible of an acceleration/deceleration transition, which occurred about 14 Gyr ago; this transition has a dynamic origin: it is a consequence of the general relativistic Einstein-Friedmann equations. Moreover, the vacuum energy (constant and variable) is here related to the zero-point energy of some quantum fields (scalar, vector, or spinor); these fields are necessarily described in a general relativistic way: their structure depends on the space-time metric, typically non-flat. More precisely, the commutators of the (quantum field) creation/annihilation operators are here assumed to depend on the local value of the space-time metric tensor (and eventually of its curvature); furthermore, these commutators rapidly decrease for high momentum values and they reduce to the standard ones for a flat metric. In this way, the theory is ”gravitationally” regularized; in particular, the zero-point (vacuum) energy density has a well defined value and, for a non static metric, depends on the (cosmic) time. Note that this varying vacuum energy can be negative (Fermi fields) and that a change of its sign typically leads to a minimum for the metric expansion factor (a ”bounce”).

  6. Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.

    PubMed

    Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc

    2016-12-13

    The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.

  7. The effect of zero-point energy differences on the isotope dependence of the formation of ozone: a classical trajectory study.

    PubMed

    Schinke, Reinhard; Fleurat-Lessard, Paul

    2005-03-01

    The effect of zero-point energy differences (DeltaZPE) between the possible fragmentation channels of highly excited O(3) complexes on the isotope dependence of the formation of ozone is investigated by means of classical trajectory calculations and a strong-collision model. DeltaZPE is incorporated in the calculations in a phenomenological way by adjusting the potential energy surface in the product channels so that the correct exothermicities and endothermicities are matched. The model contains two parameters, the frequency of stabilizing collisions omega and an energy dependent parameter Delta(damp), which favors the lower energies in the Maxwell-Boltzmann distribution. The stabilization frequency is used to adjust the pressure dependence of the absolute formation rate while Delta(damp) is utilized to control its isotope dependence. The calculations for several isotope combinations of oxygen atoms show a clear dependence of relative formation rates on DeltaZPE. The results are similar to those of Gao and Marcus [J. Chem. Phys. 116, 137 (2002)] obtained within a statistical model. In particular, like in the statistical approach an ad hoc parameter eta approximately 1.14, which effectively reduces the formation rates of the symmetric ABA ozone molecules, has to be introduced in order to obtain good agreement with the measured relative rates of Janssen et al. [Phys. Chem. Chem. Phys. 3, 4718 (2001)]. The temperature dependence of the recombination rate is also addressed.

  8. The Navigation Guide systematic review methodology: a rigorous and transparent method for translating environmental health science into better health outcomes.

    PubMed

    Woodruff, Tracey J; Sutton, Patrice

    2014-10-01

    Synthesizing what is known about the environmental drivers of health is instrumental to taking prevention-oriented action. Methods of research synthesis commonly used in environmental health lag behind systematic review methods developed in the clinical sciences over the past 20 years. We sought to develop a proof of concept of the "Navigation Guide," a systematic and transparent method of research synthesis in environmental health. The Navigation Guide methodology builds on best practices in research synthesis in evidence-based medicine and environmental health. Key points of departure from current methods of expert-based narrative review prevalent in environmental health include a prespecified protocol, standardized and transparent documentation including expert judgment, a comprehensive search strategy, assessment of "risk of bias," and separation of the science from values and preferences. Key points of departure from evidence-based medicine include assigning a "moderate" quality rating to human observational studies and combining diverse evidence streams. The Navigation Guide methodology is a systematic and rigorous approach to research synthesis that has been developed to reduce bias and maximize transparency in the evaluation of environmental health information. Although novel aspects of the method will require further development and validation, our findings demonstrated that improved methods of research synthesis under development at the National Toxicology Program and under consideration by the U.S. Environmental Protection Agency are fully achievable. The institutionalization of robust methods of systematic and transparent review would provide a concrete mechanism for linking science to timely action to prevent harm.

  9. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; O'Neill, Brian C.

    2018-04-01

    The Paris Agreement stipulates that global warming be stabilized at well below 2 °C above pre-industrial levels, with aims to further constrain this warming to 1.5 °C. However, it also calls for reducing net anthropogenic greenhouse gas (GHG) emissions to zero during the second half of this century. Here, we use a reduced-form integrated assessment model to examine the consistency between temperature- and emission-based targets. We find that net zero GHG emissions are not necessarily required to remain below 1.5 °C or 2 °C, assuming either target can be achieved without overshoot. With overshoot, however, the emissions goal is consistent with the temperature targets, and substantial negative emissions are associated with reducing warming after it peaks. Temperature targets are put at risk by late achievement of emissions goals and the use of some GHG emission metrics. Refinement of Paris Agreement emissions goals should include a focus on net zero CO2—not GHG—emissions, achieved early in the second half of the century.

  10. Thermal form factor approach to the ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol K.; Suzuki, Junji

    2016-09-01

    We use the form factors of the quantum transfer matrix in the zero-temperature limit in order to study the two-point ground-state correlation functions of the XXZ chain in the antiferromagnetic massive regime. We obtain novel form factor series representations of the correlation functions which differ from those derived either from the q-vertex-operator approach or from the algebraic Bethe Ansatz approach to the usual transfer matrix. We advocate that our novel representations are numerically more efficient and allow for a straightforward calculation of the large-distance asymptotic behaviour of the two-point functions. Keeping control over the temperature corrections to the two-point functions we see that these are of order {T}∞ in the whole antiferromagnetic massive regime. The isotropic limit of our result yields a novel form factor series representation for the two-point correlation functions of the XXX chain at zero magnetic field. Dedicated to the memory of Petr Petrovich Kulish.

  11. Digital controllers for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1976-01-01

    Using linear-optimal estimation and control techniques, digital-adaptive control laws have been designed for a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. Two distinct discrete-time control laws are designed to interface with velocity-command and attitude-command guidance logic, and each incorporates proportional-integral compensation for non-zero-set-point regulation, as well as reduced-order Kalman filters for sensor blending and noise rejection. Adaptation to flight condition is achieved with a novel gain-scheduling method based on correlation and regression analysis. The linear-optimal design approach is found to be a valuable tool in the development of practical multivariable control laws for vehicles which evidence significant coupling and insufficient natural stability.

  12. 50-mJ, 1-kHz Yb:YAG thin-disk regenerative amplifier with 969-nm pulsed pumping

    NASA Astrophysics Data System (ADS)

    Chyla, Michal; Miura, Taisuke; Smrž, Martin; Severova, Patricie; Novak, Ondrej; Endo, Akira; Mocek, Tomas

    2014-02-01

    We are developing a 100-mJ Yb:YAG thin-disk regenerative amplifier operating at 1-kHz repetition rate pumped at zero-phonon-line (968.825-nm1) and delivering 1-2 ps pulses for EUV plasma sources applicable in science and industry. Recently we achieved the output energy of nearly 50-mJ from a single laser-head cavity with good beam quality (M2<1.2) as well as stable beam-pointing (<4μrad). Applying pulsed pumping with the pulse duration shorter than the upper state lifetime of Yb:YAG helps to reduce the ASE and thermal loading of the thin-disk.

  13. Feature Selection Methods for Zero-Shot Learning of Neural Activity.

    PubMed

    Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  14. A study of fractional Schrödinger equation composed of Jumarie fractional derivative

    NASA Astrophysics Data System (ADS)

    Banerjee, Joydip; Ghosh, Uttam; Sarkar, Susmita; Das, Shantanu

    2017-04-01

    In this paper we have derived the fractional-order Schrödinger equation composed of Jumarie fractional derivative. The solution of this fractional-order Schrödinger equation is obtained in terms of Mittag-Leffler function with complex arguments, and fractional trigonometric functions. A few important properties of the fractional Schrödinger equation are then described for the case of particles in one-dimensional infinite potential well. One of the motivations for using fractional calculus in physical systems is that the space and time variables, which we often deal with, exhibit coarse-grained phenomena. This means infinitesimal quantities cannot be arbitrarily taken to zero - rather they are non-zero with a minimum spread. This type of non-zero spread arises in the microscopic to mesoscopic levels of system dynamics, which means that, if we denote x as the point in space and t as the point in time, then limit of the differentials d x (and d t) cannot be taken as zero. To take the concept of coarse graining into account, use the infinitesimal quantities as (Δ x) α (and (Δ t) α ) with 0 < α < 1; called as `fractional differentials'. For arbitrarily small Δ x and Δ t (tending towards zero), these `fractional' differentials are greater than Δ x (and Δ t), i.e. (Δ x) α > Δ x and (Δ t) α > Δ t. This way of defining the fractional differentials helps us to use fractional derivatives in the study of dynamic systems.

  15. Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions.

    PubMed

    Pindrus, Mariya A; Shire, Steven J; Yadav, Sandeep; Kalonia, Devendra S

    2017-04-01

    To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.

  16. Full Polarization Conical Dispersion and Zero-Refractive-Index in Two-Dimensional Photonic Hypercrystals

    PubMed Central

    Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2016-01-01

    Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377

  17. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene.

    PubMed

    Cannuccia, Elena; Marini, Andrea

    2011-12-16

    The quantum zero-point motion of the carbon atoms is shown to induce strong effects on the optical and electronic properties of diamond and trans-polyacetylene, a conjugated polymer. By using an ab initio approach, we interpret the subgap states experimentally observed in diamond in terms of entangled electron-phonon states. These states also appear in trans-polyacetylene causing the formation of strong structures in the band structure that even call into question the accuracy of the band theory. This imposes a critical revision of the results obtained for carbon-based nanostructures by assuming the atoms frozen in their equilibrium positions. © 2011 American Physical Society

  18. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    NASA Technical Reports Server (NTRS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  19. Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.

    PubMed

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C

    2015-11-20

    We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.

  20. Changes in the zero-point energy of the protons as the source of the binding energy of water to A-phase DNA.

    PubMed

    Reiter, G F; Senesi, R; Mayers, J

    2010-10-01

    The measured changes in the zero-point kinetic energy of the protons are entirely responsible for the binding energy of water molecules to A phase DNA at the concentration of 6  water molecules/base pair. The changes in kinetic energy can be expected to be a significant contribution to the energy balance in intracellular biological processes and the properties of nano-confined water. The shape of the momentum distribution in the dehydrated A phase is consistent with coherent delocalization of some of the protons in a double well potential, with a separation of the wells of 0.2 Å.

  1. SMP93-PC: Standard Ship Motion Program for Personal Computer with Small Boat Capability

    DTIC Science & Technology

    1994-06-01

    1 DO 20 J=1,NP P (I,.J) =Y(J,K)I ~ ~~ P (2.3) =Z(J,K)P.NDI 20 CONTINUE CALL SPINT2 ~PSEGS ( 11,K), NS5, AREA, 1, ZERO , IS, ONE, 0)I ASTAT(K) = TWO...NDIC2) ,ENDI(2,25 DATA ZEROONE /0.0,1.0/£ DATA NDI,ENDI /2*1,4*0.0/ CALL SPt.1T2 (PSEGS , P ,NPTS ,NDI ,ENDI) CALL SPINT2- (PSEGS,NS,SPAREA,1, ZERO ,NS...spline * and a plane defined by a point and a direction vector I * INPUTS * P (i) = X-COORDINATE OF POINT USED TO DEFINE THE PLANE * = -COORDINATE OF

  2. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  3. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  4. Control of flow separation in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Cho, Minjeong; Choi, Sangho; Choi, Haecheon

    2015-11-01

    Towards the development of successful control methods for separation delay in a turbulent boundary layer, we adopt a model flow field, in which a turbulent separation occurs above a flat plate (Na and Moin 1998 JFM), and apply controls to this flow for reducing the size of the separation bubble and investigating the interaction between the forcing and flow near the separation bubble. We provide a single-frequency forcing with zero net mass flow rate at the upstream of the separation bubble. At low forcing frequencies, spanwise vortices are generated and travel downstream, bringing high momentum toward the wall and reducing the size of the separation bubble. Also, these vortices cause the separation and reattachment points to travel downstream. On the other hand, at high forcing frequencies, the size of the separation bubble becomes smaller and larger in time, respectively, due to the pressure gradient alternating favorably and adversely in time. Supported by NRF-2011-0028032 and 2014048162.

  5. Exploiting Data Similarity to Reduce Memory Footprints

    DTIC Science & Technology

    2011-01-01

    leslie3d Fortran Computational Fluid Dynamics (CFD) application 122. tachyon C Parallel Ray Tracing application 128.GAPgeofem C and Fortran Simulates...benefits most from SBLLmalloc; LAMMPS, which shows moderate similarity from primarily zero pages; and 122. tachyon , a parallel ray- tracing application...similarity across MPI tasks. They primarily are zero- pages although a small fraction (≈10%) are non-zero pages. 122. tachyon is an image rendering

  6. Toward spin-based Magneto Logic Gate in Graphene

    NASA Astrophysics Data System (ADS)

    Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland

    Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.

  7. The Zero Hunger and Brazil without Extreme Poverty programs: a step forward in Brazilian social protection policy.

    PubMed

    Paes-Sousa, Romulo; Vaitsman, Jeni

    2014-11-01

    Brazilian social protection programs have had consistent effects in reducing poverty and inequality among their respective target-groups: children, adolescents and pregnant and breastfeeding women. In 2011, the Brazil without Extreme Poverty program was launched as a strategy to eradicate extreme poverty by 2014. It makes the promotion of rights the core concept of the official political narrative. This study seeks to provide a systematic description of the Brazil without Extreme Poverty program and its initial results. A review of official documents and academic studies on the social protection programs was conducted. The Brazil without Extreme Poverty program represents an incremental approach to the social protection policies enacted by the previous administration. It advocates a multidimensional and focused approach, funded primarily by the federal government. The strategy subscribes to the international trend of associating social protection with employment and income generation policies.

  8. Designing perturbative metamaterials from discrete models.

    PubMed

    Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara

    2018-04-01

    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.

  9. Faraday instability in a near-critical fluid under weightlessness.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    Experiments on near-critical hydrogen have been conducted under magnetic compensation of gravity to investigate the Faraday instability that arises at the liquid-vapor interface under zero-gravity conditions. We investigated such instability in the absence of stabilizing gravity. Under such conditions, vibration orients the interface and can destabilize it. The experiments confirm the existence of Faraday waves and demonstrate a transition from a square to a line pattern close to the critical point. They also show a transition very close to the critical point from Faraday to periodic layering of the vapor-liquid interface perpendicular to vibration. It was seen that the Faraday wave instability is favored when the liquid-vapor density difference is large enough (fluid far from the critical point), whereas periodic layering predominates for small difference in the liquid and vapor densities (close to the critical point). It was observed for the Faraday wave instability that the wavelength of the instability decreases as one approaches the critical point. The experimental results demonstrate good agreement to the dispersion relation for zero gravity except for temperatures very close to the critical point where a transition from a square pattern to a line pattern is detected, similarly to what is observed under 1g conditions.

  10. The Effectiveness of Psychoeducation and Systematic Desensitization to Reduce Test Anxiety Among First-year Pharmacy Students

    PubMed Central

    Saravanan, Coumaravelou

    2014-01-01

    Objective: To analyze the effect of psychological intervention on reducing performance anxiety and the consequences of the intervention on first-year pharmacy students. Methods: In this experimental study, 236 first-year undergraduate pharmacy students from a private university in Malaysia were approached between weeks 5 and 7 of their first semester to participate in the study. The completed responses for the Westside Test Anxiety Scale (WTAS), the Kessler Perceived Distress Scale (PDS), and the Academic Motivation Scale (AMS) were received from 225 students. Out of 225 students, 42 exhibited moderate to high test anxiety according to the WTAS (score ranging from 30 to 39) and were randomly placed into either an experiment group (n=21) or a waiting list control group (n=21). Results: The prevalence of test anxiety among pharmacy students in this study was lower compared to other university students in previous studies. The present study’s anxiety management of psychoeducation and systematic education for test anxiety reduced lack of motivation and psychological distress and improved grade point average (GPA). Conclusion: Psychological intervention helped significantly reduce scores of test anxiety, psychological distress, and lack of motivation, and it helped improve students’ GPA. PMID:25525278

  11. The effectiveness of psychoeducation and systematic desensitization to reduce test anxiety among first-year pharmacy students.

    PubMed

    Rajiah, Kingston; Saravanan, Coumaravelou

    2014-11-15

    To analyze the effect of psychological intervention on reducing performance anxiety and the consequences of the intervention on first-year pharmacy students. In this experimental study, 236 first-year undergraduate pharmacy students from a private university in Malaysia were approached between weeks 5 and 7 of their first semester to participate in the study. The completed responses for the Westside Test Anxiety Scale (WTAS), the Kessler Perceived Distress Scale (PDS), and the Academic Motivation Scale (AMS) were received from 225 students. Out of 225 students, 42 exhibited moderate to high test anxiety according to the WTAS (score ranging from 30 to 39) and were randomly placed into either an experiment group (n=21) or a waiting list control group (n=21). The prevalence of test anxiety among pharmacy students in this study was lower compared to other university students in previous studies. The present study's anxiety management of psychoeducation and systematic education for test anxiety reduced lack of motivation and psychological distress and improved grade point average (GPA). Psychological intervention helped significantly reduce scores of test anxiety, psychological distress, and lack of motivation, and it helped improve students' GPA.

  12. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  13. Zero Thermal Noise in Resistors at Zero Temperature

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran

    2016-06-01

    The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.

  14. Translating Deming's 14 Points for Education.

    ERIC Educational Resources Information Center

    Melvin, Charles A., III

    1991-01-01

    A consortium of four Wisconsin school districts has decided to stop tinkering with the educational system and apply W. Edward Deming's 14 management points to total system improvement. The rewritten precepts involve creating and adopting a fitting purpose, infusing quality into the educational "product," and working toward zero defects…

  15. Study of the effects of plea bargaining motor vehicle offenses : final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    The objectives of this study were to examine the impact of plea bargaining point-carrying moving violations to zero-point : offenses on roadway safety in New Jersey and to assess the impact of plea bargaining on New Jersey Motor Vehicle : Commission ...

  16. A Unified Theory of Solid Propellant Ignition. Part 3. Computer Solutions

    DTIC Science & Technology

    1975-12-01

    characteristics of the sol«.tU.n were examined: (1) the time (t ) to attain zero surface chemical heating (endothermic heat of pyroly - sis equal to exothermic... pyrolys .3 ictivation ener- gies can be and stiil permit ignition when both pyrolyses are endothermic has not been determined. The jnly systematic

  17. Composite Ceramic Superconducting Wires for Electric Motor Applications

    DTIC Science & Technology

    1989-04-28

    anneal, reaching a zero stress condition. One must consider the kinetics of stress relaxation to estimate the retained residual stress. Also, upon cooling...temperature residual stress. Starting from zero stress after intercalation, thermomechanical stress builds up from around 300’C or so, depending upon...silicon diode thermometer. The sample filament is electroded in a four-point geometry using either silver epoxy over sputteredd silver pads or fired-on

  18. Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors

    DTIC Science & Technology

    1999-01-01

    modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero

  19. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  20. Correcting systematic bias and instrument measurement drift with mzRefinery

    DOE PAGES

    Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; ...

    2015-08-04

    Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. In conclusion, we report on availability; the mzRefinery tool is part of msConvert, availablemore » with the ProteoWizard open source package at http://proteowizard.sourceforge.net/« less

  1. Precision Adjustable Liquid Regulator (ALR)

    NASA Astrophysics Data System (ADS)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.

  2. The Tip of the Red Giant Branch Distances to Type Ia Supernova Host Galaxies. IV. Color Dependence and Zero-point Calibration

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2017-01-01

    We present a revised Tip of the Red Giant Branch (TRGB) calibration, accurate to 2.7% of distance. A modified TRGB magnitude corrected for its color dependence, the QT magnitude, is introduced for better measurement of the TRGB. We determine the color-magnitude relation of the TRGB from photometry of deep images of HST/ACS fields around eight nearby galaxies. The zero-point of the TRGB at the fiducial metallicity ([Fe/H] = -1.6 ({(V-I)}0,{TRGB}=1.5)) is obtained from photometry of two distance anchors, NGC 4258 (M106) and the Large Magellanic Cloud (LMC), to which precise geometric distances are known: MQT,TRGB = -4.023 ± 0.073 mag from NGC 4258 and MQT,TRGB = -4.004 ± 0.096 mag from the LMC. A weighted mean of the two zero-points is MQT,TRGB = -4.016 ± 0.058 mag. Quoted uncertainty is ˜2× smaller than those of previous calibrations. We compare the empirical TRGB calibration derived in this study with theoretical stellar models, finding that there are significant discrepancies, especially for red color ({({{F}}606{{W}}-{{F}}814{{W}})}0≳ 2.5). We provide the revised TRGB calibration in several magnitude systems for future studies.

  3. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    PubMed

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials.

  4. Theoretical assessment of the disparity in the electrostatic forces between two point charges and two conductive spheres of equal radii

    NASA Astrophysics Data System (ADS)

    Kolikov, Kiril

    2016-11-01

    The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.

  5. Criticality of the random field Ising model in and out of equilibrium: A nonperturbative functional renormalization group description

    NASA Astrophysics Data System (ADS)

    Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu

    2018-03-01

    We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.

  6. Stochastic derivative-free optimization using a trust region framework

    DOE PAGES

    Larson, Jeffrey; Billups, Stephen C.

    2016-02-17

    This study presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values f¯. The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local models and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates suchmore » that the corresponding function gradients converge in probability to zero. As a result, we present a prototype of our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark problems in fewer function evaluations than do existing stochastic approximation methods.« less

  7. Quantum Hall Effect near the Charge Neutrality Point in a Two-Dimensional Electron-Hole System

    NASA Astrophysics Data System (ADS)

    Gusev, G. M.; Olshanetsky, E. B.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Portal, J. C.

    2010-04-01

    We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity σxy≈0 and in a minimum of diagonal conductivity σxx at ν=νp-νn=0, where νn and νp are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole “snake states” propagating along the ν=0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

  8. Hypercalibration: A Pan-STARRS1-Based Recalibration of the Sloan Digital Sky Survey Photometry

    DOE PAGES

    Finkbeiner, Douglas P.; Schlafly, Edward F.; Schlegel, David J.; ...

    2016-05-05

    In this paper, we present a recalibration of the Sloan Digital Sky Survey (SDSS) photometry with new flat fields and zero points derived from Pan-STARRS1. Using point-spread function (PSF) photometry of 60 million stars with 16 < r < 20, we derive a model of amplifier gain and flat-field corrections with per-run rms residuals of 3 millimagnitudes (mmag) in griz bands and 15 mmag in u band. The new photometric zero points are adjusted to leave the median in the Galactic north unchanged for compatibility with previous SDSS work. We also identify transient non-photometric periods in SDSS ("contrails") based onmore » photometric deviations co-temporal in SDSS bands. Finally, the recalibrated stellar PSF photometry of SDSS and PS1 has an rms difference of {9, 7, 7, 8} mmag in griz, respectively, when averaged over 15' regions.« less

  9. Research on fully distributed optical fiber sensing security system localization algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Xu; Hou, Jiacheng; Liu, Kun; Liu, Tiegen

    2013-12-01

    A new fully distributed optical fiber sensing and location technology based on the Mach-Zehnder interferometers is studied. In this security system, a new climbing point locating algorithm based on short-time average zero-crossing rate is presented. By calculating the zero-crossing rates of the multiple grouped data separately, it not only utilizes the advantages of the frequency analysis method to determine the most effective data group more accurately, but also meets the requirement of the real-time monitoring system. Supplemented with short-term energy calculation group signal, the most effective data group can be quickly picked out. Finally, the accurate location of the climbing point can be effectively achieved through the cross-correlation localization algorithm. The experimental results show that the proposed algorithm can realize the accurate location of the climbing point and meanwhile the outside interference noise of the non-climbing behavior can be effectively filtered out.

  10. Biomechanics of 4-point seat belt systems in frontal impacts.

    PubMed

    Rouhana, Stephen W; Bedewi, Paul G; Kankanala, Sundeep V; Prasad, Priya; Zwolinski, Joseph J; Meduvsky, Alex G; Rupp, Jonathan D; Jeffreys, Thomas A; Schneider, Lawrence W

    2003-01-01

    The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that "crisscrossed" the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts. The V4 belt appeared to shift load to the clavicles and pelvis and to reduce traction of the shoulder belt across the chest, resulting in a reduction in chest deflection by a factor of two. This is associated with a 5 to 500-fold reduction in thoracic injury risk, depending on whether one assumes 4-point belts apply concentrated or distributed load. In four of six post mortem human subjects restrained by V4 belts during 40 km/h sled tests, chest compression was zero or negative and rib fractures were nearly eliminated. Submarining was not observed in any test with post mortem human subjects. Though lumbar, sacral and pelvic injuries were noted, they are believed to be due to the artificial restraint environment (no knee bolsters, instrument panels, steering systems or airbags). While they show significant potential to reduce thoracic injury risk, there are still many issues to be resolved before 4-point belts can be considered for production vehicles. These issues include, among others, potential effects on hard and soft neck tissues, of interaction with inboard shoulder belts in farside impacts and potential effects on the fetus of latch/buckle junctions at the centerline of pregnant occupants. Work continues at Ford Motor Company to resolve these issues.

  11. [A relational database to store Poison Centers calls].

    PubMed

    Barelli, Alessandro; Biondi, Immacolata; Tafani, Chiara; Pellegrini, Aristide; Soave, Maurizio; Gaspari, Rita; Annetta, Maria Giuseppina

    2006-01-01

    Italian Poison Centers answer to approximately 100,000 calls per year. Potentially, this activity is a huge source of data for toxicovigilance and for syndromic surveillance. During the last decade, surveillance systems for early detection of outbreaks have drawn the attention of public health institutions due to the threat of terrorism and high-profile disease outbreaks. Poisoning surveillance needs the ongoing, systematic collection, analysis, interpretation, and dissemination of harmonised data about poisonings from all Poison Centers for use in public health action to reduce morbidity and mortality and to improve health. The entity-relationship model for a Poison Center relational database is extremely complex and not studied in detail. For this reason, not harmonised data collection happens among Italian Poison Centers. Entities are recognizable concepts, either concrete or abstract, such as patients and poisons, or events which have relevance to the database, such as calls. Connectivity and cardinality of relationships are complex as well. A one-to-many relationship exist between calls and patients: for one instance of entity calls, there are zero, one, or many instances of entity patients. At the same time, a one-to-many relationship exist between patients and poisons: for one instance of entity patients, there are zero, one, or many instances of entity poisons. This paper shows a relational model for a poison center database which allows the harmonised data collection of poison centers calls.

  12. Protection reduces loss of natural land-cover at sites of conservation importance across Africa.

    PubMed

    Beresford, Alison E; Eshiamwata, George W; Donald, Paul F; Balmford, Andrew; Bertzky, Bastian; Brink, Andreas B; Fishpool, Lincoln D C; Mayaux, Philippe; Phalan, Ben; Simonetti, Dario; Buchanan, Graeme M

    2013-01-01

    There is an emerging consensus that protected areas are key in reducing adverse land-cover change, but their efficacy remains difficult to quantify. Many previous assessments of protected area effectiveness have compared changes between sets of protected and unprotected sites that differ systematically in other potentially confounding respects (e.g. altitude, accessibility), have considered only forest loss or changes at single sites, or have analysed changes derived from land-cover data of low spatial resolution. We assessed the effectiveness of protection in reducing land-cover change in Important Bird Areas (IBAs) across Africa using a dedicated visual interpretation of higher resolution satellite imagery. We compared rates of change in natural land-cover over a c. 20-year period from around 1990 at a large number of points across 45 protected IBAs to those from 48 unprotected IBAs. A matching algorithm was used to select sample points to control for potentially confounding differences between protected and unprotected IBAs. The rate of loss of natural land-cover at sample points within protected IBAs was just 42% of that at matched points in unprotected IBAs. Conversion was especially marked in forests, but protection reduced rates of forest loss by a similar relative amount. Rates of conversion increased from the centre to the edges of both protected and unprotected IBAs, but rates of loss in 20-km buffer zones surrounding protected IBAs and unprotected IBAs were similar, with no evidence of displacement of conversion from within protected areas to their immediate surrounds (leakage).

  13. Factors Underlying Bursting Behavior in a Network of Cultured Hippocampal Neurons Exposed to Zero Magnesium

    PubMed Central

    Mangan, Patrick S.; Kapur, Jaideep

    2010-01-01

    Factors contributing to reduced magnesium-induced neuronal action potential bursting were investigated in primary hippocampal cell culture at high and low culture density. In nominally zero external magnesium medium, pyramidal neurons from high-density cultures produced recurrent spontaneous action potential bursts superimposed on prolonged depolarizations. These bursts were partially attenuated by the NMDA receptor antagonist D-APV. Pharmacological analysis of miniature excitatory postsynaptic currents (EPSCs) revealed 2 components: one sensitive to D-APV and another to the AMPA receptor antagonist DNQX. The components were kinetically distinct. Participation of NMDA receptors in reduced magnesium-induced synaptic events was supported by the localization of the NR1 subunit of the NMDA receptor with the presynaptic vesicular protein synaptophysin. Presynaptically, zero magnesium induced a significant increase in EPSC frequency likely attributable to increased neuronal hyperexcitability induced by reduced membrane surface charge screening. Mean quantal content was significantly increased in zero magnesium. Cells from low-density cultures did not exhibit action potential bursting in zero magnesium but did show increased EPSC frequency. Low-density neurons had less synaptophysin immunofluorescence and fewer active synapses as determined by FM1-43 analysis. These results demonstrate that multiple factors are involved in network bursting. Increased probability of transmitter release presynaptically, enhanced NMDA receptor-mediated excitability postsynaptically, and extent of neuronal interconnectivity contribute to initiation and maintenance of elevated network excitability. PMID:14534286

  14. An analysis of the least-squares problem for the DSN systematic pointing error model

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1991-01-01

    A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.

  15. Tongue retaining devices for obstructive sleep apnea: A systematic review and meta-analysis.

    PubMed

    Chang, Edward T; Fernandez-Salvador, Camilo; Giambo, Jeremy; Nesbitt, Blaine; Liu, Stanley Yung-Chuan; Capasso, Robson; Kushida, Clete A; Camacho, Macario

    Tongue Retaining Devices (TRD) anteriorly displace the tongue with suction forces while patients sleep. TRD provide a non-surgical treatment option for patients with Obstructive Sleep Apnea (OSA). Our objective was to conduct a systematic review of the international literature for TRD outcomes as treatment for OSA. Three authors independently and systematically searched four databases (including PubMed/MEDLINE) through June 26, 2016. We followed guidelines set within the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Sixteen studies with 242 patients met criteria. The overall means±standard deviations (M±SD) for apnea-hypopnea index (AHI) decreased from 33.6±21.1/h to 15.8±16.0/h (53% reduction). Seven studies (81 patients) reported lowest oxygen saturation (LSAT), which improved from 79.8±17.5% to 83.9±8.6%. Four studies (93 patients) reported Epworth sleepiness scale (ESS), which decreased from 10.8±4.8 to 8.2±4.5, p <0.0001. Four studies (31 patients) reported Oxygen Desaturation Index (ODI) which decreased from 29.6±32.1 to 12.9±8.7, a 56.4% reduction. Current international literature demonstrates that tongue retaining devices reduce apnea-hypopnea index by 53%, increase lowest oxygen saturation by 4.1 oxygen saturation points, decrease oxygen desaturation index by 56% and decrease Epworth sleepiness scale scores by 2.8 points. Tongue retaining devices provide a statistically effective alternative treatment option for obstructive sleep apnea. Published by Elsevier Inc.

  16. MEASUREMENT AND PRECISION, EXPERIMENTAL VERSION.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    THIS DOCUMENT IS AN EXPERIMENTAL VERSION OF A PROGRAMED TEXT ON MEASUREMENT AND PRECISION. PART I CONTAINS 24 FRAMES DEALING WITH PRECISION AND SIGNIFICANT FIGURES ENCOUNTERED IN VARIOUS MATHEMATICAL COMPUTATIONS AND MEASUREMENTS. PART II BEGINS WITH A BRIEF SECTION ON EXPERIMENTAL DATA, COVERING SUCH POINTS AS (1) ESTABLISHING THE ZERO POINT, (2)…

  17. 49 CFR 563.8 - Data format

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... number of the last point (NLP), which is an integer that when multiplied by the TS equals the time relative to time zero of the last acceleration data point; and (4) NLP—NFP + 1 acceleration values... increments in time until the time NLP * TS is reached. [73 FR 2183, Jan. 14, 2008] ...

  18. Two-Point Orientation Discrimination Versus the Traditional Two-Point Test for Tactile Spatial Acuity Assessment

    PubMed Central

    Tong, Jonathan; Mao, Oliver; Goldreich, Daniel

    2013-01-01

    Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677

  19. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    DOE PAGES

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; ...

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the abilitymore » to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  20. Exploring the effects of roadway characteristics on the frequency and severity of head-on crashes: case studies from Malaysian federal roads.

    PubMed

    Hosseinpour, Mehdi; Yahaya, Ahmad Shukri; Sadullah, Ahmad Farhan

    2014-01-01

    Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Neoarchaean surficial sulphur cycle: An alternative hypothesis based on analogies with 20th-century atmospheric lead.

    PubMed

    Gallagher, M; Whitehouse, M J; Kamber, B S

    2017-05-01

    We revisit the S-isotope systematics of sedimentary pyrite in a shaly limestone from the ca. 2.52 Ga Gamohaan Formation, Upper Campbellrand Subgroup, Transvaal, South Africa. The analysed rock is interpreted to have been deposited in a water depth of ca. 50-100 m, in a restricted sub-basin on a drowning platform. A previous study discovered that the pyrites define a nonzero intercept δ 34 S V - CDT -Δ 33 S data array. The present study carried out further quadruple S-isotope analyses of pyrite, confirming and expanding the linear δ 34 S V - CDT -Δ 33 S array with an δ 34 S zero intercept at ∆ 33 S ca. +5. This was previously interpreted to indicate mixing of unrelated S-sources in the sediment environment, involving a combination of recycled sulphur from sulphides that had originally formed by sulphate-reducing bacteria, along with elemental sulphur. Here, we advance an alternative explanation based on the recognition that the Archaean seawater sulphate concentration was likely very low, implying that the Archaean ocean could have been poorly mixed with respect to sulphur. Thus, modern oceanic sulphur systematics provide limited insight into the Archaean sulphur cycle. Instead, we propose that the 20th-century atmospheric lead event may be a useful analogue. Similar to industrial lead, the main oceanic input of Archaean sulphur was through atmospheric raindown, with individual giant point sources capable of temporally dominating atmospheric input. Local atmospheric S-isotope signals, of no global significance, could thus have been transmitted into the localised sediment record. Thus, the nonzero intercept δ 34 S V - CDT -Δ 33 S data array may alternatively represent a very localised S-isotope signature in the Neoarchaean surface environment. Fallout from local volcanic eruptions could imprint recycled MIF-S signals into pyrite of restricted depositional environments, thereby avoiding attenuation of the signal in the subdued, averaged global open ocean sulphur pool. Thus, the superposition of extreme local S-isotope signals offers an alternative explanation for the large Neoarchaean MIF-S excursions and asymmetry of the Δ 33 S rock record. © 2017 John Wiley & Sons Ltd.

  2. Simplified Architecture for Precise Aiming of a Deep-Space Communication Laser Transceiver

    NASA Technical Reports Server (NTRS)

    Ortiz, Gerard G.; Farr, William H.; Charles, Jeffrey R.

    2011-01-01

    The simplified architecture is a minimal system for a deep-space optical communications transceiver. For a deepspace optical communications link the simplest form of the transceiver requires (1) an efficient modulated optical source, (2) a point-ahead mechanism (PAM) to compensate for two-way light travel, (3) an aperture to reduce the divergence of the transmit laser communication signal and also to collect the uplink communication signal, and (4) a receive detector to sense the uplink communication signal. Additional components are introduced to mitigate for spacecraft microvibrations and to improve the pointing accuracy. The Canonical Transceiver implements this simplified architecture (see figure). A single photon-counting smart focal plane sensor combines acquisition, tracking, and forward link data detection functionality. This improves optical efficiency by eliminating channel splits. A transmit laser blind sensor (e.g. silicon with 1,550-nm beam) provides transmit beam-pointing feedback via the two-photon absorption (TPA) process. This vastly improves the transmit/receive isolation because only the focused transmit beam is detected. A piezoelectric tiptilt actuator implements the required point-ahead angle. This point-ahead mechanism has been demonstrated to have near zero quiescent power and is flight qualified. This architecture also uses an innovative 100-mHz resonant frequency passive isolation platform to filter spacecraft vibrations with voice coil actuators for active tip-tilt correction below the resonant frequency. The canonical deep-space optical communications transceiver makes synergistic use of innovative technologies to reduce size, weight, power, and cost. This optical transceiver can be used to retire risks associated with deep-space optical communications on a planetary pathfinder mission and is complementary to ongoing lunar and access link developments.

  3. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the spray bar configuration is that pressure reduction is achieved independent of liquid and vapor location, thereby enhancing the applicability of normal gravity test data to zero gravity conditions. The in-tank components are minimized with the proposed TVS design. Because the recirculation pump is external to the tank, no electrical power penetration of the tank is required for pump or valve operation. This is especially desirable for L02 tanks since the presence of an electrical ignition source in oxygen represents a critical failure mode. Also, since the critical components (pump, motor, valve, orifice) are external to the tank, system checkout and ground servicing/replacement are easier. For zero-g operation, component replacement external to the tank may be a significant benefit. In addition to satisfying the zero g TVS design objectives, the TVS concept tested offers additional benefits to the integrated subcritical cryogenic storage and launch system.

  4. Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnehan, John J.; Pratt, Joseph William

    Batteries and hydrogen fuel cells provide zero emission power at the point of use. They are studied as an alternative powerplant for maritime vessels by considering 14 case studies of various ship sizes and routes varying from small passenger vessels to the largest cargo ships. The method used was to compare the mass and volume of the required zero emission solution to the available mass and volume on an existing vessel considering its current engine and fuel storage systems. The results show that it is practically feasible to consider these zero emission technologies for most vessels in the world's fleet.more » Hydrogen fuel cells proved to be the most capable while battery systems showed an advantage for high power, short duration missions. The results provide a guide to ship designers to determine the most suitable types of zero emission powerplants to fit a ship based on its size and energy requirements.« less

  5. Coupling the Gaussian Free Fields with Free and with Zero Boundary Conditions via Common Level Lines

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Werner, Wendelin

    2018-06-01

    We point out a new simple way to couple the Gaussian Free Field (GFF) with free boundary conditions in a two-dimensional domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary-touching zero-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free boundary GFF. Constructions and couplings of the free boundary GFF and its level lines via soups of reflected Brownian loops and their clusters are also discussed. Such considerations show for instance that in a domain with an axis of symmetry, if one looks at the overlay of a single usual Conformal Loop Ensemble CLE3 with its own symmetric image, one obtains the CLE4-type collection of level lines of a GFF with mixed zero/free boundary conditions in the half-domain.

  6. Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    NASA Technical Reports Server (NTRS)

    Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.

    1998-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.

  7. The tobacco excise system in Indonesia: hindering effective tobacco control for health.

    PubMed

    Barber, Sarah; Ahsan, Abdillah

    2009-07-01

    Comprehensive tobacco control policies include high taxes. This paper describes the tobacco excise structure in Indonesia from 2007 to 2009. The design of the tobacco excise system contributes to neutralizing the effect of a tax increase on consumption. Wide gaps in tax rates allow for the availability of low-priced products, and consumers can substitute to cheaper products in response to price increases. There has been no systematic increase in the tax rates, which promotes affordable of tobacco products. Firms can reduce their prices at point of sale and absorb the tax increase instead of passing it onto consumers. Tiered tax rates by production scale allow firms to evade paying the highest tax brackets legally, thereby increasing profit margins while reducing prices at point of sale. Increases in tobacco excise rates in Indonesia may not have a large health impact under the current system of tax administration.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajian, Hodjat, E-mail: hodjat.hajian@bilkent.edu.tr; Ozbay, Ekmel; Department of Physics, Bilkent University, 06800 Ankara

    Certain types of photonic crystals with Dirac cones at the Γ point of their band structure have a zero effective index of refraction at Dirac cone frequency. Here, by an appropriate design of the photonic structure, we obtain a strong coupling between modes around the Dirac cone frequency of an all-dielectric zero-index photonic crystal and the guided ones supported by a photonic crystal waveguide. Consequently, we experimentally demonstrate that the presence of the zero-index photonic crystal at the inner side of the photonic crystal waveguide leads to an enhancement in the transmission of some of the guided waves passing throughmore » this hybrid system. Moreover, those electromagnetic waves extracted from the structure with enhanced transmission exhibit high directional beaming due to the presence of the zero-index photonic crystal at the outer side of the photonic crystal waveguide.« less

  9. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would be to actively cool the shield in the hydrogen tank to reduce the parasitic losses. This would allow the use of less expensive, presently available coolers (80 K vs. 20 K) and potentially simplify the system by requiring only a single compressor on the pad amd a single disconnect line. The compressor could be a hefty commercial unit, with only the cold head requiring expensive flight development and qualification. While this is actually a reduced boil off configuration rather than a zero-boil off case, if the cryogen loss could be cut significantly, the increase in hold time and reduced need for draining and refilling the propellant tanks could meet the vehicle operations needs in the majority of instances.Bearing in mind the potential benefits of ZBO, NASA AMES and SNECMA Moteurs decided to exchange their technical views on the subject. This paper will present a preliminary analysis for a multi-mission module using a fairly low thrust cryogenic engine and ZBO during cruise. Initial mass is 5.5. tons (in ETO). The cryogenic engine will be used near each periapsis in order to minimize the AV requirement. The payload obtained by this propulsion system is compared to a classical storable bipropellant propulsion system for several cases (e. g. Mars lander, Jupiter orbiter, Saturn orbiter). For the Jupiter and Saturn cases, the power source could be an RTG or a large parabolic mirror illuminating a solar panel. It is shown -that - due to its much larger specific impulse - the cryogenic ZBO solution provides much higher payloads, especially for exploration missions involving landing on planets, asteroids, comets, or other celestial bodies.

  10. Dark Signal Characterization of 1.7 micron cutoff devices for SNAP

    NASA Astrophysics Data System (ADS)

    Smith, R. M.; SNAP Collaboration

    2004-12-01

    We report initial progress characterizing non-photometric sources of error -- dark current, noise, and zero point drift -- for 1.7 micron cutoff HgCdTe and InGaAs detectors under development by Raytheon, Rockwell, and Sensors Unlimited for SNAP. Dark current specifications can already be met with several detector types. Changes to the manufacturing process are being explored to improve the noise reduction available through multiple sampling. In some cases, a significant number of pixels suffer from popcorn noise, with a few percent of all pixels exhibiting a ten fold noise increase. A careful study of zero point drifts is also under way, since these errors can dominate dark current, and may contribute to the noise degradation seen in long exposures.

  11. Symmetry breaking in the zero-energy Landau level in bilayer graphene.

    PubMed

    Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P

    2010-02-12

    The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.

  12. Zero-bias photocurrent in ferromagnetic topological insulator.

    PubMed

    Ogawa, N; Yoshimi, R; Yasuda, K; Tsukazaki, A; Kawasaki, M; Tokura, Y

    2016-07-20

    Magnetic interactions in topological insulators cause essential modifications in the originally mass-less surface states. They offer a mass gap at the Dirac point and/or largely deform the energy dispersion, providing a new path towards exotic physics and applications to realize dissipation-less electronics. The nonequilibrium electron dynamics at these modified Dirac states unveil additional functions, such as highly efficient photon to spin-current conversion. Here we demonstrate the generation of large zero-bias photocurrent in magnetic topological insulator thin films on mid-infrared photoexcitation, pointing to the controllable band asymmetry in the momentum space. The photocurrent spectra with a maximal response to the intra-Dirac-band excitations can be a sensitive measure for the correlation between Dirac electrons and magnetic moments.

  13. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  14. VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew

    2016-09-19

    Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less

  15. Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    PubMed Central

    Gollo, Leonardo L.; Mirasso, Claudio; Sporns, Olaf; Breakspear, Michael

    2014-01-01

    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain. PMID:24763382

  16. Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles

    DOEpatents

    Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham

    2016-04-12

    Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).

  17. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    PubMed Central

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-01-01

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition. PMID:26999130

  18. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos

    2015-02-01

    Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Transient boiling heat transfer in saturated liquid nitrogen and F113 at standard and zero gravity

    NASA Technical Reports Server (NTRS)

    Oker, E.; Merte, H., Jr.

    1973-01-01

    Transient and steady state nucleate boiling in saturated LN2 and F113 at standard and near zero gravity conditions were investigated for the horizontal up, vertical and horizontal down orientations of the heating surface. Two distinct regimes of heat transfer mechanisms were observed during the interval from the step increase of power input to the onset of nucleate boiling: the conduction and convection dominated regimes. The time duration in each regime was considerably shorter with LN2 than with F113, and decreased as heat flux increased, as gravity was reduced, and as the orientation was changed from horizontal up to horizontal down. In transient boiling, boiling initiates at a single point following the step increase in power, and then spreads over the surface. The delay time for the inception of boiling at the first site, and the velocity of spread of boiling varies depending upon the heat flux, orientation, body force, surface roughness and liquid properties, and are a consequence of changes in boundary layer temperature levels associated with changes in natural convection. Following the step increase in power input, surface temperature overshoot and undershoot occur before the steady state boiling temperature level is established.

  20. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    PubMed

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  1. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  2. ZeroCal: Automatic MAC Protocol Calibration

    NASA Astrophysics Data System (ADS)

    Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar

    Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.

  3. Pressure beneath the Surface of a Fluid: Measuring the Correct Depth

    ERIC Educational Resources Information Center

    McCall, Richard P.

    2013-01-01

    Systematic errors can cause measurements to deviate from the actual value of the quantity being measured. Faulty equipment (such as a meterstick that is not marked correctly), inaccurate calibration of measuring devices (such as a scale to measure mass that has not been properly zeroed), and improper use of equipment by the experimenter (such as…

  4. Effects of a PID Control System on Electromagnetic Fields in an nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Molina, Daniel

    2017-09-01

    The Kellogg Radiation Laboratory is currently testing a prototype for an experiment that hopes to identify the electric dipole moment of the neutron. As part of this testing, we have developed a PID (proportional, integral, derivative) feedback system that uses large coils to fix the value of local external magnetic fields, up to linear gradients. PID algorithms compare the current value to a set-point and use the integral and derivative of the field with respect to the set-point to maintain constant fields. We have also developed a method for zeroing linear gradients within the experimental apparatus. In order to determine the performance of the PID algorithm, measurements of both the internal and external fields were obtained with and without the algorithm running, and these results were compared for noise and time stability. We have seen that the PID algorithm can reduce the effect of disturbance to the field by a factor of 10.

  5. Risk management and measuring productivity with POAS--point of act system.

    PubMed

    Akiyama, Masanori; Kondo, Tatsuya

    2007-01-01

    The concept of our system is not only to manage material flows, but also to provide an integrated management resource, a means of correcting errors in medical treatment, and applications to EBM through the data mining of medical records. Prior to the development of this system, electronic processing systems in hospitals did a poor job of accurately grasping medical practice and medical material flows. With POAS (Point of Act System), hospital managers can solve the so-called, "man, money, material, and information" issues inherent in the costs of healthcare. The POAS system synchronizes with each department system, from finance and accounting, to pharmacy, to imaging, and allows information exchange. We can manage Man, Material, Money and Information completely by this system. Our analysis has shown that this system has a remarkable investment effect - saving over four million dollars per year - through cost savings in logistics and business process efficiencies. In addition, the quality of care has been improved dramatically while error rates have been reduced - nearly to zero in some cases.

  6. A study of attitude control concepts for precision-pointing non-rigid spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1975-01-01

    Attitude control concepts for use onboard structurally nonrigid spacecraft that must be pointed with great precision are examined. The task of determining the eigenproperties of a system of linear time-invariant equations (in terms of hybrid coordinates) representing the attitude motion of a flexible spacecraft is discussed. Literal characteristics are developed for the associated eigenvalues and eigenvectors of the system. A method is presented for determining the poles and zeros of the transfer function describing the attitude dynamics of a flexible spacecraft characterized by hybrid coordinate equations. Alterations are made to linear regulator and observer theory to accommodate modeling errors. The results show that a model error vector, which evolves from an error system, can be added to a reduced system model, estimated by an observer, and used by the control law to render the system less sensitive to uncertain magnitudes and phase relations of truncated modes and external disturbance effects. A hybrid coordinate formulation using the provided assumed mode shapes, rather than incorporating the usual finite element approach is provided.

  7. Erratum: ``A Low-Latitude Halo Stream around the Milky Way'' (ApJ, 588, 824 [2003])

    NASA Astrophysics Data System (ADS)

    Yanny, Brian; Newberg, Heidi Jo; Grebel, Eva K.; Kent, Steve; Odenkirchen, Michael; Rockosi, Connie M.; Schlegel, David; Subbarao, Mark; Brinkmann, Jon; Fukugita, Masataka; Ivezic, Željko; Lamb, Don Q.; Schneider, Donald P.; York, Donald G.

    2004-04-01

    The zero points of the stellar templates used to measure radial velocity in the main body of this paper have been found to be systematically in error. Correction of the radial velocities significantly increases the derived circular velocity of the stars in the planar stream, to 215+/-25 km s-1. The velocity dispersion of the stream is somewhat lower than earlier results with the modified analysis. Two types of stars were studied in this paper. The original template for stars of type F, used to study the ``Monoceros arc'' Galactic structure, was incorrectly zero-pointed by 20 km s-1. The original template for stars of type A, used to measure the Sagittarius dwarf tidal stream, produced radial velocities systematically shifted by 49 km s-1. In both cases, the sign of the error is such that for nearly all stars, the correct values of the heliocentric radial velocities are lower than those originally quoted. A cross-correlation of Sloan Digital Sky Survey (SDSS) spectra with templates from the ELODIE survey (C. Soubiran, D. Katz, & R. Cayrel, ApJ, 588, 824 [2003]) was performed to find new radial velocities for each star (D. Schlegel 2003, private communication). This showed that our radial velocities were systematically shifted by an amount that depends on the type of the star observed and the original template against which it was cross-correlated. To determine the measurement error with the new templates, we identified 445 F-type stars and 1109 A-type stars that had been observed twice by the SDSS. These stars were chosen with the color and magnitude criteria used to select stars in Figures 6 and 9. The errors in the F stars were a good match to a Gaussian with a σ of 28 km s-1. The errors in the A star comparison were significantly non-Gaussian, with large tails. A χ2 fit to a Gaussian (similar to the technique we use in this paper to measure the width of the streams) yielded a σ of 35 km s-1. Dividing by sqrt(2) to reflect two independent measurements, we derive a random error of 20 km s-1 for F stars and 25 km s-1 for A stars. The template matching errors in these blue (type A) stars using ELODIE spectral templates are somewhat larger than the errors with our previous analysis, but we found it useful to use ELODIE spectral templates to ensure that the zero points were accurate. We also examined the measured stellar stream dispersions. Electronic versions of Figures 2, 6, and 9 of our paper are presented here with the corrected radial velocity determinations. The data were selected as described in the original paper. Table 1 has been regenerated in its entirety, replacing columns (8) and (10). The radial velocity in column (8) has been replaced with the radial velocity determined from cross-correlation with ELODIE templates. The status flag in column (10) now indicates stars which were used to generate Figure 2. A ``0'' indicates that the star was either outside the color box or had a high cross-correlation error, and a ``1'' indicates that the star was used to fit stream properties. Table 2 has been regenerated using the new results as well. Column (10) has been added to indicate the estimated number of spectra in the stream component. These numbers are used to compute the error in radial velocity, as described in the original paper. Column (11) shows the corrected circulation velocities, which are now consistent with those given in J. D. Crane, S. R. Majewski, H. J. Rocha-Pinto, P. M. Frinchaboy, M. F. Skrutskie, & D. R. Law (ApJ, 588, 824 [2003]). Note that the velocity dispersions of the planar stream are even tighter than originally measured, strengthening the case that the motion is coherent. Note that the mean velocity of the Sagittarius stream in the direction (l,b)=(165deg,-55deg) is -160 km s-1, in line with recent simulations by D. Martinez-Delgado, M. A. Gomez-Flechoso, A. Aparicio, & R. Carrera (2004, ApJ, in press [astro-ph/0308009]). We would like to acknowledge Steve Majewski, who initially pointed out to us that radial velocities for stars he had measured in the halo streams were different from our radial velocities by 20-50 km s-1 (J. D. Crane, S. R. Majewski, H. J. Rocha-Pinto, P. M. Frinchaboy, M. F. Skrutskie, & D. R. Law, ApJ, 588, 824 [2003]). We also acknowledge T. Beers, C. Prieto, and R. Wilhelm for an independent radial velocity analysis, with which we could compare our measured radial velocities.

  8. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    PubMed Central

    Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513

  9. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  10. Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI).

    PubMed

    Khosravi, Morteza; Arabi, Simin

    In this study, iron zero-valent nanoparticles were synthesized, characterized and studied for removal of methylene blue dye in water solution. The reactions were mathematically described as the function of parameters such as nano zero-valent iron (NZVI) dose, pH, contact time and initial dye concentration, and were modeled by the use of response surface methodology. These experiments were carried out as a central composite design consisting of 30 experiments determined by the 2(4) full factorial designs with eight axial points and six center points. The results revealed that the optimal conditions for dye removal were NZVI dose 0.1-0.9 g/L, pH 3-11, contact time 20-100 s, and initial dye concentration 10-50 mg/L, respectively. Under these optimal values of process parameters, the dye removal efficiency of 92.87% was observed, which very close to the experimental value (92.21%) in batch experiment. In the optimization, R(2) and R(2)adj correlation coefficients for the model were evaluated as 0.96 and 0.93, respectively.

  11. An instability of hyperbolic space under the Yang-Mills flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gegenberg, Jack; Day, Andrew C.; Liu, Haitao

    2014-04-15

    We consider the Yang-Mills flow on hyperbolic 3-space. The gauge connection is constructed from the frame-field and (not necessarily compatible) spin connection components. The fixed points of this flow include zero Yang-Mills curvature configurations, for which the spin connection has zero torsion and the associated Riemannian geometry is one of constant curvature. We analytically solve the linearized flow equations for a large class of perturbations to the fixed point corresponding to hyperbolic 3-space. These can be expressed as a linear superposition of distinct modes, some of which are exponentially growing along the flow. The growing modes imply the divergence ofmore » the (gauge invariant) perturbative torsion for a wide class of initial data, indicating an instability of the background geometry that we confirm with numeric simulations in the partially compactified case. There are stable modes with zero torsion, but all the unstable modes are torsion-full. This leads us to speculate that the instability is induced by the torsion degrees of freedom present in the Yang-Mills flow.« less

  12. Cryomagnetic Point-Contact Andreev Reflection Spectroscopy on Single Crystal Iron-Chalcogenide Superconductors

    NASA Astrophysics Data System (ADS)

    Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.

    2012-02-01

    We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)

  13. Superconductivity versus quantum criticality: Effects of thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Huajia; Wang, Yuxuan; Torroba, Gonzalo

    2018-02-01

    We study the interplay between superconductivity and non-Fermi liquid behavior of a Fermi surface coupled to a massless SU(N ) matrix boson near the quantum critical point. The presence of thermal infrared singularities in both the fermionic self-energy and the gap equation invalidates the Eliashberg approximation, and makes the quantum-critical pairing problem qualitatively different from that at zero temperature. Taking the large N limit, we solve the gap equation beyond the Eliashberg approximation, and obtain the superconducting temperature Tc as a function of N . Our results show an anomalous scaling between the zero-temperature gap and Tc. For N greater than a critical value, we find that Tc vanishes with a Berezinskii-Kosterlitz-Thouless scaling behavior, and the system retains non-Fermi liquid behavior down to zero temperature. This confirms and extends previous renormalization-group analyses done at T =0 , and provides a controlled example of a naked quantum critical point. We discuss the crucial role of thermal fluctuations in relating our results with earlier work where superconductivity always develops due to the special role of the first Matsubara frequency.

  14. Effectiveness of Training Clinicians' Communication Skills on Patients' Clinical Outcomes: A Systematic Review.

    PubMed

    Oliveira, Vinicius C; Ferreira, Manuela L; Pinto, Rafael Z; Filho, Ruben F; Refshauge, Kathryn; Ferreira, Paulo H

    2015-10-01

    The aim of this systematic review was to investigate the literature on the effectiveness of communication skills training for clinicians on patients' clinical outcomes in primary care and rehabilitation settings. We systematically reviewed the literature for randomized controlled trials investigating the effectiveness of communication skills training for clinicians on patients' satisfaction with care and on pain and disability in primary care and rehabilitation settings. The search strategy was conducted using AMED, PsycINFO, MEDLINE, CINAHL, EMBASE, PEDro, and Cochrane Central Register of Controlled Trials through June 2015. Methodological quality of included trials was assessed by 2 independent investigators using the PEDro scale, and consensus was used to resolve disagreements. Data were extracted, and meta-analyses were performed. Nineteen randomized controlled trials were included. Of these, 16 investigated communication training for clinicians that emphasized patient participation (eg, shared decision-making approaches). Communication training had small effects on patients' satisfaction with care when compared to control (4.1 points on a 100-point scale, 95% confidence interval [CI], 1.1-7.0). Communication training also had small effects on pain and disability with pooled results showing weighted mean differences of -3.8 points (95% CI, -6.5 to -1.1) and -3.6 (95% CI, -5.4 to -1.7), respectively. Studies show that communication training for clinicians produces small effects in improving patients' satisfaction with care or reducing pain and disability in primary care and rehabilitation settings. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  15. Zero-crossing detector with sub-microsecond jitter and crosstalk

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Kuhnle, Paul F.; Sydnor, Richard L.

    1990-01-01

    A zero-crossing detector (ZCD) was built and tested with a new circuit design which gives reduced time jitter compared to previous designs. With the new design, time jitter is reduced for the first time to a value which approaches that due to noise in the input amplifying stage. Additionally, with fiber-optic transmission of the output signal, crosstalk between units has been eliminated. The measured values are in good agreement with circuit noise calculations and approximately ten times lower than that for ZCD's presently installed in the JPL test facility. Crosstalk between adjacent units was reduced even more than the jitter.

  16. 77 FR 33634 - U.S. Treasury Securities-State and Local Government Series

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... means the current Treasury borrowing rate, less one basis point, as released daily by Treasury in a SLGS rate table. If the current Treasury borrowing rate, together with the one basis point adjustment, results in a negative rate, such corresponding SLGS rate will be set at zero. * * * * * 0 3. Amend Sec...

  17. 49 CFR 563.8 - Data format.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... point (NLP), which is an integer that when multiplied by the TS equals the time relative to time zero of the last acceleration data point; and (4) NLP—NFP + 1 acceleration values sequentially beginning with... until the time NLP * TS is reached. [73 FR 2183, Jan. 14, 2008] § 563.8, Nt. Effective Date Note: At 76...

  18. The air forces on a systematic series of biplane and triplane cellule models

    NASA Technical Reports Server (NTRS)

    Munk, Max M

    1927-01-01

    The air forces on a systematic series of biplane and triplane cellule models are the subject of this report. The test consist in the determination of the lift, drag, and moment of each individual airfoil in each cellule, mostly with the same wing section. The magnitude of the gap and of the stagger is systematically varied; not, however, the decalage, which is zero throughout the tests. Certain check tests with a second wing section make the tests more complete and conclusions more convincing. The results give evidence that the present army and navy specifications for the relative lifts of biplanes are good. They furnish material for improving such specifications for the relative lifts of triplanes. A larger number of factors can now be prescribed to take care of different cases.

  19. Demystifying Kepler Data: A Primer for Systematic Artifact Mitigation

    NASA Astrophysics Data System (ADS)

    Kinemuchi, K.; Barclay, T.; Fanelli, M.; Pepper, J.; Still, M.; Howell, Steve B.

    2012-09-01

    The Kepler spacecraft has collected data of high photometric precision and cadence almost continuously since operations began on 2009 May 2. Primarily designed to detect planetary transits and asteroseismological signals from solar-like stars, Kepler has provided high-quality data for many areas of investigation. Unconditioned simple aperture time-series photometry is, however, affected by systematic structure. Examples of these systematics include differential velocity aberration, thermal gradients across the spacecraft, and pointing variations. While exhibiting some impact on Kepler’s primary science, these systematics can critically handicap potentially ground-breaking scientific gains in other astrophysical areas, especially over long timescales greater than 10 days. As the data archive grows to provide light curves for 105 stars of many years in length, Kepler will only fulfill its broad potential for stellar astrophysics if these systematics are understood and mitigated. Post-launch developments in the Kepler archive, data reduction pipeline and open source data analysis software have helped to remove or reduce systematic artifacts. This paper provides a conceptual primer to help users of the Kepler data archive understand and recognize systematic artifacts within light curves and some methods for their removal. Specific examples of artifact mitigation are provided using data available within the archive. Through the methods defined here, the Kepler community will find a road map to maximizing the quality and employment of the Kepler legacy archive.

  20. Demystifying Kepler Data: A Primer for Systematic Artifact Mitigation

    NASA Technical Reports Server (NTRS)

    Kinemuchi, K.; Barclay, T.; Fanelli, M.; Pepper, J.; Still, M.; Howell, B.

    2012-01-01

    The Kepler spacecraft has collected data of high photometric precision and cadence almost continuously since operations began on 2009 May 2. Primarily designed to detect planetary transits and asteroseismological signals from solar-like stars, Kepler has provided high quality data for many areas of investigation. Unconditioned simple aperture time-series photometry are however affected by systematic structure. Examples of these systematics are differential velocity aberration, thermal gradients across the spacecraft, and pointing variations. While exhibiting some impact on Kepler's primary science, these systematics can critically handicap potentially ground-breaking scientific gains in other astrophysical areas, especially over long timescales greater than 10 days. As the data archive grows to provide light curves for 10(exp 5) stars of many years in length, Kepler will only fulfill its broad potential for stellar astrophysics if these systematics are understood and mitigated. Post-launch developments in the Kepler archive, data reduction pipeline and open source data analysis software have occurred to remove or reduce systematic artifacts. This paper provides a conceptual primer for users of the Kepler data archive to understand and recognize systematic artifacts within light curves and some methods for their removal. Specific examples of artifact mitigation are provided using data available within the archive. Through the methods defined here, the Kepler community will find a road map to maximizing the quality and employment of the Kepler legacy archive.

  1. Efficacy of the Pilates method for pain and disability in patients with chronic nonspecific low back pain: a systematic review with meta-analysis

    PubMed Central

    Miyamoto, Gisela C.; Costa, Leonardo O. P.; Cabral, Cristina M. N.

    2013-01-01

    Objective To systematically review the available evidence on the efficacy of the Pilates method in patients with chronic nonspecific low back pain. Method Searches were performed in MEDLINE, EMBASE, PEDro, SciELO, LILACS, CINAHL and CENTRAL in March 2013. Randomized controlled trials that tested the effectiveness of the Pilates method (against a nontreatment group, minimal intervention or other types of interventions) in adults with chronic low back pain were included regardless the language of publication. The outcome data were extracted from the eligible studies and were combined using a meta-analysis approach. Results The searches identified a total of 1,545 articles. From these, eight trials were considered eligible, and seven trials were combined in the meta-analysis. The comparison groups were as follows: Pilates versus other types of exercises (n=2 trials), and Pilates versus no treatment group or minimal intervention (n=4 trials) for short term pain; Pilates versus minimal intervention for short-term disability (n=4).We determined that Pilates was not better than other types of exercises for reducing pain intensity. However, Pilates was better than a minimal intervention for reducing short-term pain and disability (pain: pooled mean difference=1.6 points; 95% CI 1.4 to 1.8; disability: pooled mean difference=5.2 points; 95% CI 4.3 to 6.1). Conclusions Pilates was better than a minimal intervention for reducing pain and disability in patients with chronic low back pain. Pilates was not better than other types of exercise for short-term pain reduction. PMID:24346291

  2. Efficacy of the Pilates method for pain and disability in patients with chronic nonspecific low back pain: a systematic review with meta-analysis.

    PubMed

    Miyamoto, Gisela C; Costa, Leonardo O P; Cabral, Cristina M N

    2013-01-01

    To systematically review the available evidence on the efficacy of the Pilates method in patients with chronic nonspecific low back pain. Searches were performed in MEDLINE, EMBASE, PEDro, SciELO, LILACS, CINAHL and CENTRAL in March 2013. Randomized controlled trials that tested the effectiveness of the Pilates method (against a nontreatment group, minimal intervention or other types of interventions) in adults with chronic low back pain were included regardless the language of publication. The outcome data were extracted from the eligible studies and were combined using a meta-analysis approach. The searches identified a total of 1,545 articles. From these, eight trials were considered eligible, and seven trials were combined in the meta-analysis. The comparison groups were as follows: Pilates versus other types of exercises (n=2 trials), and Pilates versus no treatment group or minimal intervention (n=4 trials) for short term pain; Pilates versus minimal intervention for short-term disability (n=4).We determined that Pilates was not better than other types of exercises for reducing pain intensity. However, Pilates was better than a minimal intervention for reducing short-term pain and disability (pain: pooled mean difference=1.6 points; 95% CI 1.4 to 1.8; disability: pooled mean difference=5.2 points; 95% CI 4.3 to 6.1). Pilates was better than a minimal intervention for reducing pain and disability in patients with chronic low back pain. Pilates was not better than other types of exercise for short-term pain reduction.

  3. Using Density Functional Theory (DFT) for the Calculation of Atomization Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.

  4. Absolute judgment for one- and two-dimensional stimuli embedded in Gaussian noise

    NASA Technical Reports Server (NTRS)

    Kvalseth, T. O.

    1977-01-01

    This study examines the effect on human performance of adding Gaussian noise or disturbance to the stimuli in absolute judgment tasks involving both one- and two-dimensional stimuli. For each selected stimulus value (both an X-value and a Y-value were generated in the two-dimensional case), 10 values (or 10 pairs of values in the two-dimensional case) were generated from a zero-mean Gaussian variate, added to the selected stimulus value and then served as the coordinate values for the 10 points that were displayed sequentially on a CRT. The results show that human performance, in terms of the information transmitted and rms error as functions of stimulus uncertainty, was significantly reduced as the noise variance increased.

  5. A computational fluid dynamics simulation of high- and low-current arcs in self-blast circuit breakers

    NASA Astrophysics Data System (ADS)

    Claessens, M.; Möller, K.; Thiel, H. G.

    1997-07-01

    Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.

  6. Lack of beta-arrestin signaling in the absence of active G proteins.

    PubMed

    Grundmann, Manuel; Merten, Nicole; Malfacini, Davide; Inoue, Asuka; Preis, Philip; Simon, Katharina; Rüttiger, Nelly; Ziegler, Nicole; Benkel, Tobias; Schmitt, Nina Katharina; Ishida, Satoru; Müller, Ines; Reher, Raphael; Kawakami, Kouki; Inoue, Ayumi; Rick, Ulrike; Kühl, Toni; Imhof, Diana; Aoki, Junken; König, Gabriele M; Hoffmann, Carsten; Gomeza, Jesus; Wess, Jürgen; Kostenis, Evi

    2018-01-23

    G protein-independent, arrestin-dependent signaling is a paradigm that broadens the signaling scope of G protein-coupled receptors (GPCRs) beyond G proteins for numerous biological processes. However, arrestin signaling in the collective absence of functional G proteins has never been demonstrated. Here we achieve a state of "zero functional G" at the cellular level using HEK293 cells depleted by CRISPR/Cas9 technology of the Gs/q/12 families of Gα proteins, along with pertussis toxin-mediated inactivation of Gi/o. Together with HEK293 cells lacking β-arrestins ("zero arrestin"), we systematically dissect G protein- from arrestin-driven signaling outcomes for a broad set of GPCRs. We use biochemical, biophysical, label-free whole-cell biosensing and ERK phosphorylation to identify four salient features for all receptors at "zero functional G": arrestin recruitment and internalization, but-unexpectedly-complete failure to activate ERK and whole-cell responses. These findings change our understanding of how GPCRs function and in particular of how they activate ERK1/2.

  7. Tunable zero-line modes via magnetic field in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiao, Zhenhua

    Zero-line modes appear in bilayer graphene at the internal boundary between two opposite vertical electrostatic confinements. These one-dimensional modes are metallic along the boundary and exhibit quantized conductance in the absence of inter-valley scattering. However, experimental results show that the conductance is around 0.5 e2/h rather than quantized. This observation can be explained from our numerical results, which suggest that the scattering between zero-line mode and bound states and the presence of atomic scale disorders that provide inter-valley scattering can effectively reduce the conductance to about 0.5 e2/h. We further find that out-of-plane magnetic field can strongly suppress these scattering mechanisms and gives rise to nearly quantized conductance. On one hand, the presence of magnetic field makes bound states become Landau levels, which reduces the scattering between zero-line mode and bound states. On the other hand, the wave function distributions of oppositely propagating zero-line modes at different valleys are spatially separated, which can strongly suppress the inter-valley scattering. Specifically speaking, the conductance can be increased to 3.2 e2/h at 8 T even when the atomic Anderson type disorders are considered.

  8. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  9. Extremal entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Hansen, Leif Ove; Hauge, Andreas; Myrheim, Jan; Sollid, Per Øyvind

    2015-02-01

    We present a study of extremal entanglement witnesses on a bipartite composite quantum system. We define the cone of witnesses as the dual of the set of separable density matrices, thus TrΩρ≥0 when Ω is a witness and ρ is a pure product state, ρ=ψψ† with ψ=ϕ⊗χ. The set of witnesses of unit trace is a compact convex set, uniquely defined by its extremal points. The expectation value f(ϕ,χ)=TrΩρ as a function of vectors ϕ and χ is a positive semidefinite biquadratic form. Every zero of f(ϕ,χ) imposes strong real-linear constraints on f and Ω. The real and symmetric Hessian matrix at the zero must be positive semidefinite. Its eigenvectors with zero eigenvalue, if such exist, we call Hessian zeros. A zero of f(ϕ,χ) is quadratic if it has no Hessian zeros, otherwise it is quartic. We call a witness quadratic if it has only quadratic zeros, and quartic if it has at least one quartic zero. A main result we prove is that a witness is extremal if and only if no other witness has the same, or a larger, set of zeros and Hessian zeros. A quadratic extremal witness has a minimum number of isolated zeros depending on dimensions. If a witness is not extremal, then the constraints defined by its zeros and Hessian zeros determine all directions in which we may search for witnesses having more zeros or Hessian zeros. A finite number of iterated searches in random directions, by numerical methods, leads to an extremal witness which is nearly always quadratic and has the minimum number of zeros. We discuss briefly some topics related to extremal witnesses, in particular the relation between the facial structures of the dual sets of witnesses and separable states. We discuss the relation between extremality and optimality of witnesses, and a conjecture of separability of the so-called structural physical approximation (SPA) of an optimal witness. Finally, we discuss how to treat the entanglement witnesses on a complex Hilbert space as a subset of the witnesses on a real Hilbert space.

  10. Publication of topographic atlas and control network of Mars

    NASA Technical Reports Server (NTRS)

    Wu, Sherman S. C.; Billideau, Jennifer S.; Spare, Beth A.

    1991-01-01

    To aid planetary studies and the planning of future Mars missions, the Topographic Atlas and Control Network for Mars will be submitted by the end of fiscal year 1992 for publication as a NASA Special Publication. It will consist of reduced versions of 108 1:2 million-scale photomosaics that show contour lines from topographic maps at the same scale, as well as precisely located control points. The control points are from the planetwide network, which is not only instrumental in the compilation of maps at various scales, but is also widely used in other research such as studies of Mars' gravity and atmosphere. An example, a combination of MC 8-NW and -SW, of the photomosaics to be included in the atlas is presented. Contour lines in the figure are at 1-km intervals. The final adjusted ground coordinates and elevations of the 77 control points shown are given in table form. The last column in the table lists the topographic datum (zero elevation) that can be used to compute the solid radius of the control point from the center of mass of Mars. The atlas will also include information such as the adjusted C-matrices of each image, descriptions of the methods used, and their accuracy, and guidelines for users.

  11. Exploring the importance of quantum effects in nucleation: The archetypical Nen case

    NASA Astrophysics Data System (ADS)

    Unn-Toc, Wesley; Halberstadt, Nadine; Meier, Christoph; Mella, Massimo

    2012-07-01

    The effect of quantum mechanics (QM) on the details of the nucleation process is explored employing Ne clusters as test cases due to their semi-quantal nature. In particular, we investigate the impact of quantum mechanics on both condensation and dissociation rates in the framework of the microcanonical ensemble. Using both classical trajectories and two semi-quantal approaches (zero point averaged dynamics, ZPAD, and Gaussian-based time dependent Hartree, G-TDH) to model cluster and collision dynamics, we simulate the dissociation and monomer capture for Ne8 as a function of the cluster internal energy, impact parameter and collision speed. The results for the capture probability Ps(b) as a function of the impact parameter suggest that classical trajectories always underestimate capture probabilities with respect to ZPAD, albeit at most by 15%-20% in the cases we studied. They also do so in some important situations when using G-TDH. More interestingly, dissociation rates kdiss are grossly overestimated by classical mechanics, at least by one order of magnitude. We interpret both behaviours as mainly due to the reduced amount of kinetic energy available to a quantum cluster for a chosen total internal energy. We also find that the decrease in monomer dissociation energy due to zero point energy effects plays a key role in defining dissociation rates. In fact, semi-quantal and classical results for kdiss seem to follow a common "corresponding states" behaviour when the proper definition of internal and dissociation energies are used in a transition state model estimation of the evaporation rate constants.

  12. Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0-0 Electronic Excitation Energies.

    PubMed

    Jacquemin, Denis; Moore, Barry; Planchat, Aurélien; Adamo, Carlo; Autschbach, Jochen

    2014-04-08

    Using a set of 40 conjugated molecules, we assess the performance of an "optimally tuned" range-separated hybrid functional in reproducing the experimental 0-0 energies. The selected protocol accounts for the impact of solvation using a corrected linear-response continuum approach and vibrational corrections through calculations of the zero-point energies of both ground and excited-states and provides basis set converged data thanks to the systematic use of diffuse-containing atomic basis sets at all computational steps. It turns out that an optimally tuned long-range corrected hybrid form of the Perdew-Burke-Ernzerhof functional, LC-PBE*, delivers both the smallest mean absolute error (0.20 eV) and standard deviation (0.15 eV) of all tested approaches, while the obtained correlation (0.93) is large but remains slightly smaller than its M06-2X counterpart (0.95). In addition, the efficiency of two other recently developed exchange-correlation functionals, namely SOGGA11-X and ωB97X-D, has been determined in order to allow more complete comparisons with previously published data.

  13. Cohesion energetics of carbon allotropes: Quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun

    2014-03-21

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp{sup 3}-bonded diamond, sp{sup 2}-bonded graphene, sp–sp{sup 2} hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stablemore » graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.« less

  14. Dense Chern-Simons matter with fermions at large N

    DOE PAGES

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-18

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry fluxmore » through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. Furthermore, as the ’t Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.« less

  15. Assessing effects of structural zeros on models of canine cancer incidence: a case study of the Swiss Canine Cancer Registry.

    PubMed

    Boo, Gianluca; Leyk, Stefan; Fabrikant, Sara Irina; Pospischil, Andreas; Graf, Ramona

    2017-05-11

    Epidemiological research of canine cancers could inform comparative studies of environmental determinants for a number of human cancers. However, such an approach is currently limited because canine cancer data sources are still few in number and often incomplete. Incompleteness is typically due to under-ascertainment of canine cancers. A main reason for this is because dog owners commonly do not seek veterinary care for this diagnosis. Deeper knowledge on under-ascertainment is critical for modelling canine cancer incidence, as an indication of zero incidence might originate from the sole absence of diagnostic examinations within a given sample unit. In the present case study, we investigated effects of such structural zeros on models of canine cancer incidence. In doing so, we contrasted two scenarios for modelling incidence data retrieved from the Swiss Canine Cancer Registry. The first scenario was based on the complete enumeration of incidence data for all Swiss municipal units. The second scenario was based on a filtered sample that systematically discarded structural zeros in those municipal units where no diagnostic examination had been performed. By means of cross-validation, we assessed and contrasted statistical performance and predictive power of the two modelling scenarios. This analytical step allowed us to demonstrate that structural zeros impact on the generalisability of the model of canine cancer incidence, thus challenging future comparative studies of canine and human cancers. The results of this case study show that increased awareness about the effects of structural zeros is critical to epidemiological research.

  16. Magnification of signatures of a topological phase transition by quantum zero point motion

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Ghaemi, Pouyan

    2015-08-01

    We show that the zero point motion of a vortex in superconducting doped topological insulators leads to significant changes in the electronic spectrum at the topological phase transition in this system. This topological phase transition is tuned by the doping level, and the corresponding effects are manifest in the density of states at energies which are on the order of the vortex fluctuation frequency. Although the electronic energy gap in the spectrum generated by a stationary vortex is but a small fraction of the bulk superconducting gap, the vortex fluctuation frequency may be much larger. As a result, this quantum zero point motion can induce a discontinuous change in the spectral features of the system at the topological vortex phase transition to energies which are well within the resolution of scanning tunneling microscopy. This discontinuous change is exclusive to superconducting systems in which we have a topological phase transition. Moreover, the phenomena studied in this paper present effects of Magnus forces on the vortex spectrum which are not present in the ordinary s -wave superconductors. Finally, we demonstrate explicitly that the vortex in this system is equivalent to a Kitaev chain. This allows for the mapping of the vortex fluctuating scenario in three dimensions into similar one-dimensional situations in which one may search for other novel signatures of topological phase transitions.

  17. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    PubMed

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  18. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  19. Remodeling of legacy systems in health care using UML.

    PubMed

    Garde, Sebastian; Knaup, Petra; Herold, Ralf

    2002-01-01

    Research projects in the field of Medical Informatics often involve the development of application systems. Usually they are developed over a longer period of time, so that at a certain point of time a systematically planned reimplementation is necessary. The first step of reimplementation should be a systematic and comprehensive remodeling. When using UML for this task a systematic approach for remodeling activities is missing. Therefore, we developed a method for remodeling of legacy systems (Qumquad) and applied it to DOSPO, a documentation and therapy planning system for pediatric oncology. Qumquad helps to systematically carry out three steps: the modeling of the current actual state of the application system, the systematic identification of weak points and the development of a target concept for reimplementation considering the identified weak points. Results show that this approach is valuable and feasible and could be applied to various application systems in health care.

  20. New Variance-Reducing Methods for the PSD Analysis of Large Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2010-01-01

    Edge data of a measured surface map of a circular optic result in large variance or "spectral leakage" behavior in the corresponding Power Spectral Density (PSD) data. In this paper we present two new, alternative methods for reducing such variance in the PSD data by replacing the zeros outside the circular area of a surface map by non-zero values either obtained from a PSD fit (method 1) or taken from the inside of the circular area (method 2).

Top