Science.gov

Sample records for reductase confers enhanced

  1. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

    PubMed Central

    Lee, Jae Taek; Lee, Seung Sik; Mondal, Suvendu; Tripathi, Bhumi Nath; Kim, Siu; Lee, Keun Woo; Hong, Sung Hyun; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-01-01

    Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser78 to Cys78 resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys78 in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone. PMID:27457208

  2. Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli.

    PubMed

    Lee, Jae Taek; Lee, Seung Sik; Mondal, Suvendu; Tripathi, Bhumi Nath; Kim, Siu; Lee, Keun Woo; Hong, Sung Hyun; Bai, Hyoung-Woo; Cho, Jae-Young; Chung, Byung Yeoup

    2016-08-31

    Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of Ser(78) to Cys(78) resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of Cys(78) in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone. PMID:27457208

  3. Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress.

    PubMed

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-10-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing.

  4. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    PubMed Central

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  5. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  6. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean

    PubMed Central

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity. PMID:26635848

  7. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    PubMed

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  8. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants.

    PubMed Central

    Oommen, A; Dixon, R A; Paiva, N L

    1994-01-01

    In legumes, the synthesis of infection- and elicitor-inducible antimicrobial phytoalexins occurs via the isoflavonoid branch of the phenylpropanoid pathway. To study transcriptional regulation of isoflavonoid pathway-specific genes, we have isolated the gene encoding isoflavone reductase (IFR), which is the enzyme that catalyzes the penultimate step in the synthesis of the phytoalexin medicarpin in alfalfa. Chimeric gene fusions were constructed between 765- and 436-bp promoter fragments of the IFR gene and the beta-glucuronidase reporter gene and transferred to alfalfa and tobacco by Agrobacterium-mediated transformation. Both promoter fragments conferred elicitor-mediated expression in cell suspension cultures derived from transgenic plants of both species and fungal infection-mediated expression in leaves of transgenic alfalfa. Developmental expression directed by both promoter fragments in transgenic alfalfa was observed only in the root meristem, cortex, and nodules, which is consistent with the accumulation of endogenous IFR transcripts. However, in transgenic tobacco, expression from the 765-bp promoter was observed in vegetative tissues (root meristem and cortex, inner vascular tissue of stems and petioles, leaf tips, and stem peripheries adjacent to petioles) and in reproductive tissues (stigma, placenta, base of the ovary, receptacle, seed, tapetal layer, and pollen grains), whereas the 436-bp promoter was expressed only in fruits, seed, and pollen. These data indicate that infection/elicitor inducibility of the IFR promoter in both species and developmental expression in alfalfa are determined by sequences downstream of position -436, whereas sequences between -436 and -765 confer a complex pattern of strong ectopic developmental expression in the heterologous species that lacks the isoflavonoid pathway. PMID:7866024

  9. Immunization with Fasciola hepatica thioredoxin glutathione reductase failed to confer protection against fasciolosis in cattle.

    PubMed

    Maggioli, Gabriela; Bottini, Gualberto; Basika, Tatiana; Alonzo, Pablo; Salinas, Gustavo; Carmona, Carlos

    2016-07-15

    The liver fluke Fasciola hepatica remains an important agent of food-borne trematode disease producing great economic losses due to its negative effect on productivity of livestock grazing in temperate areas. The prevailing control strategy based on anthelmintic drugs is unsustainable due to widespread resistance hence vaccination appears as an attractive option to pursue. In this study we evaluate the effect of vaccination in calves with a functional recombinant thioredoxin glutathione reductase (rFhTGR) from liver fluke, a critical antioxidant enzyme at the crossroads of the thioredoxin and glutathione metabolism in flatworms. The recombinant enzyme produced in Escherichia coli was tested in two vaccination experiments; in the first trial rFhTGR was administered in combination with Freund́s Incomplete Adjuvant (FIA) in a three-inoculation scheme on weeks 0, 4 and 8; in the second trial rFhTGR was given mixed with Adyuvac 50 or Alum as adjuvants on weeks 0 and 4. In both cases calves were challenged with metacercariae (400 in the first and 500 in the second trial) 2 weeks after the last inoculation. Our results demonstrate that two or three doses of the vaccine induced a non-significant reduction in worm counts of 8.2% (FIA), 3.8% (Adyuvac 50) and 23.0% (Alum) compared to adjuvant controls indicating that rFhTGR failed to induce a protective immunity in challenged calves. All vaccine formulations induced a mixed IgG1/IgG2 response but no booster was observed after challenge. No correlations between antibody titres and worm burdens were found. PMID:27270384

  10. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    SciTech Connect

    Y Lin; N Yeung; Y Gao; K Miner; L Lei; H Robinson; Y Lu

    2011-12-31

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN{sup -}-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.

  11. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    SciTech Connect

    Lin, Y.W.; Robinson, H.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Lei, L.; Lu, Y.

    2010-07-28

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN?-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.

  12. Immunization with Fasciola hepatica thioredoxin glutathione reductase failed to confer protection against fasciolosis in cattle.

    PubMed

    Maggioli, Gabriela; Bottini, Gualberto; Basika, Tatiana; Alonzo, Pablo; Salinas, Gustavo; Carmona, Carlos

    2016-07-15

    The liver fluke Fasciola hepatica remains an important agent of food-borne trematode disease producing great economic losses due to its negative effect on productivity of livestock grazing in temperate areas. The prevailing control strategy based on anthelmintic drugs is unsustainable due to widespread resistance hence vaccination appears as an attractive option to pursue. In this study we evaluate the effect of vaccination in calves with a functional recombinant thioredoxin glutathione reductase (rFhTGR) from liver fluke, a critical antioxidant enzyme at the crossroads of the thioredoxin and glutathione metabolism in flatworms. The recombinant enzyme produced in Escherichia coli was tested in two vaccination experiments; in the first trial rFhTGR was administered in combination with Freund́s Incomplete Adjuvant (FIA) in a three-inoculation scheme on weeks 0, 4 and 8; in the second trial rFhTGR was given mixed with Adyuvac 50 or Alum as adjuvants on weeks 0 and 4. In both cases calves were challenged with metacercariae (400 in the first and 500 in the second trial) 2 weeks after the last inoculation. Our results demonstrate that two or three doses of the vaccine induced a non-significant reduction in worm counts of 8.2% (FIA), 3.8% (Adyuvac 50) and 23.0% (Alum) compared to adjuvant controls indicating that rFhTGR failed to induce a protective immunity in challenged calves. All vaccine formulations induced a mixed IgG1/IgG2 response but no booster was observed after challenge. No correlations between antibody titres and worm burdens were found.

  13. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity.

    PubMed

    Kim, Jin-Seong; Park, Jae-Bum; Jang, Seung-Won; Ha, Suk-Jin

    2015-08-01

    A directed evolution and random mutagenesis were carried out with thermotolerant yeast Kluyveromyces marxianus ATCC 36907 for efficient xylitol production. The final selected strain, K. marxianus 36907-FMEL1, exhibited 120 and 39 % improvements of xylitol concentration and xylitol yield, respectively, as compared to the parental strain, K. marxianus ATCC 36907. According to enzymatic assays for xylose reductase (XR) activities, XR activity from K. marxianus 36907-FMEL1 was around twofold higher than that from the parental strain. Interestingly, the ratios of NADH-linked and NADPH-linked XR activities were highly changed from 1.92 to 1.30 when K. marxianus ATCC 36907 and K. marxianus 36907-FMEL1 were compared. As results of KmXYL1 genes sequencing, it was found that cysteine was substituted to tyrosine at position 36 after strain development which might cause enhanced XR activity from K. marxianus 36907-FMEL1.

  14. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis

    PubMed Central

    Cha, Joon-Yung; Kim, Woe-Yeon; Kang, Sun Bin; Kim, Jeong Im; Baek, Dongwon; Jung, In Jung; Kim, Mi Ri; Li, Ning; Kim, Hyun-Jin; Nakajima, Masatoshi; Asami, Tadao; Sabir, Jamal S. M.; Park, Hyeong Cheol; Lee, Sang Yeol; Bohnert, Hans J.; Bressan, Ray A.; Pardo, Jose M.; Yun, Dae-Jin

    2015-01-01

    YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses. PMID:26314500

  15. Organizational Enhancement. Symposium 30. [AHRD Conference, 2001].

    ERIC Educational Resources Information Center

    2001

    This document contains four papers on organizational enhancement and human resource development (HRD). "Motivation to Improve Work through Learning in Human Resource Development" (Sharon S. Naquin, Elwood F. Holton III) argues that HRD's traditional conceptualization of motivation should be expanded to incorporate motivation to use learning to…

  16. Alkyl hydroperoxide reductase enhances the growth of Leuconostoc mesenteroides lactic acid bacteria at low temperatures.

    PubMed

    Goto, Seitaro; Kawamoto, Jun; Sato, Satoshi B; Iki, Takashi; Watanabe, Itaru; Kudo, Kazuyuki; Esaki, Nobuyoshi; Kurihara, Tatsuo

    2015-01-01

    Lactic acid bacteria (LAB) can cause deterioration of food quality even at low temperatures. In this study, we investigated the cold-adaptation mechanism of a novel food spoilage LAB, Leuconostoc mesenteroides NH04 (NH04). L. mesenteroides was isolated from several spoiled cooked meat products at a high frequency in our factories. NH04 grew rapidly at low temperatures within the shelf-life period and resulted in heavy financial losses. NH04 grew more rapidly than related strains such as Leuconostoc mesenteroides NBRC3832 (NBRC3832) at 10°C. Proteome analysis of NH04 demonstrated that this strain produces a homolog of alkyl hydroperoxide reductase--AhpC--the expression of which can be induced at low temperatures. The expression level of AhpC in NH04 was approximately 6-fold higher than that in NBRC3832, which was grown under the same conditions. Although AhpC is known to have an anti-oxidative role in various bacteria by catalyzing the reduction of alkyl hydroperoxide and hydrogen peroxide, the involvement of AhpC in cold adaptation of food spoilage bacteria was unclear. We introduced an expression plasmid containing ahpC into NBRC3832, which grows slower than NH04 at 10°C, and found that expression of AhpC enhanced growth. These results demonstrated that AhpC, which likely increases anti-oxidative capacity of LAB, plays an important role in their rapid growth at low temperatures.

  17. Expression of Pyrococcus furiosus Superoxide Reductase in Arabidopsis Enhances Heat Tolerance1[C][W][OA

    PubMed Central

    Im, Yang Ju; Ji, Mikyoung; Lee, Alice; Killens, Rushyannah; Grunden, Amy M.; Boss, Wendy F.

    2009-01-01

    Plants produce reactive oxygen species (ROS) in response to environmental stresses sending signaling cues, which, if uncontrolled, result in cell death. Like other aerobic organisms, plants have ROS-scavenging enzymes, such as superoxide dismutase (SOD), which removes superoxide anion radical (O2−) and prevents the production and buildup of toxic free radicals. However, increasing the expression of cytosolic SODs is complex, and increasing their production in vivo has proven to be challenging. To avoid problems with endogenous regulation of gene expression, we expressed a gene from the archaeal hyperthermophile Pyrococcus furiosus that reduces O2−. P. furiosus uses superoxide reductase (SOR) rather than SOD to remove superoxide. SOR is a thermostable enzyme that reduces O2− in a one-electron reduction without producing oxygen. We show that P. furiosus SOR can be produced as a functional enzyme in planta and that plants producing SOR have enhanced tolerance to heat, light, and chemically induced ROS. Stress tolerance in the SOR-producing plants correlates positively with a delayed increase in ROS-sensitive transcripts and a decrease in ascorbate peroxidase activity. The SOR plants provide a good model system to study the impact of cytosolic ROS on downstream signaling in plant growth and development. Furthermore, this work demonstrates that this synthetic approach for reducing cytosolic ROS holds promise as a means for improving stress tolerance in crop plants. PMID:19684226

  18. Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Song, Xixi; Fang, Jie; Han, Xiaojiao; He, Xuelian; Liu, Mingying; Hu, Jianjun; Zhuo, Renying

    2016-01-15

    Quinone reductase (QR) is an oxidative-related gene and few studies have focused on its roles concerning salt stress tolerance in plants. In this study, we cloned and analyzed the QR gene from Salix matsudana, a willow with tolerance of moderate salinity. The 612-bp cDNA corresponding to SmQR encodes 203 amino acids. Expression of SmQR in Escherichia coli cells enhanced their tolerance under salt stress. In addition, transgenic Arabidopsis thaliana lines overexpressing SmQR exhibited higher salt tolerance as compared with WT, with higher QR activity and antioxidant enzyme activity as well as higher chlorophyll content, lower methane dicarboxylic aldehyde (MDA) content and electric conductivity under salt stress. Nitro blue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining also indicated that the transgenic plants accumulated less reactive oxygen species compared to WT when exposed to salt stress. Overall, our results suggested that SmQR plays a significant role in salt tolerance and that this gene may be useful for biotechnological development of plants with improved tolerance of salinity.

  19. Nitrosylation of c heme in cd(1)-nitrite reductase is enhanced during catalysis.

    PubMed

    Rinaldo, Serena; Giardina, Giorgio; Cutruzzolà, Francesca

    2014-08-29

    The reduction of nitrite into nitric oxide (NO) in denitrifying bacteria is catalyzed by nitrite reductase. In several species, this enzyme is a heme-containing protein with one c heme and one d1 heme per monomer (cd1NiR), encoded by the nirS gene. For many years, the evidence of a link between NO and this hemeprotein represented a paradox, given that NO was known to tightly bind and, possibly, inhibit hemeproteins, including cd1NiRs. It is now established that, during catalysis, cd1NiRs diverge from "canonical" hemeproteins, since the product NO rapidly dissociates from the ferrous d1 heme, which, in turn, displays a peculiar "low" affinity for NO (KD=0.11 μM at pH 7.0). It has been also previously shown that the c heme reacts with NO at acidic pH but c heme nitrosylation was not extensively investigated, given that in cd1NiR it was considered a side reaction, rather than a genuine process controlling catalysis. The spectroscopic study of the reaction of cd1NiR and its semi-apo derivative (containing the sole c heme) with NO reported here shows that c heme nitrosylation is enhanced during catalysis; this evidence has been discussed in order to assess the potential of c heme nitrosylation as a regulatory process, as observed for cytochrome c nitrosylation in mammalian mitochondria.

  20. Probenecid Treatment Enhances Retinal and Brain Delivery of N-4-Benzoylaminophenylsulfonylglycine, An Anionic Aldose Reductase Inhibitor

    PubMed Central

    Sunkara, Gangadhar; Ayalasomayajula, Surya P.; DeRuiter, Jack; Kompella, Uday B.

    2009-01-01

    Anion efflux transporters are expected to minimize target tissue delivery of N-[4-(benzoylaminophenyl)sulfonyl]glycine (BAPSG), a novel carboxylic acid aldose reductase inhibitor, which exists as a monocarboxylate anion at physiological conditions. Therefore, the objective of this study was to determine whether BAPSG delivery to various eye tissues including the retina and the brain can be enhanced by probenecid, a competitive inhibitor of anion transporters. To determine the influence of probenecid on eye and brain distribution of BAPSG, probenecid was administered intraperitoneally (120 mg/kg body weight; i.p.) 20 minutes prior to BAPSG (50 mg/kg; i.p.) administration. Drug disposition in various eye tissues including the retina and the brain was determined at 15 min, 1, 2 and 4 hr after BAPSG dose in male Sprauge-Dawley rats. To determine whether probenecid alters plasma clearance of BAPSG, influence of probenecid (120 mg/kg; i.p.) on the plasma pharmacokinetics of intravenously administered BAPSG (15 mg/kg) was studied as well. Finally, the effect of probenecid co-administration on the ocular tissue distribution of BAPSG was assessed in rabbits following topical (eye drop) administration. Following pretreatment with probenecid in the rat study, retinal delivery at 1 hr was increased by about 11 fold (2580 vs 244 ng/gm; p<0.05). Further, following probenecid pretreatment, significant BAPSG levels were detectable in the brain (45 ± 20 ng/gm) at 1 hr, unlike controls where the drug was not detectable. Plasma concentrations, plasma elimination half-life, and total body clearance of intravenously administered BAPSG were not altered by i.p. probenecid pretreatment. In the topical dosing study, a significant decline in BAPSG delivery was observed in the iris-ciliary body but no significant changes were observed in other tissues of the anterior segment of the eye including tears. Thus, inhibition of anion transporters is a useful approach to elevate retinal and brain

  1. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei.

    PubMed

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2016-02-01

    Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus.

  2. Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat.

    PubMed

    Ayella, Allan K; Trick, Harold N; Wang, Weiqun

    2007-12-01

    Lignans are phenylpropane dimers that are biosynthesized via the phenylpropanoid pathway, in which pinoresinol lariciresinol reductase (PLR) catalyzes the last steps of lignan production. Our previous studies demonstrated that the contents of lignans in various wheat cultivars were significantly associated with anti-tumor activities in APC(Min) mice. To enhance lignan biosynthesis, this study was conducted to transform wheat cultivars ('Bobwhite', 'Madison', and 'Fielder', respectively) with the Forsythia intermedia PLR gene under the regulatory control of maize ubiquitin promoter. Of 24 putative transgenic wheat lines, we successfully obtained 3 transformants with the inserted ubiquitin-PLR gene as screened by PCR. Southern blot analysis further demonstrated that different copies of the PLR gene up to 5 were carried out in their genomes. Furthermore, a real-time PCR indicated approximately 17% increase of PLR gene expression over the control in 2 of the 3 positive transformants at T(0) generation. The levels of secoisolariciresinol diglucoside, a prominent lignan in wheat as determined by HPLC-MS, were found to be 2.2-times higher in one of the three positive transgenic sub-lines at T(2 )than that in the wild-type (117.9 +/- 4.5 vs. 52.9 +/- 19.8 mug/g, p <0.005). To the best of our knowledge, this is the first study that elevated lignan levels in a transgenic wheat line has been successfully achieved through genetic engineering of over-expressed PLR gene. Although future studies are needed for a stably expression and more efficient transformants, the new wheat line with significantly higher SDG contents obtained from this study may have potential application in providing additive health benefits for cancer prevention.

  3. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    SciTech Connect

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  4. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  5. Nitrate reductase-mediated NO production enhances Cd accumulation in Panax notoginseng roots by affecting root cell wall properties.

    PubMed

    Kan, Qi; Wu, Wenwei; Yu, Wenqian; Zhang, Jiarong; Xu, Jin; Rengel, Zed; Chen, Limei; Cui, Xiuming; Chen, Qi

    2016-04-01

    Panax notoginseng (Burk) F. H. Chen is a traditional medicinal herb in China. However, the high capacity of its roots to accumulate cadmium (Cd) poses a potential risk to human health. Although there is some evidence for the involvement of nitric oxide (NO) in mediating Cd toxicity, the origin of Cd-induced NO and its function in plant responses to Cd remain unknown. In this study, we examined NO synthesis and its role in Cd accumulation in P. notoginseng roots. Cd-induced NO production was significantly decreased by application of the nitrate reductase inhibitor tungstate but not the nitric oxide synthase inhibitor L-NAME (N(G)-methyl-l-arginine acetate), indicating that nitrate reductase is the major contributor to Cd-induced NO production in P. notoginseng roots. Under conditions of Cd stress, sodium nitroprusside (SNP, an NO donor) increased Cd accumulation in root cell walls but decreased Cd translocation to the shoot. In contrast, the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and tungstate both significantly decreased NO-increased Cd retention in root cell walls. The amounts of hemicellulose 1 and pectin, together with pectin methylesterase activity, were increased with the addition of SNP but were decreased by cPTIO and tungstate. Furthermore, increases or decreases in hemicellulose 1 and pectin contents as well as pectin methylesterase activity fit well with the increased or decreased retention of Cd in the cell walls of P. notoginseng roots. The results suggest that nitrate reductase-mediated NO production enhances Cd retention in P. notoginseng roots by modulating the properties of the cell wall.

  6. Expression of an isoflavone reductase-like gene enhanced by pollen tube growth in pistils of Solanum tuberosum.

    PubMed

    van Eldik, G J; Ruiter, R K; Colla, P H; van Herpen, M M; Schrauwen, J A; Wullems, G J

    1997-03-01

    Successful sexual reproduction relies on gene products delivered by the pistil to create an environment suitable for pollen tube growth. These compounds are either produced before pollination or formed during the interactions between pistil and pollen tubes. Here we describe the pollination-enhanced expression of the cp100 gene in pistils of Solanum tuberosum. Temporal analysis of gene expression revealed an enhanced expression already one hour after pollination and lasts more than 72 h. Increase in expression also occurred after touching the stigma and was not restricted to the site of touch but spread into the style. The predicted CP100 protein shows similarity to leguminous isoflavone reductases (IFRs), but belongs to a family of IFR-like NAD(P)H-dependent oxidoreductases present in various plant species.

  7. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria.

    PubMed Central

    Peterson, D S; Walliker, D; Wellems, T E

    1988-01-01

    Analysis of a genetic cross of Plasmodium falciparum and of independent parasite isolates from Southeast Asia, Africa, and South America indicates that resistance to pyrimethamine, an antifolate used in the treatment of malaria, results from point mutations in the gene encoding dihydrofolate reductase-thymidylate synthase (EC 1.5.1.3 and EC 2.1.1.45, respectively). Parasites having a mutation from Thr-108/Ser-108 to Asn-108 in DHFR-TS are resistant to the drug. The Asn-108 mutation occurs in a region analogous to the C alpha-helix bordering the active site cavity of bacterial, avian, and mammalian enzymes. Additional point mutations (Asn-51 to Ile-51 and Cys-59 to Arg-59) are associated with increased pyrimethamine resistance and also occur at sites expected to border the active site cavity. Analogies with known inhibitor/enzyme structures from other organisms suggest that the point mutations occur where pyrimethamine contacts the enzyme and may act by inhibiting binding of the drug. Images PMID:2904149

  8. Enhanced Degradation of Dihydrofolate Reductase through Inhibition of NAD Kinase by Nicotinamide Analogs

    PubMed Central

    Hsieh, Yi-Ching; Tedeschi, Philip; AdeBisi Lawal, Rialnat; Banerjee, Debabrata; Scotto, Kathleen; Kerrigan, John E.; Lee, Kuo-Chieh; Johnson-Farley, Nadine; Bertino, Joseph R.

    2013-01-01

    Dihydrofolate reductase (DHFR), because of its essential role in DNA synthesis, has been targeted for the treatment of a wide variety of human diseases, including cancer, autoimmune diseases, and infectious diseases. Methotrexate (MTX), a tight binding inhibitor of DHFR, is one of the most widely used drugs in cancer treatment and is especially effective in the treatment of acute lymphocytic leukemia, non-Hodgkin’s lymphoma, and osteosarcoma. Limitations to its use in cancer include natural resistance and acquired resistance due to decreased cellular uptake and decreased retention due to impaired polyglutamylate formation and toxicity at higher doses. Here, we describe a novel mechanism to induce DHFR degradation through cofactor depletion in neoplastic cells by inhibition of NAD kinase, the only enzyme responsible for generating NADP, which is rapidly converted to NADPH by dehydrogenases/reductases. We identified an inhibitor of NAD kinase, thionicotinamide adenine dinucleotide phosphate (NADPS), which led to accelerated degradation of DHFR and to inhibition of cancer cell growth. Of importance, combination treatment of NADPS with MTX displayed significant synergy in a metastatic colon cancer cell line and was effective in a MTX-transport resistant leukemic cell line. We suggest that NAD kinase is a valid target for further inhibitor development for cancer treatment. PMID:23197646

  9. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase.

    PubMed

    Jayakumar, Sundarraj; Patwardhan, R S; Pal, Debojyoti; Sharma, Deepak; Sandur, Santosh K

    2016-09-01

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratio and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. PMID:27381867

  10. Overexpression of Mycothiol Disulfide Reductase Enhances Corynebacterium glutamicum Robustness by Modulating Cellular Redox Homeostasis and Antioxidant Proteins under Oxidative Stress

    PubMed Central

    Si, Meiru; Zhao, Chao; Zhang, Bing; Wei, Dawei; Chen, Keqi; Yang, Xu; Xiao, He; Shen, Xihui

    2016-01-01

    Mycothiol (MSH) is the dominant low-molecular-weight thiol (LMWT) unique to high-(G+C)-content Gram-positive Actinobacteria, such as Corynebacterium glutamicum, and is oxidised into its disulfide form mycothiol disulfide (MSSM) under oxidative conditions. Mycothiol disulfide reductase (Mtr), an NADPH-dependent enzyme, reduces MSSM to MSH, thus maintaining intracellular redox homeostasis. In this study, a recombinant plasmid was constructed to overexpress Mtr in C. glutamicum using the expression vector pXMJ19-His6. Mtr-overexpressing C. glutamicum cells showed increased tolerance to ROS induced by oxidants, bactericidal antibiotics, alkylating agents, and heavy metals. The physiological roles of Mtr in resistance to oxidative stresses were corroborated by decreased ROS levels, reduced carbonylation damage, decreased loss of reduced protein thiols, and a massive increase in the levels of reversible protein thiols in Mtr-overexpressing cells exposed to stressful conditions. Moreover, overexpression of Mtr caused a marked increase in the ratio of reduced to oxidised mycothiol (MSH:MSSM), and significantly enhanced the activities of a variety of antioxidant enzymes, including mycothiol peroxidase (MPx), mycoredoxin 1 (Mrx1), thioredoxin 1 (Trx1), and methionine sulfoxide reductase A (MsrA). Taken together, these results indicate that the Mtr protein functions in C. glutamicum by protecting cells against oxidative stress. PMID:27383057

  11. Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes.

    PubMed Central

    Salvucci, L A; Bonneau, R H; Tevethia, S S

    1995-01-01

    A panel of herpes simplex virus type 1 (HSV-1)-specific, CD8+, major histocompatibility complex class I (H-2Kb)-restricted cytotoxic T-lymphocyte (CTL) clones was derived from HSV-1-immunized C57BL/6 (H-2b) mice in order to identify the HSV-1 CTL recognition epitope(s) which confers type specificity. HSV-1 x HSV-2 intertypic recombinants were used to narrow the region encoding potential CTL recognition epitopes to within 0.51 to 0.58 map units of the HSV-1 genome. Using an inhibitor of viral DNA synthesis and an ICP6 deletion mutant, the large subunit of ribonucleotide reductase (ICP6, RR1) was identified as a target protein for these type-specific CTL. Potential CTL recognition epitopes within RR1 were located on the basis of the peptide motif predicted to bind to the MHC class I H-2Kb molecule. A peptide corresponding to residues 822 to 829 of RR1 was shown to confer susceptibility on H-2Kb-expressing target cells to lysis by the type 1-specific CTL. On the basis of a comparison of the HSV-1 RR1 epitope (residues 822 to 829) with the homologous sequence of HSV-2 RR1 (residues 828 to 836) and by the use of amino acid substitutions within synthetic peptides, we identified HSV-1 residue 828 as being largely responsible for the type specificity exhibited by HSV-1-specific CTL. This HSV-1 RR1 epitope, when expressed in recombinant simian virus 40 large T antigen in primary C57BL/6 cells, was recognized by the HSV-1 RR1-specific CTL clones. These results indicate that an early HSV protein with enzymatic activity provides a target for HSV-specific CTL and that type specificity is dictated largely by a single amino acid. PMID:7529328

  12. Enhanced Production of a Plant Monoterpene by Overexpression of the 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Catalytic Domain in Saccharomyces cerevisiae▿ †

    PubMed Central

    Rico, Juan; Pardo, Ester; Orejas, Margarita

    2010-01-01

    Linalool production was evaluated in different Saccharomyces cerevisiae strains expressing the Clarkia breweri linalool synthase gene (LIS). The wine strain T73 was shown to produce higher levels of linalool than conventional laboratory strains (i.e., almost three times the amount). The performance of this strain was further enhanced by manipulating the endogenous mevalonate (MVA) pathway: deregulated overexpression of the rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) doubled linalool production. In a haploid laboratory strain, engineering of this key step also improved linalool yield. PMID:20675444

  13. Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases

    PubMed Central

    Wang, Jun; Lohman, Gregory J. S.; Stubbe, JoAnne

    2007-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. The class I RNRs are composed of two subunits, α and β, with proposed quaternary structures of α2β2, α6β2, or α6β6, depending on the organism. The α subunits bind the nucleoside diphosphate substrates and the dNTP/ATP allosteric effectors that govern specificity and turnover. The β2 subunit houses the diferric Y• (1 radical per β2) cofactor that is required to initiate nucleotide reduction. 2′,2′-Difluoro-2′-deoxycytidine (F2C) is presently used clinically in a variety of cancer treatments and the 5′-diphosphorylated F2C (F2CDP) is a potent inhibitor of RNRs. The studies with [1′-3H]-F2CDP and [5-3H]-F2CDP have established that F2CDP is a substoichiometric mechanism based inhibitor (0.5 eq F2CDP/α) of both the Escherichia coli and the human RNRs in the presence of reductant. Inactivation is caused by covalent labeling of RNR by the sugar of F2CDP (0.5 eq/α) and is accompanied by release of 0.5 eq cytosine/α. Inactivation also results in loss of 40% of β2 activity. Studies using size exclusion chromatography reveal that in the E. coli RNR, an α2β2 tight complex is generated subsequent to enzyme inactivation by F2CDP, whereas in the human RNR, an α6β6 tight complex is generated. Isolation of these complexes establishes that the weak interactions of the subunits in the absence of nucleotides are substantially increased in the presence of F2CDP and ATP. This information and the proposed asymmetry between the interactions of αnβn provide an explanation for complete inactivation of RNR with substoichiometric amounts of F2CDP. PMID:17726094

  14. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  15. Resveratrol preconditioning increases methionine sulfoxide reductases A expression and enhances resistance of human neuroblastoma cells to neurotoxins.

    PubMed

    Wu, Peng-Fei; Xie, Na; Zhang, Juan-Juan; Guan, Xin-Lei; Zhou, Jun; Long, Li-Hong; Li, Yuan-Long; Xiong, Qiu-Ju; Zeng, Jian-Hua; Wang, Fang; Chen, Jian-Guo

    2013-06-01

    Methionine sulfoxide reductases A (MsrA) has been postulated to act as a catalytic antioxidant system involved in the protection of oxidative stress-induced cell injury. Recently, attention has turned to MsrA in coupling with the pathology of Parkinson's disease, which is closely related to neurotoxins that cause dopaminergic neuron degeneration. Here, we firstly provided evidence that pretreatment with a natural polyphenol resveratrol (RSV) up-regulated the expression of MsrA in human neuroblastoma SH-SY5Y cells. It was also observed that the expression and nuclear translocation of forkhead box group O 3a (FOXO3a), a transcription factor that activates the human MsrA promoter, increased after RSV pretreatment. Nicotinamide , an inhibitor of silent information regulator 1 (SIRT1), prevented RSV-induced elevation of FOXO3a and MsrA expression, indicating that the effect of RSV was mediated by a SIRT1-dependent pathway. RSV preconditioning increased methionine sulfoxide(MetO)-reducing activity in SH-SY5Y cells and enhanced their resistance to neurotoxins, including chloramine-T and 1-methyl-4-phenyl-pyridinium. In addition, the enhancement of cell resistance to neurotoxins caused by RSV preconditioning can be largely prevented by MsrA inhibitor dimethyl sulfoxide. Our findings suggest that treatment with polyphenols such as RSV can be used as a potential regulatory strategy for MsrA expression and function.

  16. More than One Voice: Enhancing Our AHRD Research Conference

    ERIC Educational Resources Information Center

    Storberg-Walker, Julia

    2010-01-01

    Between March 26 and April 3, 2009, 136 Academy of Human Resource Development (AHRD) members accessed an on-line survey to provide feedback about the AHRD annual research conferences. The primary purpose of the survey was to understand more about members' experiences in order to improve what is arguably one of the most important "products" of the…

  17. Suppression of carbonyl reductase expression enhances malignant behaviour in uterine cervical squamous cell carcinoma: carbonyl reductase predicts prognosis and lymph node metastasis.

    PubMed

    Murakami, Akihiro; Fukushima, Chikako; Yoshidomi, Keiko; Sueoka, Kotaro; Nawata, Shugo; Yokoyama, Yoshihito; Tsuchida, Shigeki; Ismail, Endom; Al-Mulla, Fahd; Sugino, Norihiro

    2011-12-01

    Carbonyl reductase (CR) is an NADPH-dependent, mostly monomeric, cytosolic enzyme with broad substrate specificity for carbonyl compounds. CR appears to be involved in the regulation of tumour progression. However, molecular mechanisms of CR in tumour progression and clinical significance of CR status remain unclear in human uterine squamous cell carcinoma (SCC). Here, we investigated the clinical significance of CR using immunohistochemical analyses of human uterine cervical SCC tissues and how CR affects cancer cell behaviour in vitro. Paraffin sections from uterine cervical SCC tissues, FIGO stage Ib1-IIb (n = 67) were immunostained with anti-CR antibodies. Overall survival (OS) and progression-free survival (PFS) were analyzed by the Kaplan-Meier method. Sense and antisense CR cDNAs were transfected into a human uterine SCC cell line (SiHa) to investigate the role of CR in cancer cell invasion and metastasis. Immunohistochemical analyses showed that reduced CR expression patterns in primary cancer lesions were closely associated with a high incidence of pelvic lymph node metastasis, poor OS, and poor PFS. In an in vitro experiment, suppression of CR increased cancer cell invasion, secretion of MMP-2, -9 and cyclooxygenase-2 (COX-2) expression and decreased E-cadherin expression. On the other hand, over-expression of CR increased E-cadherin expression and decreased MMP-2, -9 secretion and COX-2 expression. The reduced CR expression pattern, as measured by immunohistochemistry, can be a useful predictor of lymph node metastasis and poor prognosis in patients with uterine SCC. This clinical result is supported by the in vitro data which show that suppression of CR expression promotes cancer cell invasion with decreased E-cadherin expression and increased MMP-2, -9 secretion.

  18. EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines: Technical Papers

    SciTech Connect

    None, None

    2011-12-01

    The EPRI-DOE Conference on Environmentally-Enhanced Hydropower Turbines was a component of a larger project. The goal of the overall project was to conduct the final developmental engineering required to advance the commercialization of the Alden turbine. As part of this effort, the conference provided a venue to disseminate information on the status of the Alden turbine technology as well as the status of other advanced turbines and research on environmentally-friendly hydropower turbines. The conference was also a product of a federal Memorandum of Understanding among DOE, USBR, and USACE to share technical information on hydropower. The conference was held in Washington, DC on May 19 and 20, 2011 and welcomed over 100 attendees. The Conference Organizing Committee included the federal agencies with a vested interest in hydropower in the U.S. The Committee collaboratively assembled this conference, including topics from each facet of the environmentally-friendly conventional hydropower research community. The conference was successful in illustrating the readiness of environmentally-enhanced hydropower technologies. Furthermore, the topics presented illustrated the need for additional deployment and field testing of these technologies in an effort to promote the growth of environmentally sustainable hydropower in the U.S. and around the world.

  19. Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues.

    PubMed

    Gutierrez, Aldo; Munro, Andrew W; Grunau, Alex; Wolf, C Roland; Scrutton, Nigel S; Roberts, Gordon C K

    2003-06-01

    The role of coenzyme binding in regulating interflavin electron transfer in human cytochrome P450 reductase (CPR) has been studied using temperature-jump spectroscopy. Previous studies [Gutierrez, A., Paine, M., Wolf, C.R., Scrutton, N.S., & Roberts, G.C.K. Biochemistry (2002) 41, 4626-4637] have shown that the observed rate, 1/tau, of interflavin electron transfer (FADsq - FMNsq-->FADox - FMNhq) in CPR reduced at the two-electron level with NADPH is 55 +/- 2 s-1, whereas with dithionite-reduced enzyme the observed rate is 11 +/- 0.5 s-1, suggesting that NADPH (or NADP+) binding has an important role in controlling the rate of internal electron transfer. In relaxation experiments performed with CPR reduced at the two-electron level with NADH, the observed rate of internal electron transfer (1/tau = 18 +/- 0.7 s-1) is intermediate in value between those seen with dithionite-reduced and NADPH-reduced enzyme, indicating that the presence of the 2'-phosphate is important for enhancing internal electron transfer. To investigate this further, temperature jump experiments were performed with dithionite-reduced enzyme in the presence of 2',5'-ADP and 2'-AMP. These two ligands increase the observed rate of interflavin electron transfer in two-electron reduced CPR from 1/tau = 11 s-1 to 35 +/- 0.2 s-1 and 32 +/- 0.6 s-1, respectively. Reduction of CPR at the two-electron level by NADPH, NADH or dithionite generates the same spectral species, consistent with an electron distribution that is equivalent regardless of reductant at the initiation of the temperature jump. Spectroelectrochemical experiments establish that the redox potentials of the flavins of CPR are unchanged on binding 2',5'-ADP, supporting the view that enhanced rates of interdomain electron transfer have their origin in a conformational change produced by binding NADPH or its fragments. Addition of 2',5'-ADP either to the isolated FAD-domain or to full-length CPR (in their oxidized and reduced forms) leads to

  20. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.

  1. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis. PMID:26803502

  2. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  3. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis.

    PubMed

    Tunc-Ozdemir, Meral; Miller, Gad; Song, Luhua; Kim, James; Sodek, Ahmet; Koussevitzky, Shai; Misra, Amarendra Narayan; Mittler, Ron; Shintani, David

    2009-09-01

    Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative treatments, accumulated thiamin and TPP. Moreover, the accumulation of these compounds in plants subjected to oxidative stress was accompanied by enhanced expression of transcripts encoding thiamin biosynthetic enzymes. When supplemented with exogenous thiamin, wild-type plants displayed enhanced tolerance to oxidative stress induced by paraquat. Thiamin application was also found to protect the reactive oxygen species-sensitive ascorbate peroxidase1 mutant from oxidative stress. Thiamin-induced tolerance to oxidative stress was accompanied by decreased production of reactive oxygen species in plants, as evidenced from decreased protein carbonylation and hydrogen peroxide accumulation. Because thiamin could protect the salicylic acid induction-deficient1 mutant against oxidative stress, thiamin-induced oxidative protection is likely independent of salicylic acid signaling or accumulation. Taken together, our studies suggest that thiamin and TPP function as important stress-response molecules that alleviate oxidative stress during different abiotic stress conditions.

  4. Nano-enhanced optical delivery into targeted cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay

    2016-03-01

    Nano-enhanced optical field of gold nanoparticles allowed the use of a continuous wave (cw) laser beam for efficient delivery of exogenous impermeable materials into targeted cells. Using this Nano-enhanced Optical Delivery (NOD) method, we show that large molecules could be delivered with low power cw laser with exposure time ~ 1sec. At such low power (and exposure), the non-targeted cells (not bound to gold nanoparticles) were not adversely affected by the laser beam. Further, by varying the size of the gold nanoparticles, cells could be exclusively sensitized to selective wavelengths of laser beam. In contrast other nanoparticles, gold nanoparticles were found to have lower cytotoxicity, making it better suited for clinical NOD. Further, as compared with pulsed lasers, cw (diode) lasers are compact, easy-to-use and therefore, NOD using cw laser beam has significant translational potential for delivery of impermeable bio-molecules to tissues in different organs. We will present optimization of NOD parameters for delivering different molecules to different cells. Success of this NOD method may lead to a new clinical approach for treating AMD and RP patients with geographic atrophy in retina.

  5. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.

    PubMed

    Fatma, Zia; Jawed, Kamran; Mattam, Anu Jose; Yazdani, Syed Shams

    2016-09-01

    Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP(+) dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.

  6. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase

    PubMed Central

    Cho, Sukhyeong; Kim, Taeyeon; Woo, Han Min; Lee, Jinwon; Kim, Yunje; Um, Youngsoon

    2015-01-01

    Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase. PMID:26368397

  7. A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.

    PubMed

    Mukerjee, Anindita; Iyidogan, Pinar; Castellanos-Gonzalez, Alejandro; Cisneros, José A; Czyzyk, Daniel; Ranjan, Amalendu Prakash; Jorgensen, William L; White, A Clinton; Vishwanatha, Jamboor K; Anderson, Karen S

    2015-01-01

    Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having μM antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.

  8. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  9. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli

    PubMed Central

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  10. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis.

  11. Identification of Amino Acids Conferring Chain Length Substrate Specificities on Fatty Alcohol-forming Reductases FAR5 and FAR8 from Arabidopsis thaliana*

    PubMed Central

    Chacón, Micaëla G.; Fournier, Ashley E.; Tran, Frances; Dittrich-Domergue, Franziska; Pulsifer, Ian P.; Domergue, Frédéric; Rowland, Owen

    2013-01-01

    Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value. PMID:24005667

  12. Overexpression of a GmCnx1 Gene Enhanced Activity of Nitrate Reductase and Aldehyde Oxidase, and Boosted Mosaic Virus Resistance in Soybean

    PubMed Central

    Ma, Luping; Yu, Xiaoqian; Mi, Qian; Pang, Jingsong; Tang, Guixiang; Liu, Bao

    2015-01-01

    Molybdenum cofactor (Moco) is required for the activities of Moco-dependant enzymes. Cofactor for nitrate reductase and xanthine dehydrogenase (Cnx1) is known to be involved in the biosynthesis of Moco in plants. In this work, a soybean (Glycine max L.) Cnx1 gene (GmCnx1) was transferred into soybean using Agrobacterium tumefaciens-mediated transformation method. Twenty seven positive transgenic soybean plants were identified by coating leaves with phosphinothricin, bar protein quick dip stick and PCR analysis. Moreover, Southern blot analysis was carried out to confirm the insertion of GmCnx1 gene. Furthermore, expression of GmCnx1 gene in leaf and root of all transgenic lines increased 1.04-2.12 and 1.55-3.89 folds, respectively, as compared to wild type with GmCnx1 gene and in line 10 , 22 showing the highest expression. The activities of Moco-related enzymes viz nitrate reductase (NR) and aldehydeoxidase (AO) of T1 generation plants revealed that the best line among the GmCnx1 transgenic plants accumulated 4.25 μg g-1 h-1 and30 pmol L-1, respectively (approximately 2.6-fold and 3.9-fold higher than non-transgenic control plants).In addition, overexpression ofGmCnx1boosted the resistance to various strains of soybean mosaic virus (SMV). DAS-ELISA analysis further revealed that infection rate of GmCnx1 transgenic plants were generally lower than those of non-transgenic plants among two different virus strains tested. Taken together, this study showed that overexpression of a GmCnx1 gene enhanced NR and AO activities and SMV resistance, suggesting its important role in soybean genetic improvement. PMID:25886067

  13. Methionine Sulfoxide Reductases B1, B2, and B3 Are Present in the Human Lens and Confer Oxidative Stress Resistance to Lens Cells

    PubMed Central

    Marchetti, Maria A.; Pizarro, Gresin O.; Sagher, Daphna; DeAmicis, Candida; Brot, Nathan; Hejtmancik, J. Fielding; Weissbach, Herbert; Kantorow, Marc

    2005-01-01

    Purpose Methionine-sulfoxide reductases are unique, in that their ability to repair oxidized proteins and MsrA, which reduces S-methionine sulfoxide, can protect lens cells against oxidative stress damage. To date, the roles of MsrB1, -B2 and -B3 which reduce R-methionine sulfoxide have not been established for any mammalian system. The present study was undertaken to identify those MsrBs expressed by the lens and to evaluate the enzyme activities, expression patterns, and abilities of the identified genes to defend lens cells against oxidative stress damage. Methods Enzyme activities were determined with bovine lens extracts. The identities and spatial expression patterns of MsrB1, -B2, and -B3 transcripts were examined by RT-PCR in human lens and 21 other tissues. Oxidative stress resistance was measured using short interfering (si)RNA–mediated gene-silencing in conjunction with exposure to tert-butyl hydroperoxide (tBHP) and MTS viability measurements in SRA04/01 human lens epithelial cells. Results. Forty percent of the Msr enzyme activity present in the lens was MsrB, whereas the remaining enzyme activity was MsrA. MsrB1 (selenoprotein R, localized in the cytosol and nucleus), MsrB2 (CBS-1, localized in the mitochondria), and MsrB3 (localized in the endoplasmic reticulum and mitochondria) were all expressed by the lens. These genes exhibit asymmetric expression patterns between different human tissues and different lens sublocations, including lens fibers. All three genes are required for lens cell viability, and their silencing in lens cells results in increased oxidative-stress–induced cell death. Conclusions. The present data suggest important roles for both MsrA and -Bs in lens cell viability and oxidative stress protection. The differential tissue distribution and lens expression patterns of these genes, coupled with increased oxidative-stress–induced cell death on their deletion provides evidence that they are important for lens cell function

  14. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.

  15. Directed evolution and structural analysis of NADPH-dependent Acetoacetyl Coenzyme A (Acetoacetyl-CoA) reductase from Ralstonia eutropha reveals two mutations responsible for enhanced kinetics.

    PubMed

    Matsumoto, Ken'ichiro; Tanaka, Yoshikazu; Watanabe, Tsuyoshi; Motohashi, Ren; Ikeda, Koji; Tobitani, Kota; Yao, Min; Tanaka, Isao; Taguchi, Seiichi

    2013-10-01

    NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with β-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB from Ralstonia eutropha was engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-based in vivo screening system using Escherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibited kcat values that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinant Corynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.

  16. Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49.

    PubMed

    Ghezelbash, Gholam Reza; Nahvi, Iraj; Emamzadeh, Rahman

    2014-08-01

    The purpose of the present investigation was to produce erythritol by Yarrowia lipolytica mutant without any by-products. Mutants of Y. lipolytica were generated by ultra-violet for enhancing erythrose reductase (ER) activity and erythritol production. The mutants showing the highest ER activity were screened by triphenyl tetrazolium chloride agar plate assay. Productivity of samples was analyzed by thin-layer chromatography and high-performance liquid chromatography equipped with the refractive index detector. One of the mutants named as mutant 49 gave maximum erythritol production without any other by-products (particularly glycerol). Erythritol production and specific ER activity in mutant 49 increased to 1.65 and 1.47 times, respectively, in comparison with wild-type strain. The ER gene of wild and mutant strains was sequenced and analyzed. A general comparison of wild and mutant gene sequences showed the replacement of Asp(270) with Glu(270) in ER protein. In order to enhance erythritol production, we used a three component-three level-one response Box-Behnken of response surface methodology model. The optimum medium composition for erythritol production was found to be (g/l) glucose 279.49, ammonium sulfate 9.28, and pH 5.41 with 39.76 erythritol production.

  17. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    PubMed

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  18. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    SciTech Connect

    Nakajima, Hideaki . E-mail: hnakajim@ims.u-tokyo.ac.jp; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-02-03

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix.

  19. Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus

    PubMed Central

    Geng, Xing-Min; Liu, Xiang; Ji, Mikyoung; Hoffmann, William A.; Grunden, Amy; Xiang, Qiu-Yun J.

    2016-01-01

    Production of reactive oxygen species (ROS) can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR) is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was introduced into a flowering plant Cornus canadensis to enhance its heat tolerance and reduce heat induced damage. A fusion construct of the SOR gene and Green Fluorescent Protein gene (GFP) was introduced into C. canadensis using Agrobacterium-mediated transformation. Heat tolerance of the GFP-SOR expressing transgenic plants was investigated by observing morphological symptoms of heat injury and by examining changes in photosynthesis, malondialdehyde (MDA), and proline levels in the plants. Our results indicate that the expression of the P. furiosus SOR gene in the transgenic plants alleviated lipid peroxidation of cell membranes and photoinhibition of PS II, and decreased the accumulation of proline at 40°C. After a series of exposures to increasing temperatures, the SOR transgenic plants remained healthy and green whereas most of the non-transgenic plants dried up and were unable to recover. While it had previously been reported that expression of SOR in Arabidopsis enhanced heat tolerance, this is the first report of the successful demonstration of improved heat tolerance in a non-model plant resulting from the introduction of P. furiosus SOR. The study demonstrates the potential of SOR for crop improvement and that inherent limitations of plant heat tolerance can be ameliorated with P. furiosus SOR. PMID:26858741

  20. Enhanced malignant transformation induced by expression of a distinct protein domain of ribonucleotide reductase large subunit from herpes simplex virus type 2.

    PubMed Central

    Ali, M A; McWeeney, D; Milosavljevic, A; Jurka, J; Jariwalla, R J

    1991-01-01

    The 1.3-kilobase (kb) Pst I DNA fragment C (Pst I-C) of herpes simplex virus type 2 (HSV-2) morphological transforming region III (mtrIII; map unit 0.562-0.570) encodes part of the N-terminal half of the large subunit of ribonucleotide reductase (RR1; amino acid residues 71-502) and induces the neoplastic transformation of immortalized cell lines. To assess directly the role of these RR1 protein sequences in cell transformation, the Pst I-C fragment was cloned in an expression vector (p91023) containing an adenovirus-simian virus 40 promoter-enhancer to generate recombinant plasmid p9-C. Expression of a protein domain (approximately 65 kDa) was observed in p9-C-transfected COS-7 and Rat2 cells but not in those transfected with plasmid pHC-14 (Pst I-C in a promoterless vector). In Rat2 cells, p9-C induced highly transformed foci at an elevated frequency compared with that of pHC-14. Introduction of translation termination (TAG) condons within the RR1 coding sequence and within all three reading frames inactivated RR1 protein expression from p9-C and reduced its transforming activity to the level seen with the standard pHC-14 construct. Wild-type p9-C specified a protein kinase capable of autophosphorylation. Computer-assisted analysis further revealed significant similarity between regions of mtrIII-specific RR1 and amino acid patterns conserved within the proinsulin precursor family and DNA transposition proteins. These results identify a distinct domain of the HSV-2 RR1 protein involved in the induction of enhanced malignant transformation. In addition, the data indicate that the mtrIII DNA itself can induce basal-level transformation in the absence of protein expression. Images PMID:1654564

  1. Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus.

    PubMed

    Geng, Xing-Min; Liu, Xiang; Ji, Mikyoung; Hoffmann, William A; Grunden, Amy; Xiang, Qiu-Yun J

    2016-01-01

    Production of reactive oxygen species (ROS) can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR) is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was introduced into a flowering plant Cornus canadensis to enhance its heat tolerance and reduce heat induced damage. A fusion construct of the SOR gene and Green Fluorescent Protein gene (GFP) was introduced into C. canadensis using Agrobacterium-mediated transformation. Heat tolerance of the GFP-SOR expressing transgenic plants was investigated by observing morphological symptoms of heat injury and by examining changes in photosynthesis, malondialdehyde (MDA), and proline levels in the plants. Our results indicate that the expression of the P. furiosus SOR gene in the transgenic plants alleviated lipid peroxidation of cell membranes and photoinhibition of PS II, and decreased the accumulation of proline at 40°C. After a series of exposures to increasing temperatures, the SOR transgenic plants remained healthy and green whereas most of the non-transgenic plants dried up and were unable to recover. While it had previously been reported that expression of SOR in Arabidopsis enhanced heat tolerance, this is the first report of the successful demonstration of improved heat tolerance in a non-model plant resulting from the introduction of P. furiosus SOR. The study demonstrates the potential of SOR for crop improvement and that inherent limitations of plant heat tolerance can be ameliorated with P. furiosus SOR.

  2. Enhancement of β-carotene production by over-expression of HMG-CoA reductase coupled with addition of ergosterol biosynthesis inhibitors in recombinant Saccharomyces cerevisiae.

    PubMed

    Yan, Guo-liang; Wen, Ke-rui; Duan, Chang-qing

    2012-02-01

    In this study, the synergistic effect of overexpressing the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene and adding ergosterol synthesis inhibitor, ketoconazole, on β-carotene production in the recombinant Saccharomyces cerevisiae was investigated. The results showed that the over-expression of HMG-CoA reductase gene and adding 100 mg/l ketoconazole alone can result in 135.1 and 15.6% increment of β-carotene concentration compared with that of the control (2.05 mg/g dry weight of cells), respectively. However, the combination of overexpressing HMG-CoA reductase gene and adding ketoconazole can achieve a 206.8% increment of pigment content (6.29 mg/g dry weight of cells) compared with that of the control. Due to the fact that over-expression of the HMG-CoA reductase gene can simultaneously improve the flux of the sterol and carotenoid biosynthetic pathway, it can be concluded that under the circumstances of blocking sterol biosynthesis, increasing the activity of HMG-CoA reductase can result in more precursors FPP fluxing into carotenoid branch and obtain a high increment of β-carotene production. The results of this study collectively suggest that the combination of overexpressing HMG-CoA reductase gene and supplying ergosterol synthesis inhibitor is an effective strategy to improve the production of desirable isoprenoid compounds such as carotenoids. PMID:22086347

  3. Enhanced skin permeation of 5α-reductase inhibitors entrapped into surface-modified liquid crystalline nanoparticles.

    PubMed

    Madheswaran, Thiagarajan; Baskaran, Rengarajan; Sundaramoorthy, Pasupathi; Yoo, Bong Kyu

    2015-04-01

    The objective of this study is to enhance skin permeation of finasteride and dutasteride for the treatment of androgenetic alopecia using surface-modified liquid crystalline nanoparticle (sm-LCN) dispersion. LCN entrapped with the drugs was prepared by using monoolein as a liquid crystal former, and surface modification was performed by treatment of the LCN dispersion with same volume of 1 % v/v acetic acid solution containing chitosan. Physicochemical properties of the LCN's were studied with regard to particle size, polydispersity index, zeta potential, and release of the drugs. Skin permeation of drugs entrapped into the LCN and sm-LCN was investigated with porcine abdominal skin using Franz diffusion cell. Cytotoxicity of the LCN's was also studied using human skin keratinocytes. The particle size and zeta potential of the LCN were 197.9 ± 2.5 nm and -20.2 ± 1.9 mV, respectively, and sm-LCN showed slightly bigger size and positive zeta potential due to the presence of thin coating on the surface of the nanoparticles. Compared to LCN, sm-LCN resulted in significantly enhanced skin permeation of the drugs whereas in vitro release was significantly reduced. Cell viability as a measure of cytotoxicity was above 80 % up to 20 μg/ml concentration of both LCN and sm-LCN. In conclusion, sm-LCN may provide a strategy to maximize therapeutic efficacy minimizing unwanted systemic side effects associated with the use of the drugs for the treatment of androgenetic alopecia. PMID:25085659

  4. NATIONAL CONFERENCE ON URBAN STORM WATER: ENHANCING PROGRAMS AT THE LOCAL LEVEL - PROCEEDINGS CHICAGO, IL FEBRUARY 17-20, 2003

    EPA Science Inventory

    A wide array of effective storm water management and resource protection tools have been developed for urban environments, but their implementation continues to be hampered by a lack of technology transfer opportunities. At the national conference Urban Storm Water: Enhancing Pro...

  5. The Science of Enhanced Student Engagement and Employability: Introducing the Psychology Stream of the Inaugural HEA STEM Conference

    ERIC Educational Resources Information Center

    Hulme, Julie; Taylor, Jacqui; Davies, Mark N. O.; Banister, Peter

    2012-01-01

    The Higher Education Academy (HEA) is committed to enhancing the quality of learning and teaching for all university students in the UK, and the inaugural conference for the Science, Technology, Engineering and Mathematics (STEM) subjects, held in April 2012 at Imperial College, London, aimed to showcase research and evidence-based educational…

  6. 75 FR 2552 - NIH State-of-the-Science Conference: Enhancing Use and Quality of Colorectal Cancer Screening

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health NIH State-of-the-Science Conference: Enhancing Use and Quality of Colorectal Cancer Screening Notice is hereby given by the National Institutes of Health (NIH) of the ``NIH State-of-the-Science...

  7. The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection.

    PubMed

    Strong, J E; Lee, P W

    1996-01-01

    We have previously demonstrated that two mouse cell lines that are poorly infectible by reovirus become highly susceptible upon transfection with the gene encoding the epidermal growth factor receptor (EGFR) (J. E. Strong, D. Tang, and P. W. K. Lee, Virology 197:405-411, 1993). This enhancement of infection efficiency requires a functional EGFR, since such an enhancement is not observed in cells expressing a mutated (kinase-inactive) EGFR. The additional finding that reovirus is capable of directly binding to the N-terminal ectodomain of the EGFR (D. Tang, J. E. Strong, and P. W. K. Lee, Virology 197:412-414, 1993) has led us to question whether this interaction is required for the activation of a signalling cascade that somehow augments the ensuing infection process. In the present study, we address this question, using cells transfected with the v-erbB oncogene, which encodes a protein structurally related to the EGFR but lacking a large portion of the N-terminal ligand-binding domain. The v-erbB protein also possesses ligand-independent, constitutive tyrosine kinase activity. Control NIH 3T3 cells, which are poorly infectible by reovirus (serotype 3, strain Dearing), and NIH 3T3 cells transfected with the v-erbB oncogene (THC-11) were assayed for their susceptibilities to reovirus infection. Infectivity was determined by immunofluorescent detection of viral proteins, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of radiolabeled cells, and plaque titration. All three assays demonstrated a drastically higher degree of susceptibility to infection in the THC-11 cell line. This enhanced susceptibility was found to be abrogated by treatment of the cells with genistein, an inhibitor of tyrosine protein kinases, but only partially by treatment with daidzein, an inactive analog of genistein. We propose that the mechanism of enhancement of infection efficiency conferred by EGFR and v-erbB is through the opportunistic utilization by the virus of an

  8. Tonicity-responsive enhancer binding protein regulates the expression of aldose reductase and protein kinase C δ in a mouse model of diabetic retinopathy.

    PubMed

    Park, Jeongsook; Kim, Hwajin; Park, So Yun; Lim, Sun Woo; Kim, Yoon Sook; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Jeong, Bo-Young; Kwon, H Moo; Choi, Wan Sung

    2014-05-01

    Recent studies revealed that Tonicity-responsive enhancer binding protein (TonEBP) directly regulates the transcription of aldose reductase (AR), which catalyzes the first step of the polyol pathway of glucose metabolism. Activation of protein kinase C δ (PKCδ) is dependent on AR and it has been linked to diabetic complications. However, whether TonEBP affects expressions of AR and PKCδ in diabetic retinopathy was not clearly shown. In this study, we used TonEBP heterozygote mice to study the role of TonEBP in streptozotocin (STZ)-induced diabetic retinopathy. We performed immunofluorescence staining and found that retinal expressions of AR and PKCδ were significantly reduced in the heterozygotes compared to wild type littermates, particularly in ganglion cell layer. To examine further the effect of TonEBP reduction in retinal tissues, we performed intravitreal injection of TonEBP siRNA and confirmed the decrease in AR and PKCδ levels. In addition, we found that a proapoptotic factor, Bax level was reduced and a survival factor, Bcl2 level was increased after injection of TonEBP siRNA, indicating that TonEBP mediates apoptotic cell death. In parallel, TonEBP siRNA was applied to the in vitro human retinal pigment epithelial (ARPE-19) cells cultured in high glucose media. We have consistently found the decrease in AR and PKCδ levels and changes in apoptotic factors for survival. Together, these results clearly demonstrated that hyperglycemia-induced TonEBP plays a crucial role in increasing AR and PKCδ levels and leading to apoptotic death. Our findings suggest that TonEBP reduction is an effective therapeutic strategy for diabetic retinopathy. PMID:24631337

  9. Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings.

    PubMed

    Hasanuzzaman, Mirza; Fujita, Masayuki

    2011-12-01

    In order to observe the possible regulatory role of selenium (Se) in relation to the changes in ascorbate (AsA) glutathione (GSH) levels and to the activities of antioxidant and glyoxalase pathway enzymes, rapeseed (Brassica napus) seedlings were grown in Petri dishes. A set of 10-day-old seedlings was pretreated with 25 μM Se (Sodium selenate) for 48 h. Two levels of drought stress (10% and 20% PEG) were imposed separately as well as on Se-pretreated seedlings, which were grown for another 48 h. Drought stress, at any level, caused a significant increase in GSH and glutathione disulfide (GSSG) content; however, the AsA content increased only under mild stress. The activity of ascorbate peroxidase (APX) was not affected by drought stress. The monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) activity increased only under mild stress (10% PEG). The activity of dehydroascorbate reductase (DHAR), glutathione S-transferase (GST), glutathione peroxidase (GPX), and glyoxalase I (Gly I) activity significantly increased under any level of drought stress, while catalase (CAT) and glyoxalase II (Gly II) activity decreased. A sharp increase in hydrogen peroxide (H(2)O(2)) and lipid peroxidation (MDA content) was induced by drought stress. On the other hand, Se-pretreated seedlings exposed to drought stress showed a rise in AsA and GSH content, maintained a high GSH/GSSG ratio, and evidenced increased activities of APX, DHAR, MDHAR, GR, GST, GPX, CAT, Gly I, and Gly II as compared with the drought-stressed plants without Se. These seedlings showed a concomitant decrease in GSSG content, H(2)O(2), and the level of lipid peroxidation. The results indicate that the exogenous application of Se increased the tolerance of the plants to drought-induced oxidative damage by enhancing their antioxidant defense and methylglyoxal detoxification systems. PMID:21347652

  10. The two-domain structure of 5'-adenylylsulfate (APS) reductase from Enteromorpha intestinalis is a requirement for efficient APS reductase activity.

    PubMed

    Kim, Sung-Kun; Gomes, Varinnia; Gao, Yu; Chandramouli, Kala; Johnson, Michael K; Knaff, David B; Leustek, Thomas

    2007-01-16

    5'-Adenylylsulfate (APS) reductase from Enteromorpha intestinalis (EiAPR) is composed of two domains that function together to reduce APS to sulfite. The carboxyl-terminal domain functions as a glutaredoxin that mediates the transfer of electrons from glutathione to the APS reduction site on the amino-terminal domain. To study the basis for the interdomain interaction, a heterologous system was constructed in which the C domain of EiAPR was fused to the carboxyl terminus of the APS reductase from Pseudomonas aeruginosa (PaAPR), an enzyme that normally uses thioredoxin as an electron donor and is incapable of using glutathione for this function. The hybrid enzyme, which retains the [4Fe-4S] cluster from PaAPR, was found to use both thioredoxin and glutathione as an electron donor for APS reduction. The ability to use glutathione was enhanced by the addition of Na2SO4 to the reaction buffer, a property that the hybrid enzyme shares with EiAPR. When the C domain was added as a separate component, it was much less efficient in conferring PaAPR with the ability to use glutathione as an electron donor, despite the fact that the separately expressed C domain functioned in two activities that are typical for glutaredoxins, hydroxyethyl disulfide reduction and electron donation to ribonucleotide reductase. These results suggest that the physical connection of the reductase and C domain on a single polypeptide is critical for the electron-transfer reaction. Moreover, the effect of Na2SO4 suggests that a water-ordering component of the reaction milieu is critical for the catalytic function of plant-type APS reductases by promoting the interdomain interaction.

  11. Health Aide Training Conference: Enhancing Health Services through Auxiliary Personnel; April-May 1969.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Washington, DC. Migrant Health Service.

    The proceedings of a training conference for health aides and professionals from migrant health projects and other programs in California and other states, held April 29-May 1, 1969, includes introductory notes on the objectives of the conference, and accounts of points raised in discussions on the roles, employment, training, and supervision of…

  12. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  13. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  14. DNA damage induction of ribonucleotide reductase.

    PubMed

    Elledge, S J; Davis, R W

    1989-11-01

    RNR2 encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of deoxyribonucleotides needed for DNA synthesis. RNR2 is a member of a group of genes whose activities are cell cycle regulated and that are transcriptionally induced in response to the stress of DNA damage. An RNR2-lacZ fusion was used to further characterize the regulation of RNR2 and the pathway responsible for its response to DNA damage. beta-Galactosidase activity in yeast strains containing the RNR2-lacZ fusion was inducible in response to DNA-damaging agents (UV light, 4-nitroquinoline-1-oxide [4-NQO], and methyl methanesulfonate [MMS]) and agents that block DNA replication (hydroxyurea [HU] and methotrexate) but not heat shock. When MATa cells were arrested in G1 by alpha-factor, RNR2 mRNA was still inducible by DNA damage, indicating that the observed induction can occur outside of S phase. In addition, RNR2 induction was not blocked by the presence of cycloheximide and is therefore likely to be independent of protein synthesis. A mutation, rnr2-314, was found to confer hypersensitivity to HU and increased sensitivity to MMS. In rnr2-314 mutant strains, the DNA damage stress response was found to be partially constitutive as well as hypersensitive to induction by HU but not MMS. The induction properties of RNR2 were examined in a rad4-2 mutant background; in this genetic background, RNR2 was hypersensitive to induction by 4-NQO but not MMS. Induction of the RNR2-lacZ fusion in a RAD(+) strain in response to 4-NQO was not enhanced by the presence of an equal number of rad4-2 cells that lacked the fusion, implying that the DNA damage stress response in cell autonomous. PMID:2513480

  15. 75 FR 45606 - Department of Commerce Measuring and Enhancing Services Trade Data Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... economic activity and trade in the services sector is more robust, granular and meaningful. Primary goals..., policy planning, and is relevant for trade agreements in support of increased US services exports. DOC... data. The conference will include key players from the public and private sector with the main goal...

  16. The Future Scientists and Engineers Conferences: Using Community Resources to Enhance the Science Fair

    ERIC Educational Resources Information Center

    Sinsel, Jennifer

    2008-01-01

    Conference attendees arrive at the registration desk at 9:00 a.m. sharp, eager to start their day. While standing in line, they talk excitedly about the sessions they've chosen to see, the original investigation they'll be presenting, off-site field trips for which they've registered, and the businesses scheduled to have booths in the Exhibitor's…

  17. Statin-conferred enhanced cellular resistance against bacterial pore-forming toxins in airway epithelial cells.

    PubMed

    Statt, Sarah; Ruan, Jhen-Wei; Hung, Li-Yin; Chang, Ching-Yun; Huang, Chih-Ting; Lim, Jae Hyang; Li, Jian-Dong; Wu, Reen; Kao, Cheng-Yuan

    2015-11-01

    Statins are widely used to prevent cardiovascular disease. In addition to their inhibitory effects on cholesterol synthesis, statins have beneficial effects in patients with sepsis and pneumonia, although molecular mechanisms have mostly remained unclear. Using human airway epithelial cells as a proper in vitro model, we show that prior exposure to physiological nanomolar serum concentrations of simvastatin (ranging from 10-1,000 nM) confers significant cellular resistance to the cytotoxicity of pneumolysin, a pore-forming toxin and the main virulence factor of Streptococcus pneumoniae. This protection could be demonstrated with a different statin, pravastatin, or on a different toxin, α-hemolysin. Furthermore, through the use of gene silencing, pharmacological inhibitors, immunofluorescence microscopy, and biochemical and metabolic rescue approaches, we demonstrate that the mechanism of protection conferred by simvastatin at physiological nanomolar concentrations could be different from the canonical mevalonate pathways seen in most other mechanistic studies conducted with statins at micromolar levels. All of these data are integrated into a protein synthesis-dependent, calcium-dependent model showing the interconnected pathways used by statins in airway epithelial cells to elicit an increased resistance to pore-forming toxins. This research fills large gaps in our understanding of how statins may confer host cellular protection against bacterial infections in the context of airway epithelial cells without the confounding effect from the presence of immune cells. In addition, our discovery could be potentially developed into a host-centric strategy for the adjuvant treatment of pore-forming toxin associated bacterial infections.

  18. Body fat distribution and cortisol metabolism in healthy men: enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver.

    PubMed

    Westerbacka, Jukka; Yki-Järvinen, Hannele; Vehkavaara, Satu; Häkkinen, Anna-Maija; Andrew, Ruth; Wake, Deborah J; Seckl, Jonathan R; Walker, Brian R

    2003-10-01

    In Cushing's syndrome, cortisol causes fat accumulation in specific sites most likely to be associated with insulin resistance, notably in omental adipose and also perhaps in the liver. In idiopathic obesity, cortisol-metabolizing enzymes may play a key role in determining body fat distribution. Increased regeneration of cortisol from cortisone within adipose by 11beta-hydroxysteroid dehydrogenase (HSD) type 1 (11HSD1) has been proposed to cause visceral fat accumulation, whereas decreased hepatic 11HSD1 may protect the liver from glucocorticoid excess. Increased inactivation of cortisol by 5alpha- and 5beta-reductases in the liver may drive compensatory activation of the hypothalamic-pituitary-adrenal axis, hence increasing adrenal androgens and 'android' central obesity. This study aimed to examine relationships between these enzymes and detailed measurements of body fat distribution. Twenty-five healthy men (age, 22-57 yr; body mass index, 20.6-35.6 kg/m(2)) were recruited from occupational health services. Body composition was assessed by anthropometric measurements, bioimpedance, and cross-sectional abdominal magnetic resonance imaging scans. Liver fat content was assessed by magnetic resonance imaging spectroscopy. Insulin sensitivity was measured in a euglycemic hyperinsulinemic clamp. Cortisol metabolites were measured in a 24-h urine sample by gas chromatography-mass spectrometry. In vivo hepatic 11HSD1 activity was measured by generation of plasma cortisol after an oral dose of cortisone. In vitro 11HSD1 activity and mRNA were measured in 18 subjects who consented to provide abdominal sc adipose biopsies. Indices of obesity (body mass index, whole-body percentage fat, waist/hip ratio) were associated with higher urinary excretion of 5alpha- and 5beta-reduced cortisol metabolites (for percentage fat, P < 0.05 and P < 0.01, respectively) and increased adipose 11HSD1 activity (P < 0.05). Liver fat accumulation was associated with a selective increase in

  19. A Distinct Lung-Interstitium-Resident Memory CD8(+) T Cell Subset Confers Enhanced Protection to Lower Respiratory Tract Infection.

    PubMed

    Gilchuk, Pavlo; Hill, Timothy M; Guy, Clifford; McMaster, Sean R; Boyd, Kelli L; Rabacal, Whitney A; Lu, Pengcheng; Shyr, Yu; Kohlmeier, Jacob E; Sebzda, Eric; Green, Douglas R; Joyce, Sebastian

    2016-08-16

    The nature and anatomic location of the protective memory CD8(+) T cell subset induced by intranasal vaccination remain poorly understood. We developed a vaccination model to assess the anatomic location of protective memory CD8(+) T cells and their role in lower airway infections. Memory CD8(+) T cells elicited by local intranasal, but not systemic, vaccination with an engineered non-replicative CD8(+) T cell-targeted antigen confer enhanced protection to a lethal respiratory viral challenge. This protection depends on a distinct CXCR3(LO) resident memory CD8(+) T (Trm) cell population that preferentially localizes to the pulmonary interstitium. Because they are positioned close to the mucosa, where infection occurs, interstitial Trm cells act before inflammation can recruit circulating memory CD8(+) T cells into the lung tissue. This results in a local protective immune response as early as 1 day post-infection. Hence, vaccine strategies that induce lung interstitial Trm cells may confer better protection against respiratory pathogens. PMID:27498869

  20. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis[W

    PubMed Central

    Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.

    2013-01-01

    High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768

  1. Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli.

    PubMed

    Kim, Il-Sup; Shin, Sun-Young; Kim, Young-Saeng; Kim, Hyun-Young; Yoon, Ho-Sung

    2009-11-30

    Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semiquantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to H(2)O(2), menadione, and heavy metal (CdCl(2), ZnCl(2) and AlCl(2))-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to H(2)O(2) stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.

  2. P212A Mutant of Dihydrodaidzein Reductase Enhances (S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System

    PubMed Central

    Lee, Pyung-Gang; Kim, Joonwon; Kim, Eun-Jung; Jung, EunOk; Pandey, Bishnu Prasad

    2016-01-01

    (S)-Equol, a gut bacterial isoflavone derivative, has drawn great attention because of its potent use for relieving female postmenopausal symptoms and preventing prostate cancer. Previous studies have reported on the dietary isoflavone metabolism of several human gut bacteria and the involved enzymes for conversion of daidzein to (S)-equol. However, the anaerobic growth conditions required by the gut bacteria and the low productivity and yield of (S)-equol limit its efficient production using only natural gut bacteria. In this study, the low (S)-equol biosynthesis of gut microorganisms was overcome by cloning the four enzymes involved in the biosynthesis from Slackia isoflavoniconvertens into Escherichia coli BL21(DE3). The reaction conditions were optimized for (S)-equol production from the recombinant strain, and this recombinant system enabled the efficient conversion of 200 μM and 1 mM daidzein to (S)-equol under aerobic conditions, achieving yields of 95% and 85%, respectively. Since the biosynthesis of trans-tetrahydrodaidzein was found to be a rate-determining step for (S)-equol production, dihydrodaidzein reductase (DHDR) was subjected to rational site-directed mutagenesis. The introduction of the DHDR P212A mutation increased the (S)-equol productivity from 59.0 mg/liter/h to 69.8 mg/liter/h in the whole-cell reaction. The P212A mutation caused an increase in the (S)-dihydrodaidzein enantioselectivity by decreasing the overall activity of DHDR, resulting in undetectable activity for (R)-dihydrodaidzein, such that a combination of the DHDR P212A mutant with dihydrodaidzein racemase enabled the production of (3S,4R)-tetrahydrodaidzein with an enantioselectivity of >99%. PMID:26801575

  3. MTAP deletion confers enhanced dependency on the arginine methyltransferase PRMT5 in human cancer cells

    PubMed Central

    Kryukov, Gregory V; Wilson, Frederick H; Ruth, Jason R; Paulk, Joshiawa; Tsherniak, Aviad; Marlow, Sara E; Vazquez, Francisca; Weir, Barbara A; Fitzgerald, Mark E; Tanaka, Minoru; Bielski, Craig M; Scott, Justin M; Dennis, Courtney; Cowley, Glenn S; Boehm, Jesse S; Root, David E; Golub, Todd R; Clish, Clary B; Bradner, James E; Hahn, William C

    2016-01-01

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A. We observed increased intracellular concentrations of methylthioadenosine (MTA; the metabolite cleaved by MTAP) in cells harboring MTAP deletions. Furthermore, MTA specifically inhibited PRMT5 enzymatic activity. Administration of either MTA or a small molecule PRMT5 inhibitor showed a modest preferential impairment of cell viability for MTAP-null cancer cell lines compared to isogenic MTAP-expressing counterparts. Together, our findings reveal PRMT5 as a potential vulnerability across multiple cancer lineages augmented by a common “passenger” genomic alteration. PMID:26912360

  4. Overexpression of a Brassica campestris HSP70 in tobacco confers enhanced tolerance to heat stress.

    PubMed

    Wang, Xiaorong; Yan, Bin; Shi, Min; Zhou, Wei; Zekria, David; Wang, Huizhong; Kai, Guoyin

    2016-05-01

    Heat shock proteins (HSPs) exist extensively in eukaryotes and are conserved molecular chaperones with important contribution to plant's survival under environmental stresses. Here, the cloning and characterization of one complementary DNA (cDNA) designated as BcHSP70 from young seedlings of Brassica campestris were reported in the present work. Bioinformatic analysis revealed that BcHSP70 belongs to the plant HSP gene family and had the closest relationship with HSP70-4 from Arabidopsis thaliana. Constitutive overexpression of BcHSP70 in tobacco obviously conferred tolerance to heat stress by affecting different plant physiological parameters. In our study, transgenic tobaccos exhibited higher chlorophyll content than wild-type control when exposed to heat stress. Superoxide dismutase (SOD) and peroxidase (POD) activities, which were helpful to decrease the damage to the membrane system, were significantly higher in transformants compared to wild-type lines. Meanwhile, lower comparative electrical conductivity and malondialdehyde (MDA) content and higher proline and soluble sugar accumulation were found in transgenic tobaccos than in wild-type lines. All these above results indicated that this isolated BcHSP70 cDNA owned the ability to improve the tolerance to heat stress in transgenic tobacco, which provides helpful information and good basement to culture new robust B. campestris variety resistant to high-temperature stress by molecular breeding in the future. PMID:26298102

  5. Enhanced Accumulation of BiP in Transgenic Plants Confers Tolerance to Water Stress1

    PubMed Central

    Alvim, Fátima C.; Carolino, Sônia M.B.; Cascardo, Júlio C.M.; Nunes, Cristiano C.; Martinez, Carlos A.; Otoni, Wagner C.; Fontes, Elizabeth P.B.

    2001-01-01

    The binding protein (BiP) is an important component of endoplasmic reticulum stress response of cells. Despite extensive studies in cultured cells, a protective function of BiP against stress has not yet been demonstrated in whole multicellular organisms. Here, we have obtained transgenic tobacco (Nicotiana tabacum L. cv Havana) plants constitutively expressing elevated levels of BiP or its antisense cDNA to analyze the protective role of this endoplasmic reticulum lumenal stress protein at the whole plant level. Elevated levels of BiP in transgenic sense lines conferred tolerance to the glycosylation inhibitor tunicamycin during germination and tolerance to water deficit during plant growth. Under progressive drought, the leaf BiP levels correlated with the maintenance of the shoot turgidity and water content. The protective effect of BiP overexpression against water stress was disrupted by expression of an antisense BiP cDNA construct. Although overexpression of BiP prevented cellular dehydration, the stomatal conductance and transpiration rate in droughted sense leaves were higher than in control and antisense leaves. The rate of photosynthesis under water deficit might have caused a degree of greater osmotic adjustment in sense leaves because it remained unaffected during water deprivation, which was in marked contrast with the severe drought-induced decrease in the CO2 assimilation in control and antisense leaves. In antisense plants, the water stress stimulation of the antioxidative defenses was higher than in control plants, whereas in droughted sense leaves an induction of superoxide dismutase activity was not observed. These results suggest that overexpression of BiP in plants may prevent endogenous oxidative stress. PMID:11457955

  6. MED13-dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver

    PubMed Central

    Baskin, Kedryn K; Grueter, Chad E; Kusminski, Christine M; Holland, William L; Bookout, Angie L; Satapati, Santosh; Kong, Y Megan; Burgess, Shawn C; Malloy, Craig R; Scherer, Philipp E; Newgard, Christopher B; Bassel-Duby, Rhonda; Olson, Eric N

    2014-01-01

    The heart requires a continuous supply of energy but has little capacity for energy storage and thus relies on exogenous metabolic sources. We previously showed that cardiac MED13 modulates systemic energy homeostasis in mice. Here, we sought to define the extra-cardiac tissue(s) that respond to cardiac MED13 signaling. We show that cardiac overexpression of MED13 in transgenic (MED13cTg) mice confers a lean phenotype that is associated with increased lipid uptake, beta-oxidation and mitochondrial content in white adipose tissue (WAT) and liver. Cardiac expression of MED13 decreases metabolic gene expression in the heart but enhances them in WAT. Although exhibiting increased energy expenditure in the fed state, MED13cTg mice metabolically adapt to fasting. Furthermore, MED13cTg hearts oxidize fuel that is readily available, rendering them more efficient in the fed state. Parabiosis experiments in which circulations of wild-type and MED13cTg mice are joined, reveal that circulating factor(s) in MED13cTg mice promote enhanced metabolism and leanness. These findings demonstrate that MED13 acts within the heart to promote systemic energy expenditure in extra-cardiac energy depots and point to an unexplored metabolic communication system between the heart and other tissues. See also: M Nakamura & J Sadoshima (December 2014) PMID:25422356

  7. Enhanced expression of dihydrofolate reductase by bovine kidney epithelial cells results in altered cell morphology, IGF-I responsiveness, and IGF binding protein-3 expression.

    PubMed

    Cohick, W S; Clemmons, D R

    1994-10-01

    The kidney epithelial cell line (MDBK) secretes primarily insulin-like growth factor binding protein (IGFBP)-2 under basal conditions, but exposure to forskolin decreases the synthesis of and induces IGFBP-3. Since IGFBP-3 has been shown to both potentiate and inhibit insulin-like growth factor (IGF) bioactivity, MDBK cells were transfected with an expression vector containing bovine IGFBP-3 cDNA and the dihydrofolate reductase (DHFR) gene as a selectable marker, with the goal of obtaining an epithelial cell line which constitutively secreted IGFBP-3. Stable clones which secreted greater than 100 ng/ml of IGFBP-3 were obtained and designated MDBKpMONBP-3. Northern blotting indicated that endogenous IGFBP-3 mRNA, which was undetectable in wild-type (WT) MDBK cells, was expressed in MDBKpMONBP-3 cells while the IGFBP-3 transgene did not appear to be expressed. DHFR mRNA transcripts were also expressed by MDBKp-MONBP-3 cells, whereas these transcripts were not detected in WT MDBK cells, suggesting that gene amplification of DHFR may have allowed cells to survive in methotrexate (MTX) without taking up the expression vector. In addition to the altered pattern of IGFBP-3 secretion, a marked alteration in cell morphology was observed. MDBKpMONBP-3 cells grew in distinct islands and exhibited dome formation (a characteristic of differentiated epithelial cells) whereas the WT cells did not. The alterations in morphology and IGFBP-3 expression were irreversible, since MDBKpMONBP-3 cells failed to revert to the WT phenotype upon removal of MTX and dialyzed serum. Since vectorial secretion of proteins is often associated with epithelial cell differentiation, cells were plated on tissue culture inserts which allowed conditioned media (CM) to be collected from both the apical and basal surfaces of confluent monolayers. Release of IGFBP-2 was approximately equal from apical and basal surfaces in WT MDBK cells. In contrast, release of both IGFBP-2 and IGFBP-3 was greater (3

  8. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    PubMed Central

    Wei, Peipei; Wang, Longchao; Liu, Ailin; Yu, Bingjun; Lam, Hon-Ming

    2016-01-01

    The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-), on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl), enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress. PMID:27504114

  9. Loss of Dfg5 glycosylphosphatidylinositol-anchored membrane protein confers enhanced heat tolerance in Saccharomyces cerevisiae.

    PubMed

    Nasution, Olviyani; Lee, Jaok; Srinivasa, Kavitha; Choi, In-Geol; Lee, Young Mi; Kim, Eunjung; Choi, Wonja; Kim, Wankee

    2015-08-01

    The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively. Of the 23 down-regulated genes, 11 of 13 viable deletion mutants were identified to be tolerant to heat, suggesting that the down-regulation of those genes might have contributed to the enhanced heat tolerance in dfg5Δ. Deletion of DFG5 caused slight activation of mitogen-activated protein kinases Hog1 in the high-osmolarity glycerol pathway and Slt2 in the cell wall integrity pathway. Therefore, a model is proposed on the signal transduction pathways associated with deletion of DFG5 upon heat stress.

  10. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean.

    PubMed

    Wei, Peipei; Wang, Longchao; Liu, Ailin; Yu, Bingjun; Lam, Hon-Ming

    2016-01-01

    The family of chloride channel proteins that mediate Cl(-) transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl(-) homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl(-)), on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl(-)/H(+) antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl(-) accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl(-) in their roots and transferred less Cl(-) to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl), enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl(-) stress. PMID:27504114

  11. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    PubMed

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. PMID:27139585

  12. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields

    PubMed Central

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-01-01

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study. PMID:24988911

  13. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease.

    PubMed

    Namukwaya, B; Tripathi, L; Tripathi, J N; Arinaitwe, G; Mukasa, S B; Tushemereirwe, W K

    2012-08-01

    Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pv. musacearum, is one of the most important diseases of banana (Musa sp.) and currently considered as the biggest threat to banana production in Great Lakes region of East and Central Africa. The pathogen is highly contagious and its spread has endangered the livelihood of millions of farmers who rely on banana for food and income. The development of disease resistant banana cultivars remains a high priority since farmers are reluctant to employ labor-intensive disease control measures and there is no host plant resistance among banana cultivars. In this study, we demonstrate that BXW can be efficiently controlled using transgenic technology. Transgenic bananas expressing the plant ferredoxin-like protein (Pflp) gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of banana. These transgenic lines were characterized by molecular analysis. After challenge with X. campestris pv. musacearum transgenic lines showed high resistance. About 67% of transgenic lines evaluated were completely resistant to BXW. These transgenic lines did not show any disease symptoms after artificial inoculation of in vitro plants under laboratory conditions as well as potted plants in the screen-house, whereas non-transgenic control plants showed severe symptoms resulting in complete wilting. This study confirms that expression of the Pflp gene in banana results in enhanced resistance to BXW. This transgenic technology can provide a timely solution to the BXW pandemic.

  14. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  15. Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae.

    PubMed

    Kim, Hyun-Soo; Kim, Na-Rae; Kim, Wankee; Choi, Wonja

    2012-07-01

    Furfural is one of the major inhibitors generated during sugar production from cellulosic materials and, as an aldehyde, inhibits various cellular activities of microorganisms used, leading to prolonged lag time during ethanologenic fermentation. Since Saccharomyces cerevisiae strains tolerant to furfural are of great economic benefit in producing bioethanol, much effort to obtain more efficient strains continues to be made. In this study, we examined the furfural tolerance of transposon mutant strains (Tn 1-5) with enhanced ethanol tolerance and found that one of them (Tn 2), in which SSK2 is downregulated at the transcriptional level, displayed improved furfural tolerance. Such phenotype was abolished by complementation of the entire open reading frame of SSK2, which encodes a mitogen-activated protein (MAP) kinase kinase kinase of the high osmolarity glycerol (HOG) signaling pathway, suggesting an inhibitory effect of SSK2 in coping with furfural stress. Tn 2 showed a significant decrease in the intracellular level of reactive oxygen species (ROS) and early and high activation of Hog1p, a MAP kinase integral to the HOG pathway in response to furfural. The transcriptional levels of CTT1 and GLR1, two of known Hog1p downstream target genes whose protein products are involved in reducing ROS, were increased by 43 % and 56 % respectively compared with a control strain, probably resulting in the ROS decrease. Tn 2 also showed a shortened lag time during fermentation in the presence of furfural, resulting from efficient conversion of furfural to non-toxic (or less toxic) furfuryl alcohol. Taken together, the enhanced furfural tolerance of Tn 2 is suggested to be conferred by the combined effect of an early event of less ROS accumulation and a late event of efficient detoxification of furfural.

  16. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  17. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity.

    PubMed Central

    Nishikawa, R; Ji, X D; Harmon, R C; Lazar, C S; Gill, G N; Cavenee, W K; Huang, H J

    1994-01-01

    The development and neoplastic progression of human astrocytic tumors appears to result through an accumulation of genetic alterations occurring in a relatively defined order. One such alteration is amplification of the epidermal growth factor receptor (EGFR) gene. This episomal amplification occurs in 40-50% of glioblastomas, which also normally express endogenous receptors. Moreover, a significant fraction of amplified genes are rearranged to specifically eliminate a DNA fragment containing exons 2-7 of the gene, resulting in an in-frame deletion of 801 bp of the coding sequence of the extracellular domain. Here we used retroviral transfer of such a mutant receptor (de 2-7 EGFR) into glioblastoma cells expressing normal endogenous receptors to test whether the mutant receptor was able to augment their growth and malignancy. Western blotting analysis showed that these cells expressed endogenous EGFR of 170 kDa as well as the exogenous de 2-7 EGFR of 140-155 kDa. Although holo-EGFRs were phosphorylated on tyrosine residues only after exposure of the cells to ligand, de 2-7 EGFRs were constitutively phosphorylated. In tissue culture neither addition of EGF nor expression of the mutant EGFR affected the rate of cell growth. However, when cells expressing mutant EGFR were implanted into nude mice subcutaneously or intracerebrally, tumorigenic capacity was greatly enhanced. These results suggest that a tumor-specific alteration of the EGFR plays a significant role in tumor progression perhaps by influencing interactions of tumor cells with their microenvironment in ways not easily assayed in vitro. Images PMID:8052651

  18. Conference Summary

    NASA Technical Reports Server (NTRS)

    Harrington, James L., Jr.

    2000-01-01

    Celebrations and special events were in order this year as the Minority University-Space Interdisciplinary Network (MU-SPIN) Program and NASA's Minority University Research and Education Division (MURED) both reached their 10th anniversaries. In honor of this occasion, the 2000 Annual Users' Conference held at Morris Brown College (MBC) in Atlanta, Georgia, September 11-15, 2000, was the first to be jointly hosted by MU-SPIN and MURED. It was particularly fitting that this anniversary should fall in the year 2000. The start of the new millennium propelled us to push bold new ideas and renew our commitment to minority university participation in all areas of NASA. With the theme 'Celebrating Our Tenth Year With Our Eyes on the Prize,' the conference provided a national forum for showcasing successful MU-SPIN and MURED Program (MUREP) experiences to enhance faculty/student development in areas of scientific and technical research and education. Our NASA-relevant conference agenda resulted in a record-breaking 220 registered attendees. Using feedback from past participants, we designed a track of student activities closely tailored to their interests. The resulting showcase of technical assistance and best practices set a new standard for our conferences in the years to come. This year's poster session was our largest ever, with over 50 presentations from students, faculty, and teachers. Posters covered a broad range of NASA activities from 'A Study of the Spiral Galaxy M101' to 'Network Cabling Characteristics.'

  19. Enhancing Equity and Accountability through Smaller Learning Communities in High Schools. Conference Proceedings (Houston, Texas, March 22-23, 2002).

    ERIC Educational Resources Information Center

    Buechler, Mark

    For its sixth national conference, a national collaboration in support of school reform sharpened its focus by asking Houston Independent School District (HISD) to host the conference and serve as a "case study." HISD was an ideal subject because of a long history of addressing statewide standards-based reform and engaging in multiple reform…

  20. The Bordetella pertussis Bps polysaccharide enhances lung colonization by conferring protection from complement-mediated killing.

    PubMed

    Ganguly, Tridib; Johnson, John B; Kock, Nancy D; Parks, Griffith D; Deora, Rajendar

    2014-07-01

    Bordetella pertussis is a human-restricted Gram-negative bacterial pathogen that causes whooping cough or pertussis. Pertussis is the leading vaccine preventable disease that is resurging in the USA and other parts of the developed world. There is an incomplete understanding of the mechanisms by which B. pertussis evades killing and clearance by the complement system, a first line of host innate immune defence. The present study examined the role of the Bps polysaccharide to resist complement activity in vitro and in the mouse respiratory tract. The isogenic bps mutant strain containing a large non-polar in-frame deletion of the bpsA-D locus was more sensitive to serum and complement mediated killing than the WT strain. As determined by Western blotting, flow cytometry and electron microscopic studies, the heightened sensitivity of the mutant strain was due to enhanced deposition of complement proteins and the formation of membrane attack complex, the end-product of complement activation. Bps was sufficient to confer complement resistance as evidenced by a Bps-expressing Escherichia coli being protected by serum killing. Additionally, Western blotting and flow cytometry assays revealed that Bps inhibited the deposition of complement proteins independent of other B. pertussis factors. The bps mutant strain colonized the lungs of complement-deficient mice at higher levels than that observed in C57Bl/6 mice. These results reveal a previously unknown interaction between Bps and the complement system in controlling B. pertussis colonization of the respiratory tract. These findings also make Bps a potential target for the prevention and therapy of whooping cough.

  1. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  2. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  3. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... gene provides instructions for making an enzyme called steroid 5-alpha reductase 2. This enzyme is involved ... external genitalia. Mutations in the SRD5A2 gene prevent steroid 5-alpha reductase 2 from effectively converting testosterone ...

  4. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function.

    PubMed

    Petrash, J M; Tarle, I; Wilson, D K; Quiocho, F A

    1994-08-01

    Enhanced metabolism of glucose via the polyol pathway may play an important role in the pathogenesis of diabetic retinopathy, neuropathy, and nephropathy. Aldose reductase catalyzes the NADPH-dependent conversion of glucose to sorbitol, the first step in the polyol pathway. Interruption of the polyol pathway by inhibition of aldose reductase holds considerable promise as a therapeutic measure to prevent or delay the onset and severity of these late complications of diabetes. Dramatic advances in our understanding of the molecular biology, enzymology, and three-dimensional structure of aldose reductase have occurred in recent years, providing new and challenging insights into the enzyme's catalytic mechanism. Recent developments in structure determination of aldose reductase and the implications for evaluation and development of aldose reductase inhibitors are summarized. PMID:8039602

  5. Visual Literacy--Enhancing Human Potential. Readings from the 15th Annual Conference of the International Visual Literacy Association.

    ERIC Educational Resources Information Center

    Walker, Alice D., Ed.; And Others

    This document includes 46 papers presented at the International Visual Literacy Association Conference on topics ranging from prehistoric cave paintings to technology of the future. Major sections are devoted to research and theory, education, computer technology, and phototherapy. Emphasis is on increased understanding of opportunities available…

  6. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells | Office of Cancer Genomics

    Cancer.gov

    The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.

  7. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  8. The 5 alpha-reductase inhibitory components from heartwood of Artocarpus incisus: structure-activity investigations.

    PubMed

    Shimizu, K; Fukuda, M; Kondo, R; Sakai, K

    2000-02-01

    The methanol extract of heartwood of Artocarpus incisus showed potent 5 alpha-reductase inhibitory activity. We investigated the 5 alpha-reductase inhibitory effects of nine compounds isolated from A. incisus. Chlorophorin (IC50 = 37 microM) and artocarpin (IC50 = 85 microM) showed more potent inhibitory effects than did alpha-linolenic acid, which is known as a naturally occurring potent inhibitor. Structure-activity investigations suggested that the presence of an isoprene substituent (prenyl and geranyl) would enhance 5 alpha-reductase inhibitory effects.

  9. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    PubMed

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target.

  10. Ribonucleotide Reductase-- a Radical Enzyme

    NASA Astrophysics Data System (ADS)

    Reichard, Peter; Ehrenberg, Anders

    1983-08-01

    Ribonucleotide reductases catalyze the enzymatic formation of deoxyribonucleotides, an obligatory step in DNA synthesis. The native form of the enzyme from Escherichia coli or from mammalian sources contains as part of its polypeptide structure a free tyrosyl radical, stabilized by an iron center. The radical participates in all probability in the catalytic process during the substitution of the hydroxyl group at C-2 of ribose by a hydrogen atom. A second, inactive form of the E. coli reductase lacks the tyrosyl radical. Extracts from E. coli contain activities that interconvert the two forms. The tyrosyl radical is introduced in the presence of oxygen, while anaerobiosis favors its removal, suggesting a regulatory role in DNA synthesis for oxygen.

  11. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  12. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    PubMed Central

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  13. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  14. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.).

    PubMed

    Mallikarjuna, Garladinne; Mallikarjuna, Kokkanti; Reddy, M K; Kaul, Tanushri

    2011-08-01

    Stress responsive transcriptional regulation is an adaptive strategy of plants that alleviates the adverse effects of environmental stresses. The ectopic overexpression of Dehydration-Responsive Element Binding transcription factors (DREBs) either in homologous or in heterologous plants improved stress tolerance indicating the DRE/DREB regulon is conserved across plants. We developed 30 transgenic T(0) rice plants overexpressing OsDREB2A which were devoid of any growth penalty or phenotypic abnormalities during stressed or non-stressed conditions. Integration of T-DNA in the rice genome and stress inducible overexpression of OsDREB2A had occurred in these transgenic lines. Functional analyses of T(1)-3 and T(1)-10 lines revealed significant tolerance to osmotic, salt and dehydration stresses during simulated stress conditions with enhanced growth performance as compared to wild type. OsDREB2A, thus, confers stress tolerance in homologous rice system that failed in the heterologous Arabidopsis system earlier.

  15. Mutations in Nonessential eIF3k and eIF3l Genes Confer Lifespan Extension and Enhanced Resistance to ER Stress in Caenorhabditis elegans

    PubMed Central

    Reddy, Kirthi C.; Droste, Rita; Kim, Dennis H.

    2016-01-01

    The translation initiation factor eIF3 is a multi-subunit protein complex that coordinates the assembly of the 43S pre-initiation complex in eukaryotes. Prior studies have demonstrated that not all subunits of eIF3 are essential for the initiation of translation, suggesting that some subunits may serve regulatory roles. Here, we show that loss-of-function mutations in the genes encoding the conserved eIF3k and eIF3l subunits of the translation initiation complex eIF3 result in a 40% extension in lifespan and enhanced resistance to endoplasmic reticulum (ER) stress in Caenorhabditis elegans. In contrast to previously described mutations in genes encoding translation initiation components that confer lifespan extension in C. elegans, loss-of-function mutations in eif-3.K or eif-3.L are viable, and mutants show normal rates of growth and development, and have wild-type levels of bulk protein synthesis. Lifespan extension resulting from EIF-3.K or EIF-3.L deficiency is suppressed by a mutation in the Forkhead family transcription factor DAF-16. Mutations in eif-3.K or eif-3.L also confer enhanced resistance to ER stress, independent of IRE-1-XBP-1, ATF-6, and PEK-1, and independent of DAF-16. Our data suggest a pivotal functional role for conserved eIF3k and eIF3l accessory subunits of eIF3 in the regulation of cellular and organismal responses to ER stress and aging. PMID:27690135

  16. Involvement of nitrate reductase in auxin-induced NO synthesis

    PubMed Central

    Erdei, L

    2008-01-01

    It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (NG-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation. PMID:19704423

  17. Involvement of nitrate reductase in auxin-induced NO synthesis.

    PubMed

    Kolbert, Zsuzsanna; Erdei, L

    2008-11-01

    It is well known for a long time, that nitric oxide (NO) functions in variable physiological and developmental processes in plants, however the source of this signaling molecule in the diverse plant responses is very obscure.1 Although existance of nitric oxide sythase (NOS) in plants is still questionable, LNMMA (N(G)-monomethyl-L-arginine)-sensitive NO generation was observed in different plant species.2,3 In addition, nitrate reductase (NR) is confirmed to have a major role as source of NO.4,5 This multifaced molecule acts also in auxin-induced lateral root (LR) formation, since exogenous auxin enhanced NO levels in regions of Arabidopsis LR initiatives. Our results pointed out the involvement of nitrate reductase enzyme in auxin-induced NO formation. In this addendum, we speculate on auxin-induced NO production in lateral root primordial formation. PMID:19704423

  18. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  19. Malate Synthesis and Secretion Mediated by a Manganese-Enhanced Malate Dehydrogenase Confers Superior Manganese Tolerance in Stylosanthes guianensis1

    PubMed Central

    Chen, Zhijian; Sun, Lili; Liu, Pandao; Liu, Guodao; Tian, Jiang; Liao, Hong

    2015-01-01

    Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected by a high Mn toxicity threshold. Furthermore, genetic variation of Mn tolerance was evaluated using two S. guianensis genotypes, which revealed that the Fine-stem genotype had higher Mn tolerance than the TPRC2001-1 genotype, as exhibited through less reduction in dry weight under excess Mn, and accompanied by lower internal Mn concentrations. Interestingly, Mn-stimulated increases in malate concentrations and exudation rates were observed only in the Fine-stem genotype. Proteomic analysis of Fine-stem roots revealed that S. guianensis Malate Dehydrogenase1 (SgMDH1) accumulated in response to Mn toxicity. Western-blot and quantitative PCR analyses showed that Mn toxicity resulted in increased SgMDH1 accumulation only in Fine-stem roots, but not in TPRC2001-1. The function of SgMDH1-mediated malate synthesis was verified through in vitro biochemical analysis of SgMDH1 activities against oxaloacetate, as well as in vivo increased malate concentrations in yeast (Saccharomyces cerevisiae), soybean (Glycine max) hairy roots, and Arabidopsis (Arabidopsis thaliana) with SgMDH1 overexpression. Furthermore, SgMDH1 overexpression conferred Mn tolerance in Arabidopsis, which was accompanied by increased malate exudation and reduced plant Mn concentrations, suggesting that secreted malate could alleviate Mn toxicity in plants. Taken together, we conclude that the superior Mn tolerance of S. guianensis is achieved by coordination of internal and external Mn detoxification through malate synthesis and exudation, which is regulated by SgMDH1 at both transcription and protein levels. PMID:25378694

  20. Enhancement by lithium of cAMP-induced CRE/CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain

    PubMed Central

    Böer, Ulrike; Eglins, Julia; Krause, Doris; Schnell, Susanne; Schöfl, Christof; Knepel, Willhart

    2007-01-01

    The molecular mechanism of the action of lithium salts in the treatment of bipolar disorder is not well understood. As their therapeutic action requires chronic treatment, adaptive neuronal processes are suggested to be involved. The molecular basis of this are changes in gene expression regulated by transcription factors such as CREB (cAMP-response-element-binding protein). CREB contains a transactivation domain, in which Ser119 is phosphorylated upon activation, and a bZip (basic leucine zipper domain). The bZip is involved in CREB dimerization and DNA-binding, but also contributes to CREB transactivation by recruiting the coactivator TORC (transducer of regulated CREB). In the present study, the effect of lithium on CRE (cAMP response element)/CREB-directed gene transcription was investigated. Electrically excitable cells were transfected with CRE/CREB-driven luciferase reporter genes. LiCl (6 mM or higher) induced an up to 4.7-fold increase in 8-bromo-cAMP-stimulated CRE/CREB-directed transcription. This increase was not due to enhanced Ser119 phosphorylation or DNA-binding of CREB. Also, the known targets inositol monophosphatase and GSK3β (glycogen-synthase-kinase 3β) were not involved as specific GSK3β inhibitors and inositol replenishment did not mimic and abolish respectively the effect of lithium. However, lithium no longer enhanced CREB activity when the CREB-bZip was deleted or the TORC-binding site inside the CREB-bZip was specifically mutated (CREB-R300A). Otherwise, TORC overexpression conferred lithium responsiveness on CREB-bZip or the CRE-containing truncated rat somatostatin promoter. This indicates that lithium enhances cAMP-induced CRE/CREB-directed transcription, conferred by TORC on the CREB-bZip. We thus support the hypothesis that lithium salts modulate CRE/CREB-dependent gene transcription and suggest the CREB coactivator TORC as a new molecular target of lithium. PMID:17696880

  1. Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 Confers Drought Tolerance in Transgenic Rice without Yield Penalty1[W][OA

    PubMed Central

    Yu, Linhui; Chen, Xi; Wang, Zhen; Wang, Shimei; Wang, Yuping; Zhu, Qisheng; Li, Shigui; Xiang, Chengbin

    2013-01-01

    Enhancing drought tolerance without yield decrease has been a great challenge in crop improvement. Here, we report the Arabidopsis (Arabidopsis thaliana) homodomain-leucine zipper transcription factor Enhanced Drought Tolerance/HOMEODOMAIN GLABROUS11 (EDT1/HDG11) was able to confer drought tolerance and increase grain yield in transgenic rice (Oryza sativa) plants. The improved drought tolerance was associated with a more extensive root system, reduced stomatal density, and higher water use efficiency. The transgenic rice plants also had higher levels of abscisic acid, proline, soluble sugar, and reactive oxygen species-scavenging enzyme activities during stress treatments. The increased grain yield of the transgenic rice was contributed by improved seed setting, larger panicle, and more tillers as well as increased photosynthetic capacity. Digital gene expression analysis indicated that AtEDT1/HDG11 had a significant influence on gene expression profile in rice, which was consistent with the observed phenotypes of transgenic rice plants. Our study shows that AtEDT1/HDG11 can improve both stress tolerance and grain yield in rice, demonstrating the efficacy of AtEDT1/HDG11 in crop improvement. PMID:23735506

  2. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    PubMed

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants.

  3. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    PubMed

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants. PMID:26284097

  4. Epothilone B Confers Radiation Dose Enhancement in DAB2IP Gene Knock-Down Radioresistant Prostate Cancer Cells

    SciTech Connect

    Kong Zhaolu; Raghavan, Pavithra; Xie Daxing; Boike, Thomas; Burma, Sandeep; Chen, David; Chakraborty, Arup; Hsieh, Jer-Tsong; Saha, Debabrata

    2010-11-15

    Purpose: In metastatic prostate cancer, DOC-2/DAB2 interactive protein (DAB2IP) is often downregulated and has been reported as a possible prognostic marker to predict the risk of aggressive prostate cancer (PCa). Our preliminary results show that DAB2IP-deficient PCa cells are radioresistant. In this study, we investigated the anticancer drug Epothilone B (EpoB) for the modulation of radiosensitivity in DAB2IP-deficient human PCa cells. Methods and Materials: We used a stable DAB2IP-knock down human PCa cell line, PC3 shDAB2IP, treated with EpoB, ionizing radiation (IR), or the combined treatment of EpoB and IR. The modulation of radiosensitivity was determined by surviving fraction, cell cycle distribution, apoptosis, and DNA double-strand break (DSB) repair. For in vivo studies, the PC3shDAB2IP xenograft model was used in athymic nude mice. Results: Treatment with EpoB at IC{sub 50} dose (33.3 nM) increased cellular radiosensitivity in the DAB2IP-deficient cell line with a dose enhancement ratio of 2.36. EpoB delayed the DSB repair kinetics after IR and augmented the induction of apoptosis in irradiated cells after G{sub 2}/M arrest. Combined treatment of EpoB and radiation enhanced tumor growth delay with an enhancement factor of 1.2. Conclusions: We have demonstrated a significant radiation dose enhancement using EpoB in DAB2IP-deficient prostate cancer cells. This radiosensitization can be attributed to delayed DSB repair, prolonged G{sub 2} block, and increased apoptosis in cells entering the cell cycle after G{sub 2}/M arrest.

  5. Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response

    PubMed Central

    Király, Lóránt; Künstler, András; Höller, Kerstin; Fattinger, Maria; Juhász, Csilla; Müller, Maria; Gullner, Gábor; Zechmann, Bernd

    2012-01-01

    Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (−S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and −S plants revealed that +S plants contained 55–132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than −S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in −S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation. PMID:22122784

  6. Overexpression of AtMYB44 Enhances Stomatal Closure to Confer Abiotic Stress Tolerance in Transgenic Arabidopsis1[C][W][OA

    PubMed Central

    Jung, Choonkyun; Seo, Jun Sung; Han, Sang Won; Koo, Yeon Jong; Kim, Chung Ho; Song, Sang Ik; Nahm, Baek Hie; Choi, Yang Do; Cheong, Jong-Joo

    2008-01-01

    AtMYB44 belongs to the R2R3 MYB subgroup 22 transcription factor family in Arabidopsis (Arabidopsis thaliana). Treatment with abscisic acid (ABA) induced AtMYB44 transcript accumulation within 30 min. The gene was also activated under various abiotic stresses, such as dehydration, low temperature, and salinity. In transgenic Arabidopsis carrying an AtMYB44 promoter-driven β-glucuronidase (GUS) construct, strong GUS activity was observed in the vasculature and leaf epidermal guard cells. Transgenic Arabidopsis overexpressing AtMYB44 is more sensitive to ABA and has a more rapid ABA-induced stomatal closure response than wild-type and atmyb44 knockout plants. Transgenic plants exhibited a reduced rate of water loss, as measured by the fresh-weight loss of detached shoots, and remarkably enhanced tolerance to drought and salt stress compared to wild-type plants. Microarray analysis and northern blots revealed that salt-induced activation of the genes that encode a group of serine/threonine protein phosphatases 2C (PP2Cs), such as ABI1, ABI2, AtPP2CA, HAB1, and HAB2, was diminished in transgenic plants overexpressing AtMYB44. By contrast, the atmyb44 knockout mutant line exhibited enhanced salt-induced expression of PP2C-encoding genes and reduced drought/salt stress tolerance compared to wild-type plants. Therefore, enhanced abiotic stress tolerance of transgenic Arabidopsis overexpressing AtMYB44 was conferred by reduced expression of genes encoding PP2Cs, which have been described as negative regulators of ABA signaling. PMID:18162593

  7. Biliverdin reductase isozymes in metabolism.

    PubMed

    O'Brien, Luke; Hosick, Peter A; John, Kezia; Stec, David E; Hinds, Terry D

    2015-04-01

    The biliverdin reductase (BVR) isozymes BVRA and BVRB are cell surface membrane receptors with pleiotropic functions. This review compares, for the first time, the structural and functional differences between the isozymes. They reduce biliverdin, a byproduct of heme catabolism, to bilirubin, display kinase activity, and BVRA, but not BVRB, can act as a transcription factor. The binding motifs present in the BVR isozymes allow a wide range of interactions with components of metabolically important signaling pathways such as the insulin receptor kinase cascades, protein kinases (PKs), and inflammatory mediators. In addition, serum bilirubin levels have been negatively associated with abdominal obesity and hypertriglyceridemia. We discuss the roles of the BVR isozymes in metabolism and their potential as therapeutic targets. PMID:25726384

  8. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N₂O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c₅₅₁ as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa₃, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  9. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  10. Relative adrenal insufficiency in mice deficient in 5α-reductase 1

    PubMed Central

    Livingstone, Dawn E W; Di Rollo, Emma M; Yang, Chenjing; Codrington, Lucy E; Mathews, John A; Kara, Madina; Hughes, Katherine A; Kenyon, Christopher J; Walker, Brian R; Andrew, Ruth

    2014-01-01

    Patients with critical illness or hepatic failure exhibit impaired cortisol responses to ACTH, a phenomenon known as ‘relative adrenal insufficiency’. A putative mechanism is that elevated bile acids inhibit inactivation of cortisol in liver by 5α-reductases type 1 and type 2 and 5β-reductase, resulting in compensatory downregulation of the hypothalamic–pituitary–adrenal axis and adrenocortical atrophy. To test the hypothesis that impaired glucocorticoid clearance can cause relative adrenal insufficiency, we investigated the consequences of 5α-reductase type 1 deficiency in mice. In adrenalectomised male mice with targeted disruption of 5α-reductase type 1, clearance of corticosterone was lower after acute or chronic (eightfold, P<0.05) administration, compared with WT control mice. In intact 5α-reductase-deficient male mice, although resting plasma corticosterone levels were maintained, corticosterone responses were impaired after ACTH administration (26% lower, P<0.05), handling stress (2.5-fold lower, P<0.05) and restraint stress (43% lower, P<0.05) compared with WT mice. mRNA levels of Nr3c1 (glucocorticoid receptor), Crh and Avp in pituitary or hypothalamus were altered, consistent with enhanced negative feedback. These findings confirm that impaired peripheral clearance of glucocorticoids can cause ‘relative adrenal insufficiency’ in mice, an observation with important implications for patients with critical illness or hepatic failure, and for patients receiving 5α-reductase inhibitors for prostatic disease. PMID:24872577

  11. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Zhang, Hongying; Qian, Xueya; Li, Ang; Zhao, Guangyao; Jing, Ruilian

    2012-01-01

    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2–GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops. PMID:22330896

  12. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis.

    PubMed

    Mao, Xinguo; Zhang, Hongying; Qian, Xueya; Li, Ang; Zhao, Guangyao; Jing, Ruilian

    2012-05-01

    Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was characterized in Arabidopsis thaliana. A fragment of TaNAC2 was obtained from suppression subtractive cDNA libraries of wheat treated with polyethylene glycol, and its full-length cDNA was obtained by searching a full-length wheat cDNA library. Gene expression profiles indicated that TaNAC2 was involved in response to drought, salt, cold, and abscisic acid treatment. To test its function, transgenic Arabidopsis lines overexpressing TaNAC2-GFP controlled by the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaNAC2 resulted in enhanced tolerances to drought, salt, and freezing stresses in Arabidopsis, which were simultaneously demonstrated by enhanced expression of abiotic stress-response genes and several physiological indices. Therefore, TaNAC2 has potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops.

  13. An evolutionarily conserved Myostatin proximal promoter/enhancer confers basal levels of transcription and spatial specificity in vivo.

    PubMed

    Grade, Carla Vermeulen Carvalho; Salerno, Mônica Senna; Schubert, Frank R; Dietrich, Susanne; Alvares, Lúcia Elvira

    2009-10-01

    Myostatin (Mstn) is a negative regulator of skeletal muscle mass, and Mstn mutations are responsible for the double muscling phenotype observed in many animal species. Moreover, Mstn is a positive regulator of adult muscle stem cell (satellite cell) quiescence, and hence, Mstn is being targeted in therapeutic approaches to muscle diseases. In order to better understand the mechanisms underlying Mstn regulation, we searched for the gene's proximal enhancer and promoter elements, using an evolutionary approach. We identified a 260-bp-long, evolutionary conserved region upstream of tetrapod Mstn and teleost mstn b genes. This region contains binding sites for TATA binding protein, Meis1, NF-Y, and for CREB family members, suggesting the involvement of cAMP in Myostatin regulation. The conserved fragment was able to drive reporter gene expression in C2C12 cells in vitro and in chicken somites in vivo; both normally express Mstn. In contrast, the reporter construct remained silent in the avian neural tube that normally does not express Mstn. This suggests that the identified element serves as a minimal promoter, harboring some spatial specificity. Finally, using bioinformatic approaches, we identified additional genes in the human genome associated with sequences similar to the Mstn proximal promoter/enhancer. Among them are genes important for myogenesis. This suggests that Mstn and these genes may form a synexpression group, regulated by a common signaling pathway.

  14. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize.

    PubMed

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-05-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding.

  15. Overexpression of OsEm1 encoding a group I LEA protein confers enhanced drought tolerance in rice.

    PubMed

    Yu, Jing; Lai, Yongmin; Wu, Xi; Wu, Gang; Guo, Changkui

    2016-09-16

    Drought is the greatest threat for crops, including rice. In an effort to identify rice genes responsible for drought tolerance, a drought-responsive gene OsEm1 encoding a group I LEA protein, was chosen for this study. OsEm1 was shown at vegetative stages to be responsive to various abiotic stresses, including drought, salt, cold and the hormone ABA. In this study, we generated OsEm1-overexpressing rice plants to explore the function of OsEm1 under drought conditions. Overexpression of OsEm1 increases ABA sensitivity and enhances osmotic tolerance in rice. Compared with wild type, the OsEm1-overexpressing rice plants showed enhanced plant survival ratio at the vegetative stage; moreover, over expression of OsEm1 in rice increased the expression of other LEA genes, including RAB16A, RAB16C, RAB21, and LEA3, likely protecting organ integrity against harsh environments. Interestingly, the elevated level of OsEm1 had no different phenotype compared with wild type under normal condition. Our findings suggest that OsEm1 is a positive regulator of drought tolerance and is potentially promising for engineering drought tolerance in rice. PMID:27524243

  16. Enhancing Scientific Collaboration, Transparency, and Public Access: Utilizing the Second Life Platform to Convene a Scientific Conference in 3-D Virtual Space

    NASA Astrophysics Data System (ADS)

    McGee, B. W.

    2006-12-01

    Recent studies reveal a general mistrust of science as well as a distorted perception of the scientific method by the public at-large. Concurrently, the number of science undergraduate and graduate students is in decline. By taking advantage of emergent technologies not only for direct public outreach but also to enhance public accessibility to the science process, it may be possible to both begin a reversal of popular scientific misconceptions and to engage a new generation of scientists. The Second Life platform is a 3-D virtual world produced and operated by Linden Research, Inc., a privately owned company instituted to develop new forms of immersive entertainment. Free and downloadable to the public, Second Life offers an imbedded physics engine, streaming audio and video capability, and unlike other "multiplayer" software, the objects and inhabitants of Second Life are entirely designed and created by its users, providing an open-ended experience without the structure of a traditional video game. Already, educational institutions, virtual museums, and real-world businesses are utilizing Second Life for teleconferencing, pre-visualization, and distance education, as well as to conduct traditional business. However, the untapped potential of Second Life lies in its versatility, where the limitations of traditional scientific meeting venues do not exist, and attendees need not be restricted by prohibitive travel costs. It will be shown that the Second Life system enables scientific authors and presenters at a "virtual conference" to display figures and images at full resolution, employ audio-visual content typically not available to conference organizers, and to perform demonstrations or premier three-dimensional renderings of objects, processes, or information. An enhanced presentation like those possible with Second Life would be more engaging to non- scientists, and such an event would be accessible to the general users of Second Life, who could have an

  17. Modulating hemoglobin nitrite reductase activity through allostery: a mathematical model.

    PubMed

    Rong, Zimei; Alayash, Abdu I; Wilson, Michael T; Cooper, Chris E

    2013-11-30

    The production of nitric oxide by hemoglobin (Hb) has been proposed to play a major role in the control of blood flow. Because of the allosteric nature of hemoglobin, the nitrite reductase activity is a complex function of oxygen partial pressure PO2. We have previous developed a model to obtain the micro rate constants for nitrite reduction by R state (kR) and T state (kT) hemoglobin in terms of the experimental maximal macro rate constant kNmax and the corresponding oxygen concentration PO2max. However, because of the intrinsic difficulty in obtaining accurate macro rate constant kN, from available experiments, we have developed an alternative method to determine the micro reaction rate constants (kR and kT) by fitting the simulated macro reaction rate curve (kN versus PO2) to the experimental data. We then use our model to analyze the effect of pH (Bohr Effect) and blood ageing on the nitrite reductase activity, showing that the fall of bisphosphoglycerate (BPG) during red cell storage leads to increase NO production. Our model can have useful predictive and explanatory power. For example, the previously described enhanced nitrite reductase activity of ovine fetal Hb, in comparison to the adult protein, may be understood in terms of a weaker interaction with BPG and an increase in the value of kT from 0.0087M(-1)s(-1) to 0.083M(-1)s(-1).

  18. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2.

    PubMed

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg(-1), respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg(-1), or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with

  19. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2

    PubMed Central

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with increased HP

  20. Osmotic Stress Confers Enhanced Cell Integrity to Hydrostatic Pressure but Impairs Growth in Alcanivorax borkumensis SK2.

    PubMed

    Scoma, Alberto; Boon, Nico

    2016-01-01

    Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea oil-contaminated environments is negligible. Recent laboratory studies highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs). In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain Alcanivorax borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg(-1), respectively) were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg(-1), or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively), under atmospheric or increased HP (0.1 and 10 MPa). Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation) and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10 MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1 MPa in hyperosmosis-acclimated cells and at 10 MPa under isosmotic conditions. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-days incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in terms of hydrocarbon degradation was lowered by the effects of osmotic stress alone or combined with

  1. Transferring the C-terminus of the chemokine CCL21 to CCL19 confers enhanced heparin binding.

    PubMed

    Barmore, Austin J; Castex, Sally M; Gouletas, Brittany A; Griffith, Alex J; Metz, Slater W; Muelder, Nicolas G; Populin, Michael J; Sackett, David M; Schuster, Abigail M; Veldkamp, Christopher T

    2016-09-01

    Chemokines direct the migration of cells during various immune processes and are involved in many disease states. For example, CCL19 and CCL21, through activation of the CCR7 receptor, recruit dendritic cells and naïve T-cells to the secondary lymphoid organs aiding in balancing immune response and tolerance. However, CCL19 and CCL21 can also direct the metastasis of CCR7 expressing cancers. Chemokine binding to glycosaminoglycans, such as heparin, is as important to chemokine function as receptor activation. CCL21 is unique in that it contains an extended C-terminus not found in other chemokines like CCL19. Deletion of this extended C-terminus reduces CCL21's affinity for heparin and transferring the CCL21 C-terminus to CCL19 enhances heparin binding mainly through non-specific, electrostatic interactions. PMID:27338641

  2. 5 alpha-reductase deficiency without hypospadias.

    PubMed Central

    Ng, W K; Taylor, N F; Hughes, I A; Taylor, J; Ransley, P G; Grant, D B

    1990-01-01

    A boy aged 4 with penoscrotal hypospadias and his brother aged 12 with micropenis had typical changes of homozygous 5 alpha-reductase deficiency. After three injections of chorionic gonadotrophin there was a trivial rise in plasma dihydrotestosterone with a normal increase in plasma testosterone. Urine steroid chromatography showed abnormally high 5 beta: 5 alpha ratios and 5 alpha-reductase activity was appreciably reduced in genital skin fibroblasts. The results indicate that 5 alpha-reductase deficiency is not invariably associated with genital ambiguity. PMID:2248513

  3. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize

    PubMed Central

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-01-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding. PMID:27092004

  4. Molecular cloning and transcription expression of 3-dehydroecdysone 3α-reductase (3de 3α-reductase) in the different tissues and the developing stage from the silkworm, Bombyx mori L.

    PubMed

    Yang, Hua-jun; Xin, Hu-hu; Lu, Yan; Cai, Zi-zheng; Wang, Mei-xian; Chen, Rui-Ting; Liang, Shuang; Singh, Chabungbam Orville; Kim, Jong-nam; Miao, Yun-gen

    2013-10-01

    Molting in insects is regulated by molting hormones (ecdysteroids), which are also crucial to insect growth, development, and reproduction etc. The decreased ecdysteroid in titre results from enhanced ecdysteroid inactivation reactions including the formation of 3-epiecdyson under ecdysone oxidase and 3-dehydroecdysone 3α-reductase (3DE 3α-reductase). In this paper, we cloned and characterized 3-dehydroecdysone 3α-reductase (3DE 3α-reductase) in different tissues and developing stage of the silkworm, Bombyx mori L. The B. mori 3DE 3α-reductase cDNA contains an ORF 783 bp and the deduced protein sequence containing 260 amino acid residues. Analysis showed the deduced 3DE 3α-reductase belongs to SDR family, which has the NAD(P)-binding domain. Using the Escherichia coli, a high level expression of a fusion polypeptide band of approx. 33 kDa was observed. High transcription of 3DE 3α-reductase was mainly presented in the midgut and hemolymph in the third day of fifth instar larvae in silkworm. The expression of 3DE 3α-reductase at different stages of larval showed that the activity in the early instar was high, and then reduced in late instar. This is parallel to the changes of molting hormone titer in larval. 3DE 3α-reductase is key enzyme in inactivation path of ecdysteroid. The data elucidate the regulation of 3DE 3α-reductase in ecdyteroid titer of its targeting organs and the relationship between the enzyme and metamorphosis. PMID:24038161

  5. Conference Resolution

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Since the first IUPAP International Conference on Women in Physics (Paris, March 2002) and the Second Conference (Rio de Janeiro, May 2005), progress has continued in most countries and world regions to attract girls to physics and advance women into leadership roles, and many working groups have formed. The Third Conference (Seoul, October 2008), with 283 attendees from 57 countries, was dedicated to celebrating the physics achievements of women throughout the world, networking toward new international collaborations, building each participant's capacity for career success, and aiding the formation of active regional working groups to advance women in physics. Despite the progress, women remain a small minority of the physics community in most countries.

  6. Comparative hydrogen-deuterium exchange for a mesophilic vs thermophilic dihydrofolate reductase at 25 °C: identification of a single active site region with enhanced flexibility in the mesophilic protein.

    PubMed

    Oyeyemi, Olayinka A; Sours, Kevin M; Lee, Thomas; Kohen, Amnon; Resing, Katheryn A; Ahn, Natalie G; Klinman, Judith P

    2011-09-27

    The technique of hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been applied to a mesophilic (E. coli) dihydrofolate reductase under conditions that allow direct comparison to a thermophilic (B. stearothermophilus) ortholog, Ec-DHFR and Bs-DHFR, respectively. The analysis of hydrogen-deuterium exchange patterns within proteolytically derived peptides allows spatial resolution, while requiring a series of controls to compare orthologous proteins with only ca. 40% sequence identity. These controls include the determination of primary structure effects on intrinsic rate constants for HDX as well as the use of existing 3-dimensional structures to evaluate the distance of each backbone amide hydrogen to the protein surface. Only a single peptide from the Ec-DHFR is found to be substantially more flexible than the Bs-DHFR at 25 °C in a region located within the protein interior at the intersection of the cofactor and substrate-binding sites. The surrounding regions of the enzyme are either unchanged or more flexible in the thermophilic DHFR from B. stearothermophilus. The region with increased flexibility in Ec-DHFR corresponds to one of two regions previously proposed to control the enthalpic barrier for hydride transfer in Bs-DHFR [Oyeyemi et al. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 10074]. PMID:21859100

  7. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight.

    PubMed

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-09-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  8. CD4(+) T cells confer anxiolytic and antidepressant-like effects, but enhance fear memory processes in Rag2(-/-) mice.

    PubMed

    Clark, Sarah M; Soroka, Jennifer A; Song, Chang; Li, Xin; Tonelli, Leonardo H

    2016-05-01

    Accumulating evidence supports a role of T cells in behavioral stress responsiveness. Our laboratory previously reported that lymphocyte deficient Rag2(-/-) mice on a BALB/c background display resilience to maladaptive stress responses when compared with immune competent mice in the predator odor exposure (POE) paradigm, while exhibiting similar behavior in a cued fear-conditioning (FC) paradigm. In the present study, Rag2(-/-) mice on a C57BL/6 background were assessed in the same behavioral paradigms, as well as additional tests of anxiety and depressive-like behavior. Furthermore, the effects of naïve CD4(+ ) T cells were evaluated by adoptive transfer of functional cells from nonstressed, wild-type donors to Rag2(-/-) mice. Consistent with our prior results, Rag2(-/-) mice displayed an attenuated startle response after POE. Nevertheless, reconstitution of Rag2(-/-) mice with CD4(+ ) T cells did not modify startle reactivity. Additionally, in contrast with our previous findings, Rag2(-/-) mice showed attenuated fear responses in the FC paradigm compared to wild-type mice and reconstitution with CD4(+ ) T cells promoted fear learning and memory. Notably, reconstitution with CD4(+ ) T cells had anxiolytic and antidepressant-like effects in Rag2(-/-) mice that had not been previously stressed, but had no effect after POE. Taken together, our results support a role of CD4(+ ) T cells in emotionality, but also indicate that they may promote fear responses by enhancing learning and memory processes.

  9. Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

    PubMed Central

    Jabeen, Nyla; Chaudhary, Zubeda; Gulfraz, Muhammad; Rashid, Hamid; Mirza, Bushra

    2015-01-01

    This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to non-transgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3. PMID:26361473

  10. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance.

    PubMed

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2015-10-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG.

  11. A putative soybean GmsSOS1 confers enhanced salt tolerance to transgenic Arabidopsis sos1-1 mutant.

    PubMed

    Nie, Wang-Xing; Xu, Lin; Yu, Bing-Jun

    2015-01-01

    The cDNA of GmsSOS1, a putative plasma membrane Na(+)/H(+) antiporter gene isolated from Glycine max, Glycine soja, and their hybrid, was constructed into plant expression vector pCAMBIA 1300 and then transformed with Agrobacterium tumefaciens under the control of CaMV 35S promoter to Arabidopsis thaliana wild-type (WT) and mutant (atsos1-1) plants. By hygromycin resistance detection and PCR analysis, transgenic plants (WT35S:GmsSOS1 and atsos1-1 35S:GmsSOS1) were obtained. Seed germination, seedling growth, and Na(+) contents in roots and shoots were analytically compared among WT, atsos1-1 mutant, and their transgenic lines under salt stress. The results showed that when GmsSOS1 was integrated into the genome of A. thaliana, the inhibitions of salt stress on seed germination and seedling growth were all significantly improved, and enhanced salt tolerance was displayed, which may be attributed to the decrease of Na(+) absorption in roots and transportation in shoots of the transgenic lines, especially for that of atsos1-1 mutant.

  12. Reprogramming of Murine Macrophages through TLR2 Confers Viral Resistance via TRAF3-Mediated, Enhanced Interferon Production

    PubMed Central

    Perkins, Darren J.; Polumuri, Swamy K.; Pennini, Meghan E.; Lai, Wendy; Xie, Ping; Vogel, Stefanie N.

    2013-01-01

    The cell surface/endosomal Toll-like Receptors (TLRs) are instrumental in initiating immune responses to both bacteria and viruses. With the exception of TLR2, all TLRs and cytosolic RIG-I-like receptors (RLRs) with known virus-derived ligands induce type I interferons (IFNs) in macrophages or dendritic cells. Herein, we report that prior ligation of TLR2, an event previously shown to induce “homo” or “hetero” tolerance, strongly “primes” macrophages for increased Type I IFN production in response to subsequent TLR/RLR signaling. This occurs by increasing activation of the transcription factor, IFN Regulatory Factor-3 (IRF-3) that, in turn, leads to enhanced induction of IFN-β, while expression of other pro-inflammatory genes are suppressed (tolerized). In vitro or in vivo “priming” of murine macrophages with TLR2 ligands increase virus-mediated IFN induction and resistance to infection. This priming effect of TLR2 is mediated by the selective upregulation of the K63 ubiquitin ligase, TRAF3. Thus, we provide a mechanistic explanation for the observed antiviral actions of MyD88-dependent TLR2 and further define the role of TRAF3 in viral innate immunity. PMID:23853595

  13. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes.

    PubMed

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  14. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes

    PubMed Central

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  15. Validation of research trajectory 1 of an Exposome framework: Exposure to benzo(a)pyrene confers enhanced susceptibility to bacterial infection.

    PubMed

    Clark, Ryan S; Pellom, Samuel T; Booker, Burthia; Ramesh, Aramandla; Zhang, Tongwen; Shanker, Anil; Maguire, Mark; Juarez, Paul D; Patricia, Matthews-Juarez; Langston, Michael A; Lichtveld, Maureen Y; Hood, Darryl B

    2016-04-01

    The exposome provides a framework for understanding elucidation of an uncharacterized molecular mechanism conferring enhanced susceptibility of macrophage membranes to bacterial infection after exposure to the environmental contaminant benzo(a)pyrene, [B(a)P]. The fundamental requirement in activation of macrophage effector functions is the binding of immunoglobulins to Fc receptors. FcγRIIa (CD32a), a member of the Fc family of immunoreceptors with low affinity for immunoglobulin G, has been reported to bind preferentially to IgG within lipid rafts. Previous research suggested that exposure to B(a)P suppressed macrophage effector functions but the molecular mechanisms remain elusive. The goal of this study was to elucidate the mechanism(s) of B(a)P-exposure induced suppression of macrophage function by examining the resultant effects of exposure-induced insult on CD32-lipid raft interactions in the regulation of IgG binding to CD32. The results demonstrate that exposure of macrophages to B(a)P alters lipid raft integrity by decreasing membrane cholesterol 25% while increasing CD32 into non-lipid raft fractions. This robust diminution in membrane cholesterol and 30% exclusion of CD32 from lipid rafts causes a significant reduction in CD32-mediated IgG binding to suppress essential macrophage effector functions. Such exposures across the lifespan would have the potential to induce immunosuppressive endophenotypes in vulnerable populations. PMID:26765097

  16. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    PubMed Central

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  17. Plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber.

    PubMed

    Hossain, Md Motaher; Sultana, Farjana; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2014-01-01

    Plant growth-promoting fungi (PGPF) have the potential to confer several benefits to plants in terms of growth and protection against pests and pathogens. In the present study, we tested whether a PGPF isolate, Penicillium spp. GP15-1 (derived from zoysiagrass rhizospheres), stimulates growth and disease resistance in the cucumber plant. The use of the barley grain inoculum GP15-1 significantly enhanced root and shoot growth and biomass of cucumber plants. A root colonization study revealed that GP15-1 was a very rapid and efficient root colonizer and was isolated in significantly higher frequencies from the upper root parts than from the middle and lower root parts during the first 14 d of seedling growth. Inoculating the cucumber seedlings with GP15-1 significantly reduced the damping-off disease caused by Rhizoctonia solani, and the disease suppression effects of GP15-1 were considerably influenced by the inoculum potential of both GP15-1 and the pathogen. Treatment with the barley grain inoculum or a cell-free filtrate of GP15-1 increased systemic resistance against leaf infection by the anthracnose pathogen Colletotrichum orbiculare, resulting in a significant decrease in lesion number and size. Molecular and phylogenetic analyses of internal transcribed spacer sequences of the genomic DNA of GP15-1 revealed that the fungal isolate is a strain of either Penicillium neoechinulatum or Penicillium viridicatum.

  18. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.)

    PubMed Central

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet’s salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na+/H+ antiporter and H+-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na+ and K+ in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na+-toxicity for plants. PMID:26284097

  19. Genetics Home Reference: sepiapterin reductase deficiency

    MedlinePlus

    ... reductase enzyme. This enzyme is involved in the production of a molecule called tetrahydrobiopterin (also known as ... is responsible for the last step in the production of tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks ...

  20. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development. PMID:26711633

  1. Development of microfluidic devices for in situ investigation of cells using surface-enhanced Raman spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ho, Yu-Han; Galvan, Daniel D.; Yu, Qiuming

    2016-03-01

    Surface-enhanced Raman spectroscopy (SERS) has immerged as a power analytical and sensing technique for many applications in biomedical diagnosis, life sciences, food safety, and environment monitoring because of its molecular specificity and high sensitivity. The inactive Raman scattering of water molecule makes SERS a suitable tool for studying biological systems. Microfluidic devices have also attracted a tremendous interest for the aforementioned applications. By integrating SERS-active substrates with microfluidic devices, it offers a new capability for in situ investigation of biological systems, their dynamic behaviors, and response to drugs or microenvironment changes. In this work, we designed and fabricated a microfluidic device with SERS-active substrates surrounding by cell traps in microfluidic channels for in situ study of live cells using SERS. The SERS-active substrates are quasi-3D plasmonic nanostructure array (Q3D-PNA) made in h-PDMS/PMDS with physically separated gold film with nanoholes op top and gold nanodisks at the bottom of nanowells. 3D finite-difference time-domain (3D-FDTD) electromagnetic simulations were performed to design Q3D-PNAs with the strongest local electric fields (hot spots) at the top or bottom water/Au interfaces for sensitive analysis of cells and small components, respectively. The Q3D-PNAs with the hot spots on top and bottom were placed at the up and down stream of the microfluidic channel, respectively. Each Q3D-PNA pattern was surrounded with cell trapping structures. The microfluidic device was fabricated via soft lithography. We demonstrated that normal (COS-7) and cancer (HpeG2) cells were captured on the Q3D-PNAs and investigated in situ using SERS.

  2. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  3. Therapeutic targeting of GSK3β enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C

    PubMed Central

    Jiang, Yongfang; Bao, Hui; Ge, Yan; Tang, Wei; Cheng, Du; Luo, Kaizhong; Gong, Guozhong; Gong, Rujun

    2014-01-01

    Objective Impaired adaptive response to oxidative injuries is a fundamental mechanism central to the pathogenesis of chronic hepatitis C (CHC). Glycogen synthase kinase (GSK) 3β is an indispensable regulator of the oxidative stress response. However, the exact role of GSK3β in CHC is uncertain and was examined. Design GSK3β and Nrf2 signaling pathways were examined in JFH1 hepatitis C virus (HCV) infected Huh 7.5.1 hepatocytes and also in liver biopsy specimens from CHC patients. Results HCV infection elicited prominent Nrf2 antioxidant response in hepatocytes, marked by elevated expression of the Nrf2 dependent molecule heme oxygenase-1 and subsequent protection from apoptotic cell death. Inhibitory phosphorylation of GSK3β seems to be essential and sufficient for HCV induced Nrf2 response. Mechanistically, GSK3β physically associated and interacted with Nrf2 in hepatocytes. In silico analysis revealed that Nrf2 encompasses multiple GSK3β phosphorylation consensus motifs, denoting Nrf2 as a cognate substrate of GSK3β. In the presence of TGFβ1, the HCV induced GSK3β phosphorylation was blunted via a protein phosphatase 1-dependent mechanism and the cytoprotective Nrf2 response drastically impaired. Lithium, a selective inhibitor of GSK3β, counteracted the effects of TGFβ1. In liver biopsy specimens from CHC patients, the expression of phosphorylated GSK3β positively correlated with Nrf2 expression and was inversely associated with the degree of liver injury. Moreover, CHC patients who received long-term lithium carbonate therapy primarily for concomitant psychiatric disorders exhibited much less liver injury, associated with enhanced hepatic expression of Nrf2. Conclusions Inhibition of GSK3β exerts hepatoprotection in CHC possibly through its direct regulation of Nrf2 antioxidant response. PMID:24811996

  4. Plastid-Expressed Betaine Aldehyde Dehydrogenase Gene in Carrot Cultured Cells, Roots, and Leaves Confers Enhanced Salt Tolerance1

    PubMed Central

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2004-01-01

    Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93–101 μmol g−1 dry weight of β-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants. PMID:15347789

  5. A synthetic antimicrobial peptide BTD-S expressed in Arabidopsis thaliana confers enhanced resistance to Verticillium dahliae.

    PubMed

    Li, Feng; Shen, Hao; Wang, Ming; Fan, Kai; Bibi, Noreen; Ni, Mi; Yuan, Shuna; Wang, Xuede

    2016-08-01

    BTD-S is a synthetic non-cyclic θ-defensin derivative which was previously designed in our laboratory based on baboon θ-defensins (BTDs). It shows robust antimicrobial activity against economically important phytopathogen, Verticillium dahliae. Here, we deduced the coding nucleotide sequence of BTD-S and introduced the gene into wild-type (ecotype Columbia-0) Arabidopsis thaliana plants. Results demonstrated that BTD-S-transgenic lines displayed in bioassays inhibitory effects on the growth of V. dahliae in vivo and in vitro. Based on symptom severity, enhanced resistance was found in a survey of BTD-S-transgenic lines. Besides, crude protein extracts from root tissues of BTD-S-transformed plants significantly restricted the growth of fungal hyphae and the germination of conidia. Also, fungal biomass over time determined by real-time PCR demonstrated the overgrowth of V. dahliae in wild-type plants 2-3 weeks after inoculation, while almost no fungal DNA was detected in aerial tissues of their transgenic progenitors. The result suggested that fungus failed to invade and progress acropetally up to establish a systemic infection in BTD-S-transgenic plants. Moreover, the assessment of basal defense responses was performed in the leaves of WT and BTD-S-transgenic plants. The mitigated oxidative stress and low antioxidase level in BTD-S-transgenic plants revealed that BTD-S acts via permeabilizing target microbial membranes, which is in a category different from hypersensitive response-dependent defense. Taken together, our results demonstrate that BTD-S is a promising gene to be explored for transgenic engineering for plant protection against Verticillium wilt.

  6. Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.

    PubMed

    Elnitsky, Michael A; Benoit, Joshua B; Lopez-Martinez, Giancarlo; Denlinger, David L; Lee, Richard E

    2009-09-01

    Summer storms along the Antarctic Peninsula can cause microhabitats of the terrestrial midge Belgica antarctica to become periodically inundated with seawater from tidal spray. As microhabitats dry, larvae may be exposed to increasing concentrations of seawater. Alternatively, as a result of melting snow or following rain, larvae may be immersed in freshwater for extended periods. The present study assessed the tolerance and physiological response of B. antarctica larvae to salinity exposure, and examined the effect of seawater acclimation on their subsequent tolerance of freezing, dehydration and heat shock. Midge larvae tolerated extended exposure to hyperosmotic seawater; nearly 50% of larvae survived a 10-day exposure to 1000 mOsm kg(-1) seawater and approximately 25% of larvae survived 6 days in 2000 mOsm kg(-1) seawater. Exposure to seawater drastically reduced larval body water content and increased hemolymph osmolality. By contrast, immersion in freshwater did not affect water content or hemolymph osmolality. Hyperosmotic seawater exposure, and the accompanying osmotic dehydration, resulted in a significant correlation between the rate of oxygen consumption and larval water content and induced the de novo synthesis and accumulation of several organic osmolytes. A 3-day exposure of larvae to hyperosmotic seawater increased freezing tolerance relative to freshwater-acclimated larvae. Even after rehydration, the freezing survival of larvae acclimated to seawater was greater than freshwater-acclimated larvae. Additionally, seawater exposure increased the subsequent tolerance of larvae to dehydration. Our results further illustrate the similarities between these related, yet distinct, forms of osmotic stress and add to the suite of physiological responses used by larvae to enhance survival in the harsh and unpredictable Antarctic environment. PMID:19684222

  7. Enhancing sensitivity of high resolution optical coherence tomography using an optional spectrally encoded extended source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Wang, Xianghong; Liu, Linbo

    2016-03-01

    High-resolution optical coherence tomography (OCT) is of critical importance to disease diagnosis because it is capable of providing detailed microstructural information of the biological tissues. However, a compromise usually has to be made between its spatial resolutions and sensitivity due to the suboptimal spectral response of the system components, such as the linear camera, the dispersion grating, and the focusing lenses, etc. In this study, we demonstrate an OCT system that achieves both high spatial resolutions and enhanced sensitivity through utilizing a spectrally encoded source. The system achieves a lateral resolution of 3.1 μm and an axial resolution of 2.3 μm in air; when with a simple dispersive prism placed in the infinity space of the sample arm optics, the illumination beam on the sample is transformed into a line source with a visual angle of 10.3 mrad. Such an extended source technique allows a ~4 times larger maximum permissible exposure (MPE) than its point source counterpart, which thus improves the system sensitivity by ~6dB. In addition, the dispersive prism can be conveniently switched to a reflector. Such flexibility helps increase the penetration depth of the system without increasing the complexity of the current point source devices. We conducted experiments to characterize the system's imaging capability using the human fingertip in vivo and the swine eye optic never disc ex vivo. The higher penetration depth of such a system over the conventional point source OCT system is also demonstrated in these two tissues.

  8. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  9. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  10. Partnerships and Linkages for Success. Enhancing the Employment Potential of Persons with Disabilities. Report of the Los Angeles Regional Conference (September 25-27, 1989).

    ERIC Educational Resources Information Center

    Walker, Sylvia, Ed.; Asbury, Charles A., Ed.

    This report provides highlights from a conference that focused on strategies for assisting minority youth with disabilities to face labor market challenges. An introduction lists conference objectives. Section I contains a profile of the high school students with disabilities who participated in the workshops. The profile includes demographic…

  11. Enhancing Quality in Continuing Education. Proceedings of the Annual Conference of the Council on the Continuing Education Unit (5th, Dallas, Texas, June 9-10, 1983).

    ERIC Educational Resources Information Center

    Schafer, Suzan H., Comp.

    These proceedings contain 14 presentations and other materials from a conference to exchange ideas and encourage planning in continuing education. Introductory materials include a conference program and a preconference orientation that review the definition of the continuing education unit (CEU). Results of a sharing session on ideas for surviving…

  12. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  13. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  14. Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters.

    PubMed

    Huang, Lei; Xu, Jian-He; Yu, Hui-Lei

    2015-06-10

    The keto ester reductase from Candida glabrata, designated as CgKR1, is a highly versatile biocatalyst with a broad substrate spectrum. Its substrate preference was altered by rational design of the active pocket for bioreduction of aromatic α-keto esters in our previous work. However, its practical application is still hindered by its poor thermostability and high biocatalyst loading. In this work, random mutagenesis followed by a saturation mutagenesis was performed aiming to improve its thermostability. Variants M5 (I99Y/D138N/G174A) and M6 (D138N) exhibited an obvious increase in T50(15) from 41.8°C of wild-type to 53.4°C and 48.8°C, respectively, indicating the important role of residue 138 for its thermostability. The homologous three-dimensional structures of the wild-type and variant M6 (D138N) revealed that the increased thermostability might be attributed to the increased hydrogen bonds that asparagine forms with other polar amino acids around it. Combination of the most thermostable variant M5 and the substrate specificity-altered variant M1 (F92L/F94V) yielded variant M7 (F92L/F94V/I99Y/D138N/G174A), with not only higher activity toward aromatic α-keto esters, but also an increased T50(15) value of 54.6°C. This variant M7 corresponds to an obvious increase in half-life from 2.16min of wild-type to 182min at 50°C. The substrate of methyl ortho-chlorobenzoylformate (CBFM) at 0.5M (100g/L) could be stoichiometrically converted to the product by 1g/L lyophilized cell of variant M7, with 4g/L lyophilized powder of BmGDH for cofactor regeneration within 10h, while the wild-type enzyme gave only 84% conversion even the reaction time was extended to 24h.

  15. Proceedings of the American Academy of Nursing Conference on Using Innovative Technology to Decrease Nursing Demand and Enhance Patient Care Delivery.

    ERIC Educational Resources Information Center

    Nursing Outlook, 2003

    2003-01-01

    Includes an introduction and 13 papers that address the following: nursing shortages; the role of technology in improving patient safety and care, simulating practice environments, and improving efficiency; and recommendations of conference participants. Many papers contain references. (JOW)

  16. Structural and mechanistic insights on nitrate reductases.

    PubMed

    Coelho, Catarina; Romão, Maria João

    2015-12-01

    Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data. PMID:26362109

  17. Hot isostatic pressing: Conference proceedings

    SciTech Connect

    Froes, F.H.; Hebeisen, J.; Widmer, R.

    1996-12-31

    The International Conference on Hot Isostatic Pressing was held on May 20-22, 1996, in Andover, Massachusetts. This conference discussed the state-of-the-art of hot isostatic pressing (HIP) and competing compaction techniques. HIP allows complex cost-effective near net shapes to be produced from powder products, densification of castings thereby enhancing performance, retention of metastable structures such as nano-sized grains, and even creative food processing. Sections in the conference covered such items as fundamentals, mathematical modeling, equipment and instrumentation, advanced materials and processes, composite materials, casting densification, surface treatments, HIP bonding, and competing technologies. Forty five papers were processed separately for inclusion on the data base.

  18. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  19. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  20. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases.

    PubMed

    Gang, D R; Kasahara, H; Xia, Z Q; Vander Mijnsbrugge, K; Bauw, G; Boerjan, W; Van Montagu, M; Davin, L B; Lewis, N G

    1999-03-12

    Pinoresinol-lariciresinol and isoflavone reductase classes are phylogenetically related, as is a third, the so-called "isoflavone reductase homologs." This study establishes the first known catalytic function for the latter, as being able to engender the NADPH-dependent reduction of phenylcoumaran benzylic ethers. Accordingly, all three reductase classes are involved in the biosynthesis of important and related phenylpropanoid-derived plant defense compounds. In this investigation, the phenylcoumaran benzylic ether reductase from the gymnosperm, Pinus taeda, was cloned, with the recombinant protein heterologously expressed in Escherichia coli. The purified enzyme reduces the benzylic ether functionalities of both dehydrodiconiferyl alcohol and dihydrodehydrodiconiferyl alcohol, with a higher affinity for the former, as measured by apparent Km and Vmax values and observed kinetic 3H-isotope effects. It abstracts the 4R-hydride of the required NADPH cofactor in a manner analogous to that of the pinoresinol-lariciresinol reductases and isoflavone reductases. A similar catalytic function was observed for the corresponding recombinant reductase whose gene was cloned from the angiosperm, Populus trichocarpa. Interestingly, both pinoresinol-lariciresinol reductases and isoflavone reductases catalyze enantiospecific conversions, whereas the phenylcoumaran benzylic ether reductase only shows regiospecific discrimination. A possible evolutionary relationship among the three reductase classes is proposed, based on the supposition that phenylcoumaran benzylic ether reductases represent the progenitors of pinoresinol-lariciresinol and isoflavone reductases.

  1. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  2. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    PubMed

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  3. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana

    PubMed Central

    Schat, Henk; Aarts, Mark G. M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  4. Structural prototypes for an extended family of flavoprotein reductases: comparison of phthalate dioxygenase reductase with ferredoxin reductase and ferredoxin.

    PubMed Central

    Correll, C. C.; Ludwig, M. L.; Bruns, C. M.; Karplus, P. A.

    1993-01-01

    The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel beta-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753-3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2' phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe-2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant

  5. Promiscuity and diversity in 3-ketosteroid reductases

    PubMed Central

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  6. Promiscuity and diversity in 3-ketosteroid reductases.

    PubMed

    Penning, Trevor M; Chen, Mo; Jin, Yi

    2015-07-01

    Many steroid hormones contain a Δ(4)-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1-AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1-AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.

  7. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  8. Synthesis of Nitrate Reductase in Chlorella

    PubMed Central

    Funkhouser, Edward A.; Shen, Teh-Chien; Ackermann, Renate

    1980-01-01

    Synthesis of nitrate reductase (EC 1.6.6.1) in Chlorella vulgaris was studied under inducing conditions, i.e. with cells grown on ammonia and then transferred to nitrate medium. Cycloheximide (but not chloramphenicol) completely inhibited synthesis of the enzyme, but only if it was added at the start (i.e. at the time of nitrate addition) of the induction period. Cycloheximide inhibition became less effective as induction by nitrate proceeded. Enzyme from small quantities of culture (1 to 3 milliliters of packed cells) was purified to homogeneity with the aid of blue dextran-Sepharose chromatography. Incorporation of radioactivity from labeled arginine into nitrate reductase was measured in the presence and absence of cycloheximide. Conditions were found under which the inhibitor completely blocked the incorporation of labeled amino acid, but only slightly decreased the increase in nitrate reductase activity. The results indicate that synthesis of nitrate reductase from amino acids proceeds by way of a protein precursor which is inactive enzymically. PMID:16661310

  9. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  10. Revitalizing the Rural South. Extension's Role in Enhancing the Quality of Life. Proceedings of a Regional Conference (Birmingham, Alabama, January 16-18, 1990).

    ERIC Educational Resources Information Center

    Southern Rural Development Center, Mississippi State, MS.

    Cooperative Extension Service personnel from 13 Southern states attended a conference on rural revitalization, focusing on Extension's role in (1) economic development, (2) human capital, and (3) infrastructure; 17 of the 22 papers presented are divided among those categories. Three of the remaining papers provide respectively, an overview of the…

  11. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  12. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  13. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae.

    PubMed

    Chang, Qing; Griest, Terry A; Harter, Theresa M; Petrash, J Mark

    2007-03-01

    We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  14. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae*

    PubMed Central

    Chang, Qing; Griest, Terry A.; Harter, Theresa M.; Petrash, J. Mark

    2007-01-01

    SUMMARY We utilized the budding yeast Saccharomyces cerevisiae as a model to systematically explore physiological roles for yeast and mammalian aldo-keto reductases. Six open reading frames encoding putative aldo-keto reductases were identified when the yeast genome was queried against the sequence for human aldose reductase, the prototypical mammalian aldo-keto reductase. Recombinant proteins produced from five of these yeast open reading frames demonstrated NADPH-dependent reductase activity with a variety of aldehyde and ketone substrates. A triple aldo-keto reductase null mutant strain demonstrated a glucose-dependent heat shock phenotype which could be rescued by ectopic expression of human aldose reductase. Catalytically-inactive mutants of human or yeast aldo-keto reductases failed to effect a rescue of the heat shock phenotype, suggesting that the phenotype results from either an accumulation of one or more unmetabolized aldo-keto reductase substrates or a synthetic deficiency of aldo-keto reductase products generated in response to heat shock stress. These results suggest that multiple aldo-keto reductases fulfill functionally redundant roles in the stress response in yeast. PMID:17140678

  15. Augmentation of CFTR maturation by S-nitrosoglutathione reductase.

    PubMed

    Zaman, Khalequz; Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J; Lewis, Stephen J; Gaston, Benjamin

    2016-02-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o(-)) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o(-) cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions.

  16. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species.

  17. Next conference

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Toney, Michael F.

    2010-11-01

    After the successful conference on Synchrotron Radiation in Polymer Science (SRPS) in Rolduc Abbey (the Netherlands), we are now looking forward to the next meeting in this topical series started in 1995 by H G Zachmann, one of the pioneers of the use of synchrotron radiation techniques in polymer science. Earlier meetings were held in Hamburg (1995), Sheffield (2002), Kyoto (2006), and Rolduc (2009). In September of 2012 the Synchrotron Radiation and Polymer Science V conferences will be organized in a joint effort by the SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory. Stanford Linear Accelerator Laboratory Stanford Linear Accelerator Laboratory Advanced Light Source at LBL Advanced Light Source at LBL The conference will be organised in the heart of beautiful San Francisco. The program will consist of invited and contributed lectures divided in sessions on the use of synchrotron SAXS/WAXD, imaging and tomography, soft x-rays, x-ray spectroscopy, GISAXS and reflectivity, micro-beams and hyphenated techniques in polymer science. Poster contributions are more than welcome and will be highlighted during the poster sessions. Visits to both SLAC as well as LBL will be organised. San Francisco can easily be reached. It is served by two major international airports San Francisco International Airport and Oakland International Airport. Both are being served by most major airlines with easy connections to Europe and Asia as well as national destinations. Both also boast excellent connections to San Francisco city centre. We are looking forward to seeing you in the vibrant city by the Bay in September 2012. Golden gate bridge Alexander Hexemer Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA Michael F Toney Stanford Synchrotron Radiation Lightsource, Menlo Pk, CA 94025, USA E-mail: ahexemer@lbl.gov, mftoney@slac.stanford.edu

  18. PREFACE: The Irago Conference 2012

    NASA Astrophysics Data System (ADS)

    Sandhu, Adarsh; Okada, Hiroshi

    2013-04-01

    The Irago Conference 2012 - 360 degree outlook on critical scientific and technological challenges for a sustainable society Organized by the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology, the Irago Conference, held recently (15-16 November) in Aichi, Japan, aimed to enhance mutual understanding between scientists, engineers and policymakers. Over 180 participants tackled topics ranging from energy and natural resources to public health and disaster prevention. The 360-degree outlook of the conference impressed speakers and guests. ''This conference has been extremely informative,'' noted Robert Gellar from the University of Tokyo. ''A unique conference with experts from a range of backgrounds,'' agreed Uracha Ruktanonchai from the National Nanotechnology Center (NANOTEC) in Thailand. Similarly, G P Li, professor of electrical engineering and computer science at the University of California Irvine commented that he had been ''able to think the unthinkable'' as a range of topics came together. The conference was streamed live on Ustream to ensure that researchers from across the world could benefit from thought-provoking presentations examining global issues such as energy, disaster mitigation and nanotechnology. ''This was wonderful,'' said Oussama Khatib from Stanford University, ''A good recipe of speakers from such a range of backgrounds.'' Manuscripts submitted to the organizers were peer-reviewed, and the papers in this proceedings were accepted for Journal of Physics: Conference Series. In addition to the formal speaker programme, graduate-student sessions provided a platform for graduate students to describe their latest findings as oral presentations. A series of excursions to relevant locations, such as the Tahara megasolar region under construction and a local car-manufacturing factory, gave participants the opportunity to further consider practical applications of their research in industry

  19. Conference Summary

    NASA Astrophysics Data System (ADS)

    Ellis, R. S.

    2008-10-01

    This first Subaru international conference has highlighted the remarkably diverse and significant contributions made using the 8.2m Subaru telescope by both Japanese astronomers and the international community. As such, it serves as a satisfying tribute to the pioneering efforts of Professors Keiichi Kodaira and Sadanori Okamura whose insight and dedication is richly rewarded. Here I try to summarize the recent impact of wide field science in extragalactic astronomy and cosmology and take a look forward to the key questions we will address in the near future.

  20. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  1. Alkyl hydroperoxide reductase: a candidate Helicobacter pylori vaccine.

    PubMed

    O'Riordan, Avril A; Morales, Veronica Athie; Mulligan, Linda; Faheem, Nazia; Windle, Henry J; Kelleher, Dermot P

    2012-06-01

    Helicobacter pylori (H. pylori) is the most important etiological agent of chronic active gastritis, peptic ulcer disease and gastric cancer. The aim of this study was to evaluate the efficacy of alkyl hydroperoxide reductase (AhpC) and mannosylated AhpC (mAhpC) as candidate vaccines in the C57BL/6J mouse model of H. pylori infection. Recombinant AhpC was cloned, over-expressed and purified in an unmodified form and was also engineered to incorporate N and C-terminal mannose residues when expressed in the yeast Pichia pastoris. Mice were immunized systemically and mucosally with AhpC and systemically with mAhpC prior to challenge with H. pylori. Serum IgG responses to AhpC were determined and quantitative culture was used to determine the efficacy of vaccination strategies. Systemic prophylactic immunization with AhpC/alum and mAhpC/alum conferred protection against infection in 55% and 77.3% of mice, respectively. Mucosal immunization with AhpC/cholera toxin did not protect against infection and elicited low levels of serum IgG in comparison with systemic immunization. These data support the use of AhpC as a potential vaccine candidate against H. pylori infection. PMID:22512976

  2. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  3. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  4. Structure of aldose reductase from Giardia lamblia

    PubMed Central

    Ferrell, M.; Abendroth, J.; Zhang, Y.; Sankaran, B.; Edwards, T. E.; Staker, B. L.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.

    2011-01-01

    Giardia lamblia is an anaerobic aerotolerant eukaryotic parasite of the intestines. It is believed to have diverged early from eukarya during evolution and is thus lacking in many of the typical eukaryotic organelles and biochemical pathways. Most conspicuously, mitochondria and the associated machinery of oxidative phosphorylation are absent; instead, energy is derived from substrate-level phosphorylation. Here, the 1.75 Å resolution crystal structure of G. lamblia aldose reductase heterologously expressed in Escherichia coli is reported. As in other oxidoreductases, G. lamblia aldose reductase adopts a TIM-barrel conformation with the NADP+-binding site located within the eight β-strands of the interior. PMID:21904059

  5. Steroid 5α-reductase 2 deficiency.

    PubMed

    Mendonca, Berenice B; Batista, Rafael Loch; Domenice, Sorahia; Costa, Elaine M F; Arnhold, Ivo J P; Russell, David W; Wilson, Jean D

    2016-10-01

    Dihydrotestosterone is a potent androgen metabolite formed from testosterone by action of 5α-reductase isoenzymes. Mutations in the type 2 isoenzyme cause a disorder of 46,XY sex development, termed 5α-reductase type 2 deficiency and that was described forty years ago. Many mutations in the encoding gene have been reported in different ethnic groups. In affected 46,XY individuals, female external genitalia are common, but Mullerian ducts regress, and the internal urogenital tract is male. Most affected males are raised as females, but virilization occurs at puberty, and male social sex develops thereafter with high frequency. Fertility can be achieved in some affected males with assisted reproduction techniques, and adults with male social sex report a more satisfactory sex life and quality of life as compared to affected individuals with female social sex. PMID:27224879

  6. Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus.

    PubMed Central

    Ramachandra, M; Seetharam, R; Emptage, M H; Sariaslani, F S

    1991-01-01

    We have purified an NADH-dependent ferredoxin reductase from crude extracts of Streptomyces griseus cells grown in soybean flour-enriched medium. The purified protein has a molecular weight of 60,000 as determined by sodium dodecyl sulfate gel electrophoresis. The enzyme requires Mg2+ ion for catalytic activity in reconstituted assays, and its spectral properties resemble those of many other flavin adenine dinucleotide-containing flavoproteins. A relatively large number of hydrophobic amino acid residues are found by amino acid analysis, and beginning with residue 7, a consensus flavin adenine dinucleotide binding sequence, GXGXXGXXXA, is revealed in this protein. In the presence of NADH, the ferredoxin reductase reduces various electron acceptors such as cytochrome c, potassium ferricyanide, dichlorophenolindophenol, and nitroblue tetrazolium. However, only cytochrome c reduction by the ferredoxin reductase is enhanced by the addition of ferredoxin. In the presence of NADH, S. griseus ferredoxin and cytochrome P-450soy, the ferredoxin reductase mediates O dealkylation of 7-ethoxycoumarin. Images FIG. 2 PMID:1938912

  7. What Good Are Conferences, Anyway?

    ERIC Educational Resources Information Center

    Pietro, David C.

    1996-01-01

    According to Frederick Herzberg's studies of employee motivation, humans are driven by motivating factors that allow them to grow psychologically and hygiene factors that help them meet physical needs. Good education conferences can enhance both factors by helping principals refocus their energies, exchange ideas with trusted colleagues, and view…

  8. Discovery of pinoresinol reductase genes in sphingomonads.

    PubMed

    Fukuhara, Y; Kamimura, N; Nakajima, M; Hishiyama, S; Hara, H; Kasai, D; Tsuji, Y; Narita-Yamada, S; Nakamura, S; Katano, Y; Fujita, N; Katayama, Y; Fukuda, M; Kajita, S; Masai, E

    2013-01-10

    Bacterial genes for the degradation of major dilignols produced in lignifying xylem are expected to be useful tools for the structural modification of lignin in plants. For this purpose, we isolated pinZ involved in the conversion of pinoresinol from Sphingobium sp. strain SYK-6. pinZ showed 43-77% identity at amino acid level with bacterial NmrA-like proteins of unknown function, a subgroup of atypical short chain dehydrogenases/reductases, but revealed only 15-21% identity with plant pinoresinol/lariciresinol reductases. PinZ completely converted racemic pinoresinol to lariciresinol, showing a specific activity of 46±3 U/mg in the presence of NADPH at 30°C. In contrast, the activity for lariciresinol was negligible. This substrate preference is similar to a pinoresinol reductase, AtPrR1, of Arabidopsis thaliana; however, the specific activity of PinZ toward (±)-pinoresinol was significantly higher than that of AtPrR1. The role of pinZ and a pinZ ortholog of Novosphingobium aromaticivorans DSM 12444 were also characterized.

  9. The Two Functional Enoyl-Acyl Carrier Protein Reductases of Enterococcus faecalis Do Not Mediate Triclosan Resistance

    PubMed Central

    Zhu, Lei; Bi, Hongkai; Ma, Jincheng; Hu, Zhe; Zhang, Wenbin; Cronan, John E.; Wang, Haihong

    2013-01-01

    ABSTRACT Enoyl-acyl carrier protein (enoyl-ACP) reductase catalyzes the last step of the elongation cycle in the synthesis of bacterial fatty acids. The Enterococcus faecalis genome contains two genes annotated as enoyl-ACP reductases, a FabI-type enoyl-ACP reductase and a FabK-type enoyl-ACP reductase. We report that expression of either of the two proteins restores growth of an Escherichia coli fabI temperature-sensitive mutant strain under nonpermissive conditions. In vitro assays demonstrated that both proteins support fatty acid synthesis and are active with substrates of all fatty acid chain lengths. Although expression of E. faecalis fabK confers to E. coli high levels of resistance to the antimicrobial triclosan, deletion of fabK from the E. faecalis genome showed that FabK does not play a detectable role in the inherent triclosan resistance of E. faecalis. Indeed, FabK seems to play only a minor role in modulating fatty acid composition. Strains carrying a deletion of fabK grow normally without fatty acid supplementation, whereas fabI deletion mutants make only traces of fatty acids and are unsaturated fatty acid auxotrophs. PMID:24085780

  10. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.

    PubMed

    Wei, Yifeng; Li, Bin; Prakash, Divya; Ferry, James G; Elliott, Sean J; Stubbe, JoAnne

    2015-12-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism.

  11. Role of the Dinitrogenase Reductase Arginine 101 Residue in Dinitrogenase Reductase ADP-Ribosyltransferase Binding, NAD Binding, and Cleavage

    PubMed Central

    Ma, Yan; Ludden, Paul W.

    2001-01-01

    Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-32P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-14C]NAD individually upon UV irradiation, but most 14C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-14C]NAD suggested that Arg 101 is not absolutely required for NAD binding. PMID:11114923

  12. Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress.

    PubMed

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md Mahabub; Fujita, Masayuki

    2014-12-01

    We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system. PMID:25249068

  13. Conference summary

    NASA Astrophysics Data System (ADS)

    Rebolo, R.

    ``Brown dwarfs come of age" was a stimulating conference attended by a large number of very active researchers, including many young students and post-docs who were largely responsible for the lively atmosphere that we enjoyed during the full meeting. Major theoretical and observational challenges currently faced in the study of brown dwarfs were reviewed. Key spectroscopic work is being conducted to determine atmospheric temperatures, surface gravities and metallicities, essential to understand the evolution of substellar objects. Research on ultracool atmospheres is extended down to temperatures typical of the atmosphere of the Earth. Characterisation of brown dwarfs at all wavelengths from X-ray to radio is ongoing and investigation of time domain phenomena reveal interesting new processes in cool atmospheres. In addition to talks on these topics, a large number of presentations addressed the formation and evolution of brown dwarfs, the lower end of the Initial Mass Function, the properties of substellar binaries, the angular momentum and disk evolution in very low-mass systems, results of large scale surveys aimed to find the lowest luminosity and coolest brown dwarfs, searches in star clusters delineating the evolution with age of the properties of brown dwarfs, binary searches and subsequent follow-up work enabling dynamical mass determinations. The excellent level of the review talks, oral and poster presentations and the work of the enthusiastic researchers that attended the meeting ensure a brilliant future for substellar research 18 years after the discovery of the first brown dwarfs.

  14. Testosterone induction of microsomal acyl-CoA reductase and a cytosolic regulatory protein in mouse preputial glands.

    PubMed

    Lee, T C; Kirk, P; Snyder, F

    1986-01-01

    Alkyl and alk-1-enyl (plasmalogens) ether-linked glycerolipids are prominent components of many mammalian cells; moreover, an acetylated form of an alkyl phospholipid was recently found to possess potent hypotensive, inflammatory and allergic properties. In our studies, preputial glands of mice were selected as a model to investigate the regulation of factors involved in the biosynthesis of ether-linked lipids, since these glands contain high concentrations of ether-linked neutral lipids that are under the influence of hormonal control. We found that a key enzyme in the ether-lipid metabolic pathway, microsomal acyl-CoA reductase that catalyzes the formation of long-chain fatty alcohols (precursor of the O-alkyl chain), was increased 16-fold after injecting testosterone into male, castrated mice. This induction was highly specific, since testosterone did not affect another microsomal enzyme, NADPH-cytochrome c reductase. Based on kinetics of enzyme activity changes, the half-life of acyl-CoA reductase was calculated to be 61-70 h. In addition, the activity of a cytosolic stimulatory protein for the acyl-CoA reductase (but not for a different cytosolic protein, lactate dehydrogenase) was also enhanced in the testosterone-treated, male, castrated mice. These findings indicate that acyl-CoA reductase is an important regulatory enzyme in the reactions that lead to the formation of the ether bond in glycerolipids and that it is modulated through hormonal control. PMID:3940533

  15. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  16. Affinity maturation of an anti-V antigen IgG expressed in situ through adenovirus gene delivery confers enhanced protection against Yersinia pestis challenge.

    PubMed

    Van Blarcom, T J; Sofer-Podesta, C; Ang, J; Boyer, J L; Crystal, R G; Georgiou, G

    2010-07-01

    Genetic transfer of neutralizing antibodies (Abs) has been shown to confer strong and persistent protection against bacterial and viral infectious agents. Although it is well established that for many exogenous neutralizing Abs increased antigen affinity correlates with protection, the effect of antigen affinity on Abs produced in situ after adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal Ab, 2C12.4, recognizes the Yersinia pestis type III secretion apparatus protein, LcrV (V antigen), and confers protection in mice when administered as an IgG intraperitoneally or after genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad). The 2C12.4 Ab was expressed as a single-chain variable fragment (scFv) in Escherichia coli and was shown to display an equilibrium dissociation constant (K(D))=3.5 nM by surface plasmon resonance analysis. The 2C12.4 scFv was subjected to random mutagenesis, and variants with increased affinity were isolated by flow cytometry using the anchored periplasmic expression bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower K(D) values (H8, K(D)=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdalphaV, giving rise to AdalphaV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen Abs 3 days after immunization, with 10(9), 10(10) or 10(11) particle units (pu). After intranasal challenge with 363 LD(50) (lethal dose, 50%) of Y. pestis CO92, 54% of the mice immunized with 10(10) pu of AdalphaV.H8 survived through the 14 day end point compared with only 15% survivors for the group immunized with AdalphaV expressing the lower-affinity 2C12.4 (P<0.04; AdalphaV versus AdalphaV.H8). These results indicate that affinity maturation of a neutralizing Ab delivered by genetic transfer may confer increased protection not only for Y. pestis

  17. Radical scavengers as ribonucleotide reductase inhibitors.

    PubMed

    Basu, Arijit; Sinha, Barij Nayan

    2012-01-01

    This paper compiled all the previous reports on radical scavengers, an interesting class of ribonucleotide reductase inhibitors. We have highlighted three key research areas: chemical classification of radical scavengers, structural and functional aspects of the radical site, and progress in drug designing for radical scavengers. Under the chemical classification section, we have recorded the discovery of hydroxyurea followed by discussions on hydroxamic acids, amidoximes, hydroxyguanidines, and phenolic compounds. In the next section, we have compiled the structural information for the radical site obtained from different crystallographic and theoretical studies. Finally, we have included the reported ligand based and structure based drug-designing studies.

  18. The Conference Facilitator Model: Improving the Value of Conference Attendance for Attendees and the Organization.

    PubMed

    Nebrig, Dawn; Munafo, Jennifer; Goddard, Julie; Tierney, Carol

    2015-09-01

    Healthcare leaders face a multitude of priorities demanding their attention and resources, from patient, employee safety and hospital-acquired conditions to predicting future revenue in the context of healthcare reform. Assessing value requires balancing outcomes and experience with cost. How does allocating funds for professional nursing conferences measure up? What is a valid return on investment when we send staff nurses to professional conferences, specifically the annual Magnet® conference? The following article describes how Cincinnati Children's Hospital Medical Center answered these questions and redefined the expectations for conference attendees while enhancing the experience and the reportable outcomes for practice and the organization.

  19. The Conference Facilitator Model: Improving the Value of Conference Attendance for Attendees and the Organization.

    PubMed

    Nebrig, Dawn; Munafo, Jennifer; Goddard, Julie; Tierney, Carol

    2015-09-01

    Healthcare leaders face a multitude of priorities demanding their attention and resources, from patient, employee safety and hospital-acquired conditions to predicting future revenue in the context of healthcare reform. Assessing value requires balancing outcomes and experience with cost. How does allocating funds for professional nursing conferences measure up? What is a valid return on investment when we send staff nurses to professional conferences, specifically the annual Magnet® conference? The following article describes how Cincinnati Children's Hospital Medical Center answered these questions and redefined the expectations for conference attendees while enhancing the experience and the reportable outcomes for practice and the organization. PMID:26247321

  20. Crystal Structure of ChrR -- A Quinone Reductase with the Capacity to Reduce Chromate

    SciTech Connect

    Eswaramoorthy S.; Poulain, S.; Hienerwadel, R.; Bremond, N.; Sylvester, M. D.; Zhang, Y.-B.; Berthomieu, C.; van der Lelie, D.; Matin, A.

    2012-04-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 {angstrom} resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction.

  1. Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate

    PubMed Central

    Hienerwadel, Rainer; Bremond, Nicolas; Sylvester, Matthew D.; Zhang, Yian-Biao; Berthomieu, Catherine; Van Der Lelie, Daniel; Matin, A.

    2012-01-01

    The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form that catalyzes chromate reduction. Within the tetramer, the dimers interact by a pair of two hydrogen bond networks, each involving Tyr128 and Glu146 of one dimer and Arg125 and Tyr85 of the other; the latter extends to one of the redox FMN cofactors. Changes in each of these amino acids enhanced chromate reductase activity of the enzyme, showing that this network is centrally involved in chromate reduction. PMID:22558308

  2. Mineral supplementation increases erythrose reductase activity in erythritol biosynthesis from glycerol by Yarrowia lipolytica.

    PubMed

    Tomaszewska, Ludwika; Rymowicz, Waldemar; Rywińska, Anita

    2014-03-01

    The aim of this study was to examine the impact of divalent copper, iron, manganese, and zinc ions on the production of erythritol from glycerol by Yarrowia lipolytica and their effect on the activity of erythrose reductase. No inhibitory effect of the examined minerals on yeast growth was observed in the study. Supplementation with MnSO4 · 7H2O (25 mg l(-1)) increased erythritol production by Y. lipolytica by 14.5%. In the bioreactor culture with manganese ion addition, 47.1 g l(-1) of erythritol was produced from 100.0 g l(-1) of glycerol, which corresponded to volumetric productivity of 0.87 g l(-1) h(-1). The addition of Mn(2+) enhanced the intracellular activity of erythrose reductase up to 24.9 U g(-1) of dry weight of biomass (DW), hence, about 1.3 times more than in the control.

  3. Differing views of the role of selenium in thioredoxin reductase

    PubMed Central

    Ruggles, Erik L.

    2010-01-01

    This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pKa and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2−, seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2− to Cys-SH). PMID:20397034

  4. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  5. Biliverdin reductase: a target for cancer therapy?

    PubMed Central

    Gibbs, Peter E. M.; Miralem, Tihomir; Maines, Mahin D.

    2015-01-01

    Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation. PMID:26089799

  6. Ageing of glutathione reductase in the lens.

    PubMed

    Zhang, W Z; Augusteyn, R C

    1994-07-01

    The distribution of glutathione reductase activity in concentric layers from the lens has been determined as a function of age for 16 species. Primate lenses have almost ten times the level of glutathione reductase found in other species. Comparison with the activity of hexokinase revealed that this is not due to a higher overall rate of metabolism in these lenses. By contrast, the higher activity found in bird and fish lenses reflects a higher metabolic activity in these tissues. In all species, a gradient of activity was observed with the highest specific activity in the outermost cortical fibres, decreasing to virtually no activity in the inner parts of the tissue. No alterations were found in this gradient with increasing age, other than an increase in the amount of nuclear tissue essentially devoid of activity. The maximum activity in the outer cortical fibres was the same, regardless of the age of the lens. The time taken, in different species, for the specific activity to decrease by half, was estimated from the rate of protein accumulation. This time was found to vary from a few days to several years, indicating that the decrease in activity is not due to ageing but rather, it is related to the maturation of fibre cells. These observations are discussed in terms of current concepts of lens ageing and cataract formation. PMID:7835401

  7. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    PubMed Central

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4–5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  8. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants.

    PubMed

    Khan, Muhammad Sarwar; Kanwal, Benish; Nazir, Shahid

    2015-01-01

    Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH) reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols since chloroplasts offer high level transgene expression and containment. Here, we report that ArDH expression in tobacco chloroplasts confers tolerance to NaCl (up to 400 mM). Transgenic plants compared to wild type (WT) survived for only 4-5 weeks on 400 mM NaCl whereas plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6%) in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses. PMID:26442039

  9. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems.

    PubMed

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, [Formula: see text] generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  10. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  11. The aldo-keto reductases (AKRs): Overview.

    PubMed

    Penning, Trevor M

    2015-06-01

    The aldo-keto reductase (AKR) protein superfamily contains >190 members that fall into 16 families and are found in all phyla. These enzymes reduce carbonyl substrates such as: sugar aldehydes; keto-steroids, keto-prostaglandins, retinals, quinones, and lipid peroxidation by-products. Exceptions include the reduction of steroid double bonds catalyzed by AKR1D enzymes (5β-reductases); and the oxidation of proximate carcinogen trans-dihydrodiol polycyclic aromatic hydrocarbons; while the β-subunits of potassium gated ion channels (AKR6 family) control Kv channel opening. AKRs are usually 37kDa monomers, have an (α/β)8-barrel motif, display large loops at the back of the barrel which govern substrate specificity, and have a conserved cofactor binding domain. AKRs catalyze an ordered bi bi kinetic mechanism in which NAD(P)H cofactor binds first and leaves last. In enzymes that favor NADPH, the rate of release of NADP(+) is governed by a slow isomerization step which places an upper limit on kcat. AKRs retain a conserved catalytic tetrad consisting of Tyr55, Asp50, Lys84, and His117 (AKR1C9 numbering). There is conservation of the catalytic mechanism with short-chain dehydrogenases/reductases (SDRs) even though they show different protein folds. There are 15 human AKRs of these AKR1B1, AKR1C1-1C3, AKR1D1, and AKR1B10 have been implicated in diabetic complications, steroid hormone dependent malignancies, bile acid deficiency and defects in retinoic acid signaling, respectively. Inhibitor programs exist world-wide to target each of these enzymes to treat the aforementioned disorders. Inherited mutations in AKR1C and AKR1D1 enzymes are implicated in defects in the development of male genitalia and bile acid deficiency, respectively, and occur in evolutionarily conserved amino acids. The human AKRs have a large number of nsSNPs and splice variants, but in many instances functional genomics is lacking. AKRs and their variants are now poised to be interrogated using

  12. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  13. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  14. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  15. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  16. Spinach nitrite reductase. Purification and properties of a siroheme-containing iron-sulfur enzyme.

    PubMed

    Vega, J M; Kamin, H

    1977-02-10

    Ferredoxin-nitrite reductase (EC 1.7.7.1.) from spinach has been purified to homogeneity with a specific activity of 110 units/mg of protein. The enzyme, Mr = 61,000 has 3 iron atoms (of which one is in siroheme) and 2 labile sulfides, i.e. 1 (Fe2-S2) per molecule, with absorption maxima at 276, 386 (Soret), 573 (alpha), and 690 nm, with an E386 of 3.97 X 10(4) M-1-cm-1, and A276/A386 absorptivity ratio of 1.8. Anaerobic addition of dithionite results in the loss of the 690 nm peak and the splitting of the 573 nm absorption band into two broad peaks at 545 and 585 nm. Reduction by dithionite is enhanced by cyanide (Fig. 7) and requires about 3 electron eq per mol of enzyme. With nitrite or hydroxylamine (substrates of the enzyme), cyanide (a competitive inhibitor with respect to nitrite), or sulfite, the 690 nm absorption band of substrate-free enzyme disappears and the absorbance in the Soret and alpha region are altered. The high spin EPR signals disappear (J. M. Vega, H. Kamin, N. R. Orme-Johnson, and W. H. Orme-Johnson, unpublished observations). Titration permits calculation of 1 mol of nitrite bound/mol of enzyme with a Kdiss of 3.2 X 10(-6) M. Dithionite-reduced enzyme also forms complexes with added nitrite, hydroxylamine, or cyanide, characterized by marked alterations in the 573 (alpha) absorption band. THus, substrates or competitive inhibitors can be bound to the oxidized or reduced enzyme forms. CO inhibits nitrite reductase and forms a complex with reduced enzyme (epsilonmax at 395, 543, and 585 nm). Formation or dissociation of the spectrophotometrically detectable CO complex correlates with inhibition or inhibition-reversal of nitrite reduction catalysis. During steady state turnover with dithionite and nitrite, the enzyme forms a complex with added nitrite with absorption difference maxima at 445, 538, and 580 nm with respect to reduced enzyme. When nearly all substrate is depleted the spectrum of a new species appears, indicating that nitrite

  17. [Comparison of Physico-chemical Aspects between E. coli and Human Dihydrofolate Reductase: an Equilibrium Unfolding Study].

    PubMed

    Thapliyal, Charu; Jain, Neha; Chaudhuri, Pratima

    2015-01-01

    A protein, differing in origin, may exhibit variable physicochemical behaviour, difference in sequence homology, fold and function. Thus studying structure-function relationship of proteins from altered sources is meaningful in the sense that it may give rise to comparative aspects of their sequence-structure-function relationship. Dihydrofolate reductase is an enzyme involved in cell cycle regulation. It is a significant enzyme as.a target for developing anticancer drugs. Hence, detailed understanding of structure-function relationships of wide variants of the enzyme dihydrofolate reductase would be important for developing an inhibitor or an antagonist against the enzyme involved in the cellular developmental processes. In this communication, we have reported the comparative structure-function relationship between E. coli and human dihydrofolate reductase. The differences in the unfolding behaviour of these two proteins have been investigated to understand various properties of these two proteins like relative' stability differences and variation in conformational changes under identical denaturing conditions. The equilibrium unfolding mechanism of dihydrofolate reductase proteins using guanidine hydrochloride as a denaturant in the presence of various types of osmolytes has been monitored using loss in enzymatic activity, intrinsic tryptophan fluorescence and an extrinsic fluorophore 8-anilino-1-naphthalene-sulfonic acid as probes. It has been observed that osmolytes, such as 1M sucrose, and 30% glycerol, provided enhanced stability to both variants of dihydrofolate reductase. Their level of stabilisation has been observed to be dependent on intrinsic protein stability. It was observed that 100 mM proline does not show any 'significant stabilisation to either of dihydrofolate reductases. In the present study, it has been observed that the human protein is relatively less stable than the E.coli counterpart.

  18. Homologous recombination enhancement conferred by the Z-DNA motif d(TG)30 is abrogated by simian virus 40 T antigen binding to adjacent DNA sequences.

    PubMed

    Wahls, W P; Moore, P D

    1990-02-01

    The Z-DNA motif polydeoxythymidylic-guanylic [d(TG)].polydeoxyadenylic-cytidylic acid [d(AC)], present throughout eucaryotic genomes, is capable of readily forming left-handed Z-DNA in vitro and has been shown to promote homologous recombination. The effects of simian virus 40 T-antigen-dependent substrate replication upon the stimulation of recombination conferred by the Z-DNA motif d(TG)30 were analyzed. Presence of d(TG)30 adjacent to a T-antigen-binding site I can stimulate homologous recombination between nonreplicating plasmids, providing that T antigen is absent, in both simian CV-1 cells and human EJ cells (W. P. Wahls, L. J. Wallace, and P. D. Moore, Mol. Cell. Biol. 10:785-793). It has also been shown elsewhere that the presence of d(TG)n not adjacent to the T-antigen-binding site can stimulate homologous recombination in simian virus 40 molecules replicating in the presence of T antigen (P. Bullock, J. Miller, and M. Botchan, Mol. Cell. Biol. 6:3948-3953, 1986). However, it is demonstrated here that d(TG)30 nine base pairs distant from a T-antigen-binding site bound with T antigen does not stimulate recombination between either replicating or nonreplicating substrates in somatic cells. The bound T antigen either prevents the d(TG)30 sequence from acquiring a recombinogenic configuration (such as left-handed Z-DNA), or it prevents the interaction of recombinase proteins with the sequence by stearic hindrance. PMID:2153923

  19. Ribonucleotide reductases: essential enzymes for bacterial life

    PubMed Central

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  20. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria. PMID:24809024

  1. Ribonucleotide reductases: essential enzymes for bacterial life.

    PubMed

    Torrents, Eduard

    2014-01-01

    Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.

  2. Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells.

    PubMed

    Duan, Dongzhu; Zhang, Junmin; Yao, Juan; Liu, Yaping; Fang, Jianguo

    2016-05-01

    Parthenolide (PTL), a major active sesquiterpene lactone from the herbal plant Tanacetum parthenium, has been applied in traditional Chinese medicine for centuries. Although PTL demonstrates potent anticancer efficacy in numerous types of malignant cells, the cellular targets of PTL have not been well defined. We reported here that PTL interacts with both cytosolic thioredoxin reductase (TrxR1) and mitochondrial thioredoxin reductase (TrxR2), two ubiquitous selenocysteine-containing antioxidant enzymes, to elicit reactive oxygen species-mediated apoptosis in HeLa cells. PTL selectively targets the selenocysteine residue in TrxR1 to inhibit the enzyme function, and further shifts the enzyme to an NADPH oxidase to generate superoxide anions, leading to reactive oxygen species accumulation and oxidized thioredoxin. Under the conditions of inhibition of TrxRs in cells, PTL does not cause significant alteration of cellular thiol homeostasis, supporting selective target of TrxRs by PTL. Importantly, overexpression of functional TrxR1 or Trx1 confers protection, whereas knockdown of the enzymes sensitizes cells to PTL treatment. Targeting TrxRs by PTL thus discloses an unprecedented mechanism underlying the biological activity of PTL, and provides deep insights to understand the action of PTL in treatment of cancer. PMID:27002142

  3. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  4. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated.

  5. Stress defense mechanisms of NADPH-dependent thioredoxin reductases (NTRs) in plants.

    PubMed

    Cha, Joon-Yung; Barman, Dhirendra Nath; Kim, Min Gab; Kim, Woe-Yeon

    2015-01-01

    Plants establish highly and systemically organized stress defense mechanisms against unfavorable living conditions. To interpret these environmental stimuli, plants possess communication tools, referred as secondary messengers, such as Ca(2+) signature and reactive oxygen species (ROS) wave. Maintenance of ROS is an important event for whole lifespan of plants, however, in special cases, toxic ROS molecules are largely accumulated under excess stresses and diverse enzymes played as ROS scavengers. Arabidopsis and rice contain 3 NADPH-dependent thioredoxin reductases (NTRs) which transfer reducing power to Thioredoxin/Peroxiredoxin (Trx/Prx) system for scavenging ROS. However, due to functional redundancy between cytosolic and mitochondrial NTRs (NTRA and NTRB, respectively), their functional involvements under stress conditions have not been well characterized. Recently, we reported that cytosolic NTRA confers the stress tolerance against oxidative and drought stresses via regulation of ROS amounts using NTRA-overexpressing plants. With these findings, mitochondrial NTRB needs to be further elucidated.

  6. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  7. Nitrate Reductase-Deficient Mutants in Barley 1

    PubMed Central

    Somers, David A.; Kuo, Tsung-Min; Kleinhofs, Andris; Warner, Robert L.

    1983-01-01

    Nitrate reductase-deficient barley (Hordeum vulgare L.) mutants were assayed for the presence of a functional molybdenum cofactor determined from the activity of the molybdoenzyme, xanthine dehydrogenase, and for nitrate reductase-associated activities. Rocket immunoelectrophoresis was used to detect nitrate reductase cross-reacting material in the mutants. The cross-reacting material levels of the mutants ranged from 8 to 136% of the wild type and were correlated with their nitrate reductase-associated activities, except for nar 1c, which lacked all associated nitrate reductase activities but had 38% of the wild-type cross-reacting material. The cross-reacting material of two nar 1 mutants, as well as nar 2a, Xno 18, Xno 19, and Xno 29, exhibited rocket immunoprecipitates that were similar to the wild-type enzyme indicating structural homology between the mutant and wild-type nitrate reductase proteins. The cross-reacting materials of the seven remaining nar 1 alleles formed rockets only in the presence of purified wild-type nitrate reductase, suggesting structural modifications of the mutant cross-reacting materials. All nar 1 alleles and Xno 29 had xanthine dehydrogenase activity indicating the presence of functional molybdenum cofactors. These results suggest that nar 1 is the structural gene for nitrate reductase. Mutants nar 2a, Xno 18, and Xno 19 lacked xanthine dehydrogenase activity and are considered to be molybdenum cofactor deficient mutants. Cross-reacting material was not detected in uninduced wild-type or mutant extracts, suggesting that nitrate reductase is synthesized de novo in response to nitrate. Images Fig. 1 Fig. 3 PMID:16662774

  8. A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice.

    PubMed

    Yu, Zhijun; Cheng, Kaihui; Sun, Weiyang; Zhang, Xinghai; Li, Yuanguo; Wang, Tiecheng; Wang, Hualei; Zhang, Qianyi; Xin, Yue; Xue, Li; Zhang, Kun; Huang, Jing; Yang, Songtao; Qin, Chuan; Wilker, Peter R; Yue, Donghui; Chen, Hualan; Gao, Yuwei; Xia, Xianzhu

    2015-12-01

    While the 2009 pandemic H1N1 virus has become established in the human population as a seasonal influenza virus, continued adaptation may alter viral virulence. Here, we passaged a 2009 pandemic H1N1 virus (A/Changchun/01/2009) in mice. Serial passage in mice generated viral variants with increased virulence. Adapted variants displayed enhanced replication kinetics in vitro and vivo. Analysis of the variants genomes revealed 6 amino acid changes in the PB1 (T296R), PA (I94V), HA (H3 numbering; N159D, D225G, and R226Q), and NP (D375N). Using reverse genetics, we found that a PB1-T296R substitution found in all adapted viral variants enhanced viral replication kinetics in vitro and vivo, increased viral polymerase activity in human cells, and was sufficient for enhanced virulence of the 2009 pandemic H1N1 virus in mice. Therefore, we defined a novel influenza pathogenic determinant, providing further insights into the pathogenesis of influenza viruses in mammals.

  9. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  10. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  11. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    SciTech Connect

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi; Maeda, Daisuke; Hirai, Takahisa; Poetsch, Anna R.; Harada, Hiromi; Yoshida, Tomoko; Sasai, Keisuke; Okayasu, Ryuichi; Masutani, Mitsuko

    2013-05-24

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responses to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at ser18 was

  12. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis

    PubMed Central

    Mao, Xinguo; Zhang, Hongying; Tian, Shanjun; Chang, Xiaoping; Jing, Ruilian

    2010-01-01

    Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity worldwide. Protein phosphorylation/dephosphorylation are major signalling events induced by osmotic stress in higher plants. Sucrose non-fermenting 1-related protein kinase2 family members play essential roles in response to hyperosmotic stresses in Arabidopsis, rice, and maize. In this study, the function of TaSnRK2.4 in drought, salt, and freezing stresses in Arabidopsis was characterized. A translational fusion protein of TaSnRK2.4 with green fluorescent protein showed subcellular localization in the cell membrane, cytoplasm, and nucleus. To examine the role of TaSnRK2.4 under various environmental stresses, transgenic Arabidopsis plants overexpressing wheat TaSnRK2.4 under control of the cauliflower mosaic virus 35S promoter were generated. Overexpression of TaSnRK2.4 resulted in delayed seedling establishment, longer primary roots, and higher yield under normal growing conditions. Transgenic Arabidopsis overexpressing TaSnRK2.4 had enhanced tolerance to drought, salt, and freezing stresses, which were simultaneously supported by physiological results, including decreased rate of water loss, enhanced higher relative water content, strengthened cell membrane stability, improved photosynthesis potential, and significantly increased osmotic potential. The results show that TaSnRK2.4 is involved in the regulation of enhanced osmotic potential, growth, and development under both normal and stress conditions, and imply that TaSnRK2.4 is a multifunctional regulatory factor in Arabidopsis. Since the overexpression of TaSnRK2.4 can significantly strengthen tolerance to drought, salt, and freezing stresses and does not retard the growth of transgenic Arabidopsis plants under well-watered conditions, TaSnRK2.4 could be utilized in transgenic breeding to improve abiotic stresses in crops. PMID:20022921

  13. MAPK-mediated enhanced expression of vacuolar H(+)-ATPase confers the improved adaption to NaCl stress in a halotolerate peppermint (Mentha piperita L.).

    PubMed

    Li, Zhe; Zhen, Zhen; Guo, Kai; Harvey, Paul; Li, Jishun; Yang, Hetong

    2016-03-01

    Vacuolar H(+)-ATPase (V-H(+)-ATPase) has been proved to be of importance in maintenance of ion homeostasis inside plant cells under NaCl stress. In this study, the expression levels and salt-tolerate function of V-H(+)-ATPase genes were investigated in the roots and leaves of a halotolerate peppermint (Mentha × piperita L.) Keyuan-1 treated with different concentrations of NaCl. Results showed that the expressions of V-H(+)-ATPase in the transcriptional, protein and activity levels were significantly enhanced in the halotolerate peppermint Keyuan-1 compared to the wild-type (WT) peppermint under 50, 100, and 150 mM NaCl treatment. Moreover, inhibition experiments exhibited that V-H(+)-ATPase activity played vital roles in the salt tolerance of peppermint Keyuan-1 to 150 mM NaCl stress through increasing the vacuolar H(+) pumping activity and Na(+) compartmentalization capacity. Furthermore, results of Western blots showed that the activity of a mitogen-activated protein kinase (MAPK) was significantly increased under different concentrations of NaCl in the halotolerate peppermint Keyuan-1, which was much higher than that of WT peppermint. Further experiments with inhibitors suggested that this MAPK protein was responsible for the enhanced expression of V-H(+)-ATPase in the halotolerate peppermint Keyuan-1. In response to NaCl stress, increase of cytoplasmic calcium concentration ([Ca(2+)]cyt) occurred upstream of MAPK activation in the halotolerate peppermint Keyuan-1. In all, these findings demonstrated that increased V-H(+)-ATPase activity was positively correlated with the enhanced salt tolerance in the halotolerate peppermint Keyuan-1, providing the theoretic basis for the further development and utilization of peppermint in saline areas.

  14. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana.

    PubMed

    Dong, Na; Liu, Xin; Lu, Yan; Du, Lipu; Xu, Huijun; Liu, Hongxia; Xin, Zhiyong; Zhang, Zengyan

    2010-05-01

    Bipolaris sorokiniana is an economically important phytopathogen of wheat and other cereal species. In this paper, a novel pathogen-induced ethylene-responsive factor (ERF) gene of wheat, TaPIEP1, was isolated and characterized. The transcript of TaPIEP1 was significantly and rapidly induced by treatments with B. sorokiniana, and with ethylene (ET), jasmonate (JA), and abscisic acid. Molecular and biochemical assays demonstrated that TaPIEP1 is a new ERF transcription activator belonging to B-3c subgroup of the ERF family. Transgenic wheat lines overexpressing TaPIEP1 were generated by biolistic bombardment and molecular screening. Compared with the host wheat Yangmai12, six stable transgenic wheat lines overexpressing TaPIEP1 that exhibited significantly increased resistance to B. sorokiniana were identified by molecular detection in the T(0)-T(4) generations and by disease resistance tests. The degree of the enhanced resistance was correlated with an accumulation of the transcript level of TaPIEP1. Furthermore, the transcript levels of certain defense-related genes in the ET/JA pathways were markedly increased in the transgenic wheat plants with enhanced resistance. These results reveal that TaPIEP1 overexpression in wheat could obviously improve resistance to B. sorokiniana via activation of some defense genes, and TaPIEP1 gene may be useful in improving crop resistance to the pathogen.

  15. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  16. Proceedings: Condenser technology conference

    SciTech Connect

    Tsou, J.L. ); Mussalli, Y.G. )

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues.

  17. Substrate induction of nitrate reductase in barley aleurone layers.

    PubMed

    Ferrari, T E; Varner, J E

    1969-01-01

    Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of alpha-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce alpha-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of alpha-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.

  18. Enhancing caries resistance with a short-pulsed CO2 9.3-μm laser: a laboratory study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Rechmann, Beate M.; Groves, William H.; Le, Charles; Rapozo-Hilo, Marcia L.; Featherstone, John D. B.

    2016-02-01

    The objective of this laboratory study was to test whether irradiation with a new 9.3µm microsecond short-pulsed CO2-laser enhances enamel caries resistance with and without additional fluoride applications. 101 human enamel samples were divided into 7 groups. Each group was treated with different laser parameters (Carbon-dioxide laser, wavelength 9.3µm, 43Hz pulse-repetition rate, pulse duration between 3μs to 7μs (1.5mJ/pulse to 2.9mJ/pulse). Using a pH-cycling model and cross-sectional microhardness testing determined the mean relative mineral loss delta Z (∆Z) for each group. The pH-cycling was performed with or without additional fluoride. The CO2 9.3μm short-pulsed laser energy rendered enamel caries resistant with and without additional fluoride use.

  19. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  20. Inhibitory effects of Zingiber officinale Roscoe derived components on aldose reductase activity in vitro and in vivo.

    PubMed

    Kato, Atsushi; Higuchi, Yasuko; Goto, Hirozo; Kizu, Haruhisa; Okamoto, Tadashi; Asano, Naoki; Hollinshead, Jackie; Nash, Robert J; Adachi, Isao

    2006-09-01

    Ginger (Zingiber officinale Roscoe) continues to be used as an important cooking spice and herbal medicine around the world. Scientific research has gradually verified the antidiabetic effects of ginger. Especially gingerols, which are the major components of ginger, are known to improve diabetes including the effect of enhancement against insulin-sensitivity. Aldose reductase inhibitors have considerable potential for the treatment of diabetes, without increased risk of hypoglycemia. The assay for aldose reductase inhibitors in ginger led to the isolation of five active compounds including 2-(4-hydroxy-3-methoxyphenyl)ethanol (2) and 2-(4-hydroxy-3-methoxyphenyl)ethanoic acid (3). Compounds 2 and 3 were good inhibitors of recombinant human aldose reductase, with IC50 values of 19.2 +/- 1.9 and 18.5 +/- 1.1 microM, respectively. Furthermore, these compounds significantly suppressed not only sorbitol accumulation in human erythrocytes but also lens galactitol accumulation in 30% of galactose-fed cataract rat model. A structure-activity relationship study revealed that the applicable side alkyl chain length and the presence of a C3 OCH3 group in the aromatic ring are essential features for enzyme recognition and binding. These results suggested that it would contribute to the protection against or improvement of diabetic complications for a dietary supplement of ginger or its extract containing aldose reductase inhibitors. PMID:16939321

  1. Enzymatic characterization of recombinant nitrate reductase expressed and purified from Neurospora crassa.

    PubMed

    Ringel, Phillip; Probst, Corinna; Dammeyer, Thorben; Buchmeier, Sabine; Jänsch, Lothar; Wissing, Josef; Tinnefeld, Philip; Mendel, Ralf R; Jockusch, Brigitte M; Kruse, Tobias

    2015-07-01

    We established an expression and purification procedure for recombinant protein production in Neurospora crassa (N. crassa). This Strep-tag® based system was successfully used for purifying recombinant N. crassa nitrate reductase (NR), whose enzymatic activity was compared to recombinant N. crassa NR purified from Escherichia coli. The purity of the two different NR preparations was similar but NR purified from N. crassa showed a significantly higher nitrate turnover rate. Two phosphorylation sites were identified for NR purified from the endogenous expression system. We conclude that homologous expression of N. crassa NR yields a higher active enzyme and propose that NR phosphorylation causes enhanced enzymatic activity. PMID:25914160

  2. Enzymatic characterization of recombinant nitrate reductase expressed and purified from Neurospora crassa.

    PubMed

    Ringel, Phillip; Probst, Corinna; Dammeyer, Thorben; Buchmeier, Sabine; Jänsch, Lothar; Wissing, Josef; Tinnefeld, Philip; Mendel, Ralf R; Jockusch, Brigitte M; Kruse, Tobias

    2015-07-01

    We established an expression and purification procedure for recombinant protein production in Neurospora crassa (N. crassa). This Strep-tag® based system was successfully used for purifying recombinant N. crassa nitrate reductase (NR), whose enzymatic activity was compared to recombinant N. crassa NR purified from Escherichia coli. The purity of the two different NR preparations was similar but NR purified from N. crassa showed a significantly higher nitrate turnover rate. Two phosphorylation sites were identified for NR purified from the endogenous expression system. We conclude that homologous expression of N. crassa NR yields a higher active enzyme and propose that NR phosphorylation causes enhanced enzymatic activity.

  3. Regulation of the Neurospora crassa assimilatory nitrate reductase.

    PubMed Central

    Ketchum, P A; Zeeb, D D; Owens, M S

    1977-01-01

    Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-nitrate reductase from Neurospora crassa was purified and found to be stimulated by certain amino acids, citrate, and ethylenediaminetetraacetic acid (EDTA). Stimulation by citrate and the amino acids was dependent upon the prior removal of EDTA from the enzyme preparations, since low quantities of EDTA resulted in maximal stimulation. Removal of EDTA from enzyme preparations by dialysis against Chelex-containing buffer resulted in a loss of nitrate reductase activity. Addition of alanine, arginine, glycine, glutamine, glutamate, histidine, tryptophan, and citrate restored and stimulated nitrate reductase activity from 29- to 46-fold. The amino acids tested altered the Km of NADPH-nitrate reductase for NADPH but did not significantly change that for nitrate. The Km of nitrate reductase for NADPH increased with increasing concentrations of histidine but decreased with increasing concentrations of glutamine. Amino acid modulation of NADPH-nitrate reductase activity is discussed in relation to the conservation of energy (NADPH) by Neurospora when nitrate is the nitrogen source. PMID:19423

  4. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  5. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome

    PubMed Central

    Bondareva, Alla A.; Capecchi, Mario R.; Iverson, Sonya V.; Li, Yan; Lopez, Nathan I.; Lucas, Olivier; Merrill, Gary F.; Prigge, Justin R.; Siders, Ashley M.; Wakamiya, Maki; Wallin, Stephanie L.; Schmidt, Edward E.

    2007-01-01

    Thioredoxin reductases (Txnrd)1 maintain intracellular redox homeostasis in most organisms. Metazoans Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1−/− cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd−/− and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells. PMID:17697936

  6. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  7. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  8. Aldose reductase expression as a risk factor for cataract

    PubMed Central

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G. Bhanuprakesh; Petrash, J. Mark

    2015-01-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the

  9. Aldose Reductase, Oxidative Stress, and Diabetic Mellitus

    PubMed Central

    Tang, Wai Ho; Martin, Kathleen A.; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  10. Aldose reductase, oxidative stress, and diabetic mellitus.

    PubMed

    Tang, Wai Ho; Martin, Kathleen A; Hwa, John

    2012-01-01

    Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications. PMID:22582044

  11. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. PMID:27033597

  12. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy.

  13. Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis.

    PubMed

    Conacci-Sorrell, Maralice E; Ben-Yedidia, Tamar; Shtutman, Michael; Feinstein, Elena; Einat, Paz; Ben-Ze'ev, Avri

    2002-08-15

    beta-catenin and plakoglobin (gamma-catenin) are homologous molecules involved in cell adhesion, linking cadherin receptors to the cytoskeleton. beta-catenin is also a key component of the Wnt pathway by being a coactivator of LEF/TCF transcription factors. To identify novel target genes induced by beta-catenin and/or plakoglobin, DNA microarray analysis was carried out with RNA from cells overexpressing either protein. This analysis revealed that Nr-CAM is the gene most extensively induced by both catenins. Overexpression of either beta-catenin or plakoglobin induced Nr-CAM in a variety of cell types and the LEF/TCF binding sites in the Nr-CAM promoter were required for its activation by catenins. Retroviral transduction of Nr-CAM into NIH3T3 cells stimulated cell growth, enhanced motility, induced transformation, and produced rapidly growing tumors in nude mice. Nr-CAM and LEF-1 expression was elevated in human colon cancer tissue and cell lines and in human malignant melanoma cell lines but not in melanocytes or normal colon tissue. Dominant negative LEF-1 decreased Nr-CAM expression and antibodies to Nr-CAM inhibited the motility of B16 melanoma cells. The results indicate that induction of Nr-CAM transcription by beta-catenin or plakoglobin plays a role in melanoma and colon cancer tumorigenesis, probably by promoting cell growth and motility. PMID:12183361

  14. Oral ingestion of Capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes.

    PubMed

    Nevius, E; Srivastava, P K; Basu, S

    2012-01-01

    Vanilloid receptor 1 (VR1) is expressed on immune cells as well as on sensory neurons. Here we report that VR1 can regulate immunological events in the gut in response to its ligand Capsaicin (CP), a nutritional factor, the pungent component of chili peppers. Oral administration of CP attenuates the proliferation and activation of autoreactive T cells in pancreatic lymph nodes (PLNs) but not other lymph nodes, and protects mice from development of type 1 diabetes (T1D). This is a general phenomenon and not restricted to one particular strain of mice. Engagement of VR1 enhances a discreet population of CD11b(+)/F4/80(+) macrophages in PLN, which express anti-inflammatory factors interleukin (IL)-10 and PD-L1. This population is essential for CP-mediated attenuation of T-cell proliferation in an IL-10-dependent manner. Lack of VR1 expression fails to inhibit proliferation of autoreactive T cells, which is partially reversed in (VR1(+/+) → VR1(-/-)) bone marrow chimeric mice, implying the role of VR1 in crosstalk between neuronal and immunological responses in vivo. These findings imply that endogenous ligands of VR1 can have profound effect on gut-mediated immune tolerance and autoimmunity by influencing the nutrient-immune interactions.

  15. Oral ingestion of Capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes.

    PubMed

    Nevius, E; Srivastava, P K; Basu, S

    2012-01-01

    Vanilloid receptor 1 (VR1) is expressed on immune cells as well as on sensory neurons. Here we report that VR1 can regulate immunological events in the gut in response to its ligand Capsaicin (CP), a nutritional factor, the pungent component of chili peppers. Oral administration of CP attenuates the proliferation and activation of autoreactive T cells in pancreatic lymph nodes (PLNs) but not other lymph nodes, and protects mice from development of type 1 diabetes (T1D). This is a general phenomenon and not restricted to one particular strain of mice. Engagement of VR1 enhances a discreet population of CD11b(+)/F4/80(+) macrophages in PLN, which express anti-inflammatory factors interleukin (IL)-10 and PD-L1. This population is essential for CP-mediated attenuation of T-cell proliferation in an IL-10-dependent manner. Lack of VR1 expression fails to inhibit proliferation of autoreactive T cells, which is partially reversed in (VR1(+/+) → VR1(-/-)) bone marrow chimeric mice, implying the role of VR1 in crosstalk between neuronal and immunological responses in vivo. These findings imply that endogenous ligands of VR1 can have profound effect on gut-mediated immune tolerance and autoimmunity by influencing the nutrient-immune interactions. PMID:22113584

  16. Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Feng, Shangyuan; Tai, Isabella T.; Chen, Guannan; Chen, Rong; Zeng, Haishan

    2016-03-01

    Colorectal cancer (CRC) is the third most common type of cancer and forth leading cause of cancer-related death. Early diagnosis is the key to long-term patient survival. Programmatic screening for the general population has shown to be cost-effective in reducing the incidence and mortality from CRC. Current CRC screening strategy relies on a broad range of test techniques such as fecal based tests and endoscopic exams. Occult blood tests like fecal immunochemical test is a cost effective way to detect CRC but have limited diagnostic values in detecting adenomatous polyp, the most treatable precursor to CRC. In the present work, we proposed the use of surface enhanced Raman spectroscopy (SERS) with silver nanoparticles as substrate to analyze blood plasma for detecting both CRC and adenomatous polyps. Blood plasma samples collected from healthy subjects and patients diagnosed with adenomas and CRC were prepared with nanoparticles and measured using a real-time fiber optic probe based Raman system. The collected SERS spectra are analyzed with partial least squares-discriminant analysis. Classification of normal versus CRC plus adenomatous polyps achieved diagnostic sensitivity of 86.4% and specificity of 80%. This exploratory study suggests that blood plasma SERS analysis has potential to become a screening test for detecting both CRC and adenomas.

  17. A DNA vaccine encoding VP22 of herpes simplex virus type I (HSV-1) and OprF confers enhanced protection from Pseudomonas aeruginosa in mice.

    PubMed

    Yu, Xian; Wang, Yan; Xia, Yifan; Zhang, Lijuan; Yang, Qin; Lei, Jun

    2016-08-17

    Pseudomonas aeruginosa antimicrobial resistance is a major therapeutic challenge. DNA vaccination is an attractive approach for antigen-specific immunotherapy against P. aeruginosa. We explored the feasibility of employing Herpes simplex virus type 1 tegument protein, VP22, as a molecular tool to enhance the immunogenicity of an OprF DNA vaccine against P. aeruginosa. Recombinant DNA vaccines, pVAX1-OprF, pVAX1-OprF-VP22 (encoding a n-OprF-VP22-c fusion protein) and pVAX1-VP22-OprF (encoding a n-VP22-OprF-c fusion protein) were constructed. The humoral and cellular immune responses and immune protective effects of these DNA vaccines in mice were evaluated. In this report, we showed that vaccination with pVAX1-OprF-VP22 induced higher levels of IgG titer, T cell proliferation rate. It also provided better immune protection against the P. aeruginosa challenge when compared to that induced by pVAX1-OprF or pVAX1-VP22-OprF DNA vaccines. Molecular mechanistic analyses indicated vaccination with pVAX1-OprF-VP22 triggered immune responses characterized by a preferential increase in antigen specific IgG2a and IFN-γ in mice, indicating Th1 polarization. We concluded that VP22 is a potent stimulatory molecular tool for DNA vaccination when fused to the carboxyl end of OprF gene. Our study provides a novel strategy for prevention and treatment of P. aeruginosa infection. PMID:27449680

  18. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection

    PubMed Central

    Campo, Sonia; Peris-Peris, Cristina; Montesinos, Laura; Peñas, Gisela; Messeguer, Joaquima; San Segundo, Blanca

    2012-01-01

    14-3-3 proteins are found in all eukaryotes where they act as regulators of diverse signalling pathways associated with a wide range of biological processes. In this study the functional characterization of the ZmGF14-6 gene encoding a maize 14-3-3 protein is reported. Gene expression analyses indicated that ZmGF14-6 is up-regulated by fungal infection and salt treatment in maize plants, whereas its expression is down-regulated by drought stress. It is reported that rice plants constitutively expressing ZmGF14-6 displayed enhanced tolerance to drought stress which was accompanied by a stronger induction of drought-associated rice genes. However, rice plants expressing ZmGF14-6 either in a constitutive or under a pathogen-inducible regime showed a higher susceptibility to infection by the fungal pathogens Fusarium verticillioides and Magnaporthe oryzae. Under infection conditions, a lower intensity in the expression of defence-related genes occurred in ZmGF14-6 rice plants. These findings support that ZmGF14-6 positively regulates drought tolerance in transgenic rice while negatively modulating the plant defence response to pathogen infection. Transient expression assays of fluorescently labelled ZmGF14-6 protein in onion epidermal cells revealed a widespread distribution of ZmGF14-6 in the cytoplasm and nucleus. Additionally, colocalization experiments of fluorescently labelled ZmGF14-6 with organelle markers, in combination with cell labelling with the endocytic tracer FM4-64, revealed a subcellular localization of ZmGF14-6 in the early endosomes. Taken together, these results improve our understanding of the role of ZmGF14-6 in stress signalling pathways, while indicating that ZmGF14-6 inversely regulates the plant response to biotic and abiotic stresses. PMID:22016430

  19. Non-destructive optical clearing technique enhances optical coherence tomography (OCT) for real-time, 3D histomorphometry of brain tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.

    2016-03-01

    Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.

  20. A live attenuated Salmonella Enteritidis secreting detoxified heat labile toxin enhances mucosal immunity and confers protection against wild-type challenge in chickens.

    PubMed

    Lalsiamthara, Jonathan; Kamble, Nitin Machindra; Lee, John Hwa

    2016-01-01

    A live attenuated Salmonella Enteritidis (SE) capable of constitutively secreting detoxified double mutant Escherichia coli heat labile toxin (dmLT) was developed. The biologically adjuvanted strain was generated via transformation of a highly immunogenic SE JOL1087 with a plasmid encoding dmLT gene cassette; the resultant strain was designated JOL1641. A balanced-lethal host-vector system stably maintained the plasmid via auxotrophic host complementation with a plasmid encoded aspartate semialdehyde dehydrogenase (asd) gene. Characterization by western blot assay revealed the dmLT subunit proteins in culture supernatants of JOL1641. For the investigation of adjuvanticity and protective efficacy, chickens were immunized via oral or intramuscular routes with PBS, JOL1087 and JOL1641. Birds immunized with JOL1641 showed significant (P ≤ 0.05) increases in intestinal SIgA production at the 1(st) and 2(nd) weeks post-immunization via oral and intramuscular routes, respectively. Interestingly, while both strains showed significant splenic protection via intramuscular immunization, JOL1641 outperformed JOL1087 upon oral immunization. Oral immunization of birds with JOL1641 significantly reduced splenic bacterial counts. The reduction in bacterial counts may be correlated with an adjuvant effect of dmLT that increases SIgA secretion in the intestines of immunized birds. The inclusion of detoxified dmLT in the strain did not cause adverse reactions to birds, nor did it extend the period of bacterial fecal shedding. In conclusion, we report here that dmLT could be biologically incorporated in the secretion system of a live attenuated Salmonella-based vaccine, and that this construction is safe and could enhance mucosal immunity, and protect immunized birds against wild-type challenge. PMID:27262338

  1. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    PubMed

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  2. Regulated tissue-specific alternative splicing of enhanced green fluorescent protein transgenes conferred by alpha-tropomyosin regulatory elements in transgenic mice.

    PubMed

    Ellis, Peter D; Smith, Christopher W J; Kemp, Paul

    2004-08-27

    The mutually exclusive exons 2 and 3 of alpha-tropomyosin (alphaTM) have been used as a model system for strictly regulated alternative splicing. Exon 2 inclusion is only observed at high levels in smooth muscle (SM) tissues, whereas striated muscle and non-muscle cells use predominantly exon 3. Experiments in cell culture have shown that exon 2 selection results from repression of exon 3 and that this repression is mediated by regulatory elements flanking exon 3. We have now tested the cell culture-derived model in transgenic mice. We show that by harnessing the intronic splicing regulatory elements, expression of an enhanced green fluorescent protein transgene with a constitutively active promoter can be restricted to SM cells. Splicing of both endogenous alphaTM and a series of transgenes carrying regulatory element mutations was analyzed by reverse transcriptasePCR. These studies indicated that although SM-rich tissues are equipped to regulate splicing of high levels of endogenous or transgene alphaTM RNA, other non-SM tissues such as spleen, which express lower amounts of alphaTM, also splice significant proportions of exon 2, and this splicing pattern can be recapitulated by transgenes expressed at low levels. We confirm the importance in vivo of the negatively acting regulatory elements for regulated skipping of exon 3. Moreover, we provide evidence that some of the regulatory factors responsible for exon 3 skipping appear to be titratable, with loss of regulated splicing sometimes being associated with high transgene expression levels. PMID:15194683

  3. Role of 5 alpha-reductase in health and disease.

    PubMed

    Randall, V A

    1994-04-01

    The mechanism of androgen action varies in different tissues, but in the majority of androgen target tissues either testosterone or 5 alpha-dihydrotestosterone (DHT) binds to a specific androgen receptor to form a complex that can regulate gene expression. Testosterone is metabolized to DHT by the enzyme 5 alpha-reductase. The autosomal recessive genetic disorder of 5 alpha-reductase deficiency has clearly shown that the requirement for DHT formation varies with different tissues. In this syndrome genetic males contain normal male internal structures including testes, but exhibit ambiguous or female external genitalia at birth; at puberty they undergo partial virilization which includes development of a male gender identity even if brought up as females. Their development suggests that testosterone itself is able to stimulate psychosexual behaviour, development of the embryonic wolffian duct, muscle development, voice deepening, spermatogenesis, and axillary and pubic hair growth; DHT seems to be essential for prostate development and growth, the development of the external genitalia and male patterns of facial and body hair growth or male-pattern baldness. How different hormones operate to regulate genes via the same receptor is currently unknown, but appears to involve cell-specific factors. The 5-alpha-reductase enzyme has proved difficult to isolate biochemically, but recently at least two human isoenzymes have been identified using molecular biological methods. All the various 5 alpha-reductase-deficient kindreds have been shown to have mutations in 5 alpha-reductase 2, the predominant form in the prostate. The biological role of 5 alpha-reductase 1 has not yet been ascertained, but at present it cannot be ruled out that some of the actions ascribed to testosterone are indeed in cells producing DHT via this enzyme. The activity of 5 alpha-reductase is also implicated in benign prostatic hypertrophy, hirsutism and possibly male-pattern baldness; recent evidence

  4. Conference Paper NFO-7:7th International Conference on Near-Field Optics and Related Technologies

    SciTech Connect

    Prof.Dr. Lukas Novotny

    2004-10-18

    The seventh conference in the NFO conference series, held here in Rochester, provided to be the principal forum for advances in sub-wavelength optics, near-field optical microscopy, local field enhancement, instrumental developments and the ever-increasing range of applications. This conference brought together the diverse scientific communities working on the theory and application of near-field optics (NFO) and related techniques.

  5. Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase.

    PubMed

    Lancaster, C Roy D

    2003-11-27

    The three-dimensional structure of Wolinella succinogenes quinol:fumarate reductase (QFR), a dihaem-containing member of the superfamily of succinate:quinone oxidoreductases (SQOR), has been determined at 2.2 A resolution by X-ray crystallography [Lancaster et al., Nature 402 (1999) 377-385]. The structure and mechanism of W. succinogenes QFR and their relevance to the SQOR superfamily have recently been reviewed [Lancaster, Adv. Protein Chem. 63 (2003) 131-149]. Here, a comparison is presented of W. succinogenes QFR to the recently determined structure of the mono-haem containing succinate:quinone reductase from Escherichia coli [Yankovskaya et al., Science 299 (2003) 700-704]. In spite of differences in polypeptide and haem composition, the overall topology of the membrane anchors and their relative orientation to the conserved hydrophilic subunits is strikingly similar. A major difference is the lack of any evidence for a 'proximal' quinone site, close to the hydrophilic subunits, in W. succinogenes QFR.

  6. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  7. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases).

    PubMed

    Pal, Dibyarupa; Banerjee, Sulagna; Cui, Jike; Schwartz, Aaron; Ghosh, Sudip K; Samuelson, John

    2009-02-01

    Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here.

  8. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies. PMID:27466384

  9. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies.

  10. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November...

  11. Shoot-to-Root Signal Transmission Regulates Root Fe(III) Reductase Activity in the dgl Mutant of Pea.

    PubMed

    Grusak, M. A.; Pezeshgi, S.

    1996-01-01

    To understand the root, shoot, and Fe-nutritional factors that regulate root Fe-acquisition processes in dicotyledonous plants, Fe(III) reduction and net proton efflux were quantified in root systems of an Fe-hyperaccumulating mutant (dgl) and a parental (cv Dippes Gelbe Viktoria [DGV]) genotype of pea (Pisum sativum). Plants were grown with (+Fe treated) or without (-Fe treated) added Fe(III)-N,N'-ethylenebis[2-(2-hydroxyphenyl)-glycine] (2 [mu]M); root Fe(III) reduction was measured in solutions containing growth nutrients, 0.1 mM Fe(III)-ethylenediaminetetraacetic acid, and 0.1 mM Na2-bathophenanthrolinedisulfonic acid. Daily measurements of Fe(III) reduction (d 10-20) revealed initially low rates in +Fe-treated and -Fe-treated dgl, followed by a nearly 5-fold stimulation in rates by d 15 for both growth types. In DGV, root Fe(III) reductase activity increased only minimally by d 20 in +Fe-treated plants and about 3-fold in -Fe-treated plants, beginning on d 15. Net proton efflux was enhanced in roots of -Fe-treated DGV and both dgl growth types, relative to +Fe-treated DGV. In dgl, the enhanced proton efflux occurred prior to the increase in root Fe(III) reductase activity. Reductase studies using plants with reciprocal shoot:root grafts demonstrated that shoot expression of the dgl gene leads to the generation of a transmissible signal that enhances Fe(III) reductase activity in roots. The dgl gene product may alter or interfere with a normal component of a signal transduction mechanism regulating Fe homeostasis in plants.

  12. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.

    PubMed

    Tchobanov, Iavor; Gal, Laurent; Guilloux-Benatier, Michèle; Remize, Fabienne; Nardi, Tiziana; Guzzo, Jean; Serpaggi, Virginie; Alexandre, Hervé

    2008-07-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxellensis that was active towards 4-vinylguaiacol and 4-vinylphenol only among the substrates tested. First, a vinylphenol reductase activity assay was designed that allowed us to show that the enzyme was NADH dependent. The vinylphenol reductase was purified 152-fold with a recovery yield of 1.77%. The apparent K(m) and V(max) values for the hydrolysis of 4-vinylguaiacol were, respectively, 0.14 mM and 1900 U mg(-1). The optimal pH and temperature for vinylphenol reductase were pH 5-6 and 30 degrees C, respectively. The molecular weight of the enzyme was 26 kDa. Trypsic digest of the protein was performed and the peptides were sequenced, which allowed us to identify in Brettanomyces genome an ORF coding for a 210 amino acid protein.

  13. District Leadership Conference Planner.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual provides usable guidelines and planning forms and materials for planning district leadership conferences, which were designed and initiated in Washington State to meet the problems in student enrollment and, consequently, Distributive Education Clubs of America membership. The conferences have become a useful means to increase…

  14. [Conference Time Kit.

    ERIC Educational Resources Information Center

    National School Public Relations Association, Washington, DC.

    This multimedia kit, for use with and by teachers from kindergarten through the upper elementary grades, consists of four components: 1) a filmstrip for teachers; 2) the 1970 edition of a handbook, "Conference Time for Teachers and Parents"; 3) a filmstrip for parents; 4) a supporting parent information leaflet "How To Confer Successfully with…

  15. [Kweichow planned parenthood conference].

    PubMed

    1978-12-15

    On December 5th the Kweichow Provincial Planned Parenthood Leadership Group held its 1st conference to discuss the problems of planned parenthood in the province. Miao Chun-ting, deputy secretary of the provincial CCP committee and head of the provincial planned parenthood leadership group, presided over the conference.

  16. From Conference to Journal

    ERIC Educational Resources Information Center

    McCartney, Robert; Tenenberg, Josh

    2008-01-01

    Revising and extending conference articles for journal publication benefits both authors and readers. The new articles are more complete, and benefit from peer review, feedback from conference presentation, and greater editorial consistency. For those articles that are appropriate, we encourage authors to do this, and present two examples of such…

  17. The Conference in Retrospect.

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1982-01-01

    Presents an overview of the 6th International Conference on Chemical Education held at the University of Maryland (August 9-14, 1981), focusing on such organizational activities as roster building, people activating, innovative publishing, resolution and recommendation drafting, conference infrastructure and managerial mode, hospitality center,…

  18. The Learning Conference

    ERIC Educational Resources Information Center

    Ravn, Ib

    2007-01-01

    Purpose: The purpose of this paper is to call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates--and to introduce an alternative, the "learning conference", that involves delegates in fun and productive learning processes. Design/methodology/approach: A…

  19. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas and tried…

  20. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  1. Teacher Corps Conference. A Sharing of Experiences.

    ERIC Educational Resources Information Center

    Bryant, Brenda, Ed.

    This report comes out of the 1974 Teacher Corps Conference, which was held to acquaint Teacher Corps personnel with new ideas to enhance their abilities to train interns to work with children with special needs. The first part of the report is composed of 18 speeches on topics such as: community involvement in education, ethnic diversity,…

  2. Molecular population genetics of the NADPH cytochrome P450 reductase (CPR) gene in Anopheles minimus.

    PubMed

    Srivastava, Hemlata; Huong, Ngo Thi; Arunyawat, Uraiwan; Das, Aparup

    2014-08-01

    Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population.

  3. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  4. Crystal structure of red chlorophyll catabolite reductase: enlargement of the ferredoxin-dependent bilin reductase family.

    PubMed

    Sugishima, Masakazu; Kitamori, Yuka; Noguchi, Masato; Kohchi, Takayuki; Fukuyama, Keiichi

    2009-06-01

    The key steps in the degradation pathway of chlorophylls are the ring-opening reaction catalyzed by pheophorbide a oxygenase and sequential reduction by red chlorophyll catabolite reductase (RCCR). During these steps, chlorophyll catabolites lose their color and phototoxicity. RCCR catalyzes the ferredoxin-dependent reduction of the C20/C1 double bond of red chlorophyll catabolite. RCCR appears to be evolutionarily related to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The evidence, however, is not robust; the identity between RCCR and FDBR HY2 from Arabidopsis thaliana is only 15%, and the oligomeric states of these enzymes are different. Here, we report the crystal structure of A. thaliana RCCR at 2.4 A resolution. RCCR forms a homodimer, in which each subunit folds in an alpha/beta/alpha sandwich. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor. The two subunits are related by noncrystallographic 2-fold symmetry in which the alpha-helices near the edge of the beta-sheet unique in RCCR participate in intersubunit interaction. The putative RCC-binding site, which was derived by superimposing RCCR onto biliverdin-bound forms of FDBRs, forms an open pocket surrounded by conserved residues among RCCRs. Glu154 and Asp291 of A. thaliana RCCR, which stand opposite each other in the pocket, likely are involved in substrate binding and/or catalysis.

  5. 4-Dimethylaminoazobenzenes: carcinogenicities and reductive cleavage by microsomal azo reductase.

    PubMed

    Lambooy, J P; Koffman, B M

    1985-01-01

    Twenty-four 4-dimethylaminoazobenzenes (DABs) in which systematic structural modifications have been made in the prime ring have been studied for substrate specificity for microsomal azo reductase. The DABs were also evaluated for carcinogenicity and it was found that there was no correlation between carcinogenicity and extent of azo bond cleavage by azo reductase. While any substituent in the prime ring reduces the rate of cleavage of the azo bond relative to the unsubstituted dye, there is a correlation between substituent size and susceptibility to the enzyme. Substituent size was also found to be a significant factor in the induction of hepatomas by the dyes. Preliminary studies have shown that there appears to be a positive correlation between microsomal riboflavin content and the activity of the azo reductase.

  6. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  7. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  8. Lantibiotic Reductase LtnJ Substrate Selectivity Assessed with a Collection of Nisin Derivatives as Substrates.

    PubMed

    Mu, Dongdong; Montalbán-López, Manuel; Deng, Jingjing; Kuipers, Oscar P

    2015-06-01

    Lantibiotics are potent antimicrobial peptides characterized by the presence of dehydrated amino acids, dehydroalanine and dehydrobutyrine, and (methyl)lanthionine rings. In addition to these posttranslational modifications, some lantibiotics exhibit additional modifications that usually confer increased biological activity or stability on the peptide. LtnJ is a reductase responsible for the introduction of D-alanine in the lantibiotic lacticin 3147. The conversion of L-serine into D-alanine requires dehydroalanine as the substrate, which is produced in vivo by the dehydration of serine by a lantibiotic dehydratase, i.e., LanB or LanM. In this work, we probe the substrate specificity of LtnJ using a system that combines the nisin modification machinery (dehydratase, cyclase, and transporter) and the stereospecific reductase LtnJ in Lactococcus lactis. We also describe an improvement in the production yield of this system by inserting a putative attenuator from the nisin biosynthesis gene cluster in front of the ltnJ gene. In order to clarify the sequence selectivity of LtnJ, peptides composed of truncated nisin and different mutated C-terminal tails were designed and coexpressed with LtnJ and the nisin biosynthetic machinery. In these tails, serine was flanked by diverse amino acids to determine the influence of the surrounding residues in the reaction. LtnJ successfully hydrogenated peptides when hydrophobic residues (Leu, Ile, Phe, and Ala) were flanking the intermediate dehydroalanine, while those in which dehydroalanine was flanked by one or two polar residues (Ser, Thr, Glu, Lys, and Asn) or Gly were either less prone to be modified by LtnJ or not modified at all. Moreover, our results showed that dehydrobutyrine cannot serve as a substrate for LtnJ. PMID:25795677

  9. Lantibiotic Reductase LtnJ Substrate Selectivity Assessed with a Collection of Nisin Derivatives as Substrates.

    PubMed

    Mu, Dongdong; Montalbán-López, Manuel; Deng, Jingjing; Kuipers, Oscar P

    2015-06-01

    Lantibiotics are potent antimicrobial peptides characterized by the presence of dehydrated amino acids, dehydroalanine and dehydrobutyrine, and (methyl)lanthionine rings. In addition to these posttranslational modifications, some lantibiotics exhibit additional modifications that usually confer increased biological activity or stability on the peptide. LtnJ is a reductase responsible for the introduction of D-alanine in the lantibiotic lacticin 3147. The conversion of L-serine into D-alanine requires dehydroalanine as the substrate, which is produced in vivo by the dehydration of serine by a lantibiotic dehydratase, i.e., LanB or LanM. In this work, we probe the substrate specificity of LtnJ using a system that combines the nisin modification machinery (dehydratase, cyclase, and transporter) and the stereospecific reductase LtnJ in Lactococcus lactis. We also describe an improvement in the production yield of this system by inserting a putative attenuator from the nisin biosynthesis gene cluster in front of the ltnJ gene. In order to clarify the sequence selectivity of LtnJ, peptides composed of truncated nisin and different mutated C-terminal tails were designed and coexpressed with LtnJ and the nisin biosynthetic machinery. In these tails, serine was flanked by diverse amino acids to determine the influence of the surrounding residues in the reaction. LtnJ successfully hydrogenated peptides when hydrophobic residues (Leu, Ile, Phe, and Ala) were flanking the intermediate dehydroalanine, while those in which dehydroalanine was flanked by one or two polar residues (Ser, Thr, Glu, Lys, and Asn) or Gly were either less prone to be modified by LtnJ or not modified at all. Moreover, our results showed that dehydrobutyrine cannot serve as a substrate for LtnJ.

  10. Lantibiotic Reductase LtnJ Substrate Selectivity Assessed with a Collection of Nisin Derivatives as Substrates

    PubMed Central

    Mu, Dongdong; Montalbán-López, Manuel; Deng, Jingjing

    2015-01-01

    Lantibiotics are potent antimicrobial peptides characterized by the presence of dehydrated amino acids, dehydroalanine and dehydrobutyrine, and (methyl)lanthionine rings. In addition to these posttranslational modifications, some lantibiotics exhibit additional modifications that usually confer increased biological activity or stability on the peptide. LtnJ is a reductase responsible for the introduction of d-alanine in the lantibiotic lacticin 3147. The conversion of l-serine into d-alanine requires dehydroalanine as the substrate, which is produced in vivo by the dehydration of serine by a lantibiotic dehydratase, i.e., LanB or LanM. In this work, we probe the substrate specificity of LtnJ using a system that combines the nisin modification machinery (dehydratase, cyclase, and transporter) and the stereospecific reductase LtnJ in Lactococcus lactis. We also describe an improvement in the production yield of this system by inserting a putative attenuator from the nisin biosynthesis gene cluster in front of the ltnJ gene. In order to clarify the sequence selectivity of LtnJ, peptides composed of truncated nisin and different mutated C-terminal tails were designed and coexpressed with LtnJ and the nisin biosynthetic machinery. In these tails, serine was flanked by diverse amino acids to determine the influence of the surrounding residues in the reaction. LtnJ successfully hydrogenated peptides when hydrophobic residues (Leu, Ile, Phe, and Ala) were flanking the intermediate dehydroalanine, while those in which dehydroalanine was flanked by one or two polar residues (Ser, Thr, Glu, Lys, and Asn) or Gly were either less prone to be modified by LtnJ or not modified at all. Moreover, our results showed that dehydrobutyrine cannot serve as a substrate for LtnJ. PMID:25795677

  11. The Anticancer Agent Chaetocin Is a Competitive Substrate and Inhibitor of Thioredoxin Reductase

    PubMed Central

    Tibodeau, Jennifer D.; Benson, Linda M.; Isham, Crescent R.; Owen, Whyte G.

    2009-01-01

    Abstract We recently reported that the antineoplastic thiodioxopiperazine natural product chaetocin potently induces cellular oxidative stress, thus selectively killing cancer cells. In pursuit of underlying molecular mechanisms, we now report that chaetocin is a competitive and selective substrate for the oxidative stress mitigation enzyme thioredoxin reductase-1 (TrxR1) with lower Km than the TrxR1 native substrate thioredoxin (Trx; chaetocin Km = 4.6 ± 0.6 μM, Trx Km = 104.7 ± 26 μM), thereby attenuating reduction of the critical downstream ROS remediation substrate Trx at achieved intracellular concentrations. Consistent with a role for TrxR1 targeting in the anticancer effects of chaetocin, overexpression of the TrxR1 downstream effector Trx in HeLa cells conferred resistance to chaetocin-induced, but not to doxorubicin-induced, cytotoxicity. As the TrxR/Trx pathway is of central importance in limiting cellular reactive oxygen species (ROS)—and as chaetocin exerts its selective anticancer effects via ROS imposition—the inhibition of TrxR1 by chaetocin has potential to explain its selective anticancer effects. These observations have important implications not just with regard to the mechanism of action and clinical development of chaetocin and related thiodioxopiperazines, but also with regard to the utility of molecular targets within the thioredoxin reductase/thioredoxin pathway in the development of novel candidate antineoplastic agents. Antioxid. Redox Signal. 11, 1097–1106. PMID:18999987

  12. Some physical and immunological properties of ox kidney biliverdin reductase.

    PubMed Central

    Rigney, E M; Phillips, O; Mantle, T J

    1988-01-01

    The liver, kidney and spleen of the mouse and rat and the kidney and spleen of the ox express a monomeric form of biliverdin reductase (Mr 34,000), which in the case of the ox kidney enzyme exists in two forms (pI 5.4 and 5.2) that are probably charge isomers. The livers of the mouse and rats express, in addition, a protein (Mr 46,000) that cross-reacts with antibodies raised against the ox kidney enzyme and may be related to form 2 described by Frydman, Tomaro, Awruch & Frydman [(1983) Biochim. Biophys. Acta 759, 257-263]. Higher-Mr forms appear to exist in the guinea pig and hamster. The ox kidney enzyme has three thiol groups, of which two are accessible to 5,5'-dithiobis-(2-nitrobenzoate) in the native enzyme. Immunocytochemical analysis reveals that biliverdin reductase is localized in proximal tubules of the inner cortex of the rat kidney. Biliverdin reductase antiserum also stains proximal tubules in human and ox kidney. The staining of podocytes in glomeruli of ox kidney with antiserum to aldose reductase is particularly prominent. The localization of biliverdin reductase in the inner cortical zone of rat kidney is similar to that described for glutathione S-transferase YfYf, and it is suggested that one function of this 'intracellular binding protein' may be to maintain a low free concentration of biliverdin to allow biliverdin reductase to operate efficiently. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3060109

  13. CONFERENCE NOTE: Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The next Conference on Precision Electromagnetic Measurements (CPEM), will be held from 9 to 12 June 1992 at the Centre des Nouvelles Industries et Technologies (CNIT), La Défense, Paris, France. This conference, which is held every two years and whose importance and high level, confirmed by thirty years' experience, are recognized throughout the world, can be considered as a forum in which scientists, metrologists and professionals will have the opportunity to present and compare their research results on fundamental constants, standards and new techniques of precision measurement in the electromagnetic domain. Topics The following topics are regarded as the most appropriate for this conference: realization of units and fundamental constants d.c. a.c. and high voltage time and frequency radio-frequency and microwaves dielectrics, antennas, fields lasers, fibre optics advanced instrumentation, cryoelectronics. There will also be a session on international cooperation. Conference Language The conference language will be English. No translation will be provided. Organizers Société des Electriciens et des Electroniciens (SEE). Bureau National de Métrologie (BNM) Sponsors Institute of Electrical and Electronics Engineers (IEEE) Instrumentation & Measurement Society Union Radio Scientifique Internationale United States National Institute of Standards and Technology Centre National d'Etudes des Télécommunications Mouvement Français pour la Qualité, Section Métrologie Comité National Français de Radioélectricité Scientifique Contact Jean Zara, CPEM 92 publicity, Bureau National de Métrologie, 22, rue Monge, 75005 Paris Tel.: (33) 1 46 34 48 16, Fax: (33) 1 46 34 48 63

  14. Selective non-steroidal inhibitors of 5 alpha-reductase type 1.

    PubMed

    Occhiato, Ernesto G; Guarna, Antonio; Danza, Giovanna; Serio, Mario

    2004-01-01

    The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed. PMID:15026079

  15. Synergy between broccoli sprout extract and selenium in the upregulation of thioredoxin reductase in human hepatocytes.

    PubMed

    Li, Dan; Wu, Kun; Howie, A Forbes; Beckett, Geoffrey J; Wang, Wei; Bao, Yongping

    2008-09-01

    Dietary isothiocyanates and selenium (Se) can up-regulate thioredoxin reductase 1 (TR1) in cultured human HepG2 and MCF-7 cells [Zhang et al. (2003). Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis, 24, 497-503; Wang et al. (2005). Sulforaphane, erucin and iberin up-regulate thioredoxin reductase expression in human MCF-7 cells. Journal of Agricultural and Food Chemistry, 53, 1417-1421] at both the protein and mRNA levels. In this study, broccoli sprout extract (a rich source of the isothiocyanates sulforaphane and iberin) and Se interacted synergistically to induce TR1 in immortalised human hepatocytes. Broccoli sprout extracts containing 1.6, 4 and 8μM isothiocyanates were tested for their ability to induce TR1 at the protein and mRNA level. Although induction of TR1 mRNA by broccoli sprout extract (1.6-8μM) was only 1.7-2.2-fold, co-treatment with Se (0.2-1μM) enhanced the expression of TR1 mRNA (3.0-3.3-fold). Moreover, broccoli sprout extract induced the cellular concentration of TR1 and TR enzymatic activity, an induction that was augmented by Se addition. Thus, broccoli sprout extract (8μM) and Se induced cellular TR1 concentration and enzymatic activity 3.7- and 5-fold respectively, whereas, Se or broccoli sprout extract alone produced an induction of only approximately 2-fold. These data suggest that dietary isothiocyanates from broccoli sprouts and Se are important agents in the regulation of redox status in human liver cells. The synergistic effect between isothiocyanates and Se at physiologically-relevant concentrations on the induction of TR1 may play an important role in protection against oxidative stress.

  16. Transcriptional regulation of hydroxypyruvate reductase gene expression by cytokinin in etiolated pumpkin cotyledons.

    PubMed

    Andersen, B R; Jin, G; Chen, R; Ertl, J R; Chen, C M

    1996-01-01

    To understand the mechanisms by which the expression of a specific gene is modulated by cytokinin, the regulation of hydroxypyruvate reductase (HPR) transcript levels by N6-benzyladenine (BA) in etiolated pumpkin (Cucurbita pepo L. cv. Halloween) cotyledons was investigated. A pumpkin HPR cDNA was generated by reverse transcriptase-polymerase chain reaction and its nucleotide sequence was determined. An antisense HPR RNA was prepared for RNase protection analysis of HPR-mRNA expression patterns in the cotyledons of dark-grown pumpkin seedlings. Treatment of the cotyledons with BA was shown to modulate HPR mRNA levels in a dose- and time-dependent manner. Similarly, nuclear run-on studies showed that the rate of transcription was also enhanced by BA treatment of the cotyledons. These results suggest that the enhancement of HPR mRNA by cytokinin is, at least in part, at the level of transcription. PMID:8580766

  17. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM.

  18. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prehearing conferences; hearing conferences. 1.248 Section 1.248 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. (a)...

  19. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.

    PubMed

    Spite, Matthew; Baba, Shahid P; Ahmed, Yonis; Barski, Oleg A; Nijhawan, Kanchan; Petrash, J Mark; Bhatnagar, Aruni; Srivastava, Sanjay

    2007-07-01

    Phospholipid oxidation generates several bioactive aldehydes that remain esterified to the glycerol backbone ('core' aldehydes). These aldehydes induce endothelial cells to produce monocyte chemotactic factors and enhance monocyte-endothelium adhesion. They also serve as ligands of scavenger receptors for the uptake of oxidized lipoproteins or apoptotic cells. The biochemical pathways involved in phospholipid aldehyde metabolism, however, remain largely unknown. In the present study, we have examined the efficacy of the three mammalian AKR (aldo-keto reductase) families in catalysing the reduction of phospholipid aldehydes. The model phospholipid aldehyde POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine] was efficiently reduced by members of the AKR1, but not by the AKR6 or the ARK7 family. In the AKR1 family, POVPC reductase activity was limited to AKR1A and B. No significant activity was observed with AKR1C enzymes. Among the active proteins, human AR (aldose reductase) (AKR1B1) showed the highest catalytic activity. The catalytic efficiency of human small intestinal AR (AKR1B10) was comparable with the murine AKR1B proteins 1B3 and 1B8. Among the murine proteins AKR1A4 and AKR1B7 showed appreciably lower catalytic activity as compared with 1B3 and 1B8. The human AKRs, 1B1 and 1B10, and the murine proteins, 1B3 and 1B8, also reduced C-7 and C-9 sn-2 aldehydes as well as POVPE [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphoethanolamine]. AKR1A4, B1, B7 and B8 catalysed the reduction of aldehydes generated in oxidized C(16:0-20:4) phosphatidylcholine with acyl, plasmenyl or alkyl linkage at the sn-1 position or C(16:0-20:4) phosphatidylglycerol or phosphatidic acid. AKR1B1 displayed the highest activity with phosphatidic acids; AKR1A4 was more efficient with long-chain aldehydes such as 5-hydroxy-8-oxo-6-octenoyl derivatives, whereas AKR1B8 preferred phosphatidylglycerol. These results suggest that proteins of the AKR1A and B families are

  20. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  1. Conference Summary Final Remarks

    NASA Astrophysics Data System (ADS)

    Greiner, Walter

    2007-05-01

    Finally we come to the last talk. The end of the Conference is near! I try to reflect on an interesting Conference, with many different - diverse - topics and 5 parallel afternoon sessions. How to solve this difficulty? I do it my way and present a selection of what I personally found interesting. I illustrate these topics with the help of slides which are borrowed from various speakers at the conference. There are outstanding problems, which will also find attention and interest if explained to non-nuclear physicists, common people. I will address four such topics which were were discussed at this conference: Heavy-Ion Cancer Therapy Extension of the Periodic Table - Superheavy Elements Nuclear Astrophysics Hot compressed elementary matter - Production - Phases

  2. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  3. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  4. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  5. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  6. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  7. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  10. Domain evolution and functional diversification of sulfite reductases.

    PubMed

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  11. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  12. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  13. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  14. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  15. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  16. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  17. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  18. Molecular genetics of steroid 5 alpha-reductase 2 deficiency.

    PubMed Central

    Thigpen, A E; Davis, D L; Milatovich, A; Mendonca, B B; Imperato-McGinley, J; Griffin, J E; Francke, U; Wilson, J D; Russell, D W

    1992-01-01

    Two isozymes of steroid 5 alpha-reductase encoded by separate loci catalyze the conversion of testosterone to dihydrotestosterone. Inherited defects in the type 2 isozyme lead to male pseudohermaphroditism in which affected males have a normal internal urogenital tract but external genitalia resembling those of a female. The 5 alpha-reductase type 2 gene (gene symbol SRD5A2) was cloned and shown to contain five exons and four introns. The gene was localized to chromosome 2 band p23 by somatic cell hybrid mapping and chromosomal in situ hybridization. Molecular analysis of the SRD5A2 gene resulted in the identification of 18 mutations in 11 homozygotes, 6 compound heterozygotes, and 4 inferred compound heterozygotes from 23 families with 5 alpha-reductase deficiency. 6 apparent recurrent mutations were detected in 19 different ethnic backgrounds. In two patients, the catalytic efficiency of the mutant enzymes correlated with the severity of the disease. The high proportion of compound heterozygotes suggests that the carrier frequency of mutations in the 5 alpha-reductase type 2 gene may be higher than previously thought. Images PMID:1522235

  19. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  20. ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES

    EPA Science Inventory

    ARSENICALS INHIBIT THIOREDOXIN REDUCTASE ACTIVITY IN CULTURED RAT HEPATOCYTES.

    S. Lin1, L. M. Del Razo1, M. Styblo1, C. Wang2, W. R. Cullen2, and D.J. Thomas3. 1Univ. North Carolina, Chapel Hill, NC; 2Univ. British Columbia, Vancouver, BC, Canada; 3National Health and En...

  1. Conference scene: DGVS spring conference 2009.

    PubMed

    Kolligs, Frank Thomas

    2009-10-01

    The 3rd annual DGVS Spring Conference of the German Society for Gastroenterology (Deutsche Gesellschaft für Verdauungs- und Stoffwechselkrankheiten) was held at the Seminaris Campus Hotel in Berlin, Germany, on 8-9 May, 2009. The conference was organized by Roland Schmid and Matthias Ebert from the Technical University of Munich, Germany. The central theme of the meeting was 'translational gastrointestinal oncology: towards personalized medicine and individualized therapy'. The conference covered talks on markers for diagnosis, screening and surveillance of colorectal cancer, targets for molecular therapy, response prediction in clinical oncology, development and integration of molecular imaging in gastrointestinal oncology and translational research in clinical trial design. Owing to the broad array of topics and limitations of space, this article will focus on biomarkers, response prediction and the integration of biomarkers into clinical trials. Presentations mentioned in this summary were given by Matthias Ebert (Technical University of Munich, Germany), Esmeralda Heiden (Epigenomics, Berlin, Germany), Frank Kolligs (University of Munich, Germany), Florian Lordick (University of Heidelberg, Germany), Hans Jorgen Nielsen (University of Copenhagen, Denmark), Anke Reinacher-Schick (University of Bochum, Germany), Christoph Röcken (University of Berlin, Germany), Wolff Schmiegel (University of Bochum, Germany) and Thomas Seufferlein (University of Halle, Germany).

  2. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis.

    PubMed

    Heath, R J; Su, N; Murphy, C K; Rock, C O

    2000-12-22

    Enoyl-[acyl-carrier-protein] (ACP) reductase is a key enzyme in type II fatty-acid synthases that catalyzes the last step in each elongation cycle. The FabI component of Bacillus subtilis (bsFabI) was identified in the genomic data base by homology to the Escherichia coli protein. bsFabI was cloned and purified and exhibited properties similar to those of E. coli FabI, including a marked preference for NADH over NADPH as a cofactor. Overexpression of the B. subtilis fabI gene complemented the temperature-sensitive growth phenotype of an E. coli fabI mutant. Triclosan was a slow-binding inhibitor of bsFabI and formed a stable bsFabI.NAD(+). triclosan ternary complex. Analysis of the B. subtilis genomic data base revealed a second open reading frame (ygaA) that was predicted to encode a protein with a relatively low overall similarity to FabI, but contained the Tyr-Xaa(6)-Lys enoyl-ACP reductase catalytic architecture. The purified YgaA protein catalyzed the NADPH-dependent reduction of trans-2-enoyl thioesters of both N-acetylcysteamine and ACP. YgaA was reversibly inhibited by triclosan, but did not form the stable ternary complex characteristic of the FabI proteins. Expression of YgaA complemented the fabI(ts) defect in E. coli and conferred complete triclosan resistance. Single knockouts of the ygaA or fabI gene in B. subtilis were viable, but double knockouts were not obtained. The fabI knockout was as sensitive as the wild-type strain to triclosan, whereas the ygaA knockout was 250-fold more sensitive to the drug. YgaA was renamed FabL to denote the discovery of a new family of proteins that carry out the enoyl-ACP reductase step in type II fatty-acid synthases.

  3. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.

    PubMed

    Lu, Jun; Chew, Eng-Hui; Holmgren, Arne

    2007-07-24

    Arsenic trioxide (ATO) is an effective cancer therapeutic drug for acute promyelocytic leukemia and has potential anticancer activity against a wide range of solid tumors. ATO exerts its effect mainly through elevated oxidative stress, but the exact molecular mechanism remains elusive. The thioredoxin (Trx) system comprising NADPH, thioredoxin reductase (TrxR), and Trx and the glutathione (GSH) system composed of NADPH, glutathione reductase, and GSH supported by glutaredoxin are the two electron donor systems that control cellular proliferation, viability, and apoptosis. Recently, the selenocysteine-dependent TrxR enzyme has emerged as an important molecular target for anticancer drug development. Here, we have discovered that ATO irreversibly inhibits mammalian TrxR with an IC(50) of 0.25 microM. Both the N-terminal redox-active dithiol and the C-terminal selenothiol-active site of reduced TrxR may participate in the reaction with ATO. The inhibition of MCF-7 cell growth by ATO was correlated with irreversible inactivation of TrxR, which subsequently led to Trx oxidation. Furthermore, the inhibition of TrxR by ATO was attenuated by GSH, and GSH depletion by buthionine sulfoximine enhanced ATO-induced cell death. These results strongly suggest that the ATO anticancer activity is by means of a Trx system-mediated apoptosis. Blocking cancer cell DNA replication and repair and induction of oxidative stress by the inhibition of both Trx and GSH systems are suggested as cancer chemotherapeutic strategies.

  4. Disulfide Reduction in the Endocytic Pathway: Immunological Functions of Gamma-Interferon-Inducible Lysosomal Thiol Reductase

    PubMed Central

    Cresswell, Peter

    2011-01-01

    Abstract Gamma-interferon-inducible lysosomal thiol reductase (GILT) is constitutively expressed in most antigen presenting cells and is interferon γ inducible in other cell types via signal transducer and activator of transcription 1. Normally, N- and C-terminal propeptides are cleaved in the early endosome, and the mature protein resides in late endosomes and lysosomes. Correspondingly, GILT has maximal reductase activity at an acidic pH. Monocyte differentiation via Toll-like receptor 4 triggers secretion of a disulfide-linked dimer of the enzymatically active precursor, which may contribute to inflammation. GILT facilitates major histocompatibility complex (MHC) class II-restricted processing through reduction of protein disulfide bonds in the endocytic pathway and is hypothesized to expose buried epitopes for MHC class II binding. GILT can also facilitate the transfer of disulfide-containing antigens into the cytosol, enhancing their cross-presentation by MHC class I. A variety of antigens are strongly influenced by GILT-mediated reduction, including hen egg lysozyme, melanocyte differentiation antigens, and viral envelope glycoproteins. In addition, GILT is conserved among lower eukaryotes and likely has additional functions. For example, GILT expression increases the stability of superoxide dismutase 2 and decreases reactive oxygen species, which correlates with decreased cellular proliferation. It is also a critical host factor for infection with Listeria monocytogenes. Antioxid. Redox Signal. 15, 657–668. PMID:21506690

  5. Second National Space Grant Conference report, 1991

    NASA Technical Reports Server (NTRS)

    Heimsoth, Jeffrey T. (Editor); Dasch, E. Julius (Editor); Devon, Richard F. (Editor); Keffer, Lynne (Editor)

    1991-01-01

    The conference goals were: (1) to provide a setting for Space Grant College/Consortia leaders to meet and discuss program plans; (2) to provide participants with updates on major NASA science and engineering programs and educational affairs activities; and (3) to hold workshops on themes of critical importance to the program. The conference agenda focused primarily on a series of 15 workshops in which program directors or their designees discussed components of the Space Grant Program. These components - outreach, pre-college education, publicity, and organization - were earlier incorporated in very specific ways within individual program plans. The conference, thus, afforded those attending an opportunity to exchange information and concerns regarding program elements while exploring ways to structure, enhance and perhaps broaden their program plans. Space Grant representatives also discussed with headquarters officials ways in which the Space Grant Program itself should be evaluated.

  6. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement

  7. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  8. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus).

    PubMed

    Sheldon, P S; Kekwick, R G; Smith, C G; Sidebottom, C; Slabas, A R

    1992-04-01

    3-Oxoacyl-[ACP] reductase (E.C. 1.1.1.100, alternatively known as beta-ketoacyl-[ACP] reductase), a component of fatty acid synthetase has been purified from seeds of rape by ammonium sulphate fractionation, Procion Red H-E3B chromatography, FPLC gel filtration and high performance hydroxyapatite chromatography. The purified enzyme appears on SDS-PAGE as a number of 20-30 kDa components and has a strong tendency to exist in a dimeric form, particularly when dithiothreitol is not present to reduce disulphide bonds. Cleveland mapping and cross-reactivity with antiserum raised against avocado 3-oxoacyl-[ACP] reductase both indicate that the multiple components have similar primary structures. On gel filtration the enzyme appears to have a molecular mass of 120 kDa suggesting that the native structure is tetrameric. The enzyme has a strong preference for the acetoacetyl ester of acyl carrier protein (Km = 3 microM) over the corresponding esters of the model substrates N-acetyl cysteamine (Km = 35 mM) and CoA (Km = 261 microM). It is inactivated by dilution but this can be partly prevented by the inclusion of NADPH. Using an antiserum prepared against avocado 3-oxoacyl-[ACP] reductase, the enzyme has been visualised inside the plastids of rape embryo and leaf tissues by immunoelectron microscopy. Amino acid sequencing of two peptides prepared by digestion of the purified enzyme with trypsin showed strong similarities with 3-oxoacyl-[ACP] reductase from avocado pear and the Nod G gene product from Rhizobium meliloti.

  9. The Fourth World Conference on Women.

    PubMed

    1995-01-01

    The Fourth World Conference on Women held in Beijing during September 4-15, 1995, was a major success. The platform for action adopted by consensus at the conference is comprised of the mission statement, a global framework, critical areas of concern, strategic objectives and actions, and institutional and financial arrangements. The conference was an extension of other large international conferences organized under UN initiative over the past 15 years. The Beijing platform of action aims to remove all obstacles to women's active participation in all spheres of public and private life through a full and equal share in economic, social, cultural, and political decision-making. The following concerns were defined by the conference: eradicating poverty, increasing school enrollment and eliminating gender inequalities in access to education, improving access to health care and eliminating gender inequalities in access to services, eliminating violence against women, mitigating the consequences of armed conflicts against women, securing equal access of men and women to economic resources and employment, providing equal participation of men and women in power structures and decision making, enhancing national mechanisms to promote the advancement of women, protecting the rights of girls and women, eradicating stereotypes about women, participating in the management of natural resources and environmental protection, and improving the status of girls.

  10. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  11. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  12. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases.

    PubMed

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L; Youn, Buhyun; Lawrence, Paulraj K; Gang, David R; Halls, Steven C; Park, HaJeung; Hilsenbeck, Jacqueline L; Davin, Laurence B; Lewis, Norman G; Kang, ChulHee

    2003-12-12

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  13. (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase.

    PubMed

    Dinkova-Kostova, A T; Gang, D R; Davin, L B; Bedgar, D L; Chu, A; Lewis, N G

    1996-11-15

    Lignans are a widely distributed class of natural products, whose functions and distribution suggest that they are one of the earliest forms of defense to have evolved in vascular plants; some, such as podophyllotoxin and enterodiol, have important roles in cancer chemotherapy and prevention, respectively. Entry into lignan enzymology has been gained by the approximately 3000-fold purification of two isoforms of (+)-pinoresinol/(+)-lariciresinol reductase, a pivotal branchpoint enzyme in lignan biosynthesis. Both have comparable ( approximately 34.9 kDa) molecular mass and kinetic (Vmax/Km) properties and catalyze sequential, NADPH-dependent, stereospecific, hydride transfers where the incoming hydride takes up the pro-R position. The gene encoding (+)-pinoresinol/(+)-lariciresinol reductase has been cloned and the recombinant protein heterologously expressed as a functional beta-galactosidase fusion protein. Its amino acid sequence reveals a strong homology to isoflavone reductase, a key branchpoint enzyme in isoflavonoid metabolism and primarily found in the Fabaceae (angiosperms). This is of great evolutionary significance since both lignans and isoflavonoids have comparable plant defense properties, as well as similar roles as phytoestrogens. Given that lignans are widespread from primitive plants onwards, whereas the isoflavone reductase-derived isoflavonoids are mainly restricted to the Fabaceae, it is tempting to speculate that this branch of the isoflavonoid pathway arose via evolutionary divergence from that giving the lignans.

  14. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  15. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  16. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  17. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    SciTech Connect

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  18. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and gastric cancer susceptibility

    PubMed Central

    Xia, Lei-Zhou; Liu, Yi; Xu, Xiao-Zhou; Jiang, Peng-Cheng; Ma, Gui; Bu, Xue-Feng; Zhang, Yong-Jun; Yu, Feng; Xu, Ke-Sen; Li, Hua

    2014-01-01

    AIM: To identify the association between methylenetetrahydrofolate reductase (MTHFR) polymorphisms and gastric cancer (GC) susceptibility. METHODS: Systematic searches were performed on the electronic databases PubMed, ISI, Web of knowledge, CNKI and Wanfang, as well as manual searching of the references of the identified articles. A total of 26 papers were included in this meta-analysis. Overall and subgroup analyses were performed. Odds ratio (OR) and 95%CI were used to evaluate the associations between MTHFR polymorphisms and GC risk. The I2 statistics were used to evaluate between-study heterogeneity. Sensitivity analysis was also performed. RESULTS: Increased risk was found for the MTHFR C677T polymorphism under four genetic models (TT + CT vs CC: OR = 1.23, P = 0.002; T vs C: OR = 1.15, P = 0.001; TT vs CC: OR = 1.37, P = 0.0005; TT vs CT + CC: OR = 1.17, P = 0.0008). Subgroup analysis by ethnicity suggested that C677T polymorphism conferred a risk of GC in eastern but not in western populations. Stratification by tumor site showed an association between the C677T polymorphism and gastric cardia cancer and non-cardia GC in the worldwide population and in eastern populations. Regardless of comparisons with controls or diffuse-type GC, a positive association was found for the C677T polymorphism and an increased risk of intestinal-type GC in the whole population and in western populations. With regard to the A1298C polymorphism, we found that genotype CC was significantly decreased and conferred protection against GC in eastern populations (CC vs AA: OR = 0.44, P = 0.03; CC vs AC + AA: OR = 0.46, P = 0.04). CONCLUSION: MTHFR C677T polymorphism is a risk factor for GC, and the A1298C polymorphism may be a protective factor against GC in eastern populations. PMID:25170232

  19. Significant association of methylenetetrahydrofolate reductase single nucleotide polymorphisms with prostate cancer susceptibility in taiwan.

    PubMed

    Wu, Hsi-Chin; Chang, Chao-Hsiang; Tsai, Ru-Yin; Lin, Chih-Hsueh; Wang, Rou-Fen; Tsai, Chia-Wen; Chen, Kuen-Bao; Yao, Chun-Hsu; Chiu, Chang-Fang; Bau, Da-Tian; Lin, Cheng-Chieh

    2010-09-01

    Prostate cancer is the most common cause of cancer death in men and is a major health problem worldwide. Methylene tetrahydrofolate reductase (MTHFR) plays an important role in folate metabolism and is also an important source of DNA methylation and DNA synthesis (nucleotide synthesis). To assess the association and interaction of genotypic polymorphisms in MTHFR and lifestyle factors with prostate cancer in Taiwan, we investigated two well-known polymorphic variants of MTHFR, C677T (rs1801133) and A1298C (rs1801131), analyzed the association of specific genotypes with prostate cancer susceptibility, and discussed their joint effects with individual habits on prostate cancer risk. In total, 218 patients with prostate cancer and 436 healthy controls recruited from the China Medical Hospital in central Taiwan were genotyped for these polymorphisms with prostate cancer susceptibility. We found the MTHFR C677T but not the A1298C genotype was differently distributed between the prostate cancer and control groups. The T allele of MTHFR C677T conferred a significantly (p=0.0011) decreased risk of prostate cancer. As for the A1298C polymorphism, there was no difference in distribution between the prostate cancer and control groups. Gene interactions with smoking were significant for MTHFR C677T polymorphism. The MTHFR C677T CT and TT genotypes in association with smoking conferred a decreased risk of 0.501 (95% confidence interval=0.344-0.731) for prostate cancer. Our results provide the first evidence that the C allele of MTHFR C677T may be associated with the development of prostate cancer and may be a novel useful marker for primary prevention and anticancer intervention.

  20. Arsenic and cadmium are inhibitors of cyanobacterial dinitrogenase reductase (nifH1) gene.

    PubMed

    Singh, Shilpi; Shrivastava, A K; Singh, V K

    2014-09-01

    The enzyme nitrogenase complex is a key component conferring nitrogen fixation in all known diazotrophs. This study for the first time examines the impact of As, Na, Cd, Cu and butachlor on component II (dinitrogenase reductase, nifH1) of nitrogenase from diazotrophic cyanobacterium Anabaena sp. PCC7120 using in silico and wet lab approaches. The nifH1 of Anabaena is a glycine-rich stable protein having DNA-binding properties and shows close similarity with free living compared with symbiotic diazotrophs. Phylogenetic tree revealed an adverse effect of the selected stresses on close homologs across the diazotroph community. The protein interaction network demonstrated the presence of nirA, glnA, glnB, alr4255 and alr2485 proteins besides nif proteins, suggesting their involvement in nitrogen fixation along with nifH1. Homology modelling and docking under As, Na, Cd, Cu and butachlor revealed an interaction between stressors and nifH1 protein which was further validated by a transcript of the gene through quantitative real-time PCR (qRT-PCR). Presence of binding sites for As, Na, Cd and Cu on oxyR promoter attested their adverse affects on nifH1. Maximum down-regulation of nifH1 in Cd and As followed by salt, copper and butachlor revealed that arsenic and cadmium were most potential inhibitors of nitrogenase of diazotrophic community, which might negatively affect crop yield.

  1. Induction of apoptosis by the overexpression of an alternative splicing variant of mitochondrial thioredoxin reductase.

    PubMed

    Chang, En Young; Son, Seong-Kweon; Ko, Hyun Sook; Baek, Suk-Hwan; Kim, Jung Hye; Kim, Jae-Ryong

    2005-12-15

    Mammalian cells harbor two forms of thioredoxin reductase (TrxR), cytosolic TrxR1 and mitochondrial TrxR2, both of which are involved in the redox regulation of cell growth and apoptosis. Furthermore, several alternative splicing variants of TrxR1 and TrxR2 have been identified. However, little remains known with regard to their functions in cells. Here, we report an alternative splicing variant of TrxR2 (TrxR2A), which displays a 3-bp deletion in the coding region and an insertion of 1228 bp in the 3'-UTR, between the stop codon and the SECIS element, of the TrxR2 cDNA. In order to determine the cellular function of TrxR2A, we established TrxR2A-inducible HeLa cell lines in which TrxR2A transcription was regulated via a Tet-off expression system. We observed that the induction of TrxR2A resulted in increased apoptosis, due to the reduction of NADPH and alterations in cellular ROS levels. These results suggest that TrxR2A may play a vital role in the regulation of TrxR2 and may confer functional complexity onto the thioredoxin system. PMID:16298692

  2. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela.

    PubMed

    Urdaneta, L; Plowe, C; Goldman, I; Lal, A A

    1999-09-01

    The present study was designed to characterize mutations in dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of Plasmodium falciparum in the Bolivar region of Venezuela, where high levels of clinical resistance to sulfadoxine-pyrimethamine (SP, Fansidar; F. Hoffman-La Roche, Basel, Switzerland) has been documented. We used a nested mutation-specific polymerase chain reaction and restriction digestion methods to measure 1) the prevalence of DHFR mutations at 16, 50, 51, 59, 108, and 164 codon positions, and 2) the prevalence of mutations in the 436, 437, 581, and 613 codon sites in DHPS gene. In the case of the DHFR gene, of the 54 parasite isolates analyzed, we detected the presence of Asn-108 and Ile-51 in 96% of the isolates and Arg-50 mutation in 64% of the isolates. Each of these mutations has been associated with high level of resistance to pyrimethamine. Only 2 samples (4%) showed the wild type Ser-108 mutation and none showed Thr-108 and Val-16 mutations that are specific for resistance to cycloguanil. In the case of DHPS gene, we found a mutation at position 437 (Gly) in 100% of the isolates and Gly-581 in 96% of the isolates. The simultaneous presence of mutations Asn-108 and Ile-51 in the DHFR gene and Gly-437 and Gly-581 in the DHPS gene in 96% of the samples tested suggested that a cumulative effect of mutations could be the major mechanism conferring high SP resistance in this area. PMID:10497990

  3. Thermal adaptation of dihydrofolate reductase from the moderate thermophile Geobacillus stearothermophilus.

    PubMed

    Guo, Jiannan; Luk, Louis Y P; Loveridge, E Joel; Allemann, Rudolf K

    2014-05-01

    The thermal melting temperature of dihydrofolate reductase from Geobacillus stearothermophilus (BsDHFR) is ~30 °C higher than that of its homologue from the psychrophile Moritella profunda. Additional proline residues in the loop regions of BsDHFR have been proposed to enhance the thermostability of BsDHFR, but site-directed mutagenesis studies reveal that these proline residues contribute only minimally. Instead, the high thermal stability of BsDHFR is partly due to removal of water-accessible thermolabile residues such as glutamine and methionine, which are prone to hydrolysis or oxidation at high temperatures. The extra thermostability of BsDHFR can be obtained by ligand binding, or in the presence of salts or cosolvents such as glycerol and sucrose. The sum of all these incremental factors allows BsDHFR to function efficiently in the natural habitat of G. stearothermophilus, which is characterized by temperatures that can reach 75 °C. PMID:24730604

  4. A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe.

    PubMed

    Lim, Chang-Jin; Jo, Hannah; Kim, Kyunghoon

    2014-11-01

    The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.

  5. Synergistic effect of reductase and keratinase for facile synthesis of protein-coated gold nanoparticles.

    PubMed

    Gupta, Sonali; Singh, Surinder P; Singh, Rajni

    2015-05-01

    We have synthesized gold nanoparticles (GNPs) using chicken feathers (poultry waste) and Bacillus subtilis RSE163. Disulfide reductase and keratinase produced by Bacillus subtilis during the degradation of chicken feather has been used to reduce Au(3+) from HAuCl4 precursor to produce gold nanoparticles. The synthesized biogenic GNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), and zeta potential measurements. Fourier transform infrared (FTIR) spectroscopy indicated the presence of protein capping on synthesized GNPs, imparting multifunctionality to the GNP surface. Furthermore, the nontoxic nature of biogenic GNPs was insured by interaction with Escherichia coli (ATCC11103), where TEM images and enhancement of growth rate of E. coli in log phase signified their nontoxic nature. The results indicate that the synthesis of biocompatible GNPs using poultry waste may find potential applications in drug delivery and sensing.

  6. Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect.

    PubMed

    Xiao, Jianbo; Ni, Xiaoling; Kai, Guoyin; Chen, Xiaoqing

    2015-01-01

    The dietary polyphenols as aldose reductases inhibitors (ARIs) have attracted great interest among researchers. The aim of this review is to give an overview of the research reports on the structure-activity relationship of dietary polyphenols inhibiting aldose reductases (AR). The molecular structures influence the inhibition of the following: (1) The methylation and methoxylation of the hydroxyl group at C3, C3', and C4' of flavonoids decreased or little affected the inhibitory potency. However, the methylation and methoxylation of the hydroxyl group at C5, C6, and C8 significantly enhanced the inhibition. Moreover, the methylation and methoxylation of C7-OH influence the inhibitory activity depending on the substitutes on rings A and B of flavonoids. (2) The glycosylation on 3-OH of flavonoids significantly increased or little affected the inhibition. However, the glycosylation on 7-OH and 4'-OH of flavonoids significantly decreased the inhibition. (3) The hydroxylation on A-ring of flavones and isoflavones, especially at positions 5 and 7, significantly improved the inhibition and the hydroxylation on C3' and C4' of B-ring of flavonoids remarkably enhanced the inhibition; however, the hydroxylation on the ring C of flavones significantly weakened the inhibition. (4) The hydrogenation of the C2=C3 double bond of flavones reduced the inhibition. (5) The hydrogenation of α=β double bond of stilbenes hardly affected the inhibition and the hydroxylation on C3' of stilbenes decreased the inhibition. Moreover, the methylation of the hydroxyl group of stilbenes obviously reduced the activity. (6) The hydroxylation on C4 of chalcone significantly increased the inhibition and the methylation on C4 of chalcone remarkably weakened the inhibition.

  7. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants1[W][OPEN

    PubMed Central

    Yarmolinsky, Dmitry; Brychkova, Galina; Kurmanbayeva, Assylay; Bekturova, Aizat; Ventura, Yvonne; Khozin-Goldberg, Inna; Eppel, Amir; Fluhr, Robert; Sagi, Moshe

    2014-01-01

    Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5′-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves. PMID:24987017

  8. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  9. First CLIPS Conference Proceedings, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The first Conference of C Language Production Systems (CLIPS) hosted by the NASA-Lyndon B. Johnson Space Center in August 1990 is presented. Articles included engineering applications, intelligent tutors and training, intelligent software engineering, automated knowledge acquisition, network applications, verification and validation, enhancements to CLIPS, space shuttle quality control/diagnosis applications, space shuttle and real-time applications, and medical, biological, and agricultural applications.

  10. A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7.

    PubMed

    Singh, Sudhir; Singh, Chhaya; Tripathi, Anil Kumar

    2014-05-01

    The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.

  11. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    PubMed

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host.

  12. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  13. 78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, July 9,...

  14. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases

    PubMed Central

    Hondal, Robert J.

    2009-01-01

    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine. PMID:19406205

  15. Cloning and sequence of the human adrenodoxin reductase gene.

    PubMed Central

    Lin, D; Shi, Y F; Miller, W L

    1990-01-01

    Adrenodoxin reductase (ferrodoxin:NADP+ oxidoreductase, EC 1.18.1.2) is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. We cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G + C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of "housekeeping" genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon. Images PMID:2236061

  16. Structural and functional diversity of ferredoxin-NADP(+) reductases.

    PubMed

    Aliverti, Alessandro; Pandini, Vittorio; Pennati, Andrea; de Rosa, Matteo; Zanetti, Giuliana

    2008-06-15

    Although all ferredoxin-NADP(+) reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP(+) to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.

  17. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions.

  18. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology

    PubMed Central

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A. Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  19. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth.

  20. Aldo-Keto Reductases 1B in Adrenal Cortex Physiology.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Martinez, Antoine; Lefrançois-Martinez, A Marie

    2016-01-01

    Aldose reductase (AKR1B) proteins are monomeric enzymes, belonging to the aldo-keto reductase (AKR) superfamily. They perform oxidoreduction of carbonyl groups from a wide variety of substrates, such as aliphatic and aromatic aldehydes or ketones. Due to the involvement of human aldose reductases in pathologies, such as diabetic complications and cancer, AKR1B subgroup enzymatic properties have been extensively characterized. However, the issue of AKR1B function in non-pathologic conditions remains poorly resolved. Adrenal activities generated large amount of harmful aldehydes from lipid peroxidation and steroidogenesis, including 4-hydroxynonenal (4-HNE) and isocaproaldehyde (4-methylpentanal), which can both be reduced by AKR1B proteins. More recently, some AKR1B isoforms have been shown to be endowed with prostaglandin F synthase (PGFS) activity, suggesting that, in addition to possible scavenger function, they could instigate paracrine signals. Interestingly, the adrenal gland is one of the major sites for human and murine AKR1B expression, suggesting that their detoxifying/signaling activity could be specifically required for the correct handling of adrenal function. Moreover, chronic effects of ACTH result in a coordinated regulation of genes encoding the steroidogenic enzymes and some AKR1B isoforms. This review presents the molecular mechanisms accounting for the adrenal-specific expression of some AKR1B genes. Using data from recent mouse genetic models, we will try to connect their enzymatic properties and regulation with adrenal functions. PMID:27499746

  1. Aldose reductase inhibitory activity of compounds from Zea mays L.

    PubMed

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1-7) and 5 anthocyanins (compound 8-12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC(50), 4.78 μ M). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  2. Two fatty acyl reductases involved in moth pheromone biosynthesis.

    PubMed

    Antony, Binu; Ding, Bao-Jian; Moto, Ken'Ichi; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective 'single pgFARs' produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a 'single reductase' can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  3. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5α. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  4. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  5. Writing competitive research conference abstracts: AMEE Guide no. 108.

    PubMed

    Varpio, Lara; Amiel, Jonathan; Richards, Boyd F

    2016-09-01

    The ability to write a competitive research conference abstract is an important skill for medical educators. A compelling and concise abstract can convince peer reviewers, conference selection committee members, and conference attendees that the research described therein is worthy for inclusion in the conference program and/or for their attendance in the meeting. This AMEE Guide is designed to help medical educators write research conference abstracts that can achieve these outcomes. To do so, this Guide begins by examining the rhetorical context (i.e. the purpose, audience, and structure) of research conference abstracts and then moves on to describe the abstract selection processes common to many medical education conferences. Next, the Guide provides theory-based information and concrete suggestions on how to write persuasively. Finally, the Guide offers some writing tips and some proofreading techniques that all authors can use. By attending to the aspects of the research conference abstract addressed in this Guide, we hope to help medical educators enhance this important text in their writing repertoire.

  6. Writing competitive research conference abstracts: AMEE Guide no. 108.

    PubMed

    Varpio, Lara; Amiel, Jonathan; Richards, Boyd F

    2016-09-01

    The ability to write a competitive research conference abstract is an important skill for medical educators. A compelling and concise abstract can convince peer reviewers, conference selection committee members, and conference attendees that the research described therein is worthy for inclusion in the conference program and/or for their attendance in the meeting. This AMEE Guide is designed to help medical educators write research conference abstracts that can achieve these outcomes. To do so, this Guide begins by examining the rhetorical context (i.e. the purpose, audience, and structure) of research conference abstracts and then moves on to describe the abstract selection processes common to many medical education conferences. Next, the Guide provides theory-based information and concrete suggestions on how to write persuasively. Finally, the Guide offers some writing tips and some proofreading techniques that all authors can use. By attending to the aspects of the research conference abstract addressed in this Guide, we hope to help medical educators enhance this important text in their writing repertoire. PMID:27597323

  7. Cranfield Conference on Information Retrieval.

    ERIC Educational Resources Information Center

    Kuo, Franklin F.

    The Third Cranfield Conference on Mechanised Information Storage and Retrieval Systems was held on 20-23 July 1971 in Cranfield, England. The report describes a number of the key papers presented at this conference. (Author)

  8. Planning a Women's Studies Conference.

    ERIC Educational Resources Information Center

    Saul, Jean Rannells

    1992-01-01

    Describes the organization and implementation of a women's studies conference. Discusses fund raising, identifying speakers, developing publicity, local arrangement efforts, and providing hospitality. Includes nine recommendations and a suggested conference timeline. (CFR)

  9. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  10. Government Quality Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Government Quality Conference was an attempt to bring together executive organizations and senior individuals in the Federal Government that have a desire to improve productivity. It was designed to provide an exchange of ideas based on experience, and to encourage individual management initiatives to tap the capabilities of Federal employees.

  11. Conducting Telephone Conference IEPs

    ERIC Educational Resources Information Center

    Patterson, Philip Patrick; Petit, Constance; Williams, Shandelyn

    2007-01-01

    Synchronizing the availability of team members for Individual Education Plan (IEP) meetings can be a daunting task. Fortunately, the Individuals with Disabilities Education Improvement Act of 2004 permits alternative means of conducting such meetings. An example of an alternate means is a telephone conference, whereby parents communicate over the…

  12. Conference Rules, Part 1

    ERIC Educational Resources Information Center

    Kerber, Linda K.

    2008-01-01

    Most academic conferences are preceded by some effort to make the sessions different from the usual format, but the usual format overwhelmingly prevails. That is: Each panel discussion runs no longer than two hours, during which two, three, or four specialists stand at a lectern and talk. Sometimes they will read a prepared paper; sometimes they…

  13. International waste management conference

    SciTech Connect

    Not Available

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance.

  14. REGIONAL CONFERENCE SUMMARIES, 1966.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    AN AVERAGE OF 200 TEACHER EDUCATORS, STATE DIRECTORS, LAYMEN, AND REPRESENTATIVES OF VARIOUS AGENCIES ATTENDED EACH OF NINE REGIONAL CONFERENCES CONDUCTED THROUGHOUT THE UNITED STATES TO DISCUSS THE INFLUENCE OF SOCIAL AND ECONOMIC CHANGES AND PROBLEMS IN PLANNING AND CONDUCTING VOCATIONAL AND TECHNICAL EDUCATION PROGRAMS. MAJOR SPEECHES PRESENTED…

  15. Grammar! A Conference Report.

    ERIC Educational Resources Information Center

    King, Lid, Ed.; Boaks, Peter, Ed.

    Papers from a conference on the teaching of grammar, particularly in second language instruction, include: "Grammar: Acquisition and Use" (Richard Johnstone); "Grammar and Communication" (Brian Page); "Linguistic Progression and Increasing Independence" (Bernardette Holmes); "La grammaire? C'est du bricolage!" ("Grammar? That's Hardware!") (Barry…

  16. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  17. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  18. APPA 2011 Conference Highlights

    ERIC Educational Resources Information Center

    Facilities Manager, 2011

    2011-01-01

    This article presents highlights of APPA conference that was held on July 16-18, 2011. The highlights feature photos of 2011-2012 board of directors, outgoing senior regional representatives to the board, meritorious service award, APPA fellow, president's recognition and gavel exchange, and diamond business partner award.

  19. Creating Better Satellite Conferences.

    ERIC Educational Resources Information Center

    Horner, Tommy

    1998-01-01

    Presents four ways to improve broadcasts of company satellite conferences, including creative site selection (using facilities at educational institutions rather than hotel rooms); creative programming (using graphics and other interruptions to break up lectures or speeches); creative crew selection; and creative downlink site activities (to…

  20. Conference on Censorship.

    ERIC Educational Resources Information Center

    Meltzer, Milton; And Others

    In this collection of seven speeches from the University of Missouri Conference on Censorship, writers focus on the various aspects of censorship. Speeches are by (1) Milton Meltzer, who lauds those writers who were forced to battle with censors; (2) Enid Olson, who explores the censorship problems faced by teachers and school librarians; (3)…

  1. The interparliamentary conference

    SciTech Connect

    Not Available

    1990-01-01

    The purpose of this conference was to provide a forum for exchange of information on environmental problems with global origins and consequences. The areas of major concern included the following: global climate change; deforestation and desertification; preservation of biological diversity; safeguarding oceans and water resources; population growth; destruction of the stratospheric ozone layer; and sustainable development.

  2. Microbicides 2006 conference

    PubMed Central

    Ramjee, Gita; Shattock, Robin; Delany, Sinead; McGowan, Ian; Morar, Neetha; Gottemoeller, Megan

    2006-01-01

    Current HIV/AIDS statistics show that women account for almost 60% of HIV infections in Sub-Saharan Africa. HIV prevention tools such as male and female condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are products designed to be inserted in the vagina or rectum prior to sex to prevent HIV acquisition. The biannual Microbicides conference took place in Cape Town, South Africa from 23–26 April 2006. The conference was held for the first time on the African continent, the region worst affected by the HIV/AIDS pandemic. The conference brought together a record number of 1,300 scientists, researchers, policy makers, healthcare workers, communities and advocates. The conference provided an opportunity for an update on microbicide research and development as well as discussions around key issues such as ethics, acceptability, access and community involvement. This report discusses the current status of microbicide research and development, encompassing basic and clinical science, social and behavioural science, and community mobilisation and advocacy activities. PMID:17038196

  3. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  4. On the Conference Circuit.

    ERIC Educational Resources Information Center

    Tyckoson, David A.

    1987-01-01

    Summarizes three conference presentations on the effects of the economic climate on academic libraries in Iowa. These presentations focused on the impact of austerity budgets on collection development, library services and personnel, and possible management approaches to retrenchment in these areas. (CLB)

  5. Conference on Navajo Orthography.

    ERIC Educational Resources Information Center

    Ohannessian, Sirarpi; And Others

    This report on the Conference on Navajo Orthography, held in Albuquerque, New Mexico on May 2-3, 1969 constitutes a summary of the discussion and decisions of a meeting which was convened by the Center for Applied Linguistics under contract with the Bureau of Indian Affairs to agree on an orthography for the Navajo language. The immediate purpose…

  6. Report on the Conference.

    ERIC Educational Resources Information Center

    Brown, Ralph S.

    1983-01-01

    The themes of the 1982 annual conference of the American Association of University Professors are outlined. They include the importance of planning, selective versus across-the-board retrenchment strategies, definitions and problems of financial exigency, program reduction, and affirmative action claims. (MSE)

  7. Open Mind Conference

    NASA Technical Reports Server (NTRS)

    King, Alexander H.

    1995-01-01

    Open Mind, The Association for the achievement of diversity in higher education, met in conference in Albuquerque, New Mexico, between October 16 and 18, 1992. A number of workgroups met to discuss the goals, structure, and generally evaluate the Association and its achievements. A summary of the workgroup sessions and their minutes are included.

  8. A Conference of Hope.

    ERIC Educational Resources Information Center

    American Printing House for the Blind, Louisville, KY. Dept. of Educational Research.

    Presented are the proceedings of the First Historic Helen Keller World Conference on Services to Deaf-Blind Youths and Adults, held in New York City in September, 1977 on the theme "The Deaf-Blind Person in the Community." Reports have the following titles and authors: "Definition, Demography, Causes and Prevention of Deaf-Blindness; Finding and…

  9. IATUL Conference 1985.

    ERIC Educational Resources Information Center

    Information Services and Use, 1985

    1985-01-01

    Summarizes presentations at conference on theme "The future of information resources for science and technology and role of libraries": industrial and commercial use of national, regional, and university resources; balance between public- and private-sector resources; local access in national and regional context; access to information in…

  10. In Vitro Formation of Nitrate Reductase Using Extracts of the Nitrate Reductase Mutant of Neurospora crassa, nit-1, and Rhodospirillum rubrum

    PubMed Central

    Ketchum, Paul A.; Sevilla, Cynthia L.

    1973-01-01

    In vitro formation of reduced nicotinamide adenine dinucleotide phosphate (NADPH)–nitrate reductase (NADPH: nitrate oxido-reductase, EC 1.6.6.2) has been attained by using extracts of the nitrate reductase mutant of Neurospora crassa, nit-1, and extracts of either photosynthetically or heterotrophically grown Rhodospirillum rubrum, which contribute the constitutive component. The in vitro formation of NADPH-nitrate reductase is characterized by the conversion of the flavin adenine dinucleotide (FAD) stimulated NADPH-cytochrome c reductase, contributed by the N. crassa nit-1 extract from a slower sedimenting form (4.5S) to a faster sedimenting form (7.8S). The 7.8S NADPH-cytochrome c reductase peak coincides in sucrose density gradient profiles with the NADPH–nitrate reductase, FADH2–nitrate reductase and reduced methyl viologen (MVH)–nitrate reductase activities which are also formed in vitro. The constitutive component from R. rubrum is soluble (both in heterotrophically and photosynthetically grown cells), is stimulated by the addition of 10−4 M Na2MoO4 and 10−2 M NaNO3 to cell-free preparations, and has variable activity over the pH range from 3.0 to 9.5. The activity of the constitutive component in some extracts showed a threefold stimulation when the pH was lowered from 6.5 to 4.0. The constitutive activity appears to be associated with a large molecular weight component which sediments as a single peak in sucrose density gradients. However, the constitutive component from R. rubrum is dialyzable and is insensitive to trypsin and protease. These results demonstrate that R. rubrum contains the constitutive component and suggests that it is a low molecular weight, trypsin- and protease-insensitive factor which participates in the in vitro formation of NADPH nitrate reductase. PMID:4270447

  11. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.

  12. Novel channel enzyme fusion proteins confer arsenate resistance.

    PubMed

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-12-17

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  13. Novel Channel Enzyme Fusion Proteins Confer Arsenate Resistance*

    PubMed Central

    Wu, Binghua; Song, Jie; Beitz, Eric

    2010-01-01

    Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H2AsVO4−/HAsVO42−) to arsenite (AsIII(OH)3) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion. PMID:20947511

  14. ALA Conference 2009: Chicago Hope

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    There is joy among those who have the funds to go to Chicago for the American Library Association (ALA) annual conference, July 9-15. Every librarian knows there is nothing better than a Chicago gathering, with the city's wonderful haunts, museums, restaurants, and fine memories of past conferences. The conference program covers nearly every…

  15. Summary: A Very Timely Conference

    NASA Astrophysics Data System (ADS)

    Wyse, Rosemary F. G.

    2012-04-01

    The conference poster includes a very apt phrase that describes a primary motivation for this conference: Time discovers truth. This aphorism, attributed to Seneca, was certainly affirmed by the many exciting talks and discussions at this conference, in both formal and informal settings.

  16. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    NASA Astrophysics Data System (ADS)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  17. HMG-CoA Reductase Inhibition Promotes Neurological Recovery, Peri-Lesional Tissue Remodeling, and Contralesional Pyramidal Tract Plasticity after Focal Cerebral Ischemia

    PubMed Central

    Kilic, Ertugrul; Reitmeir, Raluca; Kilic, Ülkan; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kelestemur, Taha; Ethemoglu, Muhsine Sinem; Ozturk, Gurkan; Hermann, Dirk M.

    2014-01-01

    3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery. PMID:25565957

  18. Thioredoxin reductase 1 upregulates MCP-1 release in human endothelial cells

    SciTech Connect

    Liu, Zhen-Bo; Shen, Xun

    2009-09-04

    To know if thioredoxin reductase 1 (TrxR1) plays a role in antioxidant defense mechanisms against atherosclerosis, effect of TrxR1 on expression/release of monocyte chemoattractant protein (MCP-1) was investigated in activated human endothelial-like EAhy926 cells. The MCP-1 release and expression, cellular generation of reactive oxygen species (ROS), nuclear translocation and DNA-binding activity of NF-{kappa}B subunit p65 were assayed in cells either overexpressing recombinant TrxR1 or having their endogenous TrxR1 knocked down. It was found that overexpression of TrxR1 enhanced, while knockdown of TrxR1 reduced MCP-1 release and expression. Upregulation of MCP-1 by TrxR1 was associated with increasing generation of intracellular ROS generation, enhanced nuclear translocation and DNA-binding activity of NF-{kappa}B. Assay using NF-{kappa}B reporter revealed that TrxR1 upregulated transcriptional activity of NF-{kappa}B. This study suggests that TrxR1 enhances ROS generation, NF-{kappa}B activity and subsequent MCP-1 expression in endothelial cells, and may promote rather than prevent vascular endothelium from forming atherosclerotic plaque.

  19. The mechanism of the quinone reductase reaction of pig heart lipoamide dehydrogenase.

    PubMed Central

    Vienozinskis, J; Butkus, A; Cenas, N; Kulys, J

    1990-01-01

    The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed. PMID:2375745

  20. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes.

    PubMed

    Yee, Nathan; Choi, Jessica; Porter, Abigail W; Carey, Sean; Rauschenbach, Ines; Harel, Arye

    2014-12-01

    The selenate reductase in Escherichia coli is a multi-subunit enzyme predicted to bind Fe-S clusters. In this study, we examined the iron-sulfur cluster biosynthesis genes that are required for selenate reductase activity. Mutants devoid of either the iscU or hscB gene in the Isc iron-sulfur cluster biosynthesis pathway lost the ability to reduce selenate. Genetic complementation by the wild-type sequences restored selenate reductase activity. The results indicate the Isc biosynthetic system plays a key role in selenate reductase Fe-S cofactor assembly and is essential for enzyme activity.

  1. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  2. Energy Conferences and Symposia; (USA)

    SciTech Connect

    Osborne, J.H.; Simpson, W.F. Jr.

    1991-01-01

    Energy Conferences and Symposia, a monthly publication, was instituted to keep scientists, engineers, managers, and related energy professionals abreast of meetings sponsored by the Department of Energy (DOE) and by other technical associations. Announcements cover conference, symposia, workshops, congresses, and other formal meetings pertaining to DOE programmatic interests. Complete meeting information, including title, sponsor, and contact, is presented in the main section, which is arranged alphabetically by subject area. Within a subject, citations are sorted by beginning data of the meeting. New listings are indicated by a bullet after the conference number and DOE-sponsored conferences are indicated by a star. Two indexes are provided for cross referencing conference information. The Chronological Index lists conference titles by dates and gives the subject area where complete information they may be found. The Location Index is alphabetically sorted by the city where the conference will be held.

  3. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells.

    PubMed Central

    Henry, D N; Del Monte, M; Greene, D A; Killen, P D

    1993-01-01

    Aldose reductase (AR2), a putative "hypertonicity stress protein" whose gene is induced by hyperosmolarity, protects renal medullary cells against the interstitial hyperosmolarity of antidiuresis by catalyzing the synthesis of millimolar concentrations of intracellular sorbitol from glucose. Although AR2 gene induction has been noted in a variety of renal and nonrenal cells subjected to hypertonic stress in vitro, the functional significance of AR2 gene expression in cells not normally exposed to a hyperosmolar milieu is not fully understood. The physiological impact of basal AR2 expression in such cells may be limited to hyperglycemic states in which AR2 promotes pathological polyol accumulation, a mechanism invoked in the pathogenesis of diabetic complications. Since AR2 overexpression in the retinal pigment epithelium has been associated with diabetic retinopathy, the regulation of AR2 gene expression and associated changes in sorbitol and myo-inositol were studied in human retinal pigment epithelial cells in culture. The relative abundance of aldehyde reductase (AR1) and AR2 mRNA was quantitated by filter hybridization of RNA from several human retinal pigment epithelial cell lines exposed to hyperglycemic and hyperosmolar conditions in vitro. AR2 but not AR1 mRNA was significantly increased some 11- to 18-fold by hyperosmolarity in several retinal pigment epithelial cell lines. A single cell line with a 15-fold higher basal level of AR2 mRNA than other cell lines tested demonstrated no significant increase in AR2 mRNA in response to hypertonic stress. This cell line demonstrated accelerated and exaggerated production of sorbitol and depletion of myo-inositol upon exposure to 20 mM glucose. Therefore, abnormal AR2 expression may enhance the sensitivity of cells to the biochemical consequences of hyperglycemia potentiating the development of diabetic complications. Images PMID:8349800

  4. Mississippi Climate & Hydrology Conference

    SciTech Connect

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  5. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  6. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  7. NSI conference support

    NASA Technical Reports Server (NTRS)

    Aaron, Susan

    1991-01-01

    One of the many services NSI provides as an extension of customer/user support is to attend major scientific conferences. The conference effort provides NASA/OSSA scientists with many benefits: (1) scientist get to see NSI in action; they utilize the network to read email, and have recently begun to demonstrate their scientific research to their colleagues; (2) scientist get an opportunity to meet and interact with NSI Staff, which gives scientists a chance to get status on their requirements, ask about network status, get acquainted with our procedures, and learn about services; and (3) scientists are exposed to networking in a larger sense; particularly by knowing about other NASA groups who provide valuable scientific resources over the Internet.

  8. Genome sequencing conference II

    SciTech Connect

    Not Available

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  9. Moldova. Historic regional conference.

    PubMed

    Moshin, V

    1995-05-01

    The Directorate of Maternal and Child Health and the Family Planning Association of Moldova organized a regional conference, which was held October 18-19, 1994, in Kishinev, Moldova, with the support of the United Nations Population Fund (UNFPA), the World Health Organization (WHO), and the International Planned Parenthood Federation (IPPF). The conference,"Problems of Family Planning in Eastern Europe," was attended by approximately 400 Moldovan delegates of governmental and nongovernmental organizations (NGOs), and by 25 delegates from Romania, Russia, Belarus, the Ukraine, and Georgia. The President of Moldova and the Ministry of Public Health of Moldova gave their approval. The main objectives of the conference were to inform the public about the recommendations of the ICPD, to analyze the status of women's reproductive health and family planning in Eastern Europe, and to find ways of implementing the ICPD Plan of Action. Major problems identified during the conference were: 1) the social and economic problems facing most families; 2) the high rate of morbidity and mortality; 3) the decrease in birth rate; 4) the increase in abortions; 5) the rising incidence of venereal disease; and 6) the absence of an effective family planning system. It was agreed that cooperation between governments and NGOs is essential in designing population programs for each country. The following goals were set: 1) to provide populations with sufficient contraceptives; 2) to actively promote family planning concepts through the mass media; 3) to train specialists and to open family planning offices and centers; 4) to introduce sex education in the curricula of Pedagogical Institutes; and 5) to create national and regional statistical and sociological databases on population issues.

  10. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  11. Modulating Radiation Resistance by Inhibiting Ribonucleotide Reductase in Cancers with Virally or Mutationally Silenced p53 Protein

    PubMed Central

    Kunos, Charles A.; Chiu, Song-mao; Pink, John; Kinsella, Timothy J.

    2009-01-01

    Therapeutic ionizing radiation damages DNA, increasing p53-regulated ribonucleotide reductase (RNR) activity required for de novo synthesis of the deoxyribonucleotide triphosphates used during DNA repair. This study investigated the pharmacological inhibition of RNR in cells of virally or mutationally silenced p53 cancer cell lines using 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine® NSC #663249), a chemotherapeutic radiosensitizer that equally inhibits RNR M2 and p53R2 small subunits. The effects of 3-AP on RNR inhibition and resulting radiosensitization were evaluated in cervical (CaSki, HeLa and C33-a) and colon (RKO, RKO-E6) cancer cells. 3-AP treatment significantly enhanced radiation-related cytotoxicity in cervical and colon cancer cells. 3-AP treatment significantly decreased RNR activity, caused prolonged radiation-induced DNA damage, and resulted in an extended G1/S-phase cell cycle arrest in all cell lines. Similar effects were observed in both RKO and RKO-E6 cells, suggesting a p53-independent mechanism of radiosensitization. We conclude that inhibition of ribonucleotide reductase by 3-AP enhances radiation-mediated cytotoxicity independent of p53 regulation by impairing repair processes that rely on deoxyribonucleotide production, thereby substantially increasing the radiation sensitivity of human cancers. PMID:19929413

  12. 2011 Clusters, Nanocrystals & Nanostructures Gordon Research Conference

    SciTech Connect

    Lai-Sheng Wang

    2011-07-29

    Small particles have been at the heart of nanoscience since the birth of the field and now stand ready to make significant contributions to the big challenges of energy, health and sustainability. Atomic clusters show exquisite size-dependent electronic and magnetic properties and offer a new level of control in catalyses, sensors and biochips; functionalised nanocrystals offer remarkable optical properties and diverse applications in electronic devices, solar energy, and therapy. Both areas are complemented by a raft of recent advances in fabrication, characterization, and performance of a diversity of nanomaterials from the single atom level to nanowires, nanodevices, and biologically-inspired nanosystems. The goal of the 2011 Gordon Conference is thus to continue and enhance the interdisciplinary tradition of this series and discuss the most recent advances, fundamental scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. A single conference covering all aspects of nanoscience from fundamental issues to applications has the potential to create new ideas and stimulate cross fertilization. The meeting will therefore provide a balance among the three sub-components of the conference, true to its title, with a selection of new topics added to reflect rapid advances in the field. The open atmosphere of a Gordon conference, emphasizing the presentation of unpublished results and extensive discussions, is an ideal home for this rapidly developing field and will allow all participants to enjoy a valuable and stimulating experience. Historically, this Gordon conference has been oversubscribed, so we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Given the important

  13. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    PubMed

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease. PMID:26467879

  14. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated. PMID:26656409

  15. ADMET--Fifth Annual SMi Conference.

    PubMed

    Comer, John E

    2010-09-01

    SMi's fifth annual ADMET Conference, held in London, included topics covering new developments in the field of ADMET. This conference report highlights selected presentations on ADME optimization in drug discovery; targeting drugs to the brain; predicting bonds that might be attacked during metabolism; treating Caco-2 membranes with vinblastine to enhance P-glycoprotein interactions; predictive ADMET in hit-to-lead optimization; structure-based studies of ADMET targets; an accelerated process for integrated drug development; building hypotheses in lead selection and optimization; supersaturation effects; the prediction of drug-drug interactions; developing a mechanism-based pharmacokinetic/pharmacodynamic model; drug transporter assays in drug discovery; time-dependent inhibition screens in early drug discovery; the system-dependent inhibition of CYP enzymes; the integrating predictive toxicology framework OpenTox; high-content analysis for predictive cytotoxicity testing; and emerging in vitro toxicity assays.

  16. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  17. Differential Light Induction of Nitrate Reductases in Greening and Photobleached Soybean Seedlings 1

    PubMed Central

    Kakefuda, Genichi; Duke, Stanley H.; Duke, Stephen O.

    1983-01-01

    Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3−, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3− and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3− and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3−. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3−, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3− requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3− requirement for induction were quite different. Km values for NO3− were identical for both nitrate reductases. PMID:16663185

  18. Architecture of conference control functions

    NASA Astrophysics Data System (ADS)

    Kausar, Nadia; Crowcroft, Jon

    1999-11-01

    Conference control is an integral part in many-to-many communications that is used to manage and co-ordinate multiple users in conferences. There are different types of conferences which require different types of control. Some of the features of conference control may be user invoked while others are for internal management of a conference. In recent years, ITU (International Telecommunication Union) and IETF (Internet Engineering Task Force) have standardized two main models of conferencing, each system providing a set of conference control functionalities that are not easily provided in the other one. This paper analyzes the main activities appropriate for different types of conferences and presents an architecture for conference control called GCCP (Generic Conference Control Protocol). GCCP interworks different types of conferencing and provides a set of conference control functions that can be invoked by users directly. As an example of interworking, interoperation of IETF's SIP and ITU's H.323 call control functions have been examined here. This paper shows that a careful analysis of a conferencing architecture can provide a set of control functions essential for any group communication model that can be extensible if needed.

  19. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions.

  20. Discovery of novel hepatoselective HMG-CoA reductase inhibitors for treating hypercholesterolemia: a bench-to-bedside case study on tissue selective drug distribution.

    PubMed

    Pfefferkorn, Jeffrey A; Litchfield, John; Hutchings, Richard; Cheng, Xue-Min; Larsen, Scott D; Auerbach, Bruce; Bush, Mark R; Lee, Chitase; Erasga, Noe; Bowles, Daniel M; Boyles, David C; Lu, Gina; Sekerke, Catherine; Askew, Valerie; Hanselman, Jeffrey C; Dillon, Lisa; Lin, Zhiwu; Robertson, Andrew; Olsen, Karl; Boustany, Carine; Atkinson, Karen; Goosen, Theunis C; Sahasrabudhe, Vaishali; Chupka, Jonathan; Duignan, David B; Feng, Bo; Scialis, Renato; Kimoto, Emi; Bi, Yi-An; Lai, Yurong; El-Kattan, Ayman; Bakker-Arkema, Rebecca; Barclay, Paul; Kindt, Erick; Le, Vu; Mandema, Jaap W; Milad, Mark; Tait, Bradley D; Kennedy, Robert; Trivedi, Bharat K; Kowala, Mark

    2011-05-01

    The design of drugs with selective tissue distribution can be an effective strategy for enhancing efficacy and safety, but understanding the translation of preclinical tissue distribution data to the clinic remains an important challenge. As part of a discovery program to identify next generation liver selective HMG-CoA reductase inhibitors we report the identification of (3R,5R)-7-(4-((3-fluorobenzyl)carbamoyl)-5-cyclopropyl-2-(4-fluorophenyl)-1H-imidazol-1-yl)-3,5-dihydroxyheptanoic acid (26) as a candidate for treating hypercholesterlemia. Clinical evaluation of 26 (PF-03491165), as well as the previously reported 2 (PF-03052334), provided an opportunity for a case study comparison of the preclinical and clinical pharmacokinetics as well as pharmacodynamics of tissue targeted HMG-CoA reductase inhibitors.

  1. Over-Expression of a Tobacco Nitrate Reductase Gene in Wheat (Triticum aestivum L.) Increases Seed Protein Content and Weight without Augmenting Nitrogen Supplying

    PubMed Central

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, “Nongda146” and “Jimai6358”, by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying. PMID:24040315

  2. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    PubMed

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-01

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  3. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis

    PubMed Central

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-01-01

    ABSTRACT Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K+in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant. PMID:27171851

  4. The Association of Methylenetetrahydrofolate Reductase Genotypes with the Risk of Childhood Leukemia in Taiwan

    PubMed Central

    Chang, Wen-Shin; Ji, Hong-Xue; Hsiao, Chieh-Lun; Miao, Chia-En; Hsu, Yuan-Nian; Bau, Da-Tian

    2015-01-01

    Background Acute lymphoblastic leukemia (ALL) is the most prevalent type of pediatric cancer, the causes of which are likely to involve an interaction between genetic and environmental factors. To evaluate the effects of the genotypic polymorphisms in methylenetetrahydrofolate reductase (MTHFR) on childhood ALL risk in Taiwan, two well-known polymorphic genotypes of MTHFR, C677T (rs1801133) and A1298C (rs1801131), were analyzed to examine the extent of their associations with childhood ALL susceptibility and to discuss the MTHFR genotypic contribution to childhood ALL risk among different populations. Methodology/Principal Findings In total, 266 patients with childhood ALL and an equal number of non-cancer controls recruited were genotyped utilizing PCR-RFLP methodology. The MTHFR C677T genotype, but not the A1298C, was differently distributed between childhood ALL and control groups. The CT and TT of MTHFR C677T genotypes were significantly more frequently found in controls than in childhood ALL patients (odds ratios=0.60 and 0.48, 95% confidence intervals=0.42–0.87 and 0.24–0.97, respectively). As for gender, the boys carrying the MTHFR C677T CT or TT genotype conferred a lower odds ratio of 0.51 (95% confidence interval=0.32–0.81, P=0.0113) for childhood ALL. As for age, those equal to or greater than 3.5 years of age at onset of disease carrying the MTHFR C677T CT or TT genotype were of lower risk (odds ratio= 0.43 and 95% confidence interval=0.26–0.71, P=0.0016). Conclusions Our results indicated that the MTHFR C677T T allele was a protective biomarker for childhood ALL in Taiwan, and the association was more significant in male patients and in patients 3.5 years of age or older at onset of disease. PMID:25793509

  5. Dual binding of 14-3-3 protein regulates Arabidopsis nitrate reductase activity.

    PubMed

    Chi, Jen-Chih; Roeper, Juliane; Schwarz, Guenter; Fischer-Schrader, Katrin

    2015-03-01

    14-3-3 proteins represent a family of ubiquitous eukaryotic proteins involved in numerous signal transduction processes and metabolic pathways. One important 14-3-3 target in higher plants is nitrate reductase (NR), whose activity is regulated by different physiological conditions. Intra-molecular electron transfer in NR is inhibited following 14-3-3 binding to a conserved phospho-serine motif located in hinge 1, a surface exposed loop between the catalytic molybdenum and central heme domain. Here we describe a novel 14-3-3 binding site within the NR N-terminus, an acidic motif conserved in NRs of higher plants, which significantly contributes to 14-3-3-mediated inhibition of NR. Deletion or mutation of the N-terminal acidic motif resulted in a significant loss of 14-3-3 mediated inhibition of Ser534 phosphorylated NR-Mo-heme (residues 1-625), a previously established model of NR regulation. Co-sedimentation and crosslinking studies with NR peptides comprising each of the two binding motifs demonstrated direct binding of either peptide to 14-3-3. Surface plasmon resonance spectroscopy disclosed high-affinity binding of 14-3-3ω to the well-known phospho-hinge site and low-affinity binding to the N-terminal acidic motif. A binding groove-deficient 14-3-3ω variant retained interaction to the acidic motif, but lost binding to the phospho-hinge motif. To our knowledge, NR is the first enzyme that harbors two independent 14-3-3 binding sites with different affinities, which both need to be occupied by 14-3-3ω to confer full inhibition of NR activity under physiological conditions. PMID:25578809

  6. Identification of one-electron reductases that activate both the hypoxia prodrug SN30000 and diagnostic probe EF5.

    PubMed

    Wang, Jingli; Guise, Chris P; Dachs, Gabi U; Phung, Yen; Hsu, Annie Huai-Ling; Lambie, Neil K; Patterson, Adam V; Wilson, William R

    2014-10-15

    SN30000 is a second-generation benzotriazine-N-oxide hypoxia-activated prodrug scheduled for clinical trial. Previously we showed that covalent binding of the hypoxia probe EF5 predicts metabolic activation of SN30000 in a panel of cancer cell lines under anoxia, suggesting that they are activated by the same reductases. However the identity of these reductases is unknown. Here, we test whether forced expression of nine oxidoreductases with known or suspected roles in bioreductive prodrug metabolism (AKR1C3, CYB5R3, FDXR, MTRR, NDOR1, NOS2A, NQO1, NQO2 and POR) enhances oxic or anoxic reduction of SN30000 and EF5 by HCT116 cells. Covalent binding of (14)C-EF5 and reduction of SN30000 to its 1-oxide and nor-oxide metabolites was highly selective for anoxia in all lines, with significantly elevated anoxic metabolism of both compounds in lines over-expressing POR, MTRR, NOS2A or NDOR1. There was a strong correlation between EF5 binding and SN30000 metabolism under anoxia across the cell lines (R(2)=0.84, p=0.0001). Antiproliferative potency of SN30000 under anoxia was increased most strongly by overexpression of MTRR and POR. Transcript abundance in human tumours, evaluated using public domain mRNA expression data, was highest for MTRR, followed by POR, NOS2A and NDOR1, with little variation between tumour types. Immunostaining of tissue microarrays demonstrated variable MTRR protein expression across 517 human cancers with most displaying low expression. In conclusion, we have identified four diflavin reductases (POR, MTRR, NOS2A and NDOR1) capable of reducing both SN30000 and EF5, further supporting use of 2-nitroimidazole probes to predict the ability of hypoxic cells to activate SN30000. PMID:25130546

  7. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed Central

    French, C E; Nicklin, S; Bruce, N C

    1996-01-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one. PMID:8932320

  8. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  9. Regulation of a ribonucleoside reductase during the early generative phase in Acetabularia.

    PubMed

    de Groot, E J; Schweiger, H G

    1985-02-01

    The activity of a ribonucleoside reductase was estimated during the life cycle of Acetabularia. During the early generative phase the enzyme activity was dramatically increased. Regulation of the ribonucleoside reductase was observed even in the absence of the nucleus. The increase in activity was inhibited by chloramphenicol but not by cycloheximide. These results indicate that the enzyme is translated on 70 S ribosomes.

  10. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  11. SORGOdb: Superoxide Reductase Gene Ontology curated DataBase

    PubMed Central

    2011-01-01

    Background Superoxide reductases (SOR) catalyse the reduction of superoxide anions to hydrogen peroxide and are involved in the oxidative stress defences of anaerobic and facultative anaerobic organisms. Genes encoding SOR were discovered recently and suffer from annotation problems. These genes, named sor, are short and the transfer of annotations from previously characterized neelaredoxin, desulfoferrodoxin, superoxide reductase and rubredoxin oxidase has been heterogeneous. Consequently, many sor remain anonymous or mis-annotated. Description SORGOdb is an exhaustive database of SOR that proposes a new classification based on domain architecture. SORGOdb supplies a simple user-friendly web-based database for retrieving and exploring relevant information about the proposed SOR families. The database can be queried using an organism name, a locus tag or phylogenetic criteria, and also offers sequence similarity searches using BlastP. Genes encoding SOR have been re-annotated in all available genome sequences (prokaryotic and eukaryotic (complete and in draft) genomes, updated in May 2010). Conclusions SORGOdb contains 325 non-redundant and curated SOR, from 274 organisms. It proposes a new classification of SOR into seven different classes and allows biologists to explore and analyze sor in order to establish correlations between the class of SOR and organism phenotypes. SORGOdb is freely available at http://sorgo.genouest.org/index.php. PMID:21575179

  12. Retrospective approach to methylenetetrahydrofolate reductase mutations in children.

    PubMed

    Özer, Işıl; Özçetin, Mustafa; Karaer, Hatice; Kurt, Semiha G; Şahin, Şemsettin

    2011-07-01

    Methylenetetrahydrofolate reductase reduces methyltetrahydrofolate, a cosubstrate in the remethylation of homocysteine, from methylenetetrahydrofolate. Congenital defects, hematologic tumors, and intrauterine growth retardation can occur during childhood. This study evaluated clinical and laboratory treatment approaches in children diagnosed with methylenetetrahydrofolate reductase mutations. Our group included 23 boys and 14 girls, aged 103.4 ± 70.8 months S.D. Clinical findings of patients and homocysteine, vitamin B12, folate, hemogram, electroencephalography, cranial magnetic resonance imaging, and echocardiography data were evaluated in terms of treatment approach. Our patients' findings included vitamin B12 at 400.4 ± 224.6 pg/mL S.D. (normal range, 300-700 pg/mL), folate at 10.1 ± 4.5 ng/mL S.D. (normal range, 1.8-9 ng/mL), and homocysteine at 8.4 ± 4.7 μmol/L S.D. (normal range, 5.5-17 μmol/L). Eighty-eight percent of patients demonstrated clinical findings. In comparisons involving categorical variables between groups, χ(2) tests were used. No relationship was evident between mutation type, laboratory data, and clinical severity. All mothers who had MTHFR mutations and had babies with sacral dimples had taken folate supplements during pregnancy. To avoid the risk of neural tube defects, pregnant women with a MTHFR mutation may require higher than normally recommended doses of folic acid supplementation for optimum health.

  13. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  14. Properties of seleno-methionine substituted assimilatory nitrate reductase

    SciTech Connect

    Solomonson, L.P.; Barber, M.J. )

    1991-03-11

    Assimilatory NADH:nitrate reductase contains FAD, heme and Mo-pterin arranged in an NADH{yields}FAD{yields}heme{yields}Mo-Pterin{yields}NO{sub 3} electron transfer sequence. A functional Mo-pterin center is essential for all nitrate-reducing activities. To assess the possible functional role of Met, a Se-Met substituted NR was obtained by addition of Se-Met to ammonia-grown Chlorella cells prior to induction of NR activity. Increase in NADH:dehydrogenase partial activities and nitrate reductase protein proceeded normally following induction but little or no nitrate-reducing activity was expressed. This effect was observed with as little as 10{sup {minus}5} Se-Met and was prevented by a 10-fold excess of Met. A less pronounced effect was observed with 10{sup {minus}4}M Se-Cys. The purified Se-Met substituted enzyme exhibited the same apparent physical size, spectral properties and NADH dehydrogenase activities as control NR but was devoid of nitrate-reducing activities. These results suggest that one or more Met residues are essential for the catalytic function of the molybdo-pterin center of assimilatory NR.

  15. Life with too much polyprenol: polyprenol reductase deficiency.

    PubMed

    Gründahl, J E H; Guan, Z; Rust, S; Reunert, J; Müller, B; Du Chesne, I; Zerres, K; Rudnik-Schöneborn, S; Ortiz-Brüchle, N; Häusler, M G; Siedlecka, J; Swiezewska, E; Raetz, C R H; Marquardt, T

    2012-04-01

    Congenital disorders of glycosylation (CDG) are caused by a dysfunction of glycosylation, an essential step in the manufacturing process of glycoproteins. This paper focuses on a 6-year-old patient with a new type of CDG-I caused by a defect of the steroid 5α reductase type 3 gene (SRD5A3). The clinical features were psychomotor retardation, pathological nystagmus, slight muscular hypotonia and microcephaly. SRD5A3 was recently identified encoding the polyprenol reductase, an enzyme catalyzing the final step of the biosynthesis of dolichol, which is required for the assembly of the glycans needed for N-glycosylation. Although an early homozygous stop-codon (c.57G>A [W19X]) with no functional protein was found in the patient, about 70% of transferrin (Tf) was correctly glycosylated. Quantification of dolichol and unreduced polyprenol in the patient's fibroblasts demonstrated a high polyprenol/dolichol ratio with normal amounts of dolichol, indicating that high polyprenol levels might compete with dolichol for the initiation of N-glycan assembly but without supporting normal glycosylation and that there must be an alternative pathway for dolichol biosynthesis.

  16. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  17. Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency.

    PubMed

    Percy, Melanie J; Lappin, Terry R

    2008-05-01

    Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r. PMID:18318771

  18. Evolution Alters the Enzymatic Reaction Coordinate of Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space. PMID:25369552

  19. Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia.

    PubMed

    Chu, A; Dinkova, A; Davin, L B; Bedgar, D L; Lewis, N G

    1993-12-25

    Pinoresinol/lariciresinol reductase catalyzes the first known example of a highly unusual benzylic ether reduction in plants; its mechanism of hydride transfer is described. The enzyme was found in Forsythia intermedia and catalyzes the presumed regulatory branch-points in the pathway leading to benzylaryltetrahydrofuran, dibenzylbutane, dibenzylbutyrolactone, and aryltetrahydronaphthalene lignans. Using [7,7'-2H2]-pinoresinol and [7,7'-2H3]lariciresinol as substrates, the hydride transfers of the highly unusual reductase were demonstrated to be completely stereospecific (> 99%). The incoming hydrides were found to take up the pro-R position at C-7' (and/or C-7) in lariciresinol and secoisolariciresinol, thereby eliminating the possibility of random hydride delivery to a planar quinone methide intermediate. As might be expected, the mode of hydride abstraction from NADPH was also stereospecific: using [4R-3H] and [4S-3H]NADPH, it was found that only the 4 pro-R hydrogen was abstracted for enzymatic hydride transfer.

  20. Synthesis and metabolism of inhibitors of ribonucleotide reductase

    SciTech Connect

    Smith, F.T.

    1985-01-01

    In an effort to prepare more effective inhibitors of ribo-nucleotide reductase a series of 2-substituted-4,6-dihydroxypyrimidines was prepared via the appropriately substituted benzamidine. None of the compounds exhibited in vivo activity against L1210 leukemia. No further testing was performed. In order to investigate the metabolism of 3,4-dihydroxybenzohydroxamic acid, a known inhibitor of ribonucleotide reductase, radiolabeled 3,4-dihydroxybenzohydroxamic acid was synthesized by a modification of the procedure of Pichat and Tostain. /sup 14/C-3,4-Dihydroxybenzoic acid was converted to the methyl ester and subsequently reacted with hydroxylamine to give the hydroxamic acid. /sup 14/C-3,4-Dihydroxybenzohydroxamic acid was given i.p. to Sprague-Dawley rats. Excretion occurred mainly (72%) via the urine. HPLC coupled with GC/MS analyses showed that the compound was excreted mainly unchanged. The compound was metabolized to 3,4-dihydroxybenzamide, 4-methoxy-3-hydroxybenzohydroxamic acid, and 4-hydroxy-3-methoxybenzohydroxamic acid. HPLC analysis also showed the lack of formation of any glucuronide or sulfate conjugates through either the hydroxamic acid or catechol functionalities.

  1. Conference report: summary of the 2010 Applied Pharmaceutical Analysis Conference.

    PubMed

    Unger, Steve E

    2011-01-01

    This year, the Applied Pharmaceutical Analysis meeting changed its venue to the Grand Tremont Hotel in Baltimore, MD, USA. Proximity to Washington presented the opportunity to have four speakers from the US FDA. The purpose of the 4-day conference is to provide a forum in which pharmaceutical and CRO scientists can discuss and develop best practices for scientific challenges in bioanalysis and drug metabolism. This year's theme was 'Bioanalytical and Biotransformation Challenges in Meeting Global Regulatory Expectations & New Technologies for Drug Discovery Challenges'. Applied Pharmaceutical Analysis continued its tradition of highlighting new technologies and its impact on drug discovery, drug metabolism and small molecule-regulated bioanalysis. This year, the meeting included an integrated focus on metabolism in drug discovery and development. Middle and large molecule (biotherapeutics) drug development, immunoassay, immunogenicity and biomarkers were also integrated into the forum. Applied Pharmaceutical Analysis offered an enhanced diversity of topics this year while continuing to share experiences of discovering and developing new medicines. PMID:21175361

  2. Rural Energy Conference Project

    SciTech Connect

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  3. Protective roles of methionine-R-sulfoxide reductase against stresses in Schizosaccharomyces pombe.

    PubMed

    Jo, Hannah; Cho, Young-Wook; Ji, Sun-Young; Kang, Ga-Young; Lim, Chang-Jin

    2014-01-01

    The Schizosaccharomyces pombe msrB(+) gene encoding methionine-R-sulfoxide reductase (MsrB) was cloned into the shuttle vector pRS316 to generate the recombinant plasmid pFMetSO. The msrB(+) mRNA level was significantly increased in the S. pombe cells harboring pFMetSO, indicating that the cloned msrB(+) gene is functioning. In the presence of 0.1 mM L-methionine-(R,S)-sulfoxide, the S. pombe cells harboring pFMetSO could grow normally but the growth of the vector control cells was almost arrested. The S. pombe cells harboring pFMetSO exhibited the enhanced growth on the minimal medium plates with stress-inducing agents, such as hydrogen peroxide, superoxide radical-generating menadione (MD), nitric oxide (NO)-generating sodium nitroprusside (SNP), and cadmium (Cd), when compared with the vector control cells. They also gave rise to the enhanced growth at the high incubation temperature of 37 °C than the vector control cells. The S. pombe cells harboring pFMetSO contained lower reactive oxygen species (ROS) and higher total glutathione (GSH) levels than the vector control cells. In brief, the S. pombe MsrB plays a protective role against oxidative, nitrosative, and thermal stresses, and is involved in diminishing intracellular ROS level.

  4. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: Role of aldose reductase

    PubMed Central

    Ibrahim, Safinaz S; Nassar, Noha N

    2008-01-01

    AIM: To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. METHODS: Male Wistar rats received either NDEA or NDEA together with DAS as protection. Liver energy metabolism was assessed in terms of lactate, pyruvate, lactate/pyruvate, ATP levels, lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities. In addition, membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products, measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase), catalase (CAT) and superoxide dismutase (SOD) activities. Liver DNA level, glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices. Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups. RESULTS: NDEA significantly disturbed liver functions and most of the aforementioned indices. Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation. CONCLUSION: We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA, as well as improving cancer-cell sensitivity to chemotherapy. This is mediated through combating oxidative stress of free radicals, improving the energy metabolic state of the cell, and enhancing the activity of G6Pase, GST and AR enzymes. PMID:18985804

  5. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  6. Networks Technology Conference

    NASA Technical Reports Server (NTRS)

    Tasaki, Keiji K. (Editor)

    1993-01-01

    The papers included in these proceedings represent the most interesting and current topics being pursued by personnel at GSFC's Networks Division and supporting contractors involved in Space, Ground, and Deep Space Network (DSN) technical work. Although 29 papers are represented in the proceedings, only 12 were presented at the conference because of space and time limitations. The proceedings are organized according to five principal technical areas of interest to the Networks Division: Project Management; Network Operations; Network Control, Scheduling, and Monitoring; Modeling and Simulation; and Telecommunications Engineering.

  7. SVC 2003 Technical Conference Summary

    SciTech Connect

    Martin, Peter M.

    2003-07-01

    The 46th Annual Technical Conference of the Society of Vacuum Coaters was held in San Francisco May 2-8. All the world events apparently did not affect the attendance or the spirit of the attendees. The Conference was a huge success and very well attended. Many feel that it was the best Techcon yet. This year's Conference really raised the bar for the 47th Annual Technical Conference in Dallas next year. Congratulations go out to the program committee, board of directors, education committee, scholarship committee and Management Plus for a job well done. Excellent accommodations were provided by the San Francisco Marriott.

  8. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  9. Pinpointing a Mechanistic Switch Between Ketoreduction and "Ene" Reduction in Short-Chain Dehydrogenases/Reductases.

    PubMed

    Lygidakis, Antonios; Karuppiah, Vijaykumar; Hoeven, Robin; Ní Cheallaigh, Aisling; Leys, David; Gardiner, John M; Toogood, Helen S; Scrutton, Nigel S

    2016-08-01

    Three enzymes of the Mentha essential oil biosynthetic pathway are highly homologous, namely the ketoreductases (-)-menthone:(-)-menthol reductase and (-)-menthone:(+)-neomenthol reductase, and the "ene" reductase isopiperitenone reductase. We identified a rare catalytic residue substitution in the last two, and performed comparative crystal structure analyses and residue-swapping mutagenesis to investigate whether this determines the reaction outcome. The result was a complete loss of native activity and a switch between ene reduction and ketoreduction. This suggests the importance of a catalytic glutamate vs. tyrosine residue in determining the outcome of the reduction of α,β-unsaturated alkenes, due to the substrate occupying different binding conformations, and possibly also to the relative acidities of the two residues. This simple switch in mechanism by a single amino acid substitution could potentially generate a large number of de novo ene reductases. PMID:27411040

  10. Prostates, pates, and pimples. The potential medical uses of steroid 5 alpha-reductase inhibitors.

    PubMed

    Tenover, J S

    1991-12-01

    The steroid 5 alpha-reductase enzyme is responsible for the formation of DHT from testosterone. DHT has been the major androgen implicated in the pathogenesis of benign prostatic hyperplasia, male pattern baldness, acne, and idiopathic female hirsutism. Although specific inhibitors of 5 alpha-reductase are not yet generally available for human use, it is expected that they will become available within the next several years. Based on biochemical, histologic, and anatomic information from animals given 5 alpha-reductase inhibitors, preliminary data on their use in humans, and knowledge gained from men with the inherited 5 alpha-reductase deficiency, it is expected that these 5 alpha-reductase inhibitors may have a major role in the medical management of benign prostatic hyperplasia. In addition, it is possible that these compounds will hold promise for the prevention of male pattern baldness and for the treatment of resistant acne and idiopathic hirsutism. PMID:1723383

  11. 20(S)-Ginsenoside Rh2 as aldose reductase inhibitor from Panax ginseng.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Yu, Hongshan; Zhang, Chunzhi; Jin, Fengxie; Shimizu, Kuniyoshi

    2014-09-15

    The root of Panax ginseng C. A. Meyer (Araliaceae) is a well-known herbal medicine in East Asia. The major bioactive metabolites in this root are commonly identified as ginsenosides. A series of ginsenosides were determined for in vitro human recombinant aldose reductase. This Letter aims to clarify the structural requirement for aldose reductase inhibition. We discovered that only ginsenoside 20(S)-Rh2 showed potent against aldose reductase, with an IC50 of 147.3 μM. These results implied that the stereochemistry of the hydroxyl group at C-20 may play an important role in aldose reductase inhibition. An understanding of these requirements is considered necessary in order to develop a new type of aldose reductase inhibitor. Furthermore, P. ginseng might be an important herbal medicine in preventing diabetic complications.

  12. Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana.

    PubMed

    Sánchez-Bermejo, Eduardo; Castrillo, Gabriel; del Llano, Bárbara; Navarro, Cristina; Zarco-Fernández, Sonia; Martinez-Herrera, Dannys Jorge; Leo-del Puerto, Yolanda; Muñoz, Riansares; Cámara, Carmen; Paz-Ares, Javier; Alonso-Blanco, Carlos; Leyva, Antonio

    2014-01-01

    The enormous amount of environmental arsenic was a major factor in determining the biochemistry of incipient life forms early in the Earth's history. The most abundant chemical form in the reducing atmosphere was arsenite, which forced organisms to evolve strategies to manage this chemical species. Following the great oxygenation event, arsenite oxidized to arsenate and the action of arsenate reductases became a central survival requirement. The identity of a biologically relevant arsenate reductase in plants nonetheless continues to be debated. Here we identify a quantitative trait locus that encodes a novel arsenate reductase critical for arsenic tolerance in plants. Functional analyses indicate that several non-additive polymorphisms affect protein structure and account for the natural variation in arsenate reductase activity in Arabidopsis thaliana accessions. This study shows that arsenate reductases are an essential component for natural plant variation in As(V) tolerance. PMID:25099865

  13. The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways.

    PubMed

    Leitsch, David; Kolarich, Daniel; Duchêne, Michael

    2010-05-01

    Infections with the microaerophilic protozoan parasite Trichomonas vaginalis are commonly treated with metronidazole, a 5-nitroimidazole drug. Metronidazole is selectively toxic to microaerophiles and anaerobes because reduction at the drug's nitro group, which is a precondition for toxicity, occurs only quantitatively in these organisms. In our previous work we identified the flavin enzyme thioredoxin reductase as an electron donor to 5-nitroimidazole drugs in T. vaginalis and observed that highly metronidazole-resistant cell lines lack thioredoxin reductase and flavin reductase activities. In this study we added the flavin inhibitor diphenyleneiodonium (DPI) to T. vaginalis cultures in order to test our hypothesis that metronidazole reduction is catalyzed by flavin enzymes, e.g. thioredoxin reductase, and intracellular free flavins. Indeed, within hours, DPI rendered T. vaginalis insensitive to metronidazole concentrations as high as 1mM and prevented the formation of metronidazole adducts with proteins. Thioredoxin reductase activity was absent from DPI-treated cells and flavin reductase activity was sharply decreased. In addition, DPI-treated cells also upregulated the expression of antioxidant enzymes, i.e. thioredoxin peroxidases and superoxide dismutases, and displayed a fundamentally altered metabolism caused by inactivation of pyruvate:ferredoxin oxidoreductase (PFOR) and concomitant upregulation of lactate dehydrogenase (LDH) activity. Thus, the disruption of the cellular flavin metabolism by DPI mediated metabolic steps which are similar to that of cells with metronidazole resistance induced in vitro. Finally, we present direct evidence that the increased expression of antioxidant enzymes is dispensable for acquiring resistance to metronidazole. PMID:20093143

  14. California Conference on Networking. Proceedings (Pomona, California, September 19-22, 1985).

    ERIC Educational Resources Information Center

    Johnson, Diane E., Ed.

    This conference was held to bring librarians and users from academic, public, school, and special libraries together to discuss how resource sharing among all types of libraries, for the benefit of all types of users, might be enhanced through formal multitype networking. A conference workbook was provided for participants to read ahead of time,…

  15. Immunocytochemical localization of short-chain family reductases involved in menthol biosynthesis in peppermint.

    PubMed

    Turner, Glenn W; Davis, Edward M; Croteau, Rodney B

    2012-06-01

    Biosynthesis of the p-menthane monoterpenes in peppermint occurs in the secretory cells of the peltate glandular trichomes and results in the accumulation of primarily menthone and menthol. cDNAs and recombinant enzymes are well characterized for eight of the nine enzymatic steps leading from the 5-carbon precursors to menthol, and subcellular localization of several key enzymes suggests a complex network of substrate and product movement is required during oil biosynthesis. In addition, studies concerning the regulation of oil biosynthesis have demonstrated a temporal partition of the pathway into an early, biosynthetic program that results in the accumulation of menthone and a later, oil maturation program that leads to menthone reduction and concomitant menthol accumulation. The menthone reductase responsible for the ultimate pathway reduction step, menthone-menthol reductase (MMR), has been characterized and found to share significant sequence similarity with its counterpart reductase, a menthone-neomenthol reductase, which catalyzes a minor enzymatic reaction associated with oil maturation. Further, the menthone reductases share significant sequence similarity with the temporally separate and mechanistically different isopiperitenone reductase (IPR). Here we present immunocytochemical localizations for these reductases using a polyclonal antibody raised against menthone-menthol reductase. The polyclonal antibody used for this study showed little specificity between these three reductases, but by using it for immunostaining of tissues of different ages we were able to provisionally separate staining of an early biosynthetic enzyme, IPR, found in young, immature leaves from that of the oil maturation enzyme, MMR, found in older, mature leaves. Both reductases were localized to the cytoplasm and nucleoplasm of the secretory cells of peltate glandular trichomes, and were absent from all other cell types examined. PMID:22170164

  16. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes.

    PubMed Central

    Cohen, G; Yanko, M; Mislovati, M; Argaman, A; Schreiber, R; Av-Gay, Y; Aharonowitz, Y

    1993-01-01

    The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated. Images PMID:8349555

  17. 48 CFR 6101.11 - Conferences; conference memorandum [Rule 11].

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agreements disposing of matters in dispute; or (6) Ways to expedite disposition of the case or to facilitate settlement of the dispute, including, if the parties and the Board agree, the use of alternative dispute... APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES 6101.11 Conferences; conference...

  18. 48 CFR 6101.11 - Conferences; conference memorandum [Rule 11].

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... agreements disposing of matters in dispute; or (6) Ways to expedite disposition of the case or to facilitate settlement of the dispute, including, if the parties and the Board agree, the use of alternative dispute... APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES 6101.11 Conferences; conference...

  19. (Tribology conferences and forums)

    SciTech Connect

    Yust, C.S.

    1990-11-30

    The principal meeting attended during this trip was the Japan International Tribology Conference Nagoya 1990. The conference encompassed a wide range of topics, including the tribology of ceramics, the tribology in high-performance automobiles, and many aspects of lubrication technology. Associated forums were also held on the tribology of advanced ceramics, on solid lubrication, and on automotive lubricants. Presentations made during the latter forum discussed anticipated trends in engine development and anticipated improvements in lubricants required for the next generation of engines. In addition to meetings, site visits were made to five industrial organizations to discuss ceramic tribology. Nippon Steel Corporation and Toshiba Corporation are both very active in the ceramic area, Nippon Steel from their interest in research on new materials and Toshiba from both an interest in new materials and in support of their work in electronic devices. Two engine manufacturers were also visited, Toyota Motor Corporation, and Nissan Motor Co., Ltd. These companies were somewhat reserved in their discussion of progress in the utilization of ceramics in automobile engines.

  20. History of NAMES Conferences

    NASA Astrophysics Data System (ADS)

    Filippov, Lev

    2013-03-01

    -Russian International Centre was demonstrated. By the high standards of the reports presented, as well as by its overall organization, the second Seminar met the standards of an international conference. Reviews of state-of-the-art developments in materials science were given by leading scientists from Moscow and from the Lorraine region. The three days of the seminar were structured into four main themes: Functional Materials Coatings, Films and Surface Engineering Nanomaterials and Nanotechnologies The Environment and three Round Table discussions: Defining practical means of carrying out Franco-Russian collaborations in technology transfer and innovation Materials science ARCUS: Lorraine-Russian collaboration in materials science and the environment 32 oral and 25 poster presentations within four sections were given by a total of 110 participants. NAMES 2007, the 3rd Franco-Russian Seminar on New Achievements in Materials and Environmental Sciences, took place in Metz, France on 7-9 November 2007. The conference highlights fundamentals and development of the five main themes connected to the Lorraine-Russia ARCUS project with possible extension to other topics. The five main subjects included in the ARCUS project are: Bulk-surface-interface material sciences Nanomaterials and nanotechnologies Environment and natural resources Plasma physics—ITER project Vibrational dynamics The first, second and third NAMES conferences were financially supported by the following organizations: Ambassade de France à Moscou Communauté Urbaine du Grand Nancy Région Lorraine Conseil Général de Meurthe et Moselle Institut National Polytechnique de Lorraine Université de Metz Université Henry Poincaré CNRS ANVAR Federal Agency on Science and Innovations of the Ministry of Education and Science of the Russian Federation Moscow Committee on Science and Technologies Moscow Institute of Steel and Alloys (Technological University) The 4th conference is supported by the Ministry of Foreign Affairs of

  1. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  2. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  3. Polymorphisms in the methylene tetrahydrofolate reductase and methionine synthase reductase genes and their correlation with unexplained recurrent spontaneous abortion susceptibility.

    PubMed

    Zhu, L

    2015-01-01

    We aimed to explore the correlation between unexplained recurrent spontaneous abortion and polymorphisms in the methylene tetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) genes. A case control study was conducted in 118 patients with unexplained recurrent spontaneous abortion (abortion group) and 174 healthy women (control group). The genetic material was extracted from the oral mucosal epithelial cells obtained from all subjects. The samples were subjected to fluorescence quantitative PCR to detect the single nucleotide polymorphisms (SNPs) in the MTHFR (C677T and A1298C) and MTRR (A66G) gene loci. The distribution frequency (18/118, 15.3%) of the MTHFR 677TT genotype was significantly higher in the abortion group (χ2 = 11.006, P = 0.004) than in the control group (2/174, 1.1%); on the other hand, the distribution frequency of the MTHFR A1298C genotype did not significantly differ between the abortion and control groups (χ(2) = 0.441, P = 0.507). The distribution frequency of the MTRR A66G genotype was also significantly higher in the abortion group (14/118, 11.9%; χ(2) = 10.503, P = 0.005) than in the control group (8/174, 4.6%). The MTHFR C677T and MTRR A66G polymorphisms are significantly correlated with the occurrence of spontaneous abortion.

  4. History of NAMES Conferences

    NASA Astrophysics Data System (ADS)

    Filippov, Lev

    2013-03-01

    -Russian International Centre was demonstrated. By the high standards of the reports presented, as well as by its overall organization, the second Seminar met the standards of an international conference. Reviews of state-of-the-art developments in materials science were given by leading scientists from Moscow and from the Lorraine region. The three days of the seminar were structured into four main themes: Functional Materials Coatings, Films and Surface Engineering Nanomaterials and Nanotechnologies The Environment and three Round Table discussions: Defining practical means of carrying out Franco-Russian collaborations in technology transfer and innovation Materials science ARCUS: Lorraine-Russian collaboration in materials science and the environment 32 oral and 25 poster presentations within four sections were given by a total of 110 participants. NAMES 2007, the 3rd Franco-Russian Seminar on New Achievements in Materials and Environmental Sciences, took place in Metz, France on 7-9 November 2007. The conference highlights fundamentals and development of the five main themes connected to the Lorraine-Russia ARCUS project with possible extension to other topics. The five main subjects included in the ARCUS project are: Bulk-surface-interface material sciences Nanomaterials and nanotechnologies Environment and natural resources Plasma physics—ITER project Vibrational dynamics The first, second and third NAMES conferences were financially supported by the following organizations: Ambassade de France à Moscou Communauté Urbaine du Grand Nancy Région Lorraine Conseil Général de Meurthe et Moselle Institut National Polytechnique de Lorraine Université de Metz Université Henry Poincaré CNRS ANVAR Federal Agency on Science and Innovations of the Ministry of Education and Science of the Russian Federation Moscow Committee on Science and Technologies Moscow Institute of Steel and Alloys (Technological University) The 4th conference is supported by the Ministry of Foreign Affairs of

  5. Calendar of Conferences

    NASA Astrophysics Data System (ADS)

    1996-08-01

    8 - 18 August 1996 International Summer School on Plasma Physics and Technology La Jolla, CA, USA Contact: Mr V Stefan, Institute for Advanced Physics Studies, PO Box 2964, La Jolla, CA 92038, USA. Tel +1-619-456-5737. 26 - 30 August 1996 Joint Varenna - Lausanne International Workshop on Theory of Fusion Plasmas Villa Monastero, Varenna, Italy Contact: Centro di Cultura Villa Monastero, 1 Piazza Venini, 22050 Varenna (Lecco), Italy. Tel +39-341-831261, Fax +39-341-831281. Application and abstract deadline: 15 June 1996. 2 - 5 September 1996 EU - US Workshop on Transport in Fusion Plasmas Villa Monastero, Varenna, Italy Further information: G Gorini, ISPP, 16 Via Celoria, I-20133 Milano, Italy. Tel +39-2-2392637, Fax +39-2-2392205, E-mail ggorini@mi.infn.it. Administrative contact: Centro di Cultura Villa Monastero, 1 Piazza Venini, 22050 Varenna (Lecco), Italy. Tel +39-341-831261, Fax +39-341-831281. Application and abstract deadline: 15 June 1996. 9 - 13 September 1996 International Conference on Plasma Physics Nagoya, Japan Contact: Conference Secretariat, c/o Prof. Hiromu Momota, National Institute for Fusion Science, Nagoya 464-01, Japan. Tel +81-52-789-4260, Fax +81-52-789-1037, E-mail icpp96@nifs.ac.jp. Abstract deadline: 31 March 1996. 16 - 20 September 1996 19th Symposium on Fusion Technology Lisbon, Portugal Contact: Professor Carlos Varandas, Centro de Fusão Nuclear, 1096 Lisboa Codex, Portugal. Fax +351-1-8417819, E-mail cvarandas@cfn.ist.utl.pt. General information will be available via WWW with URL http://www.cfn.ist.utl.pt. 25 - 29 September 1996 Summer University of Plasma Physics Garching, Germany Contact: Ms Ch Stahlberg, Max-Planck-Institut für PlasmaPhysik, Boltzmannstr 2, D-85748 Garching, Germany. Tel +49-89-3299-2232, Fax +49-89-3299-1001. 11 - 15 November 1996 38th Annual Meeting of the Division of Plasma Physics, APS Denver, CO, USA Contact: Dr Richard Hazeltine, University of Texas

  6. Induction of a deficiency of steroid delta 4-5 alpha-reductase activity in liver by a porphyrinogenic drug.

    PubMed Central

    Kappas, A; Bradlow, H L; Bickers, D R; Alvares, A P

    1977-01-01

    The hepatic enzymes that catalyze drug oxidations and the reductive metabolism of steroid hormones to 5alpha-derivatives are localized in membranes of the endoplasmic reticulum. Phenobarbital, which exacerbates acute intermittent porphyria in man, induces drug-oxidizing enzymes in liver. Additionally, patients in whome the primary gene defect (uroporphyrinogen-I-synthetase deficiency) of acute intermittent porphyria has become clinically expressed have low levels of hepatic steroid delta4-5alpha-reductase activity. This 5alpha-reductase deficiency in acute intermittent porphyria leads to the disproportionate generation of 5beta-steroid metabolites from precursor hormones; such steroid metabolites have significant porphyria-inducing action experimentally. In this study the effects of phenobarbital on drug oxidation and steroid 5alpha-reduction in man were examined to determine if this drug could produce changes in steroid 5alpha-reductase activity which mimicked those seen in patients with acute intermittent porphyria. Metabolic studies with [14C]-testosterone and 11beta-[3H]hydroxyandrostenedione were carried out in five normal volunteers. In all five subjects phenobarbital administration (2 mg/kg/per day for 21 days) enhanced plasma removal of the test drugs antipyrine and phenylbutazone as expected; but in four subjects phenobarbital also substantially depressed 5alpha-metabolite formation from [14C]testosterone and resulted in a pattern of hormone biotransformation characterized by a high ratio of 5beta/5alpha-metabolite formation. Studies with 11beta-[3H]hydroxy-androstenedione in three subjects confirmed that phenobarbital produced this high 5beta/5alpha ratio of steroid metabolism by depressing 5alpha-reductase activity for steroid hormones in liver. The high ratio of 5beta/5alpha-metabolites formed in normals after drug treatment mimicks the high 5beta/5alpha-steroid metabolite ratio formed from endogenous hormones in acute intermittent porphyria. The

  7. Paired and interacting galaxies: Conference summary

    NASA Technical Reports Server (NTRS)

    Norman, Colin A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary.

  8. Nitrate reductase and nitrite as additional components of defense system in pigeonpea (Cajanus cajan L.) against Helicoverpa armigera herbivory.

    PubMed

    Kaur, Rimaljeet; Gupta, Anil Kumar; Taggar, Gaurav Kumar

    2014-10-01

    Amylase inhibitors serve as attractive candidates of defense mechanisms against insect attack. Therefore, the impediment of Helicoverpa armigera digestion can be the effective way of controlling this pest population. Nitrite was found to be a potent mixed non-competitive competitive inhibitor of partially purified α-amylase of H. armigera gut. This observation impelled us to determine the response of nitrite and nitrate reductase (NR) towards H. armigera infestation in nine pigeonpea genotypes (four moderately resistant, three intermediate and two moderately susceptible). The significant upregulation of NR in moderately resistant genotypes after pod borer infestation suggested NR as one of the factors that determine their resistance status against insect attack. The pod borer attack caused greater reduction of nitrate and significant accumulation of nitrite in moderately resistant genotypes. The activity of nitrite reductase (NiR) was also enhanced more in moderately resistant genotypes than moderately susceptible genotypes on account of H. armigera herbivory. Expression of resistance to H. armigera was further revealed when significant negative association between NR, NiR, nitrite and percent pod damage was observed. This is the first report that suggests nitrite to be a potent inhibitor of H. armigera α-amylase and also the involvement of nitrite and NR in providing resistance against H. armigera herbivory. PMID:25307464

  9. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses

    SciTech Connect

    Mishra, Yogesh; Chaurasia, Neha; Rai, Lal Chand

    2009-04-17

    Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 {sup o}C), NaCl (6% w/v), carbofuron (0.025 mg ml{sup -1}), CdCl{sub 2} (4 mM), CuCl{sub 2} (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.

  10. Control of 3-Hydroxy-3-Methylglutaryl-CoA Reductase Activity in Cultured Human Fibroblasts by Very Low Density Lipoproteins of Subjects with Hypertriglyceridemia

    PubMed Central

    Gianturco, Sandra H.; Gotto, Antonio M.; Jackson, Richard L.; Patsch, Josef R.; Sybers, Harley D.; Taunton, O. David; Yeshurun, Daniel L.; Smith, Louis C.

    1978-01-01

    different from the cellular defect found in familial hypercholesterolemia, since the regulation of HMG-CoA reductase activity is normal in Type III fibroblasts. The metabolic defect in hypertriglyceridemia is related to the triglyceriderich lipoproteins which, free of other lipoproteins, have an enhanced ability to interact with cultured fibroblasts to regulate HMG-CoA reductase activity. These studies suggest that, in hypertriglyceridemia, there is a mechanism for direct cellular catabolism of VLDL which is not functional for normal VLDL. PMID:202612

  11. The Writing Conference as Performance.

    ERIC Educational Resources Information Center

    Newkirk, Thomas

    1995-01-01

    Provides an overview of the conversational roles taken on by students and teachers during college-level writing conferences. Uses the performative theory of Erving Goffman to analyze these role patterns. Illuminates the specific performative demands presented by writing conferences on both students and teachers. (HB)

  12. SLA at 100: Conference Preview

    ERIC Educational Resources Information Center

    Blumenstein, Lynn

    2009-01-01

    When School Library Association (SLA) convenes its annual conference in Washington, DC, June 14-17, 2009, the association will be celebrating its 100th birthday. This occasion allows for grand gestures--the SLA Salutes! Awards and Leadership Reception will be held in the Library of Congress's Great Hall. The conference also draws upon Washington…

  13. Conference Connections: Rewiring the Circuit

    ERIC Educational Resources Information Center

    Siemens, George; Tittenberger, Peter; Anderson, Terry

    2008-01-01

    Increased openness, two-way dialogue, and blurred distinctions between experts and amateurs have combined with numerous technology tools for dialogue, personal expression, networking, and community formation to "remake" conferences, influencing not only how attendees participate in but also how organizers host conferences today. (Contains 31…

  14. Sixth National Conference on Citizenship.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC.

    The document presents proceedings from the sixth in a series of annual national citizenship conferences. Held in Washington, D.C. in 1951, the conference served as a forum where educational, political, business, religious, labor, civic, and communications leaders could explore functions and duties of American citizenship. The theme of the…

  15. 10 CFR 2.329 - Prehearing conference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... place for a conference or conferences before trial. A prehearing conference in a proceeding involving a... proceeding; (10) The setting of a hearing schedule, including any appropriate limitations on the scope...

  16. 10 CFR 2.329 - Prehearing conference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... place for a conference or conferences before trial. A prehearing conference in a proceeding involving a... proceeding; (10) The setting of a hearing schedule, including any appropriate limitations on the scope...

  17. 77 FR 38306 - GFIRST Conference Stakeholder Evaluation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... SECURITY GFIRST Conference Stakeholder Evaluation AGENCY: National Protection and Programs Directorate, DHS... concerning new Information Collection Request--GFIRST Conference Stakeholder Evaluation. DHS previously... Conference Stakeholder Evaluation Forms. There is no reference to the I-9 Form on the GFIRST...

  18. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATES FOR ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment,...

  19. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment, Expansion, and...

  20. 38 CFR 39.33 - Conferences.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THE ESTABLISHMENT, EXPANSION, AND IMPROVEMENT, OR OPERATION AND MAINTENANCE, OF VETERANS CEMETERIES Establishment, Expansion, and Improvement Projects Grant Requirements and Procedures § 39.33 Conferences. (a) Predesign conference. A predesign conference is required for all Establishment, Expansion, and...