CATTAERT, TOM; CALLE, M. LUZ; DUDEK, SCOTT M.; MAHACHIE JOHN, JESTINAH M.; VAN LISHOUT, FRANÇOIS; URREA, VICTOR; RITCHIE, MARYLYN D.; VAN STEEN, KRISTEL
2010-01-01
SUMMARY Analyzing the combined effects of genes and/or environmental factors on the development of complex diseases is a great challenge from both the statistical and computational perspective, even using a relatively small number of genetic and non-genetic exposures. Several data mining methods have been proposed for interaction analysis, among them, the Multifactor Dimensionality Reduction Method (MDR), which has proven its utility in a variety of theoretical and practical settings. Model-Based Multifactor Dimensionality Reduction (MB-MDR), a relatively new MDR-based technique that is able to unify the best of both non-parametric and parametric worlds, was developed to address some of the remaining concerns that go along with an MDR-analysis. These include the restriction to univariate, dichotomous traits, the absence of flexible ways to adjust for lower-order effects and important confounders, and the difficulty to highlight epistasis effects when too many multi-locus genotype cells are pooled into two new genotype groups. Whereas the true value of MB-MDR can only reveal itself by extensive applications of the method in a variety of real-life scenarios, here we investigate the empirical power of MB-MDR to detect gene-gene interactions in the absence of any noise and in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. For the considered simulation settings, we show that the power is generally higher for MB-MDR than for MDR, in particular in the presence of genetic heterogeneity, phenocopy, or low minor allele frequencies. PMID:21158747
Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.
2010-01-01
Epistasis or gene-gene interaction is a fundamental component of the genetic architecture of complex traits such as disease susceptibility. Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free method to detect epistasis when there are no significant marginal genetic effects. However, in many studies of complex disease, other covariates like age of onset and smoking status could have a strong main effect and may potentially interfere with MDR's ability to achieve its goal. In this paper, we present a simple and computationally efficient sampling method to adjust for covariate effects in MDR. We use simulation to show that after adjustment, MDR has sufficient power to detect true gene-gene interactions. We also compare our method with the state-of-art technique in covariate adjustment. The results suggest that our proposed method performs similarly, but is more computationally efficient. We then apply this new method to an analysis of a population-based bladder cancer study in New Hampshire. PMID:20924193
Pattin, Kristine A.; White, Bill C.; Barney, Nate; Gui, Jiang; Nelson, Heather H.; Kelsey, Karl R.; Andrew, Angeline S.; Karagas, Margaret R.; Moore, Jason H.
2008-01-01
Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free data mining method for detecting, characterizing, and interpreting epistasis in the absence of significant main effects in genetic and epidemiologic studies of complex traits such as disease susceptibility. The goal of MDR is to change the representation of the data using a constructive induction algorithm to make nonadditive interactions easier to detect using any classification method such as naïve Bayes or logistic regression. Traditionally, MDR constructed variables have been evaluated with a naïve Bayes classifier that is combined with 10-fold cross validation to obtain an estimate of predictive accuracy or generalizability of epistasis models. Traditionally, we have used permutation testing to statistically evaluate the significance of models obtained through MDR. The advantage of permutation testing is that it controls for false-positives due to multiple testing. The disadvantage is that permutation testing is computationally expensive. This is in an important issue that arises in the context of detecting epistasis on a genome-wide scale. The goal of the present study was to develop and evaluate several alternatives to large-scale permutation testing for assessing the statistical significance of MDR models. Using data simulated from 70 different epistasis models, we compared the power and type I error rate of MDR using a 1000-fold permutation test with hypothesis testing using an extreme value distribution (EVD). We find that this new hypothesis testing method provides a reasonable alternative to the computationally expensive 1000-fold permutation test and is 50 times faster. We then demonstrate this new method by applying it to a genetic epidemiology study of bladder cancer susceptibility that was previously analyzed using MDR and assessed using a 1000-fold permutation test. PMID:18671250
Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.
2010-01-01
A central goal of human genetics is to identify and characterize susceptibility genes for common complex human diseases. An important challenge in this endeavor is the modeling of gene-gene interaction or epistasis that can result in non-additivity of genetic effects. The multifactor dimensionality reduction (MDR) method was developed as machine learning alternative to parametric logistic regression for detecting interactions in absence of significant marginal effects. The goal of MDR is to reduce the dimensionality inherent in modeling combinations of polymorphisms using a computational approach called constructive induction. Here, we propose a Robust Multifactor Dimensionality Reduction (RMDR) method that performs constructive induction using a Fisher’s Exact Test rather than a predetermined threshold. The advantage of this approach is that only those genotype combinations that are determined to be statistically significant are considered in the MDR analysis. We use two simulation studies to demonstrate that this approach will increase the success rate of MDR when there are only a few genotype combinations that are significantly associated with case-control status. We show that there is no loss of success rate when this is not the case. We then apply the RMDR method to the detection of gene-gene interactions in genotype data from a population-based study of bladder cancer in New Hampshire. PMID:21091664
Impact of Introducing the Line Probe Assay on Time to Treatment Initiation of MDR-TB in Delhi, India
Singla, Neeta; Satyanarayana, Srinath; Sachdeva, Kuldeep Singh; Van den Bergh, Rafael; Reid, Tony; Tayler-Smith, Katherine; Myneedu, V. P.; Ali, Engy; Enarson, Donald A.; Behera, Digamber; Sarin, Rohit
2014-01-01
Setting National Institute of Tuberculosis and Respiratory Diseases (erstwhile Lala Ram Sarup Institute) in Delhi, India. Objectives To evaluate before and after the introduction of the line Probe Assay (LPA) a) the overall time to MDR-TB diagnosis and treatment initiation; b) the step-by-step time lapse at each stage of patient management; and c) the lost to follow-up rates. Methods A retrospective cohort analysis was done using data on MDR-TB patients diagnosed during 2009–2012 under Revised National Tuberculosis Control Programme at the institute. Results Following the introduction of the LPA in 2011, the overall median time from identification of patients suspected for MDR-TB to the initiation of treatment was reduced from 157 days (IQR 127–200) to 38 days (IQR 30–79). This reduction was attributed mainly to a lower diagnosis time at the laboratory. Lost to follow-up rates were also significantly reduced after introduction of the LPA (12% versus 39% pre-PLA). Conclusion Introduction of the LPA was associated with a major reduction in the delay between identification of patients suspected for MDR-TB and initiation of treatment, attributed mainly to a reduction in diagnostic time in the laboratory. PMID:25058124
Ritchie, Marylyn D.; Hahn, Lance W.; Roodi, Nady; Bailey, L. Renee; Dupont, William D.; Parl, Fritz F.; Moore, Jason H.
2001-01-01
One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method for reducing the dimensionality of multilocus information, to improve the identification of polymorphism combinations associated with disease risk. The MDR method is nonparametric (i.e., no hypothesis about the value of a statistical parameter is made), is model-free (i.e., it assumes no particular inheritance model), and is directly applicable to case-control and discordant-sib-pair studies. Using simulated case-control data, we demonstrate that MDR has reasonable power to identify interactions among two or more loci in relatively small samples. When it was applied to a sporadic breast cancer case-control data set, in the absence of any statistically significant independent main effects, MDR identified a statistically significant high-order interaction among four polymorphisms from three different estrogen-metabolism genes. To our knowledge, this is the first report of a four-locus interaction associated with a common complex multifactorial disease. PMID:11404819
Lee, Seungyeoun; Kim, Yongkang; Kwon, Min-Seok; Park, Taesung
2015-01-01
Genome-wide association studies (GWAS) have extensively analyzed single SNP effects on a wide variety of common and complex diseases and found many genetic variants associated with diseases. However, there is still a large portion of the genetic variants left unexplained. This missing heritability problem might be due to the analytical strategy that limits analyses to only single SNPs. One of possible approaches to the missing heritability problem is to consider identifying multi-SNP effects or gene-gene interactions. The multifactor dimensionality reduction method has been widely used to detect gene-gene interactions based on the constructive induction by classifying high-dimensional genotype combinations into one-dimensional variable with two attributes of high risk and low risk for the case-control study. Many modifications of MDR have been proposed and also extended to the survival phenotype. In this study, we propose several extensions of MDR for the survival phenotype and compare the proposed extensions with earlier MDR through comprehensive simulation studies. PMID:26339630
Kumar, Manesh; Dhaka, Pankaj; Vijay, Deepthi; Vergis, Jess; Mohan, Vysakh; Kumar, Ashok; Kurkure, Nitin V; Barbuddhe, Sukhadeo B; Malik, S V S; Rawool, Deepak B
2016-09-01
The in vitro and in vivo antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus were evaluated individually and synergistically against multidrug-resistant enteroaggregative Escherichia coli (MDR-EAEC). In vitro evaluation of each probiotic strain when co-cultured with MDR-EAEC isolates revealed a reduction in MDR-EAEC counts (eosin-methylene blue agar) in a dose- and time-dependent manner: probiotics at a dose rate of 10(10) CFU inhibited MDR-EAEC isolates at 72 h post-inoculation (PI), whereas at lower concentrations (10(8) and 10(9) CFU) MDR-EAEC isolates were inhibited at 96 h PI. The synergistic antimicrobial effect of both probiotic strains (each at 10(10) CFU) was highly significant (P < 0.01) and inhibited the growth of MDR-EAEC isolates at 24 h PI. For in vivo evaluation, weaned mice were fed orally with 10(7) CFU of MDR-EAEC. At Day 3 post-infection, treated mice were fed orally with the probiotic strains (each at 10(10) CFU). Compared with the control, post-treatment a significant (P < 0.01) reduction in MDR-EAEC counts was observed in faeces by Day 2 and in intestinal tissues of treated mice by Days 3 and 4 as evidenced by plate count (mean 2.71 log and 2.27 log, respectively) and real-time PCR (mean 1.62 log and 1.57 log, respectively) methods. Histopathologically, comparatively mild changes were observed in the ileum and colon from Days 3 to 5 post-treatment with probiotics; however, from Day 6 the changes were regenerative or normal. These observations suggest that these probiotic strains can serve as alternative therapeutics against MDR-EAEC-associated infections in humans and animals. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Ideal discrimination of discrete clinical endpoints using multilocus genotypes.
Hahn, Lance W; Moore, Jason H
2004-01-01
Multifactor Dimensionality Reduction (MDR) is a method for the classification and prediction of discrete clinical endpoints using attributes constructed from multilocus genotype data. Empirical studies with both real and simulated data suggest that MDR has good power for detecting gene-gene interactions in the absence of independent main effects. The purpose of this study is to develop an objective, theory-driven approach to evaluate the strengths and limitations of MDR. To accomplish this goal, we borrow concepts from ideal observer analysis used in visual perception to evaluate the theoretical limits of classifying and predicting discrete clinical endpoints using multilocus genotype data. We conclude that MDR ideally discriminates between low risk and high risk subjects using attributes constructed from multilocus genotype data. We also how that the classification approach used once a multilocus attribute is constructed is similar to that of a naive Bayes classifier. This study provides a theoretical foundation for the continued development, evaluation, and application of the MDR as a data mining tool in the domain of statistical genetics and genetic epidemiology.
Ching, Emily S C; Lo, T S; Procaccia, Itamar
2006-08-01
Drag reduction by polymers is bounded between two universal asymptotes, the von Kármán log law of the law and the maximum drag reduction (MDR) asymptote. It is theoretically understood why the MDR asymptote is universal, independent of whether the polymers are flexible or rodlike. The crossover behavior from the Newtonian von Kármán log law to the MDR is, however, not universal, showing different characteristics for flexible and rodlike polymers. In this paper we provide a theory for this crossover phenomenology.
Gui, Jiang; Moore, Jason H.; Williams, Scott M.; Andrews, Peter; Hillege, Hans L.; van der Harst, Pim; Navis, Gerjan; Van Gilst, Wiek H.; Asselbergs, Folkert W.; Gilbert-Diamond, Diane
2013-01-01
We present an extension of the two-class multifactor dimensionality reduction (MDR) algorithm that enables detection and characterization of epistatic SNP-SNP interactions in the context of a quantitative trait. The proposed Quantitative MDR (QMDR) method handles continuous data by modifying MDR’s constructive induction algorithm to use a T-test. QMDR replaces the balanced accuracy metric with a T-test statistic as the score to determine the best interaction model. We used a simulation to identify the empirical distribution of QMDR’s testing score. We then applied QMDR to genetic data from the ongoing prospective Prevention of Renal and Vascular End-Stage Disease (PREVEND) study. PMID:23805232
The DEEP-South: Scheduling and Data Reduction Software System
NASA Astrophysics Data System (ADS)
Yim, Hong-Suh; Kim, Myung-Jin; Bae, Youngho; Moon, Hong-Kyu; Choi, Young-Jun; Roh, Dong-Goo; the DEEP-South Team
2015-08-01
The DEep Ecliptic Patrol of the Southern sky (DEEP-South), started in October 2012, is currently in test runs with the first Korea Microlensing Telescope Network (KMTNet) 1.6 m wide-field telescope located at CTIO in Chile. While the primary objective for the DEEP-South is physical characterization of small bodies in the Solar System, it is expected to discover a large number of such bodies, many of them previously unknown.An automatic observation planning and data reduction software subsystem called "The DEEP-South Scheduling and Data reduction System" (the DEEP-South SDS) is currently being designed and implemented for observation planning, data reduction and analysis of huge amount of data with minimum human interaction. The DEEP-South SDS consists of three software subsystems: the DEEP-South Scheduling System (DSS), the Local Data Reduction System (LDR), and the Main Data Reduction System (MDR). The DSS manages observation targets, makes decision on target priority and observation methods, schedules nightly observations, and archive data using the Database Management System (DBMS). The LDR is designed to detect moving objects from CCD images, while the MDR conducts photometry and reconstructs lightcurves. Based on analysis made at the LDR and the MDR, the DSS schedules follow-up observation to be conducted at other KMTNet stations. In the end of 2015, we expect the DEEP-South SDS to achieve a stable operation. We also have a plan to improve the SDS to accomplish finely tuned observation strategy and more efficient data reduction in 2016.
Espindola, Aquino L; Varughese, Marie; Laskowski, Marek; Shoukat, Affan; Heffernan, Jane M; Moghadas, Seyed M
2017-03-01
The increasing rates of multidrug resistant TB (MDR-TB) have posed the question of whether control programs under enhanced directly observed treatment, short-course (DOTS-Plus) are sufficient or implemented optimally. Despite enhanced efforts on early case detection and improved treatment regimens, direct transmission of MDR-TB remains a major hurdle for global TB control. We developed an agent-based simulation model of TB dynamics to evaluate the effect of transmission reduction measures on the incidence of MDR-TB. We implemented a 15-day isolation period following the start of treatment in active TB cases. The model was parameterized with the latest estimates derived from the published literature. We found that if high rates (over 90%) of TB case identification are achieved within 4 weeks of developing active TB, then a 15-day patient isolation strategy with 50% effectiveness in interrupting disease transmission leads to 10% reduction in the incidence of MDR-TB over 10 years. If transmission is fully prevented, the rise of MDR-TB can be halted within 10 years, but the temporal reduction of MDR-TB incidence remains below 20% in this period. The impact of transmission reduction measures on the TB incidence depends critically on the rates and timelines of case identification. The high costs and adverse effects associated with MDR-TB treatment warrant increased efforts and investments on measures that can interrupt direct transmission through early case detection. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Benzi, Roberto; Ching, Emily S C; Horesh, Nizan; Procaccia, Itamar
2004-02-20
A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence is presented, simulated, and analyzed. The qualitative phase diagram of drag coefficient versus Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag reduction and the maximum drag reduction (MDR) asymptote. The Re-dependent drag and the MDR are analytically explained, and the dependence of the amount of drag on material parameters is rationalized.
Karayianni, Katerina N; Grimaldi, Keith A; Nikita, Konstantina S; Valavanis, Ioannis K
2015-01-01
This paper aims to enlighten the complex etiology beneath obesity by analysing data from a large nutrigenetics study, in which nutritional and genetic factors associated with obesity were recorded for around two thousand individuals. In our previous work, these data have been analysed using artificial neural network methods, which identified optimised subsets of factors to predict one's obesity status. These methods did not reveal though how the selected factors interact with each other in the obtained predictive models. For that reason, parallel Multifactor Dimensionality Reduction (pMDR) was used here to further analyse the pre-selected subsets of nutrigenetic factors. Within pMDR, predictive models using up to eight factors were constructed, further reducing the input dimensionality, while rules describing the interactive effects of the selected factors were derived. In this way, it was possible to identify specific genetic variations and their interactive effects with particular nutritional factors, which are now under further study.
Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, S.-T.; National Center of Excellence for Clinical Trial and Research, College of Medicine, National Taiwan University, Taipei 10051, Taiwan; Chen, T.-M.
2007-06-22
Development of agents to overcome multidrug resistance (MDR) is important in cancer chemotherapy. Up to date, few chemicals have been reported to down-regulate MDR1 gene expression. We evaluated the effect of tryptanthrin on P-glycoprotein (P-gp)-mediated MDR in a breast cancer cell line MCF-7. Tryptanthrin could depress overexpression of MDR1 gene. We observed reduction of P-gp protein in parallel with decreases in mRNA in MCF-7/adr cells treated with tryptanthrin. Tryptanthrin suppressed the activity of MDR1 gene promoter. Tryptanthrin also enhanced interaction of the nuclear proteins with the negatively regulatory CAAT region of MDR1 gene promoter in MCF-7/adr. It might result inmore » suppression of MDR1 gene. In addition, tryptanthrin decreased the amount of mutant p53 protein with decreasing mutant p53 protein stability. It might contribute to negative regulation of MDR1 gene. In conclusion, tryptanthrin exhibited MDR reversing effect by down-regulation of MDR1 gene and might be a new adjuvant agent for chemotherapy.« less
Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions
2013-01-01
Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has significant association with risk for high blood pressures or hypertension. Although the test balanced accuracy (BA) of multivariate analysis was not always greater than that of univariate analysis, the multivariate BAs were more stable with smaller standard deviations. Conclusions In this study, we have developed multivariate GMDR method using GEE approach. It is useful to use multivariate GMDR with correlated multiple phenotypes of interests. PMID:24565370
Benzi, Roberto; De Angelis, Elisabetta; L'vov, Victor S; Procaccia, Itamar
2005-11-04
Drag reduction by polymers in wall turbulence is bounded from above by a universal maximal drag reduction (MDR) velocity profile that is a log law, estimated experimentally by Virk as V+(y+) approximately 11.7logy+ - 17. Here V+(y+) and y+ are the mean streamwise velocity and the distance from the wall in "wall" units. In this Letter we propose that this MDR profile is an edge solution of the Navier-Stokes equations (with an effective viscosity profile) beyond which no turbulent solutions exist. This insight rationalizes the universality of the MDR and provides a maximum principle which allows an ab initio calculation of the parameters in this law without any viscoelastic experimental input.
Xing, Ai-Yan; Shi, Duan-bo; Liu, Wei; Chen, Xu; Sun, Yan-Lin; Wang, Xiao; Zhang, Jian-ping; Gao, Peng
2013-06-01
One of the main mechanisms for multidrug resistance (MDR) involves multidrug resistance gene 1 (MDR1) which encodes P-glycoprotein (Pgp). Pgp acts as a drug efflux pump and exports chemotherapeutic agents from cancer cells. Specific inhibition of Pgp expression by gene therapy is considered a well-respective strategy having less innate toxicities. At present, the investigation of DRz in reversal MDR is scarce. In the study, phosphorothioate DRz that targets to the translation initiation codon AUG was synthesized and transfected into breast cancer cells and leukemia cells with MDR phenotype. ASODN (antisense oligonucleotide) and ribozyme targets to the same region were also synthesized for comparison analysis. Alterations in MDR1 mRNA and Pgp were determined by RT-PCR, Northern blot, flow cytometry and Rh123 retention tests. Chemosensitivity of the treated cells was determined by MTT assay. The results showed that DRz could significantly suppress expression of MDR1 mRNA and inhibit synthesis of Pgp. The efflux activity of Pgp was inhibited accordingly. Chemosensitivity assay showed that a 21-fold reduction in drug resistance for Adriamycin and a 45-fold reduction in drug resistance for Vinblastine were found in the treated cells 36h after transfection. These data suggest that DRz targeted to the translation initiation codon AUG can reverse MDR phenotype in cancer cells and restore their chemosensitivity. Moreover, the reversal efficiency of DRz is better than that of ribozyme and ASODN targets to the same region of MDR1 mRNA. Copyright © 2013 Elsevier Inc. All rights reserved.
Additive equivalence in turbulent drag reduction by flexible and rodlike polymers.
Benzi, Roberto; Ching, Emily S C; Lo, T S; L'vov, Victor S; Procaccia, Itamar
2005-07-01
We address the additive equivalence discovered by Virk and co-workers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar maximum drag reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.
NASA Astrophysics Data System (ADS)
Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin
2015-10-01
Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O (1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives.
Li, Chang-Feng; Sureshkumar, Radhakrishna; Khomami, Bamin
2015-10-01
Self-consistent direct numerical simulations of turbulent channel flows of dilute polymer solutions exhibiting friction drag reduction (DR) show that an effective Deborah number defined as the ratio of polymer relaxation time to the time scale of fluctuations in the vorticity in the mean flow direction remains O(1) from the onset of DR to the maximum drag reduction (MDR) asymptote. However, the ratio of the convective time scale associated with streamwise vorticity fluctuations to the vortex rotation time decreases with increasing DR, and the maximum drag reduction asymptote is achieved when these two time scales become nearly equal. Based on these observations, a simple framework is proposed that adequately describes the influence of polymer additives on the extent of DR from the onset of DR to MDR as well as the universality of the MDR in wall-bounded turbulent flows with polymer additives.
On the connection between Maximum Drag Reduction and Newtonian fluid flow
NASA Astrophysics Data System (ADS)
Whalley, Richard; Park, Jae-Sung; Kushwaha, Anubhav; Dennis, David; Graham, Michael; Poole, Robert
2014-11-01
To date, the most successful turbulence control technique is the dissolution of certain rheology-modifying additives in liquid flows, which results in a universal maximum drag reduction (MDR) asymptote. The MDR asymptote is a well-known phenomenon in the turbulent flow of complex fluids; yet recent direct numerical simulations of Newtonian fluid flow have identified time intervals showing key features of MDR. These intervals have been termed ``hibernating turbulence'' and are a weak turbulence state which is characterised by low wall-shear stress and weak vortical flow structures. Here, in this experimental investigation, we monitor the instantaneous wall-shear stress in a fully-developed turbulent channel flow of a Newtonian fluid with a hot-film probe whilst simultaneously measuring the streamwise velocity at various distances above the wall with laser Doppler velocimetry. We show, by conditionally sampling the streamwise velocity during low wall-shear stress events, that the MDR velocity profile is approached in an additive-free, Newtonian fluid flow. This result corroborates recent numerical investigations, which suggest that the MDR asymptote in polymer solutions is closely connected to weak, transient Newtonian flow structures.
Bounding the moment deficit rate on crustal faults using geodetic data: Methods
Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael
2017-08-19
Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less
Bounding the moment deficit rate on crustal faults using geodetic data: Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, Jeremy; Segall, Paul; Bradley, Andrew Michael
Here, the geodetically derived interseismic moment deficit rate (MDR) provides a first-order constraint on earthquake potential and can play an important role in seismic hazard assessment, but quantifying uncertainty in MDR is a challenging problem that has not been fully addressed. We establish criteria for reliable MDR estimators, evaluate existing methods for determining the probability density of MDR, and propose and evaluate new methods. Geodetic measurements moderately far from the fault provide tighter constraints on MDR than those nearby. Previously used methods can fail catastrophically under predictable circumstances. The bootstrap method works well with strong data constraints on MDR, butmore » can be strongly biased when network geometry is poor. We propose two new methods: the Constrained Optimization Bounding Estimator (COBE) assumes uniform priors on slip rate (from geologic information) and MDR, and can be shown through synthetic tests to be a useful, albeit conservative estimator; the Constrained Optimization Bounding Linear Estimator (COBLE) is the corresponding linear estimator with Gaussian priors rather than point-wise bounds on slip rates. COBE matches COBLE with strong data constraints on MDR. We compare results from COBE and COBLE to previously published results for the interseismic MDR at Parkfield, on the San Andreas Fault, and find similar results; thus, the apparent discrepancy between MDR and the total moment release (seismic and afterslip) in the 2004 Parkfield earthquake remains.« less
Li, Changlong; Wu, Hezhen; Yang, Yanfang; Liu, Jianwen; Chen, Zhenwen
2018-06-01
Multidrug resistance (MDR) is a major obstacle to cancer chemotherapy efficacy. In the present study, 6-O-angeloylplenolin repressed the overexpression of ATP binding cassette subfamily B member 1 ( MDR1 ) and increasing the intracellular concentration of anticancer drugs. A reduction in P-glycoprotein expression (encoded by MDR1 ) was observed in parallel with a decline in mRNA expression in vincristine-resistant HCT (HCT-8/VCR) cells treated with 6-O-angeloylplenolin. In addition, 6-O-angeloylplenolin suppressed the activity of the MDR1 gene promoter. Treatment with 6-O-angeloylplenolin also decreased the amount of the specific protein complex that interacted with the MDR1 gene promoter in HCT-8/VCR cells, potentially leading to the suppression of MDR1 expression. Treatment with 6-O-angeloylplenolin inhibited the nuclear translocation of Y-box binding protein-1 in HCT-8/VCR cells treated with 6-O-angeloylplenolin, contributing to the negative regulation of MDR1 . Finally, 6-O-angeloylplenolin reversed VCR resistance in an HCT/VCR xenograft model. In conclusion, 6-O-angeloylplenolin exhibited a MDR-reversing effect by downregulating MDR1 expression and could represent a novel adjuvant agent for chemotherapy.
Jeon, Yong Hyun; Bae, Seon-ae; Lee, Yong Jin; Lee, You La; Lee, Sang-Woo; Yoon, Ghil-Suk; Ahn, Byeong-Cheol; Ha, Jeoung-Hee; Lee, Jaetae
2010-12-01
The reversal effect of multidrug resistance (MDR1) gene expression by adenoviral vector-mediated MDR1 ribonucleic acid interference was assessed in a human colon cancer animal model using bioluminescent imaging with Renilla luciferase (Rluc) gene and coelenterazine, a substrate for Rluc or MDR1 gene expression. A fluorescent microscopic examination demonstrated an increased green fluorescent protein signal in Ad-shMDR1- (recombinant adenovirus that coexpressed MDR1 small hairpin ribonucleic acid [shRNA] and green fluorescent protein) infected HCT-15/Rluc cells in a virus dose-dependent manner. Concurrently, with an increasing administered virus dose (0, 15, 30, 60, and 120 multiplicity of infection), Rluc activity was significantly increased in Ad-shMDR1-infected HCT-15/Rluc cells in a virus dose-dependent manner. In vivo bioluminescent imaging showed about 7.5-fold higher signal intensity in Ad-shMDR1-infected tumors than in control tumors (p < .05). Immunohistologic analysis demonstrated marked reduction of P-glycoprotein expression in infected tumor but not in control tumor. In conclusion, the reversal of MDR1 gene expression by MDR1 shRNA was successfully evaluated by bioluminescence imaging with Rluc activity using an in vivo animal model with a multidrug resistance cancer xenograft.
Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa.
Fuse, Katsuhiro; Fujimura, Shigeru; Kikuchi, Toshiaki; Gomi, Kazunori; Iida, Yasuhiro; Nukiwa, Toshihiro; Watanabe, Akira
2013-02-01
Nosocomial infections caused by metallo-β-lactamase (MBL)-producing multidrug-resistant (MDR) Pseudomonas aeruginosa have become a worldwide problem. Pyocyanin, a representative pigment produced by P. aeruginosa, is the major virulence factor of this organismThe aim of this study was to investigate the pyocyanin-producing ability of MBL-producing MDR P. aeruginosa. A total of 50 clinical isolates of P. aeruginosa, including 20 MDR strains, were collected at 18 general hospitals in Japan. The chromaticity and luminosity produced by pyocyanin in each isolate were measured. The quantity of pyocyanin and the expression of the phzM and phzS genes coding a pyocyanin synthesis enzyme were measured. MDR strains showed a bright yellow-green, while non-MDR strains tended to show a dark blue-green. The quantities of pyocyanin in MBL-producing strains and non-producing strains were 0.015 ± 0.002 and 0.41 ± 0.10 μg, respectively. The expression of the phzM and phzS genes in the MDR strains was 11 and 14 %, respectively, of the expression in the non-MDR strains. When the MBL gene was transduced into P. aeruginosa and it acquired multidrug resistance, it was shown that the pyocyanin-producing ability decreased. The pathogenicity of MBL-producing MDR P. aeruginosa may be lower than that of non-MDR strains. These MBL-producing MDR strains may be less pathogenic than non-MDR strains. This may explain why MDR-P. aeruginosa is unlikely to cause infection but, rather, causes subclinical colonization only.
Maximum drag reduction simulation using rodlike polymers.
Gillissen, J J J
2012-10-01
Simulations of maximum drag reduction (MDR) in channel flow using constitutive equations for suspensions of noninteracting rods predict a few-fold larger turbulent kinetic energy than in experiments using rodlike polymers. These differences are attributed to the neglect of interactions between polymers in the simulations. Despite these inconsistencies the simulations correctly reproduce the essential features of MDR, with universal profiles of the mean flow and the shear stress budgets that do not depend on the polymer concentration.
Clinical evaluation of tuberculosis viability microscopy for assessing treatment response.
Datta, Sumona; Sherman, Jonathan M; Bravard, Marjory A; Valencia, Teresa; Gilman, Robert H; Evans, Carlton A
2015-04-15
It is difficult to determine whether early tuberculosis treatment is effective in reducing the infectiousness of patients' sputum, because culture takes weeks and conventional acid-fast sputum microscopy and molecular tests cannot differentiate live from dead tuberculosis. To assess treatment response, sputum samples (n=124) from unselected patients (n=35) with sputum microscopy-positive tuberculosis were tested pretreatment and after 3, 6, and 9 days of empiric first-line therapy. Tuberculosis quantitative viability microscopy with fluorescein diacetate, quantitative culture, and acid-fast auramine microscopy were all performed in triplicate. Tuberculosis quantitative viability microscopy predicted quantitative culture results such that 76% of results agreed within ±1 logarithm (rS=0.85; P<.0001). In 31 patients with non-multidrug-resistant (MDR) tuberculosis, viability and quantitative culture results approximately halved (both 0.27 log reduction, P<.001) daily. For patients with non-MDR tuberculosis and available data, by treatment day 9 there was a >10-fold reduction in viability in 100% (24/24) of cases and quantitative culture in 95% (19/20) of cases. Four other patients subsequently found to have MDR tuberculosis had no significant changes in viability (P=.4) or quantitative culture (P=.6) results during early treatment. The change in viability and quantitative culture results during early treatment differed significantly between patients with non-MDR tuberculosis and those with MDR tuberculosis (both P<.001). Acid-fast microscopy results changed little during early treatment, and this change was similar for non-MDR tuberculosis vs MDR tuberculosis (P=.6). Tuberculosis quantitative viability microscopy is a simple test that within 1 hour predicted quantitative culture results that became available weeks later, rapidly indicating whether patients were responding to tuberculosis therapy. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Modification of near-wall coherent structures in polymer drag reduced flow: simulation
NASA Astrophysics Data System (ADS)
Dubief, Yves; White, Christopher; Shaqfeh, Eric; Moin, Parviz; Lele, Sanjiva
2002-11-01
Polymer drag reduced flows are investigated through direct numerical simulations of viscoelastic flows. The solver for the viscoelastic model (FENE-P) is based on higher-order finite difference schemes and a novel implicit time integration method. Its robustness allows the simulation of all drag reduction (DR) regimes from the onset to the maximum drag reduction (MDR). It also permits the use of realistic polymer length and concentration. The maximum polymer extension in our simulation matches that of a polystyrene molecule of 10^6 molecular weight. Two distinct regimes of polymer drag reduced flows are observed: at low drag reduction (LDR, DR< 40-50%), the near-wall structure is essentially similar to Newtonian wall turbulence whereas the high drag reduction regime (HDR, DR from 40-50% to MDR) shows significant differences in the organization of the coherent structures. The 3D information provided by numerical simulations allows the determination of the interaction of polymers and near-wall coherent structures. To isolate the contribution of polymers in the viscous sublayer, the buffer and the outer region of the flow, numerical experiments are performed where the polymer concentration is varied in the wall-normal direction. Finally a mechanism of polymer drag reduction derived from our results and PIV measurements is discussed.
Drag reduction and the dynamics of turbulence in simple and complex fluidsa)
NASA Astrophysics Data System (ADS)
Graham, Michael D.
2014-10-01
Addition of a small amount of very large polymer molecules or micelle-forming surfactants to a liquid can dramatically reduce the energy dissipation it exhibits in the turbulent flow regime. This rheological drag reduction phenomenon is widely used, for example, in the Alaska pipeline, but it is not well-understood, and no comparable technology exists to reduce turbulent energy consumption in flows of gases, in which polymers or surfactants cannot be dissolved. The most striking feature of this phenomenon is the existence of a so-called maximum drag reduction (MDR) asymptote: for a given geometry and driving force, there is a maximum level of drag reduction that can be achieved through addition of polymers. Changing the concentration, molecular weight or even the chemical structure of the additives has little to no effect on this asymptotic value. This universality is the major puzzle of drag reduction. We describe direct numerical simulations of turbulent minimal channel flow of Newtonian fluids and viscoelastic polymer solutions. Even in the absence of polymers, we show that there are intervals of "hibernating" turbulence that display very low drag as well as many other features of the MDR asymptote observed in polymer solutions. As Weissenberg number increases to moderate values the frequency of these intervals also increases, and a simple theory captures key features of the intermittent dynamics observed in the simulations. At higher Weissenberg number, these intervals are altered - for example, their duration becomes substantially longer and the instantaneous Reynolds shear stress during them becomes very small. Additionally, simulations of "edge states," dynamical trajectories that lie on the boundary between turbulent and laminar flow, display characteristics that are similar to those of hibernating turbulence and thus to the MDR asymptote, again even in the absence of polymer additives. Based on these observations, we propose a tentative unified description of rheological drag reduction. The existence of MDR-like intervals even in the absence of additives sheds light on the observed universality of MDR and may ultimately lead to new flow control approaches for improving energy efficiency in a wide range of processes.
Krawczenko, Agnieszka; Bielawska-Pohl, Aleksandra; Wojtowicz, Karolina; Jura, Roksana; Paprocka, Maria; Wojdat, Elżbieta; Kozłowska, Urszula; Klimczak, Aleksandra; Grillon, Catherine; Kieda, Claudine; Duś, Danuta
2017-01-01
Active cellular transporters of harmful agents-multidrug resistance (mdr) proteins-are present in tumor, stem and endothelial cells, among others. While mdr proteins are broadly studied in tumor cells, their role in non-tumor cells and the significance of their action not connected with removal of harmful xenobiotics is less extensively documented. Proper assessment of mdr proteins expression is difficult. Mdr mRNA presence is most often evaluated but that does not necessarily correlate with the protein level. The protein expression itself is difficult to determine; usually cells with mdr overexpression are studied, not cells under physiological conditions, in which a low expression level of mdr protein is often insufficient for detection in vitro. Various methods are used to identify mdr mRNA and protein expression, together with functional tests demonstrating their biological drug transporting activities. Data comparing different methods of investigating expression of mdr mRNAs and their corresponding proteins are still scarce. In this article we present the results of a study concerning mdr mRNA and protein expression. Our goal was to search for the best method to investigate the expression level and functional activity of five selected mdr proteins-MDR1, BCRP, MRP1, MRP4 and MRP5-in established in vitro cell lines of human endothelial cells (ECs) and their progenitors. Endothelial cells demonstrated mdr presence at the mRNA level, which was not always confirmed at the protein level or in functional tests. Therefore, several different assays had to be applied for evaluation of mdr proteins expression and functions in endothelial cells. Among them functional tests seemed to be the most conclusive, although not very specific.
Winetsky, Daniel E.; Negoescu, Diana M.; DeMarchis, Emilia H.; Almukhamedova, Olga; Dooronbekova, Aizhan; Pulatov, Dilshod; Vezhnina, Natalia; Owens, Douglas K.; Goldhaber-Fiebert, Jeremy D.
2012-01-01
Background Prisons of the former Soviet Union (FSU) have high rates of multidrug-resistant tuberculosis (MDR-TB) and are thought to drive general population tuberculosis (TB) epidemics. Effective prison case detection, though employing more expensive technologies, may reduce long-term treatment costs and slow MDR-TB transmission. Methods and Findings We developed a dynamic transmission model of TB and drug resistance matched to the epidemiology and costs in FSU prisons. We evaluated eight strategies for TB screening and diagnosis involving, alone or in combination, self-referral, symptom screening, mass miniature radiography (MMR), and sputum PCR with probes for rifampin resistance (Xpert MTB/RIF). Over a 10-y horizon, we projected costs, quality-adjusted life years (QALYs), and TB and MDR-TB prevalence. Using sputum PCR as an annual primary screening tool among the general prison population most effectively reduced overall TB prevalence (from 2.78% to 2.31%) and MDR-TB prevalence (from 0.74% to 0.63%), and cost US$543/QALY for additional QALYs gained compared to MMR screening with sputum PCR reserved for rapid detection of MDR-TB. Adding sputum PCR to the currently used strategy of annual MMR screening was cost-saving over 10 y compared to MMR screening alone, but produced only a modest reduction in MDR-TB prevalence (from 0.74% to 0.69%) and had minimal effect on overall TB prevalence (from 2.78% to 2.74%). Strategies based on symptom screening alone were less effective and more expensive than MMR-based strategies. Study limitations included scarce primary TB time-series data in FSU prisons and uncertainties regarding screening test characteristics. Conclusions In prisons of the FSU, annual screening of the general inmate population with sputum PCR most effectively reduces TB and MDR-TB prevalence, doing so cost-effectively. If this approach is not feasible, the current strategy of annual MMR is both more effective and less expensive than strategies using self-referral or symptom screening alone, and the addition of sputum PCR for rapid MDR-TB detection may be cost-saving over time. Please see later in the article for the Editors' Summary PMID:23209384
Mohamed, Loqman A.; Keller, Jeffrey N.; Kaddoumi, Amal
2016-01-01
Recently, we showed that rivastigmine decreased amyloid-β (Aβ) brain load in aged rats by enhancing its clearance across the blood-brain barrier (BBB) via upregulation of P-glycoprotein (P-gp) and low-density lipoprotein receptor-related protein 1 (LRP1). Here, we extend our previous work to clarify P-gp role in mediating rivastigmine effect on Aβ brain levels and neuroprotection in a mouse model of Alzheimer’s disease (AD) that expresses different levels of P-gp. APPSWE mice were bred with mdr1a/b knockout mice to produce littermates that were divided into three groups; APP+/mdr1+/+, APP+/mdr1+/− and APP+/mdr1−/−. Animals received rivastigmine treatment (0.3 mg/kg/day) or vehicle for 8 weeks using Alzet osmotic mini-pumps. ELISA analysis of brain homogenates for Aβ showed rivastigmine treatment to significantly decrease Aβ brain load in APP+/mdr1+/+ by 25% and in APP+/mdr1+/− mice by 21% compared to their vehicle treated littermates, but not in APP+/mdr1−/− mice. In addition, rivastigmine reduced GFAP immunostaining of astrocytes by 50% and IL-1β brain level by 43% in APP+/mdr1+/+ mice, however its effect was less pronounced in P-gp knockout mice. Moreover, rivastigmine demonstrated a P-gp expression dependent neuroprotective effect that was highest in APP+/mdr1+/+>APP+/mdr1+/−>APP+/mdr1−/− as determined by expression of synaptic markers PSD-95 and SNAP-25 using Western blot analysis. Collectively, our results suggest that P-gp plays important role in mediating rivastigmine non-cholinergic beneficial effects, including Aβ brain load reduction, neuroprotective and anti-inflammatory effects in the AD mouse models. PMID:26780497
A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies
Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.
2008-01-01
Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969
Schelz, Zsuzsanna; Molnár, Joseph; Fogliano, Vincenzo; Ferracane, Rosalia; Pernice, Rita; Shirataki, Yoshiaki; Motohashi, Noboru
2006-01-01
In earlier experiments, the MDR (multidrug resistance)-reversal activities of Anastasia Black (Russian black sweet pepper) extracts had been analysed. Recently, the most effective MDR reversing extracts and fractions have been separated by HPLC (high-performance liquid chromatography, for carotenoids) and LC-MS-MS (HPLC combined with mass spectrometry, for phenolic compounds) methods. As a result of the analytical studies, the following flavonoids had been identified: feruloyl glucopyranoside, quercetin rhamnopyranoside glucopyranoside, luteolin glucopyranoside arabinopyranoside, apigenin glucopyranoside arabinopyranoside, quercetin rhamnopyranoside, luteolin arabinopyranoside diglucopy-ranoside, hesperidine and luteolin glucuronide. According to the literature, the aglycones of these phenolic compounds exhibit MDR-reversal activity in vitro, and the connection between the phenolic content of Anastasia Black and MDR-reversal action was therefore studied by different analytical methods. The results of this study revealed that the identified flavonoids of Anastasia Black may be only partially responsible for the modulation of the MDR of mouse lymphoma cells. Other lipophilic compounds, most probably carotenoids, present in Russian black sweet pepper may act as inhibitors of MDR reversal.
Moore, Jason H; Gilbert, Joshua C; Tsai, Chia-Ti; Chiang, Fu-Tien; Holden, Todd; Barney, Nate; White, Bill C
2006-07-21
Detecting, characterizing, and interpreting gene-gene interactions or epistasis in studies of human disease susceptibility is both a mathematical and a computational challenge. To address this problem, we have previously developed a multifactor dimensionality reduction (MDR) method for collapsing high-dimensional genetic data into a single dimension (i.e. constructive induction) thus permitting interactions to be detected in relatively small sample sizes. In this paper, we describe a comprehensive and flexible framework for detecting and interpreting gene-gene interactions that utilizes advances in information theory for selecting interesting single-nucleotide polymorphisms (SNPs), MDR for constructive induction, machine learning methods for classification, and finally graphical models for interpretation. We illustrate the usefulness of this strategy using artificial datasets simulated from several different two-locus and three-locus epistasis models. We show that the accuracy, sensitivity, specificity, and precision of a naïve Bayes classifier are significantly improved when SNPs are selected based on their information gain (i.e. class entropy removed) and reduced to a single attribute using MDR. We then apply this strategy to detecting, characterizing, and interpreting epistatic models in a genetic study (n = 500) of atrial fibrillation and show that both classification and model interpretation are significantly improved.
Maximum drag reduction asymptotes and the cross-over to the Newtonian plug
NASA Astrophysics Data System (ADS)
Benzi, R.; de Angelis, E.; L'Vov, V. S.; Procaccia, I.; Tiberkevich, V.
2006-03-01
We employ the full FENE-P model of the hydrodynamics of a dilute polymer solution to derive a theoretical approach to drag reduction in wall-bounded turbulence. We recapture the results of a recent simplified theory which derived the universal maximum drag reduction (MDR) asymptote, and complement that theory with a discussion of the cross-over from the MDR to the Newtonian plug when the drag reduction saturates. The FENE-P model gives rise to a rather complex theory due to the interaction of the velocity field with the polymeric conformation tensor, making analytic estimates quite taxing. To overcome this we develop the theory in a computer-assisted manner, checking at each point the analytic estimates by direct numerical simulations (DNS) of viscoelastic turbulence in a channel.
Multidrug Resistance in Breast Cancer: From In Vitro Models to Clinical Studies
Wind, N. S.; Holen, I.
2011-01-01
The development of multidrug resistance (MDR) and subsequent relapse on therapy is a widespread problem in breast cancer, but our understanding of the underlying molecular mechanisms is incomplete. Numerous studies have aimed to establish the role of drug transporter pumps in MDR and to link their expression to response to chemotherapy. The ATP-binding cassette (ABC) transporters are central to breast cancer MDR, and increases in ABC expression levels have been shown to correlate with decreases in response to various chemotherapy drugs and a reduction in overall survival. But as there is a large degree of redundancy between different ABC transporters, this correlation has not been seen in all studies. This paper provides an introduction to the key molecules associated with breast cancer MDR and summarises evidence of their potential roles reported from model systems and clinical studies. We provide possible explanations for why despite several decades of research, the precise role of ABC transporters in breast cancer MDR remains elusive. PMID:22332018
Teerawattanapong, Nattawat; Kengkla, Kirati; Dilokthornsakul, Piyameth; Saokaew, Surasak; Apisarnthanarak, Anucha; Chaiyakunapruk, Nathorn
2017-05-15
This study evaluated the relative efficacy of strategies for the prevention of multidrug-resistant gram-negative bacteria (MDR-GNB) in adult intensive care units (ICUs). A systematic review and network meta-analysis was performed; searches of the Cochrane Library, PubMed, Embase, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) included all randomized controlled trials and observational studies conducted in adult patients hospitalized in ICUs and evaluating standard care (STD), antimicrobial stewardship program (ASP), environmental cleaning (ENV), decolonization methods (DCL), or source control (SCT), simultaneously. The primary outcomes were MDR-GNB acquisition, colonization, and infection; secondary outcome was ICU mortality. Of 3805 publications retrieved, 42 met inclusion criteria (5 randomized controlled trials and 37 observational studies), involving 62068 patients (median age, 58.8 years; median APACHE [Acute Physiology and Chronic Health Evaluation] II score, 18.9). The majority of studies reported extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and MDR Acinetobacter baumannii. Compared with STD, a 4-component strategy composed of STD, ASP, ENV, and SCT was the most effective intervention (rate ratio [RR], 0.05 [95% confidence interval {CI}, .01-.38]). When ENV was added to STD+ASP or SCT was added to STD+ENV, there was a significant reduction in the acquisition of MDR A. baumannii (RR, 0.28 [95% CI, .18-.43] and 0.48 [95% CI, .35-.66], respectively). Strategies with ASP as a core component showed a statistically significant reduction the acquisition of ESBL-producing Enterobacteriaceae (RR, 0.28 [95% CI, .11-.69] for STD+ASP+ENV and 0.23 [95% CI, .07-.80] for STD+ASP+DCL). A 4-component strategy was the most effective intervention to prevent MDR-GNB acquisition. As some strategies were differential for certain bacteria, our study highlighted the need for further evaluation of the most effective prevention strategies. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Collins, Ryan L; Hu, Ting; Wejse, Christian; Sirugo, Giorgio; Williams, Scott M; Moore, Jason H
2013-02-18
Identifying high-order genetics associations with non-additive (i.e. epistatic) effects in population-based studies of common human diseases is a computational challenge. Multifactor dimensionality reduction (MDR) is a machine learning method that was designed specifically for this problem. The goal of the present study was to apply MDR to mining high-order epistatic interactions in a population-based genetic study of tuberculosis (TB). The study used a previously published data set consisting of 19 candidate single-nucleotide polymorphisms (SNPs) in 321 pulmonary TB cases and 347 healthy controls from Guniea-Bissau in Africa. The ReliefF algorithm was applied first to generate a smaller set of the five most informative SNPs. MDR with 10-fold cross-validation was then applied to look at all possible combinations of two, three, four and five SNPs. The MDR model with the best testing accuracy (TA) consisted of SNPs rs2305619, rs187084, and rs11465421 (TA = 0.588) in PTX3, TLR9 and DC-Sign, respectively. A general 1000-fold permutation test of the null hypothesis of no association confirmed the statistical significance of the model (p = 0.008). An additional 1000-fold permutation test designed specifically to test the linear null hypothesis that the association effects are only additive confirmed the presence of non-additive (i.e. nonlinear) or epistatic effects (p = 0.013). An independent information-gain measure corroborated these results with a third-order epistatic interaction that was stronger than any lower-order associations. We have identified statistically significant evidence for a three-way epistatic interaction that is associated with susceptibility to TB. This interaction is stronger than any previously described one-way or two-way associations. This study highlights the importance of using machine learning methods that are designed to embrace, rather than ignore, the complexity of common diseases such as TB. We recommend future studies of the genetics of TB take into account the possibility that high-order epistatic interactions might play an important role in disease susceptibility.
Guo, Yuanyuan; He, Wenxiu; Yang, Shengfeng; Zhao, Dujuan; Li, Zhonghao; Luan, Yuxia
2017-03-01
The clinical usage of docetaxel (DTX) has been blocked in the clinic because of its poor solubility and tumour multi-drug resistance (MDR). The dominating mechanism of MDR is the over-expression of p-gp on tumour cells. Traditional nano-medicines, such as nanoparticles and micelles, have been used to physically entrap DTX to improve their solubility, while the drug loading content was very low and the tumour resistance was neglected. In this study, the synthesized reduction-sensitive mPEG-PLGA-SS-DTX conjugate was utilized to load the p-gp inhibitor veraparmil (VRP) to prepare DTX and VRP co-delivered mPEG-PLGA-SS-DTX/VRP (PP-SS-DTX/VRP) multi-functional micelles to reverse MDR and enhance the anti-tumour effect of DTX. The micelles had a high drug loading content and showed an obvious reduction-sensitive release property for both DTX and VRP. In addition, an in vitro anti-tumour assay revealed that the micelles markedly inhibited the efflux activity of p-gp and accelerated cell apoptosis, resulting in the improvement of anti-tumour activity and reversal of MDR. The PP-SS-DTX micelles markedly enhanced the in vivo circulation time and increased the drug accumulation in tumour tissues. Therefore, the PP-SS-DTX/VRP micelle is a desirable drug delivery system for multi-drug resistance therapy of DTX and is very promising for clinical usage. Copyright © 2016 Elsevier B.V. All rights reserved.
Mistri, S K; Sultana, M; Kamal, S M M; Alam, M M; Irin, F; Nessa, J; Ahsan, C R; Yasmin, M
2016-05-01
For an effective control of tuberculosis, rapid detection of multidrug resistant tuberculosis (MDR-TB) is necessary. Therefore, we developed a modified nested multiplex allele-specific polymerase chain reaction (MAS-PCR) method that enables rapid MDR-TB detection directly from sputum samples. The efficacy of this method was evaluated using 79 sputum samples collected from suspected tuberculosis patients. The performance of nested MAS-PCR method was compared with other MDR-TB detection methods like drug susceptibility testing (DST) and DNA sequencing. As rifampicin (RIF) resistance conforms to MDR-TB in greater than 90% cases, only the presence of RIF-associated mutations in rpoB gene was determined by DNA sequencing and nested MAS-PCR to detect MDR-TB. The concordance between nested MAS-PCR and DNA sequencing results was found to be 96·3%. When compared with DST, the sensitivity and specificity of nested MAS-PCR for RIF-resistance detection were determined to be 92·9 and 100% respectively. For developing- and high-TB burden countries, molecular-based tests have been recommended by the World Health Organization for rapid detection of MDR-TB. The results of this study indicate that, nested MAS-PCR assay might be a practical and relatively cost effective molecular method for rapid detection of MDR-TB from suspected sputum samples in developing countries with resource poor settings. © 2016 The Society for Applied Microbiology.
Lu, Xiao; He, Jing; Jin, Shidai
2017-01-01
Multidrug resistance (MDR) is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX) and dasatinib (DAS) for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs) showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. PMID:29138561
Assessing spatial heterogeneity of MDR-TB in a high burden country
Jenkins, Helen E.; Plesca, Valeriu; Ciobanu, Anisoara; Crudu, Valeriu; Galusca, Irina; Soltan, Viorel; Serbulenco, Aliona; Zignol, Matteo; Dadu, Andrei; Dara, Masoud; Cohen, Ted
2013-01-01
Multidrug-resistant tuberculosis (MDR-TB) is a major concern in countries of the former Soviet Union. The reported risk of resistance among TB cases in the Republic of Moldova is among the highest in the world. We aimed to produce high-resolution spatial maps of MDR-TB risk and burden in this setting. We analyzed national TB surveillance data collected between 2007 and 2010 in Moldova. High drug susceptibility testing coverage and detailed location data permitted identification of sub-regional areas of higher MDR-TB risk. We investigated whether the distribution of cases with MDR-TB risk factors could explain this observed spatial variation in MDR-TB. 3,447 MDR-TB cases were notified during this period; 24% of new and 62% of previously treated patients had MDR-TB. Nationally, the estimated annual MDR-TB incidence was 54 cases/100,000 persons and >1,000 cases/100,000 persons within penitentiaries. We identified substantial geographic variation in MDR-TB burden and hotspots of MDR-TB. Locations with a higher percentage of previously incarcerated TB cases were at greater risk of being MDR-TB hotspots. Spatial analyses revealed striking geographic heterogeneity of MDR-TB. Methods to identify locations of high MDR-TB risk and burden should allow for better resource allocation and more appropriate targeting of studies to understand local mechanisms driving resistance. PMID:23100496
Molecular mechanisms of multidrug resistance in cancer chemotherapy.
Nooter, K; Stoter, G
1996-07-01
The occurrence of multidrug resistance (MDR) is one of the main obstacles in the successful chemotherapeutic treatment of cancer. MDR cell lines are resistant to the so-called naturally occurring anti-cancer drugs, such as anthracyclines, Vinca alkaloids and epipodophyllotoxins, but are not cross-resistant to alkylating agents, antimetabolites and cisplatin. So far, three separate forms of MDR have been characterized in more detail: classical MDR, non-Pgp MDR and atypical MDR. Although all three MDR phenotypes have much in common with respect to cross-resistance patterns, the underlying mechanisms certainly differ. Atypical MDR is associated with quantitative and qualitative alterations in topoisomerase II alpha, a nuclear enzyme that actively participates in the lethal action of cytotoxic drugs. Atypical MDR cells do not overexpress P-glycoprotein, and are unaltered in their ability to accumulate drugs. In this review we will focus on classical and non-Pgp MDR. The molecular mechanism of classical and non-Pgp MDR is transcriptional activation of membrane-bound transport proteins. These transport proteins belong to the ATP-binding cassette (ABC) superfamily of transport systems. The classical MDR phenotype is characterized by a reduced ability to accumulate drugs, due to activity of an energy-dependent uni-directional, membrane-bound, drug-efflux pump with broad substrate specificity. The classical MDR drug pump is composed of a transmembrane glycoprotein (P-glyco-protein-Pgp) with a molecular weight of 170 kD, and is, in man, encoded by the so-called multidrug resistance (MDR1) gene. Typically, non-Pgp MDR has no P-gly-coprotein expression, yet has about the same cross-resistance pattern as classical MDR. This non-Pgp MDR phenotype is caused by overexpression of the multidrug resistance-associated protein (MRP) gene, which encodes a 190 kD membrane-bound glycoprotein (MRP). MRP probably works by direct extrusion of cytotoxic drugs from the cell and/or by mediating sequestration of the drugs into intracellular compartments, both leading to a reduction in effective intracellular drug concentrations. For the classical MDR phenotype, evidence is accumulating that it plays a role indeed, in clinical drug resistance, especially in some hematological malignancies (acute myeloid leukemia, multiple myeloma and non-Hodgkin's lymphoma) and solid tumors (soft tissue sarcomas and neuroblastoma). The association of MRP with clinical drug resistance has not been elaborated, yet, and studies on MRP expression in human cancer have just begun. We found that overexpression of MRP, as determined by RNase protection assay as well as by immunohistochemistry, occurs in several human cancers, among which are cancer of the lung, esophagus, breast and ovary, and leukemias. Further studies are indicated to establish whether elevated MRP expression at diagnosis is an unfavorable prognostic factor for clinical outcome of chemotherapy.
Exceeding the Asymptotic Limit of Polymer Drag Reduction.
Choueiri, George H; Lopez, Jose M; Hof, Björn
2018-03-23
The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.
Exceeding the Asymptotic Limit of Polymer Drag Reduction
NASA Astrophysics Data System (ADS)
Choueiri, George H.; Lopez, Jose M.; Hof, Björn
2018-03-01
The drag of turbulent flows can be drastically decreased by adding small amounts of high molecular weight polymers. While drag reduction initially increases with polymer concentration, it eventually saturates to what is known as the maximum drag reduction (MDR) asymptote; this asymptote is generally attributed to the dynamics being reduced to a marginal yet persistent state of subdued turbulent motion. Contrary to this accepted view, we show that, for an appropriate choice of parameters, polymers can reduce the drag beyond the suggested asymptotic limit, eliminating turbulence and giving way to laminar flow. At higher polymer concentrations, however, the laminar state becomes unstable, resulting in a fluctuating flow with the characteristic drag of the MDR asymptote. Our findings indicate that the asymptotic state is hence dynamically disconnected from ordinary turbulence.
Multidrug-resistant tuberculosis outbreak among US-bound Hmong refugees, Thailand, 2005.
Oeltmann, John E; Varma, Jay K; Ortega, Luis; Liu, Yecai; O'Rourke, Thomas; Cano, Maria; Harrington, Theresa; Toney, Sean; Jones, Warren; Karuchit, Samart; Diem, Lois; Rienthong, Dhanida; Tappero, Jordan W; Ijaz, Kashef; Maloney, Susan A
2008-11-01
In January 2005, tuberculosis (TB), including multidrug-resistant TB (MDR TB), was reported among Hmong refugees who were living in or had recently immigrated to the United States from a camp in Thailand. We investigated TB and drug resistance, enhanced TB screenings, and expanded treatment capacity in the camp. In February 2005, 272 patients with TB (24 MDR TB) remained in the camp. Among 17 MDR TB patients interviewed, 13 were found to be linked socially. Of 23 MDR TB isolates genotyped, 20 were similar according to 3 molecular typing methods. Before enhanced screening was implemented, 46 TB cases (6 MDR TB) were diagnosed in the United States among 9,455 resettled refugees. After enhanced screening had begun, only 4 TB cases (1 MDR TB), were found among 5,705 resettled refugees. An MDR TB outbreak among US-bound refugees led to importation of disease; enhanced pre-immigration TB screening and treatment decreased subsequent importation.
Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective.
Xi, Li; Bai, Xue
2016-04-01
The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.
Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective
NASA Astrophysics Data System (ADS)
Xi, Li; Bai, Xue
2016-04-01
The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.
Tamburro, Manuela; Ripabelli, Giancarlo; Vitullo, Monia; Dallman, Timothy James; Pontello, Mirella; Amar, Corinne Francoise Laurence; Sammarco, Michela Lucia
2015-06-01
In this study, tolerance at sublethal concentration of benzalkonium chloride and transcription levels of mdrL, ladR, lde, sigB and bcrABC genes in Listeria monocytogenes strains were evaluated. Viable cells reduction occurred in 45% of strains and clinical isolates showed lower sensitivity than isolates from foods. An increased transcription of an efflux system encoding gene was found in 60% of strains, and simultaneous mdrL overexpression and ladR underexpression occurred in 30% of isolates. A significant association between reduced benzalkonium chloride activity and both mdrL and sigB overexpression was observed; sigB expression also correlated with both mdrL and ladR genes. The bcrABC gene was only found in six strains, all isolated from foods and sensitive to benzalkonium chloride, and in four strains an underexpression was observed. Disinfection at sublethal concentration was less effective in clinical isolates, and mdrL and sigB expression was significantly affected by disinfection. Further insights are needed to understand the adaptation to benzalkonium chloride and to evaluate whether changes in gene expression could affect the L. monocytogenes virulence traits and persistence in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
The maximum drag reduction asymptote
NASA Astrophysics Data System (ADS)
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
Mishra, Mitali; Kumar, Satish; Majhi, Rakesh K.; Goswami, Luna; Goswami, Chandan; Mohapatra, Harapriya
2018-01-01
Antibacterial therapy is of paramount importance in treatment of several acute and chronic infectious diseases caused by pathogens. Over the years extensive use and misuse of antimicrobial agents has led to emergence of multidrug resistant (MDR) and extensive drug resistant (XDR) pathogens. This drastic escalation in resistant phenotype has limited the efficacy of available therapeutic options. Thus, the need of the hour is to look for alternative therapeutic approaches to mitigate healthcare concerns caused due to MDR bacterial infections. Nanoparticles have gathered much attention as potential candidates for antibacterial therapy. Equipped with advantages of, wide spectrum bactericidal activity at very low dosage, inhibitor of biofilm formation and ease of permeability, nanoparticles have been considered as leading therapeutic candidates to curtail infections resulting from MDR bacteria. However, substrate non-specificity of efflux pumps, particularly those belonging to resistance nodulation division super family, have been reported to reduce efficacy of many potent antibacterial therapeutic drugs. Previously, we had reported antibacterial activity of polysaccharide-capped silver nanoparticles (AgNPs) toward MDR bacteria. We showed that AgNPs inhibits biofilm formation and alters expression of cytoskeletal proteins FtsZ and FtsA, with minimal cytotoxicity toward mammalian cells. In the present study, we report no reduction in antibacterial efficacy of silver nanoparticles in presence of AcrAB-TolC efflux pump proteins. Antibacterial tests were performed according to CLSI macrobroth dilution method, which revealed that both silver nanoparticles exhibited bactericidal activity at very low concentrations. Further, immunoblotting results indicated that both the nanoparticles modulate the transporter AcrB protein expression. However, expression of the membrane fusion protein AcrA did show a significant increase after exposure to AgNPs. Our results indicate that both silver nanoparticles are effective in eliminating MDR Enterobacter cloacae isolates and their action was not inhibited by AcrAB-TolC efflux protein expression. As such, the above nanoparticles have strong potential to be used as effective and alternate therapeutic candidates to combat MDR gram-negative Enterobacterial pathogens.
Adamu, Aishatu L.; Galadanci, Najibah A.; Zubayr, Bashir; Odoh, Chisom N.; Aliyu, Muktar H.
2017-01-01
Background Multidrug resistant tuberculosis (MDR-TB), is an emerging public health problem in sub-Saharan Africa (SSA). This study aims to determine the trends in prevalence of MDR-TB among new TB cases in sub-Saharan Africa over two decades. Methods We searched electronic data bases and accessed all prevalence studies of MDR-TB within SSA between 2007 and 2017. We determined pooled prevalence estimates using random effects models and determined trends using meta-regression. Results Results: We identified 915 studies satisfying inclusion criteria. Cumulatively, studies reported on MDR-TB culture of 34,652 persons. The pooled prevalence of MDR-TB in new cases was 2.1% (95% CI; 1.7–2.5%). There was a non-significant decline in prevalence by 0.12% per year. Conclusion We found a low prevalence estimate of MDR-TB, and a slight temporal decline over the study period. There is a need for continuous MDR-TB surveillance among patients with TB. PMID:28945771
Cohen, Ted; Jenkins, Helen E.; Lu, Chunling; McLaughlin, Megan; Floyd, Katherine; Zignol, Matteo
2015-01-01
SUMMARY Background Multidrug resistant tuberculosis (MDR-TB) poses serious challenges for tuberculosis control in many settings, but trends of MDR-TB have been difficult to measure. Methods We analyzed surveillance and population-representative survey data collected worldwide by the World Health Organization between 1993 and 2012. We examined setting-specific patterns associated with linear trends in the estimated per capita rate of MDR-TB among new notified TB cases to generate hypotheses about factors associated with trends in the transmission of highly drug resistant tuberculosis. Results 59 countries and 39 sub-national settings had at least three years of data, but less than 10% of the population in the WHO-designated 27-high MDR-TB burden settings were in areas with sufficient data to track trends. Among settings in which the majority of MDR-TB was autochthonous, we found 10 settings with statistically significant linear trends in per capita rates of MDR-TB among new notified TB cases. Five of these settings had declining trends (Estonia, Latvia, Macao, Hong Kong, and Portugal) ranging from decreases of 3-14% annually, while five had increasing trends (four individual oblasts of the Russian Federation and Botswana) ranging from 14-20% annually. In unadjusted analysis, better surveillance indicators and higher GDP per capita were associated with declining MDR-TB, while a higher existing absolute burden of MDR-TB was associated with an increasing trend. Conclusions Only a small fraction of countries in which the burden of MDR-TB is concentrated currently have sufficient surveillance data to estimate trends in drug-resistant TB. Where trend analysis was possible, smaller absolute burdens of MDR-TB and more robust surveillance systems were associated with declining per capita rates of MDR-TB among new notified cases. PMID:25458783
Mechanisms of Drug Resistance in Plasmodium falciparum
1992-09-11
parasites. With the collaboration of Dr. Esther Orozco, we cloned two mdr-like genes from Entamoeba histolytica and demonstrated an association of...are described in experimental methods. 4 The observation that amplification and increased expression of mdr-like genes in Leishmania sp . is associated...of our development of a transfection system for Leishmania sp . thus providing the opportunity for functional analysis of putative mdr genes, we
Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J
2014-01-01
Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). Methods The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. Results The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. Conclusion UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB. PMID:24098949
Ballard, Christi; Ashraf, Bilal; Ejikeme, Tiffany; Hansen, Brenda; Charalambous, Lefko; Pagadala, Promila; Sharma-Kuinkel, Batu K; Giamberardino, Charles; Hedstrom, Blake; Verbick, Laura Zitella; Mccabe, Aaron; Lad, Shivanand P; Fowler, Vance; Perfect, John R
2017-01-01
Abstract Background The World Health Organization has identified Pseudomonas, Acinetobacter and Klebsiella (PAK) as three multidrug resistant (MDR) gram-negative pathogens that pose a threat to human health. The greatest threat lies in hospitals, nursing homes, and patients with devices such as intravenous catheters and ventilators. Gram-negative bacterial meningitis (GBM) manifests when these bacteria invade the central nervous system. Due to the threat of increasing antibiotic resistance and the high mortality associated with MDR GBM, we have tested a closed-loop, extracorporeal cerebrospinal fluid (CSF) filtration system (NeurapheresisTM) for its applicability in this context. Here we demonstrate feasibility of Neurapheresis for MDR GBM and characterize system parameters for bacterial clearance. Methods PAK cultures were grown and diluted to 1 × 107 cells/mL in artificial CSF or Luria-Miller broth. Both single pass and closed loop filtration were performed with various tangential flow filtration (TFF) and dead-end filter paradigms. Samples were taken either immediately post-filter or after every full CSF volume cycle (150 mL) during a long-term closed loop experiment. Bacterial load, endotoxin and cytokines were quantified. Results In single pass tests, 5kDa and 100kDa TFF filters and 0.2µm and 0.45µm dead-end filters excluded all PAK organisms completely. The 100kDa and 5kDa TFF filters significantly reduced endotoxin concentration by >95% and >99% of baseline, respectively. The 5 kDa TFF filters produced a 2-log (>99%) reduction in cytokines (IL-1ra, IL-6, TNF, CRP, and CXCL10). In closed-loop experiments, both TFF filters demonstrated a 1–2 Log CFU (90–99%) reduction of all PAK organisms over 4 filtration cycles. Conclusion Neurapheresis shows potential to be an efficient multi-modal tool for controlling and treating MDR GBM in this in vitro model. Extending closed loop filtration over time demonstrates capability for rapid sterilization of the CSF. Future iterations may include adjunctive intrathecal drug delivery to further accelerate elimination of bacteria. Reduction of both endotoxin and cytokines by Neurapheresis may have significant implications for controlling the damaging neuro-inflammatory response during MDR GBM. Disclosures B. Hedstrom, Minnetronix, Inc.: Employee, Salary; L. Zitella Verbick, Minnetronix, Inc.: Employee, Salary; A. Mccabe, Minnetronix, Inc.: Employee, Salary; S. P. Lad, Minnetronix, Inc.: Collaborator and Scientific Advisor, Licensing agreement or royalty, Research grant and Research support; V. Fowler Jr., Pfizer, Novartis, Galderma, Novadigm, Durata, Debiopharm, Genentech, Achaogen, Affinium, Medicines Co., Cerexa, Tetraphase, Trius, MedImmune, Bayer, Theravance, Cubist, Basilea, Affinergy, Janssen, xBiotech, Contrafect: Consultant, Consulting fee; NIH, MedImmune, Cerexa/Forest/Actavis/Allergan, Pfizer, Advanced Liquid Logics, Theravance, Novartis, Cubist/Merck; Medical Biosurfaces; Locus; Affinergy; Contrafect; Karius: Grant Investigator, Grant recipient; Green Cross, Cubist, Cerexa, Durata, Theravance; Debiopharm: Consultant, Consulting fee; UpToDate: Royalties, Royalties
Kim, Seoung-Cheol; Jeon, Bo-Young; Kim, Jin-Sook; Choi, In Hwan; Kim, Jiro; Woo, Jeongim; Kim, Soojin; Lee, Hyeong Woo; Sezim, Monoldorova; Cho, Sang-Nae
2016-10-01
Tuberculosis (TB) is a major health problem, and accurate and rapid diagnosis of multidrug-resistant (MDR) and extended drug-resistant (XDR) TB is important for appropriate treatment. In this study, performances of solid and liquid culture methods were compared with respect to MDR- and XDR-TB isolate recovery and drug susceptibility testing. Sputum specimens from 304 patients were stained with Ziehl-Neelsen method. Mycobacterium tuberculosis (Mtb) isolates were tested for recovery on Löwenstein-Jensen (LJ) medium and the BacT Alert 3D system. For drug susceptibility testing of Mtb, isolates were evaluated on M-KIT plates and the BacT Alert 3D system. The recovery rates were 94.9% (206/217) and 98.2% (213/217) for LJ medium and the BacT Alert 3D system, respectively (kappa coefficient, 0.884). The rate of drug resistance was 13.4% for at least one or more drugs, 6.0% for MDR-TB and 2.3% for XDR-TB. M-KIT plate and BacT 3D Alert 3D system were comparable in drug susceptibility testing for isoniazid (97.7%; kappa coefficient, 0.905) and rifampin (98.6%; kappa coefficient, 0.907). Antibiotic resistance was observed using M-KIT plates for 24 of the total 29 Mtb isolates (82.8%). The liquid culture system showed greater reduction in the culture period, as compared with LJ medium; however, drug susceptibility testing using M-KIT plates was advantageous for simultaneous testing against multiple drug targets.
Delgado Naranjo, Jesús; Villate Navarro, José Ignacio; Sota Busselo, Mercedes; Martínez Ruíz, Alberto; Hernández Hernández, José María; Torres Garmendia, María Pilar; Urcelay López, María Isabel
2013-01-01
Background. Between July 2009 and September 2010, an outbreak of multidrug-resistant (MDR) Acinetobacter baumannii was detected in one critical care unit of a tertiary hospital in the Basque Country, involving 49 infected and 16 colonized patients. The aim was to evaluate the impact of environmental cleaning and systematic sampling from environmental objects on the risk of infection by MDR A. baumannii. Methods. After systematic sampling from environmental objects and molecular typing of all new MDR A. baumannii strains from patients and environmental isolates, we analyzed the correlation (Pearson's r) between new infected cases and positive environmental samples. The risk ratio (RR) of infection was estimated with Poisson regression. Results. The risk increased significantly with the number of positive samples in common areas (RR = 1.40; 95%CI = 0.99-1.94) and positive samples in boxes (RR = 1.19; 95%CI = 1.01-1.40). The number of cases also positively correlated with positive samples in boxes (r = 0.50; P < 0.05) and common areas (r = 0.29; P = 0.18). Conclusion. Once conventional measures have failed, environmental cleaning, guided by systematic sampling from environmental objects, provided the objective risk reduction of new cases and enabled the full control of the outbreak.
Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids
Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang
2004-01-01
Background Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents. PMID:15090070
High clustering rates of multidrug-resistant Mycobacterium tuberculosis genotypes in Panama
2013-01-01
Background Tuberculosis continues to be one of the leading causes of death worldwide and in the American region. Although multidrug-resistant tuberculosis (MDR-TB) remains a threat to TB control in Panama, few studies have focused in typing MDR-TB strains. The aim of our study was to characterize MDR Mycobacterium tuberculosis clinical isolates using PCR-based genetic markers. Methods From 2002 to 2004, a total of 231 Mycobacterium tuberculosis isolates from TB cases country-wide were screened for antibiotic resistance, and MDR-TB isolates were further genotyped by double repetitive element PCR (DRE-PCR), (GTG)5-PCR and spoligotyping. Results A total of 37 isolates (0.85%) were resistant to both isoniazid (INH) and rifampicin (RIF). Among these 37 isolates, only two (5.4%) were resistant to all five drugs tested. Dual genotyping using DRE-PCR and (GTG)5-PCR of MDR Mycobacterium tuberculosis isolates revealed eight clusters comprising 82.9% of the MDR-TB strain collection, and six isolates (17.1%) showed unique fingerprints. The spoligotyping of MDR-TB clinical isolates identified 68% as members of the 42 (LAM9) family genotype. Conclusion Our findings suggest that MDR Mycobacterium tuberculosis is highly clustered in Panama’s metropolitan area corresponding to Panama City and Colon City, and our study reveals the genotype distribution across the country. PMID:24053690
Wali, Nadia; Mirza, Irfan Ali
2016-04-01
To compare the in vitro efficacy of doripenem and imipenem against multi-drug resistant (MDR) Pseudomonas aeruginosa from various clinical specimens. Descriptive cross-sectional study. Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from November 2012 to November 2013. MDR Pseudomonas aeruginosa isolates from various clinical samples were included in the study. Susceptibility of Pseudomonas aeruginosa against doripenem and imipenem was performed by E-test strip and agar dilution methods. The results were interpreted as recommended by Clinical Laboratory Standard Institute (CLSI) guidelines. The maximum number of Pseudomonas aeruginosa were isolated from pure pus and pus swabs. In vitro efficacy of doripenem was found to be more effective as compared to imipenem against MDR Pseudomonas aeruginosa with both E-test strip and agar dilution methods. Overall, p-values of 0.014 and 0.037 were observed when susceptibility patterns of doripenem and imipenem were evaluated with E-test strip and agar dilution methods. In vitro efficacy of doripenem was found to be better against MDR Pseudomonas aeruginosaas compared to imipenem when tested by both E-test and agar dilution methods.
Thomas, Beena Elizabeth; Shanmugam, Poonguzhali; Malaisamy, Muniyandi; Ovung, Senthanro; Suresh, Chandra; Subbaraman, Ramnath; Adinarayanan, Srividya; Nagarajan, Karikalan
2016-01-01
Limited treatment options, long duration of treatment and associated toxicity adversely impact the physical and mental well-being of multidrug-resistant tuberculosis (MDR-TB) patients. Despite research advances in the microbiological and clinical aspects of MDR-TB, research on the psychosocial context of MDR-TB is limited and less understood. We searched the databases of PubMed, MEDLINE, Embase and Google Scholar to retrieve all published articles. The final manuscripts included in the review were those with a primary focus on psychosocial issues of MDR-TB patients. These were assessed and the information was thematically extracted on the study objective, methodology used, key findings, and their implications. Intervention studies were evaluated using components of the methodological and quality rating scale. Due to the limited number of studies and the multiple methodologies employed in the observational studies, we summarized these studies using a narrative approach, rather than conducting a formal meta-analysis. We used 'thematic synthesis' method for extracting qualitative evidences and systematically organised to broader descriptive themes. A total of 282 published articles were retrieved, of which 15 articles were chosen for full text review based on the inclusion criteria. Six were qualitative studies; one was a mixed methods study; and eight were quantitative studies. The included studies were divided into the following issues affecting MDR-TB patients: a) psychological issues b) social issues and economic issues c) psychosocial interventions. It was found that all studies have documented range of psychosocial and economic challenges experienced by MDR-TB patients. Depression, stigma, discrimination, side effects of the drugs causing psychological distress, and the financial constraints due to MDR-TB were some of the common issues reported in the studies. There were few intervention studies which addressed these psychosocial issues most of which were small pilot studies. There is dearth of large scale randomized psychosocial intervention studies that can be scaled up to strengthen management of MDR-TB patients which is crucial for the TB control programme. This review has captured the psychosocial and economic issues challenging MDR patients. However there is urgent need for feasible, innovative psychosocial and economic intervention studies that help to equip MDR-TB patients cope with their illness, improve treatment adherence, treatment outcomes and the overall quality of life of MDR-TB patients.
Thomas, Beena Elizabeth; Shanmugam, Poonguzhali; Malaisamy, Muniyandi; Ovung, Senthanro; Suresh, Chandra; Subbaraman, Ramnath; Adinarayanan, Srividya; Nagarajan, Karikalan
2016-01-01
Background Limited treatment options, long duration of treatment and associated toxicity adversely impact the physical and mental well-being of multidrug-resistant tuberculosis (MDR-TB) patients. Despite research advances in the microbiological and clinical aspects of MDR-TB, research on the psychosocial context of MDR-TB is limited and less understood. Methodology We searched the databases of PubMed, MEDLINE, Embase and Google Scholar to retrieve all published articles. The final manuscripts included in the review were those with a primary focus on psychosocial issues of MDR-TB patients. These were assessed and the information was thematically extracted on the study objective, methodology used, key findings, and their implications. Intervention studies were evaluated using components of the methodological and quality rating scale. Due to the limited number of studies and the multiple methodologies employed in the observational studies, we summarized these studies using a narrative approach, rather than conducting a formal meta-analysis. We used ‘thematic synthesis’ method for extracting qualitative evidences and systematically organised to broader descriptive themes. Results A total of 282 published articles were retrieved, of which 15 articles were chosen for full text review based on the inclusion criteria. Six were qualitative studies; one was a mixed methods study; and eight were quantitative studies. The included studies were divided into the following issues affecting MDR-TB patients: a) psychological issues b) social issues and economic issues c) psychosocial interventions. It was found that all studies have documented range of psychosocial and economic challenges experienced by MDR-TB patients. Depression, stigma, discrimination, side effects of the drugs causing psychological distress, and the financial constraints due to MDR-TB were some of the common issues reported in the studies. There were few intervention studies which addressed these psychosocial issues most of which were small pilot studies. There is dearth of large scale randomized psychosocial intervention studies that can be scaled up to strengthen management of MDR-TB patients which is crucial for the TB control programme. Conclusion This review has captured the psychosocial and economic issues challenging MDR patients. However there is urgent need for feasible, innovative psychosocial and economic intervention studies that help to equip MDR-TB patients cope with their illness, improve treatment adherence, treatment outcomes and the overall quality of life of MDR-TB patients. PMID:26807933
2014-01-01
Background Fluralaner is a novel systemic ectoparasiticide for dogs providing long-acting flea- and tick-control after a single oral dose. This study investigated the safety of oral administration of fluralaner at 3 times the highest expected clinical dose to Multi Drug Resistance Protein 1 (MDR1(-/-)) gene defect Collies. Methods Sixteen Collies homozygous for the MDR1 deletion mutation were included in the study. Eight Collies received fluralaner chewable tablets once at a dose of 168 mg/kg; eight sham dosed Collies served as controls. All Collies were clinically observed until 28 days following treatment. Results No adverse events were observed subsequent to fluralaner treatment of MDR1(-/-) Collies at three times the highest expected clinical dose. Conclusions Fluralaner chewable tablets are well tolerated in MDR1(-/-) Collies following oral administration. PMID:24602342
Atre, Sachin R.; D’Souza, Desiree T. B.; Vira, Tina S.; Chatterjee, Anirvan; Mistry, Nerges F.
2014-01-01
Background Multidrug-resistant TB (MDR-TB) has emerged as a major threat to global TB control efforts in recent years. Facilities for its diagnosis and treatment are limited in many high-burden countries, including India. In hyper-endemic areas like Mumbai, screening for newly diagnosed cases at a higher risk of acquiring MDR-TB is necessary, for initiating appropriate and timely treatment, to prevent its further spread. Objective To assess risk factors associated with MDR-TB among Category I, new sputum smear-positive cases, at the onset of therapy. Materials and Methods The study applied an unmatched case-control design for 514 patients (106 cases with MDR-TB strains and 408 controls with non-MDR-TB strains). The patients were registered with the Revised National Tuberculosis Control Program (RNTCP) in four selected wards of Mumbai during April 2004-January 2007. Data were collected through semi-structured interviews and drug susceptibility test results. Results Multivariate analysis indicated that infection with the Beijing strain (OR = 3.06; 95% C.I. = 1.12-8.38; P = 0.029) and female gender (OR = 1.68; 95% C.I. = 1.02-2.87; P = 0.042) were significant predictors of MDR-TB at the onset of therapy. Conclusion The study provides a starting point to further examine the usefulness of these risk factors as screening tools in identifying individuals with MDR-TB, in settings where diagnostic and treatment facilities for MDR-TB are limited. PMID:21727675
Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari
2018-01-01
Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.
Chen, Bao-an; Mao, Pei-pei; Cheng, Jian; Gao, Feng; Xia, Guo-hua; Xu, Wen-lin; Shen, Hui-lin; Ding, Jia-hua; Gao, Chong; Sun, Qian; Chen, Wen-ji; Chen, Ning-na; Liu, Li-jie; Li, Xiao-mao; Wang, Xue-mei
2010-08-09
In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.
Liu, Yuan; Xu, Xiaofang; Guan, Sumin; Wu, Junzheng; Liu, Yanpu
2013-01-01
Background Multidrug resistance-related protein 1 (MRP1/ABCC1) and multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1) are both membrane-bound drug transporters. In contrast to MDR1, MRP1 also transports glutathione (GSH) and drugs conjugated to GSH. Due to its extraordinary transport properties, MRP1/ABCC1 contributes to several physiological functions and pathophysiological incidents. We previously found that nuclear translocation of MRP1 contributes to multidrug-resistance (MDR) of mucoepidermoid carcinoma (MEC). The present study investigated how MRP1 contributes to MDR in the nuclei of MEC cells. Methods Western blot and RT-PCR was carried out to investigate the change of multidrug-resistance protein 1 (MDR1) in MC3/5FU cells after MRP1 was downregulated through RNA interference (RNAi). Immunohistochemistry (IHC) staining of 127 cases of MEC tissues was scored with the expression index (EI). The EI of MDR1 and MRP1 (or nuclear MRP1) was analyzed with Spearman's rank correlation analysis. Using multiple tumor tissue assays, the location of MRP1 in other tissues was checked by HIC. Luciferase reporter assays of MDR1 promoter was carried out to check the connection between MRP1 and MDR1 promoter. Results MRP1 downregulation led to a decreased MDR1 expression in MC3/5FU cells which was caused by decreased activity of MDR1 promoter. IHC study of 127 cases of MEC tissues demonstrated a strong positive correlation between nuclear MRP1 expression and MDR1 expression. Furthermore, IHC study of multiple tumor tissue array sections showed that although nuclear MRP1 widely existed in MEC tissues, it was not found in normal tissues or other tumor tissues. Conclusions Our findings indicate that nuclear MRP1 contributes to MDR mainly through regulating MDR1 expression in MEC. And the unique location of MRP1 made it an available target in identifying MEC from other tumors. PMID:24013781
Sun, Yao; Ye, Jianzhong; Hou, Yuanbo; Chen, Huale; Cao, Jianming; Zhou, Tieli
2017-09-25
The aim of the present study was to evaluate the predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant (MDR) or extensive drug resistant (XDR) gram-negative pathogens and their corresponding biofilms. In this study, we examined the ability of B. bacteriovorus to prey on MDR and XDR gram-negative clinical bacteria, including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Results showed that B. bacteriovorus was able to prey on all planktonic cultures, among which the most efficient predation was observed for drug-resistant E. coli, with a 3.11 log10 reduction in viability. Furthermore, B. bacteriovorus demonstrated promising efficacy in preventing biofilm formation and dispersing the established biofilm. Reductions in biofilm formation of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii co-cultured with B. bacteriovorus were 65.2%, 37.1%, 44.7%, and 36.8%, respectively. Meanwhile, the established biofilms of E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii were significantly reduced by 83.4%, 81.8%, 83.1%, and 79.9%, respectively. A visual analysis supported by scanning electron microscopy demonstrated the role of B. bacteriovorus in removing the established biofilms. This study highlights the potential use of B. bacteriovorus as a biological control agent with the capability to prey on MDR/XDR gram-negative pathogens and eradicate biofilms.
Accelerating epistasis analysis in human genetics with consumer graphics hardware.
Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H
2009-07-24
Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other tasks. The GPU workstation containing three GPUs costs $2000 while obtaining similar performance on a Beowulf cluster requires 150 CPU cores which, including the added infrastructure and support cost of the cluster system, cost approximately $82,500. Graphics hardware based computing provides a cost effective means to perform genetic analysis of epistasis using MDR on large datasets without the infrastructure of a computing cluster.
Valdez, Benigno C; Li, Yang; Murray, David; Brammer, Jonathan E; Liu, Yan; Hosing, Chitra; Nieto, Yago; Champlin, Richard E; Andersson, Borje S
2016-09-27
HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.
Bahi, Gnogbo Alexis; Boyvin, Lydie; Méité, Souleymane; M'Boh, Gervais Melaine; Yeo, Kadjowely; N'Guessan, Kouassi Raymond; Bidié, Alain Dit Philippe; Djaman, Allico Joseph
2017-04-11
In Côte d'Ivoire, multidrug-resistant tuberculosis (MDR-TB) is a serious public health problem with a prevalence estimated at 2.5% in 2006. Zinc and copper are essential Trace element needed to strengthen the immune system and also useful in the fight against tuberculosis. The Cu / Zn ratio is a good indicator of oxidative stress. The principal aim of this study was to evaluate the serum concentration of some trace element and determine the Cu / Zn ratio in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) before and after second line treatment of TB. Blood samples were obtained from 100 MDR-TB patients after confirmation of their status through the microscopic and molecular diagnosis of resistance to Isoniazid and Rifampicin by GeneXpert. The concentration level of zinc and copper were determined using flame air / acetylene atomic absorption spectrometer (AAS) Type Varian Spectr AA-20 Victoria, Australlia. A significant decrease in zinc levels (P < 0.05) and an increased Cu / Zn ratio (P < 0.05) was observed in MDR-TB patients compared to controls TB free. During treatment a significant reduction in Cu / Zn ratio (P < 0.05) was observed compared to the initial result. The decrease in serum zinc level and the high Cu / Zn ratio could explain the immune system dysfunction and the high level of oxidative stress in patients with MDR-TB. Therefore the evaluation of the zinc and copper status could represent essential parameters in monitoring of TB second line treatment for better treatment management.
NASA Astrophysics Data System (ADS)
Ferrer-Espada, Raquel; Fang, Yanyan; Dai, Tianhong
2018-02-01
Antibiotic resistance is one of the most serious threats to public health. It is estimated that at least 23,000 people die each year in the USA as a direct result of antibiotic-resistant infections. In addition, many antibiotic-resistant microorganisms develop biofilms, surface-associated microbial communities that are extremely resistant to antibiotics and the immune system. A light-based approach, antimicrobial blue light (aBL), has attracted increasing attention due to its intrinsic antimicrobial effect without the involvement of exogenous photosensitizers. In this study, we investigated the effectiveness of this non-antibiotic approach against biofilms formed by multidrug-resistant (MDR) microorganisms. MDR Acinetobacter baumannii, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa biofilms were grown either in 96-well microtiter plates for 24 h or in a CDC biofilm reactor for 48 h, and then exposed to aBL at 405 nm emitted from a light-emitting diode (LED). We demonstrated that, for the biofilms grown in the CDC biofilm reactor, approximately 1.88 log10 CFU reduction was achieved in A. baumannii, 2.78 log10 CFU in E. coli and 3.18 log10 CFU in P. aeruginosa after 162 J/cm2 , 576 J/cm2 and 500 J/cm2 aBL were delivered, respectively. For the biofilms formed in the 96-well microtiter plates, 5.67 and 2.46 log10 CFU reduction was observed in P. aeruginosa and C. albicans polymicrobial biofilm after an exposure of 216 J/cm2 . In conclusion, aBL is potentially an alternative non-antibiotic approach against MDR biofilm-related infections. Future studies are warranted to investigate other important MDR microorganisms, the mechanism of action of aBL, and aBL efficacy in vivo.
Lynn Hedt, Bethany; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Viet Nhung, Nguyen; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted
2012-01-01
Background Current methodology for multidrug-resistant TB (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. Methods We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored three classification systems—two-way static, three-way static, and three-way truncated sequential sampling—at two sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. Results The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Conclusions Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired. PMID:22249242
Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro
Kievit, Forrest M.; Wang, Freddy Y.; Fang, Chen; Mok, Hyejung; Wang, Kui; Silber, John R.; Ellenbogen, Richard G.; Zhang, Miqin
2011-01-01
Multidrug resistance (MDR) is characterized by the overexpression of ATP-binding cassette (ABC) transporters that actively pump a broad class of hydrophobic chemotherapeutic drugs out of cancer cells. MDR is a major mechanism of treatment resistance in a variety of human tumors, and clinically applicable strategies to circumvent MDR remain to be characterized. Here we describe the fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumvent MDR. Doxorubicin (DOX), an anthracycline antibiotic commonly used in cancer chemotherapy and substrate for ABC-mediated drug efflux, was covalently bound to polyethylenimine via a pH sensitive hydrazone linkage and conjugated to an iron oxide nanoparticle coated with amine terminated polyethylene glycol. Drug loading, physiochemical properties and pH lability of the DOX-hydrazone linkage were evaluated in vitro. Nanoparticle uptake, retention, and dose-dependent effects on viability were compared in wild-type and DOX-resistant ABC transporter over-expressing rat glioma C6 cells. We found that DOX release from nanoparticles was greatest at acidic pH, indicative of cleavage of the hydrazone linkage. DOX-conjugated nanoparticles were readily taken up by wild-type and drug-resistant cells. In contrast to free drug, DOX-conjugated nanoparticles persisted in drug-resistant cells, indicating that they were not subject to drug efflux. Greater retention of DOX-conjugated nanoparticles was accompanied by reduction of viability relative to cells treated with free drug. Our results suggest that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR. PMID:21277920
Isaakidis, Petros; Cox, Helen S.; Varghese, Bhanumati; Montaldo, Chiara; Da Silva, Esdras; Mansoor, Homa; Ladomirska, Joanna; Sotgiu, Giovanni; Migliori, Giovanni B.; Pontali, Emanuele; Saranchuk, Peter; Rodrigues, Camilla; Reid, Tony
2011-01-01
Background India carries one quarter of the global burden of multi-drug resistant TB (MDR-TB) and has an estimated 2.5 million people living with HIV. Despite this reality, provision of treatment for MDR-TB is extremely limited, particularly for HIV-infected individuals. Médecins Sans Frontières (MSF) has been treating HIV-infected MDR-TB patients in Mumbai since May 2007. This is the first report of treatment outcomes among HIV-infected MDR-TB patients in India. Methods HIV-infected patients with suspected MDR-TB were referred to the MSF-clinic by public Antiretroviral Therapy (ART) Centers or by a network of community non-governmental organizations. Patients were initiated on either empiric or individualized second-line TB-treatment as per WHO recommendations. MDR-TB treatment was given on an ambulatory basis and under directly observed therapy using a decentralized network of providers. Patients not already receiving ART were started on treatment within two months of initiating MDR-TB treatment. Results Between May 2007 and May 2011, 71 HIV-infected patients were suspected to have MDR-TB, and 58 were initiated on treatment. MDR-TB was confirmed in 45 (78%), of which 18 (40%) were resistant to ofloxacin. Final treatment outcomes were available for 23 patients; 11 (48%) were successfully treated, 4 (17%) died, 6 (26%) defaulted, and 2 (9%) failed treatment. Overall, among 58 patients on treatment, 13 (22%) were successfully treated, 13 (22%) died, 7 (12%) defaulted, two (3%) failed treatment, and 23 (40%) were alive and still on treatment at the end of the observation period. Twenty-six patients (45%) experienced moderate to severe adverse events, requiring modification of the regimen in 12 (20%). Overall, 20 (28%) of the 71 patients with MDR-TB died, including 7 not initiated on treatment. Conclusions Despite high fluoroquinolone resistance and extensive prior second-line treatment, encouraging results are being achieved in an ambulatory MDR-T- program in a slum setting in India. Rapid scale-up of both ART and second-line treatment for MDR-TB is needed to ensure survival of co-infected patients and mitigate this growing epidemic. PMID:22145022
Copper-coated textiles: armor against MDR nosocomial pathogens.
Irene, Galani; Georgios, Priniotakis; Ioannis, Chronis; Anastasios, Tzerachoglou; Diamantis, Plachouras; Marianthi, Chatzikonstantinou; Philippe, Westbroek; Maria, Souli
2016-06-01
Soft surfaces in the health-care setting harbor potentially pathogenic bacteria and fungi that can be transferred to patients and personnel. We evaluated the in vitro antimicrobial efficacy of two types of innovative copper-coated textiles against a variety of nosocomial multi-drug resistant (MDR) pathogens. Five isolates each of MDR Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus faecium as well as three Candida parapsilosis were tested. The antimicrobial activity of copper-coated para-aramide and copper-coated polyester swatches was compared to that of non-copper coated controls using a quantitative method. Reduction of viable colonies by >3log10 from starting inoculum was characterized as bactericidal activity. No viable colonies of S. aureus, P. aeruginosa, E. faecium and C. parapsilosis were recovered after the first hour of contact while for A. baumannii, no viable colonies were recovered after only 15min of contact with either type of copper-coated textiles. Copper-coated para-aramide exhibited a bactericidal effect at 15min of contact with A. baumannii, at 1h with S. aureus, P. aeruginosa, E. faecium and C. parapsilosis and at 3h with K. pneumoniae. Copper-coated polyester was bactericidal at 15min of contact for A. baumannii and at 1h for the other species tested. Both copper-coated textiles exhibited a rapid and significant antimicrobial effect. Antimicrobial textiles may have a role in the arsenal of strategies aiming to reduce environmental contamination in the health-care setting. Copyright © 2016 Elsevier Inc. All rights reserved.
2012-01-01
Background There is a lack of consensus regarding the definition of risk factors for healthcare-associated infection (HCAI). The purpose of this study was to identify additional risk factors for HCAI, which are not included in the current definition of HCAI, associated with infection by multidrug-resistant (MDR) pathogens, in all hospitalized infected patients from the community. Methods This 1-year prospective cohort study included all patients with infection admitted to a large, tertiary care, university hospital. Risk factors not included in the HCAI definition, and independently associated with MDR pathogen infection, namely MDR Gram-negative (MDR-GN) and ESKAPE microorganisms (vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species, carbapenem-hydrolyzing Klebsiella pneumonia and MDR Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species), were identified by logistic regression among patients admitted from the community (either with community-acquired or HCAI). Results There were 1035 patients with infection, 718 from the community. Of these, 439 (61%) had microbiologic documentation; 123 were MDR (28%). Among MDR: 104 (85%) had MDR-GN and 41 (33%) had an ESKAPE infection. Independent risk factors associated with MDR and MDR-GN infection were: age (adjusted odds ratio (OR) = 1.7 and 1.5, p = 0.001 and p = 0.009, respectively), and hospitalization in the previous year (between 4 and 12 months previously) (adjusted OR = 2.0 and 1,7, p = 0.008 and p = 0.048, respectively). Infection by pathogens from the ESKAPE group was independently associated with previous antibiotic therapy (adjusted OR = 7.2, p < 0.001) and a Karnofsky index <70 (adjusted OR = 3.7, p = 0.003). Patients with infection by MDR, MDR-GN and pathogens from the ESKAPE group had significantly higher rates of inadequate antibiotic therapy than those without (46% vs 7%, 44% vs 10%, 61% vs 15%, respectively, p < 0.001). Conclusions This study suggests that the inclusion of additional risk factors in the current definition of HCAI for MDR pathogen infection, namely age >60 years, Karnofsky index <70, hospitalization in the previous year, and previous antibiotic therapy, may be clinically beneficial for early diagnosis, which may decrease the rate of inadequate antibiotic therapy among these patients. PMID:23267668
Zhang, Zhijian; Lu, Jie; Liu, Min; Wang, Yufeng; Qu, Geping; Li, Hongxia; Wang, Jichun; Pang, Yu; Liu, Changting; Zhao, Yanlin
2015-04-01
The aim of this study was to explore the population structure of multidrug-resistant (MDR) tuberculosis strains and distribution of resistance-associated nucleotide alteration among the different genotype MDR strains in China. The genotypes of 376 MDR strain were analyzed by 15-loci MIRU-VNTR and RD105 deletion-targeted multiplex PCR (DTM-PCR) method. In addition, all the MDR isolates were sequenced for genetic mutations conferring rifampicin (rpoB) and isonizid resistance (katG, inhA and oxyR-ahpC). Among the 376 MDR isolates, 261 (69.4%) belonged to Beijing genotype, including 177 modern Beijing strains (67.8%) and 84 ancient Beijing (32.2%) strains. The percentages of streptomycin-resistant, kanamycin-resistant, pre-XDR and XDR TB in modern Beijing genotype were significantly lower than ancient genotype (P < 0.05). The Beijing MDR strains had significantly higher proportions of ofloxacin-resistant and pre-XDR isolates than non-Beijing strains (P < 0.01). In addition, the clustering rate of modern Beijing strains was significantly higher than that of ancient Beijing strains (46.3% vs. 11.9%, P < 0.01). 94.7% and 79.3% of MDR isolates harbored genetic mutations conferring rifampicin and isonizid resistance, respectively, and the most prevalent mutation was located in codon rpoB531 and katG315. In addition, the rpoB531 and katG mutation were more frequently observed among Beijing genotype strains than non-Beijing strains, while non-Beijing genotype showed stronger association with isolates lacking mutation in rifampicin resistance determination region (P < 0.05). Our findings demonstrated that ancient Beijing MDR strains were associated with drug resistance, while modern Beijing MDR strains were more likely to be clustered. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Mohri, Hiroshi; Markowitz, Martin
2013-01-01
Objective: Multi-drug resistant (MDR)-HIV-1 variants are thought to be less fit than wild type virus. In 2005 we reported a case of transmitted MDR-HIV-1 infection associated with dual tropism and rapid clinical progression. Here, we report the in vitro characterization of the virus isolates. Methods: Replication characteristics of bulk and clonal isolates from this case (MDR-1) were examined and compared with these to a panel of transmitted MDR and wild type viruses (MDR-2~4, WT-1, 2). Results: Infectivity and frequency of infectious virion of propagated isolates were high in MDR-1 biological clones (mean titer, 3.5×105 TCID50/ml; mean frequency of infectious virion, 1/2,444) and its bulk isolate (3.2×106TCID50/ml; 1/301), as compared to the other biological clones (7.3×103TCID50/ml; 1/21,320). Up-slope (log10p24/ml/d) of viral replication in PBMC culture was much higher in MDR-1 clones (1.30±0.30: mean±SD) than those of MDR-2~4 (0.75±0.08) or WT-1, -2 clones (0.82±0.03). The bulk isolate and dual tropic biological clones from MDR-1 depleted CD4+ T cells very rapidly in vitro compared to the other viruses tested. Conclusion: These findings support the hypothesis that multi-drug resistant HIV-1 can effectively evolve and compensate to not only retain high level replication but exhibit virulence associated with rapid disease progression. PMID:18645523
Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong
2016-01-01
With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861
Turbulent structures of non-Newtonian solutions containing rigid polymers
NASA Astrophysics Data System (ADS)
Mohammadtabar, M.; Sanders, R. S.; Ghaemi, S.
2017-10-01
The turbulent structure of a channel flow of Xanthan Gum (XG) polymer solution is experimentally investigated and compared with water flow at a Reynolds number of Re = 7200 (based on channel height and properties of water) and Reτ = 220 (based on channel height and friction velocity, uτ0). The polymer concentration is varied from 75, 100, and 125 ppm to reach the point of maximum drag reduction (MDR). Measurements are carried out using high-resolution, two-component Particle Image Velocimetry (PIV) to capture the inner and outer layer turbulence. The measurements showed that the logarithmic layer shifts away from the wall with increasing polymer concentration. The slopes of the mean velocity profile for flows containing 100 and 125 ppm XG are greater than that measured for XG at 75 ppm, which is parallel with the slope obtained for deionized water. The increase in slope results in thickening buffer layer. At MDR, the streamwise Reynolds stresses are as large as those of the Newtonian flow while the wall-normal Reynolds stresses and Reynolds shear stresses are significantly attenuated. The sweep-dominated region in the immediate vicinity of the wall extends further from the wall with increasing polymer concentration. The near-wall skewness intensifies towards positive streamwise fluctuations and covers a larger wall-normal length at larger drag reduction values. The quadrant analysis at y + 0 = 25 shows that the addition of polymers inclines the principal axis of v versus u plot to almost zero (horizontal) as the joint probability density function of fluctuations becomes symmetric with respect to the u axis at MDR. The reduction of turbulence production is mainly associated with the attenuation of the ejection motions. The spatial-correlation of the fluctuating velocity field shows that increasing the polymer concentration increases the spatial coherence of u fluctuations in the streamwise direction while they appear to have the opposite effect in the wall-normal direction. The proper orthogonal decomposition of velocity fluctuations shows that the inclined shear layer structure of Newtonian wall flows becomes horizontal at the MDR and does not contribute to turbulence production.
Saw, Phei Er; Park, Jinho; Jon, Sangyong; Farokhzad, Omid C
2017-02-01
A major problem with cancer chemotherapy begins when cells acquire resistance. Drug-resistant cancer cells typically upregulate multi-drug resistance proteins such as P-glycoprotein (P-gp). However, the lack of overexpressed surface biomarkers has limited the targeted therapy of drug-resistant cancers. Here we report a drug-delivery carrier decorated with a targeting ligand for a surface marker protein extra-domain B(EDB) specific to drug-resistant breast cancer cells as a new therapeutic option for the aggressive cancers. We constructed EDB-specific aptide (APT EDB )-conjugated liposome to simultaneously deliver siRNA(siMDR1) and Dox to drug-resistant breast cancer cells. APT EDB -LS(Dox,siMDR1) led to enhanced delivery of payloads into MCF7/ADR cells and showed significantly higher accumulation and retention in the tumors. While either APT EDB -LS(Dox) or APT EDB -LS(siMDR1) did not lead to appreciable tumor retardation in MCF7/ADR orthotropic model, APT EDB -LS(Dox,siMDR1) treatment resulted in significant reduction of the drug-resistant breast tumor. Taken together, this study provides a new strategy of drug delivery for drug-resistant cancer therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Power of data mining methods to detect genetic associations and interactions.
Molinaro, Annette M; Carriero, Nicholas; Bjornson, Robert; Hartge, Patricia; Rothman, Nathaniel; Chatterjee, Nilanjan
2011-01-01
Genetic association studies, thus far, have focused on the analysis of individual main effects of SNP markers. Nonetheless, there is a clear need for modeling epistasis or gene-gene interactions to better understand the biologic basis of existing associations. Tree-based methods have been widely studied as tools for building prediction models based on complex variable interactions. An understanding of the power of such methods for the discovery of genetic associations in the presence of complex interactions is of great importance. Here, we systematically evaluate the power of three leading algorithms: random forests (RF), Monte Carlo logic regression (MCLR), and multifactor dimensionality reduction (MDR). We use the algorithm-specific variable importance measures (VIMs) as statistics and employ permutation-based resampling to generate the null distribution and associated p values. The power of the three is assessed via simulation studies. Additionally, in a data analysis, we evaluate the associations between individual SNPs in pro-inflammatory and immunoregulatory genes and the risk of non-Hodgkin lymphoma. The power of RF is highest in all simulation models, that of MCLR is similar to RF in half, and that of MDR is consistently the lowest. Our study indicates that the power of RF VIMs is most reliable. However, in addition to tuning parameters, the power of RF is notably influenced by the type of variable (continuous vs. categorical) and the chosen VIM. Copyright © 2011 S. Karger AG, Basel.
Sherry, Norelle; Howden, Benjamin
2018-04-01
Multidrug-resistant (MDR) and extensively-drug-resistant (XDR) Gram-negative bacteria have emerged as a major threat to human health globally. This has resulted in the 're-discovery' of some older antimicrobials and development of new agents, however resistance has also rapidly emerged to these agents. Areas covered: Here we describe recent developments in resistance to three of the most important last-line antimicrobials for treatment of MDR and XDR Gram negatives: fosfomycin, colistin and ceftazidime-avibactam. Expert commentary: A key challenge for microbiologists and clinicians using these agents for treating patients with MDR and XDR Gram negative infections is the need to ensure appropriate reference methods are being used to test susceptibility to these agents, especially colistin and fosfomycin. These methods are not available in all laboratories meaning accurate results are either delayed, or potentially inaccurate as non-reference methods are employed. Combination therapy for MDR and XDR Gram negatives is likely to become more common, and future studies should focus on the clinical effects of monotherapy vs combination therapy, as well as validation of synergy testing methods. Effective national and international surveillance systems to detect and respond to resistance to these last line agents are also critical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Andreas, E-mail: andreas.tyler@medbio.umu.se; Johansson, Anders; Karlsson, Terese
Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expressionmore » of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin resistance of NSCLC and MPM cells. Tumour cell resistance to MDR1 inhibitors of cell surface MDR1 and Gb3 could explain the aggressiveness of NSCLC and MPM. Therapy with GCS activity inhibitors or toxin targeting of the Gb3 receptor may substantially reduce acquired cisplatin drug resistance of NSCLC and MPM cells. - Highlights: • The cisplatin-resistant cells had increased cell surface Gb3 and MDR1. • PPMP decreased extracellular Gb3 in the resistant cell lines. • Cyclosporin A decreased extracellular Gb3 and MDR1 in H1299 cells. • PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. • Resistance to inhibitors of MDR1 and Gb3 could explain aggressiveness of NSCLC and MPM.« less
Wang, Hualiang; Wang, Jinghua; Yu, Peijuan; Ge, Ping; Jiang, Yanqun; Xu, Rong; Chen, Rong; Liu, Xuejie
2017-02-01
This study aimed to investigate antibiotic resistance genes in the multidrug-resistant (MDR) Acinetobacter baumannii (A. baumanii) strain, MDR-SHH02, using whole‑genome sequencing (WGS). The antibiotic resistance of MDR-SHH02 isolated from a patient with breast cancer to 19 types of antibiotics was determined using the Kirby‑Bauer method. WGS of MDR-SHH02 was then performed. Following quality control and transcriptome assembly, functional annotation of genes was conducted, and the phylogenetic tree of MDR-SHH02, along with another 5 A. baumanii species and 2 Acinetobacter species, was constructed using PHYLIP 3.695 and FigTree v1.4.2. Furthermore, pathogenicity islands (PAIs) were predicted by the pathogenicity island database. Potential antibiotic resistance genes in MDR-SHH02 were predicted based on the information in the Antibiotic Resistance Genes Database (ARDB). MDR-SHH02 was found to be resistant to all of the tested antibiotics. The total draft genome length of MDR-SHH02 was 4,003,808 bp. There were 74.25% of coding sequences to be annotated into 21 of the Clusters of Orthologous Groups (COGs) of protein terms, such as 'transcription' and 'amino acid transport and metabolism'. Furthermore, there were 45 PAIs homologous to the sequence MDRSHH02000806. Additionally, a total of 12 gene sequences in MDR-SHH02 were highly similar to the sequences of antibiotic resistance genes in ARDB, including genes encoding aminoglycoside‑modifying enzymes [e.g., aac(3)-Ia, ant(2'')‑Ia, aph33ib and aph(3')-Ia], β-lactamase genes (bl2b_tem and bl2b_tem1), sulfonamide-resistant dihydropteroate synthase genes (sul1 and sul2), catb3 and tetb. These results suggest that numerous genes mediate resistance to various antibiotics in MDR-SHH02, and provide a clinical guidance for the personalized therapy of A. baumannii-infected patients.
Jayaraman, Sudha P; Jiang, Yushan; Resch, Stephen; Askari, Reza; Klompas, Michael
2016-10-01
Interventions to contain two multi-drug-resistant Acinetobacter (MDRA) outbreaks reduced the incidence of multi-drug-resistant (MDR) organisms, specifically methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile in the general surgery intensive care unit (ICU) of our hospital. We therefore conducted a cost-effective analysis of a proactive model infection-control program to reduce transmission of MDR organisms based on the practices used to control the MDRA outbreak. We created a model of a proactive infection control program based on the 2011 MDRA outbreak response. We built a decision analysis model and performed univariable and probabilistic sensitivity analyses to evaluate the cost-effectiveness of the proposed program compared with standard infection control practices to reduce transmission of these MDR organisms. The cost of a proactive infection control program would be $68,509 per year. The incremental cost-effectiveness ratio (ICER) was calculated to be $3,804 per aversion of transmission of MDR organisms in a one-year period compared with standard infection control. On the basis of probabilistic sensitivity analysis, a willingness-to-pay (WTP) threshold of $14,000 per transmission averted would have a 42% probability of being cost-effective, rising to 100% at $22,000 per transmission averted. This analysis gives an estimated ICER for implementing a proactive program to prevent transmission of MDR organisms in the general surgery ICU. To better understand the causal relations between the critical steps in the program and the rate reductions, a randomized study of a package of interventions to prevent healthcare-associated infections should be considered.
Devault, A; Gros, P
1990-01-01
We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities. Images PMID:1969610
Yu, Zheng; Peng, Sun; Hong-Ming, Pan; Kai-Feng, Wang
2012-01-01
To investigate the expression of multi-drug resistance-related genes, MDR3 and MRP, in clinical specimens of primary liver cancer and their potential as prognostic factors in liver cancer patients. A total of 26 patients with primary liver cancer were enrolled. The expression of MDR3 and MRP genes was measured by real-time PCR and the association between gene expression and the prognosis of patients was analyzed by the Kaplan-Meier method and COX regression model. This study showed that increases in MDR3 gene expression were identified in cholangiocellular carcinoma, cirrhosis and HBsAg-positive patients, while MRP expression increased in hepatocellular carcinoma, non-cirrhosis and HBsAg-negative patients. Moreover, conjugated bilirubin and total bile acid in the serum were significantly reduced in patients with high MRP expression compared to patients with low expression. The overall survival tended to be longer in patients with high MDR3 and MRP expression compared to the control group. MRP might be an independent prognostic factor in patients with liver cancer by COX regression analysis. MDR3 and MRP may play important roles in liver cancer patients as prognostic factors and their underlying mechanisms in liver cancer are worthy of further investigation.
2013-01-01
Background The US military has seen steady increases in multidrug-resistant (MDR) gram-negative bacteria (GNB) infections in casualties from Iraq and Afghanistan. This study evaluates the prevalence of MDR GNB colonization in US military personnel. Methods GNB colonization surveillance of healthy, asymptomatic military personnel (101 in the US and 100 in Afghanistan) was performed by swabbing 7 anatomical sites. US-based personnel had received no antibiotics within 30 days of specimen collection, and Afghanistan-based personnel were receiving doxycycline for malaria chemoprophylaxis at time of specimen collection. Isolates underwent genotypic and phenotypic characterization. Results The only colonizing MDR GNB recovered in both populations was Escherichia coli (p=0.01), which was seen in 2% of US-based personnel (all perirectal) and 11% of Afghanistan-based personnel (10 perirectal, 1 foot+groin). Individuals with higher off-base exposures in Afghanistan did not show a difference in overall GNB colonization or MDR E. coli colonization, compared with those with limited off-base exposures. Conclusion Healthy US- and Afghanistan-based military personnel have community onset-MDR E. coli colonization, with Afghanistan-based personnel showing a 5.5-fold higher prevalence. The association of doxycycline prophylaxis or other exposures with antimicrobial resistance and increased rates of MDR E. coli colonization needs further evaluation. PMID:23384348
Collateral Sensitivity of Multidrug-Resistant Cells to the Orphan Drug Tiopronin
Goldsborough, Andrew S.; Handley, Misty D.; Dulcey, Andrés E.; Pluchino, Kristen M.; Kannan, Pavitra; Brimacombe, Kyle R.; Hall, Matthew D.; Griffiths, Gary; Gottesman, Michael M.
2011-01-01
A major challenge in the treatment of cancer is multidrug resistance (MDR) that develops during chemotherapy. Here we demonstrate that tiopronin (1), a thiol-substituted N-propanoylglycine derivative, was selectively toxic to a series of cell lines expressing the drug efflux pump P-glycoprotein (P-gp, ABCB1) and MRP1 (ABCC1). Treatment of MDR cells with 1 led to instability of the ABCB1 mRNA and consequently a reduction in P-gp protein, despite functional assays demonstrating that tiopronin does not interact with P-gp. Long-term exposure of P-gp-expressing cells to 1 sensitized them to doxorubicin and taxol, both P-gp substrates. Treatment of MRP1-overexpressing cells with tiopronin led to a significant reduction in MRP1 protein. Synthesis and screening of analogs of tiopronin demonstrated that the thiol functional group was essential for collateral sensitivity, while substitution of the amino acid backbone altered but did not destroy specificity, pointing to future development of targeted analogs. PMID:21657271
Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin
2013-01-01
OBJECTIVE: To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. METHODS: This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. RESULTS: Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). CONCLUSIONS: In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP. PMID:23857697
2013-01-01
Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. Methods We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. Results MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. Conclusions Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells. PMID:24225025
Aggressive Regimens for Multidrug-Resistant Tuberculosis Reduce Recurrence
Franke, Molly F.; Appleton, Sasha C.; Mitnick, Carole D.; Furin, Jennifer J.; Bayona, Jaime; Chalco, Katiuska; Shin, Sonya; Murray, Megan; Becerra, Mercedes C.
2013-01-01
Background. Recurrent tuberculosis disease occurs within 2 years in as few as 1% and as many as 29% of individuals successfully treated for multidrug-resistant (MDR) tuberculosis. A better understanding of treatment-related factors associated with an elevated risk of recurrent tuberculosis after cure is urgently needed to optimize MDR tuberculosis therapy. Methods. We conducted a retrospective cohort study among adults successfully treated for MDR tuberculosis in Peru. We used multivariable Cox proportional hazards regression analysis to examine whether receipt of an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion from positive to negative was associated with a reduced rate of recurrent tuberculosis. Results. Among 402 patients, the median duration of follow-up was 40.5 months (interquartile range, 21.2–53.4). Receipt of an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion was associated with a lower risk of recurrent tuberculosis (hazard ratio, 0.40 [95% confidence interval, 0.17–0.96]; P = .04). A baseline diagnosis of diabetes mellitus also predicted recurrent tuberculosis (hazard ratio, 10.47 [95% confidence interval, 2.17–50.60]; P = .004). Conclusions. Individuals who received an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion experienced a lower rate of recurrence after cure. Efforts to ensure that an aggressive regimen is accessible to all patients with MDR tuberculosis, such as minimization of sequential ineffective regimens, expanded drug access, and development of new MDR tuberculosis compounds, are critical to reducing tuberculosis recurrence in this population. Patients with diabetes mellitus should be carefully managed during initial treatment and followed closely for recurrent disease. PMID:23223591
Bardoloi, Vishwajeet; Yogeesha Babu, K V
2017-07-01
Urinary tract infection (UTI) can be community-acquired (Com-UTI) or catheter-associated (CAUTI) and may be associated with biofilm-producing organisms. A comparative analysis of biofilm-producing property (BPP), antibiotic-sensitivity and multi-drug resistance (MDR) and their relation with the BPP of isolates from Com-UTI and CAUTI has not yet been performed and necessitated this study. (1) isolation of bacteria from CAUTI and Com-UTI and identification of their BPP, antibiotic-sensitivity and MDR status; (2) comparison of the isolates from CAUTI and Com-UTI as regards BPP, MDR status and their relation with BPP. isolates from 100 cases each of Com-UTI and CAUTI were subjected to Congo redagar (CRA) and Safranin tube tests. Antibiotic susceptibility was investigated using the disc diffusion method. Both groups were compared regarding BPP, drug sensitivity and MDR status. Statistical analyses were performed using χ2 and Fisher's exact tests. 76.19 % of isolates from Com-UTI and 60.72 % from CAUTI had BPP (P=0.0252; significant). The Safranin tube test detected more isolates with BPP than the CRA test. MDR is greater in CAUTI than Com-UTI (83.33 % versus 64.76 %; P=0.0039; significant). MDR is greater in isolates with BPP in both Com-UTI and CAUTI (76.47 and 62.35 %; non-significant). BPP was found in both Com-UTI and CAUTI. When used together, the Safranin tube test and the CRA test increased the sensitivity of detecting BPP. MDR was higher in CAUTI than Com-UTI. MDR and BPP are not interrelated or associated, especially in settings where it is not certain that isolates were obtained from a well-formed biofilm. However, this does not rule out a higher incidence or prevalence of MDR in isolates with BPP taken directly from the biofilms.
Ray, Amy; Perez, Federico; Beltramini, Amanda M.; Jakubowycz, Marta; Dimick, Patricia; Jacobs, Michael R.; Roman, Kathy; Bonomo, Robert A.; Salata, Robert A.
2013-01-01
OBJECTIVES To describe vaporized hydrogen peroxide (VHP) as an adjuvant in the control of multidrug-resistant (MDR) Acinetobacter baumannii infection in a long-term acute care hospital (LTACH) and to describe the risk factors for acquisition of MDR A. baumannii infection in the LTACH population. DESIGN Outbreak investigation, case-control study, and before-after intervention trial. SETTING A 54-bed LTACH affiliated with a tertiary care center in northeastern Ohio. METHODS Investigation of outbreak with clinical and environmental cultures, antimicrobial susceptibility testing, polymerase chain reaction assay of repetitive chromosomal elements to type strains, and case-control study; and intervention consisting of comprehensive infection control measures and VHP environmental decontamination. RESULTS Thirteen patients infected or colonized with MDR A. baumannii were identified from January 2008 through June 2008. By susceptibility testing, 10 (77%) of the 13 isolates were carbapenem-resistant. MDR A. baumannii was found in wound samples, blood, sputum, and urine. Wounds were identified as a risk factor for MDR A. baumannii colonization. Ventilator–associated pneumonia was the most common clinical syndrome caused by the pathogen, and the associated mortality was 14% (2 of the 13 case patients died). MDR A. baumannii was found in 8 of 93 environmental samples, including patient rooms and a wound care cart; environmental and clinical cultures were genetically related. Environmental cultures were negative immediately after VHP decontamination and both 24 hours and 1 week after VHP decontamination. Nosocomial acquisition of the pathogen in the LTACH ceased after VHP intervention. When patients colonized with MDR A. baumannii reoccupied rooms, environmental contamination recurred. CONCLUSION Environmental decontamination using VHP combined with comprehensive infection control measures interrupted nosocomial transmission of MDR A. baumannii in an LTACH. The application of this novel approach to halt the transmission of MDR A. baumannii warrants further investigation. PMID:20973723
Nairoukh, Yacoub R; Mahafzah, Azmi M; Irshaid, Amal; Shehabi, Asem A
2018-01-01
Emergence of multi-drug resistant uropathogenic E. coli strains is an increasing problem to empirical treatment of urinary tract infections in many countries. This study investigated the magnitude of this problem in Jordan. A total of 262 E. coli isolates were recovered from urine samples of Jordanian patients which were suspected to have urinary tract infections (UTIs). All isolates were primarily identified by routine biochemical tests and tested for antimicrobial susceptibility by disc diffusion method. Fifty representative Multidrug Resistance (MDR) E. coli isolates to 3 or more antibiotic classes were tested for the presence of resistance genes of blaCTX-M- 1, 9 and 15, carbapenemase ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), fluoroquinolones mutated genes ( parC and gyrA ) and clone of ST131 type using PCR methods. A total of 150/262 (57.3%) of E. coli isolates were MDR. Urine samples of hospitalized patients showed significantly more MDR isolates than outpatients. Fifty representative MDR E. coli isolates indicated the following molecular characteristics: All were positive for mutated parC gene and gyrA and for ST131 clone, and 78% were positive for genes of CTX-M-15 , 76% for CTX-M-I and for 8% CTX-M-9 , respectively. Additionally, all 50 MDR E. coli isolates were negative for carbapenemase genes ( blaIMP, blaVIM, blaNDM-1, blaOXA-48 ), except of one isolate was positive for blaKPC-2 . This study indicates alarming high rates recovery of MDR uropathogenic E. coli from Jordanian patients associated with high rates of positive ST131 clone, fluoroquinolone resistant and important types of blaCTX-M.
Role of Elasto-Inertial Turbulence in Polymer Drag Reduction
NASA Astrophysics Data System (ADS)
Dubief, Yves; Sid, Samir; Terrapon, Vincent
2017-11-01
Elasto-Inertial Turbulence (EIT) is a peculiar state of turbulence found in dilute polymer solutions flowing in parallel wall flows over a wide range of Reynolds numbers. At subcritical Reynolds numbers, appropriate boundary conditions trigger EIT, a self-sustaining cycle of energy transfers between thin sheets of stretched polymers and velocity perturbations, which translates into an increase of friction drag. For critical and supercritical Reynolds numbers, polymer additives may lead to significant drag reduction, bounded by the asymptotic state known as Maximum Drag Reduction (MDR). The present research investigates the role of EIT in the dynamics of critical and supercritical Reynolds number wall flows. Using high-fidelity direct numerical simulations of channel flows and the FENE-P model, we establish that (i) EIT is two-dimensional, (ii) the scales essential to the existence of EIT are sub-Kolmogorov, and (iii) EIT drives MDR at low and possibly moderate Reynolds number turbulent flows. These findings were validated in two different codes and using unprecedented resolutions for polymer flows. YD is grateful for the support of Binational Science Foundation. SS and VT acknowledges Fonds de la Recherche Scientifique (FNRS), MarieCurie Career Integration Grant and computing allocation from University of Liege and PRACE.
Effect of universal MODS access on pulmonary tuberculosis treatment outcomes in new patients in Peru
Alarcón, E.; Alarcón, V.; Bissell, K.; Castillo, E.; Sabogal, I.; Mora, J.; Moore, D.; Harries, A. D.
2012-01-01
Setting: Primary health care centres in Callao, Peru. Objectives: To evaluate the effect of universal access to the microscopic-observation drug susceptibility (MODS) assay on treatment outcomes in new and primary multidrug-resistant tuberculosis (MDR-TB) patients and on the process of drug susceptibility testing (DST). Design: Retrospective review of tuberculosis (TB) registers and clinical records before (2007) and after (2009) the introduction of MODS in 2008. Results: There were 281 patients in each cohort. Favourable treatment outcomes for 2007 (81%) and 2009 (77%) cohorts were similar. There was an increase in loss to follow-up (from 6% to 10%, P = 0.04) and a reduction in failure rates (from 4% to 0.4%, P = 0.01) in the 2009 compared with the 2007 cohort. In new MDR-TB cases (n = 22), a favourable treatment outcome was improved (from 46% to 82%, P = 0.183) in the 2009 cohort. DST coverage improved (from 24% to 74%, P < 0.001), and a significant reduction in time to diagnosis of drug-susceptible (from 118 to 33 days, P < 0.001) and MDR-TB (from 158 to 52 days, P = 0.003) was observed in the 2009 cohort. Conclusion: Universal access to MODS increased DST coverage, reduced the time required to obtain DST results and was associated with reduced failure rates. MODS can make an important contribution to TB management and control in Peru. PMID:24579063
Richter, Katharina; Thomas, Nicky; Claeys, Jolien; McGuane, Jonathan; Prestidge, Clive A; Coenye, Tom; Wormald, Peter-John; Vreugde, Sarah
2017-06-01
Many infectious diseases are associated with multidrug-resistant (MDR) bacteria residing in biofilms that require high antibiotic concentrations. While oral drug delivery is frequently ineffective, topical treatments have the potential to deliver higher drug concentrations to the infection site while reducing systemic side effects. This study determined the antibiofilm activity of a surgical wound gel loaded with the iron chelator deferiprone (Def) and the heme analogue gallium-protoporphyrin (GaPP), alone and in combination with ciprofloxacin. Activity against MDR Staphylococcus aureus , Staphylococcus epidermidis , Pseudomonas aeruginosa , and Acinetobacter johnsonii biofilms was assessed in the colony biofilm and artificial wound model by enumeration of CFU and correlative light/electron microscopy. While Staphylococcus biofilms were equally susceptible to GaPP and Def-GaPP gels (log 10 reduction of 3.8 and 3.7, respectively), the Def-GaPP combination was crucial for significant activity against P. aeruginosa biofilms (log 10 reduction of 1.3 for GaPP and 3.3 for Def-GaPP). When Def-GaPP gel was combined with ciprofloxacin, the efficacy exceeded the activity of the individual compounds. Def-GaPP delivered in a surgical wound gel showed significant antibiofilm activity against different MDR strains and could enhance the gel's wound-healing properties. Moreover, Def-GaPP indicated a potentiation of ciprofloxacin. This antibiofilm strategy has potential for clinical utilization as a therapy for topical biofilm-related infections. Copyright © 2017 American Society for Microbiology.
Claeys, Jolien; McGuane, Jonathan; Prestidge, Clive A.; Wormald, Peter-John
2017-01-01
ABSTRACT Many infectious diseases are associated with multidrug-resistant (MDR) bacteria residing in biofilms that require high antibiotic concentrations. While oral drug delivery is frequently ineffective, topical treatments have the potential to deliver higher drug concentrations to the infection site while reducing systemic side effects. This study determined the antibiofilm activity of a surgical wound gel loaded with the iron chelator deferiprone (Def) and the heme analogue gallium-protoporphyrin (GaPP), alone and in combination with ciprofloxacin. Activity against MDR Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter johnsonii biofilms was assessed in the colony biofilm and artificial wound model by enumeration of CFU and correlative light/electron microscopy. While Staphylococcus biofilms were equally susceptible to GaPP and Def-GaPP gels (log10 reduction of 3.8 and 3.7, respectively), the Def-GaPP combination was crucial for significant activity against P. aeruginosa biofilms (log10 reduction of 1.3 for GaPP and 3.3 for Def-GaPP). When Def-GaPP gel was combined with ciprofloxacin, the efficacy exceeded the activity of the individual compounds. Def-GaPP delivered in a surgical wound gel showed significant antibiofilm activity against different MDR strains and could enhance the gel's wound-healing properties. Moreover, Def-GaPP indicated a potentiation of ciprofloxacin. This antibiofilm strategy has potential for clinical utilization as a therapy for topical biofilm-related infections. PMID:28396543
Challenges to the global control of tuberculosis.
Chiang, Chen-Yuan; Van Weezenbeek, Catharina; Mori, Toru; Enarson, Donald A
2013-05-01
Diagnosis and treatment of tuberculosis (TB) will likely navigate a historical turning point in the 2010s with a new management paradigm emerging. However, global control of TB remains a formidable challenge for the decades to come. The estimated case detection rate of TB globally was 66%, and there were 310 000 estimated multidrug-resistant TB (MDR-TB) cases among the 6.2 million TB patients notified in 2011. Although new tools are being introduced for the diagnosis of MDR-TB, there are operational and cost issues related to their use that require urgent attention, so that the poor and vulnerable can benefit. World Health Organization (WHO) estimated that globally, 3.7% of new cases and 20% of previously treated cases have MDR-TB. However, the scale-up of programmatic management of drug-resistant TB is slow, with only 60 000 MDR-TB cases notified to WHO in 2011. The overall proportion of treatment success of MDR-TB notified globally in 2009 was 48%, far below the global target of 75% success rate. Although new tools and drugs have the potential to significantly improve both case detection and treatment outcome, adequate health systems and human resources are needed for rapid uptake and proper implementation to have the impact required to eliminate TB. Hence, the global TB community should broaden its scope, seek intersectoral collaboration and advocate for cost reduction of new tools, while ensuring that the basics of TB control are implemented to reduce the TB burden through the current 'prevention through case management' paradigm. Respirology © 2013 Asian Pacific Society of Respirology. The World Health Organization retains copyright and all other rights in the manuscript as submitted for publication and has granted the Publisher permission for the reproduction of this article.
Breathnach, A S; Cubbon, M D; Karunaharan, R N; Pope, C F; Planche, T D
2012-09-01
Multidrug-resistant Pseudomonas aeruginosa (MDR-P) expressing VIM-metallo-beta-lactamase is an emerging infection control problem. The source of many such infections is unclear, though there are reports of hospital outbreaks of P. aeruginosa related to environmental contamination, including tap water. We describe two outbreaks of MDR-P, sensitive only to colistin, in order to highlight the potential for hospital waste-water systems to harbour this organism. The outbreaks were investigated by a combination of descriptive epidemiology, inspection and microbiological sampling of the environment, and molecular strain typing. The outbreaks occurred in two English hospitals; each involved a distinct genotype of MDR-P. One outbreak was hospital-wide, involving 85 patients, and the other was limited to four cases in one specialized medical unit. Extensive environmental sampling in each outbreak yielded MDR-P only from the waste-water systems. Inspection of the environment and estates records revealed many factors that may have contributed to contamination of clinical areas, including faulty sink, shower and toilet design, clean items stored near sluices, and frequent blockages and leaks from waste pipes. Blockages were due to paper towels, patient wipes, or improper use of bedpan macerators. Control measures included replacing sinks and toilets with easier-to-clean models less prone to splashback, educating staff to reduce blockages and inappropriate storage, reviewing cleaning protocols, and reducing shower flow rates to reduce flooding. These measures were followed by significant reductions in cases. The outbreaks highlight the potential of hospital waste systems to act as a reservoir of MDR-P and other nosocomial pathogens. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Inaba, Masato; Matsuda, Naoyuki; Banno, Hirotsugu; Jin, Wanchun; Wachino, Jun-Ichi; Yamada, Keiko; Kimura, Kouji; Arakawa, Yoshichika
2016-12-01
The host stress hormone norepinephrine (NE), also called noradrenaline, is reported to augment bacterial growth and pathogenicity, but few studies have focused on the effect of NE on the activity of antimicrobials. The aim of this study was to clarify whether NE affects antimicrobial activity against multidrug-resistant Acinetobacter baumannii (MDR-AB). Time-kill studies of tigecycline (TIG) and colistin (COL) against MDR-AB as well as assays for factors contributing to antibiotic resistance were performed using MDR-AB clinical strains both in the presence and absence of 10 µM NE. In addition, expression of three efflux pump genes (adeB, adeJ and adeG) in the presence and absence of NE was analysed by quantitative reverse transcription PCR. Viable bacterial cell counts in TIG-supplemented medium containing NE were significantly increased compared with those in medium without NE. In contrast, NE had little influence on viable bacterial cell counts in the presence of COL. NE-supplemented medium resulted in an ca. 2 log increase in growth and in bacterial cell numbers adhering on polyurethane, silicone and polyvinylchloride surfaces. Amounts of biofilm in the presence of NE were ca. 3-fold higher than without NE. Expression of the adeG gene was upregulated 4-6-fold in the presence of NE. In conclusion, NE augmented factors contributing to antibiotic resistance and markedly reduced the in vitro antibacterial activity of TIG against MDR-AB. These findings suggest that NE treatment may contribute to the failure of TIG therapy in patients with MDR-AB infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management
Prasad, Rajendra; Gupta, Nikhil; Banka, Amitabh
2018-01-01
Multidrug-resistant tuberculosis (MDR-TB)/rifampicin-resistant TB (RR-TB) is human-made problem and emerging due to poor management of TB and is a threat to control of TB. Early suspicion and diagnosis are important. Culture and drug susceptibility testing are gold standards, but newer molecular methods help in rapid diagnosis. Once diagnosed, prompt treatment should be started, preferably under direct observation. Treatment can be standardized or individualized. Conventional regimen takes up to 24 months but recently shorter regimen of up to 12 months was introduced in specific subset of MDR-TB/RR-TB patients. Management of MDR-TB/RR-TB is complicated, costlier, and challenging and is a concern for human health worldwide. It must be emphasized that optimal treatment of MDR-TB/RR-TB alone is not sufficient. Efforts must be made to ensure effective use of first- and second-line anti-TB drugs. PMID:29319042
Multidrug-resistant tuberculosis/rifampicin-resistant tuberculosis: Principles of management.
Prasad, Rajendra; Gupta, Nikhil; Banka, Amitabh
2018-01-01
Multidrug-resistant tuberculosis (MDR-TB)/rifampicin-resistant TB (RR-TB) is human-made problem and emerging due to poor management of TB and is a threat to control of TB. Early suspicion and diagnosis are important. Culture and drug susceptibility testing are gold standards, but newer molecular methods help in rapid diagnosis. Once diagnosed, prompt treatment should be started, preferably under direct observation. Treatment can be standardized or individualized. Conventional regimen takes up to 24 months but recently shorter regimen of up to 12 months was introduced in specific subset of MDR-TB/RR-TB patients. Management of MDR-TB/RR-TB is complicated, costlier, and challenging and is a concern for human health worldwide. It must be emphasized that optimal treatment of MDR-TB/RR-TB alone is not sufficient. Efforts must be made to ensure effective use of first- and second-line anti-TB drugs.
Chen, Si; Fan, Jin-Xuan; Qiu, Wen-Xiu; Liu, Li-Han; Cheng, Han; Liu, Fan; Yan, Guo-Ping; Zhang, Xian-Zheng
2017-11-01
In recent decades, diverse drug delivery systems (DDS) constructed by self-assembly of dendritic peptides have shown advantages and improvable potential for cancer treatment. Here, an arginine-enriched dendritic amphiphilic chimeric peptide CRRK(RRCG(Fmoc)) 2 containing multiple thiol groups is programmed to form drug-loaded nano-micelles by self-assembly. With a rational design, the branched hydrophobic groups (Fmoc) of the peptides provide a strong hydrophobic force to prevent the drug from premature release, and the reduction-sensitive disulfide linkages formed between contiguous peptides can control drug release under reducing stimulation. As expected, specific to multidrug resistance (MDR) tumor cells, the arginine-enriched peptide/drug (PD) nano-micelles show accurate nuclear localization ability to prevent the drug being pumped by P-glycoprotein (P-gp) in vitro, as well as exhibiting satisfactory efficacy for MDR tumor treatment in vivo. This design successfully realizes stimuli-responsive drug release aimed at MDR tumor cells via an ingenious sequence arrangement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vitro antimycobacterial activities of Physalis angulata L.
Pietro, R C; Kashima, S; Sato, D N; Januário, A H; França, S C
2000-07-01
The HIV-tuberculosis co-infection has caused an impact on tuberculosis epidemiology all over the world and the efficacies of the therapeutic schemes traditionally prescribed in the treatment of tuberculosis, such as isoniazid, rifampicin and pyrazinamide, have decreased due to the appearance of multidrug-resistant M. tuberculosis strains (MDR). This work is part of research on natural antimicrobial agents from plant extracts through bioassay-guided fractionation, by in vitro determination of the minimum inhibitory concentration (MIC) using the microdilution method with Alamar blue oxidation-reduction dye. Crude CHCl3 Physalis angulata extracts and physalin-containing fractions displayed antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium malmoense and Mycobacterium intracellulare.
Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof
2014-04-01
Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.
Tran, Huong Thi Giang; Bui, Quyen Thi Tu
2016-01-01
Introduction Extensively drug-resistant tuberculosis (XDR-TB) represents an emerging public health problem worldwide. According to the World Health Organization, an estimated 9.7% of multidrug-resistant TB (MDR-TB) cases are defined as XDR-TB globally. The objective of this study was to determine the prevalence of drug resistance to second-line TB drugs among MDR-TB cases detected in the Fourth National Anti-Tuberculosis Drug Resistance Survey in Viet Nam. Methods Eighty clusters of TB cases were selected using a probability-proportion-to-size approach. To identify MDR-TB cases, drug susceptibility testing (DST) was performed for the four major first-line TB drugs. DST of second-line drugs (ofloxacin, amikacin, kanamycin, capreomycin) was performed on isolates from MDR-TB cases to identify pre-XDR and XDR cases. Results A total of 1629 smear-positive TB cases were eligible for culture and DST. Of those, DST results for first-line drugs were available for 1312 cases, and 91 (6.9%) had MDR-TB. Second-line DST results were available for 84 of these cases. Of those, 15 cases (17.9%) had ofloxacin resistance and 6.0% were resistant to kanamycin and capreomycin. Five MDR-TB cases (6.0%) met the criteria of XDR-TB. Conclusion This survey provides the first estimates of the proportion of XDR-TB among MDR-TB cases in Viet Nam and provides important information for local policies regarding second-line DST. Local policies and programmes that are geared towards TB prevention, early diagnosis and treatment with effective regimens are of high importance. PMID:27508089
Podolski-Renić, Ana; Bősze, Szilvia; Dinić, Jelena; Kocsis, László; Hudecz, Ferenc; Csámpai, Antal; Pešić, Milica
2017-08-16
Recently, we demonstrated that ferrocene-containing compounds with a cinchona moiety displayed marked anticancer activity. Here we report on the effects of the most promising isomers encompassing quinine- (compounds 4 and 5) and quinidine-epimers (compounds 6 and 7) - synthesized using improved methods providing controlled diastereoselectivity - in three different human multidrug resistant (MDR) cancer cell lines and their sensitive counterparts (non-small cell lung carcinoma NCI-H460/R/NCI-H460, colorectal carcinoma DLD1-TxR/DLD1 and glioblastoma U87-TxR/U87). We observed that the presence of the MDR phenotype did not diminish the activity of the compounds suggesting that ferrocene quinine- and quinidine-epimers are not substrates for P-glycoprotein, which has been indicated as a major mechanism of MDR in the cell lines used. Considering that metal-based anticancer agents mainly act by increasing ROS production, we investigated the potential of ferrocene-quinidine epimers to generate ROS. We found that 6 and 7 more readily increased ROS production and induced mitochondrial damage in MDR cancer cells. According to cell death analysis, 6 and 7 were more active against MDR cancer cells showing collateral sensitivity. In addition, our data suggest that these compounds could act as inhibitors of autophagy. Importantly, simultaneous treatments of 6 and 7 with paclitaxel (PTX) increased the sensitivity of MDR cancer cells to PTX. In conclusion, the ferrocene-quinidine epimers, besides being selective towards MDR cancer cells, could also possess potential to overcome PTX resistance.
Maurya, A K; Singh, A K; Kumar, M; Umrao, J; Kant, S; Nag, V L; Kushwaha, R A S; Dhole, T N
2013-01-01
India has a high burden of drug-resistant tuberculosis (TB), although there is little data on multidrug-resistant tuberculosis (MDR-TB). Although MDR-TB has existed for long time in India, very few diagnostic laboratories are well-equipped to test drug sensitivity. The objectives of this study were to determine the prevalence of MDR-TB, first-line drug resistance patterns and its changing trends in northern India in the 4 years. This was a prospective study from July 2007 to December 2010. Microscopy, culture by Bactec460 and p-nitro-α-acetylamino-β-hydroxypropiophenone (NAP) test was performed to isolate and identify Mycobacterium tuberculosis (M. tb) complex (MTBC). Drug sensitivity testing (DST) was performed by 1% proportional method (Bactec460) for four drugs: Rifampicin, isoniazid, ethambutol and streptomycin. Various clinical and demographical profiles were evaluated to analyse risk factors for development of drug resistance. We found the overall prevalence rate of MDR-TB to be 38.8%, increasing from 36.4% in 2007 to 40.8% in 2010. we found that the prevalence of MDR-TB in new and previously treated cases was 29.1% and 43.3% ( P < 0.05; CI 95%). The increasing trend of MDR-TB was more likely in pulmonary TB when compared with extra-pulmonary TB ( P < 0.05; CI 95%). we found a high prevalence (38.8%) of MDR-TB both in new cases (29.1%) and previously treated cases (43.3%).This study strongly highlights the need to make strategies for testing, surveillance, monitoring and management of such drug-resistant cases.
Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, K. M.
2010-01-01
In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.
Govindarajan, S.; Sharath, B. N.; Tripathy, J. P.; Chinnakali, P.; Kumar, A. M. V.; Muthaiah, M.; Vivekananda, K.; Paulraj, A. K.; Roy, G.
2015-01-01
Setting: The Revised National Tuberculosis Control Programme, Puducherry, India, which has facilities for molecular diagnostic technique. Objective: To determine pre-diagnostic and pre-treatment attrition among presumptive multidrug-resistant tuberculosis (MDR-TB) patients and reasons for attrition. Methods: In this mixed-methods study, the quantitative component consisted of retrospective cohort analysis through record review of all presumptive MDR-TB patients recorded between October 2012 and September 2013. The qualitative component included in-depth interviews with key informants involved in programmatic management of drug-resistant tuberculosis services. Results: Of 341 eligible presumptive MDR-TB patients, pre-diagnostic and pre-treatment attrition was respectively 45.5% (155/341) and 29% (2/7). Patients with extra-pulmonary TB (RR = 2.3), those with human immuno-deficiency and TB co-infection (RR = 1.7), those registered during October–December 2012 (RR = 1.3) and those identified from primary/secondary health centres (RR = 1.8) were less likely to be tested. Themes that emerged during the analysis of the qualitative data were ‘lack of a systematic mechanism to track referrals for culture and drug susceptibility testing’, ‘absence of courier service to transport sputum’, ‘lack of knowledge and ownership among staff of general health system’, ‘shortage of diagnostic kits’ and ‘patient non-adherence’. Conclusion: Despite the introduction of molecular diagnostic techniques, operational issues in MDR-TB screening remain a concern and require urgent attention. PMID:26400385
Bojorquez, Ietza; Barnes, Richard F. W.; Flood, Jennifer; López-Gatell, Hugo; Garfein, Richard S.; Bäcker, Claudia E.; Alpuche, Celia; Vinetz, Joseph M.; Catanzaro, Antonino; Kato-Maeda, Midori
2013-01-01
Objectives. We sought to compare prevalence and determinants of multidrug-resistant tuberculosis (MDR-TB) between tuberculosis patients in Baja California, Mexico, and Hispanic patients in California. Methods. Using data from Mexico’s National TB Drug Resistance Survey (2008–2009) and California Department of Public Health TB case registry (2004–2009), we assessed differences in MDR-TB prevalence comparing (1) Mexicans in Baja California, (2) Mexico-born Hispanics in California, (3) US-born Hispanics in California, and (4) California Hispanics born elsewhere. Results. MDR-TB prevalence was 2.1% in Baja California patients, 1.6% in Mexico-born California patients, 0.4% in US-born California patients, and 2.7% in Hispanic California patients born elsewhere. In multivariate analysis, previous antituberculosis treatment was associated with MDR-TB (odds ratio [OR] = 6.57; 95% confidence interval [CI] = 3.34, 12.96); Mexico-born TB patients in California (OR = 5.08; 95% CI = 1.19, 21.75) and those born elsewhere (OR = 7.69; 95% CI = 1.71, 34.67) had greater odds of MDR-TB compared with US-born patients (reference category). Conclusions. Hispanic patients born outside the US or Mexico were more likely to have MDR-TB than were those born within these countries. Possible explanations include different levels of exposure to resistant strains and inadequate treatment. PMID:23678924
Fiebig, Lena; Kohl, Thomas A; Popovici, Odette; Mühlenfeld, Margarita; Indra, Alexander; Homorodean, Daniela; Chiotan, Domnica; Richter, Elvira; Rüsch-Gerdes, Sabine; Schmidgruber, Beatrix; Beckert, Patrick; Hauer, Barbara; Niemann, Stefan; Allerberger, Franz; Haas, Walter
2017-01-01
Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders. PMID:28106529
Zelner, Jonathan L.; Murray, Megan B.; Becerra, Mercedes C.; Galea, Jerome; Lecca, Leonid; Calderon, Roger; Yataco, Rosa; Contreras, Carmen; Zhang, Zibiao; Manjourides, Justin; Grenfell, Bryan T.; Cohen, Ted
2016-01-01
Background. We aimed to identify and determine the etiology of “hotspots” of concentrated multidrug-resistant tuberculosis (MDR-tuberculosis) risk in Lima, Peru. Methods. From 2009 to 2012, we conducted a prospective cohort study among households of tuberculosis cases from 106 health center (HC) areas in Lima, Peru. All notified tuberculosis cases and their household contacts were followed for 1 year. Symptomatic individuals were screened by microscopy and culture; positive cultures were tested for drug susceptibility (DST) and genotyped by 24-loci mycobacterial interspersed repetitive units-variable-number tandem repeats (MIRU-VNTR). Results. 3286 individuals with culture-confirmed disease, DST, and 24-loci MIRU-VNTR were included in our analysis. Our analysis reveals: (1) heterogeneity in annual per-capita incidence of tuberculosis and MDR-tuberculosis by HC, with a rate of MDR-tuberculosis 89 times greater (95% confidence interval [CI], 54,185) in the most-affected versus the least-affected HC; (2) high risk for MDR-tuberculosis in a region spanning several HCs (odds ratio = 3.19, 95% CI, 2.33, 4.36); and (3) spatial aggregation of MDR-tuberculosis genotypes, suggesting localized transmission. Conclusions. These findings reveal that localized transmission is an important driver of the epidemic of MDR-tuberculosis in Lima. Efforts to interrupt transmission may be most effective if targeted to this area of the city. PMID:26175455
Shah, Krupa; Mirza, Sheefa; Desai, Urja; Jain, Nayan; Rawal, Rakesh
2016-01-01
The aim of the study was to find a role of Curcumin from natural source to overcome drug resistance as well as to reduce cytotoxicity profile of the drug in Acute Myeloid Leukemia patients. Primary leukemic cells were obtained from AML patient's bone marrow. These cells were then exposed to different concentration of cytarabine and curcumin to find out IC50 values and also its effect on MDR genes like MDR1, BCRP, LRP and FLT3 by RT-PCR method. Our results suggested that curcumin down regulates MDR genes. Gene expression was decreased by 35.75, 31.30, 27.97 % for MDR1, LRP, BCRP respectively. In FLT3, it was 65.86 % for wild type and 31.79 % for FLT3-ITD. In addition to this, curcumin has also shown anti-proliferative effect as well as synergistic effect in combination with Cytarabine on primary leukemic cells. Thus, we can conclude that curcumin can be used as MDR modulator as well as chemosensitizer in combination with cytarabine, standard chemotherapeutic drug, to reduce the cytotoxicity profile as IC50 value decreases when treated in combination.
Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng
2015-01-01
Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880
NASA Astrophysics Data System (ADS)
Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng
2015-02-01
Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.
Baral, Sushil C; Aryal, Yeshoda; Bhattrai, Rekha; King, Rebecca; Newell, James N
2014-01-17
People with multi-drug resistant tuberculosis (MDR-TB) in low-income countries face many problems during treatment, and cure rates are low. The purpose of the study was (a) to identify and document the problems experienced by people receiving care for MDR-TB, and how they cope when support is not provided, to inform development of strategies; (b) to estimate the effectiveness of two resultant strategies, counselling alone, and joint counselling and financial support, of increasing DOTS-plus treatment success under routine programme conditions. A mixed-method study comprising a formative qualitative study, pilot intervention study and explanatory qualitative study to better understand barriers to completion of treatment for MDR-TB. Participants were all people starting MDR-TB treatment in seven DOTS-plus centres in the Kathmandu Valley, Nepal during January to December 2008. The primary outcome measure was cure, as internationally defined. MDR-TB treatment caused extreme social, financial and employment hardship. Most patients had to move house and leave their job, and reported major stigmatisation. They were concerned about the long-term effects of their disease, and feared infecting others. In the resultant pilot intervention study, the two strategies appeared to improve treatment outcomes: cure rates for those receiving counselling, combined support and no support were 85%, 76% and 67% respectively. Compared with no support, the (adjusted) risk ratios of cure for those receiving counselling and receiving combined support were 1.2 (95% CI 1.0 to 1.6) and 1.2 (95% CI 0.9 to 1.6) respectively. The explanatory study demonstrated that patients valued both forms of support. MDR-TB patients are extremely vulnerable to stigma and extreme financial hardship. Provision of counselling and financial support may not only reduce their vulnerability, but also increase cure rates. National Tuberculosis Programmes should consider incorporating financial support and counselling into MDR-TB care: costs are low, and benefits high, especially since costs to society of incomplete treatment and potential for incurable TB are extremely high.
Min, Yong Deuk; Yang, Min Cheol; Lee, Kyu Ha; Kim, Kyung Ran; Choi, Sang Un; Lee, Kang Ro
2006-09-01
Six protoberberine alkaloids were isolated from the chloroform layer of the rhizome of Coptis japonica Makino (Ranunculaceae). The structures of the isolated compounds were determined to be 6-([1,3]dioxolo[4,5-g]isoquinoline-5-carbonyl)-2,3-dimethoxy-benzoic acid methyl ester (1), oxyberberine (2), 8-oxo-epiberberine (3), 8-oxocoptisine (4), berberine (5) and palmatine (6) by physicochemical and spectroscopic methods. The compound 3 (8-oxo-epiberberine) was first isolated from natural sources. The compounds were tested for cytotoxicity against five tumor cell lines in vitro by SRB method, and also tested for the MDR reversal activities. Compound 4 was of significant P-gp MDR inhibition activity with ED50 value 0.018 microg/mL in MES-SA/DX5 cell and 0.0005 microg/mL in HCT15 cell, respectively.
2010-01-01
Background Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Methods Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. Results We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. Conclusion A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders. PMID:20630055
Dong, Kai; Yan, Yan; Wang, Pengchong; Shi, Xianpeng; Zhang, Lu; Wang, Ke; Xing, Jianfeng; Dong, Yalin
2016-01-01
In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy. PMID:27785018
Rijpma, Sanna R; van der Velden, Maarten; Annoura, Takeshi; Matz, Joachim M; Kenthirapalan, Sanketha; Kooij, Taco W A; Matuschewski, Kai; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Siebelink-Stoter, Rianne; Graumans, Wouter; Ramesar, Jai; Klop, Onny; Russel, Frans G M; Sauerwein, Robert W; Janse, Chris J; Franke-Fayard, Blandine M; Koenderink, Jan B
2016-07-01
Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of malaria parasites. Four P. berghei genes (encoding MDR1, 4, 6 and 7) were refractory to deletion, indicating a vital role during blood stage multiplication and validating them as potential targets for antimalarial drugs. Mutants lacking expression of MDR2, MDR3 and MDR5 were generated in both P. berghei and P. falciparum, indicating a dispensable role for blood stage development. Whereas P. berghei mutants lacking MDR3 and MDR5 had a reduced blood stage multiplication in vivo, blood stage growth of P. falciparum mutants in vitro was not significantly different. Oocyst maturation and sporozoite formation in Plasmodium mutants lacking MDR2 or MDR5 was reduced. Sporozoites of these P. berghei mutants were capable of infecting mice and life cycle completion, indicating the absence of vital roles during liver stage development. Our results demonstrate vital and dispensable roles of MDR proteins during blood stages and an important function in sporogony for MDR2 and MDR5 in both Plasmodium species. © 2016 John Wiley & Sons Ltd.
Taneja, Neha; Daral, Shailaja; Adhikary, Mrinmoy; Das, Timiresh Kumar
2017-01-01
Introduction Multi Drug Resistant Tuberculosis (MDR TB) has emerged as a significant public health problem in India. The prolonged treatment duration in MDR TB is a challenge in achieving treatment completion and poses a threat to TB control in the country. Home based care is an approach accepted by patients because it helps in ameliorating their understanding of TB, improving the compliance and reducing stigma in the community. Aim To assess the outcome of Home-Based Care (HC) versus No Home-Based Care (NHC) on the treatment of MDR TB patients registered at two chest clinics in Eastern Delhi. Materials and Methods A quasi-experimental study was done among diagnosed MDR TB patients receiving Category IV regimen under Revised National Tuberculosis Control Programme (RNTCP) from two government chest clinics in Eastern Delhi during May 2014 to May 2016. In the control arm, 50 MDR TB patients at one of the chest clinics were offered the standard Category IV regimen under RNTCP; while in the intervention arm, 50 MDR TB patients at the second chest clinic were provided home based care (counselling, support for completion of treatment, rehabilitation, and nutritional support) along with the standard treatment. The primary outcome assessed was outcome of treatment, while secondary outcomes included stigma faced due to the disease, and impact of disease on family and community life. Results The primary outcome data was available for 32 (64%) participants in the intervention arm, and 38 (76%) participants in control arm. The treatment was significantly more successful in the intervention arm (p<0.03). The data on secondary outcomes was available for all participants. Stigma due to disease was significantly lower in the intervention arm (p<0.01); also rejection faced by participants from family and community due to disease was significantly lower among the HC group (p<0.05). Conclusion Home-based care in MDR TB treatment holds potential in improving treatment outcomes of patient. PMID:28969162
Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives
NASA Technical Reports Server (NTRS)
Dubief, Yves
2003-01-01
The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non-linear extensibility-Peterlin) model which was used for the first LDR simulation by Sureshkumar et al. (1997). Flow and polymer parameters are close to realistic polymer drag reducing conditions. High drag reductions are achieved by using finite differences and a robust time stepping technique. A minimal channel flow is also used as a numerical experiment to investigate the effect of the outer region turbulent structures on the overall drag at HDR. The drag reducing action of the model is finally studied through the structure of energy transfers from the polymers to the velocity components. This investigation sheds some light on the details of polymer drag reduction.
Aia, Paul; Kal, Margaret; Lavu, Evelyn; John, Lucy N.; Johnson, Karen; Coulter, Chris; Ershova, Julia; Tosas, Olga; Zignol, Matteo; Ahmadova, Shalala; Islam, Tauhid
2016-01-01
Background Reliable estimates of the burden of multidrug-resistant tuberculosis (MDR-TB) are crucial for effective control and prevention of tuberculosis (TB). Papua New Guinea (PNG) is a high TB burden country with limited information on the magnitude of the MDR-TB problem. Methods A cross-sectional study was conducted in four PNG provinces: Madang, Morobe, National Capital District and Western Province. Patient sputum samples were tested for rifampicin resistance by the Xpert MTB/RIF assay and those showing the presence of resistance underwent phenotypic susceptibility testing to first- and second-line anti-TB drugs including streptomycin, isoniazid, rifampicin, ethambutol, pyrazinamide, ofloxacin, amikacin, kanamycin and capreomycin. Results Among 1,182 TB patients enrolled in the study, MDR-TB was detected in 20 new (2.7%; 95% confidence intervals [CI] 1.1–4.3%) and 24 previously treated (19.1%; 95%CI: 8.5–29.8%) TB cases. No case of extensively drug-resistant TB (XDR-TB) was detected. Thirty percent (6/20) of new and 33.3% (8/24) of previously treated cases with MDR-TB were detected in a single cluster in Western Province. Conclusion In PNG the proportion of MDR-TB in new cases is slightly lower than the regional average of 4.4% (95%CI: 2.6–6.3%). A large proportion of MDR-TB cases were identified from a single hospital in Western Province, suggesting that the prevalence of MDR-TB across the country is heterogeneous. Future surveys should further explore this finding. The survey also helped strengthening the use of smear microscopy and Xpert MTB/RIF testing as diagnostic tools for TB in the country. PMID:27003160
Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted
2012-03-01
Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored 3 classification systems- two-way static, three-way static, and three-way truncated sequential sampling-at 2 sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired.
Greene, Sharon K; Stuart, Andrew M; Medalla, Felicita M; Whichard, Jean M; Hoekstra, Robert M; Chiller, Tom M
2008-10-01
Multidrug-resistant (MDR) Salmonella strains are associated with excess bloodstream infections, hospitalizations, and deaths compared with pansusceptible strains. Bovine products are sometimes a source of MDR Salmonella. To generate hypotheses for regional differences in risk factors for human infection, we analyzed distributions of the two most prevalent MDR Salmonella phenotypes in the United States, 2003-2005: (i) MDR-ACSSuT (resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline) Typhimurium; (ii) MDR-AmpC (resistant to at least ampicillin, chloramphenicol, streptomycin, sulfonamides, tetracycline, amoxicillin/clavulanic acid, and ceftiofur, and with decreased susceptibility to ceftriaxone) Newport. Participating public health laboratories in all states forwarded every 20th Salmonella isolate from humans to the National Antimicrobial Resistance Monitoring System for Enteric Bacteria for antimicrobial susceptibility testing. Among the serotypes Typhimurium and Newport isolates submitted 2003-2005, pansusceptible, MDR-ACSSuT Typhimurium, and MDR-AmpC Newport were identified. Patterns of resistance, demographic factors, and cattle density were compared across regions. Of 1195 serotype Typhimurium isolates, 289 (24%) were MDR-ACSSuT. There were no significant differences in region, age, or sex distribution for pansusceptible versus MDR-ACSSuT Typhimurium. Of 612 serotype Newport isolates, 97 (16%) were MDR-AmpC, but the percentage of MDR-AmpC isolates varied significantly across regions: South 3%, Midwest 28%, West 32%, and Northeast 38% (p < 0.0001). The South had the lowest percentage of MDR-AmpC Newport isolates and also the lowest density of milk cows. More Newport isolates were MDR-AmpC in the 10 states with the highest milk cow density compared with the remaining states. Overall, 22% of pansusceptible Newport isolates but only 7% of MDR-AmpC Newport isolates were from patients <2 years of age. For both serotypes, MDR phenotypes had less seasonal variation than pansusceptible phenotypes. This is the first analysis of the distribution of clinically important MDR Salmonella isolates in the United States. MDR-ACSSuT Typhimurium was evenly distributed across regions. However, MDR-AmpC Newport was less common in the South and in children <2 years of age. Information on individuals' exposures is needed to fully explain the observed patterns.
Bresee, Jamee; Bond, Constance M; Worthington, Roberta J; Smith, Candice A; Gifford, Jennifer C; Simpson, Carrie A; Carter, Carly J; Wang, Guankui; Hartman, Jesse; Osbaugh, Niki A; Shoemaker, Richard K; Melander, Christian; Feldheim, Daniel L
2014-04-09
The emergence of resistance to multiple antimicrobial agents by pathogenic bacteria has become a significant global public health threat. Multi-drug-resistant (MDR) Gram-negative bacteria have become particularly problematic, as no new classes of small-molecule antibiotics for Gram-negative bacteria have emerged in over two decades. We have developed a combinatorial screening process for identifying mixed ligand monolayer/gold nanoparticle conjugates (2.4 nm diameter) with antibiotic activity. The method previously led to the discovery of several conjugates with potent activity against the Gram-negative bacterium Escherichia coli. Here we show that these conjugates are also active against MDR E. coli and MDR Klebsiella pneumoniae. Moreover, we have shown that resistance to these nanoparticles develops significantly more slowly than to a commercial small-molecule drug. These results, combined with their relatively low toxicity to mammalian cells and biocompatibility in vivo, suggest that gold nanoparticles may be viable new candidates for the treatment of MDR Gram-negative bacterial infections.
Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L
2016-01-01
Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis.
Fiebig, Lena; Kohl, Thomas A; Popovici, Odette; Mühlenfeld, Margarita; Indra, Alexander; Homorodean, Daniela; Chiotan, Domnica; Richter, Elvira; Rüsch-Gerdes, Sabine; Schmidgruber, Beatrix; Beckert, Patrick; Hauer, Barbara; Niemann, Stefan; Allerberger, Franz; Haas, Walter
2017-01-12
Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders. This article is copyright of The Authors, 2017.
Zhu, Jing; Ling, Yang; Xu, Yun; Lu, Ming-Zhu; Liu, Yong-Ping; Zhang, Chang-Song
2015-01-01
Background: The aim is to discuss the relationship of Line-1 methylation and the MDR1 expression in esophageal squamous cell carcinoma (ESCC). Methods: We analyzed the methylation level of Line-1 by quantitative real-time MSP, and the expression of MDR1 by real-time RT-PCR in 310 ESCC and corresponding non-tumor tissues. Results: We found that the methylation index (MI) of Line-1 decreased from 0.90 in non-tumor tissues toward 0.78 in ESCC. The cumulative survival was significantly shorter in ESCC patients with MI ≤ 0.78 (34 months) than that in patients with MI > 0.78 (43 months). There was a statistical difference between MI ≤ 0.78 and MI > 0.78 cases with these clinicopathologic parameters (age, AJCC stage, differentiation; P = 0.010, P < 0.0001, P = 0.015, respectively). These results implied that Line-1 hypomethylation could be more in ESCC patients with older, advanced tumor and poor differentiation group. Meanwhile, ESCC with demethylation of Line-1 were shown elevated MDR1 expression in tumor (Mean-∆∆Ct = 0.21), but ESCC with hypermethylation of Line-1 were considered to be decreased MDR1 expression in tumor (Mean-∆∆Ct = -0.86). Conclusions: Line-1 hypomethylation could be as a biomarker of poor prognosis in ESCC patients. MDR1 gene could be activated via epigenetic mechanisms with demethylation of Line-1 in ESCC, and enhance tumor progression. PMID:26823755
Tang, Xiao-Yan; Zhu, You-Qing
2008-06-01
This study investigated the effects of epigallocatechin-3-gallate (EGCG) on the expression of HSP 70 and MDR 1. SGC-7901 cells were cultured with RPMI 1640 medium. The single or combined effects of EGCG (0.1, 1, 10, 20, and 40 micromol/L) and heat shock were examined by MTT assay. The expression of HSP 70 and MDR 1 was semi-quantified by the reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry method (SP staining). EGCG suppressed cell proliferation at a time- and dose-dependent manner. The effects of combined treatment with EGCG and heat shock on the growth of SGC-7901 cells were stronger than single effects of EGCG. After using EGCG for 24 h, 48 h and 72 h, the IC50s were 112.5 micromol/l, 21.41 micromol/l and 5.24 micromol/l, respectively. Heat shock stimulated the over-expression of HSP 70, especially after heat shock for 8 h, as well as MDR1 after heat shock for 24 h. But EGCG suppressed the over-expression induced by heat shock. The authors conclude that EGCG inhibited the proliferation of SGC-7901, and EGCG combined with heat shock strengthened the effects. Heat shock weakened the over-expression of HSP 70 and MDR1; however, EGCG suppressed the over-expression of HSP 70 and MDR1 induced by heat shock. EGCG combined with heat shock may enhance the sensitivity of drugs to tumors.
Gómez-Gómez, Alejandro; Magaña-Aquino, Martin; López-Meza, Salvador; Aranda-Álvarez, Marcelo; Díaz-Ornelas, Dora E; Hernández-Segura, María Guadalupe; Salazar-Lezama, Miguel Ángel; Castellanos-Joya, Martín; Noyola, Daniel E
2015-02-01
Multidrug resistant tuberculosis (MDR-TB) poses problems in treatment, costs and treatment outcomes. It is not known if classically described risk factors for MDR-TB in other countries are the same in Mexico and the frequency of the association between diabetes mellitus (DM) and MDR-TB in our country is not clear. We undertook this study to analyze risk factors associated with the development of MDR-TB, with emphasis on DM. A case-control study in the state of San Luis Potosi (SLP), Mexico was carried out. All pulmonary MDR-TB patients diagnosed in the state of SLP between 1998 and 2013 (36 cases) evaluated at a state pharmacoresistant tuberculosis (TB) clinic and committee; 139 controls were randomly selected from all pulmonary non-multidrug-resistant tuberculosis (non-MDR-TB) cases identified between 2003 and 2008. Cases and controls were diagnosed and treated under programmatic conditions. Age, gender, malnutrition, being a health-care worker, HIV/AIDS status, and drug abuse were not significantly different between MDR-TB and non-MDR-TB patients. Significant differences between MDR-TB and non-MDR-TB patients were DM (47.2 vs. 28.1%; p = 0.028); previous anti-TB treatments (3 vs. 0, respectively; p <0.001), and duration of first anti-TB treatment (8 vs. 6 months, respectively; p <0.001). MDR-TB and DM are associated in 47.2% of MDR TB cases (17/36) in this study. Other recognized factors were not found to be significantly different in MDR-TB compared to non-MDR-TB in this study. Cost-feasible strategies must be implemented in the treatment of DM-TB in order to prevent the selection of MDR-TB. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Kinetics of MDR Transport in Tumor-Initiating Cells
Koshkin, Vasilij; Yang, Burton B.; Krylov, Sergey N.
2013-01-01
Multidrug resistance (MDR) driven by ABC (ATP binding cassette) membrane transporters is one of the major causes of treatment failure in human malignancy. MDR capacity is thought to be unevenly distributed among tumor cells, with higher capacity residing in tumor-initiating cells (TIC) (though opposite finding are occasionally reported). Functional evidence for enhanced MDR of TICs was previously provided using a “side population” assay. This assay estimates MDR capacity by a single parameter - cell’s ability to retain fluorescent MDR substrate, so that cells with high MDR capacity (“side population”) demonstrate low substrate retention. In the present work MDR in TICs was investigated in greater detail using a kinetic approach, which monitors MDR efflux from single cells. Analysis of kinetic traces obtained allowed for the estimation of both the velocity (V max) and affinity (K M) of MDR transport in single cells. In this way it was shown that activation of MDR in TICs occurs in two ways: through the increase of V max in one fraction of cells, and through decrease of K M in another fraction. In addition, kinetic data showed that heterogeneity of MDR parameters in TICs significantly exceeds that of bulk cells. Potential consequences of these findings for chemotherapy are discussed. PMID:24223908
Rivas-Santiago, Bruno; Castañeda-Delgado, Julio E; Rivas Santiago, Cesar E; Waldbrook, Matt; González-Curiel, Irma; León-Contreras, Juan C; Enciso-Moreno, Jose Antonio; del Villar, Victor; Mendez-Ramos, Jazmin; Hancock, Robert E W; Hernandez-Pando, Rogelio
2013-01-01
Tuberculosis is an ongoing threat to global health, especially with the emergence of multi drug-resistant (MDR) and extremely drug-resistant strains that are motivating the search for new treatment strategies. One potential strategy is immunotherapy using Innate Defence Regulator (IDR) peptides that selectively modulate innate immunity, enhancing chemokine induction and cell recruitment while suppressing potentially harmful inflammatory responses. IDR peptides possess only modest antimicrobial activity but have profound immunomodulatory functions that appear to be influential in resolving animal model infections. The IDR peptides HH2, 1018 and 1002 were tested for their activity against two M. tuberculosis strains, one drug-sensitive and the other MDR in both in vitro and in vivo models. All peptides showed no cytotoxic activity and only modest direct antimicrobial activity versus M. tuberculosis (MIC of 15-30 µg/ml). Nevertheless peptides HH2 and 1018 reduced bacillary loads in animal models with both the virulent drug susceptible H37Rv strain and an MDR isolate and, especially 1018 led to a considerable reduction in lung inflammation as revealed by decreased pneumonia. These results indicate that IDR peptides have potential as a novel immunotherapy against TB.
Chavada, Ruchir; Maley, Michael
2015-01-01
Introduction: Community and healthcare associated infections caused by multi-drug resistant gram negative organisms (MDR GN) represent a worldwide threat. Nucleic Acid Detection tests are becoming more common for their detection; however they can be expensive requiring specialised equipment and local expertise. This study was done to evaluate the utility of a commercial multiplex tandem (MT) PCR for detection of MDR GN. Methods: The study was done on stored laboratory MDR GN isolates from sterile and non-sterile specimens (n=126, out of stored 567 organisms). Laboratory validation of the MT PCR was done to evaluate sensitivity, specificity and agreement with the current phenotypic methods used in the laboratory. Amplicon sequencing was also done on selected isolates for assessing performance characteristics. Workflow and cost implications of the MT PCR were evaluated. Results: The sensitivity and specificity of the MT PCR were calculated to be 95% and 96.7% respectively. Agreement with the phenotypic methods was 80%. Major lack of agreement was seen in detection of AmpC beta lactamase in enterobacteriaceae and carbapenemase in non-fermenters. Agreement of the MT PCR with another multiplex PCR was found to be 87%. Amplicon sequencing confirmed the genotype detected by MT PCR in 94.2 % of cases tested. Time to result was faster for the MT PCR but cost per test was higher. Conclusion: This study shows that with carefully chosen targets for detection of resistance genes in MDR GN, rapid and efficient identification is possible. MT PCR was sensitive and specific and likely more accurate than phenotypic methods. PMID:26464612
Zhu, Yu; Lu, Gui-Hua; Bian, Zhuo-Wu; Wu, Feng-Yao; Pang, Yan-Jun; Wang, Xiao-Ming; Yang, Rong-Wu; Tang, Cheng-Yi; Qi, Jin-Liang; Yang, Yong-Hua
2017-11-13
Shikonin is a naphthoquinone secondary metabolite with important medicinal value and is found in Lithospermum erythrorhizon. Considering the limited knowledge on the membrane transport mechanism of shikonin, this study investigated such molecular mechanism. We successfully isolated an ATP-binding cassette protein gene, LeMDR, from L. erythrorhizon. LeMDR is predominantly expressed in L. erythrorhizon roots, where shikonin accumulated. Functional analysis of LeMDR by using the yeast cell expression system revealed that LeMDR is possibly involved in the shikonin efflux transport. The accumulation of shikonin is lower in yeast cells transformed with LeMDR-overexpressing vector than that with empty vector. The transgenic hairy roots of L. erythrorhizon overexpressing LeMDR (MDRO) significantly enhanced shikonin production, whereas the RNA interference of LeMDR (MDRi) displayed a reverse trend. Moreover, the mRNA expression level of LeMDR was up-regulated by treatment with shikonin and shikonin-positive regulators, methyl jasmonate and indole-3-acetic acid. There might be a relationship of mutual regulation between the expression level of LeMDR and shikonin biosynthesis. Our findings demonstrated the important role of LeMDR in transmembrane transport and biosynthesis of shikonin.
Brunner, Ralf; Ng, Caroline L.; Aissaoui, Hamed; Akabas, Myles H.; Boss, Christoph; Brun, Reto; Callaghan, Paul S.; Corminboeuf, Olivier; Fidock, David A.; Frame, Ithiel J.; Heidmann, Bibia; Le Bihan, Amélie; Jenö, Paul; Mattheis, Corinna; Moes, Suzette; Müller, Ingrid B.; Paguio, Michelle; Roepe, Paul D.; Siegrist, Romain; Voss, Till; Welford, Richard W. D.; Wittlin, Sergio; Binkert, Christoph
2013-01-01
A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615. PMID:23754276
Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk
2011-03-01
P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment.
Lange, Christoph; Chesov, Dumitru; Heyckendorf, Jan; Leung, Chi C; Udwadia, Zarir; Dheda, Keertan
2018-04-11
The emergence of antimicrobial resistance against Mycobacterium tuberculosis, the leading cause of mortality due to a single microbial pathogen worldwide, represents a growing threat to public health and economic growth. The global burden of multidrug-resistant tuberculosis (MDR-TB) has recently increased by an annual rate of more than 20%. According to the World Health Organization approximately only half of all patients treated for MDR-TB achieved a successful outcome. For many years, patients with drug-resistant tuberculosis (TB) have received standardized treatment regimens, thereby accelerating the development of MDR-TB through drug-specific resistance amplification. Comprehensive drug susceptibility testing (phenotypic and/or genotypic) is necessary to inform physicians about the best drugs to treat individual patients with tailor-made treatment regimens. Phenotypic drug resistance can now often, but with variable sensitivity, be predicted by molecular drug susceptibility testing based on whole genome sequencing, which in the future could become an affordable method for the guidance of treatment decisions, especially in high-burden/resource-limited settings. More recently, MDR-TB treatment outcomes have dramatically improved with the use of bedaquiline-based regimens. Ongoing clinical trials with novel and repurposed drugs will potentially further improve cure-rates, and may substantially decrease the duration of MDR-TB treatment necessary to achieve relapse-free cure. © 2018 Asian Pacific Society of Respirology.
Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua
2015-01-01
A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810
Karlgren, Maria; Simoff, Ivailo; Backlund, Maria; Wegler, Christine; Keiser, Markus; Handin, Niklas; Müller, Janett; Lundquist, Patrik; Jareborg, Anne-Christine; Oswald, Stefan; Artursson, Per
2017-09-01
Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Kidd, La Creis Renee; VanCleave, Tiva T.; Doll, Mark A.; Srivastava, Daya S.; Thacker, Brandon; Komolafe, Oyeyemi; Pihur, Vasyl; Brock, Guy N.; Hein, David W.
2011-01-01
Objective We evaluated the individual and combination effects of NAT1, NAT2 and tobacco smoking in a case-control study of 219 incident prostate cancer (PCa) cases and 555 disease-free men. Methods Allelic discriminations for 15 NAT1 and NAT2 loci were detected in germ-line DNA samples using Taqman polymerase chain reaction (PCR) assays. Single gene, gene-gene and gene-smoking interactions were analyzed using logistic regression models and multi-factor dimensionality reduction (MDR) adjusted for age and subpopulation stratification. MDR involves a rigorous algorithm that has ample statistical power to assess and visualize gene-gene and gene-environment interactions using relatively small samples sizes (i.e., 200 cases and 200 controls). Results Despite the relatively high prevalence of NAT1*10/*10 (40.1%), NAT2 slow (30.6%), and NAT2 very slow acetylator genotypes (10.1%) among our study participants, these putative risk factors did not individually or jointly increase PCa risk among all subjects or a subset analysis restricted to tobacco smokers. Conclusion Our data do not support the use of N-acetyltransferase genetic susceptibilities as PCa risk factors among men of African descent; however, subsequent studies in larger sample populations are needed to confirm this finding. PMID:21709725
Lu, Xiaoyan; Smare, Caitlin; Kambili, Chrispin; El Khoury, Antoine C; Wolfson, Lara J
2017-01-26
Less than one-third of patients who are estimated to be infected with multidrug-resistant tuberculosis (MDR-TB) receive MDR-TB treatment regimens, and only 48% of those who received treatment have successful outcomes. Despite current regimens, newer, more effective and cost-effective approaches to treatment are needed. The aim of the study was to project health outcomes and impact on healthcare resources of adding bedaquiline to the treatment regimen of MDR-TB in selected high burden countries: Estonia, Russia, South Africa, Peru, China, the Philippines, and India. This study adapted an existing Markov model to estimate the health outcomes and impact on total healthcare costs of adding bedaquiline to current MDR-TB treatment regimens. A price threshold analysis was conducted to determine the price range at which bedaquiline would be cost-effective. Adding bedaquiline to the background regimen (BR) resulted in increased disability-adjusted life years (DALYs) averted, and reduced total healthcare costs (excluding treatment acquisition costs) compared with BR alone in all countries analyzed. Addition of bedaquiline to BR resulted in savings to healthcare costs compared with BR alone in all countries analyzed, with the highest impact expected in Russia (US$194 million) and South Africa (US$43 million). The price per regimen at which bedaquiline would be cost-effective ranged between US$23,904-US$203,492 in Estonia, Russia, Peru, South Africa, and China (high and upper middle-income countries) and between US$6,996-US$20,323 in the Philippines and India (lower middle-income countries); however, these cost-effective prices do not necessarily address concerns about affordability. Adding bedaquiline to BR provides improvements in health outcomes and reductions in healthcare costs in high MDR-TB burden countries. The range of prices per regimen for which bedaquiline would be cost-effective varied between countries.
Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei
2011-03-15
The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.
Xiong, Yuqing; Yuan, Zhao; Yang, Jingzhi; Xia, Chunhua; Li, Xinhua; Huang, Shibo; Zhang, Hong; Liu, Mingyi
2016-04-01
Rupatadine (RUP) is an oral antihistamine and platelet-activating factor antagonist and is shown as the substrate of CYP3A5 and P-gp. The significant interindividual differences of CYP3A5 and P-gp often cause bioavailability differences of some clinical drugs. The present study is aimed to evaluate the effect of genetic polymorphisms of CYP3A5 and MDR1 on RUP pharmacokinetics in healthy male Chinese volunteer subjects. Blood samples were collected from 36 subjects before and after a single, oral RUP 10 mg dose. A PCR-RFLP assay was used to genotype CYP3A5*3 and assess MDR1 C3435T variation. A validated LC-MS/MS method quantified plasma RUP concentration. The relationship between RUP plasma concentration, pharmacokinetic parameters, and polymorphic alleles (CYP3A5 and MDR1) were assessed. Plasma RUP concentrations were lower for CYP3A5*1/*1 carriers than for CYP3A5*3/*3 and CYP3A5*1/*3 carriers. Mean C(max), AUC(0-t) and AUC(0-∞) were significantly lower, and the CLz and Vd were significantly higher in the CYP3A5 wild-type group, than in the CYP3A5 mutated group. MDR1 CT and MDR1 TT carriers had lower plasma RUP concentrations than MDR1 CC carriers. The mean C(max), AUC(0-t), AUC(0-∞) and T max were significantly lower in the TT group than in the CC and CT groups. The mean CLz was higher in the TT group than in the CC and CT groups, but not significantly. These results suggest that CYP3A5 and MDR1 may play a key role in the variability of RUP metabolism and transport, respectively. CYP3A5 and MDR1 polymorphisms may be the main explanation for the differences observed in RUP pharmacokinetics, and therefore may provide a rationale for safe and effective clinical use of RUP. Our research lays down a solid theory foundation to guide the safe and effective clinical use of RUP and a route to achieve individualized therapy.
Wáng, Yì Xiáng J; Chung, Myung Jin; Skrahin, Aliaksandr; Rosenthal, Alex; Gabrielian, Andrei; Tartakovsky, Michael
2018-03-01
Despite that confirmative diagnosis of pulmonary drug-sensitive tuberculosis (DS-TB) and multidrug resistant tuberculosis (MDR-TB) is determined by microbiological testing, early suspicions of MDR-TB by chest imaging are highly desirable in order to guide diagnostic process. We aim to perform an analysis of currently available literatures on radiological signs associated with pulmonary MDR-TB. A literature search was performed using PubMed on January 29, 2018. The search words combination was "((extensive* drug resistant tuberculosis) OR (multidrug-resistant tuberculosis)) AND (CT or radiograph or imaging or X-ray or computed tomography)". We analyzed English language articles reported sufficient information of radiological signs of DS-TB vs. MDR-TB. Seventeen articles were found to be sufficiently relevant and included for analysis. The reported pulmonary MDR-TB cases were grouped into four categories: (I) previously treated (or 'secondary', or 'acquired') MDR-TB in HIV negative (-) adults; (II) new (or 'primary') MDR-TB in HIV(-) adults; (III) MDR-TB in HIV positive (+) adults; and (IV) MDR-TB in child patients. The common radiological findings of pulmonary MDR-TB included centrilobular small nodules, branching linear and nodular opacities (tree-in-bud sign), patchy or lobular areas of consolidation, cavitation, and bronchiectasis. While overall MDR-TB cases tended to have more extensive disease, more likely to be bilateral, to have pleural involvement, to have bronchiectasis, and to have lung volume loss; these signs alone were not sufficient for differential diagnosis of MDR-TB. Current literatures suggest that the radiological sign which may offer good specificity for pulmonary MDR-TB diagnosis, though maybe at the cost of low sensitivity, would be thick-walled multiple cavities, particularly if the cavity number is ≥3. For adult HIV(-) patients, new MDR-TB appear to show similar prevalence of cavity lesion, which was estimated to be around 70%, compared with previously treated MDR-TB. Thick-walled multiple cavity lesions present the most promising radiological sign for MDR-TB diagnosis. For future studies cavity lesion characteristics should be quantified in details.
[Multidrug resistance E-ESKAPE strains isolated from blood cultures in patients with cancer].
Velázquez-Acosta, Consuelo; Cornejo-Juárez, Patricia; Volkow-Fernández, Patricia
2018-01-01
To describe the trend of multidrug resistant (MDR) strains isolated from blood in patients with cancer from 2005 to 2015. 33 127 blood cultures were processed by retrospective analysis. Identification and antimicrobial sensitivity were performed through automated methods: WaLK away (Siemens Labora- tory Diagnostics) and BD Phoenix (Becton, Dickinson and Company). Resistant strains were determined according to the minimum inhibitory concentration, following the parameters of the Clinical and Laboratory Standards Institute (CLSI). Of 6 397 isolates, 5 604 (16.9%) were positive; 3 732 (58.4%) Gram- bacilli; 2 355 (36.9%) Gram+ cocci; 179 (2.7%) yeasts, and 126 (1.9%) Gram+ bacilli. Escherichia coli (n=1 591, 24.5%) was the most frequent bacteria, with 652 (41%) strains being extended-spectrum beta-lactamases producers (ESBL); of Enterococcus faecium (n=143, 2.1%), 45 (31.5%) were vancomycin resistant; of Staphylococcus aureus (n=571, 8.7%), 121 (21.2%) methicillin resistant (MRSA); of Klebsiella pneumoniae (n=367, 5.6%), 41 (11.2%) ESBL; of Acinetobacter baumanii (n=96, 1.4%), 23 (24%) MDR, and of Pseudomonas aeruginosa (n=384, 5.6%), 43 (11.2%) MDR. MDR strains were significantly more frequent in patients with hematological malignancies, compared to those with solid tumors: MRSA (OR=4.48, 95%CI 2.9-6.8), ESBL E. coli(OR=1.3, 95%CI 1.10-1.65) and MDR Acinetobacter baumanii (OR=3.2, 95%CI 1.2-8.3). We observed significantly higher isolations of E-ESPAKE MDR strains in patients with hematological malignancies.
Singh, Rambir; Hussain, Shariq; Verma, Rajesh; Sharma, Poonam
2013-05-13
To find out the anti-mycobacterial potential of Cassia sophera (C. sophera), Urtica dioica (U. dioica), Momordica dioica, Tribulus terrestris and Coccinia indica plants against multi-drug resistant (MDR) strain of Mycobacterium tuberculosis (M. tuberculosis). Plant materials were extracted successively with solvents of increasing polarity. Solvent extracts were screened for anti-mycobacterial activity against fast growing, non-pathogenic mycobacterium strain, Mycobacterium semegmatis, by disk diffusion method. The active extracts were tested against MDR and clinical isolates of M. tuberculosis by absolute concentration and proportion methods. The active extracts were subjected to bio-autoassay on TLC followed by silica column chromatography for isolation of potential drug leads. Hexane extract of U. dioica (HEUD) and methanol extract of C. sophera (MECS) produced inhibition zone of 20 mm in disc diffusion assay and MIC of 250 and 125 μ g/mL respectively in broth dilution assay against Mycobacterium semegmatis. Semipurified fraction F2 from MECS produced 86% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. F18 from HEUD produced 81% inhibition against clinical isolate and 60% inhibition against MDR strain of M. tuberculosis. Phytochemical analysis indicated that anti-mycobacterial activity of MECS may be due to presence of alkaloids or flavonoids and that of HEUD due to terpenoids. C. sophera and U. dioica plant extracts exhibited promising anti-mycobacterial activity against MDR strain of M. tuberculosis. This is the first report of anti-mycobacterial activity form C. sophera. This study showed possibility of purifying novel anti-mycobacterial compound(s) from C. sophera and U. dioica. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Uribe-Beltrán, Magdalena de Jesús; Ahumada-Santos, Yesmi Patricia; Díaz-Camacho, Sylvia Páz; Eslava-Campos, Carlos Alberto; Reyes-Valenzuela, Jesús Ernesto; Báez-Flores, María Elena; Osuna-Ramírez, Ignacio; Delgado-Vargas, Francisco
2017-07-01
This paper aims to evaluate the antimicrobial resistance of Esherichia coli isolates from children under 5 years old, with and without diarrhoea, who were hospital outpatients in Culiacan, Sinaloa, Mexico. It also looks at the antimicrobial activity of fruit extracts against selected multidrug-resistant (MDR) E. coli strains. A total of 205 E. coli isolates from stool samples were collected from 94 children under 5 years old who were outpatients from two hospitals in the city of Culiacan, Sinaloa, Mexico, during the autumn/winter of 2003/04; their resistance profiles to 19 commercial antimicrobials were investigated using the Kirby-Bauer method. The antibacterial activities of extracts/fractions of fruits (i.e. uvalama, Vitex mollis; ayale, Crescentia alata; and arrayan, Psidium sartorianum) were evaluated using the broth microdilution method. All E. coli isolates were susceptible to amikacin, nitrofurantoin and meropenem, and approximately 96 % were resistant to at least one antimicrobial, especially carbenicillin (93.2 %), cefuroxime sodium (53.7 %), ampicillin (40 %) and trimethoprim/sulfamethoxazole (35.1 %). Likewise, the frequency of MDR strains (44.9 %) was high, and no significant association with diarrhoea symptoms was found. Remarkably, all fruit extracts/fractions showed antibacterial activity against some, but not all, MDR isolates. The lowest minimal inhibitory concentration values were for the hexane fraction of arrayan (0.25 mg ml-1). A high number of antimicrobial-resistant E. coli (especially to β-lactams and sulfonamides) and MDR isolates were detected in children under 5 years old, irrespective of diarrhoea symptoms; this is novel information for Culiacan, Sinaloa, Mexico. Moreover, our results showed that the studied fruit extracts/fractions are potential alternative or complementary treatments for MDR E. coli strains.
Mody, Lona; Gibson, Kristen E.; Horcher, Amanda; Prenovost, Katherine; McNamara, Sara E.; Foxman, Betsy; Kaye, Keith S.; Bradley, Suzanne
2015-01-01
OBJECTIVE To characterize the epidemiology of multidrug-resistant (MDR) Acinetobacter baumannii colonization in high-risk nursing home (NH) residents. DESIGN Nested case-control study within a multicenter prospective intervention trial. SETTING Four NHs in Southeast Michigan. PARTICIPANTS Case patients and control subjects were NH residents with an indwelling device (urinary catheter and/or feeding tube) selected from the control arm of the Targeted Infection Prevention study. Cases were residents colonized with MDR (resistant to ≥3 classes of antibiotics) A. baumannii; controls were never colonized with MDR A. baumannii. METHODS For active surveillance cultures, specimens from the nares, oropharynx, groin, perianal area, wounds, and device insertion site(s) were collected upon study enrollment, day 14, and monthly thereafter. A. baumannii strains and their susceptibilities were identified using standard microbiologic methods. RESULTS Of 168 NH residents, 25 (15%) were colonized with MDR A. baumannii. Compared with the 143 controls, cases were more functionally disabled (Physical Self-Maintenance Score >24; odds ratio, 5.1 [95% CI, 1.8–14.9]; P < .004), colonized with Proteus mirabilis (5.8 [1.9–17.9]; P < .003), and diabetic (3.4 [1.2–9.9]; P < .03). Most cases (22 [88%]) were colonized with multiple antibiotic-resistant organisms and 16 (64%) exhibited co-colonization with at least one other resistant gram-negative bacteria. CONCLUSION Functional disability, P. mirabilis colonization, and diabetes mellitus are important risk factors for colonization with MDR A. baumannii in high-risk NH residents. A. baumannii exhibits widespread antibiotic resistance and a preference to colonize with other antibiotic-resistant organisms, meriting enhanced attention and improved infection control practices in these residents. PMID:26072936
Beukes, Lorika S; King, Tracy L B; Schmidt, Stefan
2017-11-01
Due to the frequent use of antibiotics and recurring illnesses related to multidrug-resistant (MDR) bacteria in South Africa, we determined if MDR Escherichia coli were present in pit latrine fecal sludge samples obtained from a peri-urban community in KwaZulu-Natal, South Africa. The abundance of E. coli in pit latrine samples was established using a most probable number (MPN) method with species confirmation done using biochemical tests and polymerase chain reaction (PCR). Forty-four randomly selected E. coli pit latrine isolates were further characterized, using the European committee on antimicrobial susceptibility testing (EUCAST) disk diffusion method to establish antibiotic resistance profiles for these E. coli isolates. The resulting MPN values for E. coli ranged from one to 6.2 log 10 MPN per gram of fresh pit latrine fecal sludge. While only 3 out of 44 E. coli pit latrine isolates showed no resistance to any of the 12 tested antibiotics, most isolates were resistant to two or more antibiotics. The majority of isolates showed resistance to at least one of the two tested aminoglycosides, one isolate showed resistance to the carbapenem ertapenem, and although resistance was not detected for tigecycline four pit latrine E. coli isolates showed intermediate resistance to this antibiotic. However, about 14% of the E. coli pit latrine isolates were categorized as MDR, all of which showed resistance to four or more antibiotics. The presence of MDR E. coli strains in pit latrine samples demonstrates that these facilities are potential sources for MDR bacteria. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mata-Espinosa, Dulce A; Mendoza-Rodríguez, Valentin; Aguilar-León, Diana; Rosales, Ricardo; López-Casillas, Fernando; Hernández-Pando, Rogelio
2008-06-01
We constructed recombinant adenoviruses encoding murine interferon-γ (AdIFNγ) and tested its therapeutic efficiency in a well characterized model of progressive pulmonary tuberculosis (TB) in Balb/c mice, infected through the trachea with the laboratory drug-susceptible H37Rv strain or multidrug-resistant (MDR) clinical isolate. When the disease was in a late phase, 2 months after infection, we administered by intratracheal cannulation a single dose [1.7 × 10 9 plaque forming units (pfu)] of AdIFNγ or the control adenovirus. Groups of mice were killed at different time-points and the lungs were examined to determine bacilli colony forming units (CFU), cytokine/chemokine gene expression, and CD4/CD8 subpopulations, and also subjected to automated histomorphometry. In comparison with the control group, after 2 weeks of treatment and during the next 6 months, AdIFNγ-treated animals infected with either the H37Rv strain or the MDR strain showed significantly lower bacilli loads and tissue damage (pneumonia), higher expressions of IFN-γ, tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS), and bigger granulomas. When compared with the results from conventional chemotherapy or AdIFNγ treatment alone, the combined treatment with AdIFNγ plus conventional chemotherapy shortened the time taken for reduction of bacillary load. This shows that gene therapy with AdIFNγ efficiently reconstituted the protective immune response and controlled the progress of pulmonary TB produced by MDR or non-MDR strains. Copyright © 2008 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lijun; Wu, Jinjun; Zhao, Min
Aconitine (AC) is the primary bioactive/toxic alkaloid in plants of the Aconitum species. Our previous study demonstrated that Mdr1 was involved in efflux of AC. However, the mechanism by which Mdr1 regulates the efficacy/toxicity of AC in vivo remains unclear. The present study aimed to determine the effects of Mdr1a on the efficacy/toxicity and pharmacokinetics of AC in wild-type and Mdr1a{sup −/−} FVB mice. After oral administration of AC, significantly higher analgesic effect was observed in Mdr1a{sup −/−} mice (49% to 105%) compared to wild-type mice (P < 0.05). The levels of s100-β protein and creatine kinase, which indicate cerebralmore » and myocardial damage, respectively, were also significantly increased (P < 0.05) in Mdr1a{sup −/−} mice. Histopathological examination revealed that the Mdr1a{sup −/−} mice suffered from evident cerebral and myocardial damages, but the wild-type mice did not. These findings suggested that Mdr1a deficiency significantly promoted the analgesic effect of AC and exacerbated its toxicity. Pharmacokinetic experiments showed that T{sub 1/2} of AC in the Mdr1a{sup −/−} mice was significantly higher (from 87% to 300%) than that in wild-type mice (P < 0.05). The distribution of AC in the brain of Mdr1a{sup −/−} mice was 2- to 32-fold higher than that in the brains of wild-type mice (P < 0.05). Toxic reactions were more severe in Mdr1a{sup −/−} mice compared to wild-type mice. In conclusion, Mdr1a deficiency significantly enhanced the analgesic effect of AC and exacerbated its toxicity by upregulating its distribution to the brain and decreasing its plasma elimination rate. Thus, Mdr1a dysfunction may cause severe AC poisoning. - Highlights: • The efficacy and toxicity of aconitine were significantly enhanced in Mdr1a{sup −/−} mice. • The distribution of aconitine to the brain was remarkably increased in Mdr1a{sup −/−} mice. • The elimination rate of aconitine was significantly decreased in Mdr1a{sup −/−} mice.« less
Impact of diabetes on treatment outcomes and long-term survival in multidrug-resistant tuberculosis.
Kang, Young Ae; Kim, Song Yee; Jo, Kyung-Wook; Kim, Hee Jin; Park, Seung-Kyu; Kim, Tae-Hyung; Kim, Eun Kyung; Lee, Ki Man; Lee, Sung Soon; Park, Jae Seuk; Koh, Won-Jung; Kim, Dae Yun; Shim, Tae Sun
2013-01-01
Few studies have investigated the impact of diabetes mellitus (DM), a globally increasing metabolic disease, on treatment outcomes and long-term survival in patients with multidrug-resistant forms of tuberculosis (MDR-TB). We analyzed outcomes in a large cohort to assess the impact of DM on treatment outcomes of patients with MDR-TB. MDR-TB patients newly diagnosed or retreated between 2000 and 2002 and followed for 8-11 years were retrospectively analyzed with respect to the effect of DM as a comorbidity on their treatment outcome and long-term survival. Of 1,407 patients with MDR-TB, 239 (17.0%) had coexisting DM. The mean age and body mass index were higher in MDR-TB patients with DM [MDR-TBDM(+)] than in those without DM [MDR-TBDM(-)]. Patients with MDR-TB and a comorbidity of DM had a significantly lower treatment success rate than those without a history of DM (36.0 vs. 47.2%, p = 0.002). In addition, DM was the negative predictor for MDR-TB treatment success in multivariate analyses [odds ratio 0.51, 95% confidence interval (CI) 0.26-0.99]. Mean survival times were also lower in MDR-TBDM(+) than in MDR-TBDM(-) patients (102 vs. 114 months, p = 0.001), with DM as a significant predictor of poor long-term survival in multivariate analyses (hazard ratio 1.59, 95% CI 1.01-2.50). Among MDR-TB patients, DM was a relatively common comorbidity. In patients undergoing treatment for MDR-TB and followed for 8-11 years, it was found to be independently associated with an increased risk of both treatment failure and death. Copyright © 2013 S. Karger AG, Basel.
Wang, Yingzheng; Liu, Mingjun; Zhang, Jiyang; Liu, Yuwen; Kopp, Megan; Zheng, Weiwei; Xiao, Shuo
2018-05-01
Multidrug resistance protein 1 (MDR1), a phase III drug transporter that exports substrates out of cells, has been discovered in both cancerous and normal tissues. The over expression of MDR1 in cancer cells contributes to multiple drug resistance, whereas the MDR1 in normal tissues protects them from chemical-induced toxicity. Currently, the role of MDR1 in the ovary has not been entirely understood. Our objective is to determine the function of MDR1 in protecting against chemotherapy-induced ovarian toxicity. Using both the in vivo transgenic mouse model and in vitro follicle culture model, we investigated the expression of MDR1 in the ovary, the effect of MDR1 deficiency on doxorubicin (DOX)-induced ovarian toxicity, and the ovarian steroid hormonal regulation of MDR1. Results showed that the MDR1 was expressed in the ovarian epithelial cells, stroma cells, theca cell layers, endothelial cells, and luteal cells. The lack of MDR1 did not affect female ovarian function and fertility; however, its deficiency significantly exacerbated the DOX-induced ovarian toxicity in both in vivo and in vitro models. The MDR1 showed significantly higher expression levels in the ovaries at estrus and metestrus stages than those at proestrus and diestrus stages. However, this dynamic expression pattern was not regulated by the ovarian steroid hormones of estrogen (E2) and progesterone (P4) but correlated to the number and status of corpus luteum. In conclusion, our study demonstrates that the lack of MDR1 promotes DOX-induced ovarian toxicity, suggesting the critical role of MDR1 in protecting female ovarian functions during chemotherapy.
Lavilla Lerma, Leyre; Benomar, Nabil; Valenzuela, Antonio Sánchez; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate
2014-12-01
Enterococcus faecalis and Enterococcus faecium isolated from various traditional fermented foods of both animal and vegetable origins have shown multidrug resistance to several antibiotics and tolerance to biocides. Reduced susceptibility was intra and inter-species dependent and was due to specific and unspecific mechanisms such as efflux pumps. EfrAB, a heterodimeric ABC transporter efflux pump, was detected in 100% of multidrug resistant (MDR) E. faecalis strains and only in 12% of MDR E. faecium strains. EfrAB expression was induced by half of minimum inhibitory concentration (MIC) of gentamicin, streptomycin and chloramphenicol. However, expression of efrA and efrB genes was highly dependent on the strain tested and on the antimicrobial used. Our results indicated that 3 mM EDTA highly reduced the MICs of almost all drugs tested. Nevertheless, the higher reductions (>8 folds) were obtained with gentamicin, streptomycin, chlorhexidine and triclosan. Reductions of MICs were correlated with down-regulation of EfrAB expression (10-140 folds) in all three MDR enterococci strains. This is the first report describing the role of EfrAB in the efflux of antibiotics and biocides which reflect also the importance of EfrAB in multidrug resistance in enterococci. EDTA used at low concentration as food preservative could be one of the best choices to prevent spread of multidrug resistant enterococci throughout food chain by decreasing EfrAB expression. EfrAB could be an attractive target not only in enterococci present in food matrix but also those causing infections as well by using EDTA as therapeutic agent in combination with low doses of antibiotics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diagnosis of cancer multidrug resistance by bacterium-mediated imaging.
Elkadi, Omar Anwar; Abdelbasset, Muhammad
2016-04-01
Multidrug resistance (MDR) is a phenomenon expressed by many tumors affecting the chemotherapy efficacy, treatment decision, and the disease prognosis. Considering its great implication, non-invasive approaches are needed to identify this phenomenon in early stages of the disease. This article discusses the potential of the emerging non-invasive bacterium-mediated imaging of cancer in diagnosis of MDR. This potential is derived from the effect of cancer MDR on the pharmacokinetics of certain antibiotics, which are substrates of the MDR proteins. Since MDR proteins actively pump their substrates outside the resistant cancer cells, the elimination of the employed reporter bacteria, proliferating within MDR cancer cells, would require a larger dose of these antibiotics compared to those inside non-MDR cancer cells. These bacteria bear reporter genes that produce specific signals such as bioluminescent, fluorescent, magnetic, or radioactive signals that can be detected by non-invasive imaging modalities. Therefore, the presence, degree, and mechanism of MDR can be estimated by comparing the concentration of the employed antibiotic, required to cease these signals (reflecting the elimination of the bacteria), to a pre-determined reference. The real time imaging of MDR cancer and the early diagnosis of MDR, offered by this approach, would provide a better tool for preclinical studies of MDR, and allow a prompt choice of the most appropriate therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ködmön, Csaba; van den Boom, Martin; Zucs, Phillip; van der Werf, Marieke Johanna
2017-11-01
BackgroundConfirming tuberculosis (TB) in children and obtaining information on drug susceptibility is essential to ensure adequate treatment. We assessed whether there are gaps in diagnosis and treatment of multidrug-resistant (MDR) TB in children in the European Union and European Economic Area (EU/EEA), quantified the burden of MDR TB in children and characterised cases. Methods : We analysed surveillance data from 2007 to 2015 for paediatric cases younger than 15 years. Results : In that period, 26 EU/EEA countries reported 18,826 paediatric TB cases of whom 4,129 (21.9%) were laboratory-confirmed. Drug susceptibility testing results were available for 3,378 (17.9%), representing 81.8% of the confirmed cases. The majority (n = 2,967; 87.8%) had drug-sensitive TB, 249 (7.4%) mono-resistant TB, 64 (1.9%) poly-resistant TB, 90 (2.7%) MDR TB and eight (0.2%) had extensively drug-resistant (XDR) TB. MDR TB was more frequently reported among paediatric cases with foreign background (adjusted odds ratio (aOR) = 1.73; 95% confidence interval (95% CI): 1.12-2.67) or previous TB treatment (aOR: 6.42; 95% CI: 3.24-12.75). Successful treatment outcome was reported for 58 of 74 paediatric MDR TB cases with outcome reported from 2007 to 2013; only the group of 5-9 years-olds was significantly associated with unsuccessful treatment outcome (crude odds ratio (cOR) = 11.45; 95% CI: 1.24-106.04). Conclusions : The burden of MDR TB in children in the EU/EEA appears low, but may be underestimated owing to challenges in laboratory confirmation. Diagnostic improvements are needed for early detection and adequate treatment of MDR TB. Children previously treated for TB or of foreign origin may warrant higher attention.
Salindri, Argita D.; Kipiani, Maia; Kempker, Russell R.; Gandhi, Neel R.; Darchia, Lasha; Tukvadze, Nestani; Blumberg, Henry M.; Magee, Matthew J.
2016-01-01
Background. Diabetes is a risk factor for active tuberculosis (TB), but little is known about the relationship between diabetes and multidrug-resistant (MDR) TB. We aimed to assess risk factors for primary MDR TB, including diabetes, and determine whether diabetes reduced the rate of sputum culture conversion among patients with MDR TB. Methods. From 2011 to 2014, we conducted a cohort study at the National Center for Tuberculosis and Lung Diseases in Tbilisi, Georgia. Adult (≥35 years) patients with primary TB were eligible. Multidrug-resistant TB was defined as resistance to at least rifampicin and isoniazid. Patients with capillary glycosylated hemoglobin (HbA1c) ≥ 6.5% or previous diagnosis were defined to have diabetes. Polytomous regression was used to estimate the association of patient characteristics with drug resistance. Cox regression was used to compare rates of sputum culture conversion in patients with and without diabetes. Results. Among 318 patients with TB, 268 had drug-susceptibility test (DST) results. Among patients with DST results, 19.4% (52 of 268) had primary MDR TB and 13.4% (36 of 268) had diabetes. In multivariable analyses, diabetes (adjusted odds ratio [aOR], 2.51; 95% confidence interval [CI], 1.00–6.31) and lower socioeconomic status (aOR, 3.51; 95% CI, 1.56–8.20) were associated with primary MDR TB. Among patients with primary MDR TB, 44 (84.6%) converted sputum cultures to negative. The rate of sputum culture conversion was lower among patients with diabetes (adjusted hazard ratio [aHR], 0.34; 95% CI, .13–.87) and among smokers (aHR, 0.16; 95% CI, .04–.61). Conclusions. We found diabetes was associated with an increased risk of primary MDR TB; both diabetes and smoking were associated with a longer time to sputum culture conversion. PMID:27419188
Saupe, Madeleine; Rauschenberger, Lisa; Preuß, Melanie; Oswald, Stefan; Fussek, Sebastian; Zimmermann, Uwe; Walther, Reinhard; Knabbe, Cornelius; Burchardt, Martin; Stope, Matthias B
2015-10-01
The development of a drug-resistant phenotype is the major challenge during treatment of castration-resistant prostate cancer (PC). In solid cancer entities, one of the major contributors to chemoresistance is the multidrug resistance 1 (MDR1) protein. Believed to be involved in the induction of MDR1 expression is the presence of anticancer drugs as well as the Y box binding protein 1 (YB-1). Basal as well as drug-induced expression of MDR1 in established PC cell lines was assessed by Western blotting and mass spectrometry. Subsequently, the influence of YB-1 on MDR1 expression was examined via transient overexpression of YB-1. While LNCaP and PC-3 cells showed no detectable amounts of MDR1, the resistance factor was found to be expressed in 22Rv1 cells. Despite this difference, all three cell lines demonstrated similar growth behavior in the presence of the first-line chemotherapeutic agent docetaxel. Incubation of 22Rv1 cells with docetaxel, cabazitaxel, and abiraterone did not significantly alter MDR1 expression levels. Furthermore, overexpression of the MDR1 controlling factor YB-1 showed no impact on MDR1 expression levels. MDR1 was detectable in the PC cell line 22Rv1. However, this study suggests that MDR1 is of less importance for drug resistance in PC cells than in other types of solid cancer. Furthermore, in contrast to YB-1 properties in other malignancies, MDR1 regulation through YB-1 seems to be unlikely.
The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.
Hirose, Masao
2009-04-01
There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer.
Bastos, Mayara L.; Hussain, Hamidah; Weyer, Karin; Garcia-Garcia, Lourdes; Leimane, Vaira; Leung, Chi Chiu; Narita, Masahiro; Penã, Jose M.; Ponce-de-Leon, Alfredo; Seung, Kwonjune J.; Shean, Karen; Sifuentes-Osornio, José; Van der Walt, Martie; Van der Werf, Tjip S.; Yew, Wing Wai; Menzies, Dick; Ahuja, S.; Ashkin, D.; Avendaño, M.; Banerjee, R.; Bauer, M.; Becerra, M.; Benedetti, A.; Burgos, M.; Centis, R.; Chan, E.D.; Chiang, C.Y.; Cobelens, F.; Cox, H.; D'Ambrosio, L.; de Lange, W.C.M.; DeRiemer, K.; Enarson, D.; Falzon, D.; Flanagan, K.; Flood, J.; Gandhi, N.; Garcia-Garcia, L.; Granich, R.M.; Hollm-Delgado, M.G.; Holtz, T.H.; Hopewell, P.; Iseman, M.; Jarlsberg, L.G.; Keshavjee, S.; Kim, H.R.; Koh, W.J.; Lancaster, J.; Lange, C.; Leimane, V.; Leung, C.C.; Li, J.; Menzies, D.; Migliori, G.B.; Mitnick, C.M.; Narita, M.; Nathanson, E.; Odendaal, R.; O'Riordan, P.; Pai, M.; Palmero, D.; Park, S.K.; Pasvol, G.; Pena, J.; Pérez-Guzmán, C.; Ponce-de-Leon, A.; Quelapio, M.I.D.; Quy, H.T.; Riekstina, V.; Robert, J.; Royce, S.; Salim, M.; Schaaf, H.S.; Seung, K.J.; Shah, L.; Shean, K.; Shim, T.S.; Shin, S.S.; Shiraishi, Y.; Sifuentes-Osornio, J.; Sotgiu, G.; Strand, M.J.; Sung, S.W.; Tabarsi, P.; Tupasi, T.E.; Vargas, M.H.; van Altena, R.; van der Walt, M.; van der Werf, T.S.; Viiklepp, P.; Westenhouse, J.; Yew, W.W.; Yim, J.J.
2014-01-01
Background. Individualized treatment for multidrug-resistant (MDR) tuberculosis and extensively drug-resistant (XDR) tuberculosis depends upon reliable and valid drug susceptibility testing (DST) for pyrazinamide, ethambutol, and second-line tuberculosis drugs. However, the reliability of these tests is uncertain, due to unresolved methodological issues. We estimated the association of DST results for pyrazinamide, ethambutol, and second-line drugs with treatment outcomes in patients with MDR tuberculosis and XDR tuberculosis. Methods. We conducted an analysis of individual patient data assembled from 31 previously published cohort studies of patients with MDR and XDR tuberculosis. We used data on patients' clinical characteristics including DST results, treatment received, outcomes, and laboratory methods in each center. Results. DST methods and treatment regimens used in different centers varied considerably. Among 8955 analyzed patients, in vitro susceptibility to individual drugs was consistently and significantly associated with higher odds of treatment success (compared with resistance to the drug), if that drug was used in the treatment regimen. Various adjusted and sensitivity analyses suggest that this was not explained by confounding. The adjusted odds of treatment success for ethambutol, pyrazinamide, and the group 4 drugs ranged from 1.7 to 2.3, whereas for second-line injectables and fluoroquinolones, odds ranged from 2.4 to 4.6. Conclusions. DST for ethambutol, pyrazinamide, and second-line tuberculosis drugs appears to provide clinically useful information to guide selection of treatment regimens for MDR and XDR tuberculosis. PMID:25097082
Map the gap: missing children with drug-resistant tuberculosis
Yuen, C. M.; Rodriguez, C. A.; Keshavjee, S.
2015-01-01
Background: The lack of published information about children with multidrug-resistant tuberculosis (MDR-TB) is an obstacle to efforts to advocate for better diagnostics and treatment. Objective: To describe the lack of recognition in the published literature of MDR-TB and extensively drug-resistant TB (XDR-TB) in children. Design: We conducted a systematic search of the literature published in countries that reported any MDR- or XDR-TB case by 2012 to identify MDR- or XDR-TB cases in adults and in children. Results: Of 184 countries and territories that reported any case of MDR-TB during 2005–2012, we identified adult MDR-TB cases in the published literature in 143 (78%) countries and pediatric MDR-TB cases in 78 (42%) countries. Of the 92 countries that reported any case of XDR-TB, we identified adult XDR-TB cases in the published literature in 55 (60%) countries and pediatric XDR-TB cases for 9 (10%) countries. Conclusion: The absence of publications documenting child MDR- and XDR-TB cases in settings where MDR- and XDR-TB in adults have been reported indicates both exclusion of childhood disease from the public discourse on drug-resistant TB and likely underdetection of sick children. Our results highlight a large-scale lack of awareness about children with MDR- and XDR-TB. PMID:26400601
Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda
2016-02-03
Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils justifies traditional use of this plant. The proven E. camaldulensis essential oil synergistic interactions with conventional antibiotics could lead to the development of new treatment strategies of infections caused by MDR A. baumannii strains in the term of antibiotic dose reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cheng, Ji; Liu, Qun; Shuhendler, Adam J; Rauth, Andrew M; Wu, Xiao Yu
2015-06-01
Glucose oxidase (GOX) encapsulated in alginate-chitosan microspheres (GOX-MS) was shown in our previous work to produce reactive oxygen species (ROS) in situ and exhibit anticancer effects in vitro and in vivo. The purpose of present work was to optimize the design and thus enhance the efficacy of GOX-MS against multidrug resistant (MDR) cancer cells. GOX-MS with different mean diameters of 4, 20 or 140 μm were prepared using an emulsification-internal gelation-adsorption-chitosan coating method with varying compositions and conditions. The GOX loading efficiency, loading level, relative bioactivity of GOX-MS, and GOX leakage were determined and optimal chitosan concentrations in the coating solution were identified. The influence of particle size on cellular uptake, ROS generation, cytotoxicity and their underlying mechanisms was investigated. At the same GOX dose and incubation time, smaller sized GOX-MS produced larger amounts of H2O2 in cell culture medium and greater cytotoxicity toward murine breast cancer MDR (EMT6/AR1.0) and wild type (EMT6/WT) cells. Fluorescence and confocal laser scanning microscopy revealed significant uptake of small sized (4 μm) GOX-MS by both MDR and WT cells, but no cellular uptake of large (140 μm) GOX-MS. The GOX-MS were equally effective in killing both MDR cells and WT cells. The cytotoxicity of the GOX formulations was positively correlated with membrane damage and lipid peroxidation. GOX-MS induced greater membrane damage and lipid peroxidation in MDR cells than the WT cells. These results suggest that the optimized, small micron-sized GOX-MS are highly effective against MDR breast cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Hackel, Meredith A; Tsuji, Masakatsu; Yamano, Yoshinori; Echols, Roger; Karlowsky, James A; Sahm, Daniel F
2018-02-01
The in vitro activity of the investigational siderophore cephalosporin, cefiderocol (formerly S-649266), was determined against a 2014-2016, 52-country, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae ( n = 1,022), multidrug-resistant (MDR) Acinetobacter baumannii ( n = 368), MDR Pseudomonas aeruginosa ( n = 262), Stenotrophomonas maltophilia ( n = 217), and Burkholderia cepacia ( n = 4) using the Clinical and Laboratory Standards Institute (CLSI) standard broth microdilution method. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB), prepared according to a recently approved (2017), but not yet published, CLSI protocol, was used to test cefiderocol; all other antimicrobial agents were tested using CAMHB. The concentration of cefiderocol inhibiting 90% (MIC 90 ) of isolates of carbapenem-nonsusceptible Enterobacteriaceae was 4 μg/ml; cefiderocol MICs ranged from 0.004 to 32 μg/ml, and 97.0% (991/1,022) of isolates demonstrated cefiderocol MICs of ≤4 μg/ml. The MIC 90 s for cefiderocol for MDR A. baumannii , MDR P. aeruginosa , and S. maltophilia were 8, 1, and 0.25 μg/ml, respectively, with 89.7% (330/368), 99.2% (260/262), and 100% (217/217) of isolates demonstrating cefiderocol MICs of ≤4 μg/ml. Cefiderocol MICs for B. cepacia ranged from 0.004 to 8 μg/ml. We conclude that cefiderocol demonstrated potent in vitro activity against a 2014-2016, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae , MDR A. baumannii , MDR P. aeruginosa , S. maltophilia , and B. cepacia isolates as 96.2% of all (1,801/1,873) isolates tested had cefiderocol MICs of ≤4 μg/ml. Copyright © 2018 Hackel et al.
Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent
NASA Astrophysics Data System (ADS)
Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.
2017-02-01
The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.
Rivas-Santiago, Bruno; Castañeda-Delgado, Julio E.; Rivas Santiago, Cesar E.; Waldbrook, Matt; González-Curiel, Irma; León–Contreras, Juan C.; Enciso-Moreno, Jose Antonio; del Villar, Victor; Mendez-Ramos, Jazmin; Hancock, Robert E. W.; Hernandez-Pando, Rogelio
2013-01-01
Tuberculosis is an ongoing threat to global health, especially with the emergence of multi drug-resistant (MDR) and extremely drug-resistant strains that are motivating the search for new treatment strategies. One potential strategy is immunotherapy using Innate Defence Regulator (IDR) peptides that selectively modulate innate immunity, enhancing chemokine induction and cell recruitment while suppressing potentially harmful inflammatory responses. IDR peptides possess only modest antimicrobial activity but have profound immunomodulatory functions that appear to be influential in resolving animal model infections. The IDR peptides HH2, 1018 and 1002 were tested for their activity against two M. tuberculosis strains, one drug-sensitive and the other MDR in both in vitro and in vivo models. All peptides showed no cytotoxic activity and only modest direct antimicrobial activity versus M. tuberculosis (MIC of 15–30 µg/ml). Nevertheless peptides HH2 and 1018 reduced bacillary loads in animal models with both the virulent drug susceptible H37Rv strain and an MDR isolate and, especially 1018 led to a considerable reduction in lung inflammation as revealed by decreased pneumonia. These results indicate that IDR peptides have potential as a novel immunotherapy against TB. PMID:23555622
Multidrug-resistant pathogens in the food supply.
Doyle, Marjorie E
2015-04-01
Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.
Pondugula, Satyanarayana R.; Flannery, Patrick C.; Abbott, Kodye L.; Coleman, Elaine S.; Mani, Sridhar; Samuel, Temesgen; Xie, Wen
2015-01-01
Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3′-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively. PMID:25542144
Park, So Yeon; Kang, Cheol-In; Wi, Yu Mi; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam-Yong; Song, Jae-Hoon
2017-01-01
Although multidrug resistance (MDR) among extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) poses significant therapeutic challenges, little is known regarding the risk factors and epidemiology of community-onset MDR-ESBL-EC infections. We performed this study to investigate risk factors and the molecular epidemiology of community-onset MDR-ESBL-EC infections. We conducted a case-control-control study of community-onset infections. MDR-ESBL-EC was defined as ESBL-EC that demonstrated in vitro resistance to trimethoprim-sulfamethoxazole, fluoroquinolones (FQs), and gentamicin. Patients with MDR-ESBL-EC infections were designated as case patients. A control group I (CG I) patient was defined as a person whose clinical sample yielded ESBL-EC that did not meet the criteria for MDR. A control group II (CG II) patient was defined as a patient with a non-ESBL-EC infection. Of 108 patients with ESBL-EC infections, 30 cases (27.8%) were due to MDR-ESBL-EC. Compared with CG I, prior use of FQs (odds ratio [OR], 3.16; 95% confidence interval [CI], 1.11 to 8.98) and immunosuppressant use (OR, 10.47; 95% CI, 1.07 to 102.57) were significantly associated with MDR-ESBL-EC. Compared with CG II, prior use of FQs (OR, 15.53; 95% CI, 2.86 to 84.27) and healthcare-associated infection (OR, 5.98; 95% CI, 2.26 to 15.86) were significantly associated with MDR-ESBL-EC. CTX-M-15 was the most common in MDR-ESBL-EC infections (59.1% [13/22]), while CTX-M-14 was the most common in non-MDR-ESBL-EC infections (41.6% [32/77]). CTX-M-15 was significantly associated with MDR-ESBL-EC (59.1% vs. 32.5%, p = 0.028). Pulsed-field gel electrophoresis showed clonal diversity of MDR-ESBL-EC isolates. The emergence of strains of MDR-ESBL-EC in the community poses an important new public health threat. More information on the emergence and transmission of these strains will be necessary in order to prevent their spread.
Multidrug-resistant tuberculosis around the world: what progress has been made?
Mirzayev, Fuad; Wares, Fraser; Baena, Inés Garcia; Zignol, Matteo; Linh, Nguyen; Weyer, Karin; Jaramillo, Ernesto; Floyd, Katherine; Raviglione, Mario
2015-01-01
Multidrug-resistant tuberculosis (MDR-TB) (resistance to at least isoniazid and rifampicin) will influence the future of global TB control. 88% of estimated MDR-TB cases occur in middle- or high-income countries, and 60% occur in Brazil, China, India, the Russian Federation and South Africa. The World Health Organization collects country data annually to monitor the response to MDR-TB. Notification, treatment enrolment and outcome data were summarised for 30 countries, accounting for >90% of the estimated MDR-TB cases among notified TB cases worldwide. In 2012, a median of 14% (interquartile range 6–50%) of estimated MDR-TB cases were notified in the 30 countries studied. In 15 of the 30 countries, the number of patients treated for MDR-TB in 2012 (71 681) was >50% higher than in 2011. Median treatment success was 53% (interquartile range 40–70%) in the 25 countries reporting data for 30 021 MDR-TB cases who started treatment in 2010. Although progress has been noted in the expansion of MDR-TB care, urgent efforts are required in order to provide wider access to diagnosis and treatment in most countries with the highest burden of MDR-TB. PMID:25261327
Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon
NASA Astrophysics Data System (ADS)
Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing
2016-03-01
MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.
2013-01-01
Background The bacteriophage therapy is an effective antimicrobial approach with potentially important applications in medicine and biotechnology which can be seen as an additional string in the bow. Emerging drug resistant bacteria in aquaculture industry due to unrestricted use of antibiotics warrants more sustainable and environmental friendly strategies for controlling fish infections. The isolated bacteria from fish lesions was characterised based on isolation on selective and differential medium like Pseudomonas agar, gram staining, biochemical tests and 16SrRNA sequencing. The metallo-beta-lactamase (MBL) producing bacterial isolate was evaluated using Imipenem - Ethylenediaminetetraacetic acid (EDTA) disk method. The specific bacteriophage was isolated and concentrated using coal bed developed in our lab at CSIR-NEERI. The isolated and enriched bacteriophage was characterised by nucleotide sequencing and electron microscopy. The phage therapy was applied for treating ulcerative lesion in fish. Results The pathogenic bacterium responsible for causing ulcerative lesions in catfish species (Clarias gariepinus) was identified as Pseudomonas aeruginosa. One out of twenty P. aeruginosa isolate showing multi drug resistance (MDR) was incidentally found to be MBL producing as determined by Imipenem-EDTA disk method. The phage therapy effectively cured the ulcerative lesions of the infected fish in 8–10 days of treatment, with a sevenfold reduction of the lesion with untreated infection control. Conclusion Bacteriophage therapy can have potential applications soon as an alternative or as a complement to antibiotic treatment in the aquaculture. We present bacteriophage therapy as a treatment method for controlling MDR P. aeruginosa infection in C. gariepinus. To the best of our knowledge this is a first report of application of phage therapy against MBL producing P. aeruginosa isolated from aquatic ecosystem. PMID:24369750
Khairnar, Krishna; Raut, Mahendra P; Chandekar, Rajshree H; Sanmukh, Swapnil G; Paunikar, Waman N
2013-12-26
The bacteriophage therapy is an effective antimicrobial approach with potentially important applications in medicine and biotechnology which can be seen as an additional string in the bow. Emerging drug resistant bacteria in aquaculture industry due to unrestricted use of antibiotics warrants more sustainable and environmental friendly strategies for controlling fish infections.The isolated bacteria from fish lesions was characterised based on isolation on selective and differential medium like Pseudomonas agar, gram staining, biochemical tests and 16SrRNA sequencing. The metallo-beta-lactamase (MBL) producing bacterial isolate was evaluated using Imipenem - Ethylenediaminetetraacetic acid (EDTA) disk method. The specific bacteriophage was isolated and concentrated using coal bed developed in our lab at CSIR-NEERI. The isolated and enriched bacteriophage was characterised by nucleotide sequencing and electron microscopy. The phage therapy was applied for treating ulcerative lesion in fish. The pathogenic bacterium responsible for causing ulcerative lesions in catfish species (Clarias gariepinus) was identified as Pseudomonas aeruginosa. One out of twenty P. aeruginosa isolate showing multi drug resistance (MDR) was incidentally found to be MBL producing as determined by Imipenem-EDTA disk method. The phage therapy effectively cured the ulcerative lesions of the infected fish in 8-10 days of treatment, with a sevenfold reduction of the lesion with untreated infection control. Bacteriophage therapy can have potential applications soon as an alternative or as a complement to antibiotic treatment in the aquaculture. We present bacteriophage therapy as a treatment method for controlling MDR P. aeruginosa infection in C. gariepinus. To the best of our knowledge this is a first report of application of phage therapy against MBL producing P. aeruginosa isolated from aquatic ecosystem.
Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Cornejo-Garrido, Jorge; López-García, Sonia; Castro-Mussot, María Eugenia; Meckes-Fischer, Mariana; Mata-Espinosa, Dulce; Marquina, Brenda; Torres, Javier; Hernández-Pando, Rogelio
2013-10-07
New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.
Zhai, Rihong; Chen, Feng; Liu, Geoffrey; Su, Li; Kulke, Matthew H; Asomaning, Kofi; Lin, Xihong; Heist, Rebecca S; Nishioka, Norman S; Sheu, Chau-Chyun; Wain, John C; Christiani, David C
2010-05-10
Apoptosis pathway, gastroesophageal reflux symptoms (reflux), higher body mass index (BMI), and tobacco smoking have been individually associated with esophageal adenocarcinoma (EA) development. However, how multiple factors jointly affect EA risk remains unclear. In total, 305 patients with EA and 339 age- and sex-matched controls were studied. High-order interactions among reflux, BMI, smoking, and functional polymorphisms in five apoptotic genes (FAS, FASL, IL1B, TP53BP, and BAT3) were investigated by entropy-based multifactor dimensionality reduction (MDR), classification and regression tree (CART), and traditional logistic regression (LR) models. In LR analysis, reflux, BMI, and smoking were significantly associated with EA risk, with reflux as the strongest individual factor. No individual single nucleotide polymorphism was associated with EA susceptibility. However, there was a two-way interaction between IL1B + 3954C>T and reflux (P = .008). In both CART and MDR analyses, reflux was also the strongest individual factor for EA risk. In individuals with reflux symptoms, CART analysis indicated that strongest interaction was among variant genotypes of IL1B + 3954C>T and BAT3S625P, higher BMI, and smoking (odds ratio [OR], 5.76; 95% CI, 2.48 to 13.38), a finding independently found using MDR analysis. In contrast, for participants without reflux symptoms, the strongest interaction was found between higher BMI and smoking (OR, 3.27; 95% CI, 1.88 to 5.68), also echoed by entropy-based MDR analysis. Although a history of reflux is an important risk for EA, multifactor interactions also play important roles in EA risk. Gene-environment interaction patterns differ between patients with and without reflux symptoms.
Schooley, Robert T; Biswas, Biswajit; Gill, Jason J; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J; Reed, Sharon L; Rohwer, Forest; Benler, Sean; Segall, Anca M; Taplitz, Randy; Smith, Davey M; Kerr, Kim; Kumaraswamy, Monika; Nizet, Victor; Lin, Leo; McCauley, Melanie D; Strathdee, Steffanie A; Benson, Constance A; Pope, Robert K; Leroux, Brian M; Picel, Andrew C; Mateczun, Alfred J; Cilwa, Katherine E; Regeimbal, James M; Estrella, Luis A; Wolfe, David M; Henry, Matthew S; Quinones, Javier; Salka, Scott; Bishop-Lilly, Kimberly A; Young, Ry; Hamilton, Theron
2017-10-01
Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.
Biswas, Biswajit; Gill, Jason J.; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J.; Reed, Sharon L.; Rohwer, Forest; Benler, Sean; Segall, Anca M.; Taplitz, Randy; Smith, Davey M.; Kerr, Kim; Kumaraswamy, Monika; Nizet, Victor; Lin, Leo; McCauley, Melanie D.; Strathdee, Steffanie A.; Benson, Constance A.; Pope, Robert K.; Leroux, Brian M.; Picel, Andrew C.; Mateczun, Alfred J.; Cilwa, Katherine E.; Regeimbal, James M.; Estrella, Luis A.; Wolfe, David M.; Henry, Matthew S.; Quinones, Javier; Salka, Scott; Bishop-Lilly, Kimberly A.; Young, Ry; Hamilton, Theron
2017-01-01
ABSTRACT Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii. We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted. PMID:28807909
Pooideh, Mohammad; Jabbarzadeh, Ismail; Ranjbar, Reza; Saifi, Mahnaz
2015-01-01
Background: Tuberculosis (TB) is a widespread infectious disease. Today, TB has created a public health crisis in the world. Genotyping of Mycobacterium tuberculosis isolates is useful for surveying the dynamics of TB infection, identifying new outbreaks, and preventing the disease. Different molecular methods for clustering of M. tuberculosis isolates have been used. Objectives: During a one year study of genotyping, 100 M. tuberculosis isolates from patients referred to Pasteur Institute of Iran were collected and their genotyping was accomplished using pulsed field gel electrophoresis (PFGE) method. Materials and Methods: Identification of all M. tuberculosis isolates was accomplished using standard biochemical and species-specific polymerase chain reaction (PCR) methods. Antibiotic susceptibility tests were performed using proportional method. After preparing PFGE plaques for each isolate of M. tuberculosis, XbaI restriction enzyme was applied for genome digestion. Finally, the digested DNA fragments were separated on 1% agarose gel and analyzed with GelCompar II software. Results: Genotyping of the studied isolates in comparison with the molecular weight marker revealed two common types; pulsotype A with 71 isolates and one multidrug resistant mycobacterium (MDR) case, and pulsotype B including 29 isolates and three MDR cases. No correlation between the antibiotypes and pulsotypes was observed. Conclusions: Molecular epidemiology studies of infectious diseases have been useful when bacterial isolates have been clustered in a period of time and in different geographical regions with variable antibiotic resistance patterns. In spite of high geographical differences and different antibiotic resistant patterns, low genetic diversity among the studied TB isolates may refer to the low rate of mutations in XbaI restriction sites in the mycobacterial genome. We also identified three MDR isolates in low-incidence pulsotype B, which could be disseminated and is highly important to consider in TB surveillance programs to prevent the spread of MDR-TB isolates in the population. PMID:26396714
NASA Astrophysics Data System (ADS)
Feng, Shuo; Liu, Dejun; Cheng, Xing; Fang, Huafeng; Li, Caifang
2017-04-01
Magnetic anomalies produced by underground ferromagnetic pipelines because of the polarization of earth's magnetic field are used to obtain the information on the location, buried depth and other parameters of pipelines. In order to achieve a fast inversion and interpretation of measured data, it is necessary to develop a fast and stable forward method. Magnetic dipole reconstruction (MDR), as a kind of integration numerical method, is well suited for simulating a thin pipeline anomaly. In MDR the pipeline model must be cut into small magnetic dipoles through different segmentation methods. The segmentation method has an impact on the stability and speed of forward calculation. Rapid and accurate simulation of deep-buried pipelines has been achieved by exciting segmentation method. However, in practical measurement, the depth of underground pipe is uncertain. When it comes to the shallow-buried pipeline, the present segmentation may generate significant errors. This paper aims at solving this problem in three stages. First, the cause of inaccuracy is analyzed by simulation experiment. Secondly, new variable interval section segmentation is proposed based on the existing segmentation. It can help MDR method to obtain simulation results in a fast way under the premise of ensuring the accuracy of different depth models. Finally, the measured data is inversed based on new segmentation method. The result proves that the inversion based on the new segmentation can achieve fast and accurate inversion of depth parameters of underground pipes without being limited by pipeline depth.
Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; Macrobert, A J; Loizidou, M
2007-08-20
Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1-0.2 microg ml(-1)) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6-28%). Hypericin (0.1-0.2 microM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy.
Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M
2007-01-01
Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy. PMID:17667930
Micheletti, Vania Celina Dezoti; Moreira, José da Silva; Ribeiro, Marta Osório; Kritski, Afranio Lineu; Braga, José Ueleres
2014-01-01
OBJECTIVE: To describe the prevalence of multidrug-resistant tuberculosis (MDR-TB) among tuberculosis patients in a major Brazilian city, evaluated via the Second National Survey on Antituberculosis Drug Resistance, as well as the social, demographic, and clinical characteristics of those patients. METHODS: Clinical samples were collected from tuberculosis patients seen between 2006 to 2007 at three hospitals and five primary health care clinics participating in the survey in the city of Porto Alegre, Brazil. The samples were subjected to drug susceptibility testing. The species of mycobacteria was confirmed using biochemical methods. RESULTS: Of the 299 patients included, 221 (73.9%) were men and 77 (27.3%) had a history of tuberculosis. The mean age was 36 years. Of the 252 patients who underwent HIV testing, 66 (26.2%) tested positive. The prevalence of MDR-TB in the sample as a whole was 4.7% (95% CI: 2.3-7.1), whereas it was 2.2% (95% CI: 0.3-4.2) among the new cases of tuberculosis and 12.0% (95% CI: 4.5-19.5) among the patients with a history of tuberculosis treatment. The multivariate analysis showed that a history of tuberculosis and a longer time to diagnosis were both associated with MDR-TB. CONCLUSIONS: If our results are corroborated by other studies conducted in Brazil, a history of tuberculosis treatment and a longer time to diagnosis could be used as predictors of MDR-TB. PMID:24831400
Martins, Andreza F; Kuchenbecker, Ricardo S; Pilger, Kátia O; Pagano, Mariana; Barth, Afonso L
2012-03-01
Most published data on multidrug-resistant Acinetobacter baumanii (MDR Ab) are derived from outbreaks. We report incidence trends on health care-acquired infections due to MDR Ab over a 12-month period in the city of Porto Alegre in southern Brazil. Clinical and epidemiologic data were obtained from the local health care information system of the municipal health department. Polymerase chain reaction was used to detect the presence of the genes bla(OXA-23-like), bla(OXA-24-like), bla(OXA-51), and bla(OXA-58), and repetitive sequence-based polymerase chain reaction and pulsed-field gel electrophoresis were performed for molecular typing. The highest rate of infection (9.0/1,000 inpatient-days) was identified in a trauma hospital. The gene bla(OXA-23-like) was identified in 99.0% of MDR Ab isolates. Eight main clonal groups were identified by molecular typing, and 3 of these were found in all hospitals. The presence of 3 clones in all hospitals demonstrates the ability of MDR Ab to spread among hospitals. Moreover, the occurrence of one particular clone (clone 4) throughout the study period suggests its increased ability to cause outbreaks and to remain in the environment. The monitoring of epidemic strains by molecular methods is of paramount importance to prevent or reduce the spread of MDR Ab. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Akya, Alisha; Elahi, Azam; Chegenelorestani, Roya; Rezaee, Mahya
2018-01-01
Klebsiella pneumoniae ( K. pneumoniae ) is an important opportunistic pathogen causes serious community and hospital-acquired infections, which is highly resistant to antibiotics. We aimed to determine the frequency of multidrug resistant (MDR) and molecular typing of clinical isolates of K. pneumoniae . One hundred isolates of K. pneumoniae were collected from clinical samples in three general hospitals in Kermanshah. The antimicrobial susceptibility and extended-spectrum beta-lactamases (ESBL) production of isolates were determined using disk diffusion and combined disk methods, respectively. The bla CTX-M gene, class I and II integrons were detected using polymerase chain reaction. The bla CTX-M positive isolates were selected for genotyping using pulsed-field gel electrophoresis (PFGE). MDR phenotype was observed in 56% of isolates. The 40% of isolates were ESBL positive and 35 isolates contained bla CTX-M . Class I and II of integrons were detected in 50 (89.2%) and 39 (69.6%) of MDR isolates, respectively. PFGE patterns of K. pneumoniae bla CTX-M positive isolates indicated 19 clusters (X 1-19 ) with different genotype patterns. The study findings highlight the concern of circulating MDR strains of K. pneumoniae with bla CTX-M and class I and II integrons in Kermanshah hospitals. The presence of integrons among isolates may facilitate the spread of new resistance genes in this bacterium. Therefore, surveillance for the spread of MDR strains of this bacterium is recommended in hospitals.
Velayutham, B.; Kannan, T.; Tripathy, J. P.; Harries, A. D.; Natrajan, M.; Swaminathan, S.
2017-01-01
Setting: India has one of the highest global rates of multidrug-resistant tuberculosis (MDR-TB), which is associated with poor treatment outcomes. A better understanding of the risk factors for unfavourable outcomes is needed. Objectives: To describe 1) the demographic and clinical characteristics of MDR-TB patients registered in three states of India during 2009–2011, 2) treatment outcomes, and 3) factors associated with unfavourable outcomes. Design: A retrospective cohort study involving a record review of registered MDR-TB patients. Results: Of 788 patients, 68% were male, 70% were aged 15–44 years, 90% had failed previous anti-tuberculosis treatment or were retreatment smear-positive, 60% had a body mass index < 18.5 kg/m2 and 72% had additional resistance to streptomycin and/or ethambutol. The median time from sputum collection to the start of MDR-TB treatment was 128 days (IQR 103–173). Unfavourable outcomes occurred in 40% of the patients, mostly from death or loss to follow-up. Factors significantly associated with unfavourable outcomes included male sex, age ⩾ 45 years, being underweight and infection with the human immunodeficiency virus. Adverse drug reactions were reported in 24% of patients, with gastrointestinal disturbance, psychiatric morbidity and ototoxicity the most common. Conclusion: Long delays from sputum collection to treatment initiation using conventional methods, along with poor treatment outcomes, suggest the need to scale up rapid diagnostic tests and shorter regimens for MDR-TB. PMID:28775941
Mei, Lei; Zhu, Guizhi; Qiu, Liping; Wu, Cuichen; Chen, Huapei; Liang, Hao; Cansiz, Sena; Lv, Yifan; Zhang, Xiaobing; Tan, Weihong
2015-11-01
Cancer chemotherapy has been impeded by side effects and multidrug resistance (MDR) partially caused by drug efflux from cancer cells, which call for targeted drug delivery systems additionally able to circumvent MDR. Here we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells and circumvent MDR in both leukemia and breast cancer cell models. NFs are self-assembled via liquid crystallization of DNA generated by Rolling Circle Replication, during which NFs are incorporated with aptamers for specific cancer cell recognition, fluorophores for bioimaging, and Doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ~200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with high drug loading capacity (71.4%, wt/wt). The Dox-loaded NFs (NF-Dox) are stable at physiological pH, yet drug release is facilitated in acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. Consequently, NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising to circumvent MDR in targeted cancer therapy.
Quelapio, M I D; Mira, N R C; Orillaza-Chi, R B; Belen, V; Muñez, N; Belchez, R; Egos, G E; Evangelista, M; Vianzon, R; Tupasi, T E
2010-06-01
The Philippines ranks eighth among 27 priority countries for multidrug-resistant TB (MDR-TB). To describe a model of public-private partnership in MDR-TB management. An exploratory study of integrating MDR-TB management initiated in private-public mix DOTS into the National TB Programme (NTP). Recognising that MDR-TB was a threat to DOTS, the Tropical Disease Foundation initiated MDR-TB management in 1999. An official mandate for the integration of MDR-TB services into the NTP was issued by the Department of Health in 2008. With an increased government budget augmented by support from the Global Fund to Fight AIDS, Tuberculosis and Malaria, 1294 MDR-TB patients were placed on treatment from 1999 to 2008. The treatment success rate improved from 64% in 1999 to 75% in 2005. There are now five MDR-TB treatment centres with 181 treatment sites in Metro Manila, and three culture centres. People trained include 12 master trainers, 31 trainers, 25 treatment centre and 381 treatment site staff. Mainstreaming into the NTP of this unique model of MDR-TB management through a dynamic public-private collaboration can be considered best practice in implementation science of an evidence-based intervention leading to change in health care policy and practice.
Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H
1987-11-01
We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.
Montazami, N; Kheir Andish, M; Majidi, J; Yousefi, M; Yousefi, B; Mohamadnejad, L; Shanebandi, D; Estiar, M A; Khaze, V; Mansoori, B; Baghbani, E; Baradaran, B
2015-05-28
One of the most challenging aspects of colon cancer therapy is rapid acquisition of multidrug resistant phenotype. The multidrug resistance gene 1 (MDR1) product, p—glycoprotein (P—gp), pump out a variety of anticancer agents from the cell, giving rise to a general drug resistance against chemotherapeutic agents. The aim of this study was to investigate the effect of a specific MDR1 small interference RNA (siRNA) on sensitivity of oxaliplatin—resistant SW480 human colon cancer cell line (SW480/OxR) to the chemotherapeutic drug oxaliplatin. SW480 cells were made resistant by continuous incubation with stepwise serially increased concentrations of oxaliplatin over a 6—months period. Resistance cell were subsequently transfected with specific MDR1 siRNA. Relative MDR1 mRNA expression was measured by Quantitative real—time PCR. Western blot analysis was performed to determine the protein levels of P—gp. The cytotoxic effects of oxaliplatin and MDR1 siRNA, alone and in combination were assessed using MTT and the number of apoptotic cells was determined with the TUNEL assay. MDR1 siRNA effectively reduced MDR1 expression in both mRNA and protein levels. MDR1 down—regulation synergistically increased the cytotoxic effects of oxaliplatin and spontaneous apoptosis SW480/OxR. Our data demonstrates that RNA interference could down regulate MDR1 gene expression and reduce the P—gp level, and partially reverse the drug resistance in SW480/OxR cells in vitro. Therefore, the results could suggest that MDR1 silencing may be a potent adjuvant in human colon chemotherapy.
Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes.
Howard, Ellen M; Roepe, Paul D
2003-04-01
Human multidrug resistance (hu MDR 1) cDNA was fused to a P. shermanii transcarboxylase biotin acceptor domain (TCBD), and the fusion protein was heterologously overexpressed at high yield in K(+)-uptake deficient Saccharomyces cerevisiae yeast strain 9.3, purified by avidin-biotin chromatography, and reconstituted into proteoliposomes (PLs) formed with Escherichia coli lipid. As measured by pH- dependent ATPase activity, purified, reconstituted, biotinylated MDR-TCBD protein is fully functional. Dodecyl maltoside proved to be the most effective detergent for the membrane solubilization of MDR-TCBD, and various salts were found to significantly affect reconstitution into PLs. After extensive analysis, we find that purified reconstituted MDR-TCBD protein does not catalyze measurable H(+) pumping in the presence of ATP. In the presence of physiologic [ATP], K(+)/Na(+) diffusion potentials monitored by either anionic oxonol or cationic carbocyanine are easily established upon addition of valinomycin to either control or MDR-TCBD PLs. However, in the absence of ATP, although control PLs still maintain easily measurable K(+)/Na(+) diffusion potentials upon addition of valinomycin, MDR-TCBD PLs do not. Dissipation of potential by MDR-TCBD is clearly [ATP] dependent and also appears to be Cl(-) dependent, since replacing Cl(-) with equimolar glutamate restores the ability of MDR-TCBD PLs to form a membrane potential in the absence of physiologic [ATP]. The data are difficult to reconcile with models that might propose ATP-catalyzed "pumping" of the fluorescent probes we use and are more consistent with electrically passive anion transport via MDR-TCBD protein, but only at low [ATP]. These observations may help to resolve the confusing array of data related to putative ion transport by hu MDR 1 protein.
Hiruy, Nebiyu; Melese, Muluken; Habte, Dereje; Jerene, Degu; Gashu, Zewdu; Alem, Genetu; Jemal, Ilili; Tessema, Belay; Belayneh, Beza; Suarez, Pedro G
2018-06-01
This study compared the yield of tuberculosis (TB) among contacts of multidrug-resistant tuberculosis (MDR-TB) index cases with that in drug-sensitive TB (DS-TB) index cases in a program setting. A comparative cross-sectional study was conducted among contacts of sputum smear-positive new DS-TB index cases and MDR-TB index cases. After contacts were screened, GeneXpert was used for the diagnosis of TB. The study included 111 MDR-TB and 119 DS-TB index cases. A total of 340 and 393 contacts of MDR-TB and DS-TB index cases, respectively, were traced, of whom 331 among MDR-TB contacts and 353 among DS-TB contacts were screened. There were 20 (6%) presumptive TB cases for MDR-TB contacts and 41 (11%) for DS-TB contacts. The prevalence of TB among MDR-TB contacts was 2.7% and among DS-TB contacts was 4.0%. The majority of the MDR-TB contacts diagnosed with TB had MDR-TB; the reverse was true for DS-TB. The yield of TB among contacts of MDR-TB and DS-TB patients using GeneXpert was high as compared to the population-level prevalence. The likelihood of diagnosing rifampicin-resistant TB among contacts of MDR-TB index cases was higher in comparison with contacts of DS-TB index cases. The use of GeneXpert in DS-TB contact investigation has the added advantage of diagnosing rifampicin-resistant TB cases when compared to the use of the nationally recommended acid-fast bacillus (AFB) microscopy for DS-TB contact investigation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang
Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less
MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis
Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning
2017-01-01
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC. PMID:28686677
MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis.
Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning; Cario, Elke
2017-01-01
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.
Yuan, Xiuhong; Liu, Taohua; Wu, Di; Wan, Qiquan
2018-01-01
Multiple drug resistant/extensively drug resistant (MDR/XDR) Gram-negative urinary tract infections (UTIs) represent a growing threat to kidney transplant recipients. This retrospective study aimed to assess the incidence and microbiological profile of MDR/XDR Gram-negative UTIs, to identify drug susceptibility of MDR/XDR bacteria, and to determine the potential risk factors for MDR/XDR UTIs in kidney recipients. During the study period, 1569 patients underwent consecutive kidney transplantation in two transplantation centers. We studied the demographics, clinical characteristics, and urine culture data from kidney recipients with MDR/XDR Gram-negative UTIs, and verified the risk factors associated with MDR/XDR infections. Eighty-one kidney recipients yielded 88 episodes of MDR/XDR Gram-negative UTIs with five patients (6.2%) succumbing to all-cause in-hospital mortality. The most frequently isolated bacterium was Escherichia coli (62.5%). Almost all MDR/XDR Gram-negative bacteria were resistant to first- and second-generation cephalosporin, and monocyclic beta-lactam. They were relatively sensitive to meropenem, amikacin, and tigecycline. As for the 12 XDR bacteria, all of them were resistant to meropenem and 25% of them were resistant to tigecycline. All XDR Acinetobacter baumannii and E. coli were susceptible to tigecycline. Nosocomial infection (odds ratio [OR] = 11.429, 95% CI = 1.311-99.625, P = 0.027) was the only independent predictor of MDR/XDR Gram-negative UTIs. Non-fermenting bacterial infection (OR = 20.161, 95% CI = 3.409-119.240, P = 0.001), polycystic kidney disease (OR = 39.871, 95% CI = 1.979-803.384, P = 0.016), and serum creatinine level > 1.5 mg/dL (OR = 8.688, 95% CI = 1.354-55.747, P = 0.023) were significantly different between XDR and MDR Gram-negative UTIs. Meropenem, amikacin, and/or tigecycline can be prescribed for MDR/XDR Gram-negative infections. Tigecycline can also be prescribed for XDR A. baumannii and E. coli . Nosocomial infection was a risk factor for MDR/XDR Gram-negative UTIs, while XDR UTIs were associated with non-fermenting bacterial infection, polycystic kidney disease, and impaired renal function.
Goler-Baron, Vicky; Assaraf, Yehuda G.
2012-01-01
Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing lysosomal photodestruction of normal breast epithelial cells. Thus, MDR modalities including ABCG2-dependent drug sequestration within EVs can be rationally converted to a pharmacologically lethal Trojan horse to selectively eradicate MDR cancer cells. PMID:22530032
Heidema, A Geert; Boer, Jolanda M A; Nagelkerke, Nico; Mariman, Edwin C M; van der A, Daphne L; Feskens, Edith J M
2006-04-21
Genetic epidemiologists have taken the challenge to identify genetic polymorphisms involved in the development of diseases. Many have collected data on large numbers of genetic markers but are not familiar with available methods to assess their association with complex diseases. Statistical methods have been developed for analyzing the relation between large numbers of genetic and environmental predictors to disease or disease-related variables in genetic association studies. In this commentary we discuss logistic regression analysis, neural networks, including the parameter decreasing method (PDM) and genetic programming optimized neural networks (GPNN) and several non-parametric methods, which include the set association approach, combinatorial partitioning method (CPM), restricted partitioning method (RPM), multifactor dimensionality reduction (MDR) method and the random forests approach. The relative strengths and weaknesses of these methods are highlighted. Logistic regression and neural networks can handle only a limited number of predictor variables, depending on the number of observations in the dataset. Therefore, they are less useful than the non-parametric methods to approach association studies with large numbers of predictor variables. GPNN on the other hand may be a useful approach to select and model important predictors, but its performance to select the important effects in the presence of large numbers of predictors needs to be examined. Both the set association approach and random forests approach are able to handle a large number of predictors and are useful in reducing these predictors to a subset of predictors with an important contribution to disease. The combinatorial methods give more insight in combination patterns for sets of genetic and/or environmental predictor variables that may be related to the outcome variable. As the non-parametric methods have different strengths and weaknesses we conclude that to approach genetic association studies using the case-control design, the application of a combination of several methods, including the set association approach, MDR and the random forests approach, will likely be a useful strategy to find the important genes and interaction patterns involved in complex diseases.
Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad
2017-01-01
Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest that these bacteriophages could be potential therapeutic options for treating septic wounds caused by P. aeruginosa, S. aureus, K. pneumoniae and E. coli.
Khan, Mazhar A.; Mehreen, Sumaira; Basit, Anila; Khan, Raza A.; Jan, Faheem; Ullah, Irfan; Ihtesham, Muhammad; Khan, Afsar; Ullah, Ubaid; Javaid, Arshad
2015-01-01
Objectives: To determine characteristics and treatment outcomes of multidrugs resistant tuberculosis (MDR-TB) patients and risk factors for poor outcomes in MDR-TB patients in a tertiary care hospital in Peshawar, Pakistan. Methods: This retrospective study was conducted at the Programmatic Management of Drug Resistant TB Unit, Lady Reading Hospital Peshawar, Pakistan and included all MDR-TB patients registered between January 2012 and December 2012. A special proforma was used for data collection. Analysis was performed using SPSS version 16, after exporting data from the proforma. Differences in proportions were assessed using Pearson’s Chi square test whereas for predictors of poor outcomes, multivariate logistic regression analysis with Wald Statistical criteria using backward elimination method was performed. Results: The treatment success rate was 74.3%. In univariate analysis, poor outcomes were associated in patients with age ≥44 years (odds ratio [OR]=0.250; 95% confidence interval [CI]: 0.114-0.519, p=0.001), rural residence (OR=0.417; 95% CI: 0.18-0.937, p=0.03), lung cavitation (OR=0.22; 95% CI, 0.007-0.067, p=0.001), resistance to second line drugs (SLD) (OR=3.441; 95% CI: 1.579-7.497, p=0.001), and resistance to ofloxacin (OR=2.944; 95% CI: 1.361-6.365, p=0.005); whereas multivariate logistic regression analysis, poor outcomes were associated in patients with age ≥44 years (OR=0.249, 95% CI: 0.075-0.828, p=0.023), rural residence (OR=0.143, 95% CI: 0.052-0.774, p=0.032), and cavitatory lungs (OR=0.022, 95% CI: 0.007-0.072, p=0.000). Conclusion: The MDR-TB patient needs special attention for better treatment outcomes. The presence of older age, rural area residence, resistance to ofloxacin, SLD resistance, and cavitary disease are independent prognostic factors for poor outcome in patients with MDR-TB. PMID:26620989
Cázares-Domínguez, Vicenta; Ochoa, Sara A.; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Escalona, Gerardo; Olivares, Alma L.; Olivares-Trejo, José de Jesús; Velázquez-Guadarrama, Norma; Xicohtencatl-Cortes, Juan
2015-01-01
Staphylococcus aureus is an opportunistic pathogen that colonizes human hosts and causes a wide variety of diseases. Two interacting regulatory systems called agr (accessory gene regulator) and sar (staphylococcal accessory regulator) are involved in the regulation of virulence factors. The aim of this study was to evaluate the effect of vancomycin on hld and spa gene expression during the exponential and post-exponential growth phases in multidrug-resistant (MDR) S. aureus. Methods: Antibiotic susceptibility was evaluated by the standard microdilution method. The phylogenetic profile was obtained by pulsed-field gel electrophoresis (PFGE). Polymorphisms of agr and SCCmec (staphylococcal cassette chromosome mec) were analyzed by multiplex polymerase chain reaction (PCR). The expression levels of hld and spa were analyzed by reverse transcription-PCR. An enzyme-linked immunosorbent assay (ELISA) was performed to detect protein A, and biofilm formation was analyzed via crystal violet staining. Results: In total, 60.60% (20/33) of S. aureus clinical isolates were MDR. Half (10/20) of the MDR S. aureus isolates were distributed in subcluster 10, with >90% similarity among them. In the isolates of this subcluster, a high prevalence (100%) for the agrII and the cassette SCCmec II polymorphisms was found. Our data showed significant increases in hld expression during the post-exponential phase in the presence and absence of vancomycin. Significant increases in spa expression, protein A production and biofilm formation were observed during the post-exponential phase when the MDR S. aureus isolates were challenged with vancomycin. Conclusion: The polymorphism agrII, which is associated with nosocomial isolates, was the most prevalent polymorphism in MDR S. aureus. Additionally, under our study conditions, vancomycin modified hld and spa expression in these clinical isolates. Therefore, vancomycin may regulate alternative systems that jointly participate in the regulation of these virulence factors. PMID:25999924
Voukeng, Igor K; Beng, Veronique P; Kuete, Victor
2017-07-25
Multidrug resistant (MDR) bacteria are responsible for therapeutic failure and there is an urgent need for novels compounds efficient on them. Eleven methanol extracts from seven Cameroonian medicinal plants were tested for their antibacterial activity using broth micro-dilution method against 36 MDR bacterial strains including Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Providencia stuartii, Pseudomonas aeruginosa and Staphylococcus aureus. Euphorbia prostrata extract was found active against all the 36 tested bacteria including Gram-negative phenotypes over-expressing efflux pumps such as P. aeruginosa PA124, E. aerogenes CM64 and E. coli AG102. E. prostrata had minimal inhibitory concentrations values between 128 and 256 µg/mL on 55.55% of the studied microorganisms. Other plants extract displayed selective antibacterial activity. Results obtained in this study highlight the antibacterial potential of the tested plants and the possible use of E. prostrata to combat bacterial infections including MDR phenotypes.
Dalal, Alpa; Pawaskar, Akshay; Das, Mrinalini; Desai, Ranjan; Prabhudesai, Pralhad; Chhajed, Prashant; Rajan, Sujeet; Reddy, Deepesh; Babu, Sajit; Jayalakshmi, T. K.; Saranchuk, Peter; Rodrigues, Camilla; Isaakidis, Petros
2015-01-01
Background While the high burden of multidrug-resistant tuberculosis (MDR-TB) itself is a matter of great concern, the emergence and rise of advanced forms of drug-resistance such as extensively drug-resistant TB (XDR-TB) and extremely drug-resistant TB (XXDR-TB) is more troubling. The aim of this study was to investigate the trends over time of patterns of drug resistance in a sample of MDR-TB patients in greater metropolitan Mumbai, India. Methods This was a retrospective, observational study of drug susceptibility testing (DST) results among MDR-TB patients from eight health care facilities in greater Mumbai between 2005 and 2013. We classified resistance patterns into four categories: MDR-TB, pre-XDR-TB, XDR-TB and XXDR-TB. Results A total of 340 MDR-TB patients were included in the study. Pre-XDR-TB was the most common form of drug-resistant TB observed overall in this Mumbai population at 56.8% compared to 29.4% for MDR-TB. The proportion of patients with MDR-TB was 39.4% in the period 2005–2007 and 27.8% in 2011–2013, while the proportion of those with XDR-TB and XXDR-TB was changed from 6.1% and 0% respectively to 10.6% and 5.6% during the same time period. During the same periods, the proportions of patients with ofloxacin, moxifloxacin and ethionamide resistance significantly increased from 57.6% to 75.3%, from 60.0% to 69.5% and from 24.2% to 52.5% respectively (p<0.05). Discussion The observed trends in TB drug-resistance patterns in Mumbai highlight the need for individualized drug regimens, designed on the basis of DST results involving first- and second-line anti-TB drugs and treatment history of the patient. A drug-resistant TB case-finding strategy based on molecular techniques that identify only rifampicin resistance will lead to initiation of suboptimal treatment regimens for a significant number of patients, which may in turn contribute to amplification of resistance and transmission of strains with increasingly advanced resistance within the community. PMID:25606853
Riekstina, V.; Leimane, V.; Ozere, I.; Skenders, G.; Van den Bergh, R.; Kremer, K.; Acosta, C. D.; Harries, A. D.
2014-01-01
Setting: Drug-resistant tuberculosis (TB) is an important public health problem in Latvia. Objective: To document trends, characteristics and treatment outcomes of registered patients with multi-drug-resistant (MDR-) and extensively drug-resistant (XDR-) TB in Latvia from 2000 to 2010. Design: A retrospective national cohort study. Results: Of 1779 patients, 1646 (92%) had MDR- and 133 (8%) XDR-TB. Over 11 years, the proportion of XDR-TB among MDR-TB patients increased from 2% to 18%. Compared to MDR-TB patients, those with XDR-TB were significantly more likely to have failed MDR-TB treatment (OR 8.4, 95%CI 4.3–16.2), have human immunodeficiency virus infection (OR 3.2, 95%CI 1.8–5.7), be illegal drug users (OR 5.7, 95%CI 2.6–11.6) or have had contact with MDR-TB patients (OR 1.9, 95%CI 1.3–2.8). Cure rates for XDR-TB were 50%. Compared with MDR-TB patients, those with XDR-TB had a higher risk of treatment failure (29% vs. 8%, respectively, P < 0.001). Unfavourable treatment outcomes were significantly associated with being male; having smear-positive disease; pulmonary cavities; failure, default or relapse after previous MDR-TB treatment; and a history of incarceration. Conclusion: More MDR-TB in Latvia is now also XDR-TB. This study identified several risk factors for XDR-TB and, for unfavourable treatment outcomes, highlighting the importance of early diagnosis and appropriate management of MDR-/XDR-TB. PMID:26393098
Denecke, Shane; Fusetto, Roberto; Batterham, Philip
2017-12-01
ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Igolnikov, Alexander C; Green, Richard M
2006-03-01
The administration of a methionine and choline deficient (MCD) diet to mice serves as an animal model of NASH. The multidrug resistant 2 (Mdr2) P-glycoprotein encodes for the canalicular phospholipid transporter, and Mdr2 (+/-) mice secrete 40% less phosphatidylcholine than wild-type mice. We have hypothesized that phosphatidylethanolamine-N-methyl transferase (PEMT) up-regulation is a consequence of MCD diet administration, and is important for the pathogenesis of steatohepatitis in this model. However, the effect of decreased phosphatidylcholine secretion and modulation of PEMT on the development of diet-induced steatohepatitis in Mdr2 (+/-) mice has not been explored. Thus, the purpose of the study is to examine the effects of the MCD diet on Mdr2 (+/-) mice. Mdr2 (+/-) and Mdr2 (+/+) mice were treated with an MCD or control diet for up to 30 days, and the severity of steatohepatitis, PEMT activity and hepatic S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) levels were measured. Serum ALT levels, hepatic inflammation, and PEMT activity were significantly lower, and hepatic SAM:SAH ratios were significantly higher in Mdr2 (+/-) mice at 7 and 30 days on the MCD diet. Mdr2 (+/-) mice have diminished susceptibility to MCD diet-induced NASH, which is associated with a relative decrease in PEMT activity and increased SAM:SAH ratios.
Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila
Seong, Keon Mook; Sun, Weilin; Clark, John M.; Pittendrigh, Barry R.
2016-01-01
The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R. PMID:27003579
Splice form variant and amino acid changes in MDR49 confers DDT resistance in transgenic Drosophila.
Seong, Keon Mook; Sun, Weilin; Clark, John M; Pittendrigh, Barry R
2016-03-22
The ATP-binding cassette (ABC) transporters represent a superfamily of proteins that have important physiological roles in both prokaryotes and eukaryotes. In insects, ABC transporters have previously been implicated in insecticide resistance. The 91-R strain of Drosophila melanogaster has been intensely selected with DDT over six decades. A recent selective sweeps analysis of 91-R implicated the potential role of MDR49, an ABC transporter, in DDT resistance, however, to date the details of how MDR49 may play a role in resistance have not been elucidated. In this study, we investigated the impact of structural changes and an alternative splicing event in MDR49 on DDT-resistance in 91-R, as compared to the DDT susceptible strain 91-C. We observed three amino acid differences in MDR49 when 91-R was compared with 91-C, and only one isoform (MDR49B) was implicated in DDT resistance. A transgenic Drosophila strain containing the 91-R-MDR49B isoform had a significantly higher LD50 value as compared to the 91-C-MDR49B isoform at the early time points (6 h to 12 h) during DDT exposure. Our data support the hypothesis that the MDR49B isoform, with three amino acid mutations, plays a role in the early aspects of DDT resistance in 91-R.
Mdr65 decreases toxicity of multiple insecticides in Drosophila melanogaster.
Sun, Haina; Buchon, Nicolas; Scott, Jeffrey G
2017-10-01
ABC transporters are ubiquitous membrane-bound proteins, present in both prokaryotes and eukaryotes. The major function of eukaryotic ABC transporters is to mediate the efflux of a variety of substrates (including xenobiotics) out of cells. ABC transporters have been widely investigated in humans, particularly for their involvement in multidrug resistance (MDR). Considerably less is known about their roles in transport and/or excretion in insects. ABC transporters are only known to function as exporters in insects. Drosophila melanogaster has 56 ABC transporter genes, including eight which are phylogenetically most similar to the human Mdr genes (ABCB1 clade). We investigated the role of ABC transporters in the ABCB1 clade in modulating the susceptibility to insecticides. We took advantage of the GAL4/UAS system in D. melanogaster to knockdown the expression levels of Mdr65, Mdr50, Mdr49 and ABCB6 using transgenic UAS-RNAi lines and conditional driver lines. The most notable effects were increased sensitivities to nine different insecticides by silencing of Mdr65. Furthermore, a null mutation of Mdr65 decreased the malathion, malaoxon and fipronil LC 50 values by a factor of 1.9, 2.1 and 3.9, respectively. Altogether, this data demonstrates the critical role of ABC transporters, particularly Mdr65, in altering the toxicity of specific, structurally diverse, insecticides in D. melanogaster. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multidrug-resistant pathogens in patients with pneumonia coming from the community.
Sibila, Oriol; Rodrigo-Troyano, Ana; Shindo, Yuichiro; Aliberti, Stefano; Restrepo, Marcos I
2016-05-01
Identification of patients with multidrug-resistant (MDR) pathogens at initial diagnosis is essential for the appropriate selection of empiric treatment of patients with pneumonia coming from the community. The term Healthcare-Associated Pneumonia (HCAP) is controversial for this purpose. Our goal is to summarize and interpret the data addressing the association of MDR pathogens and community-onset pneumonia. Most recent clinical studies conclude that HCAP risk factor does not accurately identify resistant pathogens. Several risk factors related to MDR pathogens, including new ones that were not included in the original HCAP definition, have been described and different risk scores have been proposed. The present review focuses on the most recent literature assessing the importance of different risk factors for MDR pathogens in patients with pneumonia coming from the community. These included generally MDR risk factors, specific risk factors related to methicillin-resistant Staphylococcus aureus or Pseudomonas aeruginosa and clinical scoring systems develop to assess the MDR risk factors and its application in clinical practice. Different MDR risk factors and prediction scores have been recently developed. However, further research is needed in order to help clinicians in distinguishing between different MDR pathogens causing pneumonia.
Atre, Sachin
2015-01-01
Multidrug-resistant tuberculosis (MDR-TB), the prevalence of which has increased across the globe in recent years, is a serious threat to public health. Timely diagnosis of MDR-TB, especially among new TB cases, is essential to facilitate appropriate treatment, which can prevent further emergence of drug resistance and its spread in the population. The present case report from India aims to address some operational challenges in diagnosing MDR-TB among new cases and potential measures to overcome them. It argues that even after seven years of implementing the DOTS-Plus program for controlling MDR-TB, India still lacks the technical capacity for rapid MDR-TB diagnosis. The case report underscores an urgent need to explore the use of WHO-endorsed techniques such as Xpert MTB/Rif and commercial assays such as Genotype MTBDR for rapid diagnosis of MDR-TB among new cases. Suitable applications may be found for other TB high-burden countries where MDR-TB is a major concern. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Carriage of multi-drug resistant bacteria among foreigners seeking medical care.
Benenson, Shmuel; Nir-Paz, Ran; Golomb, Mordechai; Schwartz, Carmela; Amit, Sharon; Moses, Allon E; Cohen, Matan J
2018-06-21
Medical tourism has a potential of spreading multi-drug resistant bacteria (MDR). The Hadassah Medical Center serves as a referral center for global medical tourists and for Palestinian Authority residents. In order to assess whether patients of these groups are more likely to harbor MDR bacteria than local residents, we reviewed data from all patients admitted to our institution between 2009 and 2014. We compared MDR rates between countries of residency, controlling for gender, age, previous hospitalization and time from admission to MDR detection. Overall, among 111,577 patients with at least one microbiological specimen taken during hospitalization, there were 3,985 (3.5%) patients with at least one MDR-positive culture. Compared to Israeli patients, tourists and patients from the Palestinian Authority had increased rates of MDR positivity (OR, 95%CI): 2.3 (1.6 to 2.3) and 8.0 (6.3 to 10.1), respectively. Our data show that foreign patients seeking advanced medical care are more likely to carry MDR bacteria than the resident population. Strategies to minimize MDR spread, such as pre-admission screening or pre-emptive isolation should be considered in this population.
Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants
Cort, Aysegul; Ozben, Tomris; Saso, Luciano; De Luca, Chiara
2016-01-01
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed. PMID:26881027
Milane, Lara; Ganesh, Shanthi; Shah, Shruti; Duan, Zhen-feng; Amiji, Mansoor
2011-01-01
Inefficiency in systemic drug delivery and tumor residence as well microenvironmental selection pressures contribute to the development of multidrug resistance (MDR) in cancer. Characteristics of MDR include abnormal vasculature, regions of hypoxia, up-regulation of ABC-transporters, aerobic glycolysis, and an elevated apoptotic threshold. Nano-sized delivery vehicles are ideal for treating MDR cancer as they can improve the therapeutic index of drugs and they can be engineered to achieve multifunctional parameters. The multifunctional ability of nanocarriers makes them more adept at treating heterogeneous tumor mass than traditional chemotherapy. Nanocarriers also have preferential tumor accumulation via the EPR effect; this accumulation can be further enhanced by actively targeting the biological profile of MDR cells. Perhaps the most significant benefit of using nanocarrier drug delivery to treat MDR cancer is that nanocarrier delivery diverts the effects of ABC-transporter mediated drug efflux; which is the primary mechanism of MDR. This review discusses the capabilities, applications, and examples of multifunctional nanocarriers for the treatment of MDR. This review emphasizes multifunctional nanocarriers that enhance drug delivery efficiency, the application of RNAi, modulation of the tumor apoptotic threshold, and physical approaches to overcome MDR. PMID:21497176
Morris, M D; Quezada, L; Bhat, P; Moser, K; Smith, J; Perez, H; Laniado-Laborin, R; Estrada-Guzman, J; Rodwell, T C
2013-07-01
The State of Baja California, Mexico, had the highest prevalence of multidrug-resistant tuberculosis (MDR-TB) in Mexico in 2009. To understand the socio-economic burden of MDR-TB disease and its treatment on patients in Tijuana and Mexicali, Mexico. From July to November 2009, qualitative interviews were conducted with 12 patients enrolled in a US-Mexico binational MDR-TB treatment program, Puentes de Esperanza (Bridges of Hope), which was designed to support MDR-TB patients. In-depth interviews were coded to identify major themes in patient experiences of MDR-TB diagnosis and care. While some patients were able to maintain their pre-MDR-TB lives to a limited extent, most patients reported losing their sense of identity due to their inability to work, social isolation, and stigmatization from family and friends. The majority of participants expressed appreciation for Puentes' role in 'saving their lives'. Being diagnosed with MDR-TB and undergoing treatment imposes significant psychological, social and economic stress on patients. Strong social support elements within Puentes helped alleviate these burdens. Improvements to the program might include peer-support groups for patients undergoing treatment and transitioning back into the community after treatment.
Li, Yu-Hang; Yu, Shi-Liang; Gan, Xiu-Guo; Pan, Shang-Ha; Teng, Yue-Qiu; An, Rui-Hua
2016-02-01
We investigated the possible involvement of multidrug resistance protein 1 P-glycoprotein (MDR1 P-gp) in the oxalate-induced redistribution of phosphatidylserine in renal epithelial cell membranes. Real-time PCR and western blotting were used to examine MDR1 expression in Madin-Darby canine kidney cells at the mRNA and protein levels, respectively, whereas surface-expressed phosphatidylserine was detected by the annexin V-binding assay. Oxalate treatment resulted in increased synthesis of MDR1, which resulted in phosphatidylserine (PS) externalization in the renal epithelial cell membrane. Treatment with the MDR1 inhibitor PSC833 significantly attenuated phosphatidylserine externalization. Transfection of the human MDR1 gene into renal epithelial cells significantly increased PS externalization. To our knowledge, this study is the first to show that oxalate increases the synthesis of MDR1 P-gp, which plays a key role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.
Mata-Espinosa, Dulce; Molina-Salinas, Gloria María; Barrios-Payán, Jorge; Navarrete-Vázquez, Gabriel; Marquina, Brenda; Ramos-Espinosa, Octavio; Bini, Estela Isabel; Baeza, Isabel; Hernández-Pando, Rogelio
2015-06-01
Tuberculosis (TB) is one of the deadliest infectious diseases and comprises a global public health concern because co-infection with Human immunodeficiency virus (HIV) and, in particular, the continuous isolation of new Multidrug-resistant strains (MDR), rendering the discovery of novel anti-TB agents a strategic priority. One of the most effective first-line mycobactericidal drugs is Isoniazid (INH). Previously, we reported in vitro anti-mycobacterial activity against sensitive and MDR Mycobacterium tuberculosis strains of a new oxadiazole obtained from the hybridization of INH and palmitic acid. The present study evaluated the therapeutic potential of liposomes including Phosphatidylcholine (PC) and L-α Phosphatidic acid (PA) or PC and Cholesterol (Chol) containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in BALB/c male mice infected by intratracheal (i.t.) route with drug-sensitive or MDR M. tuberculosis. The lipophilic 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine was obtained to mix INH and palmitoyl chloride. The in vivo anti-TB effect of this oxadiazole derivative contained in two different liposomes was tested in BALB/c mice infected with a sensitive strain of M. tuberculosis, initiating treatment 2 months post-infection, by i.t. route, of 50 μg of oxadiazole derivative for 1 month. In a second stage, mice were infected with an MDR (resistant to first-line drugs) and treated with 150 μg of an oxadiazole derivative carried by PC + Chol liposomes for 2 months. The effect of the oxadiazole derivative in vivo was determined by the quantification of lung bacilli loads and histopathology. In comparison with control animals, drug-sensitive, strain-infected mice treated for 1 month with 50 μg of this oxadiazole derivative contained in the liposomes of PC + Chol showed a significant, 80% decrease of live bacilli in lungs, which correlated with the morphometric observation, and the group of MDR clinical isolate-infected mice treated with 150 μg of the oxadiazole derivative contained in the same type of liposome showed significantly lower lung bacillary loads than control mice, producing 90% of bacilli burden reduction after 2 months of treatment. These results confirm and extend the reported highly efficient anti-mycobacterial activity of this lipophilic oxidazole derivative when it is carried by liposomes in mice suffering from late progressive pulmonary TB induced by drug-sensitive, and most prominently by, MDR strains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pyrrolidine-Acridine hybrid in Artemisinin-based combination: a pharmacodynamic study.
Pandey, Swaroop Kumar; Biswas, Subhasish; Gunjan, Sarika; Chauhan, Bhavana Singh; Singh, Sunil Kumar; Srivastava, Kumkum; Singh, Sarika; Batra, Sanjay; Tripathi, Renu
2016-09-01
Aiming to develop new artemisinin-based combination therapy (ACT) for malaria, antimalarial effect of a new series of pyrrolidine-acridine hybrid in combination with artemisinin derivatives was investigated. Synthesis, antimalarial and cytotoxic evaluation of a series of hybrid of 2-(3-(substitutedbenzyl)pyrrolidin-1-yl)alkanamines and acridine were performed and mode of action of the lead compound was investigated. In vivo pharmacodynamic properties (parasite clearance time, parasite reduction ratio, dose and regimen determination) against multidrug resistant (MDR) rodent malaria parasite and toxicological parameters (median lethal dose, liver function test, kidney function test) were also investigated. 6-Chloro-N-(4-(3-(3,4-dimethoxybenzyl)pyrrolidin-1-yl)butyl)-2-methoxyacridin-9-amine (15c) has shown a dose dependent haem bio-mineralization inhibition and was found to be the most effective and safe compound against MDR malaria parasite in Swiss mice model. It displayed best antimalarial potential with artemether (AM) in vitro as well as in vivo. The combination also showed favourable pharmacodynamic properties and therapeutic response in mice with established MDR malaria infection and all mice were cured at the determined doses. The combination did not show toxicity at the doses administered to the Swiss mice. Taken together, our findings suggest that compound 15c is a potential partner with AM for the ACT and could be explored for further development.
Maesaki, S; Marichal, P; Hossain, M A; Sanglard, D; Vanden Bossche, H; Kohno, S
1998-12-01
We investigated the effects of combining tacrolimus and azole antifungal agents in azole-resistant strains of Candida albicans by comparing the accumulation of [3H]itraconazole. The CDR1-expressing resistant strain C26 accumulated less itraconazole than the CaMDR-expressing resistant strain C40 or the azole-sensitive strain B2630. A CDR1-expressing Saccharomyces cerevisiae mutant, DSY415, showed a marked reduction in the accumulation of both fluconazole and itraconazole. A CaMDR-expressing S. cerevisiae mutant, DSY416, also showed lower accumulation of fluconazole, but not of itraconazole. The addition of sodium azide, an electron-transport chain inhibitor, increased the intracellular accumulation of itraconazole only in the C26 strain, and not in the C40 or B2630 strains. Addition of tacrolimus, an inhibitor of multidrug resistance proteins, resulted in the highest increase in itraconazole accumulation in the C26 strain. The combination of itraconazole and tacrolimus was synergic in azole-resistant C. albicans strains. In the C26 strain, the MIC of itraconazole decreased from >8 to 0.5 mg/L when combined with tacrolimus. Our results showed that two multidrug resistance phenotypes (encoded by the CDR1 and CaMDR genes) in C. albicans have different substrate specificity for azole antifungal agents and that a combination of tacrolimus and azole antifungal agents is effective against azole-resistant strains of C. albicans.
Kwatra, Deep; Venugopal, Anand; Standing, David; Ponnurangam, Sivapriya; Dhar, Animesh; Mitra, Ashim; Anant, Shrikant
2013-12-01
Recently, we demonstrated that extracts of bitter melon (BME) can be used as a preventive/therapeutic agent in colon cancers. Here, we determined BME effects on anticancer activity and bioavailability of doxorubicin (DOX) in colon cancer cells. BME enhanced the effect of DOX on cell proliferation and sensitized the cells toward DOX upon pretreatment. Furthermore, there was both increased drug uptake and reduced drug efflux. We also observed a reduction in the expression of multidrug resistance conferring proteins (MDRCP) P-glycoprotein, MRP-2, and BCRP. Further BME suppressed DOX efflux in MDCK cells overexpressing the three efflux proteins individually, suggesting that BME is a potent inhibitor of MDR function. Next, we determined the effect of BME on PXR, a xenobiotic sensing nuclear receptor and a transcription factor that controls the expression of the three MDR genes. BME suppressed PXR promoter activity thereby suppressing its expression. Finally, we determined the effect of AMPK pathway on drug efflux because we have previously demonstrated that BME affects the pathway. However, inhibiting AMPK did not affect drug resistance, suggesting that BME may use different pathways for the anticancer and MDR modulating activities. Together, these results suggest that BME can enhance the bioavailability and efficacy of conventional chemotherapy. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Cardoso, Teresa; Ribeiro, Orquídea; Aragão, Irene César; Costa-Pereira, Altamiro; Sarmento, António Eugénio
2012-12-26
There is a lack of consensus regarding the definition of risk factors for healthcare-associated infection (HCAI). The purpose of this study was to identify additional risk factors for HCAI, which are not included in the current definition of HCAI, associated with infection by multidrug-resistant (MDR) pathogens, in all hospitalized infected patients from the community. This 1-year prospective cohort study included all patients with infection admitted to a large, tertiary care, university hospital. Risk factors not included in the HCAI definition, and independently associated with MDR pathogen infection, namely MDR Gram-negative (MDR-GN) and ESKAPE microorganisms (vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species, carbapenem-hydrolyzing Klebsiella pneumonia and MDR Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species), were identified by logistic regression among patients admitted from the community (either with community-acquired or HCAI). There were 1035 patients with infection, 718 from the community. Of these, 439 (61%) had microbiologic documentation; 123 were MDR (28%). Among MDR: 104 (85%) had MDR-GN and 41 (33%) had an ESKAPE infection. Independent risk factors associated with MDR and MDR-GN infection were: age (adjusted odds ratio (OR) = 1.7 and 1.5, p = 0.001 and p = 0.009, respectively), and hospitalization in the previous year (between 4 and 12 months previously) (adjusted OR = 2.0 and 1,7, p = 0.008 and p = 0.048, respectively). Infection by pathogens from the ESKAPE group was independently associated with previous antibiotic therapy (adjusted OR = 7.2, p < 0.001) and a Karnofsky index <70 (adjusted OR = 3.7, p = 0.003). Patients with infection by MDR, MDR-GN and pathogens from the ESKAPE group had significantly higher rates of inadequate antibiotic therapy than those without (46% vs 7%, 44% vs 10%, 61% vs 15%, respectively, p < 0.001). This study suggests that the inclusion of additional risk factors in the current definition of HCAI for MDR pathogen infection, namely age >60 years, Karnofsky index <70, hospitalization in the previous year, and previous antibiotic therapy, may be clinically beneficial for early diagnosis, which may decrease the rate of inadequate antibiotic therapy among these patients.
Lewis, Richard H; Sharpe, John P; Swanson, Joseph M; Fabian, Timothy C; Croce, Martin A; Magnotti, Louis J
2018-04-16
Multi-drug resistant (MDR) strains of both Acinetobacter baumannii (AB) and Pseudomonas aeruginosa (PA) as causative VAP pathogens are becoming increasingly common. Still, the risk factors associated with this increased resistance have yet to be elucidated. The purpose of this study was to examine the changing sensitivity patterns of these pathogens over time and determine which risk factors predict MDR in trauma patients with VAP. Patients with either AB or PA VAP over 10 years were stratified by pathogen sensitivity (sensitive (SEN) and MDR), age, severity of shock and injury severity. Prophylactic and empiric antibiotic days, risk factors for severe VAP and mortality were compared. Multivariable logistic regression (MLR) was performed to determine which risk factors were independent predictors of MDR. 397 patients were identified with AB or PA VAP. There were 173 episodes of AB (91 SEN and 82 MDR) and 224 episodes of PA (170 SEN and 54 MDR). The incidence of MDR VAP did not change over the study (p=0.633). Groups were clinically similar with the exception of 24-hour transfusions (14 vs 19 units, p = 0.009) and extremity AIS (1 vs 3, p<0.001), both significantly increased in the MDR group. Antibiotic exposure as well as mIEAT (63% vs 81%, p<0.001) were significantly increased in the MDR group. MLR identified prophylactic antibiotic days (OR 23.1; 95%CI 16.7-28, p<0.001) and mIEAT (OR 18.1; 95%CI 12.2-26.1, p=0.001) as independent predictors of MDR after adjusting for severity of shock, injury severity, severity of VAP and antibiotic exposure. Prolonged exposure to unnecessary antibiotics remains one of the strongest predictors for the development of antibiotic resistance. MLR identified prophylactic antibiotic days and mIEAT an independent risk factors for MDR VAP. Thus, limiting prophylactic antibiotic days is the only potentially modifiable risk factor for the development of MDR VAP in trauma patients. Level III, Prognostic LEVEL OF EVIDENCE: Multi-drug resistant, antibiotic exposure.
Yang, Jie; McArdle, Conor; Daniels, Stephen
2014-01-01
A new data dimension-reduction method, called Internal Information Redundancy Reduction (IIRR), is proposed for application to Optical Emission Spectroscopy (OES) datasets obtained from industrial plasma processes. For example in a semiconductor manufacturing environment, real-time spectral emission data is potentially very useful for inferring information about critical process parameters such as wafer etch rates, however, the relationship between the spectral sensor data gathered over the duration of an etching process step and the target process output parameters is complex. OES sensor data has high dimensionality (fine wavelength resolution is required in spectral emission measurements in order to capture data on all chemical species involved in plasma reactions) and full spectrum samples are taken at frequent time points, so that dynamic process changes can be captured. To maximise the utility of the gathered dataset, it is essential that information redundancy is minimised, but with the important requirement that the resulting reduced dataset remains in a form that is amenable to direct interpretation of the physical process. To meet this requirement and to achieve a high reduction in dimension with little information loss, the IIRR method proposed in this paper operates directly in the original variable space, identifying peak wavelength emissions and the correlative relationships between them. A new statistic, Mean Determination Ratio (MDR), is proposed to quantify the information loss after dimension reduction and the effectiveness of IIRR is demonstrated using an actual semiconductor manufacturing dataset. As an example of the application of IIRR in process monitoring/control, we also show how etch rates can be accurately predicted from IIRR dimension-reduced spectral data. PMID:24451453
Hu, Bi-Yuan; Gu, Yun-Hao; Cao, Chen-Jie; Wang, Jun; Han, Dong-Dong; Tang, Ying-Chao; Chen, Hua-Sheng; Xu, Aihua
2016-01-01
The aim of the present study was to investigate the reversal effect and its related mechanism of Ginkgo biloba exocarp extracts (GBEEs) in obtained multidrug resistance (MDR) of mice S180 tumor cells in vitro and in vivo. In order to simulate the clinical PFC [cis-dichlorodiamineplatinum, cisplatin (DDP) + fluorouracil (FU), FU+cyclophosphamide and cyclophosphamide] scheme, a gradually increasing dose was administered in a phased induction in order to induce S180 cells in vivo and to make them obtain multidrug resistance. The results in vitro demonstrated that GBEE could significantly increase the IC50 of DDP on S180 MDR cells, increase the accumulation of Adriamycin (ADR) and rhodamine 123 (Rho 123), and reduce the efflux of Rho 123 of S180 MDR cells. The results from the in vivo treatment with a combination of GBEE and DDP to S180 MDR ascites tumor in mice demonstrated that each dose of GBEE could effectively reverse the drug-resistance of S180 MDR cells to DDP in order to extend the survival time of mice with ascite tumors and inhibit tumor growth in solid tumor mice. In addition, GBEE effectively inhibited the expression of MDR-1 mRNA and multidrug resistance-associated protein-1 mRNA in S180 MDR cells of ascites tumor in mice and improved the expression levels of cytokines, including interleukin (IL)-3, IL-18 and interferon-γ in the blood serum of S180 MDR tumor-bearing mice. The present study showed that the mechanism of GBEE reversal of MDR may be associated with the inhibition of the functional activity of P-glycoprotein, the downregulation of drug resistance related gene expression of S180 MDR cells and the improvement of the production of related serum cytokines of S180 MDR tumor mice. PMID:27698692
Hadizadeh Tasbiti, Alireza; Yari, Shamsi; Siadat, Seyed Davar; Tabarsi, Payam; Saeedfar, Kayvan; Yari, Fatemeh
2018-02-01
Tuberculosis (TB) is a crucial public health problem with prevalence of multidrug resistant (MDR) rising. An accurate TB biomarker is urgently needed to monitor the response to treatment in patients with MDR tuberculosis. To analyze interaction between selected MDR-TB purified protein and immune cells, dendritic cells from MDR-TB patients and healthy subjects were stimulated by 55KDa protein fractions (Rv0147). The purified proteins identified by proteomic techniques (two-dimensional gel electrophoresis, mass spectrometry) and peptide sequences are known to bind a MHC class I alleles which are extracted from the Immune Epitope Database and Analysis Resource database ( www.iedb.org ). T cells were isolated from PBMC by negative selection and cells were cultured in RPMI-1640 at 37 °C and 5% CO 2 . Cell culture was assayed for cytokine IL-10 and INF-γ by ELISA. We found that INF-γ production was significantly (335 ± 35.5 pg/ml, P ˂ 0.05) upregulated after protein candidate (Rv0147) stimulation by dendritic cells from MDR-TB patients, whereas IL-10 production was greatly reduced compared with production in healthy subjects (212 ± 9.94 pg/ml, P ˂ 0.05). In fact, the purified protein, Rv0147, stimulated dendritic cells from MDR-TB patients, failed to produce IL-10 and directly stimulates INF-γ production by T cells. These results suggest that the purified protein, Rv0147, may stimulate Th1 type protective cytokine response in MDR-TB patients but not in normal subjects. The production of INF-γ but not IL-10 in the presence of purified protein, Rv0147, may be shifted to Th1 responses in MDR-TB patients and supports its potential as protein vaccine candidates against TB.
Bagheri-Nesami, Masoumeh; Rezai, Mohammad Sadegh; Ahangarkani, Fatemeh; Rafiei, Alireza; Nikkhah, Attieh; Eslami, Gohar; Shafahi, Kheironesa; Hajalibeig, Azin; Khajavi, Rezvan
2017-09-01
Ventilator-associated pneumonia (VAP) due to non-fermenting Gram-negative bacilli (NFGNB), especially Pseudomonas aeruginosa and Acinetobacter spp., is one of the main hospital-acquired infections leading to mortality and morbidity, especially in intensive care units (ICUs). This study seeks to determine the multidrug and co-resistance (MDR) patterns of NFGNB that are agents of VAP, and assess the presence of class 1 integron in these bacteria. This cross-sectional study involved VAP patients admitted in the ICUs of 18 hospitals in the Mazandaran province, located in the North of Iran. The antibiotic susceptibility pattern was determined by the minimum inhibitory concentration (MIC) test by using broth microdilution method. Presence of class 1 integron was evaluated by the polymerase chain reaction (PCR) assay. Out of a total of 83 patients who were microbiologically diagnosed as VAP, 52 non-duplicated NFGNBs (24 P. aeruginosa and 28 A. baumannii ) were causative of VAP, out of which MDR NFGNBs were responsible for 48 (57.83%) cases. The frequencies of MDR NFGNBs were as follows: 27 (56.25%) A. baumannii and 21 (43.75%) P. aeruginosa . P. aeruginosa isolates were resistant to all aminoglycoside antibiotics (50%), ciprofloxacin (45.8%), ceftazidime (70.8%), cefepime (87.5%), colistin (62.5%), and imipenem (29.2%). A. baumannii isolates were resistant to aminoglycosides (53.6%), ciprofloxacin (85.7%), ceftazidime (92. 9%), cefepime (92.9%), colistin (35.7%), and imipenem (57.1%). Twelve isolates were resistant to all 10 tested antibiotics. The number of rates of class 1 integron, positive for MDR P. aeruginosa and MDR A. baumannii , were 20 (95.23%) and 21 (77.78%), respectively. The high prevalence of multidrug resistance and incidence of class 1 integron is a therapeutic concern. Employing antibiotic stewardship in hospitals could prevent the dissemination of MDR bacteria.
Efsen, Anne Marie W.; Schultze, Anna; Post, Frank A.; Panteleev, Alexander; Furrer, Hansjakob; Miller, Robert F.; Losso, Marcelo H.; Toibaro, Javier; Skrahin, Aliaksandr; Miro, Jose M.; Caylà, Joan A.; Girardi, Enrico; Bruyand, Mathias; Obel, Niels; Podlekareva, Daria N.; Lundgren, Jens D.; Mocroft, Amanda; Kirk, Ole
2015-01-01
Objectives Rates of TB/HIV coinfection and multi-drug resistant (MDR)-TB are increasing in Eastern Europe (EE). We aimed to study clinical characteristics, factors associated with MDR-TB and predicted activity of empiric anti-TB treatment at time of TB diagnosis among TB/HIV coinfected patients in EE, Western Europe (WE) and Latin America (LA). Design and Methods Between January 1, 2011, and December 31, 2013, 1413 TB/HIV patients (62 clinics in 19 countries in EE, WE, Southern Europe (SE), and LA) were enrolled. Results Significant differences were observed between EE (N = 844), WE (N = 152), SE (N = 164), and LA (N = 253) in the proportion of patients with a definite TB diagnosis (47%, 71%, 72% and 40%, p<0.0001), MDR-TB (40%, 5%, 3% and 15%, p<0.0001), and use of combination antiretroviral therapy (cART) (17%, 40%, 44% and 35%, p<0.0001). Injecting drug use (adjusted OR (aOR) = 2.03 (95% CI 1.00–4.09), prior anti-TB treatment (3.42 (1.88–6.22)), and living in EE (7.19 (3.28–15.78)) were associated with MDR-TB. Among 585 patients with drug susceptibility test (DST) results, the empiric (i.e. without knowledge of the DST results) anti-TB treatment included ≥3 active drugs in 66% of participants in EE compared with 90–96% in other regions (p<0.0001). Conclusions In EE, TB/HIV patients were less likely to receive a definite TB diagnosis, more likely to house MDR-TB and commonly received empiric anti-TB treatment with reduced activity. Improved management of TB/HIV patients in EE requires better access to TB diagnostics including DSTs, empiric anti-TB therapy directed at both susceptible and MDR-TB, and more widespread use of cART. PMID:26716686
2014-01-01
The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization. PMID:25349605
Jatau, Bolajoko; Avong, Yohanna; Ogundahunsi, Olumide; Shah, Safieh; Tayler Smith, Katherine; Van den Bergh, Rafael; Zachariah, Rony; van Griensven, Johan; Ekong, Ernest; Dakum, Patrick
2015-01-01
Background The World Health Organisation (WHO) introduced the twelve early warning indicators for monitoring and evaluating drug Procurement and Supply management (PSM) systems, intended to prevent drug stock-outs and overstocking. Nigeria- one of the high Multi Drug Resistant Tuberculosis (MDR-TB) burden countries, scaled-up treatment in 2012 with the concurrent implementation of a PSM system. Method We evaluated how well this system functioned using the WHO indicators, including all seven MDR-TB treatment centres in the country that were functional throughout 2013. Results The quantity of MDR-TB drugs ordered for 2013 matched the annual forecast and all central orders placed during the year were delivered in full and on time. Drug consumption was 81%–106% of the quantity allocated for routine consumption. Timely submission of complete inventory reports ranged from 86–100%, late submissions being 5–15 days late. Forty to 71% of treatment centres placed a drug order when stock was below the minimum level of three months. The proportion of drug orders received at the treatment centres in full and on time ranged from 29–80%, late orders being 1–19 days late. Conclusion The PSM was found to be performing well in terms of forecasting and procurement of MDR-TB drugs, but there were shortcomings in drug distribution, reporting at treatment centre level and in drug order placements. Despite these gaps, there were no stock outs. These findings indicate that where it matters most, namely ensuring that no drug stock outs affect patient management, the PSM system is effective. Addressing the observed shortcomings will help to strengthen the existing PSM system in anticipation of a growing MDR-TB case burden in the country. PMID:26098673
Chaiyachati, Krisda H; Loveday, Marian; Lorenz, Stephen; Lesh, Neal; Larkan, Lee-Megan; Cinti, Sandro; Friedland, Gerald H; Haberer, Jessica E
2013-01-01
As the South African province of KwaZulu-Natal addresses a growing multidrug-resistant tuberculosis (MDR-TB) epidemic by shifting care and treatment from trained specialty centers to community hospitals, delivering and monitoring MDR-TB therapy has presented new challenges. In particular, tracking and reporting adverse clinical events have been difficult for mobile healthcare workers (HCWs), trained health professionals who travel daily to patient homes to administer and monitor therapy. We designed and piloted a mobile phone application (Mobilize) for mobile HCWs that electronically standardized the recording and tracking of MDR-TB patients on low-cost, functional phones. We assess the acceptability and feasibility of using Mobilize to record and submit adverse events forms weekly during the intensive phase of MDR-TB therapy and evaluate mobile HCW perceptions throughout the pilot period. All five mobile HCWs at one site were trained and provided with phones. Utilizing a mixed-methods evaluation, mobile HCWs' usage patterns were tracked electronically for seven months and analyzed. Qualitative focus groups and questionnaires were designed to understand the impact of mobile phone technology on the work environment. Mobile HCWs submitted nine of 33 (27%) expected adverse events forms, conflicting with qualitative results in which mobile HCWs stated that Mobilize improved adverse events communication, helped their daily workflow, and could be successfully expanded to other health interventions. When presented with the conflict between their expressed views and actual practice, mobile HCWs cited forgetfulness and believed patients should take more responsibility for their own care. This pilot experience demonstrated poor uptake by HCWs despite positive responses to using mHealth. Though our results should be interpreted cautiously because of the small number of mobile HCWs and MDR-TB patients in this study, we recommend carefully exploring the motivations of HCWs and technologic enhancements prior to scaling new mHealth initiatives in resource poor settings.
Baek, Jin Yang; Kang, Cheol-In; Kim, So Hyun; Ko, Kwan Soo; Chung, Doo Ryeon; Peck, Kyong Ran; Hsueh, Po-Ren; Thamlikitkul, Visanu; So, Thomas Man-Kit; Lee, Nam Yong; Song, Jae-Hoon
2016-06-01
Tedizolid phosphate is a second-generation oxazolidinone prodrug that is potential activity against a wide range of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, penicillin-resistant streptococci, and vancomycin-resistant enterococci. The in vitro activity of tedizolid and other comparator agents against multidrug-resistant (MDR) pneumococci from various Asian countries were evaluated. Of the S. pneumoniae clinical pneumonia isolates collected during 2008 and 2009 from 8 Asian countries (Korea, Taiwan, Thailand, Hong Kong, Vietnam, Malaysia, Philippines, and Sri Lanka), 104 isolates of MDR pneumococci were included in this study. Antimicrobial susceptibility testing for 18 antimicrobial agents was performed by broth microdilution method. Tedizolid was highly active against pneumococci. All isolates tested were inhibited at a tedizolid minimum inhibitory concentration (MIC) value of ≤0.25μg/ml (ranged from ≤0.03μg/ml to 0.25μg/ml). The MIC50 and MIC90 of tedizolid against MDR pneumococci were both 0.12μg/ml, while MIC50 and MIC90 of linezolid were 0.5μg/ml and 1μg/ml, respectively. In addition, tedizolid maintained the activity against S. pneumoniae regardless of the extensively drug-resistant (XDR) phenotype of the isolates. The activity of tedizolid was excellent against all types of MDR pneumococci, exhibiting and maintaining at least 4-fold-greater potency compared to linezolid, regardless of resistance phenotypes to other commonly utilized agents. Tedizolid has the potential to be an agent to treat infections caused by MDR pneumococci in the Asia. Copyright © 2016 Elsevier Inc. All rights reserved.
2011-01-01
Background The emergence of multi-drug resistant (MDR) phenotypes is a major public health problem today in the treatment of bacterial infections. The present study was designed to evaluate the antibacterial activities of the methanol extracts of eleven Cameroonian spices on a panel of twenty nine Gram negative bacteria including MDR strains. Methods The phytochemical analysis of the extracts was carried out by standard tests meanwhile the liquid micro-broth dilution was used for all antimicrobial assays. Results Phytochemical analysis showed the presence of alkaloids, phenols and tannins in all plants extracts. The results of the antibacterial assays indicated that all tested extracts exert antibacterial activities, with the minimum inhibitory concentration (MIC) values varying from 32 to 1024 μg/ml. The extracts from Dichrostachys glomerata, Beilschmiedia cinnamomea, Aframomum citratum, Piper capense, Echinops giganteus, Fagara xanthoxyloïdes and Olax subscorpioïdea were the most active. In the presence of efflux pump inhibitor, PAßN, the activity of the extract from D. glomerata significantly increased on 69.2% of the tested MDR bacteria. At MIC/5, synergistic effects were noted with the extract of D. glomerata on 75% of the tested bacteria for chloramphenicol (CHL), tetracycline (TET) and norfloxacin (NOR). With B. cinnamomea synergy were observed on 62.5% of the studied MDR bacteria with CHL, cefepime (FEP), NOR and ciprofloxacin (CIP) and 75% with erythromycin (ERY). Conclusion The overall results provide information for the possible use of the studied extracts of the spices in the control of bacterial infections involving MDR phenotypes. PMID:22044718
Kuteykin-Teplyakov, Konstantin; Luna-Tortós, Carlos; Ambroziak, Kamila; Löscher, Wolfgang
2010-01-01
Background and purpose: P-glycoprotein (Pgp) efflux assays are widely used to identify Pgp substrates. The kidney cell lines Madin-Darby canine kidney (MDCK)-II and LLC-PK1, transfected with human MDR1 (ABCB1) are used to provide recombinant models of drug transport. Endogenous transporters in these cells may contribute to the activities of recombinant transporters, so that drug transport in MDR1-transfected cells is often corrected for the transport obtained in parental (wildtype) cells. However, expression of endogenous transporters may vary between transfected and wildtype cells, so that this correction may cause erroneous data. Here, we have measured the expression of endogenous efflux transporters in transfected and wildtype MDCK-II or LLC cells and the consequences for Pgp-mediated drug transport. Experimental approach: Using quantitative real-time RT-PCR, we determined the expression of endogenous Mdr1 mRNA and other efflux transporters in wildtype and MDR1-transfected MDCK-II and LLC cells. Transcellular transport was measured with the test substrate vinblastine. Key results: In MDR1-transfected MDCK cells, expression of endogenous (canine) Mdr1 and Mrp2 (Abcc2) mRNA was markedly lower than in wildtype cells, whereas MDR1-transfected LLC cells exhibited comparable Mdr1 but strikingly higher Mrp2 mRNA levels than wildtype cells. As a consequence, transport of vinblastine by human Pgp in efflux experiments was markedly underestimated when transport in MDR1-transfected MDCK cells was corrected for transport obtained in wildtype cells. This problem did not occur in LLC cells. Conclusions and implications: Differences in the expression of endogenous efflux transporters between transfected and wildtype MDCK cells provide a potential bias for in vitro studies on Pgp-mediated drug transport. PMID:20590635
Shankar, Krupa; Radhakrishnan, Venkatraman; Vijayakumar, Varalakskmi; Ramamoorthy, Jaikumar; Ganesan, Prasanth; Dhanushkodi, Manikandan; Ganesan, T S; Sagar, T G
2018-01-01
Multi-drug resistant (MDR) bacteria are associated with increased morbidity and mortality in children with acute leukaemia. The present study was conducted to assess the prevalence of MDR bacteria in stool cultures of patients with acute leukaemia at presentation to the hospital. The results were then correlated with blood cultures when patients developed septicaemia. The study involved analysis of case records of patients with newly diagnosed acute leukaemia less than 18 years of age treated at our centre from January 2015 to December 2015. Stool cultures were sent within 72 hr of hospital admission and blood cultures were sent when clinically indicated. MDR was defined as resistance to at least one antibiotic in three or more following antimicrobial groups: cephalosporins, β-lactam/β-lactamase inhibitor, carbapenems, fluoroquinolones and aminoglycosides. The analysis included 85 patients with acute leukaemia, among whom 48 of 85 (56%) patients had positive stool cultures and 42 of 85 (50%) patients were positive for MDR bacteria. Blood cultures were positive in 13 of 48 patients (27%, seven MDR and six non-MDR) with positive stool cultures and three of 37 patients (8%, one MDR and two non-MDR) with negative stool cultures (P = 0.01). The concordance between stool and blood culture for similar organism was 61%. There were seven deaths in 48 stool culture positive patients and two deaths in 37 stool culture negative patients. This study shows the high prevalence of MDR bacteria in newly diagnosed children with acute leukaemia. Colonisation with MDR bacteria in stools is associated with increased positivity of blood cultures and mortality. © 2017 Wiley Periodicals, Inc.
Drug-resistant tuberculosis control in China: progress and challenges.
Long, Qian; Qu, Yan; Lucas, Henry
2016-01-29
China has the second highest caseload of multidrug-resistant tuberculosis (MDR-TB) in the world. In 2009, the Chinese government agreed to draw up a plan for MDR-TB prevention and control in the context of a comprehensive health system reform launched in the same year. China is facing high prevalence rates of drug-resistant TB and MDR-TB. MDR-TB disproportionally affects the poor rural population and the highest rates are in less developed regions largely due to interrupted and/or inappropriate TB treatment. Most households with an affected member suffer a heavy financial burden because of a combination of treatment and other related costs. The influential Global Fund programme for MDR-TB control in China provides technical and financial support for MDR-TB diagnosis and treatment. However, this programme has a fixed timeline and cannot provide a long term solution. In 2009, the Bill and Melinda Gates Foundation, in cooperation with the National Health and Family Planning Commission of China, started to develop innovative approaches to TB/MDR-TB management and case-based payment mechanisms for treatment, alongside increased health insurance benefits for patients, in order to contain medical costs and reduce financial barriers to treatment. Although these efforts appear to be in the right direction, they may not be sufficient unless (a) domestic sources are mobilized to raise funding for TB/MDR-TB prevention and control and (b) appropriate incentives are given to both health facilities and their care providers. Along with the on-going Chinese health system reform, sustained government financing and social health protection schemes will be critical to ensure universal access to appropriate TB treatment in order to reduce risk of developing MDR-TB and systematic MDR-TB treatment and management.
Xu, Ling; Zhang, Ye; Qu, Xiujuan; Che, Xiaofang; Guo, Tianshu; Cai, Ying; Li, Aodi; Li, Danni; Li, Ce; Wen, Ti; Fan, Yibo; Hou, Kezuo; Ma, Yanju; Hu, Xuejun; Liu, Yunpeng
2017-04-01
Multiple drug resistance (MDR) and metastasis are two major factors that contribute to the failure of cancer treatment. However, the relationship between MDR and metastasis has not been characterized. Additionally, the role of the E3 ubiquitin ligase Cbl-b in metastasis of MDR gastric and breast cancer is not well known. In the present study, we found that MDR gastric and breast cancer cells possess a typical mesenchymal phenotype and enhanced cell migration capacity. Additionally, Cbl-b is poorly expressed in MDR gastric and breast cancer cells. In MDR gastric adenocarcinoma tissues, gastric cancer patients with low Cbl-b expression were more likely to have tumor invasion (P=.016) and lymph node metastasis (P=.007). Moreover, overexpression of Cbl-b reduced cell migration in MDR cell cultures both in vitro and in vivo. Cbl-b overexpression also prevented EMT by inducing ubiquitination and degradation of EGFR, leading to inhibition of the EGFR-ERK/Akt-miR-200c-ZEB1 axis. However, further overexpression of EGFR on a background of Cbl-b overexpression restored both the mesenchymal phenotype and cell migration capacity of MDR gastric and breast cancer cells. These results suggest that Cbl-b is an important factor for maintenance of the epithelial phenotype and inhibition of cell migration in MDR gastric and breast cancer cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Lange, Christoph; Abubakar, Ibrahim; Alffenaar, Jan-Willem C.; Bothamley, Graham; Caminero, Jose A.; Carvalho, Anna Cristina C.; Chang, Kwok-Chiu; Codecasa, Luigi; Correia, Ana; Crudu, Valeriu; Davies, Peter; Dedicoat, Martin; Drobniewski, Francis; Duarte, Raquel; Ehlers, Cordula; Erkens, Connie; Goletti, Delia; Günther, Gunar; Ibraim, Elmira; Kampmann, Beate; Kuksa, Liga; de Lange, Wiel; van Leth, Frank; van Lunzen, Jan; Matteelli, Alberto; Menzies, Dick; Monedero, Ignacio; Richter, Elvira; Rüsch-Gerdes, Sabine; Sandgren, Andreas; Scardigli, Anna; Skrahina, Alena; Tortoli, Enrico; Volchenkov, Grigory; Wagner, Dirk; van der Werf, Marieke J.; Williams, Bhanu; Yew, Wing-Wai; Zellweger, Jean-Pierre; Cirillo, Daniela Maria
2014-01-01
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) substantially challenges TB control, especially in the European Region of the World Health Organization, where the highest prevalence of MDR/XDR cases is reported. The current management of patients with MDR/XDR-TB is extremely complex for medical, social and public health systems. The treatment with currently available anti-TB therapies to achieve relapse-free cure is long and undermined by a high frequency of adverse drug events, suboptimal treatment adherence, high costs and low treatment success rates. Availability of optimal management for patients with MDR/XDR-TB is limited even in the European Region. In the absence of a preventive vaccine, more effective diagnostic tools and novel therapeutic interventions the control of MDR/XDR-TB will be extremely difficult. Despite recent scientific advances in MDR/XDR-TB care, decisions for the management of patients with MDR/XDR-TB and their contacts often rely on expert opinions, rather than on clinical evidence. This document summarises the current knowledge on the prevention, diagnosis and treatment of adults and children with MDR/XDR-TB and their contacts, and provides expert consensus recommendations on questions where scientific evidence is still lacking. PMID:24659544
Li, Dengzhe; Gale, Robert Peter; Liu, Yanfeng; Lei, Baoxia; Wang, Yuan; Diao, Dongmei; Zhang, Mei
2017-07-01
Multi-drug resistance (MDR), immune suppression and decreased apoptosis are important causes of therapy-failure in leukaemia. Short interfering RNAs (siRNAs) down-regulate gene transcription, have sequence-independent immune-stimulatory effects and synergize with other anti-cancer therapies in some experimental models. We designed a siRNA targeting MDR1 with 5'-triphosphate ends (3p-siRNA-MDR1). Treatment of leukaemia cells with 3p-siRNA-MDR1 down-regulated MDR1 expression, reduced-drug resistance and induced immune and pro-apoptotic effects in drug-resistant HL-60/Adr and K562/Adr human leukaemia cell lines. We show mechanisms-of-action of these effects involve alterations in the anti-viral cytosolic retinoic acid-inducible protein-I (RIG-I; encoded by RIG-I or DDX58) mediated type-I interferon signal induction, interferon-gamma-inducible protein 10 (IP-10; encoded by IP10 or CXCL10) secretion, major histocompatibility complex-I expression (MHC-I) and caspase-mediated cell apoptosis. 3p-siRNA-MDR1 transfection also enhanced the anti-leukaemia efficacy of doxorubicin. These data suggest a possible synergistic role for 3p-siRNA-MDR1 in anti-leukaemia therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui
2016-01-01
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants. PMID:27129170
Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan, E-mail: jlwang1979@163.com; Wang, Changyuan, E-mail: wangcyuan@163.com; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning
2014-06-01
The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption bymore » inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.« less
Morris, Meghan D.; Quezada, Liliana; Bhat, Priya; Moser, Kathleen; Smith, Jennifer; Perez, Hector; Laniado-Laborin, Rafael; Estrada-Guzman, Julia; Rodwell, Timothy C.
2013-01-01
Setting The state of Baja California, Mexico had the highest prevalence of multidrug-resistant tuberculosis (MDR-TB) in Mexico in 2009. Objective To understand the socioeconomic burdens of MDR-TB disease and its treatment on patients in Tijuana and Mexicali, Mexico. Design From July to November 2009, qualitative interviews were conducted with 12 patients who were enrolled in a US-Mexico binational MDR-TB treatment program called “Puentes de Esperanza” (Bridges of Hope), which was designed to support MDR-TB patients. In-depth interviews were coded to identify major themes in patient experiences of MDR-TB diagnosis and care. Results While some patients were able to maintain their pre-MDR-TB lives to a limited extent, most patients reported losing their sense of identity due to their inability to work, social isolation, and stigmatization from family and friends. The majority of participants expressed appreciation for Puentes’ role in “saving their life.” Conclusion Being diagnosed with MDR-TB and undergoing treatment imposes significant psychological, social, and economic stress on patients. Strong social support elements within Puentes helped ameliorate these burdens. Improvements to the program might include peer-support groups for patients undergoing treatment and transitioning back into the community after treatment. PMID:23743315
Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui
2016-05-24
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.
Hall, Matthew D.; Marshall, Travis S.; Kwit, Alexandra D. T.; Miller Jenkins, Lisa M.; Dulcey, Andrés E.; Madigan, James P.; Pluchino, Kristen M.; Goldsborough, Andrew S.; Brimacombe, Kyle R.; Griffiths, Gary L.; Gottesman, Michael M.
2014-01-01
Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of cancer. MDR is often the result of overexpression of ATP-binding cassette transporters following chemotherapy. A common ATP-binding cassette transporter that is overexpressed in MDR cancer cells is P-glycoprotein, which actively effluxes drugs against a concentration gradient, producing an MDR phenotype. Collateral sensitivity (CS), a phenomenon of drug hypersensitivity, is defined as the ability of certain compounds to selectively target MDR cells, but not the drug-sensitive parent cells from which they were derived. The drug tiopronin has been previously shown to elicit CS. However, unlike other CS agents, the mechanism of action was not dependent on the expression of P-glycoprotein in MDR cells. We have determined that the CS activity of tiopronin is mediated by the generation of reactive oxygen species (ROS) and that CS can be reversed by a variety of ROS-scavenging compounds. Specifically, selective toxicity of tiopronin toward MDR cells is achieved by inhibition of glutathione peroxidase (GPx), and the mode of inhibition of GPx1 by tiopronin is shown in this report. Why MDR cells are particularly sensitive to ROS is discussed, as is the difficulty in exploiting this hypersensitivity to tiopronin in the clinic. PMID:24930045
Muniyandi, Malaisamy; Ramachandran, Rajeswari
2017-09-01
India accounts for 25% of the global burden of MDR-TB. In 2016, the India's Revised National TB Control Programme reported a success rate of 46% among 19,298 MDR-TB patients treated under the programme. This suboptimal treatment outcome warrants an urgent need for newer drugs and newer regimens in the treatment of MDR-TB. India requires new shorter, cheap, safe and effective anti-TB regimen to treat MDR-TB. Areas covered: We used different search strategies to obtain relevant literature from PubMed, on Indian experiences of developing therapies for the treatment of MDR-TB. Further information from the Central TB Division Government of India on programmatic management of resistant TB was collected. Expert opinion: In 2016 WHO recommended a shorter MDR-TB regimen of 9-12 months (4-6 Km-Mfx-Pto-Cfz-Z-Hhigh-dose-E /5 Mfx-Cfz-Z-E) may be used instead of longer regimens. Currently, conducting trials involving newer drugs such as bedaquiline, have been proposed. The regimen will be of a shorter duration containing isoniazid, prothionamide, bedaquiline, levofloxacin, ciprofloxacin, ethambutol and pyrazinamide (STREAM regimen). To successfully treat MDR-TB one requires new classes of antibiotic and newer diagnostic tests. This represents an enormous financial and technical challenge to the programme managers and policy makers.
Tupasi, T.; Garfin, A. M. C. G.; Mangan, J. M.; Orillaza-Chi, R.; Naval, L. C.; Balane, G. I.; Basilio, R.; Golubkov, A.; Joson, E. S.; Lew, W-J.; Lofranco, V.; Mantala, M.; Pancho, S.; Sarol, J. N.; Blumberg, A.; Burt, D.; Kurbatova, E. V.
2017-01-01
SUMMARY SETTING Patients who initiated treatment for multi-drug-resistant tuberculosis (MDR-TB) at 15 Programmatic Management of Drug-resistant Tuberculosis (PMDT) health facilities in the Philippines between July and December 2012. OBJECTIVES To describe patients’ views of current interventions, and suggest changes likely to reduce MDR-TB loss to follow-up. METHODS In-depth interviews were conducted between April and July 2014 with MDR-TB patients who were undergoing treatment, had finished treatment at the time of the interview (controls), or had been lost to follow-up (LTFU). Responses were thematically analyzed. RESULTS Interviews were conducted with 182 patients who were undergoing or had completed treatment and 91 LTFU patients. Views and suggestions could be thematically categorized as approaches to facilitate adherence or address barriers to adherence. The top themes were the need for transportation assistance or improvements to the current transportation assistance program, food assistance, and difficulties patients encountered related to their medications. These themes were addressed by respectively 63%, 60%, and 32% of the participants. CONCLUSIONS A more patient-centered approach is needed to improve MDR-TB treatment adherence. Programs should strive to provide assistance that considers patient preferences, is adequate to cover actual costs or needs, and is delivered in a timely, uninterrupted manner. PMID:28157461
Surgical Face Masks Worn by Patients with Multidrug-Resistant Tuberculosis
Mphahlele, Matsie; Stoltz, Anton; Venter, Kobus; Mathebula, Rirhandzu; Masotla, Thabiso; Lubbe, Willem; Pagano, Marcello; First, Melvin; Jensen, Paul A.; van der Walt, Martie; Nardell, Edward A.
2012-01-01
Rationale: Drug-resistant tuberculosis transmission in hospitals threatens staff and patient health. Surgical face masks used by patients with tuberculosis (TB) are believed to reduce transmission but have not been rigorously tested. Objectives: We sought to quantify the efficacy of surgical face masks when worn by patients with multidrug-resistant TB (MDR-TB). Methods: Over 3 months, 17 patients with pulmonary MDR-TB occupied an MDR-TB ward in South Africa and wore face masks on alternate days. Ward air was exhausted to two identical chambers, each housing 90 pathogen-free guinea pigs that breathed ward air either when patients wore surgical face masks (intervention group) or when patients did not wear masks (control group). Efficacy was based on differences in guinea pig infections in each chamber. Measurements and Main Results: Sixty-nine of 90 control guinea pigs (76.6%; 95% confidence interval [CI], 68–85%) became infected, compared with 36 of 90 intervention guinea pigs (40%; 95% CI, 31–51%), representing a 56% (95% CI, 33–70.5%) decreased risk of TB transmission when patients used masks. Conclusions: Surgical face masks on patients with MDR-TB significantly reduced transmission and offer an adjunct measure for reducing TB transmission from infectious patients. PMID:22323300
Merli, Manuela; Lucidi, Cristina; Di Gregorio, Vincenza; Lattanzi, Barbara; Giannelli, Valerio; Giusto, Michela; Farcomeni, Alessio; Ceccarelli, Giancarlo; Falcone, Marco; Riggio, Oliviero; Venditti, Mario
2016-05-01
Early diagnosis and appropriate treatment of infections in cirrhosis are crucial because of their high morbidity and mortality. Multidrug-resistant (MDR) infections are on the increase in health care settings. Health-care-associated (HCA) infections are still frequently treated as community-acquired with a detrimental effect on survival. We aimed to prospectively evaluate in a randomized trial the effectiveness of a broad spectrum antibiotic treatment in patients with cirrhosis with HCA infections. Consecutive patients with cirrhosis hospitalized with HCA infections were enrolled. After culture sampling, patients were promptly randomized to receive a standard or a broad spectrum antibiotic treatment (NCT01820026). The primary endpoint was in-hospital mortality. Efficacy, side effects, and the length of hospitalization were considered. Treatment failure was followed by a change in antibiotic therapy. Ninety-six patients were randomized and 94 were included. The two groups were similar for demographic, clinical, and microbiological characteristics. The prevalence of MDR pathogens was 40% in the standard versus 46% in the broad spectrum group. In-hospital mortality showed a substantial reduction in the broad spectrum versus standard group (6% vs. 25%; P = 0.01). In a post-hoc analysis, reduction of mortality was more evident in patients with sepsis. The broad spectrum showed a lower rate of treatment failure than the standard therapy (18% vs. 51%; P = 0.001). Length of hospitalization was shorter in the broad spectrum (12.3 ± 7 days) versus standard group (18 ± 15 days; P = 0.03). Five patients in each group developed a second infection during hospitalization with a similar prevalence of MDR (50% broad spectrum vs. 60% standard). A broad spectrum antibiotic therapy as empirical treatment in HCA infections improves survival in cirrhosis. This treatment was significantly effective, safe, and cost saving. © 2015 by the American Association for the Study of Liver Diseases.
Lorv, Bailey; Horodyski, Robin; Welton, Cynthia; Vail, John; Simonetto, Luca; Jokanovic, Danilo; Sharma, Richa; Mahoney, Angela Rea; Savoy-Bird, Shay; Bains, Shalu
2017-01-01
There is increasing awareness of the importance of medical device reprocessing (MDR) for the provision of safe patient care. Although industry service standards are available to guide MDR practices, there remains a lack of published key performance indicators (KPIs) and targets that are necessary to evaluate MDR quality for feedback and improvement. This article outlines the development of an initial framework that builds on established guidelines and includes service standards, KPIs and targets for evaluating MDR operations. This framework can support healthcare facilities in strengthening existing practices and enables a platform for collaboration towards better MDR performance management.
Salje, Henrik; Andrews, Jason R.; Deo, Sarang; Satyanarayana, Srinath; Sun, Amanda Y.; Pai, Madhukar; Dowdy, David W.
2014-01-01
Background India has announced a goal of universal access to quality tuberculosis (TB) diagnosis and treatment. A number of novel diagnostics could help meet this important goal. The rollout of one such diagnostic, Xpert MTB/RIF (Xpert) is being considered, but if Xpert is used mainly for people with HIV or high risk of multidrug-resistant TB (MDR-TB) in the public sector, population-level impact may be limited. Methods and Findings We developed a model of TB transmission, care-seeking behavior, and diagnostic/treatment practices in India and explored the impact of six different rollout strategies. Providing Xpert to 40% of public-sector patients with HIV or prior TB treatment (similar to current national strategy) reduced TB incidence by 0.2% (95% uncertainty range [UR]: −1.4%, 1.7%) and MDR-TB incidence by 2.4% (95% UR: −5.2%, 9.1%) relative to existing practice but required 2,500 additional MDR-TB treatments and 60 four-module GeneXpert systems at maximum capacity. Further including 20% of unselected symptomatic individuals in the public sector required 700 systems and reduced incidence by 2.1% (95% UR: 0.5%, 3.9%); a similar approach involving qualified private providers (providers who have received at least some training in allopathic or non-allopathic medicine) reduced incidence by 6.0% (95% UR: 3.9%, 7.9%) with similar resource outlay, but only if high treatment success was assured. Engaging 20% of all private-sector providers (qualified and informal [providers with no formal medical training]) had the greatest impact (14.1% reduction, 95% UR: 10.6%, 16.9%), but required >2,200 systems and reliable treatment referral. Improving referrals from informal providers for smear-based diagnosis in the public sector (without Xpert rollout) had substantially greater impact (6.3% reduction) than Xpert scale-up within the public sector. These findings are subject to substantial uncertainty regarding private-sector treatment patterns, patient care-seeking behavior, symptoms, and infectiousness over time; these uncertainties should be addressed by future research. Conclusions The impact of new diagnostics for TB control in India depends on implementation within the complex, fragmented health-care system. Transformative strategies will require private/informal-sector engagement, adequate referral systems, improved treatment quality, and substantial resources. Please see later in the article for the Editors' Summary PMID:25025235
Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna
2010-09-01
Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.
Manson, Abigail L.; Cohen, Keira A.; Abeel, Thomas; Desjardins, Christopher A.; Armstrong, Derek T.; Barry, Clifton E.; Brand, Jeannette; Chapman, Sinéad B.; Cho, Sang-Nae; Gabrielian, Andrei; Gomez, James; Jodals, Andreea M.; Joloba, Moses; Jureen, Pontus; Lee, Jong Seok; Malinga, Lesibana; Maiga, Mamoudou; Nordenberg, Dale; Noroc, Ecaterina; Romancenco, Elena; Salazar, Alex; Ssengooba, Willy; Velayati, A. A.; Winglee, Kathryn; Zalutskaya, Aksana; Via, Laura E.; Cassell, Gail H.; Dorman, Susan E.; Ellner, Jerrold; Farnia, Parissa; Galagan, James E.; Rosenthal, Alex; Crudu, Valeriu; Homorodean, Daniela; Hsueh, Po-Ren; Narayanan, Sujatha; Pym, Alexander S.; Skrahina, Alena; Swaminathan, Soumya; Van der Walt, Martie; Alland, David; Bishai, William R.; Cohen, Ted; Hoffner, Sven; Birren, Bruce W.; Earl, Ashlee M.
2017-01-01
Multidrug-resistant tuberculosis (MDR-TB), caused by drug resistant strains of Mycobacterium tuberculosis, is an increasingly serious problem worldwide. In this study, we examined a dataset of 5,310 M. tuberculosis whole genome sequences from five continents. Despite great diversity with respect to geographic point of isolation, genetic background and drug resistance, patterns of drug resistance emergence were conserved globally. We have identified harbinger mutations that often precede MDR. In particular, the katG S315T mutation, conferring resistance to isoniazid, overwhelmingly arose before rifampicin resistance across all lineages, geographic regions, and time periods. Molecular diagnostics that include markers for rifampicin resistance alone will be insufficient to identify pre-MDR strains. Incorporating knowledge of pre-MDR polymorphisms, particularly katG S315, into molecular diagnostics will enable targeted treatment of patients with pre-MDR-TB to prevent further development of MDR-TB. PMID:28092681
NASA Astrophysics Data System (ADS)
Herlina, N.; Sinaga, B. Y. M.; Siagian, P.; Mutiara, E.
2018-03-01
Low levels of vitamin D is a predisposing factor for Multidrug-resistant tuberculosis. Family members in contact with the patient are also at risk of infection. Currently, there is no study that compares vitamin D levels between MDR-TB patients and household contact. This study aims to identify the association between level vitamin D within MDR-TB occurrence. This was a case-control study, with the number of samples in each group (MDR-TB) patients and household contactswere40 people. Each member of each group was checked for vitamin D levels using enzyme-linked immunosorbent assay (ELISA) technique. Statistical analysis was by using Chi-Square analysis using SPSS. Mean levels of vitamin D in MDR-TB patients were 32.21, household contact 31.7. There was anosignificant association between vitamin D levels and MDR-TB occurrence (p=1.0).No significant associationbetween vitamin D level with theMDR-TB occurrence.
van den Hof, S; Tursynbayeva, A; Abildaev, T; Adenov, M; Pak, S; Bekembayeva, G; Ismailov, S
2013-04-01
Kazakhstan is a country with a low HIV/AIDS (human immunodeficiency virus/acquired immune-deficiency syndrome) burden, but a high prevalence of multidrug-resistant tuberculosis (MDR-TB). We describe the epidemiology of multidrug resistance and HIV among TB patients, using the 2007-2011 national electronic TB register. HIV test results were available for 97.2% of TB patients. HIV prevalence among TB patients increased from 0.6% in 2007 to 1.5% in 2011. Overall, 41.6% of patients had a positive smear at diagnosis, 38.6% a positive culture and 51.7% either a positive smear or culture. Drug susceptibility testing (DST) results were available for 92.7% of culture-positive cases. Socio-economic factors independently associated with both HIV and MDR-TB were urban residency, drug use, homelessness and a history of incarceration. In adjusted analysis, HIV positivity was not associated with MDR-TB (OR 1.0, 95%CI 0.86-1.2). Overall, among TB patients with DST and HIV test results available, 65.0% were positive for neither HIV nor MDR-TB, 33.5% only for MDR-TB, 0.9% only for HIV and 0.6% for both HIV and MDR-TB. Among injection drug users, 12.5% were positive for HIV and MDR-TB. We showed increasing HIV prevalence among TB patients in Kazakhstan. HIV was not an independent risk factor for MDR-TB, but risk factors were largely overlapping and we did identify subgroups at particular risk of HIV-MDR-TB co-infection, notably drug users. Enhanced efforts are necessary to provide care to these socially vulnerable populations.
Hosohata, Keiko; Masuda, Satohiro; Yonezawa, Atsushi; Katsura, Toshiya; Oike, Fumitaka; Ogura, Yasuhiro; Takada, Yasutsugu; Egawa, Hiroto; Uemoto, Shinji; Inui, Ken-Ichi
2009-07-01
This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender difference. Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4 mRNAs in jejunal biopsy specimens were quantified by real-time PCR. Intestinal CYP3A4 mRNA expression levels (amol/microg total RNA) showed significantly higher values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92-15.2) than those with 2677GG-3435CC (3.03; range 1.38-4.68) and 2677GT-3435CT (median, 4.31; range, 0.07-9.42) (P = 0.022), but not in men (P = 0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1 nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days, irrespective of gender. MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4 in women.
Xiang, Qian; Cui, Yi Min; Zhao, Xia; Yan, Liang; Zhou, Ying
2012-01-01
The aim of this study was to evaluate the pharmacogenetic variability in the disposition of repaglinide in healthy Chinese subjects. A single dose of 2 mg repaglinide was orally administered to 24 healthy Chinese subjects. The serum concentrations of repaglinide were measured by using liquid chromatography/tandem mass spectrometry. We determined the polymorphic alleles of MDR1 C1236T, MDR1 G2677T/A, MDR1 C3435T, CYP3A4*18, OATP1B1 G388A, and OATP1B1 T521C in each subject. The area under the plasma concentration-time curve from time 0 to infinity (AUC((0-inf))) of repaglinide was significantly higher in subjects possessing the MDR1 2677GT and 2677TT alleles than in those with the MDR1 2677GG and 2677TA alleles (p = 0.007). The mean AUCs and peak plasma concentration were higher in subjects with the 521TC allele than in those with the OATP1B1 521TT allele, and the OATP1B1 388A allele is associated with a reduced trend of pharmacokinetic exposure; however, these trends were not statistically significant. The pharmacokinetics of repaglinide was not associated with MDR1 C1236T, MDR1 C3435T, and CYP3A4*18. This study shows that the genetic polymorphisms of MDR1 G2677T/A might explain the variability in the pharmacokinetics of repaglinide in the Chinese population. Copyright © 2012 S. Karger AG, Basel.
On the Link Between Kolmogorov Microscales and Friction in Wall-Bounded Flow of Viscoplastic Fluids
NASA Astrophysics Data System (ADS)
Ramos, Fabio; Anbarlooei, Hamid; Cruz, Daniel; Silva Freire, Atila; Santos, Cecilia M.
2017-11-01
Most discussions in literature on the friction coefficient of turbulent flows of fluids with complex rheology are empirical. As a rule, theoretical frameworks are not available even for some relatively simple constitutive models. In this work, we present a new family of formulas for the evaluation of the friction coefficient of turbulent flows of a large family of viscoplastic fluids. The developments combine an unified analysis for the description of the Kolmogorov's micro-scales and the phenomenological turbulence model of Gioia and Chakraborty. The resulting Blasius-type friction equation has only Blasius' constant as a parameter, and tests against experimental data show excellent agreement over a significant range of Hedstrom and Reynolds numbers. The limits of the proposed model are also discussed. We also comment on the role of the new formula as a possible benchmark test for the convergence of DNS simulations of viscoplastic flows. The friction formula also provides limits for the Maximum Drag Reduction (MDR) for viscoplastic flows, which resembles MDR asymptote for viscoelastic flows.
WHO Treatment Guidelines for Drug-Resistant Tuberculosis, 2016 Update: Applicability in South Korea
2017-01-01
Despite progress made in tuberculosis control worldwide, the disease burden and treatment outcome of multidrug-resistant tuberculosis (MDR-TB) patients have remained virtually unchanged. In 2016, the World Health Organization released new guidelines for the management of MDR-TB. The guidelines are intended to improve detection rate and treatment outcome for MDR-TB through novel, rapid molecular testing and shorter treatment regimens. Key changes include the introduction of a new, shorter MDR-TB treatment regimen, a new classification of medicines and updated recommendations for the conventional MDR-TB regimen. This paper will review these key changes and discuss the potential issues with regard to the implementation of these guidelines in South Korea. PMID:28905529
The multidrug-resistant tuberculosis challenge to public health efforts to control tuberculosis.
Villarino, M E; Geiter, L J; Simone, P M
1992-01-01
After years of steady decline, there has been an unprecedented resurgence of tuberculosis (TB) in the United States and outbreaks of multidrug-resistant tuberculosis (MDR-TB). The authors assess the nature, epidemiology, and implications of MDR-TB; provide suggestions for preventing drug resistance among patients with drug-susceptible TB; and offer recommendations for managing patients with MDR-TB. They outline the National Action Plan to Combat MDR-TB. Close collaboration among medical practitioners and staff members of TB control programs is needed to ensure the most effective management of patients with TB and their contacts. This collaboration is one of the most important steps for successful control of MDR-TB. PMID:1454973
NASA Astrophysics Data System (ADS)
Wang, Ying; Guo, Miao; Lu, Yu; Ding, Li-Ying; Ron, Wen-Ting; Liu, Ya-Qing; Song, Fei-Fei; Yu, Shu-Qin
2012-12-01
Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work might provide a new insight into the design of pharmacologically inactive excipients that can serve as P-gp modulators instead of drugs that are P-gp inhibitors.
Hu, Yi; Mathema, Barun; Zhao, Qi; Zheng, Xubin; Li, Dange; Jiang, Weili; Wang, Weibing; Xu, Biao
2016-03-01
Highly lethal outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are increasing. Mycobacterium tuberculosis variant Beijing family and its members is regarded as a successful clone of M. tuberculosis that is associated with drug resistance in China. Understanding the genetic characteristics and molecular mechanism of drug resistant tuberculosis within Beijing family may help to clarify its origin and evolutionary history and the driving forces behind its emergence and current dissemination. Totally of 1222 Mycobacterium tuberculosis isolates were recovered from patients in six counties of two provinces in eastern China within 2010/2012. Strain lineage and its major subgroups were studied respectively by using Spoligotyping and MIRU-VNTR. The 1st-line drug susceptibility was analyzed by proportional method and 2nd-line drug susceptibility was determined by the HAINs MTBDRsl test. The genetic characterization of drug resistance was analyzed by sequencing the previously reported genes and loci associated with drug resistance together with the multiple genotyping including MIRU-VNTR, Spoligotyping and LSP genotyping. Of the 1222 Mtb isolates, 298 (24.4%) were resistant to 1st-line drug and 73 (5.9%) were simultaneously resistant to INH and RIF namely MDR-TB. Respectively 23.8% of 1st-line drug resistant TB and 12.0% of the drug susceptible TB contained the mutation associated with 2nd-line drugs by HAINs test. The Spoligotyping of 1222 Mtb isolates revealed the 967 (79.1%) of the isolates belonged to the W-Beijing family. Within W-Beijing family, 78.8% MDR-TB were observed in the isolates with simultaneous deletion of RD105 and RD207, with sub-lineage 181 accounting for 75% of MDR-TB. Analysis of 24 MIRU-VNTR loci revealed that 88.2% (15/17) of MDR and extensively drug resistant (XDR) clustered isolates were sub-lineage 181. Sublineage 181 might have the capacity to spread throughout the general community in rural China. This is the first report on the extensive association of sub-lineage 181 with MDR TB and possibly pre-XDR TB and XDR TB. It is important to monitor sublineage 181 to verify its heightened transmission and understand its importance in the global MDR-TB and XDR-TB epidemics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lewis, Daniel R; Miller, Nathan D; Splitt, Bessie L; Wu, Guosheng; Spalding, Edgar P
2007-06-01
Two Arabidopsis thaliana ABC transporter genes linked to auxin transport by various previous results were studied in a reverse-genetic fashion. Mutations in Multidrug Resistance-Like1 (MDR1) reduced acropetal auxin transport in roots by 80% without affecting basipetal transport. Conversely, mutations in MDR4 blocked 50% of basipetal transport without affecting acropetal transport. Developmental and auxin distribution phenotypes associated with these altered auxin flows were studied with a high-resolution morphometric system and confocal microscopy, respectively. Vertically grown mdr1 roots produced positive and negative curvatures threefold greater than the wild type, possibly due to abnormal auxin distribution observed in the elongation zone. However, upon 90 degrees reorientation, mdr1 gravitropism was inseparable from the wild type. Thus, acropetal auxin transport maintains straight growth but contributes surprisingly little to gravitropism. Conversely, vertically maintained mdr4 roots grew as straight as the wild type, but their gravitropism was enhanced. Upon reorientation, curvature in this mutant developed faster, was distributed more basally, and produced a greater total angle than the wild type. An amplified auxin asymmetry may explain the mdr4 hypertropism. Double mutant analysis indicated that the two auxin transport streams are more independent than interdependent. The hypothesis that flavanols regulate MDR-dependent auxin transport was supported by the epistatic relationship of mdr4 to the tt4 phenylpropanoid pathway mutation.
Del Chierico, Federica; Cardile, Sabrina; Pietrobattista, Andrea; Liccardo, Daniela; Russo, Alessandra; Candusso, Manila; Basso, Maria Sole; Grimaldi, Chiara; Pansani, Laura; Bernaschi, Paola; Torre, Giuliano; Putignani, Lorenza
2018-04-25
The increase of microorganisms multi-drug resistant (MDR) to antibiotics (ATBs) is becoming a global emergency, especially in frail subjects. In chronic liver disease (LD) with indications for liver transplantation (LT), MDR colonization can significantly affect the LT outcome. However, no clear guidelines for microbial management are available. A novel approach toward MDR-colonized patients undergoing LT was developed at our Center refraining from ATBs use during the transplant waiting list, and use of an intensive perioperative prophylaxis cycle. This study aimed to couple clinical evaluation with monitoring of gut microbiota in a pediatric LD patient colonized with MDR Klebsiella pneumoniae (KP) who underwent LT. No peri-transplant complications were reported, and a decontamination from the MDR bacteria occurred during follow-up. Significant changes in gut microbiota, especially during ATB treatment, were reported by microbiota profiling. Patterns of Klebsiella predominance and microbiota diversity revealed opposite temporal trends, with Klebsiella ecological microbiota niches linked to ATB-driven selection. Our infection control program appeared to control complications following LT in an MDR-KP-colonized patient. The perioperative ATB regimen, acting as LT prophylaxis, triggered MDR-KP overgrowth and gut dysbiosis, but buffered infectious processes. Mechanisms modulating the gut ecosystem should be taken into account in MDR colonization clinical management.
Kim, Mi Kyoung; Kim, Yunyoung; Choo, Hyunah; Chong, Youhoon
2017-02-01
Previously, we have reported remarkable effect of a quercetin-glutamic acid conjugate to reverse multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer agents through inhibition of P-glycoprotein (Pgp)-mediated drug efflux. Due to the hydrolysable nature, MDR-reversal activity of the quercetin conjugate was attributed to its hydrolysis product, quercetin. However, several lines of evidence demonstrated that the intact quercetin-glutamic acid conjugate has stronger MDR-reversal activity than quercetin. In order to evaluate this hypothesis and to identify a novel scaffold for MDR-reversal agents, we prepared quercetin conjugates with a glutamic acid attached at the 7-O position via a non-hydrolysable linker. Pgp inhibition assay, Pgp ATPase assay, and MDR-reversal activity assay were performed, and the non-hydrolysable quercetin conjugates showed significantly higher activities compared with those of quercetin. Unfortunately, the quercetin conjugates were not as effective as verapamil in Pgp-inhibition and thereby reversing MDR, but it is worth to note that the structurally modified quercetin conjugates with a non-cleavable linker showed significantly improved MDR-reversal activity compared with quercetin. Taken together, the quercetin conjugates with appropriate structural modifications were shown to have a potential to serve as a scaffold for the design of novel MDR-reversal agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
van den Hof, Susan; Collins, David; Hafidz, Firdaus; Beyene, Demissew; Tursynbayeva, Aigul; Tiemersma, Edine
2016-09-05
One of the main goals of the post-2015 global tuberculosis (TB) strategy is that no families affected by TB face catastrophic costs. We revised an existing TB patient cost measurement tool to specifically also measure multi-drug resistant (MDR) TB patients' costs and applied it in Ethiopia, Indonesia and Kazakhstan. Through structured interviews with TB and MDR-TB patients in different stages of treatment, we collected data on the direct (out of pocket) and indirect (loss of income) costs of patients and their families related to the diagnosis and treatment of TB and MDR-TB. Direct costs included costs for hospitalization, follow-up tests, transport costs for health care visits, and food supplements. Calculation of indirect costs was based on time needed for diagnosis and treatment. Costs were extrapolated over the patient's total treatment phase. In total 406 MDR-TB patients and 197 other TB patients were included in the survey: 169 MDR-TB patients and 25 other TB patients in Ethiopia; 143 MDR-TB patients and 118 TB patients in Indonesia; and 94 MDR-TB patients and 54 other TB patients in Kazakhstan. Total costs for diagnosis and current treatment episode for TB patients were estimated to be USD 260 in Ethiopia, USD 169 in Indonesia, and USD 929 in Kazakhstan, compared to USD 1838, USD 2342, and USD 3125 for MDR-TB patients, respectively. These costs represented 0.82-4.6 months of pre-treatment household income for TB patients and 9.3-24.9 months for MDR-TB patients. Importantly, 38-92 % reported income loss and 26-76 % of TB patients lost their jobs due to (MDR) TB illness, further aggravating the financial burden. The financial burden of MDR-TB is alarming, although all TB patients experienced substantial socioeconomic impact of the disease. If the patient is the breadwinner of the family, the combination of lost income and extra costs is generally catastrophic. Therefore, it should be a priority of the government to relieve the financial burden based on the cost mitigation options identified.
Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo
2018-01-01
P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.
White, Richard A.; Lu, Chunling; Rodriguez, Carly A.; Bayona, Jaime; Becerra, Mercedes C.; Burgos, Marcos; Centis, Rosella; Cohen, Theodore; Cox, Helen; D'Ambrosio, Lia; Danilovitz, Manfred; Falzon, Dennis; Gelmanova, Irina Y.; Gler, Maria T.; Grinsdale, Jennifer A.; Holtz, Timothy H.; Keshavjee, Salmaan; Leimane, Vaira; Menzies, Dick; Milstein, Meredith B.; Mishustin, Sergey P.; Pagano, Marcello; Quelapio, Maria I.; Shean, Karen; Shin, Sonya S.; Tolman, Arielle W.; van der Walt, Martha L.; Van Deun, Armand; Viiklepp, Piret
2016-01-01
Debate persists about monitoring method (culture or smear) and interval (monthly or less frequently) during treatment for multidrug-resistant tuberculosis (MDR-TB). We analysed existing data and estimated the effect of monitoring strategies on timing of failure detection. We identified studies reporting microbiological response to MDR-TB treatment and solicited individual patient data from authors. Frailty survival models were used to estimate pooled relative risk of failure detection in the last 12 months of treatment; hazard of failure using monthly culture was the reference. Data were obtained for 5410 patients across 12 observational studies. During the last 12 months of treatment, failure detection occurred in a median of 3 months by monthly culture; failure detection was delayed by 2, 7, and 9 months relying on bimonthly culture, monthly smear and bimonthly smear, respectively. Risk (95% CI) of failure detection delay resulting from monthly smear relative to culture is 0.38 (0.34–0.42) for all patients and 0.33 (0.25–0.42) for HIV-co-infected patients. Failure detection is delayed by reducing the sensitivity and frequency of the monitoring method. Monthly monitoring of sputum cultures from patients receiving MDR-TB treatment is recommended. Expanded laboratory capacity is needed for high-quality culture, and for smear microscopy and rapid molecular tests. PMID:27587552
Nanoparticle therapeutics: Technologies and methods for overcoming cancer.
Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida
2015-11-01
It is anticipated that by 2030 approximately 13 million people will die of cancer. Common cancer therapy often fails due to the development of multidrug resistance (MDR), resulting in high morbidity and poor patient prognosis. Nanotechnology seeks to use drug delivery vehicles of 1-100 nm in diameter, made up of several different materials to deliver anti-cancer drugs selectively to cancer cells and potentially overcome MDR. Several technologies exist for manufacturing and functionalizing nanoparticles. When functionalized appropriately, nanoparticles have been shown to overcome several mechanisms of MDR in vivo and in vitro, reduce drug side effects and represent a promising new area of anti-cancer therapy. This review discusses the fundamental concepts of enhanced permeability and retention (EPR) effect and explores the mechanisms proposed to enhance preferential "retention" in the tumour. The overall objective of this review was to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancer. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
The making of a public health problem: multi-drug resistant tuberculosis in India.
Engel, Nora C
2013-07-01
This paper examines how actors construct the public problem of multi-drug resistant tuberculosis (MDR-TB) in India. MDR-TB has been framed by the World Health Organization as a pressing, global public health problem. The responses to MDR-TB are complicated as treatment takes longer and is more expensive than routine TB treatment. This is particularly problematic in countries, such as India, with high patient loads, a large and unregulated private sector, weak health systems and potentially high numbers of MDR-TB cases. This paper analyses how actors struggle for control over ownership, causal theories and political responsibility of the public problem of MDR-TB in India. It combines Gusfield's theory on the construction of public problems with insights from literature on the social construction of diseases and on medical social control. It highlights that there are flexible definitions of public problems, which are negotiated among actor groups and which shift over time. The Indian government has shifted its policy in recent years and acknowledged that MDR-TB needs to be dealt with within the TB programme. The study results reveal how the policy shift happened, why debates on the construction of MDR-TB as a public problem in India continue, and why actors with alternative theories than the government do not succeed in their lobbying efforts. Two main arguments are put forward. First, the construction of the public problem of MDR-TB in India is a social and political process. The need for representative data, international influence and politics define what is controllable. Second, the government seems to be anxious to control the definition of India's MDR-TB problem. This impedes an open, critical and transparent discussion on the definition of the public problem of MDR-TB, which is important in responding flexibly to emerging public health challenges.
Zhang, Kai; Sun, Bin; Wang, Lu; Meng, Lin; Liu, Qilin; Zheng, Changyu; Yang, Bai; Sun, Hongchen
2018-01-01
Oral cancer is a type of head and neck cancer that is the seventh most frequent cancer and the ninth most frequent cause of death globally. About 90% of oral cancer is of squamous cell carcinoma type. Surgery and radiation with and without chemotherapy are the major treatments for oral cancer. Better advanced treatment is still needed. Multidrug resistance plays an important role in failure of oral cancer chemotherapy. In this study, we tried to fabricate a novel nanoparticle that could carry both MDR1-siRNA to block MDR1 expression and doxorubicin (DOX), a chemotherapy drug, into cancer cells in order to directly kill the cells with little or no effect of multidrug resistance. Results showed that mesoporous silica nanoparticles (MSNP) can be modified by cationic polymerpolyethylenimine (PEI) to obtain positive charges on the surface, which could enable the MSNP to carry MDR1-siRNA and DOX. The transfection efficiency assays demonstrated that the MSNP-PEI-DOX/ MDR1-siRNA was efficiently transfected into KBV cells in vitro. KBV cells transfected with MSNP-PEI-DOX/MDR1-siRNA could effectively decrease gene expression of MDR1 (~70% increase after 72 hours posttreatment) and induce the apoptosis of KBV cells (24.27% after 48 hours posttreatment) in vitro. Importantly, MSNP-PEI-DOX/MDR1-siRNA dramatically reduced the tumor size (81.64% decrease after 28 days posttreatment) and slowed down tumor growth rate compared to the control group in vivo (P<0.05). In the aggregate, newly synthesized MSNP-PEI-DOX/MDR1-siRNA improves cancer chemotherapy effect in terms of treating multidrug-resistant cancer compared to DOX only, clearly demonstrating that MSNP-PEI-DOX/MDR1-siRNA has potential therapeutic application for multidrug-resistant cancer in the future. PMID:29343957
Jing, Lijia; Qu, Haijing; Wu, Dongqi; Zhu, Chaojian; Yang, Yongbo; Jin, Xing; Zheng, Jian; Shi, Xiangsheng; Yan, Xiufeng; Wang, Yang
2018-01-01
Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvβ3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.
Krishnamurthy, Karthikeyan; Glaser, Shannon; Alpini, Gianfranco D.; Cardounel, Arturo J.; Liu, Zhenguo; Ilangovan, Govindasamy
2016-01-01
Aims Stress response, in terms of activation of stress factors, is known to cause obesity and coronary heart disease such as atherosclerosis in human. However, the underlying mechanism(s) of these pathways are not known. Here, we investigated the effect of heat shock factor-1 (HSF-1) on atherosclerosis. Methods and results HSF-1 and low-density lipoprotein receptor (LDLr) double knockout (HSF-1−/−/LDLr−/−) and LDLr knockout (LDLr−/−) mice were fed with atherogenic western diet (WD) for 12 weeks. WD-induced weight gain and atherosclerotic lesion in aortic arch and carotid regions were reduced in HSF-1−/−/LDLr−/− mice, compared with LDLr−/− mice. Also, repression of PPAR-γ2 and AMPKα expression in adipose tissue, low hepatic steatosis, and lessened plasma adiponectins and lipoproteins were observed. In HSF-1−/−/LDLr−/− liver, higher cholesterol 7α-hydroxylase (CYP7A1) and multidrug transporter [MDR1/P-glycoprotein (P-gp)] gene expressions were observed, consistent with higher bile acid transport and larger hepatic bile ducts. Luciferase reporter gene assays with wild-type CYP7A1 and MDR1 promoters showed lesser luminescence than with mutant promoters (HSF-1 binding site deleted), indicating that HSF-1 binding is repressive of CYP7A1 and MDR1 gene expressions. Conclusion HSF-1 ablation not only eliminates heat shock response, but it also transcriptionally up-regulates CYP7A1 and MDR1/P-gp axis in WD-diet fed HSF-1−/−/LDLr−/− mice to reduce atherosclerosis. PMID:27131506
Udwadia, Zarir F; Mullerpattan, Jai Bharat; Shah, Kushal D; Rodrigues, Camilla S
2016-01-01
Background: Treatment of multidrug-resistant tuberculosis (MDR-TB) in the Programmatic Management of Drug-resistant TB program involves a standard regimen with a 6-month intensive phase and an 18-month continuation phase. However, the local drug resistance patterns in high MDR regions such as Mumbai may not be adequately reflected in the design of the regimen for that particular area. Setting: The study was carried out at a private Tertiary Level Hospital in Mumbai in a mycobacteriology laboratory equipped to perform the second-line drug susceptibility testing (DST). Objective: We attempted to analyze the impact of prescribing the standardized Category IV regimen to all patients receiving a DST at our mycobacteriology laboratory. Materials and Methods: All samples confirmed to be MDR-TB and tested for the second-line drugs at Hinduja Hospital's Mycobacteriology Laboratory in the year 2012 were analyzed. Results: A total of 1539 samples were analyzed. Of these, 464 (30.14%) were MDR-TB, 867 (56.33%) were MDR with fluoroquinolone resistance, and 198 (12.8%) were extensively drug-resistant TB. The average number of susceptible drugs per sample was 3.07 ± 1.29 (assuming 100% cycloserine susceptibility). Taking 4 effective drugs to be the cut or an effective regimen, the number of patients receiving 4 or more effective drugs from the standardized directly observed treatment, short-course plus regimen would be 516 (33.5%) while 66.5% of cases would receive 3 or less effective drugs. Conclusion: Our study shows that a high proportion of patients will have resistance to a number of the first- and second-line drugs. Local epidemiology must be factored in to avoid amplification of resistance. PMID:27185987
Boss, Renate; Overesch, Gudrun; Baumgartner, Andreas
2016-07-01
A total of 44 samples of salmon, pangasius (shark catfish), shrimps, and oysters were tested for the presence of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus, which are indicator organisms commonly used in programs to monitor antibiotic resistance. The isolated bacterial strains, confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, were tested against a panel of 29 antimicrobial agents to obtain MICs. Across the four sample types, Enterococcus faecalis (59%) was most common, followed by E. coli (55%), P. aeruginosa (27%), and S. aureus (9%). All bacterial species were resistant to some antibiotics. The highest rates of resistance were in E. faecalis to tetracycline (16%), in E. coli to ciprofloxacin (22%), and in S. aureus to penicillin (56%). Antibiotic resistance was found among all sample types, but salmon and oysters were less burdened than were shrimps and pangasius. Multidrug-resistant (MDR) strains were exclusively found in shrimps and pangasius: 17% of pangasius samples (MDR E. coli and S. aureus) and 64% of shrimps (MDR E. coli, E. faecalis, and S. aureus). Two of these MDR E. coli isolates from shrimps (one from an organic sample) were resistant to seven antimicrobial agents. Based on these findings, E. coli in pangasius, shrimps, and oysters, E. faecalis in pangasius, shrimps, and salmon, and P. aeruginosa in pangasius and shrimps are potential candidates for programs monitoring antimicrobial resistance. Enrichment methods for the detection of MDR bacteria of special public health concern, such as methicillin-resistant S. aureus and E. coli producing extended-spectrum β-lactamases and carbapenemases, should be implemented.
Mendes, Elisa Teixeira; Ranzani, Otavio T.; Marchi, Ana Paula; da Silva, Mariama Tomaz; Filho, José Ulysses Amigo; Alves, Tânia; Guimarães, Thais; Levin, Anna S.; Costa, Silvia Figueiredo
2016-01-01
Abstract Health care associated infections (HAIs) are currently among the major challenges to the care of hematopoietic stem cell transplantation (HSCT) patients. The objective of the present study was to evaluate the impact of 2% chlorhexidine (CHG) bathing on the incidence of colonization and infection with vancomycin-resistant Enterococcus (VRE), multidrug-resistant (MDR) gram-negative pathogens, and to evaluate their CHG minimum inhibitory concentration (MIC) after the intervention. A quasi-experimental study with duration of 9 years was conducted. VRE colonization and infection, HAI rates, and MDR gram-negative infection were evaluated by interrupted time series analysis. The antibacterial susceptibility profile and mechanism of resistance to CHG were analyzed in both periods by the agar dilution method in the presence or absence of the efflux pump inhibitor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP) and presence of efflux pumps (qacA/E, qacA, qacE, cepA, AdeA, AdeB, and AdeC) by polymerase chain reaction (PCR). The VRE colonization and infection rates were significantly reduced in the postintervention period (P = 0.001). However, gram-negative MDR rates in the unit increased in the last years of the study. The CHG MICs for VRE increased during the period of exposure to the antiseptic. A higher MIC at baseline period was observed in MDR gram-negative strains. The emergence of a monoclonal Pseudomonas aeruginosa clone was observed in the second period. Concluding, CHG bathing was efficient regarding VRE colonization and infection, whereas no similar results were found with MDR gram-negative bacteria. PMID:27861350
Suwantarat, Nuntra; Logan, Latania K.; Carroll, Karen C.; Bonomo, Robert A.; Simner, Patricia J.; Rudin, Susan D.; Milstone, Aaron M.; Tekle, Tsigereda; Ross, Tracy; Tamma, Pranita D.
2016-01-01
OBJECTIVE To determine the prevalence and acquisition of extended-spectrum β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs), and carbapenemases (“MDR Enterobacteriaceae”) colonizing children admitted to a pediatric intensive care unit (PICU). DESIGN Prospective study. SETTING 40-bed PICU. METHODS Admission and weekly thereafter rectal surveillance swabs were collected on all pediatric patients during a 6-month study period. Routine phenotypic identification and antibiotic susceptibility testing were performed. Enterobacteriaceae displaying characteristic resistance profiles underwent further molecular characterization to identify genetic determinants of resistance likely to be transmitted on mobile genetic elements and to evaluate relatedness of strains including DNA microarray, multilocus sequence typing, repetitive sequence-based PCR, and hsp60 sequencing typing. Results Evaluating 854 swabs from unique children, the overall prevalence of colonization with an MDR Enterobacteriaceae upon admission to the PICU based on β-lactamase gene identification was 4.3% (n = 37), including 2.8% ESBLs (n =24), 1.3% pAmpCs (n =11), and 0.2% carbapenemases (n =2). Among 157 pediatric patients contributing 603 subsequent weekly swabs, 6 children (3.8%) acquired an incident MDR Enterobacteriaceae during their PICU stay. One child acquired a pAmpC (E. coli containing blaDHA) related to an isolate from another patient. Conclusions Approximately 4% of children admitted to a PICU were colonized with MDR Enterobacteriaceae (based on β-lactamase gene identification) and an additional 4% of children who remained in the PICU for at least 1 week acquired 1 of these organisms during their PICU stay. The acquired MDR Enterobacteriaceae were relatively heterogeneous, suggesting that a single source was not responsible for the introduction of these resistance mechanisms into the PICU setting. PMID:26856439
Bacterial genome engineering and synthetic biology: combating pathogens.
Krishnamurthy, Malathy; Moore, Richard T; Rajamani, Sathish; Panchal, Rekha G
2016-11-04
The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
Wang, Hong; Jia, Xiu-Hong; Chen, Jie-Ru; Wang, Jian-Yong; Li, You-Jie
2016-06-01
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.
Multidrug-resistant pulmonary tuberculosis in Los Altos, Selva and Norte regions, Chiapas, Mexico.
Sánchez-Pérez, H J; Díaz-Vázquez, A; Nájera-Ortiz, J C; Balandrano, S; Martín-Mateo, M
2010-01-01
To analyse the proportion of multidrug-resistant tuberculosis (MDR-TB) in cultures performed during the period 2000-2002 in Los Altos, Selva and Norte regions, Chiapas, Mexico, and to analyse MDR-TB in terms of clinical and sociodemographic indicators. Cross-sectional study of patients with pulmonary tuberculosis (PTB) from the above regions. Drug susceptibility testing results from two research projects were analysed, as were those of routine sputum samples sent in by health personnel for processing (n = 114). MDR-TB was analysed in terms of the various variables of interest using bivariate tests of association and logistic regression. The proportion of primary MDR-TB was 4.6% (2 of 43), that of secondary MDR-TB was 29.2% (7/24), while among those whose history of treatment was unknown the proportion was 14.3% (3/21). According to the logistic regression model, the variables most highly associated with MDR-TB were as follows: having received anti-tuberculosis treatment previously, cough of >3 years' duration and not being indigenous. The high proportion of MDR cases found in the regions studied shows that it is necessary to significantly improve the control and surveillance of PTB.
Nakamura, Tsutomu; Sakaeda, Toshiyuki; Horinouchi, Masanori; Tamura, Takao; Aoyama, Nobuo; Shirakawa, Toshiro; Matsuo, Masafumi; Kasuga, Masato; Okumura, Katsuhiko
2002-04-01
The effect of the C3435T mutation at exon 26 of the MDR1 gene on the expression levels of MDR1 messenger ribonucleic acid (mRNA) was evaluated by means of real-time polymerase chain reaction in 51 biopsy specimens of duodenum obtained from 13 healthy Japanese subjects. The mRNA levels of MDR1 were 0.38 +/- 0.15, 0.56 +/- 0.14, and 1.13 +/- 0.42 (mean value +/- SE) in the subjects with the homozygote of wild-type allele (C/C), compound heterozygote with mutant T allele (C/T), and the homozygote of the mutant allele (T/T), respectively, reasonably explaining the lower digoxin serum concentration after administration of a single oral dose to subjects harboring a mutant T allele. Good correlation (r =.797; P <.01) was observed between the mRNA concentrations of MDR1 and CYP3A4 in the individual biopsy specimens. This finding suggested a lower plasma concentration of the substrates for CYP3A4 in subjects harboring the C3435T mutation of the MDR1 gene.
Zhang, L L; Yang, H; Xiao, H P; Lu, J M; Sha, W; Zhang, Q
2016-06-01
In order to detect the in vitro synergistic effect of 4 drugs-pasiniazid (PA), moxifloxacin, rifabutin and rifapentini on multidrug-resistant mycobacterium tuberculosis (MDR-MTB) and extensively drug-resistant mycobacterium tuberculosis(XDR-MTB), which were core drugs of"The program of retreatment research of tuberculosis". The checkerboard method was used to detect the minimum inhibitory concentration (MIC) of antituberculosis drug combination schemes (moxifloxacin-PA, moxifloxacin-PA-rifabutin and moxifloxacin-PA-rifapentini) to 40 strains of clinical drug resistant MTB(20 strains of MDR-MTB and 20 XDR-MTB) and the standard strain H37Rv, by calculating the fractional inhibitory concentration index of joint action in vitro to judge the combined effect, with fractional inhibitory concentration index(FICI)≤0.5 and FICI≤0.75 as the basis of 2 drugs and 3 drugs showing synergy. The FICI of moxifloxacin-PA scheme for DR-MTB was 0.125 to 1.000, only 5 strains with a FICI ≤0.5, showing synergistic effect. The FICI of moxifloxacin-Pa-rifabutin scheme with 20 strains of MDR-MTB ranged from 0.310 to 1.260, 10 strains with a FICI≤0.75, showing synergistic effect. The FICI of moxifloxacin-PA-rifabutin scheme with 20 strains of XDR-MTB ranged from 0.215 to 1.250, 11 strains with a FICI≤0.75, showing synergistic effect. The FICI of moxifloxacin-PA-rifapentini scheme with 20 strains of MDR-MTB ranged from 0.150 to 0.780, 19 strains with a FICI≤0.75, showing synergistic effect. The FICI of moxifloxacin-PA-rifapentini scheme with 20 strains of XDR-MTB ranged from 0.200 to 1.280, 16 strains with a FICI≤0.75, showing synergistic effect. The synergistic effect of moxifloxacin-PA scheme was poor, but showing better synergy when further combined with rifabutin or rifapentini. Rifabutin showed better effect than rifapentini, but the synergistic effect of moxifloxacin-PA-rifabutin combination scheme was poor than that of moxifloxacin-PA-rifapentini combination scheme.
Solari, Lely; Gutiérrez, Alfonso; Suárez, Carmen; Jave, Oswaldo; Castillo, Edith; Yale, Gloria; Ascencios, Luis; Quispe, Neyda; Valencia, Eddy; Suárez, Víctor
2011-01-01
To evaluate the costs of three methods for the diagnosis of drug susceptibility in tuberculosis, and to compare the cost per case of Multidrug-resistant tuberculosis (MDR TB) diagnosed with these (MODS, GRIESS and Genotype MTBDR plus®) in 4 epidemiologic groups in Peru. In the basis of programmatic figures, we divided the population in 4 groups: new cases from Lima/Callao, new cases from other provinces, previously treated patients from Lima/Callao and previously treated from other provinces. We calculated the costs of each test with the standard methodology of the Ministry of Health, from the perspective of the health system. Finally, we calculated the cost per patient diagnosed with MDR TB for each epidemiologic group. The estimated costs per test for MODS, GRIESS, and Genotype MTBDR plus® were 14.83. 15.51 and 176.41 nuevos soles respectively (the local currency, 1 nuevos sol=0.36 US dollars for August, 2011). The cost per patient diagnosed with GRIESS and MODS was lower than 200 nuevos soles in 3 out of the 4 groups. The costs per diagnosed MDR TB were higher than 2,000 nuevos soles with Genotype MTBDR plus® in the two groups of new patients, and lower than 1,000 nuevos soles in the group of previously treated patients. In high-prevalence groups, like the previously treated patients, the costs per diagnosis of MDR TB with the 3 evaluated tests were low, nevertheless, the costs with the molecular test in the low- prevalence groups were high. The use of the molecular tests must be optimized in high prevalence areas.
In vitro cytotoxicity of CD8+ T cells in multi-drug-resistant tuberculosis. A preliminary report.
Sada-Ovalle, Isabel; Torre-Bouscoulet, Luis; Valdez-Vázquez, Rafael; Lascurain, Ricardo
2009-05-01
Specific CD8+ T-cell cytotoxicity has been recognized as being involved in the elimination of drug-susceptible tuberculosis (DS-TB). Given that there is currently no information on the cytotoxic effector functions of CD8+ T cells in multi-drug-resistant tuberculosis (MDR-TB), our objective was to analyse the cytotoxic activity, both basal and stimulated, of CD8+ T cells from MDR-TB patients and compare it with that of DS-TB patients, as well as purified protein derivative (PPD)+ and PPD- subjects. Cytotoxic activity of CD8+ T cells from MDR-TB patients, DS-TB patients, PPD+ and PPD- subjects was measured by a colorimetric assay, using H37Rv culture filtrate protein as the antigenic stimulus. Twenty-eight subjects were studied (7 MDR-TB patients, 7 DS-TB patients, 7 PPD+ subjects and 7 PPD- subjects). In the presence of the antigenic stimulus, the cytotoxic activity of CD8+ T cells from MDR-TB patients (% lysis) increased from 6.7% to 59.6% (P < 0.001). In DS-TB patients lysis increased from 3.2% to 22.5% (P < 0.001), whereas in PPD+ subjects it increased from 2.7% to 12.0% (P < 0.001) and in PPD- subjects from 1.3% to 3.2% (P < 0.001). Basal cytotoxic activity was significantly higher for MDR-TB patients than PPD+ and PPD- subjects (P = 0.003), but not compared with that for DS-TB patients (P = 0.05). Stimulated cytotoxic activity was highest for MDR-TB patients. CD8+ T cells from MDR-TB patients showed an exaggerated cytotoxic activity after antigenic stimulation. Further studies are required to elucidate the role of this response in the immunopathogenesis of MDR-TB.
Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz
2015-01-01
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. PMID:25533467
Ray, Amy; Perez, Federico; Beltramini, Amanda M; Jakubowycz, Marta; Dimick, Patricia; Jacobs, Michael R; Roman, Kathy; Bonomo, Robert A; Salata, Robert A
2010-12-01
To describe vaporized hydrogen peroxide (VHP) as an adjuvant in the control of multidrug-resistant (MDR) Acinetobacter baumannii infection in a long-term acute care hospital (LTACH) and to describe the risk factors for acquisition of MDR A. baumannii infection in the LTACH population. Outbreak investigation, case-control study, and before-after intervention trial. A 54-bed LTACH affiliated with a tertiary care center in northeastern Ohio. Investigation of outbreak with clinical and environmental cultures, antimicrobial susceptibility testing, polymerase chain reaction assay of repetitive chromosomal elements to type strains, and case-control study; and intervention consisting of comprehensive infection control measures and VHP environmental decontamination. Thirteen patients infected or colonized with MDR A. baumannii were identified from January 2008 through June 2008. By susceptibility testing, 10 (77%) of the 13 isolates were carbapenem-resistant. MDR A. baumannii was found in wound samples, blood, sputum, and urine. Wounds were identified as a risk factor for MDR A. baumannii colonization. Ventilator-associated pneumonia was the most common clinical syndrome caused by the pathogen, and the associated mortality was 14% (2 of the 13 case patients died). MDR A. baumannii was found in 8 of 93 environmental samples, including patient rooms and a wound care cart; environmental and clinical cultures were genetically related. Environmental cultures were negative immediately after VHP decontamination and both 24 hours and 1 week after VHP decontamination. Nosocomial acquisition of the pathogen in the LTACH ceased after VHP intervention. When patients colonized with MDR A. baumannii reoccupied rooms, environmental contamination recurred. Environmental decontamination using VHP combined with comprehensive infection control measures interrupted nosocomial transmission of MDR A. baumannii in an LTACH. The application of this novel approach to halt the transmission of MDR A. baumannii warrants further investigation.
Renk, Hanna; Stoll, Lenja; Neunhoeffer, Felix; Hölzl, Florian; Kumpf, Matthias; Hofbeck, Michael; Hartl, Dominik
2017-02-21
Multidrug-resistant (MDR) infections are a serious concern for children admitted to the Paediatric Intensive Care Unit (PICU). Tracheal colonization with MDR Enterobacteriaceae predisposes to respiratory infection, but underlying risk factors are poorly understood. This study aims to determine the incidence of children with suspected infection during mechanical ventilation and analyses risk factors for the finding of MDR Enterobacteriaceae in tracheal aspirates. A retrospective single-centre analysis of Enterobacteriaceae isolates from the lower respiratory tract of ventilated PICU patients from 2005 to 2014 was performed. Resistance status was determined and clinical records were reviewed for potential risk factors. A classification and regression tree (CRT) to predict risk factors for infection with MDR Enterobacteriaceae was employed. The model was validated by simple and multivariable logistic regression. One hundred sixty-seven Enterobacteriaceae isolates in 123 children were identified. The most frequent isolates were Enterobacter spp., Klebsiella spp. and E.coli. Among these, 116 (69%) isolates were susceptible and 51 (31%) were MDR. In the CRT analysis, antibiotic exposure for ≥ 7 days and presence of gastrointestinal comorbidity were the most relevant predictors for an MDR isolate. Antibiotic exposure for ≥ 7 days was confirmed as a significant risk factor for infection with MDR Enterobacteriaceae by a multivariable logistic regression model. This study shows that critically-ill children with tracheal Enterobacteriaceae infection are at risk of carrying MDR isolates. Prior use of antibiotics for ≥ 7 days significantly increased the risk of finding MDR organisms in ventilated PICU patients with suspected infection. Our results imply that early identification of patients at risk, rapid microbiological diagnostics and tailored antibiotic therapy are essential to improve management of critically ill children infected with Enterobacteriaceae.
NASA Astrophysics Data System (ADS)
El-Ariss, Mohamad
Cancer is the leading cause of death in Canada and is responsible for about 30% of all deaths in the country.[1] It is estimated that by 2015, one in four Canadians (24% women and 29% men) will die from cancer. In the world and only for 2012, 14 million new cancer cases and 8.2 million deaths from the disease were reported.[2] The worst is yet to come because, according to World Health Organization, the number of new cases is expected to increase by about 70% over the next two decades. The high mortality associated with cancer is partly explained by the acquisition of drug resistance that make patients refractory to chemotherapy. In fact, cancer cells exposed to a cytotoxic agent during chemotherapy, may develop a resistance to this agent as well as various agents sharing structural or functional similarities. These cancer cells are known for multidrug resistance ("Multiple Drug resistant cells"). The development of resistance to chimiodrogues is a major public health problem that presents an obstacle for the development of new cancer treatments. MCF-7 MDR are established cell lines of human breast cancer that have developed resistance to chimiodrogues such as doxorubicin. MCF-7 MDR have the particularity to over-express P-gp protein that is responsible for the detoxification of cells by reflux of chimiodrogues. The purpose of this study was therefore to reduce the expression of P-gp, encoded by the MDR1 gene (also called gene ABCB1) in cancer cells MCF-7, and re-sensitize MCF-7 MDR cells to anti-cancer treatments. In order to modify MDR1 gene expression, we used small RNAi called siRNA that are specific to the MDR1 gene. In total, 4 duplexes of siRNA have been used: siRNA_1, siRNA_1M, siRNA_2 and siRNA_2M. Each of the duplexes strands is consists of 21 nucleic acids and has two protruding nucleic acids (overhangs) at the 3' end. siRNA_1 and siRNA_1M are complementary to the nucleic acid sequence (577-595 nucleic acids ) of the MDR1 gene, whereas siARN_2 and siARN_2M are complementary to a sequence shifted slightly downstream in the same gene (583-607 nucleic acids). RNA duplexes siRNA_1 and siARN_2 consist exclusively of DNA while "modifed" siRNA_1M and si RNA_2M consist of RNA overhangs. siRNA duplexes (siRNA_1 and siRNA_2) were chosen from the work published by Hao Wu et al. (2003), Stege et al. (2004) and Miletti-Gonzalez et al. (2005) which showed that these siRNA sequences are effective to silence MDR1 gene in cancer cells (breast cancer cells MCF-7 / AdrR and MCF-7 / BC-19 and stomach cancer cells: EPG85-257RDB).[3-5] Moreover, Strapps et al. (2010) showed that the use of siRNA having overhangs formed of ribonucleotides leads to a similar silencing but lasting longer in vivo and in vitro compared to the use of siRNA containing deoxyribonucleotides overhangs.[6] Thus siARN_1M and siARN_2M sequences correspond to siARN_1 and siARN_2 sequences but whose overhangs are formed of ribonucleotides. These siRNA specific to the MDR1 gene (MDR1-siRNA) were combined to chitosan to form nanoparticles capable of protecting these MDR1-siRNA and delivering it into the MCF-7 MDR cells. Chitosan used here as a delivery system, is a natural and biodegradable polysaccharide whose biological properties are defined by its average molecular weight (MW) and by its degree of deacetylation (DD). When the positively charged chitosan is added with the negatively charged siRNA, there is formation of nanoparticles by electrostatic attraction. In this project, chitosan 92-10 (DDA- MW) was used as a delivery system with a N:P (ratio chitosan amino groups: RNA phosphate) of 5. Analysis by dynamic light scattering (DLS) demonstrated that the nanoparticles have a diameter between 62.56 and 82.72 nm and a zeta potential ranging from 17.4 to 23.5 mV. Analysis by confocal microscopy showed that chitosan (92-10-5)/labeled siRNA are internalized in MCF-7 MDR cells and that siRNAs are released in the cytoplasm. MCF-7 cells resistant MDR were transfected in vitro with different chitosan nanoparticles 92-10/MDR1-siRNA. qPCR quantification showed that transfection of MCF-7 MDR cells leads to inhibition of the expression of the MDR1 gene by 71%. In addition, induced cytotoxicity tests showed that the use of nanoparticles allows resensitizing cells to doxorubicin. In fact, the mortality rate of MDR MCF-7 cells exposed to doxorubicin increased to 60% after transfecting the cells with the nanoparticles chitosane (92-10-5)/ MDR1-siRNA. In conclusion, we have developed Chitosan (92-10-5)/ MDR1-siRNA nanoparticles that reduce the expression of P-gp in cells and allow the latter to re-sensitize to Doxorubicin. This study demonstrated the potential of chitosan nanoparticles (92-10-5)/ MDR1-siRNA for the treatment of cancers resistant to chemotherapy.
Hamouche, E; Sarkis, D K
2012-06-01
Until recently, multiresistant bacteria were only limited to hospitals. However, they are now responsible for community acquired infections, affecting people who have had no contact with the hospital environment. Several mechanisms are associated with these resistances. The production of betalactamases is however the predominant mechanism and especially the production of extended spectrum beta-lactamases or ESBL by strains of Escherichia coli and Klebsiella pneumoniae, which mediate resistance to third generation cephalosporins and aztreonam (AZT). The association of multiple mechanisms of resistance (efflux pumps, impermeability and enzymatic inactivation) generates multi resistant bacteria such as Pseudomonas aeruginosa MDR and Klebsiella pneumoniae MDR. The aim of the study was to analyze retrospectively the susceptibility to antibiotics of strains of E. coli, K. pneumoniae, P. aeruginosa and A. baumanii isolated from hospitalized and outpatients in a university hospital center of Beirut over a period of five years from 2005 to 2009. Bacterial strains were classified according to their origin (inpatients versus outpatients), their ability to produce or not ESBLs for E. coli and K. pneumonia and if they were MDR for P. aeruginosa and A. baumanii. Antibiotics susceptibilities were retrieved from the informatics database of the hospital. Comparison of susceptibility percentages was done using a unilateral z-test on a computer program. In 2009, 2541 strains of E. coli were isolated, 773 of which or 30.4 % were ESBL producers while 2031 strains were isolated in 2005, of which 361 or 17.8 % were ESBL producers (p<0.001). We noticed a decrease in hospital strains susceptibility to ceftazidime (CAZ) and AZT, between 2005 and 2009 (p<0.001), and a decrease in community strains susceptibility to triméthoprime/sulfaméthoxazole (SXT) between 2005 and 2009 (p=0.03). We noted however a significant decrease of ESBL producing strains between 2007 and 2009: 33.4 % versus 30.4 % (p=0.03). Among 560 strains of K. pneumoniae isolated in 2009, 178 strains or 31.8 % were ESBL producers in comparison to 23.7 % of the strains isolated in 2005 (p=0.03). We also noticed a decrease in hospital strains susceptibility to piperacilline-tazobactam (TZP), cefotaxime (CTX) and AZT (p<0.001 p=0.03 and p=0.03 respectively) between 2006 and 2009, and a significant increase in ESBL producing strains between 2008 et 2009 (p=0.0001). 26.5 % of P. aeruginosa strains isolated in 2009 were MDR bacteria with no significant change as compared to 26.6 % in 2005 (p=0.5). However, the percentage of MDR strains slightly decreased between 2008 and 2009 (p=0.047). The susceptibility of MDR strains to CAZ and imipenem (IMP) decreased between 2005 and 2009 (p<0.001 and P=0.003 respectively). As for A. baumanii, 77.7 % of strains were MDR in 2009 in comparison to 73.4 % in 2005 (p=0.24) with a dramatic decrease of MDR strains susceptibility to IMP from 92.3 % in 2006 to 30 % in 2009 (p<0.001). Despite restrictions on antibiotics prescriptions and isolation of patients harboring MDR bacteria or bacteria producing ESBL, there has not been satisfactory reduction of multi resistant bacteria and efforts should be made to reduce these bugs from the hospital flora. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon
2015-06-01
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.
Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon
2016-01-01
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species. PMID:25961941
Fuchs, Lynn S; Fuchs, Douglas; Prentice, Karin
2004-01-01
This study assessed responsiveness to a 16-week mathematical problem-solving treatment as a function of students' risk for disability. Among 301 third graders, TerraNova scores were used to categorize students as at risk for both reading and mathematics disability (MDR/RDR; 20 control and 12 experimental), at risk for mathematics disability only (MDR-only; 5 and 8), at risk for reading disability only (RDR-only; 12 and 15), or not at risk (NDR; 60 and 69). Interactions among at-risk status, treatment, and time showed that as a function of treatment, MDR/RDR, MDR-only, and RDR-only students improved less than NDR students on computation and labeling, and MDR/RDR students improved less than all other groups on conceptual underpinnings. Exploratory regressions suggested that MDR/RDR students' math deficits or their underlying mechanisms explained a greater proportion of variance in responsiveness to problem-solving treatment than reading deficits or their underlying mechanisms.
Lin, H.; Shin, S.; Blaya, J. A.; Zhang, Z.; Cegielski, P.; Contreras, C.; Asencios, L.; Bonilla, C.; Bayona, J.; Paciorek, C. J.; Cohen, T.
2011-01-01
Summary We examined the spatiotemporal distribution of laboratory-confirmed multidrug-resistant tuberculosis (MDR TB) cases and that of other TB cases in Lima, Peru with the aim of identifying mechanisms responsible for the rise of MDR TB in an urban setting. All incident cases of TB in two districts of Lima, Peru during 2005–2007 were included. The spatiotemporal distributions of MDR cases and other TB cases were compared with Ripley's K statistic. Of 11 711 notified cases, 1187 received drug susceptibility testing and 376 were found to be MDR. Spatial aggregation of patients with confirmed MDR disease appeared similar to that of other patients in 2005 and 2006; however, in 2007, cases with confirmed MDR disease were found to be more tightly grouped. Subgroup analysis suggests the appearance of resistance may be driven by increased transmission. Interventions should aim to reduce the infectious duration for those with drug-resistant disease and improve infection control. PMID:21205434
Orejel, Ivonne; Castellanos, Martin; Marín, Diana; Mendoza, Alberto; Harries, Anthony D
2016-01-01
This study documented the number and results of mycobacterial culture and drug sensitivity testing (CDST) in Mexico from 2009-2013 and assessed whether states with a higher risk of multidrug-resistant tuberculosis (MDR-TB) performed more CDST and had more cultures showing MDR-TB. Data for this longitudinal, descriptive, operational research study came from the electronic records of 31 state public health laboratories in Mexico. The total number of CDSTs was 6 470, increasing from 2 143 in the first 2 years to 4 327 in the latter 3 years. There was a significant increase in the proportion of cultures showing sensitivity to all drugs, from 53.1% to 60.9% in 2011-2013 (P < 0.001) and a significant decrease in the proportion showing MDR-TB, from 28.2% in 2009 to 19.8% in 2013 (P < 0.001). Cases of extensively drug resistant tuberculosis were < 1% per year. In the 12 states with higher risk for MDR-TB, significantly more CDSTs (2 382 test) were done in 2011-2013 than in the other 19 states (1 945 tests). Also, for each year the proportion of cultures showing MDR-TB was significantly higher in high risk MDR-TB states than in lower risk ones (P < 0.001). During the 5-year study period, CDST was scaled up in Mexico, particularly in high-risk MDR-TB states where a higher proportion of cultures showed MDR-TB. Scale up and wider coverage of CDST should continue.
Hutter, Victoria; Chau, David Y S; Hilgendorf, Constanze; Brown, Alan; Cooper, Anne; Zann, Vanessa; Pritchard, David I; Bosquillon, Cynthia
2014-01-01
The impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe (3)H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. (3)H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 were measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on (3)H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in (3)H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Brust, James C.M.; Shah, N. Sarita; Scott, Michelle; Chaiyachati, Krisda; Lygizos, Melissa; van der Merwe, Theo L.; Bamber, Sheila; Radebe, Zanele; Loveday, Marian; Moll, Anthony P.; Margot, Bruce; Lalloo, Umesh G.; Friedland, Gerald H.; Gandhi, Neel R.
2012-01-01
SUMMARY Treatment outcomes for multidrug-resistant tuberculosis (MDR-TB) in South Africa have suffered as centralized, inpatient treatment programs struggle to cope with rising prevalence and HIV co-infection rates. A new treatment model is needed to expand treatment capacity and improve MDR-TB and HIV outcomes. We describe the design and preliminary results of an integrated, home-based MDR-TB/HIV treatment program created in rural KwaZulu-Natal. In 2008, a decentralized center was established to provide outpatient MDR-TB and HIV treatment. Nurses, community health workers, and family supporters have been trained to administer injections, provide adherence support, and monitor adverse reactions in patients’ homes. Physicians assess clinical response, adherence, and adverse reaction severity to MDR-TB and HIV therapy at monthly follow-up visits. Treatment outcomes are assessed by monthly cultures and CD4 and viral load every 6 months. Eighty patients initiated MDR-TB therapy from 2/2008–4/2010; 66 were HIV co-infected. Retention has been high (only 5% defaults, 93% of visits attended) and preliminary outcomes have been favorable (77% cured/still on treatment, 82% undetectable viral load). Few patients have required escalation of care (9%), had severe adverse events (8%), or died (6%). Integrated, home-based treatment for MDR-TB and HIV is a promising treatment model to expand capacity and achieve improved outcomes in rural, resource-poor, and high-HIV prevalent settings. PMID:22668560
Isara, A R; Akpodiete, A
2015-01-01
Inadequate knowledge and wrong perception of multidrug-resistant tuberculosis (MDR-TB) by Health Care Workers (HCWs) and patients are detrimental to tuberculosis control programs. The aim was to assess the knowledge and attitudes of HCWs and TB patients about MDR-TB in Delta State, Nigeria. A cross-sectional study was carried out among HCWs and TB patients in Delta State, Nigeria. Data were collected using a structured interviewer-administered questionnaire and analyzed using IBM SPSS Statistics version 20. Ninety-six HCWs and 114 TB patients were studied. The HCWs (mean age 43.0 ± 10.1 years) were older than the patients (mean age 41.7 ± 16.9 years). A higher proportion (54.2%) of HCWs had tertiary education, but only 15% of the patients had above secondary education. Eight (8.3%) HCWs and majority (60.5%) of the patients had no knowledge about of MDR-TB. Only 18.4% of patients compared to 61.5% of HCWs had good knowledge of MDR-TB. Both groups demonstrated a positive attitude toward MDR-TB. The knowledge of MDR-TB was poor among the TB patients studied as well as among HCWs with low educational status. MDR-TB training program for both HCWs and patients need to be re-structured to allow for greater gain in MDR-TB knowledge among both groups, which in turn may help improve compliance and treatment outcomes among patients.
Tang, Tao; Liao, Zheng-Gen; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Guan, Xue-Jing; Liang, Xin-Li
2017-02-01
To study the correlation of four properties of traditional Chinese medicine and the function of reversing multidrug resistance (MDR) of tumor cells, with 580 herbs in Chinese Pharmacopoeia 2015 version as the research objects. CNKI, CBA, Wanfang, VIP, and PubMed were searched to screen the documents related to the reversal of MDR for collection, summarizing and analysis. The results of the research showed that a total of 114 species Chinese herbs had been reported to be associated with reversal of MDR in tumor cells. Among 15 Chinese herbs with heat nature, 7 herbs had the function of reversing MDR in tumor cells, accounting for 46.7%. Among the 48 herbs with cool nature, 12 herbs had the function of reversing MDR, accounting for 25%. Among the 211 herbs with cold nature, 46 herbs had the function of reversing MDR, accounting for 21.8%. Among the 179 herbs with warm nature, 34 herbs had the function of reversing MDR, accounting for 19%. Among the 127 herbs with neutral nature, 15 herbs had the function of reversing MDR, accounting for 11.8%. Through the analysis on the relationship between four properties of 114 kinds of traditional Chinese medicines and reversing multidrug resistance of tumor cells, this paper speculated that there was a certain correlation between four properties of traditional Chinese medicine and the function of reversing multidrug resistance of tumor cells. Copyright© by the Chinese Pharmaceutical Association.
Daftary, A; Padayatchi, N
2016-11-01
To examine influences on health care workers' (HCWs') capacity to deliver health care for multi- and/or extensively drug-resistant tuberculosis (MDR/XDR-TB) and human immunodeficiency virus (HIV) infection in South Africa. Qualitative data were collected via group and individual interviews with a purposive sample of 17 HCWs at a centralised, tertiary TB facility and analysed using grounded theory. Four themes were identified: 1) personal infection control practices among HCWs may be weakened by a workplace culture comprising low motivation, disparate risk perceptions and practices across workforce hierarchies, physical discomfort, and problems managing patients with treatment-induced hearing loss. 2) Patient-provider interactions are likely stronger among nurses, and in HIV vs. MDR/XDR-TB service delivery, due to greater attention to patient empowerment and support. Stigma associated with MDR/XDR-TB, considered worse than HIV, may be perpetuated within non-specialised facilities less familiar with MDR/XDR-TB. 3) HCWs who struggle with the daily tedium of MDR/XDR-TB treatment supervision are becoming increasingly supportive of treatment literacy and self-administration. 4) Effective integration of HIV and MDR/XDR-TB services may be impeded by administrative restrictions, workplace norms and provider mindsets. Comprehensive, decentralised management of MDR/XDR-TB and HIV coinfection requires the creation of patient-provider trust and treatment literacy in MDR/XDR-TB programmes, and defying workplace norms that could provoke nosocomial TB exposure and fragmented service provision.
Weber, J M; Sircar, S; Horvath, J; Dion, P
1989-11-01
Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.
Cost-effectiveness of bedaquiline in MDR and XDR tuberculosis in Italy
Codecasa, Luigi R.; Toumi, Mondher; D’Ausilio, Anna; Aiello, Andrea; Damele, Francesco; Termini, Roberta; Uglietti, Alessia; Hettle, Robert; Graziano, Giorgio; De Lorenzo, Saverio
2017-01-01
ABSTRACT Objective: To evaluate the cost-effectiveness of bedaquiline plus background drug regimens (BR) for multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) in Italy. Methods: A Markov model was adapted to the Italian setting to estimate the incremental cost-effectiveness ratio (ICER) of bedaquiline plus BR (BBR) versus BR in the treatment of MDR-TB and XDR-TB over 10 years, from both the National Health Service (NHS) and societal perspective. Cost-effectiveness was evaluated in terms of life-years gained (LYG). Clinical data were sourced from trials; resource consumption for compared treatments was modelled according to advice from an expert clinicians panel. NHS tariffs for inpatient and outpatient resource consumption were retrieved from published Italian sources. Drug costs were provided by reference centres for disease treatment in Italy. A 3% annual discount was applied to both cost and effectiveness. Deterministic and probabilistic sensitivity analyses were conducted. Results: Over 10 years, BBR vs. BR alone is cost-effective, with ICERs of €16,639/LYG and €4081/LYG for the NHS and society, respectively. The sensitivity analyses confirmed the robustness of the results from both considered perspectives. Conclusion: In Italy, BBR vs. BR alone has proven to be cost-effective in the treatment of MDR-TB and XDR-TB under a range of scenarios. PMID:28265350
MDR-TB patients in KwaZulu-Natal, South Africa: Cost-effectiveness of 5 models of care
Wallengren, Kristina; Reddy, Tarylee; Besada, Donela; Brust, James C. M.; Voce, Anna; Desai, Harsha; Ngozo, Jacqueline; Radebe, Zanele; Master, Iqbal; Padayatchi, Nesri; Daviaud, Emmanuelle
2018-01-01
Background South Africa has a high burden of MDR-TB, and to provide accessible treatment the government has introduced different models of care. We report the most cost-effective model after comparing cost per patient successfully treated across 5 models of care: centralized hospital, district hospitals (2), and community-based care through clinics or mobile injection teams. Methods In an observational study five cohorts were followed prospectively. The cost analysis adopted a provider perspective and economic cost per patient successfully treated was calculated based on country protocols and length of treatment per patient per model of care. Logistic regression was used to calculate propensity score weights, to compare pairs of treatment groups, whilst adjusting for baseline imbalances between groups. Propensity score weighted costs and treatment success rates were used in the ICER analysis. Sensitivity analysis focused on varying treatment success and length of hospitalization within each model. Results In 1,038 MDR-TB patients 75% were HIV-infected and 56% were successfully treated. The cost per successfully treated patient was 3 to 4.5 times lower in the community-based models with no hospitalization. Overall, the Mobile model was the most cost-effective. Conclusion Reducing the length of hospitalization and following community-based models of care improves the affordability of MDR-TB treatment without compromising its effectiveness. PMID:29668748
[Multidrug-resistant tuberculosis: challenges of a global emergence].
Comolet, T
2015-10-01
Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.
Flores-Treviño, Samantha; Morfín-Otero, Rayo; Rodríguez-Noriega, Eduardo; González-Díaz, Esteban; Pérez-Gómez, Héctor Raúl; Mendoza-Olazarán, Soraya; Balderas-Rentería, Isaías; González, Gloria María; Garza-González, Elvira
2015-03-01
The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis strains has become a worldwide health care problem, making treatment of tuberculosis difficult. The aim of this study was to determine phenotypic resistance and gene mutations associated with MDR of clinical isolates of Mycobacterium tuberculosis from Guadalajara, Mexico. One hundred and five isolates were subjected to drug susceptibility testing to first line drugs using the proportion and Mycobacteria Growth Indicator Tube (MGIT) methods. Genes associated with isoniazid (inhA, katG, ahpC) and rifampicin (rpoB) resistance were analyzed by either pyrosequencing or PCR-RFLP. Resistance to any drug was detected in 48.6% of isolates, of which 40% were isoniazid-resistant, 20% were rifampicin-resistant and 19% were MDR. Drug-resistant isolates had the following frequency of mutations in rpoB (48%), katG (14%), inhA (26%), ahpC (26%). Susceptible isolates also had a mutation in ahpC (29%). This is the first analysis of mutations associated with MDR of M. tuberculosis in Guadalajara. Commonly reported mutations worldwide were found in rpoB, katG and inhA genes. Substitution C to T in position -15 of the ahpC gene may possibly be a polymorphism. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Kang, Xue-jia; Wang, Hui-yuan; Peng, Hui-ge; Chen, Bin-fan; Zhang, Wen-yuan; Wu, Ai-hua; Xu, Qin; Huang, Yong-zhuo
2017-01-01
Multidrug resistance (MDR) is a major hurdle in cancer chemotherapy and makes the treatment benefits unsustainable. Combination therapy is a commonly used method for overcoming MDR. In this study we investigated the anti-MDR effect of dihydroartemisinin (DHA), a derivative of artemisinin, in combination with doxorubicin (Dox) in drug-resistant human colon tumor HCT8/ADR cells. We developed a tumor-targeting codelivery system, in which the two drugs were co-encapsulated into the mannosylated liposomes (Man-liposomes). The Man-liposomes had a mean diameter of 158.8 nm and zeta potential of −15.8 mV. In the HCT8/ADR cells that overexpress the mannose receptors, the Man-liposomes altered the intracellular distribution of Dox, resulting in a high accumulation of Dox in the nuclei and thus displaying the highest cytotoxicity (IC50=0.073 μg/mL) among all the groups. In a subcutaneous HCT8/ADR tumor xenograft model, administration of the Man-liposomes resulted in a tumor inhibition rate of 88.59%, compared to that of 47.46% or 70.54%, respectively, for the treatment with free Dox or free Dox+DHA. The mechanisms underlying the anti-MDR effect of the Man-liposomes involved preferential nuclear accumulation of the therapeutic agents, enhanced cancer cell apoptosis, downregulation of Bcl-xl, and the induction of autophagy. PMID:28479604
Meaza, Abyot; Kebede, Abebaw; Yaregal, Zelalem; Dagne, Zekarias; Moga, Shewki; Yenew, Bazezew; Diriba, Getu; Molalign, Helina; Tadesse, Mengistu; Adisse, Desalegn; Getahun, Muluwork; Desta, Kassu
2017-04-17
Multi drug resistant tuberculosis (MDR-TB) poses formidable challenges to TB control due to its complex diagnostic and treatment challenges and often associated with a high rate of mortality. Accurate and rapid detection of MDR-TB is critical for timely initiation of treatment. Line Probe Assay (LPA) is a qualitative in vitro diagnostic test based on DNA-STRIP technology for the identification of the M. tuberculosis complex and its resistance to rifampicin (RMP) and/or isoniazid (INH). Hain Lifescience, GmbH, Germany has improved the sensitivity of Genotype MTBDRplus VER 2.0 LPA for the detection of MDR-TB; with the possibility of applying the tool in smear negative sputum samples. A cross sectional study was conducted on 274 presumptive MDR-TB patients referred to the National TB Reference Laboratory (NTRL), Ethiopian Public Health Institute (EPHI) who submitted sputum samples for laboratory diagnosis of drug resistant-TB testing. Seventy-two smear and culture positive samples processed in smear positive direct LPA category and 197 smear negative sputum samples were processed for direct LPA. Among the smear negative samples 145 (73.6%) were culture negative and 26 (13.2%) were culture positive. All specimens were processed using NALC-NaOH method and ZN smear microscopy done from sediments. Genotype MTBDRplus VER 2.0 done from processed sputum sediments and the result was compared against the reference, BACTEC MGIT 960 culture and DST. Sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 assay was determined and P-value <0.05 was considered as statistically significant. The sensitivity, specificity, PPV and NPV of Genotype MTBDRplus VER 2.0 LPA were 96.4, 100, 100 and 96.9%, respectively for the detection of MDR-TB from direct smear positive sputum samples. The sensitivity, specificity, PPV and NPV of Genotype MTBDR plus VER 2.0 LPA were 77.8, 97.2, 82.4 and 97.2%, respectively, for the detection of M. tuberculosis from direct smear negative sputum samples. Fourteen (53.8%) samples had valid results with LPA among the 26 smear negative culture positive samples. The remaining 8 (30.8%) and 4 (15.4%) were invalid and negative with LPA, respectively. The sensitivity and specificity of Genotype MTBDRplus VER 2.0 LPA were 100% for the detection of MDR-TB among 14 direct smear negative and culture positive sputum samples. The most common mutations associated with RMP and INH resistance were S531L and S315TL, respectively. A single rare mutation (C15T/A16G) was detected for INH resistance. The diagnostic performance of Genotype MTBDRplus VER 2.0 LPA in direct smear positive sputum sample was highly sensitive and specific for early detection of MDR-TB. However, the diagnostic performance of this molecular assay in direct smear negative sputum sample was low and showed a high level of invalid results for detection of M. tuberculosis and its resistance to RMP and/or INH so it is unlikely to implement Genotype MTBDRplus VER 2.0 for the detection of MDR-TB in direct smear negative sample in our routine settings. The sensitivity of the assay should be improved for detection of MDR-TB in direct smear negative sputum specimens.
Teh, L K; Lee, W L; Amir, J; Salleh, M Z; Ismail, R
2007-06-01
P-glycoprotein (PgP) is the most extensively studied ATP-binding cassette (ABC) coded by MDR1 gene. To date, 29 single nucleotide polymorphisms (SNPs) have been identified; but only SNP C3435T has been correlated with intestinal PgP expression levels and shown to influence the absorption of orally taken drugs that are PgP substrates. Individuals homozygous for the T allele have more than fourfold lower PgP expression compared with C/C individuals. We developed a one step primer based allele specific PCR method to detect SNP at C3435T to investigate the distribution of this genotype in the local population. DNA was extracted from 5 mL of whole blood using standard salting-out method. Primers were designed specific to 3' end which amplify the variants of C3435T. The method was validated by direct DNA sequencing. Seven hundred and sixty-three healthy blood donors comprising of three major ethnic groups in Malaysia were recruited and DNA subjected to genotyping of C3435T using this method. The method was found to be robust and reproducible in detecting SNP of C3435T. Interethnic variations in genotype and allele frequency were observed in PgP among the ethnic groups. In comparison to both the Caucasians and the other Asian countries, the Malay and Chinese showed a higher frequency of allele C (50-60%); while the Indian exhibits a lower frequency (40%), similar to other Indian populations. Using a new simple method to investigate the distribution of C3435T, we found that the allele frequency of MDR1 showed variablity between the different ethnic groups within the Malaysian population.
Shewade, Hemant Deepak; Kyaw, Nang Thu Thu; Thein, Saw; Si Thu, Aung; Kyaw, Khine Wut Yee; Aye, Nyein Nyein; Phyo, Aye Mon; Maung, Htet Myet Win; Soe, Kyaw Thu; Aung, Si Thu
2018-01-01
Background The Union in collaboration with national TB programme (NTP) started the community-based MDR-TB care (CBMDR-TBC) project in 33 townships of upper Myanmar to improve treatment initiation and treatment adherence. Patients with MDR-TB diagnosed/registered under NTP received support through the project staff, in addition to the routine domiciliary care provided by NTP staff. Each township had a project nurse exclusively for MDR-TB and 30 USD per month (max. for 4 months) were provided to the patient as a pre-treatment support. Objectives To assess whether CBMDR-TBC project’s support improved treatment initiation. Methods In this cohort study (involving record review) of all diagnosed MDR-TB between January 2015 and June 2016 in project townships, CBMDR-TBC status was categorized as “receiving support” if date of project initiation in patient’s township was before the date of diagnosis and “not receiving support”, if otherwise. Cox proportional hazards regression (censored on 31 Dec 2016) was done to identify predictors of treatment initiation. Results Of 456 patients, 57% initiated treatment: 64% and 56% among patients “receiving support (n = 208)” and “not receiving support (n = 228)” respectively (CBMDR-TBC status was not known in 20 (4%) patients due to missing diagnosis dates). Among those initiated on treatment (n = 261), median (IQR) time to initiate treatment was 38 (20, 76) days: 31 (18, 50) among patients “receiving support” and 50 (26,101) among patients “not receiving support”. After adjusting other potential confounders (age, sex, region, HIV, past history of TB treatment), patients “receiving support” had 80% higher chance of initiating treatment [aHR (0.95 CI): 1.8 (1.3, 2.3)] when compared to patients “not receiving support”. In addition, age 15–54 years, previous history of TB and being HIV negative were independent predictors of treatment initiation. Conclusion Receiving support under CBMDR-TBC project improved treatment initiation: it not only improved the proportion initiated but also reduced time to treatment initiation. We also recommend improved tracking of all diagnosed patients as early as possible. PMID:29596434
Andries, Aristomo; Isaakidis, Petros; Das, Mrinalini; Khan, Samsuddin; Paryani, Roma; Desai, Chitranjan; Dalal, Alpa; Mansoor, Homa; Verma, Reena; Fernandes, Dolorosa; Sotgiu, Giovanni; Migliori, Giovanni B.; Saranchuk, Peter
2013-01-01
Background Adverse events (AEs) among HIV-infected patients with multidrug-resistant tuberculosis (MDR-TB) receiving anti-TB and antiretroviral treatments (ART) are under-researched and underreported. Hypothyroidism is a common AE associated with ethionamide, p-aminosalicylic acid (PAS), and stavudine. The aim of this study was to determine the frequency of and risk factors associated with hypothyroidism in HIV/MDR-TB co-infected patients. Methods This was a prospective, observational cohort study, using routine laboratory data in a Médecins Sans Frontières (MSF) clinic in collaboration with Sewri TB Hospital, Mumbai, India. Hypothyroidism was defined as a thyroid stimulating hormone (TSH) result >10 mIU/L at least once during treatment. Patients having a baseline result and one additional result after 3 months were eligible for enrolment. Results Between October 2006 and March 2013, 116 patients were enrolled, 69 of whom were included. The median (IQR) age was 38 years (34-43) and 61% were male. By March 2013, 37/69 (54%) had hypothyroidism after at least 90 days of treatment. Age, gender, CD4 counts and stavudine-based ART were not associated with the occurrence of hypothyroidism in multivariate models. The co-administration of PAS and ethionamide was found to double the risk of hypothyroidism (RR: 1.93, 95% CI: 1.06-3.54). Discussion High rate of hypothyroidism was recorded in a Mumbai cohort of MDR-TB/HIV co-infected patients on treatment. This is a treatable and reversible AE, however, it may go undiagnosed in the absence of regular monitoring. Care providers should not wait for clinical symptoms, as this risks compromising treatment adherence. Simple, affordable and reliable point-of-care tools for measuring TSH are needed, especially in high MDR-TB burden countries. Our findings suggest the need for TSH screening at baseline, three months, six months, and every six months thereafter for HIV-infected patients on MDR-TB treatment regimens containing PAS and/or ethionamide, until newer, safer and more efficacious MDR-TB regimens become available. PMID:24194919
Isaakidis, Petros; Varghese, Bhanumati; Mansoor, Homa; Cox, Helen S.; Ladomirska, Joanna; Saranchuk, Peter; Da Silva, Esdras; Khan, Samsuddin; Paryani, Roma; Udwadia, Zarir; Migliori, Giovanni Battista; Sotgiu, Giovanni; Reid, Tony
2012-01-01
Background Significant adverse events (AE) have been reported in patients receiving medications for multidrug- and extensively-drug-resistant tuberculosis (MDR-TB & XDR-TB). However, there is little prospective data on AE in MDR- or XDR-TB/HIV co-infected patients on antituberculosis and antiretroviral therapy (ART) in programmatic settings. Methods Médecins Sans Frontières (MSF) is supporting a community-based treatment program for drug-resistant tuberculosis in HIV-infected patients in a slum setting in Mumbai, India since 2007. Patients are being treated for both diseases and the management of AE is done on an outpatient basis whenever possible. Prospective data were analysed to determine the occurrence and nature of AE. Results Between May 2007 and September 2011, 67 HIV/MDR-TB co-infected patients were being treated with anti-TB treatment and ART; 43.3% were female, median age was 35.5 years (Interquartile Range: 30.5–42) and the median duration of anti-TB treatment was 10 months (range 0.5–30). Overall, AE were common in this cohort: 71%, 63% and 40% of patients experienced one or more mild, moderate or severe AE, respectively. However, they were rarely life-threatening or debilitating. AE occurring most frequently included gastrointestinal symptoms (45% of patients), peripheral neuropathy (38%), hypothyroidism (32%), psychiatric symptoms (29%) and hypokalaemia (23%). Eleven patients were hospitalized for AE and one or more suspect drugs had to be permanently discontinued in 27 (40%). No AE led to indefinite suspension of an entire MDR-TB or ART regimen. Conclusions AE occurred frequently in this Mumbai HIV/MDR-TB cohort but not more frequently than in non-HIV patients on similar anti-TB treatment. Most AE can be successfully managed on an outpatient basis through a community-based treatment program, even in a resource-limited setting. Concerns about severe AE in the management of co-infected patients are justified, however, they should not cause delays in the urgently needed rapid scale-up of antiretroviral therapy and second-line anti-TB treatment. PMID:22792406
Ponce, Gema; Sanca, Lilica; Mané, Morto; Armada, Ana; Machado, Diana; Vieira, Fina; Gomes, Victor F.; Martins, Elisabete; Colombatti, Raffaella; Riccardi, Fabio; Perdigão, João; Sotero, Joana; Portugal, Isabel; Couto, Isabel; Atouguia, Jorge; Rodrigues, Amabélia; Viveiros, Miguel
2015-01-01
Background This study aimed to evaluate the usefulness of the Xpert MTB/RIF assay for the rapid direct detection of M. tuberculosis complex (MTBC) strains and rifampicin resistance associated mutations in a resource-limited setting such as Guinea-Bissau and its implications in the management of tuberculosis (TB) and drug resistant tuberculosis, complementing the scarce information on resistance and genotypic diversity of MTBC strains in this West African country. Methods and Results This cross-sectional prospective study included 100 consecutive TB patients with positive acid-fast smears at two months of anti-tuberculosis treatment or in a re-treatment situation, between May and December 2012. Resistance to rifampicin was detected using the GeneXpert system and the Xpert MTB/RIF assay. MTBC isolates obtained with the BACTEC MGIT 960 system were tested for susceptibility to first- and second-line anti-tuberculosis drugs. Overall, the prevalence of multidrug-resistant tuberculosis (MDR-TB) was found to be 9 cases. Of these, 67% (6 patients) of confirmed MDR-TB cases had no past history of TB treatment and 33% (3 patients) were previously treated cases. Extensively drug-resistant TB was not found. Molecular typing of the MDR-TB strains revealed recent transmission patterns of imported MDR strains. Conclusions The Xpert MTB/RIF assay was reliable for the detection of rifampicin resistant MTBC strains directly from sputum samples of patients undergoing first-line treatment for two months, being more trustworthy than the simple presence of acid-fast bacilli in the smear. Its implementation is technically simple, does not require specialized laboratory infrastructures and is suitable for resource-limited settings when a regular source of electricity and maintenance is available as well as financial and operation sustainability is guaranteed by the health authorities. A high prevalence of MDR-TB among patients at risk of MDR-TB after two months of first-line treatment was found, in support of the WHO recommendations for its use in the management of this risk group. PMID:26017968
Li, Ying; Ehiri, John; Oren, Eyal; Hu, Daiyu; Luo, Xingneng; Liu, Ying; Li, Daikun; Wang, Qingya
2014-01-01
Multi-drug resistant tuberculosis (MDR-TB) represents a threat to health and development in countries with high TB burden. China’s MDR-TB prevalence rate of 6.8% is the highest in the world. Interventions to remove barriers against effective TB control, and prevention of MDR-TB are urgently needed in the country. This paper reports a cross-sectional questionnaire survey of 513 pulmonary TB (PTB) patients, and qualitative interviews of 10 healthcare workers (HCWs), and 15 PTB patients. The objective was to assess barriers against effective control of PTB and prevention of MDR-TB by elucidating the perspectives of patients and healthcare providers. Results showed that more than half of the patients experienced patient delay of over 12.5 days. A similar proportion also experienced detection delay of over 30 days, and delay in initiating treatment of over 31 days. Consulting a non-TB health facility ≥3 times before seeking care at TB dispensary was a risk factor for both detection delay [AOR (95% CI): 1.89(1.07, 3.34) and delay in initiating treatment[AOR (95% CI): 1.88 (1.06, 3.36). Results revealed poor implementation of Directly Observed Therapy (DOT), whereby treatment of 34.3% patients was never monitored by HCWs. Only 31.8% patients had ever accessed TB health education before their TB diagnosis. Qualitative data consistently disclosed long patient delay, and indicated that patient’s poor TB knowledge and socioeconomic barriers were primary reasons for patient delay. Seeking care and being treated at a non-TB hospital was an important reason for detection delay. Patient’s long work hours and low income increased risk for treatment non-adherence. Evidence-based measures to improve TB health seeking behavior, reduce patient and detection delays, improve the quality of DOT, address financial and system barriers, and increase access to TB health promotion are urgently needed to address the burgeoning prevalence of MDR-TB in China. PMID:24505476
USDA-ARS?s Scientific Manuscript database
Background: The presence of Multi-Drug Resistant (MDR) Salmonella in food animals is concerning. To understand how antimicrobial resistance (AR) develops, the genetic elements responsible for MDR phenotypes in Salmonella animal isolates were investigated. National Antimicrobial Resistance Monitoring...
1991-05-15
initially developed by Prof. Lynn Melton to determine the internal temperature distribution within a droplet using exciplex - monomer fluorescence. [Our... ol ) are the phase velocities of MDR’s at o3 and col, respectively. For the more general case, when (o l t2 * o) , Ak is only slightly more complicated...We calculated vMDR( ol ) for MDR’s of various mode numbers and mode orders and noted that vMDR( ol ) _> c/n(to), where c is the speed of light in vacuum
Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.
Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei
2008-01-01
Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.
Multidrug Resistance: Physiological Principles and Nanomedical Solutions
Storm, Gert; Kiessling, Fabian; Lammers, Twan
2014-01-01
Multidrug (MDR) resistance is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies. PMID:24120954
Das, Sumon Kumar; Klontz, Erik H; Azmi, Ishrat J; Ud-Din, Abu I M S; Chisti, Mohammod Jobayer; Afrad, Mokibul Hassan; Malek, Mohammad Abdul; Ahmed, Shahnawaz; Das, Jui; Talukder, Kaisar Ali; Salam, Mohammed Abdus; Bardhan, Pradip Kumar; Faruque, Abu Syed Golam; Klontz, Karl C
2013-12-22
We determined the frequency of multidrug resistant (MDR) infections with Shigella spp. and Vibrio cholerae O1 at an urban (Dhaka) and rural (Matlab) hospital in Bangladesh. We also compared sociodemographic and clinical features of patients with MDR infections to those with antibiotic-susceptible infections at both sites. Analyses were conducted using surveillance data from the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), for the years 2000-2012. Compared to patients with antibiotic-susceptible for Shigella infections, those in Dhaka with MDR shigellosis were more likely to experience diarrhea for >24 hours, while, in Matlab, they were more likely to stay inhospital >24 hours. For MDR shigellosis, Dhaka patients were more likely than those in Matlab to have dehydration, stool frequency >10/day, and diarrheal duration >24 hours. Patients with MDR Vibrio cholerae O1 infections in Dhaka were more likely than those in Matlab to experience dehydration and stool frequency >10/day. Thus, patients with MDR shigellosis and Vibrio cholerae O1 infection exhibited features suggesting more severe illness than those with antibiotic-susceptible infections. Moreover, Dhaka patients with MDR shigellosis and Vibrio cholerae O1 infections exhibited features indicating more severe illness than patients in Matlab.
Fox, G J; Anh, N T; Nhung, N V; Loi, N T; Hoa, N B; Ngoc Anh, L T; Cuong, N K; Buu, T N; Marks, G B; Menzies, D
2017-03-01
Differences in the prevalence of latent tuberculous infection (LTBI) and tuberculosis (TB) disease among contacts of patients with multidrug-resistant TB (MDR-TB) and drug-susceptible TB are not well understood. To compare the prevalence of tuberculin skin test (TST) positivity in household contacts of patients with MDR-TB and in contacts of patients never previously treated for TB ('new TB'). Consecutive patients with MDR-TB and their household contacts at nine urban district clinics in Viet Nam were screened for TB and LTBI, and followed up for 6 months. LTBI was defined as a TST result of at least 10 mm. A total of 167 patients with TB and their 337 household contacts were recruited. A total of 167/180 (25.8%) contacts of new TB patients and 60/147 (40.8%) contacts of MDR-TB patients were TST-positive (odds ratio [OR] 2.0, 95%CI 1.3-3.2). Contacts of MDR-TB patients were more likely to have baseline chest radiograph findings consistent with TB (OR 2.6, 95%CI 1.4-5.0). Contacts of MDR-TB patients have a high risk of developing TB. Measures to reduce Mycobacterium tuberculosis transmission and accelerate the detection of disease among high-risk contacts should be prioritised to curb the MDR-TB epidemic.
Farley, Jason E.; Kelly, Ana M.; Reiser, Katrina; Brown, Maria; Kub, Joan; Davis, Jeane G.; Walshe, Louise; Van der Walt, Martie
2014-01-01
Setting Multidrug-resistant tuberculosis (MDR-TB) unit in KwaZulu-Natal, South Africa. Objective To develop and evaluate a nurse case management model and intervention using the tenets of the Chronic Care Model to manage treatment for MDR-TB patients with a high prevalence of human immunodeficiency virus (HIV) co-infection. Design A quasi-experimental pilot programme utilizing a nurse case manager to manage care for 40 hospitalized MDR-TB patients, 70% HIV co-infected, during the intensive phase of MDR-TB treatment. Patients were followed for six months to compare proximal outcomes identified in the model between the pre- and post-intervention period. Results The greatest percent differences between baseline and six-month MDR-TB proximal outcomes were seen in the following three areas: baseline symptom evaluation on treatment initiation (95% improvement), baseline and monthly laboratory evaluations completed per guidelines (75% improvement), and adverse drug reactions acted upon by medical and/or nursing intervention (75% improvement). Conclusion Improvements were identified in guideline-based treatment and monitoring of adverse drug reactions following implementation of the nurse case management intervention. Further study is required to determine if the intervention introduced in this model will ultimately result in improvements in final MDR-TB treatment outcomes. PMID:25405988
Huang, Y-W; Shen, G-H; Lee, J-J; Yang, W-T
2010-11-01
Both the tuberculin skin test (TST) and the QuantiFERON®-TB Gold In-Tube test (QFT-GIT) may be used to detect Mycobacterium tuberculosis infection. A positive reaction to either test can indicate latent tuberculosis infection (LTBI). These tests can be used to study the rate of infection in contacts of multidrug-resistant tuberculosis (MDR-TB) patients. To evaluate the transmission status of MDR-TB patients in Taiwan by examining their close contacts and to compare the efficiency of TST and QFT-GIT. Chest radiographs, TST and QFT-GIT were performed in household contacts of confirmed MDR-TB patients to determine their infection status. A total of 78 close contacts of confirmed MDR-TB patients were included in the study. The majority of the MDR-TB patients were parents of the close contacts and lived in the same building; 46% of the subjects were TST-positive and 19% were QFT-GIT-positive, indicating LTBI that was likely to develop into active MDR-TB. There was a lack of consistency between TST and QFT-GIT results in subjects with previous bacille Calmette-Guérin vaccination. Household contacts of MDR-TB patients are likely to develop LTBI; thus, follow-up and monitoring are mandatory to provide treatment and reduce the occurrence of active infection.
Sharma, Aditya; Hill, Andrew; Kurbatova, Ekaterina; van der Walt, Martie; Kvasnovsky, Charlotte; Tupasi, Thelma E; Caoili, Janice C; Gler, Maria Tarcela; Volchenkov, Grigory V; Kazennyy, Boris Y; Demikhova, Olga V; Bayona, Jaime; Contreras, Carmen; Yagui, Martin; Leimane, Vaira; Cho, Sang Nae; Kim, Hee Jin; Kliiman, Kai; Akksilp, Somsak; Jou, Ruwen; Ershova, Julia; Dalton, Tracy; Cegielski, Peter
2017-07-01
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are emerging worldwide. The Green Light Committee initiative supported programmatic management of drug-resistant tuberculosis in 90 countries. We used estimates from the Preserving Effective TB Treatment Study to predict MDR and XDR tuberculosis trends in four countries with a high burden of MDR tuberculosis: India, the Philippines, Russia, and South Africa. We calibrated a compartmental model to data from drug resistance surveys and WHO tuberculosis reports to forecast estimates of incident MDR and XDR tuberculosis and the percentage of incident MDR and XDR tuberculosis caused by acquired drug resistance, assuming no fitness cost of resistance from 2000 to 2040 in India, the Philippines, Russia, and South Africa. The model forecasted the percentage of MDR tuberculosis among incident cases of tuberculosis to increase, reaching 12·4% (95% prediction interval 9·4-16·2) in India, 8·9% (4·5-11·7) in the Philippines, 32·5% (27·0-35·8) in Russia, and 5·7% (3·0-7·6) in South Africa in 2040. It also predicted the percentage of XDR tuberculosis among incident MDR tuberculosis to increase, reaching 8·9% (95% prediction interval 5·1-12·9) in India, 9·0% (4·0-14·7) in the Philippines, 9·0% (4·8-14·2) in Russia, and 8·5% (2·5-14·7) in South Africa in 2040. Acquired drug resistance would cause less than 30% of incident MDR tuberculosis during 2000-40. Acquired drug resistance caused 80% of incident XDR tuberculosis in 2000, but this estimate would decrease to less than 50% by 2040. MDR and XDR tuberculosis were forecast to increase in all four countries despite improvements in acquired drug resistance shown by the Green Light Committee-supported programmatic management of drug-resistant tuberculosis. Additional control efforts beyond improving acquired drug resistance rates are needed to stop the spread of MDR and XDR tuberculosis in countries with a high burden of MDR tuberculosis. US Agency for International Development and US Centers for Disease Control and Prevention, Division of Tuberculosis Elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hospitalized care for MDR-TB in Port Harcourt, Nigeria: a qualitative study.
Bieh, Kingsley Lezor; Weigel, Ralf; Smith, Helen
2017-01-10
In Nigeria multidrug-resistant tuberculosis (MDR-TB) is prevalent in 2.9% of new TB cases and 14% of retreatment cases, and the country is one of 27 with high disease burden globally. Patients are admitted and confined to one of ten MDR-TB treatment facilities throughout the initial 8 months of treatment. The perspectives of MDR-TB patients shared on social media and in academic research and those of providers are limited to experiences of home-based care. In this study we explored the views of hospitalised MDR-TB patients and providers in one treatment facility in Nigeria, and describe how their experiences are linked to accessibility of care and support services, in line with international goals. We aimed to explore the physical, social and psychological needs of hospitalized MDR TB patients, examine providers' perceptions about the hospital based model and discuss the model's advantages and disadvantages from the patient and the provider perspective. We conducted two gender distinct focus group discussions and 11 in-depth interviews with recently discharged MDR-TB patients from one MDR-TB treatment facility in Nigeria. We triangulated this with the views of four providers who played key roles in the management of MDR-TB patients via key informant interviews. Transcribed data was thematically analysed, using an iterative process to constantly compare and contrast emerging themes across the data set for deeper understanding of the full range of participants' views. The study findings demonstrate the psycho-social impacts of prolonged isolation and the coping mechanisms of patients in the facility. The dislocation of patients from their normal social networks and the detachment between providers and patients created the need for interdependence of patients for emotional and physical support. Providers' fears of infection contributed to stigma and hindered accessibility of care and support services. The current trend towards discharging patients after culture conversion would reduce the psycho-social impacts of prolonged isolation and potentially reduce the risk of occupational TB from prolonged contact with MDR-TB patients. Building on shared experiences and interdependence of MDR-TB patients in our study, innovative patient-centred support systems would likely help to reduce stigma, promote access to care and support services, and potentially impact on the outcome of treatment.
Territo, Paul R; Maluccio, Mary; Riley, Amanda A; McCarthy, Brian P; Fletcher, James; Tann, Mark; Saxena, Romil; Skill, Nicholas J
2015-05-16
Hepatocellular carcinoma (HCC) remains a global health problem with unique diagnostic and therapeutic challenges, including difficulties in identifying the highest risk patients. Previous work from our lab has established the murine multidrug resistance-2 mouse (MDR2) model of HCC as a reasonable preclinical model that parallels the changes seen in human inflammatory associated HCC. The purpose of this study is to evaluate modalities of PET/CT in MDR2(-/-) mice in order to facilitate therapeutic translational studies from bench to bedside. 18F-FDG and 11C-acetate PET/CT was performed on 12 m MDR2(-/-) mice (n = 3/tracer) with HCC and 12 m MDR2(-/+) control mice (n = 3/tracer) without HCC. To compare PET/CT to biological markers of HCC and cellular function, serum alpha-fetoprotein (AFP), lysophosphatidic acid (LPA), cAMP and hepatic tumor necrosis factor α (TNFα) were quantified in 3-12 m MDR2(-/-) (n = 10) mice using commercially available ELISA analysis. To translate results in mice to patients 11C-acetate PET/CT was also performed in 8 patents suspected of HCC recurrence following treatment and currently on the liver transplant wait list. Hepatic18F-FDG metabolism was not significantly increased in MDR2(-/-) mice. In contrast, hepatic 11C-acetate metabolism was significantly elevated in MDR2(-/-) mice when compared to MDR2(-/+) controls. Serum AFP and LPA levels increased in MDR2(-/-) mice contemporaneous with the emergence of HCC. This was accompanied by a significant decrease in serum cAMP levels and an increase in hepatic TNFα. In patients suspected of HCC recurrence there were 5 true positives, 2 true negatives and 1 suspected false 11C-acetate negative. Hepatic 11C-acetate PET/CT tracks well with HCC in MDR2(-/-) mice and patients with underlying liver disease. Consequently 11C-acetate PET/CT is well suited to study (1) HCC emergence/progression in patients and (2) reduce animal numbers required to study new chemotherapeutics in murine models of HCC.
Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency through Commensally Induced Pyroptosis
Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H.; Göthert, Joachim R.; Rünzi, Michael; Schmid, Kurt W.; Gerken, Guido; Podolsky, Daniel K.
2013-01-01
Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b+ myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b+Ly6C+-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b+ myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species–mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis. PMID:23636052
Loss of TLR2 worsens spontaneous colitis in MDR1A deficiency through commensally induced pyroptosis.
Ey, Birgit; Eyking, Annette; Klepak, Magdalena; Salzman, Nita H; Göthert, Joachim R; Rünzi, Michael; Schmid, Kurt W; Gerken, Guido; Podolsky, Daniel K; Cario, Elke
2013-06-01
Variants of the multidrug resistance gene (MDR1/ABCB1) have been associated with increased susceptibility to severe ulcerative colitis (UC). In this study, we investigated the role of TLR/IL-1R signaling pathways including the common adaptor MyD88 in the pathogenesis of chronic colonic inflammation in MDR1A deficiency. Double- or triple-null mice lacking TLR2, MD-2, MyD88, and MDR1A were generated in the FVB/N background. Deletion of TLR2 in MDR1A deficiency resulted in fulminant pancolitis with early expansion of CD11b(+) myeloid cells and rapid shift toward TH1-dominant immune responses in the lamina propria. Colitis exacerbation in TLR2/MDR1A double-knockout mice required the unaltered commensal microbiota and the LPS coreceptor MD-2. Blockade of IL-1β activity by treatment with IL-1R antagonist (IL-1Ra; Anakinra) inhibited colitis acceleration in TLR2/MDR1A double deficiency; intestinal CD11b(+)Ly6C(+)-derived IL-1β production and inflammation entirely depended on MyD88. TLR2/MDR1A double-knockout CD11b(+) myeloid cells expressed MD-2/TLR4 and hyperresponded to nonpathogenic Escherichia coli or LPS with reactive oxygen species production and caspase-1 activation, leading to excessive cell death and release of proinflammatory IL-1β, consistent with pyroptosis. Inhibition of reactive oxygen species-mediated lysosome degradation suppressed LPS hyperresponsiveness. Finally, active UC in patients carrying the TLR2-R753Q and MDR1-C3435T polymorphisms was associated with increased nuclear expression of caspase-1 protein and cell death in areas of acute inflammation, compared with active UC patients without these variants. In conclusion, we show that the combined defect of two UC susceptibility genes, MDR1A and TLR2, sets the stage for spontaneous and uncontrolled colitis progression through MD-2 and IL-1R signaling via MyD88, and we identify commensally induced pyroptosis as a potential innate immune effector in severe UC pathogenesis.
Kundu, Debashish; Sharma, Nandini; Chadha, Sarabjit; Laokri, Samia; Awungafac, George; Jiang, Lai; Asaria, Miqdad
2018-01-27
There are significant financial barriers to access treatment for multi drug resistant tuberculosis (MDR-TB) in India. To address these challenges, Chhattisgarh state in India has established a MDR-TB financial protection policy by creating MDR-TB benefit packages as part of the universal health insurance scheme that the state has rolled out in their effort towards attaining Universal Health Coverage for all its residents. In these schemes the state purchases health insurance against set packages of services from third party health insurance agencies on behalf of all its residents. Provider payment reform by strategic purchasing through output based payments (lump sum fee is reimbursed as per the MDR-TB benefit package rates) to the providers - both public and private health facilities empanelled under the insurance scheme was the key intervention. To understand the implementation gap between policy and practice of the benefit packages with respect to equity in utilization of package claims by the poor patients in public and private sector. Data from primary health insurance claims from January 2013 to December 2015, were analysed using an extension of 'Kingdon's multiple streams for policy implementation framework' to explain the implementation gap between policy and practice of the MDR-TB benefit packages. The total number of claims for MDR-TB benefit packages increased over the study period mainly from poor patients treated in public facilities, particularly for the pre-treatment evaluation and hospital stay packages. Variations and inequities in utilizing the packages were observed between poor and non-poor beneficiaries in public and private sector. Private providers participation in the new MDR-TB financial protection mechanism through the universal health insurance scheme was observed to be much lower than might be expected given their share of healthcare provision overall in India. Our findings suggest that there may be an implementation gap due to weak coupling between the problem and the policy streams, reflecting weak coordination between state nodal agency and the state TB department. There is a pressing need to build strong institutional capacity of the public and private sector for improving service delivery to MDR-TB patients through this new health insurance mechanism.
Ikram, Rosemary; Psutka, Rebecca; Carter, Alison; Priest, Patricia
2015-06-09
Prevention of infection due to multi-drug resistant organisms is particularly challenging because of the spread of resistant bacteria beyond hospitals into the community, including nursing homes. This study aimed to identify risk factors for the acquisition of a multidrug resistant (MDR) Escherichia coli in a local outbreak. Study participants were all aged over 65 years. Cases had the MDR E. coli isolated from a routine urine sample, and controls had a urine sample submitted to the laboratory in the same time period but the MDR E. coli was not isolated. Information from clinical records was used to identify risk factors both in the hospital and the community setting for acquisition of the MDR E. coli. 76 cases and 156 controls were identified and included in the study. In a multivariate analysis, risk factors statistically significantly associated with acquisition of the MDR E. coli were female gender (adjusted OR 3.2; 95 % confidence interval 1.5-6.9), level of care (high dependency OR 7.5; 2.2-25.7) compared with living independently), and in hospital prescription of antimicrobials to which the MDR E. coli was resistant (OR 5.6; 2.5-12.9). The major risk factors for the acquisition of a MDR E. coli were found to be residence in a nursing home and in-hospital prescription of antimicrobials to which the MDR E. coli was resistant. This emphasises that prevention of transmission of MDROs within a community needs to involve both hospitals and also other healthcare organizations, in this case nursing homes.
[Multidrug-resistant tuberculosis (MDR-TB) in a black African carceral area: Experience of Mali].
Toloba, Y; Ouattara, K; Soumaré, D; Kanouté, T; Berthé, G; Baya, B; Konaté, B; Keita, M; Diarra, B; Cissé, A; Camara, F S; Diallo, S
2018-02-01
Prison constitutes a risk factor for the emergence of multi-drug resistance of tuberculosis (MDR-TB). The aim of this work was to study MDR-TB in a black African carceral center. Prospective study from January to December 2016 at the central house of arrest for men, Bamako. The study population was composed of tuberculous detainee. The suspicion of MDR-TB was done in any tuberculosis case remained positive in the second month of first-line treatment or in contact with an MDR-TB case. Among 1622 detainee, 21 cases of pulmonary tuberculosis were notified (1.29%), with an annual incidence of 13 cases/1000 detainee, they were 16 cases of SP-PTB (microscopy smear positive tuberculosis) and five cases of microscopy smear negative tuberculosis. The mean age was 28±7 years, extremes of 18 and 46 years. A negative association was found between the notion of smoking and occupation in the occurrence of tuberculosis (OR=0.036, [95% CI: 0.03-0.04], P=0.03. Among the 21 tuberculosis cases notified, one confirmed case of MDR-TB was detected (4.7%). In the first semester of 2016 cohort, we notified a cure rate of 87.5% (7/8 SP-PTB cases), and the confirmed MDR-TB case on treatment (21-month regimen), evolution enameled of pulmonary and hearing sequelae at seven months treatment. It was the first case of MDR-TB detected in a prison in Mali. Late diagnosis, evolution is enameled of sequelae and side effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Chen, S N; Luo, C X; Hu, M J; Schnabel, G
2016-09-01
Resistance to multiple chemical classes of fungicides in Botrytis cinerea isolates from eastern United States strawberry fields is common and strategies to control them are needed. In this study, we compared fitness and competitive ability of eight sensitive isolates (S), eight isolates resistant to five or six chemical classes of fungicides but not to phenylpyrroles (5CCR), and eight isolates resistant to six or seven chemical classes including phenylpyrroles (6CCR/MDR1h). The latter included the MDR1h phenotype due to overexpression of atrB based on Δ497V/L in mrr1. The 6CCR/MDR1h isolates grew more slowly at 4°C on potato dextrose agar, and both 5CCR and 6CCR/MDR1h isolates were hypersensitive to osmotic stress compared with S isolates. In contrast, no differences were found in oxidative sensitivity, aggressiveness, and spore production in vivo, and sclerotia production and viability in vitro. In competition experiments, the 5CCR and 6CCR/MDR1h isolates were both outcompeted by S isolates and 6CCR/MDR1h isolates were outcompeted by 5CCR isolates in the absence of fungicide pressure. Under selective pressure of a fludioxonil/pyraclostrobin rotation, the 6CCR/MDR1h isolates dominated after coinoculation with 5CCR and S isolates. The competitive disadvantage of 5CCR and especially 6CCR/MDR1h isolates suggest that, in the absence of fungicide selection pressure, S isolates may reduce inoculum potential of multifungicide-resistant isolates under field conditions.
Six-Month Response to Delamanid Treatment in MDR TB Patients
Ferlazzo, Gabriella; Avaliani, Zaza; Hayrapetyan, Armen; Jonckheere, Sylvie; Khaidarkhanova, Zarema; Mohr, Erika; Sinha, Animesh; Skrahina, Alena; Vambe, Debrah; Vasilyeva, Irina; Lachenal, Nathalie; Varaine, Francis
2017-01-01
Delamanid, recently available for the treatment of multidrug-resistant tuberculosis (MDR TB), has had limited use outside clinical trials. We present the early treatment results for 53 patients from 7 countries who received a delamanid-containing treatment for MDR TB. Results show good tolerability and treatment response at 6 months. PMID:28767036
Multidrug-Resistant Pathogens in Hospitalized Syrian Children
Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev
2017-01-01
Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment. PMID:27618479
Multidrug-Resistant Pathogens in Hospitalized Syrian Children.
Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev; Glikman, Daniel
2017-01-01
Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment.
Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa
2007-06-01
The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNAmore » but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.« less
Flood, Jennifer; Seaworth, Barbara; Hirsch-Moverman, Yael; Armstrong, Lori; Mase, Sundari; Salcedo, Katya; Oh, Peter; Graviss, Edward A.; Colson, Paul W.; Armitige, Lisa; Revuelta, Manuel; Sheeran, Kathryn
2014-01-01
To describe factors associated with multidrug-resistant (MDR), including extensively-drug-resistant (XDR), tuberculosis (TB) in the United States, we abstracted inpatient, laboratory, and public health clinic records of a sample of MDR TB patients reported to the Centers for Disease Control and Prevention from California, New York City, and Texas during 2005–2007. At initial diagnosis, MDR TB was detected in 94% of 130 MDR TB patients and XDR TB in 80% of 5 XDR TB patients. Mutually exclusive resistance was 4% XDR, 17% pre-XDR, 24% total first-line resistance, 43% isoniazid/rifampin/rifabutin-plus-other resistance, and 13% isoniazid/rifampin/rifabutin-only resistance. Nearly three-quarters of patients were hospitalized, 78% completed treatment, and 9% died during treatment. Direct costs, mostly covered by the public sector, averaged $134,000 per MDR TB and $430,000 per XDR TB patient; in comparison, estimated cost per non-MDR TB patient is $17,000. Drug resistance was extensive, care was complex, treatment completion rates were high, and treatment was expensive. PMID:24751166
General Theories of Chemical Disinfection and Sterilization of Sludge--Part 3.
ERIC Educational Resources Information Center
Wang, Mu Hao; And Others
1978-01-01
A general discussion of sewage sterilization methods, including techniques using pH, Chlorine, Chlorine Dioxide, Ozone, Iodine and Bromine, metal ions, and cationic surface active agents is presented. (MDR)
Viazovaia, A A; Solov'eva, N S; Zhuravlev, V Iu; Mokrousov, I V; Manicheva, O A; Vishnevskiĭ, B I; Narvskaia, O V
2013-01-01
Molecular-genetic characteristic of M. tuberculosis strains isolated from operation material of patients with tuberculous spondylitis. 107 strains of M. tuberculosis isolated in 2007 - 2011 from patients with spine tuberculosis were studied by methods of spoligotyping and MIRU-VNTR by 12 and 24 loci. Strains of genetic family Beijing dominated (n = 80), 78% of those had multiple drug resistance (MDR). Strains of genetic families T, H3 (Ural), LAM, Manu, H4 and S were also detected. Differentiating of 80 strains of Beijing genotype by MIRU-VNTR method by 24 loci revealed 24 variants (HGI = 0.83) including 7 clusters, the largest of those (100-32) included 23 strains (87% MDR). The leading role of Beijing genotype M. tuberculosis strains in development of tuberculous spondylitis with multiple drug resistance of the causative agent is shown.
Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens
Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.
2015-01-01
SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543
Wielandt, Ana María; Vollrath, Valeska; Chianale, José
2004-09-01
There are significant differences in drug responses among different ethnic groups. The multidrug transporter P-gp, encoded by the MDR1 gene, plays a key role in determining drug bioavailability, and an association between a polymorphism in exon 26 (C3435T) and lower P-gp expression has been found. The co-segregation of this polymorphism with the polymorphism in exon 12 (C1236T) and in exon 21 (G2677T/A) determines several MDR1 haplotypes in humans. To characterize the polymorphisms of exons 26, 21 and 12 of the MDR1 gene in different Chilean populations. Using a polymerase chain reaction and restriction fragment length polymorphism technique, we studied the allelic frequencies and the distribution of MDR1 haplotypes in 3 Chilean populations: Mestizo (n=104), Mapuche (n=96, living in the National Reservation of the Huapi Island, Ranico Lake) and Maori (n=52, living in Eastern Island). The frequency of the normal MDR1*1 haplotype, without mutations, was lower in Mapuches than in Mestizos or Maoris (p<0.005) but similar to that reported in Asian population (p=0.739), probably due to the Asian origin of the Amerindian populations. In addition, the MDR1*l haplotype fequency hin Mestizos was similar to the frequency reported in Caucasians (p=0.49), in agreement with the origin of our population, with a strong influence of Caucasian genes from the Spanish conquerors. The MDR1*2 haplotype distribution, with the three polymoyphisms and probably lower multidrug transporter expression, was similar in the three Chilean populations studied (p>0.0.5), but lower than the frequencies reported in Caucasians or Asians (p<0.05). We found significant differences in the frequencies of genetic polymorphisms of the MDR1 gene in Chilean populations, related to the ethnic origins of our ancestors.
Kluth, Marianne; Stindt, Jan; Dröge, Carola; Linnemann, Doris; Kubitz, Ralf; Schmitt, Lutz
2015-02-20
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Multidrug-resistant tuberculosis (MDR-TB) in India: an attempt to link biosocial determinants.
Atre, Sachin R; Mistry, Nerges F
2005-04-01
Multidrug-resistant tuberculosis (MDR-TB) has emerged as a possible threat to global tuberculosis control efforts in recent years. It is a challenge not only from a public health point of view but also in the context of global economy, especially in the absence of treatment for MDR-TB at national-level programs in developing countries. Biological accounts are insufficient to understand the emergence and dynamics of drug resistance. This article focuses essentially on the need for a holistic perspective, linking biosocial determinants that would probably lead to better insights into MDR-TB control strategies.
Multi-drug-resistant tuberculosis in HIV positive patients in Eastern Europe.
Post, Frank A; Grint, Daniel; Werlinrud, Anne Marie; Panteleev, Alexander; Riekstina, Vieja; Malashenkov, Evgeniy A; Skrahina, Alena; Duiculescu, Dan; Podlekareva, Daria; Karpov, Igor; Bondarenko, Vasiliy; Chentsova, Nelly; Lundgren, Jens; Mocroft, Amanda; Kirk, Ole; Miro, Jose M
2014-03-01
Observational data from Eastern Europe on the management and outcome of multi-drug-resistant tuberculosis (MDR TB) in HIV positive populations remain sparse in the English-language literature. We compared clinical characteristics and outcomes of 55 patients who were diagnosed with HIV and MDR TB in Eastern Europe between 2004 and 2006 to 89 patients whose Mycobacterium tuberculosis isolates were susceptible to isoniazid and rifampicin. Patients with HIV and MDR TB were young and predominantly male with high rates of intravenous drug use, imprisonment and hepatitis C co-infection. Eighty-four per cent of patients with MDR TB had no history of previous TB drug exposure suggesting that the majority of MDR TB resulted from transmission of drug-resistant M. tuberculosis. The use of non-standardized tuberculosis treatment was common, and the use of antiretroviral therapy infrequent. Compared to those with susceptible tuberculosis, patients with MDR TB were less likely to achieve cure or complete tuberculosis treatment (21.8% vs. 62.9%, p < 0.0001), and they were more likely to die (65.5% vs. 27.0%, p < 0.0001). Our study documents suboptimal management and poor outcomes in HIV positive patients with MDR TB. Implementation of WHO guidelines, rapid TB diagnostics and TB drug susceptibility testing for all patients remain a priority in this region. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Management of MDR-TB in HIV co-infected patients in Eastern Europe: Results from the TB:HIV study.
Efsen, A M W; Schultze, A; Miller, R F; Panteleev, A; Skrahin, A; Podlekareva, D N; Miro, J M; Girardi, E; Furrer, H; Losso, M H; Toibaro, J; Caylà, J A; Mocroft, A; Lundgren, J D; Post, F A; Kirk, O
2018-01-01
Mortality among HIV patients with tuberculosis (TB) remains high in Eastern Europe (EE), but details of TB and HIV management remain scarce. In this prospective study, we describe the TB treatment regimens of patients with multi-drug resistant (MDR) TB and use of antiretroviral therapy (ART). A total of 105 HIV-positive patients had MDR-TB (including 33 with extensive drug resistance) and 130 pan-susceptible TB. Adequate initial TB treatment was provided for 8% of patients with MDR-TB compared with 80% of those with pan-susceptible TB. By twelve months, an estimated 57.3% (95%CI 41.5-74.1) of MDR-TB patients had started adequate treatment. While 67% received ART, HIV-RNA suppression was demonstrated in only 23%. Our results show that internationally recommended MDR-TB treatment regimens were infrequently used and that ART use and viral suppression was well below the target of 90%, reflecting the challenging patient population and the environment in which health care is provided. Urgent improvement of management of patients with TB/HIV in EE, in particular for those with MDR-TB, is needed and includes widespread access to rapid TB diagnostics, better access to and use of second-line TB drugs, timely ART initiation with viral load monitoring, and integration of TB/HIV care. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Zhou, D C; Zittoun, R; Marie, J P
1995-10-01
The frequency, prognostic value and interrelation of MRP and MDR1 gene expressions were investigated by quantitative reverse transcription polymerase chain reaction (RT-PCR) in 91 cases of de novo acute myeloid leukemia (AML), of which 51 were newly diagnosed, 21 were relapsed, and 19 were refractory patients. As compared with normal bone marrow cells and peripheral granulocytes, an overexpression of MRP gene was found in 24% (22 of 91) cases of de novo AML. The incidence of MRP gene overexpression tended to be higher in relapsed patients than in newly diagnosed patients (38 vs 18%, P = 0.063). In 52 evaluable newly diagnosed and relapsed patients treated with MDR-related drugs, both MRP and MDR1 gene overexpressions correlated to a higher rate of emergence of clinical drug resistance (83 vs 22%, P = 0.005; and 67 vs 24%, P = 0.045, respectively). A positive correlation was found between MRP and MDR1 gene overexpressions (R = 0.53, P < 0.001). Analysis of 46 evaluable MDR1-negative cases revealed a trend for higher resistant disease rate in MRP-positive patients as compared with MRP-negative patients (100 vs 20%, P = 0.053). These data suggest that MRP, like MDR1, may have an important negative impact on the outcome of chemotherapy, and that there may be a common mechanism of induction for the overexpression of these two genes.
Mpagama, Stellah; Kisonga, Riziki; Lekule, Isaack; Liu, Jie; Heysell, Scott
2017-01-01
Therapeutic drug monitoring may improve multidrug-resistant tuberculosis (MDR-TB) treatment outcomes. Levofloxacin demonstrates significant individual pharmacokinetic variability. Thus, we sought to develop and validate a high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection for levofloxacin in patients on MDR-TB treatment. The HPLC-UV method is based on a solid phase extraction (SPE) and a direct injection into the HPLC system. The limit of quantification was 0.25 μg/mL, and the assay was linear over the concentration range of 0.25—15 μg/mL (y = 0.5668x—0.0603, R2 = 0.9992) for the determination of levofloxacin in plasma. The HPLC-UV methodology achieved excellent accuracy and reproducibility along a clinically meaningful range. The intra-assay RSD% of low, medium, and high quality control samples (QC) were 1.93, 2.44, and 1.90, respectively, while the inter-assay RSD% were 3.74, 5.65, and 3.30, respectively. The mean recovery was 96.84%. This method was then utilized to measure levofloxacin concentrations from patients’ plasma samples from a retrospective cohort of consecutive enrolled subjects treated for MDR-TB at the national TB hospital in Tanzania during 5/3/2013–8/31/2015. Plasma was collected at 2 hours after levofloxacin administration, the time of estimated peak concentration (eCmax) treatment. Forty-one MDR-TB patients had plasma available and 39 had traceable programmatic outcomes. Only 13 (32%) patients had any plasma concentration that reached the lower range of the expected literature derived Cmax with the median eCmax being 5.86 (3.33–9.08 μg/ml). Using Classification and Regression Tree analysis, an eCmax ≥7.55 μg/mL was identified as the threshold which best predicted cure. Analyzing this CART derived threshold on treatment outcome, the time to sputum culture conversion was 38.3 ± 22.7 days vs. 47.8 ± 26.5 days (p = 0.27) and a greater proportion were cured, in 10 out of 15 (66.7%) vs. 6 out of 18 (33.3%) (p = 0.06) respectively. Furthermore, one patient with an eCmax/minimum inhibitory concentration (MIC) of only 1.13 acquired extensively drug resistant (XDR)-TB while undergoing treatment. The individual variability of levofloxacin concentrations in MDR-TB patients from Tanzania supports further study of the application of onsite therapeutic drug monitoring and MIC testing. PMID:28141813
Mboowa, Gerald; Namaganda, Carolyn; Ssengooba, Willy
2014-09-04
Introduction of Xpert® MTB/RIF assay has revolutionalised the diagnosis of tuberculosis (TB) by simultaneously detecting the bacteria and resistance to rifampicin (rif), a surrogate marker for multi-drug resistant TB (MDR-TB) as well as one of the principal first-line anti-tuberculosis drugs. In general, rpoB mutations can be found in 96.1% of rif-resistant Mycobacterium tuberculosis (MTB) strains worldwide and these mutations usually are located in a region at the 507-533rd amino acid residuals (81 bp) in the MTB rpoB gene, which is referred to as Rifampicin-resistance-determining region (RRDR). In this study, we determined the frequency of MDR-TB in Kampala using Xpert® MTB/RIF in comparison with the agar proportion method using Middlebrook 7H11and further determined the frequency of probes for different rpoB gene mutations using Xpert® MTB/RIF assay in the 81 bp RRDR. A total of 1501 specimens received at Mycobacteriology laboratory, Makerere University for Xpert testing between May 2011 and May 2014 were analysed by Xpert® MTB/RIF assay. Specimens that were positive for both MTB and rifampicin resistance were further subjected to a complete first line anti-mycobacterial drug susceptibility testing using Middlebrook 7H11 agar proportion method (APM). Xpert® MTB/RIF assay detected 313 MTB positive specimens and out of which 12 specimens had both MTB and rifampicin- resistance conferred by four different rpoB gene mutations in the 81 bp-RRDR of MTB, further one (1/12), specimen was found to be rifampicin mono-resistant on APM while the 11 were found to be MDR-TB. Probes associated with the observed rif- resistance were as follows: E (7/12), B (3/12), A (1/12), D (1/12) and no rif-resistance was associated with probe C. No specimen yielded rif-resistance associated with more than one probe failure (mutation combinations). Probe D was associated with rifampicin mono-resistant. MDR-TB was at 3.5% in the studied population. Mutations associated with Probe E (58%) also known as codons 531and 533 are the commonest rpoB gene mutation identified by Xpert® MTB/RIF assay in this setting and mutations identified by probe E of the assay, turned out to be MDR-TB strains by agar proportion method antimicrobial susceptibility testing. No mutation was detected in the codon 522.
Ebers, Andrew; Stroup, Suzanne; Mpagama, Stellah; Kisonga, Riziki; Lekule, Isaack; Liu, Jie; Heysell, Scott
2017-01-01
Therapeutic drug monitoring may improve multidrug-resistant tuberculosis (MDR-TB) treatment outcomes. Levofloxacin demonstrates significant individual pharmacokinetic variability. Thus, we sought to develop and validate a high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection for levofloxacin in patients on MDR-TB treatment. The HPLC-UV method is based on a solid phase extraction (SPE) and a direct injection into the HPLC system. The limit of quantification was 0.25 μg/mL, and the assay was linear over the concentration range of 0.25-15 μg/mL (y = 0.5668x-0.0603, R2 = 0.9992) for the determination of levofloxacin in plasma. The HPLC-UV methodology achieved excellent accuracy and reproducibility along a clinically meaningful range. The intra-assay RSD% of low, medium, and high quality control samples (QC) were 1.93, 2.44, and 1.90, respectively, while the inter-assay RSD% were 3.74, 5.65, and 3.30, respectively. The mean recovery was 96.84%. This method was then utilized to measure levofloxacin concentrations from patients' plasma samples from a retrospective cohort of consecutive enrolled subjects treated for MDR-TB at the national TB hospital in Tanzania during 5/3/2013-8/31/2015. Plasma was collected at 2 hours after levofloxacin administration, the time of estimated peak concentration (eCmax) treatment. Forty-one MDR-TB patients had plasma available and 39 had traceable programmatic outcomes. Only 13 (32%) patients had any plasma concentration that reached the lower range of the expected literature derived Cmax with the median eCmax being 5.86 (3.33-9.08 μg/ml). Using Classification and Regression Tree analysis, an eCmax ≥7.55 μg/mL was identified as the threshold which best predicted cure. Analyzing this CART derived threshold on treatment outcome, the time to sputum culture conversion was 38.3 ± 22.7 days vs. 47.8 ± 26.5 days (p = 0.27) and a greater proportion were cured, in 10 out of 15 (66.7%) vs. 6 out of 18 (33.3%) (p = 0.06) respectively. Furthermore, one patient with an eCmax/minimum inhibitory concentration (MIC) of only 1.13 acquired extensively drug resistant (XDR)-TB while undergoing treatment. The individual variability of levofloxacin concentrations in MDR-TB patients from Tanzania supports further study of the application of onsite therapeutic drug monitoring and MIC testing.
Janahiraman, Sivakami; Aziz, Muhammad Nazri; Hoo, Fan Kee; P’ng, Hon Shen; Boo, Yang Liang; Ramachandran, Vasudevan; Shamsuddin, Ahmad Fuad
2015-01-01
Backgrounds & Objective: Antimicrobial resistance is a major health problem worldwide in hospitals. The main contributing factors are exposures to broad-spectrum antimicrobials and cross-infections. Understanding the extent and type of antimicrobial use in tertiary care hospitals will aid in developing national antimicrobial stewardship priorities. Methods: In this study, we have analyzed the antimicrobial agents’ usage for acquisition of multidrug resistant using retrospective, cross-sectional, single-centre study in a multidisciplinary ICU at tertiary care hospital. Results: Acinetobacter baumannii (ACB) was isolated in various specimens from 662 patients. From these, 136 patients who were diagnosed with Ventilator-associated pneumonia (VAP) caused by ACB were included into the study. In our study, MDR strain accounts for 51% of all VAP cases caused by ACB. The development of ACB VAP were 10.5 + 6.4 days for MDR strains compared to susceptible organism (7.8 + 4.5 days) and had significantly longer ICU stay. Conclusion: The study concludes that prudent use of antimicrobial agents is important to reduce acquisition of MDR ACB. PMID:26870101
Qiu, Zhaohui; Peng, Jie; Mou, Lingli; Li, Xiao; Meng, Fanqi; Yu, Peng
2018-05-01
Multidrug resistance (MDR) of tumors occurs when tumor cells exhibit reduced sensitivity to a large number of unrelated drugs. The molecular mechanism of MDR commonly involves overexpression of the plasma membrane drug efflux pump P-glycoprotein (P-gp). Overexpression of P-gp may be induced by the selection and/or adaptation of cells during exposure to chemotherapeutic drugs, referred to as acquired P-gp-mediated MDR. This study aimed to establish a P-gp quantification method by Ultra Performance Liquid Chromatography and Tandem Mass Spectrometry (UPLC-MS/MS) to better understand the regulation of P-gp expression and its relationship with the level of drug resistance. Absolute P-gp expression was determined in the human tumor cells MCF-7, HepG-2, and SMMC-7721 and their corresponding drug-resistant subclones MCF-7/ADMs, MCF-7/MXs, MCF-7/MTXs, HepG-2/ADMs, HepG-2/MXs, HepG-2/MTXs, SMMC-7721/ADMs, SMMC-7721/MXs and SMMC-7721/MTXs. A unique 10-mer tryptic peptide (IATEAIENFR) of P-gp was synthesized for developing the quantitative UPLC-MS/MS method with the stable isotope labeled signature peptide IATEAI ( 13 C 6, 15 N 1 ) ENFR as the internal standard (IS). The detection signal was linear in the range of 0.1-100 ng mL -1 . Quality control (QC) data showed that the within-run and between-run precision (%RSD) and accuracy (%RE) conformed to acceptable criteria of ±15% for the calibration standards and QCs (±20% at the LLOQ). The UPLC-MS/MS method was first applied to quantify P-gp in HepG-2 and SMMC-7721 cells and their drug-resistant subclones. The results confirmed that P-gp expression in most drug-resistant subclones increase significantly compared to parental tumor cells but varied among different types of drugs or tumor cells. This outcome was then compared with published reports and discrepancy was observed in HepG2 cell lines mainly due to different sample types and samples sources. Additionally, P-gp mRNA results ascertained that overexpression of P-gp in subclones was not only regulated by MDR1. The linear correlation between RI and logarithm-transformed P-gp expression was moderate or high and statistically significantly different in subclones, except for SMMC-7721/ADMs. The present study is the first to demonstrate the quantitative relationship between RI and P-gp expression by linear regression modeling and expanded the number of efflux transporters related to MDR quantifiable by LC-MS/MS to better understand the biological significance of effluent transporter expression. Copyright © 2018 Elsevier B.V. All rights reserved.
Seligman, Renato; Ramos-Lima, Luis Francisco; Oliveira, Vivian do Amaral; Sanvicente, Carina; Sartori, Juliana; Pacheco, Elyara Fiorin
2013-01-01
To identify risk factors for the development of hospital-acquired pneumonia (HAP) caused by multidrug-resistant (MDR) bacteria in non-ventilated patients. This was a retrospective observational cohort study conducted over a three-year period at a tertiary-care teaching hospital. We included only non-ventilated patients diagnosed with HAP and presenting with positive bacterial cultures. Categorical variables were compared with chi-square test. Logistic regression analysis was used to determine risk factors for HAP caused by MDR bacteria. Of the 140 patients diagnosed with HAP, 59 (42.1%) were infected with MDR strains. Among the patients infected with methicillin-resistant Staphylococcus aureus and those infected with methicillin-susceptible S. aureus, mortality was 45.9% and 50.0%, respectively (p = 0.763). Among the patients infected with MDR and those infected with non-MDR gram-negative bacilli, mortality was 45.8% and 38.3%, respectively (p = 0.527). Univariate analysis identified the following risk factors for infection with MDR bacteria: COPD; congestive heart failure; chronic renal failure; dialysis; urinary catheterization; extrapulmonary infection; and use of antimicrobial therapy within the last 10 days before the diagnosis of HAP. Multivariate analysis showed that the use of antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria (OR = 3.45; 95% CI: 1.56-7.61; p = 0.002). In this single-center study, the use of broad-spectrum antibiotics within the last 10 days before the diagnosis of HAP was the only independent predictor of infection with MDR bacteria in non-ventilated patients with HAP.
Padayatchi, Nesri; Naidu, Naressa; Yende-Zuma, Nonhlanhla; OʼDonnell, Max Roe; Naidoo, Kogieleum; Augustine, Stanton; Zumla, Alimuddin; Loveday, Marian
2016-09-01
The Xpert MTB/RIF assay has been widely implemented in South Africa for rapid tuberculosis (TB) screening. However, its usefulness in management and improving treatment outcomes in patients with multidrug-resistant TB (MDR-TB) remains undefined. The aim of this study was to evaluate the clinical impact of introduction of the Xpert MTB/RIF assay in patients with MDR-TB. We enrolled 921 patients with MDR-TB, who presented to a specialist drug-resistant TB facility in KwaZulu-Natal, South Africa, pre- and post-rollout and implementation of the Xpert MTB/RIF assay. Clinical, laboratory, chest radiograph, and follow-up data from 108 patients with MDR-TB, post-introduction of the Xpert MTB/RIF assay (Xpert group) in November 2010, were analyzed and compared with data from 813 MDR-TB patients from the pre-MTB/RIF assay period (Conventional group), July 2008-2010. Primary impact measure was "treatment success" (World Health Organization definition) at 24 months. Secondary outcomes were time to treatment initiation and disease morbidity. There were no significant differences in treatment success rates between the pre-Xpert MTB/RIF and post-Xpert MTB/RIF groups (54% versus 56.5%, P = 0.681). Median time to treatment initiation was 20 days (interquartile range, 13-31) in the Xpert group versus 92 days (interquartile range, 69-120) in the Conventional group (P < 0.001). Although use of Xpert MTB/RIF assay significantly reduces the time to initiation of MDR-TB treatment, it had no significant impact on treatment outcomes of patients with MDR-TB. Studies on the impact of the Xpert MTB/RIF assay usage on transmission of MDR-TB are required.
Stindt, Jan; Smits, Sander H. J.; Schmitt, Lutz
2013-01-01
The human liver ATP-binding cassette (ABC) transporters bile salt export pump (BSEP/ABCB11) and the multidrug resistance protein 3 (MDR3/ABCB4) fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC) screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters. PMID:23593265
Su, Jian-Li; Wang, Cheng-Hong; Kang, Hong-Gang; Zhang, Jing; Wang, Bao-Zhong; Liu, Mei-Rong; Zhao, Jun; Liu, Lin
2017-09-01
The aim of the present study was to examine and discuss the association between multidrug resistance 1 gene ( MDR1 ) of gastrointestinal tumors, the expression of P-glycoprotein and resistance to chemotherapeutic drugs. In this study, 126 cases of patients with gastrointestinal tumors admitted to hospital from February 2013 to February 2015 were selected. The expression levels of MDR1 gene were obsreved in the control population and patients before and after treatment by fluoresecent quantitative PCR. The protein expression level of P-glycoprotein was determined using western blotting and enzyme-linked immunosorbent assay. In addition, drug resistance was assessed by ATP-TCA chemosensitivity experiments. The results showed that before treatment, the expression of mRNA in MDR1 of tissues of gastrointestinal tract of the 126 cases was 108-fold larger than that of the gastrointestinal tract of the controls (p<0.05), P-glycoprotein was 87-fold larger than the expression level of the controls (p<0.05). The sensitivity of 126 tumor tissues to different chemotherapeutic drugs was determined, and the results showed that most of the tumor tissues were sensitive to chemotherapeutic drugs, and the sensitivity rate reached 96.4%. Following chemotherapy, the expression of mRNA in MDR1 of tumor tissues and the expression of P-glycoprotein decreased (p<0.05). In conclusion, the MDR1 gene and P-glycoprotein have a positive correlation with the occurrence of gastrointestinal tumors, and a negative correlation between the MDR1 gene and P-glycoprotein with resistance of chemotherapeutic drugs. Therefore, the MDR1 gene and P-glycoprotein can be used as references in the identification and diagnosis of gastrointestinal tumors.
Farawela, Hala M; Khorshied, Mervat M; Kassem, Neemat M; Kassem, Heba A; Zawam, Hamdy M
2014-08-01
Multidrug resistance (MDR1) represents a major obstacle in the chemotherapeutic treatment of acute leukemia (AL). Adenosine triphosphate ATP-binding cassette (ABCB5) and MDR1 genes are integral membrane proteins belonging to ATP-binding cassette transporters superfamily. The present work aimed to investigate the impact of ABCB5 and MDR1 genes expression on the response to chemotherapy in a cohort of Egyptian AL patients. The study included 90 patients: 53 AML cases and 37 ALL cases in addition to 20 healthy volunteers as controls. Quantitative assessment of MDR1 and ABCB5 genes expression was performed by quantitative real-time polymerase chain reaction. Additional prognostic molecular markers were determined as internal tandem duplications of the FLT3 gene (FLT3-ITD) and nucleophosmin gene mutation (NPM1) for AML cases, and mbcr-abl fusion transcript for B-ALL cases. In AML patients, ABCB5 and MDR1 expression levels did not differ significantly between de novo and relapsed cases and did not correlate with the overall survival or disease-free survival. AML patients were stratified according to the studied genetic markers, and complete remission rate was found to be more prominent in patients having low expression of MDR1 and ABCB5 genes together with mutated NPM1 gene. In ALL patients, ABCB5 gene expression level was significantly higher in relapsed cases and MDR1 gene expression was significantly higher in patients with resistant disease. In conclusion, the results obtained by the current study provide additional evidence of the role played by these genes as predictive factors for resistance of leukemic cells to chemotherapy and hence treatment outcome.
Use of generalized ordered logistic regression for the analysis of multidrug resistance data.
Agga, Getahun E; Scott, H Morgan
2015-10-01
Statistical analysis of antimicrobial resistance data largely focuses on individual antimicrobial's binary outcome (susceptible or resistant). However, bacteria are becoming increasingly multidrug resistant (MDR). Statistical analysis of MDR data is mostly descriptive often with tabular or graphical presentations. Here we report the applicability of generalized ordinal logistic regression model for the analysis of MDR data. A total of 1,152 Escherichia coli, isolated from the feces of weaned pigs experimentally supplemented with chlortetracycline (CTC) and copper, were tested for susceptibilities against 15 antimicrobials and were binary classified into resistant or susceptible. The 15 antimicrobial agents tested were grouped into eight different antimicrobial classes. We defined MDR as the number of antimicrobial classes to which E. coli isolates were resistant ranging from 0 to 8. Proportionality of the odds assumption of the ordinal logistic regression model was violated only for the effect of treatment period (pre-treatment, during-treatment and post-treatment); but not for the effect of CTC or copper supplementation. Subsequently, a partially constrained generalized ordinal logistic model was built that allows for the effect of treatment period to vary while constraining the effects of treatment (CTC and copper supplementation) to be constant across the levels of MDR classes. Copper (Proportional Odds Ratio [Prop OR]=1.03; 95% CI=0.73-1.47) and CTC (Prop OR=1.1; 95% CI=0.78-1.56) supplementation were not significantly associated with the level of MDR adjusted for the effect of treatment period. MDR generally declined over the trial period. In conclusion, generalized ordered logistic regression can be used for the analysis of ordinal data such as MDR data when the proportionality assumptions for ordered logistic regression are violated. Published by Elsevier B.V.
Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir
2013-07-01
Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.
Cost-benefit analysis of Xpert MTB/RIF for tuberculosis suspects in German hospitals.
Diel, Roland; Nienhaus, Albert; Hillemann, Doris; Richter, Elvira
2016-02-01
Our objective was to assess the cost-benefit of enhancing or replacing the conventional sputum smear with the real-time PCR Xpert MTB/RIF method in the inpatient diagnostic schema for tuberculosis (TB).Recent data from published per-case cost studies for TB/multidrug-resistant (MDR)-TB and from comparative analyses of sputum microscopy, mycobacterial culture, Xpert MTB/RIF and drug susceptibility testing, performed at the German National Reference Center for Mycobacteria, were used. Potential cost savings of Xpert MTB/RIF, based on test accuracy and multiple cost drivers, were calculated for diagnosing TB/MDR-TB suspects from the hospital perspective.Implementing Xpert MTB/RIF as an add-on in smear-positive and smear-negative TB suspects saves on average €48.72 and €503, respectively, per admitted patient as compared with the conventional approach. In smear-positive and smear-negative MDR-TB suspects, cost savings amount to €189.56 and €515.25 per person, respectively. Full replacement of microscopy by Xpert MTB/RIF saves €449.98. In probabilistic Monte-Carlo simulation, adding Xpert MTB/RIF is less costly in 46.4% and 76.2% of smear-positive TB and MDR-TB suspects, respectively, but 100% less expensive in all smear-negative suspects. Full replacement by Xpert MTB/RIF is also consistently cost-saving.Using Xpert MTB/RIF as an add-on to and even as a replacement for sputum smear examination may significantly reduce expenditures in TB suspects. Copyright ©ERS 2016.
Molecular Epidemiology of Pulmonary Tuberculosis in Belgrade, Central Serbia
Vuković, Dragana; Rüsch-Gerdes, Sabine; Savić, Branislava; Niemann, Stefan
2003-01-01
In order to gain precise data on the actual epidemiology of tuberculosis (TB) in Belgrade, central Serbia, we conducted the molecular epidemiological investigation described herein. IS6110 restriction fragment length polymorphism (RFLP) typing of 176 Mycobacterium tuberculosis isolates was performed. These strains were obtained from 48.4% of all patients diagnosed with culture-proven pulmonary TB from April through September 1998 and from May through October 1999. Clusters containing strains with identical RFLP IS6110 patterns were assumed to have arisen from recent transmission. Of the 176 cases, 55 (31.2%) were grouped into 23 clusters ranging in size from two to six patients. Nearly 80% of clustered patients were directly interviewed, and transmission between family-unrelated contacts was found to be predominant in the study population. Classical contact investigation identified only 2 (3.6%) of the 55 clustered patients. The clustering of TB patients was not associated with any demographic or clinical characteristic other than infection with multidrug-resistant (MDR) M. tuberculosis strains. Nearly 70% of MDR strains were clustered, which indicates active transmission of MDR TB in Belgrade. However, this was not observed by conventional epidemiologic surveillance. In conclusion, the first molecular epidemiologic analysis of TB in the region revealed frequent recent transmission of TB and pointed out significant shortcomings of the current concept for conventional contact tracing. The results presented also demonstrate that transmission of MDR TB in Belgrade is not optimally controlled, and they provide support for the development of improved control strategies, including application of molecular methods. PMID:12958271
Decentralized care for multidrug-resistant tuberculosis: a systematic review and meta-analysis
Byrne, Anthony L; Linh, Nguyen N; Jaramillo, Ernesto; Fox, Greg J
2017-01-01
Abstract Objective To assess the effectiveness of decentralized treatment and care for patients with multidrug-resistant (MDR) tuberculosis, in comparison with centralized approaches. Methods We searched ClinicalTrials.gov, the Cochrane library, Embase®, Google Scholar, LILACS, PubMed®, Web of Science and the World Health Organization’s portal of clinical trials for studies reporting treatment outcomes for decentralized and centralized care of MDR tuberculosis. The primary outcome was treatment success. When possible, we also evaluated, death, loss to follow-up, treatment adherence and health-system costs. To obtain pooled relative risk (RR) estimates, we performed random-effects meta-analyses. Findings Eight studies met the eligibility criteria for review inclusion. Six cohort studies, with 4026 participants in total, reported on treatment outcomes. The pooled RR estimate for decentralized versus centralized care for treatment success was 1.13 (95% CI: 1.01–1.27). The corresponding estimate for loss to follow-up was RR: 0.66 (95% CI: 0.38–1.13), for death RR: 1.01 (95% CI: 0.67–1.52) and for treatment failure was RR: 1.07 (95% CI: 0.48–2.40). Two of three studies evaluating health-care costs reported lower costs for the decentralized models of care than for the centralized models. Conclusion Treatment success was more likely among patients with MDR tuberculosis treated using a decentralized approach. Further studies are required to explore the effectiveness of decentralized MDR tuberculosis care in a range of different settings. PMID:28804170
Reducing soluble phosphorus in dairy effluents through application of mine drainage residuals
Sibrell, Philip L.; Penn, Chad J.; Hedin, Robert S.
2015-01-01
Three different dairy manure wastewater effluent samples were amended with mine drainage residuals (MDR) to evaluate the suitability of MDR for sequestration of phosphorus (P). Geochemical modeling of the manure wastewater compositions indicated that partially soluble P-bearing minerals including hydroxyapatite, octacalcium phosphate, and vivianite were all oversaturated in each of the manure wastewater samples. Initial MDR amendment test results indicated that these partially soluble P minerals suspended in the wastewater replenished P in the water phase as it was sorbed by the MDR samples. Further investigations revealed that the MDR samples were effective in decreasing soluble P when the amended manure was tested using the water-extractable P procedure. Under these conditions, up to 90 percent of the soluble P in the manure was converted to a sorbed, water-insoluble state. Water contamination and large-scale validation tests of the process were also conducted.
Yang, Yan-Fang; Wu, Ni; Yang, Xiu-Wei
2016-07-01
To establish MDCK-pHaMDR cell model and standard operation procedure for assessing the blood-brain barrier permeability of chemical components of traditional Chinese medicine. MDCK-pHaMDR cell model was evaluated by determining the morphology features, transepithelial electrical resistance, bidirectional transport and intracellular accumulation of Rhodamine 123 and the apparent permeability of positive control drugs caffeine and atenolol. The MDCK-pHaMDR cell model had satisfactory integrity and tightness, and stable expression of P-gp. In addition, the transport results of the positive control drugs were consistent with the reported values in literature. All the parameters tested of the MDCK-pHaMDR cell model were consistent with the requirements, so the model can be used to study the blood-brain barrier permeability of chemical components of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng
2016-05-31
The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.
Shewade, Hemant Deepak; Kyaw, Nang Thu Thu; Kyaw, Khine Wut Yee; Thein, Saw; Si Thu, Aung; Oo, Myo Minn; Htwe, Pyae Sone; Tun, Moe Myint Theingi; Win Maung, Htet Myet; Soe, Kyaw Thu; Aung, Si Thu
2017-01-01
Background The community-based MDR-TB care (CBMDR-TBC) project was implemented in 2015 by The Union in collaboration with national TB programme (NTP) in 33 townships of upper Myanmar to improve treatment outcomes among patients with MDR-TB registered under NTP. They received community-based support through the project staff, in addition to the routine domiciliary care provided by NTP staff. Each project township had a project nurse exclusively for MDR-TB and a community volunteer who provided evening directly observed therapy (in addition to morning directly observed therapy by NTP). Objectives To determine the effect of CBMDR-TBC project on death and unfavourable outcomes during the intensive phase of MDR-TB treatment. Methods In this cohort study involving record review, all patients diagnosed with MDR-TB between January 2015 and June 2016 in project townships and initiated on treatment till 31 Dec 2016 were included. CBMDR-TBC status was categorized as “receiving support” if project initiation in patient’s township was before treatment initiation, “receiving partial support” if project initiation was after treatment initiation, and “not receiving support” if project initiation was after intensive phase treatment outcome declaration. Time to event analysis (censored on 10 April 2017) and cox regression was done. Results Of 261 patients initiated on treatment, death and unfavourable outcomes were accounted for 13% and 21% among “receiving support (n = 163)”, 3% and 24% among “receiving partial support (n = 75)” and 13% and 26% among “not receiving support (n = 23)” respectively. After adjusting for other potential confounders, the association between CBMDR-TBC and unfavourable outcomes was not statistically significant. However, when compared to “not receiving support”, those “receiving support” and “receiving partial support” had 20% [aHR (0.95 CI: 0.8 (0.2–3.1)] and 90% lower hazard [aHR (0.95 CI: 0.1 (0.02–0.9)] of death, respectively. This was intriguing. Implementation of CBMDR-TBC coincided with implementation of decentralized MDR-TB centers at district level. Hence, patients that would have generally not accessed MDR-TB treatment before decentralization also started receiving treatment and were also included under CBMDR-TBC “received support” group. These patients could possibly be expected to sicker at treatment initiation than patients in other CBMDR-TBC groups. This could be the possible reason for nullifying the effect of CBMDR-TBC in “receiving support” group and therefore similar survival was found when compared to “not receiving support”. Conclusion CBMDR-TBC may prevent early deaths and has a scope for expansion to other townships of Myanmar and implications for NTPs globally. However, future studies should consider including data on extent of sickness at treatment initiation and patient level support received under CBMDR-TBC. PMID:29261669
Mercedes, Angela; Fairman, Precillia; Hogan, Lisa; Thomas, Rexi; Slyer, Jason T
2016-07-01
Consistent, concise and timely communication between a multidisciplinary team of healthcare providers, patients and families is necessary for the delivery of quality care. Structured multidisciplinary rounding (MDR) using a structured communication tool may positively impact length of stay (LOS) and satisfaction of patients and staff by improving communication, coordination and collaboration among the healthcare team. To evaluate the effectiveness of structured MDR using a structured communication tool in acute care units on LOS and satisfaction of patients and staff. Adult patients admitted to acute care units and healthcare providers who provide direct care for adult patients hospitalized in in-patient acute care units. The implementation of structured MDR utilizing a structured communication tool to enhance and/or guide communication. Quasi-experimental studies and descriptive studies. Length of stay, patient satisfaction and staff satisfaction. The comprehensive search strategy aimed to find relevant published and unpublished quantitative English language studies from the inception of each database searched through June 30, 2015. Databases searched include Cumulative Index to Nursing and Allied Health Literature, PubMed, Excerpta Medica Database, Health Source, Cochrane Central Register of Controlled Trials and Scopus. A search of gray literature was also performed. All reviewers independently evaluated the included studies for methodological quality using critical appraisal tools from the Joanna Briggs Institute (JBI). Data related to the methods, participants, interventions and findings were extracted using a standardized data extraction tool from the JBI. Due to clinical and methodological heterogeneity in the interventions and outcome measures of the included studies, statistical meta-analysis was not possible. Results are presented in narrative form. Eight studies were included, three quasi-experimental studies and five descriptive studies of quality improvement projects. In the three quasi-experimental studies, one had a statistically significant decrease (p = 0.01), one no change (p = 0.1) and one had an increase (p = 0.03) in LOS; in the two descriptive studies, one had a statistically significant decrease (p = 0.02) and the other reported a trend toward reduced LOS. Two studies evaluated patient satisfaction, one showed no change (p = 0.76) and one showed a trend toward increased patient satisfaction at 12 months. Six studies demonstrated an improvement in staff satisfaction (p < 0.05) after implementation of structured MDR. The evidence suggests that MDR utilizing a structured communication tool may have contributed to an improvement in staff satisfaction. There was inconclusive evidence to support the use of structured MDR to improve LOS or patient satisfaction. The use of a structured communication tool during MDR is one means to facilitate communication and collaboration, thus improving satisfaction among the multidisciplinary team. More rigorous research using higher level study designs on larger samples of diverse patient populations is needed to further evaluate the effectiveness of structured MDR on patient care outcomes and satisfaction of patients and providers.
Gündoğdu, Aycan; Kılıç, Hüseyin; Ulu Kılıç, Ayşegül; Kutateladze, Mzia
2016-04-01
Skin and soft tissue infections (SSTIs) may represent a wide clinical spectrum from cellulitis to high-mortality associated necrotizing fasciitis. Limitations in therapy due to the multiple drug resistance, leads to increase in the morbidity and mortality rates, especially in complicated SSTIs such as diabetic foot, decubitus, and surgical wound infections. Therefore, alternative treatment strategies other than antibiotics are needed in appropriate clinical conditions. "Bacteriophage therapy", which is an old method and has been used as part of standard treatment in some countries such as Georgia and Russia, has again become popular worldwide. The aim of this study was to investigate the in vitro susceptibilities of multidrug-resistant (MDR) pathogens isolated from patients with complicated SSTIs, against standard bacteriophage (phage) cocktails. Six different ready-made phage preparations [Pyophage, Intestiphage, ENKO, SES, Fersisi and Staphylococcal Bacteriophage (Sb)] used in this study have been provided by G. Eliava Institute, Georgia. Because of the absence of ready-made phage preparations for Acinetobacter baumannii and Klebsiella pneumoniae, Φ1-Φ7 and ΦKL1- ΦKL3 phages were used provided from the same institute's phage library, respectively. Isolation and identification of the pathogens from abscess and wound samples of patients with SSTIs were performed by conventional methods and automatized VITEK(®)-2 (bioMerieux, ABD) system. Antimicrobial susceptibility testing was conducted complying CLSI standards' and the bacteria that were resistant to at least two different antibiotic groups were considered as MDR. Accordingly, a total of 33 isolates, nine of them were E.coli (8 ESBL and 1 ESBL + carbapenemase positive); nine were MDR P.aeruginosa; nine were MDR A.baumannii; three were methicillin-resistant Staphylococcus aureus (MRSA) and three were K.pneumoniae (1 ESBL, 1 carbapenemase and 1 ESBL + carbapenemase positive) were included in the study. The phage susceptibilities of the pathogens were performed by using spot test. In the study, 29 (87.9%) out of 33 MDR pathogens were found to be susceptible to at least one of the tested phage/phage preparations. All MRSA (3/3) strains were susceptible to ENKO, SES, Fersisi and Sb phage cocktails, while all A.baumannii isolates (9/9) were susceptible to Φ5 and Φ7 phages. However, two E.coli, one K. pneumoniae and one P.aeruginosa strains were resistant to the all phage preparations tested. Although the clinical use of phages has not been approved yet, except a few Eastern European countries, this study exhibits the potential use of the topical bacteriophage therapy in the treatment of complicated SSTIs caused by MDR pathogens with limited treatment options, such as diabetic foot, decubitus, and surgical wound infections.
Kronman, Matthew P.; Zerr, Danielle M.; Qin, Xuan; Englund, Janet; Cornell, Cathy; Sanders, Jean E.; Myers, Jeffrey; Rayar, Jaipreet; Berry, Jessica E.; Adler, Amanda L.; Weissman, Scott J.
2014-01-01
Multidrug-resistant (MDR) Enterobacteriaceae infections are associated with increased morbidity. We describe a 20-year-old hematopoietic cell transplantation recipient with recurrent MDR Klebsiella pneumoniae infection, prolonged intestinal colonization, and subsequent intestinal decontamination. Further study should evaluate stool surveillance, molecular typing, and fecal microbiota transplantation for patients with intestinal MDR Enterobacteriaceae carriage. PMID:25041704
Advanced Extremely High Frequency Satellite (AEHF)
2013-12-01
terminals Milstar Backward Compatible Operate with the Milstar system, at all LDR and MDR terminal supported data rates, throughout the Milstar...transition to the AEHF system Operate with the Milstar system, at all LDR and MDR terminal supported data rates, throughout the Milstar...transition to the AEHF system Operate with the Milstar system, at all LDR and MDR terminal supported data rates, throughout the Milstar
Effect of angular velocity on sensors based on morphology dependent resonances.
Ali, Amir R; Ioppolo, Tindaro
2014-04-22
We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle.
Qin, Qing; Ma, Peng-Fei; Kuang, Xiao-Cong; Gao, Ming-Xing; Mo, De-Huan; Xia, Shuang; Jin, Ning; Xia, Jun-Jie; Qi, Zhong-Quan; Lin, Cui-Wu
2013-12-05
Multidrug resistance (MDR) is a key element in the failure of chemotherapies, and development of agents to overcome MDR is crucial to improving cancer treatments. The overexpression of glutathione-S-transferases (GSTs) is one of the major mechanisms of MDR. Because some agents used in traditional Chinese medicine have strong antitumor effects coupled with low toxicity; we investigated the ability of N,N-bis(2-chloroethyl)docos-13-enamide (compound J), the synthesized analog of a highly unsaturated fatty acid from Isatis tinctoria L., to reverse the MDR induced by adriamycin (ADM) in TCA8113/ADM cells. We found that compound J significantly increased the cytotoxicity of ADM in TCA8113/ADM cells, with a reversal fold of 2.461. Analysis of the mechanisms through which compound J reversed MDR indicated that compound J significantly decreased the activity of GSTs and enhanced the depletion of GSH in TCA8113/ADM cells, but did not affect the P-glycoprotein (P-gp) efflux. Taken together, our data suggested that compound J was an excellent candidate for reversing MDR in cancer therapy. © 2013 Published by Elsevier B.V.
Shi, Nian-Jun; Zhang, Wei-Xia; Zhang, Ning; Zhong, Li-Na; Wang, Ling-Ping
2017-01-01
Abstract Background: The motive of this study was to investigate the collaboration between MDR1 gene polymorphisms and anesthetic effects following pediatric tonsillectomy. Methods: All together 178 children undergoing tonsillectomy with preoperative sevoflurane–remifentanil anesthesia were selected. In order to determine MDR1 gene polymorphisms of 3435C > T, 1236C > T, and 2677G > T/A, polymerase chain reaction–restriction fragment length polymorphism was used. Mean arterial pressure (MAP), diastolic blood pressure (DBP), systolic blood pressure (SBP), and heart rate (HR) at T0 (5 mins after the repose), T1 (0 min after tracheal intubation), T2 (5 mins after the tracheal intubation), T3 (0 min after the tonsillectomy), T4 (0 min after removal of the mouth-gag) and T5 (5 min after the extubation) were observed. The visual analog scale (VAS), the face, legs, activity, cry, and consolability (FLACC) pain assessment, and Ramsay sedation score were recorded after the patients gained consciousness. The adverse reactions were also observed. Results: As compared to the CT + TT genotype of MDR1 1236C > T, the time of induction, respiration recovery, eye-opening, and extubation of children with the CC genotype was found to be shorter (all P <.05); the MAP, SBP, DBP, and HR were significantly reduced at T5 in children that possessed the CC genotype (all P <.05), the VAS at postoperative 1, 2, 4, and 8 hours and Ramsay sedation score were decreased, while the FLACC score increased (all P <.05). It was found that the adverse reaction rate was lower in children bearing the CC genotype (P <.05). Conclusion: It could be concluded that anesthetic effect in patients with the MDR1 1236C > T CC genotype was found to be superior to those carrying the CT + TT genotype. PMID:28614221
The demise of multidrug-resistant HIV-1: the national time trend in Portugal
Vercauteren, Jurgen; Theys, Kristof; Carvalho, Ana Patricia; Valadas, Emília; Duque, Luis Miguel; Teófilo, Eugénio; Faria, Telo; Faria, Domitília; Vera, José; Águas, Maria João; Peres, Susana; Mansinho, Kamal; Vandamme, Anne-Mieke; Camacho, Ricardo Jorge; Mansinho, Kamal; Cláudia Miranda, Ana; Aldir, Isabel; Ventura, Fernando; Nina, Jaime; Borges, Fernando; Valadas, Emília; Doroana, Manuela; Antunes, Francisco; João Aleixo, Maria; João Águas, Maria; Botas, Júlio; Branco, Teresa; Vera, José; Vaz Pinto, Inês; Poças, José; Sá, Joana; Duque, Luis; Diniz, António; Mineiro, Ana; Gomes, Flora; Santos, Carlos; Faria, Domitília; Fonseca, Paula; Proença, Paula; Tavares, Luís; Guerreiro, Cristina; Narciso, Jorge; Faria, Telo; Teófilo, Eugénio; Pinheiro, Sofia; Germano, Isabel; Caixas, Umbelina; Faria, Nancy; Paula Reis, Ana; Bentes Jesus, Margarida; Amaro, Graça; Roxo, Fausto; Abreu, Ricardo; Neves, Isabel
2013-01-01
Objectives Despite a decreasing mortality and morbidity in treated HIV-1 patients, highly active antiretroviral treatment (HAART) can still fail due to the development of drug resistance. Especially, multidrug-resistant viruses pose a threat to efficient therapy. We studied the changing prevalence of multidrug resistance (MDR) over time in a cohort of HIV-1-infected patients in Portugal. Patients and methods We used data of 8065 HIV-1-infected patients followed from July 2001 up to April 2012 in 22 hospitals located in Portugal. MDR at a specific date of sampling was defined as no more than one fully active drug (excluding integrase and entry inhibitors) at that time authorized by the Portuguese National Authority of Medicines and Health Products (INFARMED), as interpreted with the Rega algorithm version 8.0.2. A generalized linear mixed model was used to study the time trend of the prevalence of MDR. Results We observed a statistically significant decrease in the prevalence of MDR over the last decade, from 6.9% (95% CI: 5.7–8.4) in 2001–03, 6.0% (95% CI: 4.9–7.2) in 2003–05, 3.7% (95% CI: 2.8–4.8) in 2005–07 and 1.6% (95% CI: 1.1–2.2) in 2007–09 down to 0.6% (95% CI: 0.3–0.9) in 2009–12 [OR = 0.80 (95% CI: 0.75–0.86); P < 0.001]. In July 2011 the last new case of MDR was seen. Conclusions The prevalence of multidrug-resistant HIV-1 is decreasing over time in Portugal, reflecting the increasing efficiency of HAART and the availability of new drugs. Therefore, in designing a new drug, safety and practical aspects, e.g. less toxicity and ease of use, may need more attention than focusing mainly on efficacy against resistant strains. PMID:23228933
Ramazanzadeh, Rashid; Roshani, Daem; Shakib, Pegah; Rouhi, Samaneh
2015-01-01
Background: Transmission of Mycobacterium tuberculosis (M. tuberculosis) can occur in different ways. Furthermore, drug resistant in M. tuberculosis family is a major problem that creates obstacles in treatment and control of tuberculosis (TB) in the world. One of the most prevalent families of M. tuberculosis is Haarlem, and it is associated with drug resistant. Our objectives of this study were to determine the prevalence and occurrence rate of M. tuberculosis Haarlem family multi-drug resistant (MDR) in the worldwide using meta-analysis based on a systematic review that performed on published articles. Materials and Methods: Data sources of this study were 78 original articles (2002-2012) that were published in the literatures in several databases including PubMed, Science Direct, Google Scholar, Biological abstracts, ISI web of knowledge and IranMedex. The articles were systematically reviewed for prevalence and rate of MDR. Data were analyzed using meta-analysis and random effects models with the software package Meta R, Version 2.13 (P < 0.10). Results: Final analysis included 28601 persons in 78 articles. The highest and lowest occurrence rate of Haarlem family in M. tuberculosis was in Hungary in 2006 (66.20%) with negative MDR-TB and in China in 2010 (0.8%), respectively. From 2002 to 2012, the lowest rate of prevalence was in 2010, and the highest prevalence rate was in 2012. Also 1.076% were positive for MDR and 9.22% were negative (confidence interval: 95%).0020. Conclusion: Many articles and studies are performed in this field globally, and we only chose some of them. Further studies are needed to be done in this field. Our study showed that M. tuberculosis Haarlem family is prevalent in European countries. According to the presence of MDR that was seen in our results, effective control programs are needed to control the spread of drug-resistant strains, especially Haarlem family. PMID:25767526
Anthwal, Divya; Gupta, Rakesh Kumar; Bhalla, Manpreet; Bhatnagar, Shinjini
2017-01-01
ABSTRACT Drug-resistant tuberculosis (TB) is a major threat to TB control worldwide. Globally, only 40% of the 340,000 notified TB patients estimated to have multidrug-resistant-TB (MDR-TB) were detected in 2015. This study was carried out to evaluate the utility of high-resolution melt curve analysis (HRM) for the rapid and direct detection of MDR-TB in Mycobacterium tuberculosis in sputum samples. A reference plasmid library was first generated of the most frequently observed mutations in the resistance-determining regions of rpoB, katG, and an inhA promoter and used as positive controls in HRM. The assay was first validated in 25 MDR M. tuberculosis clinical isolates. The assay was evaluated on DNA isolated from 99 M. tuberculosis culture-positive sputum samples that included 84 smear-negative sputum samples, using DNA sequencing as gold standard. Mutants were discriminated from the wild type by comparing melting-curve patterns with those of control plasmids using HRM software. Rifampin (RIF) and isoniazid (INH) monoresistance were detected in 11 and 21 specimens, respectively, by HRM. Six samples were classified as MDR-TB by sequencing, one of which was missed by HRM. The HRM-RIF, INH-katG, and INH-inhA assays had 89% (95% confidence interval [CI], 52, 100%), 85% (95% CI, 62, 97%), and 100% (95% CI, 74, 100%) sensitivity, respectively, in smear-negative samples, while all assays had 100% sensitivity in smear-positive samples. All assays had 100% specificity. Concordance of 97% to 100% (κ value, 0.9 to 1) was noted between sequencing and HRM. Heteroresistance was observed in 5 of 99 samples by sequencing. In conclusion, the HRM assay was a cost-effective (Indian rupee [INR]400/US$6), rapid, and closed-tube method for the direct detection of MDR-TB in sputum, especially for direct smear-negative cases. PMID:28330890
The Rate of Visual Field Change in the Ocular Hypertension Treatment Study
De Moraes, Carlos Gustavo V.; Gardiner, Stuart K.; Liebmann, Jeffrey M.; Cioffi, George A.; Ritch, Robert; Gordon, Mae O.; Kass, Michael A.
2012-01-01
Purpose. To assess the rate of change of visual field (VF) mean deviation (MD) in the Ocular Hypertension Treatment Study (OHTS). Methods. OHTS data were filtered to exclude eyes that had fewer than 10 reliable VFs or less than 5 years of follow-up or that reached a nonglaucomatous endpoint. The rate of change of MD (MDR) was calculated for each eye. Differences were sought between groups of eyes differing in primary open angle glaucoma (POAG) outcome, how POAG was determined, and original randomization. Results. In total, 2609 eyes (1379 participants) met the selection criteria. The mean MDR was −0.08 ± 0.20 dB/y (±SD). POAG eyes (n = 359) had significantly worse MDRs (−0.26 ± 0.36 dB/y) than non-POAG eyes (n = 2250; −0.05 ± 0.14 dB/y; P < 0.001). Eyes that reached POAG endpoints based on only VF change (n = 74; −0.29 ± 0.31 dB/y) or only optic disc change (n = 158; −0.12 ± 0.19 dB/y) had significantly worse MDRs than non-POAG eyes (both P < 0.001). Eyes that reached POAG endpoints for both VF and optic disc change (n = 127) deteriorated more rapidly (−0.42 ± 0.46 dB/y) than eyes showing only VF change (P = 0.017) or only optic disc change (P < 0.001). There was not a significant association between MDR and original OHTS randomization (observe vs. treat, P = 0.168). Conclusions. Eyes that develop POAG have significantly worse MDRs than eyes that do not. Eyes that reached endpoints due to both VF and optic disc change had worse MDRs than eyes displaying change in only one of these. MDR was not significantly associated with randomization, suggesting that MDR may not be the best measure of VF change in early-stage POAG. (ClinicalTrials.gov number, NCT00000125.) PMID:22159015
Dunbar, Rory; Caldwell, Judy; Lombard, Carl; Beyers, Nulda
2017-01-01
Setting Primary health services in Cape Town, South Africa where the introduction of Xpert® MTB/RIF (Xpert) enabled simultaneous screening for tuberculosis (TB) and drug susceptibility in all presumptive cases. Study aim To compare the proportion of TB cases with drug susceptibility tests undertaken and multidrug-resistant tuberculosis (MDR-TB) diagnosed pre-treatment and during the course of 1st line treatment in the previous smear/culture and the newly introduced Xpert-based algorithms. Methods TB cases identified in a previous stepped-wedge study of TB yield in five sub-districts over seven one-month time-points prior to, during and after the introduction of the Xpert-based algorithm were analysed. We used a combination of patient identifiers to identify all drug susceptibility tests undertaken from electronic laboratory records. Differences in the proportions of DST undertaken and MDR-TB cases diagnosed between algorithms were estimated using a binomial regression model. Results Pre-treatment, the probability of having a DST undertaken (RR = 1.82)(p<0.001) and being diagnosed with MDR-TB (RR = 1.42)(p<0.001) was higher in the Xpert-based algorithm than in the smear/culture-based algorithm. For cases evaluated during the course of 1st-line TB treatment, there was no significant difference in the proportion with DST undertaken (RR = 1.02)(p = 0.848) or MDR-TB diagnosed (RR = 1.12)(p = 0.678) between algorithms. Conclusion Universal screening for drug susceptibility in all presumptive TB cases in the Xpert-based algorithm resulted in a higher overall proportion of MDR-TB cases being diagnosed and is an important strategy in reducing transmission. The previous strategy of only screening new TB cases when 1st line treatment failed did not compensate for cases missed pre-treatment. PMID:28199375
Becerril-Montes, Pola; Said-Fernández, Salvador; Luna-Herrera, Julieta; Caballero-Olín, Guillermo; Enciso-Moreno, José Antonio; Martínez-Rodríguez, Herminia Guadalupe; Padilla-Rivas, Gerardo; Nancy-Garza-Treviño, Elsa; Molina-Salinas, Gloria María
2013-04-01
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear.
Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*
Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul
2012-01-01
The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022
Becerril-Montes, Pola; Said-Fernández, Salvador; Luna-Herrera, Julieta; Caballero-Olín, Guillermo; Enciso-Moreno, José Antonio; Martínez-Rodríguez, Herminia Guadalupe; Padilla-Rivas, Gerardo; Nancy-Garza-Treviño, Elsa; Molina-Salinas, Gloria María
2013-01-01
The resistance of 139 Mycobacterium tuberculosis (MTB) isolates from the city of Monterrey, Northeast Mexico, to first and second-line anti-TB drugs was analysed. A total of 73 isolates were susceptible and 66 were resistant to anti-TB drugs. Monoresistance to streptomycin, isoniazid (INH) and ethambutol was observed in 29 cases. Resistance to INH was found in 52 cases and in 29 cases INH resistance was combined with resistance to two or three drugs. A total of 24 isolates were multidrug-resistant (MDR) resistant to at least INH and rifampicin and 11 MDR cases were resistant to five drugs. The proportion of MDR-TB among new TB cases in our target population was 0.72% (1/139 cases). The proportion of MDR-TB among previously treated cases was 25.18% (35/139 cases). The 13 polyresistant and 24 MDR isolates were assayed against the following seven second-line drugs: amikacin (AMK), kanamycin (KAN), capreomycin (CAP), clofazimine (CLF), ethionamide (ETH), ofloxacin (OFL) and cycloserine (CLS). Resistance to CLF, OFL or CLS was not observed. Resistance was detected to ETH (10.80%) and to AMK (2.70%), KAN (2.70%) and CAP (2.70%). One isolate of MDR with primary resistance was also resistant to three second-line drugs. Monterrey has a high prevalence of MDR-TB among previously treated cases and extensively drug-resistant-MTB strains may soon appear. PMID:23579794
Mirzaei, Seyed Abbas; Safari Kavishahi, Mansureh; Keshavarz, Zhila; Elahian, Fatemeh
2018-06-01
The search for new chemotherapeutics unaffected by efflux pumps would significantly increase life expectancy in patients with malignant cancers. In this study, butylcycloheptylprodigiosin and undecylprodigiosin were HPLC-purified and verified, using nuclear magnetic resonance spectroscopy. Cell cytotoxicity and transportation kinetics on multiple-drug resistance (MDR) cells were evaluated. Daunorubicin and butylcycloheptylprodigiosin were less toxic in the MDR1 overexpressing line, but undecylprodigiosin revealed potent toxicity toward MDR1 and BCRP expressing malignant cells. There was no noticeable change in MDR1 and BCRP transcripts during 3 days of treatment with prodiginines. While daunorubicin and mitoxantrone uptake from the cell environment significantly decreased with increasing multidrug resistance up to 46% and 62%, respectively, the accumulation of undecylprodigiosin and to a lesser extent butylcycloheptylprodigiosin in the resistance cells occurred cell- and dose-dependently via a passive diffusion process and were almost equally sensitive to the parent lines. The efflux of xenobiotics commenced immediately with different kinetics in various cells. A greater amount of daunorubicin and mitoxantrone were rapidly thrown out of their corresponding MDR cells in the absence of the specific inhibitor (3.01 and 1.81 dF/min, respectively) and represented functional efflux pumps. MDR pumps did not apparently influence undecylprodigiosin efflux patterns; but butylcycloheptylprodigiosin was partially removed from EPG85.257RDB cells at the rate of 2.66 and 1.41 dF/min in the absence and presence of verapamil, respectively.
Johnson, Timothy J.; Logue, Catherine M.; Johnson, James R.; Kuskowski, Michael A.; Sherwood, Julie S.; Barnes, H. John; DebRoy, Chitrita; Wannemuehler, Yvonne M.; Obata-Yasuoka, Mana; Spanjaard, Lodewijk
2012-01-01
Abstract The emergence of plasmid-mediated multidrug resistance (MDR) among enteric bacteria presents a serious challenge to the treatment of bacterial infections in humans and animals. Recent studies suggest that avian Escherichia coli commonly possess the ability to resist multiple antimicrobial agents, and might serve as reservoirs of MDR for human extraintestinal pathogenic Escherichia coli (ExPEC) and commensal E. coli populations. We determined antimicrobial susceptibility profiles for 2202 human and avian E. coli isolates, then sought for associations among resistance profile, plasmid content, virulence factor profile, and phylogenetic group. Avian-source isolates harbored greater proportions of MDR than their human counterparts, and avian ExPEC had higher proportions of MDR than did avian commensal E. coli. MDR was significantly associated with possession of the IncA/C, IncP1-α, IncF, and IncI1 plasmid types. Overall, inferred virulence potential did not correlate with drug susceptibility phenotype. However, certain virulence genes were positively associated with MDR, including ireA, ibeA, fyuA, cvaC, iss, iutA, iha, and afa. According to the total dataset, isolates segregated significantly according to host species and clinical status, thus suggesting that avian and human ExPEC and commensal E. coli represent four distinct populations with limited overlap. These findings suggest that in extraintestinal E. coli, MDR is most commonly associated with plasmids, and that these plasmids are frequently found among avian-source E. coli from poultry production systems. PMID:21988401
Anti-tuberculosis drug resistance in Bangladesh: reflections from the first nationwide survey.
Kamal, S M M; Hossain, A; Sultana, S; Begum, V; Haque, N; Ahmed, J; Rahman, T M A; Hyder, K A; Hossain, S; Rahman, M; Ahsan, Chowdhury R; Chowdhury, R A; Aung, K J M; Islam, A; Hasan, R; Van Deun, A
2015-02-01
To determine the prevalence of tuberculosis (TB) drug resistance in Bangladesh. Weighted cluster sampling among smear-positive cases, and standard culture and drug susceptibility testing on solid medium were used. Of 1480 patients enrolled during 2011, 12 falsified multidrug-resistant TB (MDR-TB) patients were excluded. Analysis included 1340 cases (90.5% of those enrolled) with valid results and known treatment antecedents. Of 1049 new cases, 12.3% (95%CI 9.3-16.1) had strains resistant to any of the first-line drugs tested, and 1.4% (95%CI 0.7-2.5) were MDR-TB. Among the 291 previously treated cases, this was respectively 43.2% (95%CI 37.1-49.5) and 28.5% (95%CI 23.5-34.1). History of previous anti-tuberculosis treatment was the only predictive factor for first-line drug resistance (OR 34.9). Among the MDR-TB patients, 19.2% (95%CI 11.3-30.5; exclusively previously treated) also showed resistance to ofloxacin. Resistance to kanamycin was not detected. Although MDR-TB prevalence was relatively low, transmission of MDR-TB may be increasing in Bangladesh. MDR-TB with fluoroquinolone resistance is rapidly rising. Integrating the private sector should be made high priority given the excessive proportion of MDR-TB retreatment cases in large cities. TB control programmes and donors should avoid applying undue pressure towards meeting global targets, which can lead to corruption of data even in national surveys.
Role of active drug transporters in refractory multiple myeloma.
Tucci, Marco; Quatraro, Cosima; Dammacco, Franco; Silvestris, Franco
2009-01-01
Drug resistance is a major drawback for cancer chemotherapy protocols and previous studies have demonstrated the overexpression of the P-glycoprotein (P-gp) as mechanism by which myeloma cells develop multidrug resistance (MDR). However, other molecules may apparently promote MDR in multiple myeloma (MM). They include both lung resistance-related protein (LRP) and p53 activation. The inhibition of P-gp in MM patients treated with melphalan (PAM) has been associated to increased toxicity, whereas defective apoptosis due to down-modulation of the NF-kB is a feature of MDR+ myeloma cells. On the contrary, clinical trials with proteasome inhibitors have been successfully carried out to overcome MDR despite their toxicity profile. Recently, sigma receptors (sigmaR)(S), namely sigmaR(1) and sigmaR(2), have been found to be overexpressed in breast cancer cells. In addition, their levels correlate with both P-gp upregulation and MDR development. By contrast, selective inhibitors of sigmaR(S) as PB28, disrupt the P-gp signals and restore the apoptosis machinery in malignant cells. We have reviewed the major pathogenetic events promoting MDR in MM and focused on the sigmaR(S) as potential mechanism driving this function. We demonstrate that MDR+ myeloma cells overexpress the sigmaR(2) and that the treatment with PB28 induces P-gp down-modulation through the activation of the caspases enrolled in both extrinsic and intrinsic apoptotic pathways. Thus, sigmaR(2) inhibitors may be tentatively proposed for the treatment of PAM-resistant MM patients.
Elhassan, Mogahid M; Hemeg, Hassan A; Elmekki, Miskelyemen A; Turkistani, Khalid A; Abdul-Aziz, Ahmed A
2017-01-01
The pattern of Mycobacterium tuberculosis susceptibility to first line drugs and multidrug resistance in Al-Madinah Al-Munawarah, a seasonally overcrowded are during Hajj and Omrah, is not well studied. This study aimed to investigate anti-tuberculosis drug resistance and its distribution among new cases in Al-Madinah Al-Monawarah. Study subjects included 622 patients with first time confirmed TB referred to the central tuberculosis laboratory in Al-Madinah between January 2012 and December 2014. Out of the 622 isolates, 99 (15.9%) were Mycobacteria Other Than Tuberculosis (MOTTS) and 25 (4.0%), three of which (12%) were children under five years of age, revealed multidrug resistance (MDR). Monoresistance to isoniazid (H) was (1.8%), to rifampin (R) was (1.4%), to streptomycin (S) was (1.9 %) to ethambutol (E) was (1.1 %) and to pyrazinamide (Z) was (2.1%). Being among the new cases, multidrug resistant tuberculosis (MDR TB) is supposed to be caused by strains which are originally multidrug resistant. Neither nationality nor gender was found to be associated with MDR TB. Since 12% of MDR cases were among children, a probability of primary infection with MDR strains is to be considered. Moreover, mass gathering during Hajj and Omrah seasons does not seem to increase the burden of MDR in the region. However, further investigation is needed to molecularly characterize MDR isolates and their phylogenetics and geographical origin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kronman, Matthew P; Zerr, Danielle M; Qin, Xuan; Englund, Janet; Cornell, Cathy; Sanders, Jean E; Myers, Jeffrey; Rayar, Jaipreet; Berry, Jessica E; Adler, Amanda L; Weissman, Scott J
2014-09-01
Multidrug-resistant (MDR) Enterobacteriaceae infections are associated with increased morbidity. We describe a 20-year-old hematopoietic cell transplantation recipient with recurrent MDR Klebsiella pneumoniae infection, prolonged intestinal colonization, and subsequent intestinal decontamination. Further study should evaluate stool surveillance, molecular typing, and fecal microbiota transplantation for patients with intestinal MDR Enterobacteriaceae carriage. Copyright © 2014 Elsevier Inc. All rights reserved.
Mesfin, Eyob Abera; Beyene, Dereje; Tesfaye, Abreham; Admasu, Addisu; Addise, Desalegn; Amare, Miskir; Dagne, Biniyam; Yaregal, Zelalem; Tesfaye, Ephrem; Tessema, Belay
2018-01-01
Multidrug drug-resistant tuberculosis (MDR-TB) is a major health problem and seriously threatens TB control and prevention efforts globally. Ethiopia is among the 30th highest TB burden countries for MDR-TB with 14% prevalence among previously treated cases. The focus of this study was on determining drug resistance patterns of Mycobacterium tuberculosis among MDR-TB suspected cases and associated risk factors. A cross-sectional study was conducted in Addis Ababa from June 2015 to December 2016. Sputum samples and socio-demographic data were collected from 358 MDR-TB suspected cases. Samples were analyzed using Ziehl-Neelsen technique, GeneXpert MTB/RIF assay, and culture using Lowenstein-Jensen and Mycobacterial growth indicator tube. Data were analyzed using SPSS version 23. A total of 226 the study participants were culture positive for Mycobacterium tuberculosis, among them, 133 (58.8%) participants were males. Moreover, 162 (71.7%) had been previously treated for tuberculosis, while 128 (56.6%) were TB/HIV co-infected. A majority [122 (54%)] of the isolates were resistant to any first-line anti-TB drugs. Among the resistant isolates, 110 (48.7%) were determined to be resistant to isoniazid, 94 (41.6%) to streptomycin, 89 (39.4%) to rifampicin, 72 (31.9%) to ethambutol, and 70 (30.9%) to pyrazinamide. The prevalence of MDR-TB was 89 (39.4%), of which 52/89 (58.4%) isolates were resistance to all five first-line drugs. Risk factors such as TB/HIV co-infection (AOR = 5.59, p = 0.00), cigarette smoking (AOR = 3.52, p = 0.045), alcohol drinking (AOR = 5.14, p = 0.001) hospital admission (AOR = 3.49, p = 0.005) and visiting (AOR = 3.34, p = 0.044) were significantly associated with MDR-TB. The prevalence of MDR-TB in the study population was of a significantly high level among previously treated patients and age group of 25-34. TB/HIV coinfection, smoking of cigarette, alcohol drinking, hospital admission and health facility visiting were identified as risk factors for developing MDR-TB. Therefore, effective strategies should be designed considering the identified risk factors for control of MDR-TB.
Saidi, Trust; Salie, Faatiema; Douglas, Tania S
2017-05-30
Explaining policy change is one of the central tasks of contemporary policy analysis. In this article, we examine the changes in infection control policies for multi-drug resistant tuberculosis (MDR-TB) in South Africa from the time the country made the transition to democracy in 1994, until 2015. We focus on MDR-TB infection control and refer to decentralised management as a form of infection control. Using Kingdon's theoretical framework of policy streams, we explore the temporal ordering of policy framework changes. We also consider the role of research in motivating policy changes. Policy documents addressing MDR-TB in South Africa over the period 1994 to 2014 were extracted. Literature on MDR-TB infection control in South Africa was extracted from PubMed using key search terms. The documents were analysed to identify the changes that occurred and the factors driving them. During the period under study, five different policy frameworks were implemented. The policies were meant to address the overwhelming challenge of MDR-TB in South Africa, contextualised by high prevalence of HIV infection, that threatened to undermine public health programmes and the success of antiretroviral therapy rollouts. Policy changes in MDR-TB infection control were supported by research evidence and driven by the high incidence and complexity of the disease, increasing levels of dissatisfaction among patients, challenges of physical, human and financial resources in public hospitals, and the ideologies of the political leadership. Activists and people living with HIV played an important role in highlighting the importance of MDR-TB as well as exerting pressure on policymakers, while the mass media drew public attention to infection control as both a cause of and a solution to MDR-TB. The critical factors for policy change for infection control of MDR-TB in South Africa were rooted in the socioeconomic and political environment, were supported by extensive research, and can be framed using Kingdon's policy streams approach as an interplay of the problem of the disease, political forces that prevailed and alternative proposals.
Alene, Kefyalew Addis; Viney, Kerri; McBryde, Emma S; Clements, Archie C A
2017-01-01
Understanding the geographical distribution of multidrug-resistant tuberculosis (MDR-TB) in high TB burden countries such as Ethiopia is crucial for effective control of TB epidemics in these countries, and thus globally. We present the first spatial analysis of multidrug resistant tuberculosis, and its relationship to socio-economic, demographic and household factors in northwest Ethiopia. An ecological study was conducted using data on patients diagnosed with MDR-TB at the University of Gondar Hospital MDR-TB treatment centre, for the period 2010 to 2015. District level population data were extracted from the Ethiopia National and Regional Census Report. Spatial autocorrelation was explored using Moran's I statistic, Local Indicators of Spatial Association (LISA), and the Getis-Ord statistics. A multivariate Poisson regression model was developed with a conditional autoregressive (CAR) prior structure, and with posterior parameters estimated using a Bayesian Markov chain Monte Carlo (MCMC) simulation approach with Gibbs sampling, in WinBUGS. A total of 264 MDR-TB patients were included in the analysis. The overall crude incidence rate of MDR-TB for the six-year period was 3.0 cases per 100,000 population. The highest incidence rate was observed in Metema (21 cases per 100,000 population) and Humera (18 cases per 100,000 population) districts; whereas nine districts had zero cases. Spatial clustering of MDR-TB was observed in districts located in the Ethiopia-Sudan and Ethiopia-Eritrea border regions, where large numbers of seasonal migrants live. Spatial clustering of MDR-TB was positively associated with urbanization (RR: 1.02; 95%CI: 1.01, 1.04) and the percentage of men (RR: 1.58; 95% CI: 1.26, 1.99) in the districts; after accounting for these factors there was no residual spatial clustering. Spatial clustering of MDR-TB, fully explained by demographic factors (urbanization and percent male), was detected in the border regions of northwest Ethiopia, in locations where seasonal migrants live and work. Cross-border initiatives including options for mobile TB treatment and follow up are important for the effective control of MDR-TB in the region.
Transmission of multidrug-resistant tuberculosis in the USA: a cross-sectional study.
Moonan, Patrick K; Teeter, Larry D; Salcedo, Katya; Ghosh, Smita; Ahuja, Shama D; Flood, Jennifer; Graviss, Edward A
2013-09-01
Multidrug-resistant (MDR) tuberculosis is a potential threat to tuberculosis elimination, but the extent of MDR tuberculosis disease in the USA that is attributable to transmission within the country is unknown. We assessed transmission of MDR tuberculosis and potential contributing factors in the USA. In a cross-sectional study, clinical, demographic, epidemiological, and Mycobacterium tuberculosis genotype data were obtained during routine surveillance of all verified cases of MDR tuberculosis reported from eight states in the USA (California from Jan 1, 2007, to Dec 31, 2009; Texas from Jan 1, 2007, to March 31, 2009; and the states of Colorado, Maryland, Massachusetts, New York, Tennessee, and Washington from Jan 1, 2007 to Dec 31, 2008). In-depth interviews and health-record abstraction were done for all who consented to ascertain potential interpersonal connections. 168 cases of MDR tuberculosis were reported in the eight states during our study period. 92 individuals (55%) consented to in-depth interview. 20 (22%) of these individuals developed MDR tuberculosis as a result of transmission in the USA; a source case was identified for eight of them (9%). 20 individuals (22%) had imported active tuberculosis (ie, culture-confirmed disease within 3 months of entry into the USA). 38 (41%) were deemed to have reactivation of disease, of whom 14 (15%) had a known previous episode of tuberculosis outside the USA. Five individuals (5%) had documented treatment of a previous episode in the USA, and so were deemed to have relapsed. For nine cases (10%), insufficient evidence was available to definitively classify reason for presentation. About a fifth of cases of MDR tuberculosis in the USA can be linked to transmission within the country. Many individuals acquire MDR tuberculosis before entry into the USA. MDR tuberculosis needs to be diagnosed rapidly to reduce potential infectious periods, and clinicians should consider latent tuberculosis infection treatment-tailored to the results of drug susceptibility testing of the putative source case-for exposed individuals. Centers for Disease Control and Prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kudzi, William; Dodoo, Alexander N O; Mills, Jeremy J
2010-07-14
Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.
2013-01-01
Background Nasal colonization with coagulase-negative Staphylococcus (CoNS) has been described as a risk factor for subsequent systemic infection. In this study, we evaluated the genetic profile of CoNS isolates colonizing the nares of children admitted to a neonatal intensive care unit (NICU). Methods We assessed CoNS carriage at admittance and discharge among newborns admitted to a NICU from July 2007 through May 2008 in one of the major municipalities of Brazil. Isolates were screened on mannitol salt agar and tryptic soy broth and tested for susceptibility to antimicrobials using the disc diffusion method. Polymerase chain reaction (PCR) was used to determine the species, the presence of the mecA gene, and to perform SCCmec typing. S. epidermidis and S. haemolyticus isolated from the same child at both admission and discharge were characterized by PFGE. Results Among 429 neonates admitted to the NICU, 392 (91.4%) had nasal swabs collected at both admission and discharge. The incidence of CoNS during the hospitalization period was 55.9% (95% confidence interval [CI]: 50.9-60.7). The most frequently isolated species were S. haemolyticus (38.3%) and S.epidermidis (38.0%). Multidrug resistance (MDR) was detected in 2.2% and 29.9% of the CoNS isolates, respectively at admittance and discharge (p = 0.053). The mecA gene was more prevalent among strains isolated at discharge (83.6%) than those isolated at admission (60%); overall, SCCmec type I was isolated most frequently. The length of hospitalization was associated with colonization by MDR isolates (p < 0.005). Great genetic diversity was observed among S. epidermidis and S. haemolyticus. Conclusions NICU represents an environment of risk for colonization by MDR CoNS. Neonates admitted to the NICU can become a reservoir of CoNS strains with the potential to spread MDR strains into the community. PMID:24308773
Majewski, Piotr; Wieczorek, Piotr; Ojdana, Dominika; Sacha, Paweł Tomasz; Wieczorek, Anna; Tryniszewska, Elżbieta Anna
2014-04-01
The growing incidence of multidrug resistance (MDR) in bacteria is an emerging challenge in the treatment of infections. Acinetobacter baumannii is an opportunistic pathogen prone to exhibit MDR that contributes significantly to nosocomial infections, particularly in severely ill patients. Thus, we performed research on rifampicin activity against selected MDR OXA-72 carbapenemase-producing A. baumannii strains. Since it is widely accepted that rifampicin should not be used as monotherapy in order to avoid the rapid development of rifampicin resistance, we evaluated the efficacy of combination therapy with imipenem. Minimal inhibitory concentrations (MICs) of both rifampicin and imipenem were determined by use of the broth microdilution method. Evaluations of the interactions between rifampicin and imipenem were performed by analysis of the fractional inhibitory concentration index (∑FIC), determined using the checkerboard titration method. All tested isolates showed full susceptibility to rifampicin. The checkerboard method revealed synergism in 5 isolates (29%) and an additive effect in another 5 isolates (29%); no difference was reported in the remaining 7 isolates (41%). Strains moderately resistant to imipenem (MIC ≤ 64 mg/l) tended to show synergy or additive interaction. We conclude that in vitro synergism or an additive interaction between rifampicin and imipenem most likely occurs in A. baumannii strains showing moderate resistance to imipenem (MIC ≤ 64 mg/l). Moreover, utilizing this combination in the therapy of infections caused by strains exhibiting higher levels of resistance (MIC > 64 mg/l) is not recommended since in this setting imipenem could not prevent the development of rifampicin resistance.
Development of vulnerability curves to typhoon hazards based on insurance policy and claim dataset
NASA Astrophysics Data System (ADS)
Mo, Wanmei; Fang, Weihua; li, Xinze; Wu, Peng; Tong, Xingwei
2016-04-01
Vulnerability refers to the characteristics and circumstances of an exposure that make it vulnerable to the effects of some certain hazards. It can be divided into physical vulnerability, social vulnerability, economic vulnerabilities and environmental vulnerability. Physical vulnerability indicates the potential physical damage of exposure caused by natural hazards. Vulnerability curves, quantifying the loss ratio against hazard intensity with a horizontal axis for the intensity and a vertical axis for the Mean Damage Ratio (MDR), is essential to the vulnerability assessment and quantitative evaluation of disasters. Fragility refers to the probability of diverse damage states under different hazard intensity, revealing a kind of characteristic of the exposure. Fragility curves are often used to quantify the probability of a given set of exposure at or exceeding a certain damage state. The development of quantitative fragility and vulnerability curves is the basis of catastrophe modeling. Generally, methods for quantitative fragility and vulnerability assessment can be categorized into empirical, analytical and expert opinion or judgment-based ones. Empirical method is one of the most popular methods and it relies heavily on the availability and quality of historical hazard and loss dataset, which has always been a great challenge. Analytical method is usually based on the engineering experiments and it is time-consuming and lacks built-in validation, so its credibility is also sometimes criticized widely. Expert opinion or judgment-based method is quite effective in the absence of data but the results could be too subjective so that the uncertainty is likely to be underestimated. In this study, we will present the fragility and vulnerability curves developed with empirical method based on simulated historical typhoon wind, rainfall and induced flood, and insurance policy and claim datasets of more than 100 historical typhoon events. Firstly, an insurance exposure classification system is built according to structure type, occupation type and insurance coverage. Then MDR estimation method based on considering insurance policy structure and claim information is proposed and validated. Following that, fragility and vulnerability curves of the major exposure types for construction, homeowner insurance and enterprise property insurance are fitted with empirical function based on the historical dataset. The results of this study can not only help understand catastrophe risk and mange insured disaster risks, but can also be applied in other disaster risk reduction efforts.
Huet, S; Marie, J P; Gualde, N; Robert, J
1998-12-15
Multidrug resistance (MDR) associated with overexpression of the MDR1 gene and of its product, P-glycoprotein (Pgp), plays an important role in limiting cancer treatment efficacy. Many studies have investigated Pgp expression in clinical samples of hematological malignancies but failed to give definitive conclusion on its usefulness. One convenient method for fluorescent detection of Pgp in malignant cells is flow cytometry which however gives variable results from a laboratory to another one, partly due to the lack of a reference method rigorously tested. The purpose of this technical note is to describe each step of a reference flow cytometric method. The guidelines for sample handling, staining and analysis have been established both for Pgp detection with monoclonal antibodies directed against extracellular epitopes (MRK16, UIC2 and 4E3), and for Pgp functional activity measurement with Rhodamine 123 as a fluorescent probe. Both methods have been validated on cultured cell lines and clinical samples by 12 laboratories of the French Drug Resistance Network. This cross-validated multicentric study points out crucial steps for the accuracy and reproducibility of the results, like cell viability, data analysis and expression.
Activation of pregnane X receptor and induction of MDR1 by dietary phytochemicals.
Satsu, Hideo; Hiura, Yuto; Mochizuki, Keiichi; Hamada, Mika; Shimizu, Makoto
2008-07-09
The pregnane X receptor (PXR) is understood to be the key regulator for gene expression of such drug-metabolizing enzymes and transporters as multidrug-resistant protein 1 (MDR1) and the cytochrome P450 (CYP) family. We examined the effect of dietary phytochemicals on the PXR-dependent transcriptional activity in human intestinal LS180 cells by using a reporter assay. Among approximately 40 kinds of phytochemicals, tangeretin and ginkgolides A and B markedly induced the PXR-dependent transcriptional activity and also the activity of the human MDR1 promoter. The expression levels of MDR1 mRNA as well as of CYP3A4 mRNA, another gene regulated by PXR, were significantly increased by these phytochemicals. Furthermore, an increase was observed of the MDR1 protein and its functional activity by tangeretin and by ginkgolides A and B. These findings strongly suggest that tangeretin and ginkgolides A and B activated PXR, thereby regulating detoxification enzymes and transporters in the intestines.
Remy, Estelle; Duque, Paula
2014-01-01
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617
Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong
2013-07-15
Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
ABCG2/BCRP interaction with the sea grass Thalassia testudinum.
Miguel, Verónica; Otero, Jon A; Barrera, Borja; Rodeiro, Idania; Prieto, Julio G; Merino, Gracia; Álvarez, Ana I
2015-12-01
The aqueous ethanolic extract from leaves of the marine plant Thalassia testudinum has shown antioxidant, cytoprotective, and neuroprotective properties. The chemical composition of this extract, rich in polyphenols, could interfere with active transport of drugs out of the cell and circumvent the phenomenon of multidrug resistance (MDR). The extract can act as an MDR modulator through its interaction with efflux transporters. The ABCG2/BCRP has been shown to confer MDR acting in tumor cells. To evaluate the interaction of ABCG2/BCRP with the extract, studies in cells overexpressing human BCRP transporter and its murine ortholog Bcrp1 were performed. T. testudinum extract could be included as MDR modulator, as interaction with ABCG2/BCRP has been shown through flow cytometry and MTT assays. The cells overexpressing ABCG2/BCRP in the presence of the extract (25-150 μg/mL) decreased the survival rates of the anti-tumoral mitoxantrone. Our results support its inclusion as a possible MDR modulator against tumor cells that overexpress ABCG2/BCRP.
Multidrug-resistant Mycobacterium tuberculosis in HIV-Infected Persons, Peru
Campos, Pablo E.; Suarez, Pedro G.; Sanchez, Jorge; Zavala, David; Arevalo, Jorge; Ticona, Eduardo; Nolan, Charles M.; Hooton, Thomas M.
2003-01-01
During 1999 to 2000, we identified HIV-infected persons with new episodes of tuberculosis (TB) at 10 hospitals in Lima-Peru and a random sample of other Lima residents with TB. Multidrug-resistant (MDR)-TB was documented in 35 (43%) of 81 HIV-positive patients and 38 (3.9%)of 965 patients who were HIV-negative or of unknown HIV status (p < 0.001). HIV-positive patients with MDR-TB were concentrated at three hospitals that treat the greatest numbers of HIV-infected persons with TB. Of patients with TB, those with HIV infection differed from those without known HIV infection in having more frequent prior exposure to clinical services and more frequent previous TB therapy or prophylaxis. However, MDR-TB in HIV-infected patients was not associated with previous TB therapy or prophylaxis. MDR-TB is an ongoing problem in HIV-infected persons receiving care in public hospitals in Lima and Callao; they represent sentinel cases for a potentially larger epidemic of nosocomial MDR-TB. PMID:14720398
Oudghiri, Amal; Karimi, Hind; Chetioui, Fouad; Zakham, Fathiah; Bourkadi, Jamal Eddine; Elmessaoudi, My Driss; Laglaoui, Amin; Chaoui, Imane; El Mzibri, Mohammed
2018-02-27
The emergence of extensively drug-resistant tuberculosis (XDR-TB) has raised public health concern for global TB control. Although multi drug-resistant tuberculosis (MDR- TB) prevalence and associated genetic mutations in Morocco are well documented, scarce information on XDR TB is available. Hence, the evaluation of pre-XDR and XDR prevalence, as well as the mutation status of gyrA, gyrB, rrs, tlyA genes and eis promoter region, associated with resistance to second line drugs, is of great value for better management of M/XDR TB in Morocco. To evaluate pre-XDR and XDR prevalence, as well as the mutation status of gyrA, gyrB, rrs, tlyA genes and eis promoter region, associated with resistance to second line drug resistance, in 703 clinical isolates from TB patients recruited in Casablanca, and to assess the usefulness of molecular tools in clinical laboratories for better management of M/XDR TB in Morocco. Drug susceptibility testing (DST) was performed by the proportional method for first line drugs, and then the selected MDR isolates were tested for second line drugs (Ofloxacin, Kanamycin, Amikacin and Capreomycin). Along with DST, all samples were subjected to rpoB, katG and p-inhA mutation analysis by PCR and DNA sequencing. MDR isolates as well as 30 pan-susceptible strains were subjected to PCR and DNA sequencing of gyrA, gyrB, rrs, tlyA genes and eis promoter, associated with resistance to fluoroquinolones and injectable drugs. Among the 703 analysed strains, 12.8% were MDR; Ser531Leu and Ser315Thr being the most common recorded mutations within rpoB and katG genes associated with RIF and INH resistance respectively. Drug susceptibility testing for second line drugs showed that among the 90 MDR strains, 22.2% (20/90) were resistant to OFX, 2.22% (2/90) to KAN, 3.33% (3/90) to AMK and 1.11% (1/90) to CAP. Genotypic analysis revealed that 19 MDR strains harbored mutations in the gyrA gene; the most recorded mutation being Asp91Ala accounting for 47.6% (10/21), and 2 isolates harbored mutations in the promoter region of eis gene. No mutation was found in gyrB, rrs and tlyA genes. Moreover, none of the pan-susceptible isolates displayed mutations in targeted genes. Most of mutations associated with SLD resistance occurred in gyrA gene (codons 90-94) and eis promoter region. These findings highlight the impact of mutations in gyrA on the development of fluroquinolones resistance and provide the first estimates of the proportion of pre-XDR-TB among MDR-TB cases in Morocco.
Multidrug-Resistant Salmonella enterica Serotype Typhi, Gulf of Guinea Region, Africa
Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine
2015-01-01
We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307
Avery, Lindsay M; Nicolau, David P
2018-04-01
Infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) are associated with significant mortality and costs. New drugs in development to combat these difficult-to-treat infections primarily target carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter baumannii. Areas covered: The authors summarize in vitro and in vivo efficacy studies, as well as available clinical trial findings, for new agents in development for treatment of infection caused by MDR-GNB. Information regarding dosage regimens utilized in clinical trials and key pharmacokinetic and pharmacodynamic considerations are provided if available. A summary of recently approved agents, delafloxacin and meropenem/vaborbactam, is also included. Expert opinion: The development of multiple novel agents to fight MDR-GNB is promising to help save the lives of patients who acquire infection, and judicious use of these agents is imperative once they come to market to prevent the development of resistance. The other component paramount to this field of research is implementation of effective infection control policies and carbapenem-resistant Enterobacteriaceae (CRE) carrier screening protocols to mitigate the worldwide spread of MDR-GNB. Further investigation of anti-infective synergistic combinations will also be important, as well as support for economic research to reveal the true cost-benefit of utilization of the new agents discussed herein.
Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming
2014-01-01
Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.
Vento, Todd J; Cole, David W; Mende, Katrin; Calvano, Tatjana P; Rini, Elizabeth A; Tully, Charla C; Zera, Wendy C; Guymon, Charles H; Yu, Xin; Cheatle, Kristelle A; Akers, Kevin S; Beckius, Miriam L; Landrum, Michael L; Murray, Clinton K
2013-02-05
The US military has seen steady increases in multidrug-resistant (MDR) gram-negative bacteria (GNB) infections in casualties from Iraq and Afghanistan. This study evaluates the prevalence of MDR GNB colonization in US military personnel. GNB colonization surveillance of healthy, asymptomatic military personnel (101 in the US and 100 in Afghanistan) was performed by swabbing 7 anatomical sites. US-based personnel had received no antibiotics within 30 days of specimen collection, and Afghanistan-based personnel were receiving doxycycline for malaria chemoprophylaxis at time of specimen collection. Isolates underwent genotypic and phenotypic characterization. The only colonizing MDR GNB recovered in both populations was Escherichia coli (p=0.01), which was seen in 2% of US-based personnel (all perirectal) and 11% of Afghanistan-based personnel (10 perirectal, 1 foot+groin). Individuals with higher off-base exposures in Afghanistan did not show a difference in overall GNB colonization or MDR E. coli colonization, compared with those with limited off-base exposures. Healthy US- and Afghanistan-based military personnel have community onset-MDR E. coli colonization, with Afghanistan-based personnel showing a 5.5-fold higher prevalence. The association of doxycycline prophylaxis or other exposures with antimicrobial resistance and increased rates of MDR E. coli colonization needs further evaluation.
miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.
Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen
2012-09-01
Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.
Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas
2017-01-01
ABSTRACT Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo. Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. PMID:28696229
Li, Ruichao; Xie, Miaomiao; Dong, Ning; Lin, Dachuan; Yang, Xuemei; Wong, Marcus Ho Yin; Chan, Edward Wai-Chi; Chen, Sheng
2018-03-01
Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.
Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance
Huang, Bao-Yuan; Zeng, Yu; Li, Ying-Jie; Huang, Xiao-Jun; Hu, Nan; Yao, Nan; Chen, Min-Feng; Yang, Zai-Gang; Chen, Zhe-Sheng; Zhang, Dong-Mei; Zeng, Chang-Qing
2017-01-01
The overexpression of ATP-binding cassette (ABC) transporters is the main cause of cancer multidrug resistance (MDR), which leads to chemotherapy failure. Uncaria alkaloids are the major active components isolated from uncaria, which is a common Chinese herbal medicine. In this study, the MDR-reversal activities of uncaria alkaloids, including rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine (Icory), hirsutine and hirsuteine, were screened; they all exhibited potent reversal efficacy when combined with doxorubicin. Among them, Icory significantly sensitized ABCB1-overexpressing HepG2/ADM and MCF-7/ADR cells to vincristine, doxorubicin and paclitaxel, but not to the non-ABCB1 substrate cisplatin. Noteworthy, Icory selectively reversed ABCB1-overexpressing MDR cancer cells but not ABCC1- or ABCG2-mediated MDR. Further mechanistic study revealed that Icory increased the intracellular accumulation of doxorubicin in ABCB1-overexpressing cells by blocking the efflux function of ABCB1. Instead of inhibiting ABCB1 expression and localization, Icory acts as a substrate of the ABCB1 transporter by competitively binding to substrate binding sites. Collectively, these results indicated that Icory reversed ABCB1-mediated MDR by suppressing its efflux function, and it would be beneficial to increase the efficacy of these types of uncaria alkaloids and develop them to be selective ABCB1-mediated MDR-reversal agents. PMID:28534954
Treatment strategy for a multidrug-resistant Klebsiella UTI.
Fleming, Erin; Heil, Emily L; Hynicka, Lauren M
2014-01-01
To describe the management strategy for a multidrug-resistant (MDR) Klebsiella urinary tract infection (UTI). A 69-year-old Caucasian woman with a past medical history of recurrent UTIs and a right-lung transplant presented with fever to 101.4°F, chills, malaise, and cloudy, foul-smelling urine for approximately 1 week. She was found to have a MDR Klebsiella UTI that was sensitive to tigecycline and cefepime. To further evaluate the degree of resistance Etest minimum inhibitory concentrations were requested for cefepime, amikacin, meropenem, and ertapenem. The patient received a 14-day course of amikacin, which resulted in resolution of her symptoms. One month later, the patient's UTI symptoms returned. The urine culture again grew MDR Klebsiella, sensitive only to tigecycline. Fosfomycin was initiated and resulted in limited resolution of her symptoms. Colistin was started, however, therapy was discontinued on day 5 secondary to the development of acute kidney injury. Despite the short course of therapy, the patient's symptoms resolved. The case presented lends itself well to numerous discussion items that are important to consider when determining optimal treatment for MDR Gram-negative bacilli (GNBs). Susceptibility testing is an important tool for optimizing antibiotic therapy, however, automated systems may overestimate the susceptibility profile for a MDR GNB. Treatment strategies evaluated to treat MDR GNB, include combination therapy with a carbepenem and synergy using polymyxin. We have described the management strategy for a MDR Klebsiella UTI, the consequences of the initial management strategy, and potential strategies to manage these types of infections in future patients.
Wang, Lixia; Li, Renzhong; Xu, Caihong; Zhang, Hui; Ruan, Yunzhou; Chen, Mingting; Wang, Dongmei; Dirlikov, Emilio; Du, Xin; Zhao, Jin; Zhao, Yanlin; Wang, ShengFen; Liu, Yuhong; Li, Liang; Falzon, Dennis; Sun, Yanni; Wang, Yu; Schwartländer, Bernhard; Scano, Fabio
2017-01-01
China has the world's second largest burden of multidrug-resistant tuberculosis (MDR-TB; resistance to at least isoniazid and rifampicin), with an estimated 57,000 cases (range, 48,000-67,000) among notified pulmonary TB patients in 2015. During October 1, 2006-June 30, 2014, China expanded MDR-TB care through a partnership with the Global Fund to Fight AIDS, Tuberculosis, and Malaria (Global Fund). We analyzed data on site expansion, patient enrolment, treatment outcomes, cost per patient, and overall programme expenditure. China expanded MDR-TB diagnostic and treatment services from 2 prefectures in 2006 to 92 prefectures, covering 921 of the country's 3,000 counties by June 2014. A total of 130,910 patients were tested for MDR-TB, resulting in 13,744 laboratory-confirmed cases, and 9,183 patients started on MDR-TB treatment. Treatment success was 48.4% (2011 cohort). The partnership between China and the Global Fund resulted in enormous gains. However, changes to health system TB delivery and financing coincided with the completion of the Global Fund Programme, and could potentially impact TB and MDR-TB control. Transition to full country financial ownership is proving difficult, with a decline in enrollment and insufficient financial coverage. Given needed improvement to the current treatment success rates, these factors jeopardise investments made for MDR-TB control and care. China now has a chance to cement its status in TB control by strengthening future financing and ensuring ongoing commitment to quality service delivery.
Ma, Pengkai; Chen, Jianhua; Bi, Xinning; Li, Zhihui; Gao, Xing; Li, Hongpin; Zhu, Hongyu; Huang, Yunfang; Qi, Jing; Zhang, Yujie
2018-04-18
Multidrug resistance (MDR) is thought to be the major obstacle leading to the failure of paclitaxel (PTX) chemotherapy. To solve this problem, a glucose transporter-mediated and matrix metalloproteinase 2 (MMP2)-triggered mitochondrion-targeting conjugate [glucose-polyethylene glycol (PEG)-peptide-triphenylphosponium-polyamidoamine (PAMAM)-PTX] composed of a PAMAM dendrimer and enzymatic detachable glucose-PEG was constructed for mitochondrial delivery of PTX. The conjugate was characterized by a 30 nm sphere particle, MMP2-sensitive PEG outer layer detachment from PAMAM, and glutathione (GSH)-sensitive PTX release. It showed higher cellular uptake both in glucose transporter 1 (GLUT1) overexpressing MCF-7/MDR monolayer cell (2D) and multicellular tumor spheroids (3D). The subcellular location study showed that it could specifically accumulate in the mitochondria. Moreover, it exhibited higher cytotoxicity against MCF-7/MDR cells, which significantly reverse the MDR of MCF-7/MDR cells. The MDR reverse might be caused by reducing the ATP content through destroying the mitochondrial membrane as well as by down-regulating P-gp expression. In vivo imaging and tissue distribution indicated more conjugate accumulated in the tumor of the tumor-bearing mice model. Consequently, the conjugate showed better tumor inhibition rate and lower body weight loss, which demonstrated that it possessed high efficiency and low toxicity. This study provides glucose-mediated GLUT targeting, MMP2-responsive PEG detachment, triphenylphosponium-mediated mitochondria targeting, and a GSH-sensitive intracellular drug release conjugate that has the potential to be exploited for overcoming MDR of PTX.
A feasibility study of the Xpert MTB/RIF test at the peripheral level laboratory in China.
Ou, Xichao; Xia, Hui; Li, Qiang; Pang, Yu; Wang, Shengfen; Zhao, Bing; Song, Yuanyuan; Zhou, Yang; Zheng, Yang; Zhang, Zhijian; Zhang, Zhiying; Li, Junchen; Dong, Haiyan; Chi, Junying; Zhang, Jack; Kam, Kai Man; Huan, Shitong; Jun, Yue; Chin, Daniel P; Zhao, Yanlin
2015-02-01
To evaluate the performance of Xpert MTB/RIF (MTB/RIF) in the county-level tuberculosis (TB) laboratory in China. From April 2011 to January 2012, patients with suspected multidrug-resistant tuberculosis (MDR-TB) and non-MDR-TB were enrolled consecutively from four county-level TB laboratories. The detection of Mycobacterium tuberculosis (MTB) by MTB/RIF was compared to detection by Löwenstein-Jensen culture. The detection of rifampin resistance was compared to detection by conventional drug-susceptibility testing. The impact of multiple specimens on the performance of MTB/RIF was also evaluated. A total of 2142 suspected non-MDR-TB cases and 312 suspected MDR-TB cases were enrolled. For MTB detection in suspected non-MDR-TB cases, the sensitivity and specificity of MTB/RIF were 94.4% and 90.2%, respectively. The sensitivity in smear-negative patients was 88.8%. For the detection of rifampin resistance in suspected non-MDR-TB cases, the sensitivity and specificity of MTB/RIF were 87.1% and 97.9%, respectively. For the detection of rifampin resistance in suspected MDR-TB cases, the sensitivity and specificity of MTB/RIF were 87.1% and 91.0%, respectively. Using multiple sputum specimens had no significant influence on the performance of MTB/RIF for MTB detection. The introduction of MTB/RIF could increase the accuracy of detection of MTB and rifampin resistance in peripheral-level TB laboratories in China. One single specimen is adequate for TB diagnosis by MTB/RIF. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Dongmei; Dirlikov, Emilio; Du, Xin; Zhao, Jin; Wang, ShengFen; Falzon, Dennis; Sun, Yanni; Wang, Yu; Schwartländer, Bernhard; Scano, Fabio
2017-01-01
China has the world’s second largest burden of multidrug-resistant tuberculosis (MDR-TB; resistance to at least isoniazid and rifampicin), with an estimated 57,000 cases (range, 48,000–67,000) among notified pulmonary TB patients in 2015. During October 1, 2006–June 30, 2014, China expanded MDR-TB care through a partnership with the Global Fund to Fight AIDS, Tuberculosis, and Malaria (Global Fund). We analyzed data on site expansion, patient enrolment, treatment outcomes, cost per patient, and overall programme expenditure. China expanded MDR-TB diagnostic and treatment services from 2 prefectures in 2006 to 92 prefectures, covering 921 of the country’s 3,000 counties by June 2014. A total of 130,910 patients were tested for MDR-TB, resulting in 13,744 laboratory-confirmed cases, and 9,183 patients started on MDR-TB treatment. Treatment success was 48.4% (2011 cohort). The partnership between China and the Global Fund resulted in enormous gains. However, changes to health system TB delivery and financing coincided with the completion of the Global Fund Programme, and could potentially impact TB and MDR-TB control. Transition to full country financial ownership is proving difficult, with a decline in enrollment and insufficient financial coverage. Given needed improvement to the current treatment success rates, these factors jeopardise investments made for MDR-TB control and care. China now has a chance to cement its status in TB control by strengthening future financing and ensuring ongoing commitment to quality service delivery. PMID:28628669
Faour Kassem, Diana; Shahar, Naama; Ocampo, Smadar; Bader, Tarif; Zonis, Zeev; Glikman, Daniel
2017-05-01
As the civil war in Syria enters its fifth year, the Israeli government continues to provide humanitarian aid to Syrian civilians in Israeli hospitals. Many wounded Syrian children are treated at the Galilee Medical Center (GMC). Due to the patients' incomplete medical history and increasing infection rates in Syria, contact isolation and screening cultures for multi-drug resistant bacteria (MDR's) are conducted upon admission for all Syrian children. To describe the rate of MDR carriage in Syrian children and compare it to hospitalized Israeli children. Prospective collection of screening culture data of Syrian patients admitted to GMC between 6/2013-11/2014 and comparison with Israeli children admitted between 1-3/2014. Extended-spectrum beta- lactamase-producing Enterobateriaceae (ESBL), Vancomycin-resistant Enterococcus (VRE), Carbapenem-resistant Enterobacteriaceae (CRE), and Methicillin-resistant Staphylococcus aureus (MRSA) were considered MDR's. Of 47 pediatric Syrian patients, 41 were severely wounded. MDR's were found in 37 (79%) children; most of the isolates were ESBL+ Escherichia coli. Over half of the ESBL's were resistant to additional antibiotics such as sulfa and quinolones; no resistance to amikacin was found. In comparison, in 6 of 40 (15%) Israeli children, MDR's (all ESBL's) were found (p<0.001). In hospitalized Syrian children, contact isolation and screening cultures for MDR's have an important role in the prevention of nosocomial transmission and establishment of empiric antimicrobial protocols. In suspected infections in Syrian children, amikacin and carbapenems are the antimicrobials of choice. MDR's are carried to a lesser extent in Israeli children but due to their importance, further largescale research is needed.
Morphometric Analysis of Auxin-Mediated Development
NASA Astrophysics Data System (ADS)
Lewis, Daniel
Auxin controls many aspects of plant development through its effects on growth. Its distribution is controlled by specific tissue and organ level polar transport streams. The responses to environmental cues such as gravity light, nutrient availability are largely controlled by coordinated regulation of distinct auxin transport streams. Many plant responses to the environment involve changes in shape. Much can be learned about the underlying processes controlling plant form if the response is measured with sufficient resolution. Computer-aided analysis of digital images or 'machine vision' can be used to greatly increase the speed and consistency of data from a morphometric study of plant form. Advances in image acquisition and analysis pioneered at UW-Madison have allowed unprecedented resolution of the growth and gravitropism of Arabidopsis. A reverse genetic analysis was used to determine if the MDR-like ABC transporters influence auxin distribution important for plant development and the response to environmental cues in Arabidopsis. Mutations in MDR1 (At3g28860) reduce acropetal auxin transport in the root. This is correlated with deviation from the vertical axis. Mutations in MDR4 (At2g47000) reduce basipetal auxin transport in the root. This is correlated with hypergravitropism. It was theorized that reduced transport whithin the elongation zone is responsible for the increased curvature. Flavanols were found to regulate gravitropism upstream of MDR4. The mdr1 mdr4 double mutant showed additive but not synergistic phenotypes, suggesting that the two auxin transport streams are more independent than interdependent. MDR proteins seem to enhance auxin transport in situations where PIN-type effux alone is insufficient.
Nguyen, Hoa Binh; Nguyen, Nhung Viet; Tran, Huong Thi Giang; Nguyen, Hai Viet; Bui, Quyen Thi Tu
2016-01-01
Extensively drug-resistant tuberculosis (XDR-TB) represents an emerging public health problem worldwide. According to the World Health Organization, an estimated 9.7% of multidrug-resistant TB (MDR-TB) cases are defined as XDR-TB globally. The objective of this study was to determine the prevalence of drug resistance to second-line TB drugs among MDR-TB cases detected in the Fourth National Anti-Tuberculosis Drug Resistance Survey in Viet Nam. Eighty clusters of TB cases were selected using a probability-proportion-to-size approach. To identify MDR-TB cases, drug susceptibility testing (DST) was performed for the four major first-line TB drugs. DST of second-line drugs (ofloxacin, amikacin, kanamycin, capreomycin) was performed on isolates from MDR-TB cases to identify pre-XDR and XDR cases. A total of 1629 smear-positive TB cases were eligible for culture and DST. Of those, DST results for first-line drugs were available for 1312 cases, and 91 (6.9%) had MDR-TB. Second-line DST results were available for 84 of these cases. Of those, 15 cases (17.9%) had ofloxacin resistance and 6.0% were resistant to kanamycin and capreomycin. Five MDR-TB cases (6.0%) met the criteria of XDR-TB. This survey provides the first estimates of the proportion of XDR-TB among MDR-TB cases in Viet Nam and provides important information for local policies regarding second-line DST. Local policies and programmes that are geared towards TB prevention, early diagnosis and treatment with effective regimens are of high importance.
HIV, multidrug-resistant TB and depressive symptoms: when three conditions collide.
Das, Mrinalini; Isaakidis, Petros; Van den Bergh, Rafael; Kumar, Ajay M V; Nagaraja, Sharath Burugina; Valikayath, Asmaa; Jha, Santosh; Jadhav, Bindoo; Ladomirska, Joanna
2014-01-01
Management of multidrug-resistant TB (MDR-TB) patients co-infected with human immunodeficiency virus (HIV) is highly challenging. Such patients are subject to long and potentially toxic treatments and may develop a number of different psychiatric illnesses such as anxiety and depressive disorders. A mental health assessment before MDR-TB treatment initiation may assist in early diagnosis and better management of psychiatric illnesses in patients already having two stigmatising and debilitating diseases. To address limited evidence on the baseline psychiatric conditions of HIV-infected MDR-TB patients, we aimed to document the levels of depressive symptoms at baseline, and any alteration following individualized clinical and psychological support during MDR-TB therapy, using the Patient Health Questionnaire-9 (PHQ-9) tool, among HIV-infected patients. This was a retrospective review of the medical records of an adult (aged >15 years) HIV/MDR-TB cohort registered for care during the period of August 2012 through to March 2014. A total of 45 HIV/MDR-TB patients underwent baseline assessment using the PHQ-9 tool, and seven (16%) were found to have depressive symptoms. Of these, four patients had moderate to severe depressive symptoms. Individualized psychological and clinical support was administered to these patients. Reassessments were carried out for all patients after 3 months of follow-up, except one, who died during the period. Among these 44 patients, three with baseline depressive symptoms still had depressive symptoms. However, improvements were observed in all but one after 3 months of follow-up. Psychiatric illnesses, including depressive symptoms, during MDR-TB treatment demand attention. Routine administration of baseline mental health assessments by trained staff has the potential to assist in determining appropriate measures for the management of depressive symptoms during MDR-TB treatment, and help in improving overall treatment outcomes. We recommend regular monitoring of mental health status by trained counsellors or clinical staff, using simple, validated and cost-effective tools.
Whichard, Jean M; Medalla, Felicita; Hoekstra, Robert M; McDermott, Patrick F; Joyce, Kevin; Chiller, Tom; Barrett, Timothy J; White, David G
2010-03-01
Although multidrug-resistant (MDR) non-Typhi Salmonella (NTS) strains are a concern in food production, determining resistance to multiple antimicrobial agents at slaughter or processing may be impractical. Single antimicrobial resistance results for predicting multidrug resistance are desirable. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value were used to determine each antimicrobial agent's ability to predict MDR phenotypes of human health significance: ACSSuT (resistance to at least ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline) in NTS isolates, and MDR-AmpC-SN (resistance to ACSSuT, additional resistance to amoxicillin-clavulanate and to ceftiofur, and decreased susceptibility [MIC >= 2 microg/ml] to ceftriaxone) in NTS serotype Newport. The U.S. National Antimicrobial Resistance Monitoring System determined MICs to 15 or more antimicrobial agents for 9,955 NTS isolates from humans from 1999 to 2004 and 689 NTS isolates from retail meat from 2002 to 2004. A total of 847 (8.5%) human and 26 (3.8%) retail NTS isolates were ACSSuT; 995 (10.0%) human and 16 (2.3%) retail isolates were serotype Newport. Among Salmonella Newport, 204 (20.5%) human and 9 (56.3%) retail isolates were MDR-AmpC-SN. Chloramphenicol resistance provided the highest PPVs for ACSSuT among human (90.5%; 95% confidence interval, 88.4 to 92.3) and retail NTS isolates (96.3%; 95% confidence interval, 81.0 to 99.9). Resistance to ceftiofur and to amoxicillin-clavulanate and decreased susceptibility to ceftriaxone provided the highest PPVs (97.1, 98.1, and 98.6%, respectively) for MDR-AmpC-SN from humans. High PPVs for these agents applied to retail meat MDR-AmpC-SN, but isolate numbers were lower. Variations in MIC results may complicate ceftriaxone's predictive utility. Selecting specific antimicrobial resistance offers practical alternatives for predicting MDR phenotypes. Chloramphenicol resistance works best for ACSSuT-NTS, and resistance to ceftiofur, amoxicillin-clavulanate, or chloramphenicol works best for MDR-AmpC-SN.
Controlling multidrug-resistant tuberculosis and access to expensive drugs: a rational framework.
Pablos-Mendez, Ariel; Gowda, Deepthiman K.; Frieden, Thomas R.
2002-01-01
The emergence and spread of multidrug-resistant tuberculosis (MDR-TB), i.e. involving resistance to at least isoniazid and rifampicin, could threaten the control of TB globally. Controversy has emerged about the best way of confronting MDR-TB in settings with very limited resources. In 1999, the World Health Organization (WHO) created a working group on DOTS-Plus, an initiative exploring the programmatic feasibility and cost-effectiveness of treating MDR-TB in low-income and middle-income countries, in order to consider the management of MDR-TB under programme conditions. The challenges of implementation have proved more daunting than those of access to second-line drugs, the prices of which are dropping. Using data from the WHO/International Union Against Tuberculosis and Lung Disease surveillance project, we have grouped countries according to the proportion of TB patients completing treatment successfully and the level of MDR-TB among previously untreated patients. The resulting matrix provides a reasonable framework for deciding whether to use second-line drugs in a national programme. Countries in which the treatment success rate, i.e. the proportion of new patients who complete the scheduled treatment, irrespective of whether bacteriological cure is documented, is below 70% should give the highest priority to introducing or improving DOTS, the five-point TB control strategy recommended by WHO and the International Union Against Tuberculosis and Lung Disease. A poorly functioning programme can create MDR-TB much faster than it can be treated, even if unlimited resources are available. There is no single prescription for controlling MDR-TB but the various tools available should be applied wisely. Firstly, good DOTS and infection control; then appropriate use of second-line drug treatment. The interval between the two depends on the local context and resources. As funds are allocated to treat MDR-TB, human and financial resources should be increased to expand DOTS worldwide. PMID:12132008
Taneja, Neha; Chellaiyan, Vinoth Gnana; Daral, Shailaja; Adhikary, Mrinmoy; Das, Timiresh Kumar
2017-08-01
Multi Drug Resistant Tuberculosis (MDR TB) has emerged as a significant public health problem in India. The prolonged treatment duration in MDR TB is a challenge in achieving treatment completion and poses a threat to TB control in the country. Home based care is an approach accepted by patients because it helps in ameliorating their understanding of TB, improving the compliance and reducing stigma in the community. To assess the outcome of Home-Based Care (HC) versus No Home-Based Care (NHC) on the treatment of MDR TB patients registered at two chest clinics in Eastern Delhi. A quasi-experimental study was done among diagnosed MDR TB patients receiving Category IV regimen under Revised National Tuberculosis Control Programme (RNTCP) from two government chest clinics in Eastern Delhi during May 2014 to May 2016. In the control arm, 50 MDR TB patients at one of the chest clinics were offered the standard Category IV regimen under RNTCP; while in the intervention arm, 50 MDR TB patients at the second chest clinic were provided home based care (counselling, support for completion of treatment, rehabilitation, and nutritional support) along with the standard treatment. The primary outcome assessed was outcome of treatment, while secondary outcomes included stigma faced due to the disease, and impact of disease on family and community life. The primary outcome data was available for 32 (64%) participants in the intervention arm, and 38 (76%) participants in control arm. The treatment was significantly more successful in the intervention arm (p<0.03). The data on secondary outcomes was available for all participants. Stigma due to disease was significantly lower in the intervention arm (p<0.01); also rejection faced by participants from family and community due to disease was significantly lower among the HC group (p<0.05). Home-based care in MDR TB treatment holds potential in improving treatment outcomes of patient.
Rahman, B A; Wasfy, M O; Maksoud, M A; Hanna, N; Dueger, E; House, B
2014-07-01
Typhoid fever is common in developing countries, with an estimated 120 million infections and 700 000 annual deaths, worldwide. Fluoroquinolones have been the treatment of choice for infection with multidrug-resistant (MDR) Salmonella enterica serovar Typhi (S. Typhi). However, alarming reports of fluoroquinolone-resistance and failure of typhoid fever treatment have recently been published. To determine the proportion of S. Typhi isolates with reduced susceptibility to ciprofloxacin (RSC) from six countries in the Middle East and Central Asia, 968 S. Typhi isolates collected between 2002 and 2007 from Egypt, Uzbekistan, Pakistan, Qatar, Jordan and Iraq were tested for antibiotic susceptibility to five antibiotics using the disc-diffusion method. MDR was defined as resistance to amicillin, chloramphenicol and trimethoprim-sulfamethoxazole. The E-test was employed to determine the MIC of ciprofloxacin only. Nalidixic acid resistance was evaluated as a marker for RSC. Interpretations were made according to CLSI guidelines. MDR strains were considerably more prevalent in Iraq (83%) and Pakistan (52%) compared with the other countries studied (13-52%). Nearly all isolates were susceptible (99.7%) to ceftriaxone. RSC was detected in a total of 218 isolates (22%), mostly from Iraq (54/59, 92%), Uzbekistan (98/123, 80%), Qatar (23/43, 54%) and Pakistan (31/65, 47%). Many of these (21%) were also MDR. Use of nalidixic acid resistance as an indicator for RSC was 99% sensitive and 98% specific. This study reinforces the need for routine antimicrobial susceptibility surveillance of enteric fever isolates and close review of current therapeutic policies in the region.
Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A
2017-10-01
The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.
Zhang, Yangqing; Tang, Lina; Sun, Leilei; Bao, Junbo; Song, Cunxian; Huang, Laiqiang; Liu, Kexin; Tian, Yan; Tian, Ge; Li, Zhen; Sun, Hongfan; Mei, Lin
2010-06-01
Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line. Paclitaxel-loaded nanoparticles were prepared by a water-acetone solvent displacement method using commercial PCL and self-synthesized PCL/Poloxamer 188 compound, respectively. PCL/Poloxamer 188 nanoparticles were found to be of spherical shape and tended to have a rough and porous surface. The nanoparticles had an average size of around 220nm, with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a clear biphasic release pattern. There was an increased level of uptake of PCL/Poloxamer 188 nanoparticles (PPNP) in the paclitaxel-resistant human breast cancer cell line MCF-7/TAX, in comparison with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxol in the MCF-7/TAX cell culture, but the differences were not significant. However, the PCL/Poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than both of PCL nanoparticle formulation and Taxol(R), indicating that paclitaxel-loaded PCL/Poloxamer 188 nanoparticles could overcome MDR in human breast cancer cells and therefore could have considerable therapeutic potential for breast cancer. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Huang, Qingqing; Cai, Tiange; Li, Qianwen; Huang, Yinghong; Liu, Qian; Wang, Bingyue; Xia, Xi; Wang, Qi; Whitney, John C C; Cole, Susan P C; Cai, Yu
2018-11-01
Multidrug resistance (MDR) is the leading cause of failure for breast cancer in the clinic. Thus far, polymer-lipid hybrid nanoparticles (PLN) loaded chemotherapeutic agents has been used to overcome MDR in breast cancer. In this study, we prepared psoralen polymer-lipid hybrid nanoparticles (PSO-PLN) to reverse drug resistant MCF-7/ADR cells in vitro and in vivo. PSO-PLN was prepared by the emulsification evaporation-low temperature solidification method. The formulation, water solubility and bioavailability, particle size, zeta potential and entrapment efficiency, and in vitro release experiments were optimized in order to improve the activity of PSO to reverse MDR. Optimal formulation: soybean phospholipids 50 mg, poly(lactic-co-glycolic) acid (PLGA) 15 mg, PSO 3 mg, and Tween-80 1%. The PSO-PLN possessed a round appearance, uniform size, exhibited no adhesion. The average particle size was 93.59 ± 2.87 nm, the dispersion co-efficient was 0.249 ± 0.06, the zeta potential was 25.47 ± 2.84 mV. In vitro analyses revealed that PSO resistance index was 3.2, and PSO-PLN resistance index was 5.6, indicating that PSO-PLN versus MCF-7/ADR reversal effect was significant. Moreover, PSO-PLN is somewhat targeted to the liver, and has an antitumor effect in the xenograft model of drug-resistant MCF-7/ADR cells. In conclusion, PSO-PLN not only reverses MDR but also improves therapeutic efficiency by enhancing sustained release of PSO.
Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming
2017-09-01
Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment.
Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming
2017-01-01
Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment. PMID:28947984
Cost-effectiveness of treating multidrug-resistant tuberculosis.
Resch, Stephen C; Salomon, Joshua A; Murray, Megan; Weinstein, Milton C
2006-07-01
Despite the existence of effective drug treatments, tuberculosis (TB) causes 2 million deaths annually worldwide. Effective treatment is complicated by multidrug-resistant TB (MDR TB) strains that respond only to second-line drugs. We projected the health benefits and cost-effectiveness of using drug susceptibility testing and second-line drugs in a lower-middle-income setting with high levels of MDR TB. We developed a dynamic state-transition model of TB. In a base case analysis, the model was calibrated to approximate the TB epidemic in Peru, a setting with a smear-positive TB incidence of 120 per 100,000 and 4.5% MDR TB among prevalent cases. Secondary analyses considered other settings. The following strategies were evaluated: first-line drugs administered under directly observed therapy (DOTS), locally standardized second-line drugs for previously treated cases (STR1), locally standardized second-line drugs for previously treated cases with test-confirmed MDR TB (STR2), comprehensive drug susceptibility testing and individualized treatment for previously treated cases (ITR1), and comprehensive drug susceptibility testing and individualized treatment for all cases (ITR2). Outcomes were costs per TB death averted and costs per quality-adjusted life year (QALY) gained. We found that strategies incorporating the use of second-line drug regimens following first-line treatment failure were highly cost-effective compared to strategies using first-line drugs only. In our base case, standardized second-line treatment for confirmed MDR TB cases (STR2) had an incremental cost-effectiveness ratio of 720 dollars per QALY (8,700 dollars per averted death) compared to DOTS. Individualized second-line drug treatment for MDR TB following first-line failure (ITR1) provided more benefit at an incremental cost of 990 dollars per QALY (12,000 dollars per averted death) compared to STR2. A more aggressive version of the individualized treatment strategy (ITR2), in which both new and previously treated cases are tested for MDR TB, had an incremental cost-effectiveness ratio of 11,000 dollars per QALY (160,000 dollars per averted death) compared to ITR1. The STR2 and ITR1 strategies remained cost-effective under a wide range of alternative assumptions about treatment costs, effectiveness, MDR TB prevalence, and transmission. Treatment of MDR TB using second-line drugs is highly cost-effective in Peru. In other settings, the attractiveness of strategies using second-line drugs will depend on TB incidence, MDR burden, and the available budget, but simulation results suggest that individualized regimens would be cost-effective in a wide range of situations.
Wu, Min; Li, Tingting; Chen, Lilan; Peng, Sugang; Liao, Wei; Bai, Ruolan; Zhao, Xue; Yang, Hong; Wu, Chunhui; Zeng, Hongjuan; Liu, Yiyao
2016-03-02
Angelicae dahurica (Hoffm.) Benth. & Hook.f.ex Franch. & Sav combined with Pueraria and Gastrodia elata Bl. combined with Inula japonica Thunb. are widely used in herb-pairs of traditional chinese medicine. Previous studies have shown that Angelicae dahuricae essential oil (ADO) enhanced puerarin internalization into ABCB1-overexpressed Caco-2 cells. These findings suggest the possibility that essential oils may enhance the absorption via certain mechanisms related to ABCB1 and reverse multidrug resistance (MDR). ADO and essential oils from Inula japonica (IJO) may reverse ABCB1-mediated MDR, but this ability has not been investigated in detail in the well-established cancer cell lines. In this study, the underlying molecular mechanisms were further investigated to examine how IJO and ADO reverse MDR in the resistant human breast cancer cell line of MCF-7/ADR. Also this work may help uncover the conceivable compatibility mechanisms of above herb-pairs involved in ABCB1. The MDR human breast cancer MCF-7/ADR cells were treated with IJO, its sesquiterpene component isoalantolactone (ISO) or ADOat non- cytotoxic concentrations. The MDR ability was examined by measuring the sensitivity to doxorubicin (DOX), DOX accumulation and efflux, ABCB1 ATPase activity, ABCB1 expression, membrane fluidity, and stability and localization of lipid rafts and caveolae. Finally, the molecular modeling was performed to postulate how ISO interacts with ABCB1. Treating MCF-7/ADR cells with IJ oil, ISO or AD oil reversed MDR 2- to 3-fold, without affecting the sensitivity of the non-MDR parental cell line. Mechanistic studies showed that these oils down-regulated mRNA and protein expression of ABCB1, and reduced the stability of lipid rafts in the cell membrane, which has previously been shown to reduce ABCB1-mediated transport. On the other hand, IJO, ISO and ADO did not inhibit ABCB1 ATPase activity, and fluorescence polarization experiments showed that low concentrations of the oils did not appear to alter membrane fluidity, unlike some MDR-reversing agents, ISO showed a higher docking score than verapamil but lower than dofequidar and tariquidar. Our results suggest that IJO, ISO and ADO could reverse MDR by down-regulating ABCB1 expression and reducing lipid raft stability. These findings may be useful for developing safer and effective MDR reversal agents and also help find out the compatibility mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Schimke, R; Bernstein, B; Ambrosius, H
1977-01-01
The macrophage disappearance reaction (MDR) is a suitable test for detection of cell mediated immunity against bovine gamma globulin (BGG) and human serum albumin (HSA) in guinea pigs. The MDR is a technical simple, good manipulable, and quantifiable test. The optimal test conditions for the antigens BGC and HSA are the following: Peritoneal exudat cells (PEC) were stimulated with paraffin oil. On the 5th day after receiving oil the animals were injected with 80 microgram BGG or 30 microgram HSA i.p. 5 hours later the PEC were harvested and counted. With the MDR it is possible to detect differences with respect to degree of cell-mediated immunity. Supernatants of sensitized lymphocytes produces the MDR too.
Pérez-Bosque, Anna; Miró, Lluïsa; Maijó, Mònica; Polo, Javier; Campbell, Joy M; Russell, Louis; Crenshaw, Joe D; Weaver, Eric; Moretó, Miquel
2016-01-01
Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis.
Tsujimura, Shizuyo; Tanaka, Yoshiya
2012-02-01
Although corticosteroids, immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) are widely used in the treatment of various systemic autoimmune diseases such as systemic lupus erythematosus (SLE), we often experience patients with systemic autoimmune diseases who are resistant to these treatments. P-glycoprotein (P-gp) of membrane transporters, a product of the multiple drug resistance (MDR)-1 gene, is known to play a pivotal role in the acquisition of drug resistance to chemotherapy in malignancy. However, the relevance of MDR-1 and P-gp to resting and activated lymphocytes, which are the major target in the treatment of systemic autoimmune diseases, remains unclear. Studies from our laboratories found surface expression of P-gp on peripheral lymphocytes in patients with SLE and a significant correlation between the expression level and disease activity. Such expression is induced not only by genotoxic stresses but also by various stimuli including cytokines, resulting in active efflux of drugs from the cytoplasm of lymphocytes, resulting in drug-resistance and high disease activity. However, the use of both P-gp antagonists (e.g., cyclosporine) and inhibition of P-gp synthesis with intensive immunosuppressive therapy successfully reduces the efflux of corticosteroids from lymphocytes in vitro, suggesting that P-gp antagonists and P-gp synthesis inhibitors could be used to overcome drug-resistance in vivo and improve outcome. In conclusion, lymphocytes activated by various stimuli in patients with highly active disease apparently acquire MDR-1-mediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. The expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable target to combat drug resistance in patients with active systemic autoimmune diseases.
Bergen, Phillip J.; Tsuji, Brian T.; Bulitta, Jurgen B.; Forrest, Alan; Jacob, Jovan; Sidjabat, Hanna E.; Paterson, David L.; Nation, Roger L.; Li, Jian
2011-01-01
Combination therapy may be required for multidrug-resistant (MDR) Pseudomonas aeruginosa. The aim of this study was to systematically investigate bacterial killing and emergence of colistin resistance with colistin and doripenem combinations against MDR P. aeruginosa. Studies were conducted in a one-compartment in vitro pharmacokinetic/pharmacodynamic model for 96 h at two inocula (∼106 and ∼108 CFU/ml) against a colistin-heteroresistant reference strain (ATCC 27853) and a colistin-resistant MDR clinical isolate (19147 n/m). Four combinations utilizing clinically achievable concentrations were investigated. Microbiological response was examined by log changes and population analysis profiles. Colistin (constant concentrations of 0.5 or 2 mg/liter) plus doripenem (peaks of 2.5 or 25 mg/liter every 8 h; half-life, 1.5 h) substantially increased bacterial killing against both strains at the low inoculum, while combinations containing colistin at 2 mg/liter increased activity against ATCC 27853 at the high inoculum; only colistin at 0.5 mg/liter plus doripenem at 2.5 mg/liter failed to improve activity against 19147 n/m at the high inoculum. Combinations were additive or synergistic against ATCC 27853 in 16 and 11 of 20 cases (4 combinations across 5 sample points) at the 106- and 108-CFU/ml inocula, respectively; the corresponding values for 19147 n/m were 16 and 9. Combinations containing doripenem at 25 mg/liter resulted in eradication of 19147 n/m at the low inoculum and substantial reductions in regrowth (including to below the limit of detection at ∼50 h) at the high inoculum. Emergence of colistin-resistant subpopulations of ATCC 27853 was substantially reduced and delayed with combination therapy. This investigation provides important information for optimization of colistin-doripenem combinations. PMID:21911563
Law, I L G; Loo, J F C; Kwok, H C; Yeung, H Y; Leung, C C H; Hui, M; Wu, S Y; Chan, H S; Kwan, Y W; Ho, H P; Kong, S K
2018-03-01
With the emergence of multi- and extensive-drug (MDR/XDR) resistant Mycobacterium tuberculosis (M. tb), tuberculosis (TB) persists as one of the world's leading causes of death. Recently, isothermal DNA amplification methods received much attention due to their ease of translation onto portable point-of-care (POC) devices for TB diagnosis. In this study, we aimed to devise a simple yet robust detection method for M. tb. Amongst the numerous up-and-coming isothermal techniques, Recombinase Polymerase Amplification (RPA) was chosen for a real-time detection of TB with or without MDR. In our platform, real-time RPA (RT-RPA) was integrated on a lab-on-a-disc (LOAD) with on-board power to maintain temperature for DNA amplification. Sputa collected from healthy volunteers were spiked with respective target M. tb samples for testing. A limit of detection of 10 2 colony-forming unit per millilitre in 15 min was achieved, making early detection and differentiation of M. tb strains highly feasible in extreme POC settings. Our RT-RPA LOAD platform has also been successfully applied in the differentiation of MDR-TB from H37Ra, an attenuated TB strain. In summary, a quantitative RT-RPA on LOAD assay with a high level of sensitivity was developed as a foundation for further developments in medical bedside and POC diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.
2010-01-01
produced by Pseudomonas fluorescens [19] Inhibition of RNA and protein synthesis by targeting the isoleucine-binding site on the isoleucyl-transfer-RNA...multidrug-resistant (MDR) bacteria. We compared two methods of determining topical antimicrobial susceptibilities. Methods: Isolates of Pseudomonas ...aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA), extended spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae, and
Ochoa, Sara A; Cruz-Córdova, Ariadnna; Luna-Pineda, Victor M; Reyes-Grajeda, Juan P; Cázares-Domínguez, Vicenta; Escalona, Gerardo; Sepúlveda-González, Ma Eugenia; López-Montiel, Fernanda; Arellano-Galindo, José; López-Martínez, Briceida; Parra-Ortega, Israel; Giono-Cerezo, Silvia; Hernández-Castro, Rigoberto; de la Rosa-Zamboni, Daniela; Xicohtencatl-Cortes, Juan
2016-01-01
In recent years, an increase of uropathogenic Escherichia coli (UPEC) strains with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that complicate therapy for urinary tract infections (UTIs) has been observed and has directly impacted costs and extended hospital stays. The aim of this study was to determine MDR- and XDR-UPEC clinical strains, their virulence genes, their phylogenetic groups and to ascertain their relationship with integrons and genetic diversity. From a collection of 500 UPEC strains, 103 were selected with MDR and XDR characteristics. MDR-UPEC strains were mainly associated with phylogenetic groups D (54.87%) and B2 (39.02%) with a high percentage (≥70%) of several fimbrial genes ( ecpA, fimH, csgA , and papG II), an iron uptake gene ( chuA ), and a toxin gene ( hlyA ). In addition, a moderate frequency (40-70%) of other genes ( iutD, tosA , and bcs A) was observed. XDR-UPEC strains were predominantly associated with phylogenetic groups B2 (47.61%) and D (42.85%), which grouped with ≥80 virulence genes, including ecpA, fimH, csgA, papG II, iutD , and chuA . A moderate frequency (40-70%) of the tosA and hlyA genes was observed. The class 1 and 2 integrons that were identified in the MDR- and XDR-UPEC strains were associated with phylogenetic groups D, B2, and A, while the XDR-UPEC strains that were associated with phylogenetic groups B2, D, and A showed an extended-spectrum beta-lactamase (ESBL) phenotype. The modifying enzymes ( aad A1, aad B, aac C, ant 1, dfr A1, dfr A17, and aad A4) that were identified in the variable region of class 1 and 2 integrons from the MDR strains showed resistance to gentamycin (56.25 and 66.66%, respectively) and trimethoprim-sulfamethoxazole (84.61 and 66.66%, respectively). The MDR- and XDR-UPEC strains were distributed into seven clusters and were closely related to phylogenic groups B2 and D. The diversity analysis by PFGE showed 42.68% of clones of MDR-UPEC and no clonal association in the XDR-UPEC strains. In conclusion, phylogenetic groups including virulence genes are widely associated with two integron classes (1 and 2) in MDR- and XDR-UPEC strains.
Demile, Biresaw; Zenebu, Amare; Shewaye, Haile; Xia, Siqing; Guadie, Awoke
2018-05-31
Ethiopia is one of the world health organization defined higher tuberculosis (TB) burden countries where the disease remains a massive public health threat. This study aimed to identify the prevalence and associated factors of multidrug-resistant tuberculosis (MDR-TB) using all armed force and civilian TB attendants in a tertiary level armed force hospital, where data for MDR-TB are previously unpublished. Cross-sectional study was conducted from September 2014 to August 2015 in a tertiary level Armed Force Referral and Teaching Hospital (AFRTH), Ethiopia. Armed force members (n = 251) and civilians (n = 130) which has been undergone TB diagnosis at AFRTH were included. All the specimens collected were subjected to microscopic smear observation, culture growth and drug susceptibility testing. Data were analyzed using statistical package for social sciences following binary logistic regression and Chi-square. P-values < 0.05 were considered statistically significant. Among 381 TB patients, 355 (93.2%) new and 26 (6.8%) retreatment cases were identified. Culture and smear positive TB cases were identified in 297 (77.9%) and 252 (66.1%) patients, respectively. The overall prevalence of MDR-TB in AFRTH was found 1.8% (1.3% for armed force members and 0.5% for civilian patients) all of which were previously TB treated cases. The entire treatment success rates were 92.6% achieved highest in the armed force (active and pension) than the civilian patients. The failure and dead cases were also found 2.5 and 4.6%, respectively. Using bivariate analysis, category of attendants and TB contact history were strong predictors of MDR-TB in armed force and civilian patients. Moreover, human immunodeficiency virus (HIV) infection also identified a significant (OR = 14.6; 95% CI = 2.3-92.1; p = 0.004) predicting factor for MDR-TB in armed force members. However, sex, age and body mass index were not associated factor for MDR-TB. In AFRTH, lower prevalence of MDR-TB was identified in armed force and civilian patients that were significantly associated with category of attendants, HIV infection and TB contact history. Considering armed force society as one segment of population significantly helps to plan a better MDR-TB control management, especially for countries classified as TB high burden country.
Forcina, Alessandra; Lorentino, Francesca; Marasco, Vincenzo; Oltolini, Chiara; Marcatti, Magda; Greco, Raffaella; Lupo-Stanghellini, Maria Teresa; Carrabba, Matteo; Bernardi, Massimo; Peccatori, Jacopo; Corti, Consuelo; Ciceri, Fabio
2018-03-02
Multidrug-resistant Gram-negative bacteria (MDR-GNB) are an emerging cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). Three-hundred forty-eight consecutive patients transplanted at our hospital from July 2012 to January 2016 were screened for a pretransplant MDR-GNB colonization and evaluated for clinical outcomes. A pretransplant MDR-GNB colonization was found in 16.9% of allo-HSCT and in 9.6% of auto-HSCT recipients. Both in auto- and in allo-HSCT, carriers of a MDR-GNB showed no significant differences in overall survival (OS), transplant-related mortality (TRM), or infection-related mortality (IRM) compared with noncarriers. OS at 2 years for carriers compared with noncarriers was 85% versus 81% (P = .262) in auto-HSCT and 50% versus 43% (P = .091) in allo-HSCT. TRM at 2 years was 14% versus 5% (P = .405) in auto-HSCT and 31% versus 25% (P = .301) in allo-HSCT. IRM at 2 years was 14% versus 2% (P = .142) in auto-HSCT and 23% versus 14% (P = .304) in allo-HSCT. In multivariate analysis, only grade III to IV acute graft-versus-host disease was an independent factor for reduced OS (P < .001) and increased TRM (P < .001) and IRM (P < .001). During the first year after transplant, we collected 73 GNB bloodstream infectious (BSI) episodes in 54 patients, 42.4% of which sustained by a MDR-GNB. Rectal swabs positivity associated with the pathogen causing subsequent MDR-GNB BSI episodes in 13 of 31 (41.9%). Overall, OS at 4 months from MDR-GNB BSI episode onset was of 67.9%, with a 14-day attributed mortality of 12.9%, not being significantly different between carriers and noncarriers (P = .207). We conclude that in this extended single-center experience, a pretransplant MDR-GNB colonization did not significantly influence OS, TRM, and IRM both in auto- and allo-HSCT settings and that MDR-GNB attributed mortality can be controlled in carriers when an early pre-emptive antimicrobial therapy is started in case of neutropenic fever. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Doublet, Benoît; Praud, Karine; Bertrand, Sophie; Collard, Jean-Marc; Weill, François-Xavier; Cloeckaert, Axel
2008-10-01
Salmonella genomic island 1 (SGI1) is an integrative mobilizable element that harbors a multidrug resistance (MDR) gene cluster. Since its identification in epidemic Salmonella enterica serovar Typhimurium DT104 strains, variant SGI1 MDR gene clusters conferring different MDR phenotypes have been identified in several S. enterica serovars and classified as SGI1-A to -O. A study was undertaken to characterize SGI1 from serovar Kentucky strains isolated from travelers returning from Africa. Several strains tested were found to contain the partially characterized variant SGI1-K, recently described in a serovar Kentucky strain isolated in Australia. This variant contained only one cassette array, aac(3)-Id-aadA7, and an adjacent mercury resistance module. Here, the uncharacterized part of SGI1-K was sequenced. Downstream of the mer module similar to that found in Tn21, a mosaic genetic structure was found, comprising (i) part of Tn1721 containing the tetracycline resistance genes tetR and tet(A); (ii) part of Tn5393 containing the streptomycin resistance genes strAB, IS1133, and a truncated tnpR gene; and (iii) a Tn3-like region containing the tnpR gene and the beta-lactamase bla(TEM-1) gene flanked by two IS26 elements in opposite orientations. The rightmost IS26 element was shown to be inserted into the S044 open reading frame of the SGI1 backbone. This variant MDR region was named SGI1-K1 according to the previously described variant SGI1-K. Other SGI1-K MDR regions due to different IS26 locations, inversion, and partial deletions were characterized and named SGI1-K2 to -K5. Two new SGI1 variants named SGI1-P1 and -P2 contained only the Tn3-like region comprising the beta-lactamase bla(TEM-1) gene flanked by the two IS26 elements inserted into the SGI1 backbone. Three other new variants harbored only one IS26 element inserted in place of the MDR region of SGI1 and were named SGI1-Q1 to -Q3. Thus, in serovar Kentucky, the SGI1 MDR region undergoes recombinational and insertional events of transposon and insertion sequences, resulting in a higher diversity of MDR gene clusters than previously reported and consequently a higher diversity of MDR phenotypes.
Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis
Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio
2016-01-01
Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284
Efflux Pump Gene Expression in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates
Jiang, Yi; Wei, Jianhao; Zhao, Li-li; Zhao, Xiuqin; Lu, Jianxin; Wan, Kanglin
2015-01-01
Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis. PMID:25695504
Simons, S O; van der Laan, T; Mulder, A; van Ingen, J; Rigouts, L; Dekhuijzen, P N R; Boeree, M J; van Soolingen, D
2014-10-01
There is an urgent need for rapid and accurate diagnosis of pyrazinamide-resistant multidrug-resistant tuberculosis (MDR-TB). No diagnostic algorithm has been validated in this population. We hypothesized that pncA sequencing added to rpoB mutation analysis can accurately identify patients with pyrazinamide-resistant MDR-TB. We identified from the Dutch national database (2007-11) patients with a positive Mycobacterium tuberculosis culture containing a mutation in the rpoB gene. In these cases, we prospectively sequenced the pncA gene. Results from the rpoB and pncA mutation analysis (pncA added to rpoB) were compared with phenotypic susceptibility testing results to rifampicin, isoniazid and pyrazinamide (reference standard) using the Mycobacterial Growth Indicator Tube 960 system. We included 83 clinical M. tuberculosis isolates containing rpoB mutations in the primary analysis. Rifampicin resistance was seen in 72 isolates (87%), isoniazid resistance in 73 isolates (88%) and MDR-TB in 65 isolates (78%). Phenotypic reference testing identified pyrazinamide-resistant MDR-TB in 31 isolates (48%). Sensitivity of pncA sequencing added to rpoB mutation analysis for detecting pyrazinamide-resistant MDR-TB was 96.8%, the specificity was 94.2%, the positive predictive value was 90.9%, the negative predictive value was 98.0%, the positive likelihood was 16.8 and the negative likelihood was 0.03. In conclusion, pyrazinamide-resistant MDR-TB can be accurately detected using pncA sequencing added to rpoB mutation analysis. We propose to include pncA sequencing in every isolate with an rpoB mutation, allowing for stratification of MDR-TB treatment according to pyrazinamide susceptibility. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Breed distribution of the nt230(del4) MDR1 mutation in dogs.
Gramer, Irina; Leidolf, Regina; Döring, Barbara; Klintzsch, Stefanie; Krämer, Eva-Maria; Yalcin, Ebru; Petzinger, Ernst; Geyer, Joachim
2011-07-01
A 4-bp deletion mutation associated with multiple drug sensitivity exists in the canine multidrug resistance (MDR1) gene. This mutation has been detected in more than 10 purebred dog breeds as well as in mixed breed dogs. To evaluate the breed distribution of this mutation in Germany, 7378 dogs were screened, including 6999 purebred and 379 mixed breed dogs. The study included dog breeds that show close genetic relationship or share breeding history with one of the predisposed breeds but in which the occurrence of the MDR1 mutation has not been reported. The breeds comprised Bearded Collies, Anatolian Shepherd Dog, Greyhound, Belgian Tervuren, Kelpie, Borzoi, Australian Cattle Dog and the Irish Wolfhound. The MDR1 mutation was not detected is any of these breeds, although it was found as expected in the Collie, Longhaired Whippet, Shetland Sheepdog, Miniature Australian Shepherd, Australian Shepherd, Wäller, White Swiss Shepherd, Old English Sheepdog and Border Collie with varying allelic frequencies for the mutant MDR1 allele of 59%, 45%, 30%, 24%, 22%, 17%, 14%, 4% and 1%, respectively. Allelic frequencies of 8% and 2% were determined in herding breed mixes and unclassified mixed breeds, respectively. Because of its widespread breed distribution and occurrence in many mixed breed dogs, it is difficult for veterinarians and dog owners to recognise whether MDR1-related drug sensitivity is relevant for an individual animal. This study provides a comprehensive overview of all affected dog breeds and many dog breeds that are probably unaffected on the basis of ∼15,000 worldwide MDR1 genotyping data. Copyright © 2010 Elsevier Ltd. All rights reserved.
Khosravi Rad, K; Falahati, M; Roudbary, M; Farahyar, S; Nami, S
2016-12-01
Candida albicans ( C. albicans ) is an opportunistic fungus that can colonize women's mucosal epithelial cell surfaces, causing vulvovaginitis in specific circumstances. The major genes contributing to drug resistance in C. albicans are the candida drug resistance ( CDR ) and multi drug resistance ( MDR ) genes. The purpose of this study was to evaluate the CDR-2 and MDR-1 gene expression patterns in C. albicans strains isolated from patients with recurrent vulvovaginal candidiasis. In this study, 40 isolates of fluconazole-resistant C. albicans were cultured on Sabouraud dextrose agar. These isolates were collected from women with vulvovaginitis who were referred to a clinic in Tehran, Iran, and transferred to a mycology laboratory. Then, RNA was extracted from the isolates using phenol-chloroform and glass beads, and the complementary DNA (cDNA) was synthetized. To detect the semi-quantitative expression of CDR-2 and MDR-1 genes, the reverse transcriptase-PCR (RT-PCR) technique was performed using specific primers. Our findings indicated that of the 40 C. albicans isolates, 35 (87.5%) strains were positive for mRNA of the CDR-2 gene, 32 (80%) strains expressed mRNA of the MDR-1 gene, and 30 (75%) strains were confirmed to express mRNA of both the CDR-2 and MDR-1 genes simultaneously using the RT-PCR assay. According to the obtained results, the expression rates of CDR-2 and MDR-1 genes were high in fluconazole-resistant C. albicans isolates, which can cause treatments to fail and result in chronic infections. Inhibiting these important genes using novel or natural agents can help with the treatment of chronic and recurrent vaginitis.
Huang, Sheng-Feng; Chang, Jung-San; Sheu, Chau-Chyun; Liu, Yu-Ting; Lin, Ying-Chi
2016-09-01
Pneumonia is a leading cause of death in medical intensive care units (MICUs). Delayed or inappropriate antibiotic therapy largely increases morbidity and mortality. Multidrug-resistant (MDR) micro-organisms are major reasons for inappropriate antibiotic use. Currently there is no good antibiotic decision-making tool designed for critically ill patients. The objective of this study was to develop a convenient MDR prediction scoring system for patients admitted to MICUs with pneumonia. A retrospective cohort study was conducted using databases and chart reviews of pneumonia patients admitted to a 30-bed MICU from 2012 to 2013. Forward logistic regression was applied to identify independent MDR risk factors for prediction tool development. A total of 283 pneumonia episodes from 263 patients with positive cultures from blood or respiratory secretions were recruited, of which 154 (54.4%) were MDR episodes. Long-term ventilation (OR = 11.09; P = 0.026), residence in a long-term care facility (OR = 2.50; P = 0.005), MDR infection/colonisation during the preceding 90 days (OR = 2.08; P = 0.041), current hospitalisation ≥2 days (OR = 1.98; P = 0.019) and stroke (OR = 1.81; P = 0.035) were identified as independent predictors for MDR pneumonia. The area under the ROC curve of this prediction tool was much higher than that of ATS/IDSA classification (0.69 vs. 0.54; P <0.001). The prediction accuracy of this tool with risk score ≥1 for MDR infections was 63.7%. This simple five-item, one-step scoring tool for critically ill patients admitted to the MICU could help physicians provide timely appropriate empirical antibiotics. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Re, G G; Willingham, M C; el Bahtimi, R; Brownlee, N A; Hazen-Martin, D J; Garvin, A J
1997-02-01
One reason for the failure of chemotherapy is the overexpression of the multidrug resistance gene, MDR1. The product of this gene is the multidrug transporter P-glycoprotein, an ATP-dependent pump that extrudes drugs from the cytoplasm. Some tumors inherently express P-glycoprotein, whereas others acquire the ability to do so after exposure to certain chemotherapeutic agents, often by the mechanism of gene amplification. Classical Wilms' tumors (nephroblastoma) typically respond to therapy and have a good prognosis. On the contrary, anaplastic Wilms' tumors are generally refractory to chemotherapy. These anaplastic variants are rare (4.5% of all Wilms' tumors reported in the United States), aggressive, and often fatal forms of tumor, which are commonly thought to result from the progression of classical Wilms' tumors. To investigate the basis for this differential response to therapy, we examined a number of classical and anaplastic Wilms' tumors for the expression of the MDR1 gene by immunohistochemical and mRNA analysis. Classical Wilms' tumors consistently did not express P-glycoprotein except in areas of tubular differentiation, as in normal kidney. Similarly, two of three anaplastic tumors failed to show P-glycoprotein expression. In contrast, cultured cells derived from a third anaplastic tumor, W4, exhibited strong P-glycoprotein expression and were drug resistant in vitro. Southern analysis revealed that W4 cells contained a single copy of the MDR1 gene per haploid genome similar to normal cells, demonstrating that the overexpression of MDR1 was not caused by gene amplification. Transcriptional activation of the MDR1 gene would be in keeping with the concept that p53 might act as a transcriptional repressor of the MDR1 gene.
Madgula, Vamsi L; Avula, Bharathi; Reddy V L, Niranjan; Khan, Ikhlas A; Khan, Shabana I
2007-04-01
Decursin (DE) and decursinol angelate (DA) were isolated from the roots of Angelica gigas (Apiaceae) and purified by HPLC. DE and DA have been reported to exhibit significant neuropharmacological activities, but their intestinal transport and permeability in terms of CNS penetration across the blood-brain barrier (BBB) are unknown. This study was undertaken to evaluate the IN VITRO intestinal and BBB transport of DE and DA using Caco-2 and MDR-MDCK cell monolayer models, respectively. The bidirectional transport of DE and DA across Caco-2 and MDR-MDCK monolayers was examined for 2 hours. Integrity of the monolayer was determined by TEER value and by monitoring the transport of Lucifer yellow (Ly) across the monolayers. Quantitation of DE and DA was performed by HPLC. DE and DA exhibited bidirectional transport with a Papp value in the range of 9.0-12.0x10(-6) cm/sec and 7.2-11.7x10(-6) cm/sec in Caco-2 and MDR-MDCK monolayers, respectively. The TEER values were in the range of 410-440 and 1170-1230 ohm cm2 for Caco-2 and MDR-MDCK monolayers, respectively. Ly measurement, the fluorescent marker of passive paracellular diffusion, resulted in Papp values of 2.5-5.0x10(-6) in Caco-2 and 6.0-8.0x10(-6) cm/sec in MDR-MDCK monolayers, confirming that the monolayer integrity was intact at the end of the experiment. Caco-2:human colonic adenocarcinoma DA:decursinol angelate DE:decursin Ly:Lucifer yellow MDCK:Madin-Darby canine kidney MDR:multidrug resistant Papp:apparent permeability TEER:transepithelial electrical resistance.
Costa, Patrícia de Oliveira; Atta, Elias Hallack; Silva, André Ricardo Araújo da
2015-01-01
This study aimed at evaluating the predictors and outcomes associated with multidrug-resistant gram-negative bacterial (MDR-GNB) infections in an oncology pediatric intensive care unit (PICU). Data were collected relating to all episodes of GNB infection that occurred in a PICU between January of 2009 and December of 2012. GNB infections were divided into two groups for comparison: (1) infections attributed to MDR-GNB and (2) infections attributed to non-MDR-GNB. Variables of interest included age, gender, presence of solid tumor or hematologic disease, cancer status, central venous catheter use, previous Pseudomonas aeruginosa infection, healthcare-associated infection, neutropenia in the preceding 7 days, duration of neutropenia, length of hospital stay before ICU admission, length of ICU stay, and the use of any of the following in the previous 30 days: antimicrobial agents, corticosteroids, chemotherapy, or radiation therapy. Other variables included initial appropriate antimicrobial treatment, definitive inadequate antimicrobial treatment, duration of appropriate antibiotic use, time to initiate adequate antibiotic therapy, and the 7- and 30-day mortality. Multivariate logistic regression analyses showed significant relationships between MDR-GNB and hematologic diseases (odds ratio [OR] 5.262; 95% confidence interval [95% CI] 1.282-21.594; p=0.021) and healthcare-associated infection (OR 18.360; 95% CI 1.778-189.560; p=0.015). There were significant differences between MDR-GNB and non-MDR-GNB patients for the following variables: inadequate initial empirical antibiotic therapy, time to initiate adequate antibiotic treatment, and inappropriate antibiotic therapy. Hematologic malignancy and healthcare-associated infection were significantly associated with MDR-GNB infection in this sample of pediatric oncology patients. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao
2018-01-01
Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.
Javed, Hasnain; Tahir, Zarfishan; Hashmi, Hafiza Jawairia; Jamil, Nazia
2016-06-01
Tuberculosis (TB) is a leading cause of death worldwide, with new threats of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. Pakistan is the fifth highest among high-burden TB countries and the fourth highest among high-burden drug-resistant-TB countries. Pakistan is the sixth most populous country in the world, and Pakistani youth is the highest population group in Pakistan and second in the world. This study was aimed at assessing the understanding, awareness, and mindset of university students toward TB, MDR TB, and XDR TB in Lahore. A cross-sectional questionnaire-based study was performed on 1137 individuals from three major public-sector universities in Lahore, Pakistan. Information regarding their knowledge and attitude toward MDR and XDR TB was gathered using a structured questionnaire. Data collected was analyzed using SPSS version 20. Male (531) and female (606) students were asked about different aspects of MDR and XDR TB. Although 80.47% students had good knowledge about simple TB, a very small fraction had awareness and appropriate knowledge about MDR/XDR-TB. Considering TB as a stigma, only 9.3% students disclosed that they had household TB contact. Only 25% students knew about XDR TB. Our results indicated that a small fraction of people knew the exact definition and treatment duration of MDR TB and XDR TB in our society. There is a need to increase the awareness and knowledge status of university students about MDR and XDR TB. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Liu, Zhongle; Myers, Lawrence C
2017-11-01
Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1 , a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2 , the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1 GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1 GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1 GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated. Copyright © 2017 American Society for Microbiology.
Cheng, L; Luo, S; Jin, C; Ma, H; Zhou, H; Jia, L
2013-11-14
The fucosyltransferase (FUT) family is the key enzymes in cell-surface antigen synthesis during various biological processes such as tumor multidrug resistance (MDR). The aim of this work was to analyze the alteration of FUTs involved in MDR in human hepatocellular carcinoma (HCC) cell lines. Using mass spectrometry (MS) analysis, the composition profiling of fucosylated N-glycans differed between drug-resistant BEL7402/5-FU (BEL/FU) cells and the sensitive line BEL7402. Further analysis of the expressional profiles of the FUT family in three pairs of parental and chemoresistant human HCC cell lines showed that FUT4, FUT6 and FUT8 were predominant expressed in MDR cell lines. The altered levels of FUT4, FUT6 and FUT8 were responsible for changed drug-resistant phenotypes of BEL7402 and BEL/FU cells both in vitro and in vivo. In addition, regulating FUT4, FUT6 or FUT8 expression markedly modulated the activity of the phosphoinositide 3 kinase (PI3K)/Akt signaling pathway and MDR-related protein 1 (MRP1) expression. Inhibition of the PI3K/Akt pathway by its specific inhibitor wortmannin, or by Akt small interfering RNA (siRNA), resulted in decreased MDR of BEL/FU cells, partly through the downregulation of MRP1. Taken together, our results suggest that FUT4-, FUT6- or FUT8-mediated MDR in human HCC is associated with the activation of the PI3K/Akt pathway and the expression of MRP1, but not of P-gp, indicating a possible novel mechanism by which the FUT family regulates MDR in human HCC.
Wong, Iris L. K.; Chan, Kin-Fai; Burkett, Brendan A.; Zhao, Yunzhe; Chai, Yi; Sun, Hongzhe; Chan, Tak Hang; Chow, Larry M. C.
2007-01-01
Drug resistance by overexpression of ATP-binding cassette (ABC) transporters is an impediment in the treatment of leishmaniasis. Flavonoids are known to reverse multidrug resistance (MDR) in Leishmania and mammalian cancers by inhibiting ABC transporters. Here, we found that synthetic flavonoid dimers with three (compound 9c) or four (compound 9d) ethylene glycol units exhibited a significantly higher reversing activity than other shorter or longer ethylene glycol-ligated dimers, with ∼3-fold sensitization of pentamidine and sodium stibogluconate (SSG) resistance in Leishmania, respectively. This modulatory effect was dosage dependent and not observed in apigenin monomers with the linker, suggesting that the modulatory effect is due to its bivalent nature. The mechanism of reversal activity was due to increased intracellular accumulation of pentamidine and total antimony in Leishmania. Compared to other MDR modulators such as verapamil, reserpine, quinine, quinacrine, and quinidine, compounds 9c and 9d were the only agents that can reverse SSG resistance. In terms of reversing pentamidine resistance, 9c and 9d have activities comparable to those of reserpine and quinacrine. Modulators 9c and 9d exhibited reversal activity on pentamidine resistance among LeMDR1−/−, LeMDR1+/+, and LeMDR1-overexpressed mutants, suggesting that these modulators are specific to a non-LeMDR1 pentamidine transporter. The LeMDR1 copy number is inversely related to pentamidine resistance, suggesting that it might be involved in importing pentamidine into the mitochondria. In summary, bivalency could be a useful strategy for the development of more potent ABC transporter modulators and flavonoid dimers represent a promising reversal agent for overcoming pentamidine and SSG resistance in parasite Leishmania. PMID:17194831
Moisoiu, Adriana; Mitran, Cristina Iulia; Mitran, Mãdãlina Irina; Huhu, Mihaela Roxana; Ioghen, Octavian Costin; Gheorghe, Adelina-Silvana; Tampa, Mircea; Georgescu, Simona Roxana; Popa, Mircea Ioan
2016-01-01
Multi-drug resistant tuberculosis (MDR-TB) is a major concern in the medical community. Knowledge about the drug resistance pattern of Mycobacterium tuberculosis strains plays an essential role in the management of the disease. We conducted a retrospective, 3-year study (2009-2011), in an urban area. We collected data on the drug resistance for 497 M. tuberculosis strains, isolated from patients with pulmonary TB. Among the 497 strains, we identified 158 MDR strains. Eighty medical recorders of patients infected with MDR strains were available and we included those patients in the study group. Of the 497 analysed strains, 8% were resistant to a single anti-TB drug. We identified 5.2% polyresistant drug strains, the most frequent combination being INH+EMB (1.4%). Of the 158 MDR strains identified (31.8%), over 60% were resistant to all first line anti-TB drugs tested. Most of them presented resistance to STM (86.1%) and EMB (67.7%). With respect to second line anti-TB drugs resistance to KM (23.4%) was the most common, followed by OFX (8.2%). With respect to the patients with MDR-TB, a percentage of 61.2% of them had a history of anti-TB treatment. Regarding lifestyle habits, 61.2% of the patients were smokers and 18.8% were abusing alcohol. Out of 51 patients, for whom information was available regarding their occupation, only 33.3 % were employees. MDR strains of Mycobacterium tuberculosis display an increased resistance to first line anti-TB drugs. Extension of resistance to second line anti-TB drugs narrows the therapeutic options. Knowledge of MDR-TB risk factors is imperative for the correct and rapid initiation of the treatment.
Soda, M; Fujitani, M; Michiuchi, R; Shibayama, A; Kanamori, K; Yoshikuni, S; Ohno, Y; Tsuchiya, T; Suzuki, A; Horie, K; Deguchi, T; Itoh, Y; Kitaichi, K
Individual differences in the pharmacokinetics (PK) of tacrolimus (TAC), an immunosuppressive drug, are reportedly associated with single-nucleotide polymorphisms (SNPs) of cytochrome P450 (CYP) 3A5 and multidrug resistance protein 1 (MDR1). We determined the effect of SNPs in CYP3A5 and MDR1 exons 21 and 26 on TAC PK parameters. Thirty-eight Japanese patients who underwent renal transplantation were genotyped for CYP3A5 and exons 21 and 26 of MDR1 with the use of polymerase chain reaction-restriction fragment length polymorphism analysis. TAC concentrations were determined 3 weeks after renal transplantation and PK parameters calculated. The area under the blood concentration-time curve (AUC) in CYP3A5 expressers was significantly higher than that in CYP3A5 nonexpressers (CYP3A5*3/*3). Patients with the MDR1 exon 21 A allele (G2677A) showed higher dose-adjusted AUC (AUC/D) and lower doses of TAC than those who did not possess that allele. Furthermore, patients with both CYP3A5*3/*3 and MDR1 G2677A showed significantly lower TAC doses and higher dose-adjusted trough levels (C/D) and AUC/D than those without those genotypes. There was no significant association between MDR1 exon 26 polymorphism and the PK of TAC. Patients with both CYP3A5*3/*3 and MDR1 G2677A had higher blood TAC concentrations than those without those genotypes. Japanese patients should be carefully monitored for consideration of lower TAC doses, because 24% of Japanese patients have double mutations. Copyright © 2017 Elsevier Inc. All rights reserved.
Seddon, J A; Weld, E D; Schaaf, H S; Garcia-Prats, A J; Kim, S; Hesseling, A C
2018-05-01
Paediatric anti-tuberculosis treatment trials have traditionally been limited to Phase I/II studies evaluating the drug pharmacokinetics and safety in children, with assumptions about efficacy made by extrapolating data from adults. However, it is increasingly being recognised that, in some circumstances, efficacy trials are required in children. The current treatment for children with multidrug-resistant tuberculosis (MDR-TB) is long and toxic; shorter, safer regimens, using novel agents, require urgent evaluation. Given the changing pattern of drug metabolism, disease spectrum and rates of TB disease confirmation with age, decisions around inclusion criteria require careful consideration. The most straightforward MDR-TB efficacy trial would include only children with confirmed MDR-TB and no additional drug resistance. Given that it may be unclear at the time treatment is initiated whether the diagnosis will ultimately be confirmed and what the final drug resistance profile will be, this presents a unique challenge in children. Recruiting only these children would, however, limit the generalisability of such a trial, as in reality the majority of children with TB do not have bacteriologically confirmed disease. Given the good existing treatment outcomes with current routine regimens for children with MDR-TB, conducting a superiority trial may not be the optimal design. Demonstrating non-inferiority of efficacy, but superiority with regard to safety, would be an alternative strategy. Using standardised control and experimental MDR-TB treatment regimens is challenging given the wide spectrum of paediatric disease. However, using variable regimens would make interpretation challenging. A paediatric MDR-TB efficacy trial is urgently needed, and with global collaboration and capacity building, is highly feasible.
Microcircuit Device Reliability. Digital Failure Rate Data
1981-01-01
Center Staff I IT Research Institute Under Contract to: Rome Air Development Center Griffiss AFB, NY 13441 fortes Ordering No. MDR- 17 biKi frbi...r ■■ ■—■ — SECURITY CLASSIFICATION Or THIS PAGE (Whin Dmlm Enlti»<l) REPORT DOCUMENTATION PAGE «EPO«TNUMBER MDR- 17 4. TITLE (md...MDR- 17 presents com- parisons between actual field experienced failure rates and MIL-HDBK-217C, Notice 1, predicted failure rates. The use of
Hsieh, Yi-Chen; Jeng, Jiann-Shing; Lin, Huey-Juan; Hu, Chaur-Jong; Yu, Chia-Chen; Lien, Li-Ming; Peng, Giia-Sheun; Chen, Chin-I; Tang, Sung-Chun; Chi, Nai-Fang; Tseng, Hung-Pin; Chern, Chang-Ming; Hsieh, Fang-I; Bai, Chyi-Huey; Chen, Yi-Rhu; Chiou, Hung-Yi; Jeng, Jiann-Shing; Tang, Sung-Chun; Yeh, Shin-Joe; Tsai, Li-Kai; Kong, Shin; Lien, Li-Ming; Chiu, Hou-Chang; Chen, Wei-Hung; Bai, Chyi-Huey; Huang, Tzu-Hsuan; Chi-Ieong, Lau; Wu, Ya-Ying; Yuan, Rey-Yue; Hu, Chaur-Jong; Sheu, Jau- Jiuan; Yu, Jia-Ming; Ho, Chun-Sum; Chen, Chin-I; Sung, Jia-Ying; Weng, Hsing-Yu; Han, Yu-Hsuan; Huang, Chun-Ping; Chung, Wen-Ting; Ke, Der-Shin; Lin, Huey-Juan; Chang, Chia-Yu; Yeh, Poh-Shiow; Lin, Kao-Chang; Cheng, Tain-Junn; Chou, Chih-Ho; Yang, Chun-Ming; Peng, Giia-Sheun; Lin, Jiann-Chyun; Hsu, Yaw-Don; Denq, Jong-Chyou; Lee, Jiunn-Tay; Hsu, Chang-Hung; Lin, Chun-Chieh; Yen, Che-Hung; Cheng, Chun-An; Sung, Yueh-Feng; Chen, Yuan-Liang; Lien, Ming-Tung; Chou, Chung-Hsing; Liu, Chia-Chen; Yang, Fu-Chi; Wu, Yi-Chung; Tso, An-Chen; Lai, Yu- Hua; Chiang, Chun-I; Tsai, Chia-Kuang; Liu, Meng-Ta; Lin, Ying-Che; Hsu, Yu-Chuan; Chen, Chih-Hung; Sung, Pi-Shan; Chern, Chang-Ming; Hu, Han-Hwa; Wong, Wen-Jang; Luk, Yun-On; Hsu, Li-Chi; Chung, Chih-Ping; Tseng, Hung-Pin; Liu, Chin-Hsiung; Lin, Chun-Liang; Lin, Hung-Chih; Hu, Chaur-Jong
2012-01-01
Background Endogenous estrogens play an important role in the overall cardiocirculatory system. However, there are no studies exploring the hormone metabolism and signaling pathway genes together on ischemic stroke, including sulfotransferase family 1E (SULT1E1), catechol-O-methyl-transferase (COMT), and estrogen receptor α (ESR1). Methods A case-control study was conducted on 305 young ischemic stroke subjects aged ≦ 50 years and 309 age-matched healthy controls. SULT1E1 -64G/A, COMT Val158Met, ESR1 c.454−397 T/C and c.454−351 A/G genes were genotyped and compared between cases and controls to identify single nucleotide polymorphisms associated with ischemic stroke susceptibility. Gene-gene interaction effects were analyzed using entropy-based multifactor dimensionality reduction (MDR), classification and regression tree (CART), and traditional multiple regression models. Results COMT Val158Met polymorphism showed a significant association with susceptibility of young ischemic stroke among females. There was a two-way interaction between SULT1E1 -64G/A and COMT Val158Met in both MDR and CART analysis. The logistic regression model also showed there was a significant interaction effect between SULT1E1 -64G/A and COMT Val158Met on ischemic stroke of the young (P for interaction = 0.0171). We further found that lower estradiol level could increase the risk of young ischemic stroke for those who carry either SULT1E1 or COMT risk genotypes, showing a significant interaction effect (P for interaction = 0.0174). Conclusions Our findings support that a significant epistasis effect exists among estrogen metabolic and signaling pathway genes and gene-environment interactions on young ischemic stroke subjects. PMID:23112845
Blanco, Rafael; Colombo, Alicia; Pardo, Rosa; Suazo, José
2017-04-01
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common craniofacial birth defect in humans, the etiology of which can be dependent on the interactions of multiple genes. We previously reported haplotype associations for polymorphic variants of interferon regulatory factor 6 (IRF6), msh homeobox 1 (MSX1), bone morphogenetic protein 4 (BMP4), and transforming growth factor beta 3 (TGFB3) in Chile. Here, we analyzed the haplotype-based gene-gene interaction for markers of these genes and NSCL/P risk in the Chilean population. We genotyped 15 single nucleoptide polymorphisms (SNPs) in 152 Chilean patients and 164 controls. Linkage disequilibrium (LD) blocks were determined using the Haploview software, and phase reconstruction was performed by the Phase program. Haplotype-based interactions were evaluated using the multifactor dimensionality reduction (MDR) method. We detected two LD blocks composed of two SNPs from BMP4 (Block 1) and three SNPs from IRF6 (Block 2). Although MDR showed no statistical significance for the global interaction model involving these blocks, we found four combinations conferring a statistically significantly increased NSCL/P risk (Block 1-Block 2): T-T/T-G C-G-T/G-A-T; T-T/T-G C-G-C/C-G-C; T-T/T-G G-A-T/G-A-T; and T-T/C-G G-A-T/G-A-T. These findings may reflect the presence of a genomic region containing potential causal variants interacting in the etiology of NSCL/P and may contribute to disentangling the complex etiology of this birth defect. © 2017 Eur J Oral Sci.
Dinh, Aurélien; Davido, Benjamin; Calin, Ruxandra; Paquereau, Julie; Duran, Clara; Bouchand, Frédérique; Phé, Véronique; Chartier-Kastler, Emmanuel; Rottman, Martin; Salomon, Jérôme; Plésiat, Patrick; Potron, Anaïs
2017-01-01
Urinary tract infections (UTI) are a major public health problem among spinal cord injury (SCI) patients. They frequently involve multidrug-resistant (MDR) bacteria. Ceftolozane/tazobactam (C/T) is a novel antibiotic combination approved for complicated intra-abdominal and UTI caused by Gram-positive and Gram-negative organisms, including some MDR strains. Little is known about the use of this agent for complicated febrile UTI occurring among SCI patients with neurogenic bladder due to MDR Pseudomonas aeruginosa (PSA). We describe the case of a 35-year-old man with SCI due to multiple sclerosis, with a neurogenic bladder necessitating a bilateral nephrostomy and double J catheter, who developed a febrile UTI due to a MDR PSA, which was susceptible only to amikacin and colistin. Because of this MDR phenotype and the underlying kidney disease, a 1000 mg (1000 mg per 500 mg) dose of C/T was given as monotherapy every 8 h for 7 days, after 3 days of colistin and amikacin. Thanks to this treatment, the patient had a favorable outcome with no clinical signs of UTI or positive urine culture up to 1 month after diagnosis. C/T seems to be an effective and safe therapeutic option for febrile UTI due to MDR PSA in SCI patients with neurogenic bladder, even when administered in monotherapy for 10 days.
Dommels, Y. E.M.; Zhu, S.; Davy, M.; Martell, S.; Hedderley, D.; Barnett, M. P.G.; McNabb, W. C.; Roy, N. C.
2007-01-01
Multidrug resistance targeted mutation (mdr1a−/−) mice spontaneously develop intestinal inflammation. The aim of this study was to further characterize the intestinal inflammation in mdr1a−/− mice. Intestinal samples were collected to measure inflammation and gene expression changes over time. The first signs of inflammation occurred around 16 weeks of age and most mdr1a−/− mice developed inflammation between 16 and 27 weeks of age. The total histological injury score was the highest in the colon. The inflammatory lesions were transmural and discontinuous, revealing similarities to human inflammatory bowel diseases (IBD). Genes involved in inflammatory response pathways were up-regulated whereas genes involved in biotransformation and transport were down-regulated in colonic epithelial cell scrapings of inflamed mdra1−/− mice at 25 weeks of age compared to non-inflamed FVB mice. These results show overlap to human IBD and strengthen the use of this in vivo model to study human IBD. The anti-inflammatory regenerating islet-derived genes were expressed at a lower level during inflammation initiation in non-inflamed colonic epithelial cell scrapings of mdr1a−/− mice at 12 weeks of age. This result suggests that an insufficiently suppressed immune response could be crucial to the initiation and development of intestinal inflammation in mdr1a−/− mice. PMID:18850176
Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar.
San, Lai Lai; Aye, Khin Saw; Oo, Nan Aye Thida; Shwe, Mu Mu; Fukushima, Yukari; Gordon, Stephen V; Suzuki, Yasuhiko; Nakajima, Chie
2018-06-21
Myanmar is a WHO high tuberculosis (TB) burden country with a high multidrug-resistant (MDR)-TB burden. Significantly a high prevalence of the Beijing genotype of Mycobacterium tuberculosis (MTB) among MDR-MTB has been reported previously. To explore whether an association exists between the prevalence of the Beijing MTB genotype and MDR-TB in Myanmar, we performed detailed genetic characterization of TB clinical isolates. A total of 265 MDR-MTB clinical isolates collected in 2010 and 2012 were subjected to spoligotyping, mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) analysis, SNP typing and drug resistance-associated gene sequencing including rpoC to detect potential compensatory evolution. Of the total MDR-MTB isolates, 79.2% (210/265) were of the Beijing genotype, the majority of which were the "modern" subtype. Beijing genotype isolates were differentiated by 15-loci MIRU-VNTR and a high clustering rate (53.0%) was observed in the modern subtype. These MIRU-VNTR patterns were similar to Beijing genotype clones spreading across Russia and Central Asia. High prevalence of katG Ser315Thr, and genetic evidence of XDR and pre-XDR and compensatory mutations in rpoC were observed among clustered isolates. MDR-MTB strains of the Beijing genotype might be spreading in Myanmar and present a major challenge to TB control in this country. Copyright © 2018. Published by Elsevier Ltd.
Tagliani, Elisa; Hassan, Mohamed Osman; Waberi, Yacine; De Filippo, Maria Rosaria; Falzon, Dennis; Dean, Anna; Zignol, Matteo; Supply, Philip; Abdoulkader, Mohamed Ali; Hassangue, Hawa; Cirillo, Daniela Maria
2017-12-15
Djibouti is a small country in the Horn of Africa with a high TB incidence (378/100,000 in 2015). Multidrug-resistant TB (MDR-TB) and resistance to second-line agents have been previously identified in the country but the extent of the problem has yet to be quantified. A national survey was conducted to estimate the proportion of MDR-TB among a representative sample of TB patients. Sputum was tested using XpertMTB/RIF and samples positive for MTB and resistant to rifampicin underwent first line phenotypic susceptibility testing. The TB supranational reference laboratory in Milan, Italy, undertook external quality assurance, genotypic testing based on whole genome and targeted-deep sequencing and phylogenetic studies. 301 new and 66 previously treated TB cases were enrolled. MDR-TB was detected in 34 patients: 4.7% of new and 31% of previously treated cases. Resistance to pyrazinamide, aminoglycosides and capreomycin was detected in 68%, 18% and 29% of MDR-TB strains respectively, while resistance to fluoroquinolones was not detected. Cluster analysis identified transmission of MDR-TB as a critical factor fostering drug resistance in the country. Levels of MDR-TB in Djibouti are among the highest on the African continent. High prevalence of resistance to pyrazinamide and second-line injectable agents have important implications for treatment regimens.
Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas; Staud, Frantisek
2017-09-01
Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. Copyright © 2017 American Society for Microbiology.
Garcia-Prats, A J; Svensson, E M; Weld, E D; Schaaf, H S; Hesseling, A C
2018-05-01
After decades of neglect, data are finally becoming available on the appropriate, safe dosing of key second-line anti-tuberculosis drugs used for treating multidrug-resistant tuberculosis (MDR-TB) in children, including levofloxacin (LVX), moxifloxacin (MFX), linezolid (LZD) and delamanid (DLM). Much needed data on some novel and repurposed drugs are still lacking, including for bedaquiline (BDQ), pretomanid (PTM) and clofazimine (CFZ). We review the status of pharmacokinetic (PK) and safety studies of key anti-tuberculosis medications in children with MDR-TB, identify priority knowledge gaps and note ongoing work to address those gaps, in the context of planning for an efficacy trial in children with MDR-TB. There is international consensus that an efficacy trial of a novel, all-oral, shortened MDR-TB treatment trial in children is both needed and feasible. Key novel and repurposed second-line anti-tuberculosis drugs include BDQ, DLM, PTM, MFX, LVX, CFZ and LZD. The rapidly emerging PK and safety data on these medications in children with MDR-TB from studies that are underway, completed or planned, will be critical in supporting such an efficacy trial. Commitment to addressing the remaining knowledge gaps, developing child-friendly formulations of key medications, improving the design of paediatric PK and safety studies, and development of international trial capacity in children with MDR-TB are important priorities.
Nanomedicine to Deal With Cancer Cell Biology in Multi-Drug Resistance.
Tekchandani, Pawan; Kurmi, Balak Das; Paliwal, Shivani Rai
2017-01-01
Today Cancer still remains a major cause of mortality and death worldwide, in humans. Chemotherapy, a key treatment strategy in cancer, has significant hurdles such as the occurrence of chemoresistance in cancer, which is inherent unresponsiveness or acquired upon exposure to chemotherapeutics. The resistance of cancer cells to an antineoplastic agent accompanied to other chemotherapeutic drugs with different structures and mechanisms of action called multi-drug resistance (MDR) plays an important role in the failure of chemo- therapeutics. MDR is primarily based on the overexpression of drug efflux pumps in the cellular membrane, which belongs to the ATP-binding cassette (ABC) superfamily of proteins, are P-gp (P-glycoprotein) and multidrug resistance-associated protein (MRP). Over the years, various strategies have been evaluated to overcome MDR, based not only on the use of MDR modulators but also on the implementation an innovative approach and advanced nanosized drug delivery systems. Nanomedicine is an emerging tool of chemotherapy that focuses on alternative drug delivery for improvement of the treatment efficacy and reducing side effects to normal tissues. This review aims to focus on the details biology, reversal strategies option with the limitation of MDR and various advantages of the present medical science nanotechnology with intracellular delivery aspects for overcoming the significant potential for improving the treatment of MDR malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Neff, Mark W.; Robertson, Kathryn R.; Wong, Aaron K.; Safra, Noa; Broman, Karl W.; Slatkin, Montgomery; Mealey, Katrina L.; Pedersen, Niels C.
2004-01-01
A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Δ, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Δ are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Δ have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs. PMID:15289602
NASA Astrophysics Data System (ADS)
Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus
2017-02-01
Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.
Neff, Mark W; Robertson, Kathryn R; Wong, Aaron K; Safra, Noa; Broman, Karl W; Slatkin, Montgomery; Mealey, Katrina L; Pedersen, Niels C
2004-08-10
A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Delta, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Delta are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Delta have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs.
Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.
2009-01-01
We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong
2013-01-08
Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTVmore » and MDR HIV-1 protease.« less
Multidrug-resistant bacteria in hematology patients: emerging threats.
Tatarelli, Paola; Mikulska, Malgorzata
2016-06-01
Multidrug-resistant (MDR) bacteria, particularly Gram negatives, such as Enterobacteriaceae resistant to third-generation cephalosporins or carbapenems and MDR Pseudomonas aeruginosa, are increasingly frequent in hematology patients. The prevalence of different resistant species varies significantly between centers. Thus, the knowledge of local epidemiology is mandatory for deciding the most appr-opriate management protocols. In the era of increasing antibiotic resistance, empirical therapy of febrile neutropenia should be individualized. A de-escalation approach is recommended in case of severe clinical presentation in patients who are at high risk for infection with a resistant strain. Targeted therapy of an MDR Gram negative usually calls for a combination treatment, although no large randomized trials exist in this setting. Infection control measures are the cornerstone of limiting the spread of MDR pathogens in hematology units.
Balabanova, Yanina; Drobniewski, Francis; Nikolayevskyy, Vladyslav; Kruuner, Annika; Malomanova, Nadezhda; Simak, Tatyana; Ilyina, Nailya; Zakharova, Svetlana; Lebedeva, Natalya; Alexander, Heather L.; O'Brien, Rick; Sohn, Hojoon; Shakhmistova, Anastasia; Fedorin, Ivan
2009-01-01
Objective To analyse the feasibility, cost and performance of rapid tuberculosis (TB) molecular and culture systems, in a high multidrug-resistant TB (MDR TB) middle-income region (Samara, Russia) and provide evidence for WHO policy change. Methods Performance and cost evaluation was conducted to compare the BACTEC™ MGIT™ 960 system for culture and drug susceptibility testing (DST) and molecular systems for TB diagnosis, resistance to isoniazid and rifampin, and MDR TB identification compared to conventional Lowenstein-Jensen culture assays. Findings 698 consecutive patients (2487 sputum samples) with risk factors for drug-resistant tuberculosis were recruited. Overall M. tuberculosis complex culture positivity rates were 31.6% (787/2487) in MGIT and 27.1% (675/2487) in LJ (90.5% and 83.2% for smear-positive specimens). In total, 809 cultures of M. tuberculosis complex were isolated by any method. Median time to detection was 14 days for MGIT and 36 days for LJ (10 and 33 days for smear positive specimens) and indirect DST in MGIT took 9 days compared to 21 days on LJ. There was good concordance between DST on LJ and MGIT (96.8% for rifampin and 95.6% for isoniazid). Both molecular hybridization assay results correlated well with MGIT DST results, although molecular assays generally yielded higher rates of resistance (by approximately 3% for both isoniazid and rifampin). Conclusion With effective planning and logistics, the MGIT 960 and molecular based methodologies can be successfully introduced into a reference laboratory setting in a middle incidence country. High rates of MDR TB in the Russian Federation make the introduction of such assays particularly useful. PMID:19774085
Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.
Ramachandran, Rajeswari; Muniyandi, M
2018-03-01
Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.
Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.
Kalle, Arunasree M; Rizvi, Arshad
2011-01-01
Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.
Molecular characteristics of MDR Mycobacterium tuberculosis strains isolated in Fujian, China.
Chen, Qiuyang; Pang, Yu; Liang, Qingfu; Lin, Shufang; Wang, Yufeng; Lin, Jian; Zhao, Yong; Wei, Shuzhen; Zheng, Jinfeng; Zheng, Suhua
2014-03-01
Of 75 MDR isolates from Fujian Province, the sensitivity of RIF, INH, EMB, SM, OFLX and KAN resistance by DNA sequencing was 96.0%, 96.0%, 66.7%, 66.0%, 84.2% and 75.0%, respectively. We also identified that minority mutations in the mixed Mycobacterium tuberculosis population may be responsible for two "false-negative" results. In addition, Beijing genotype is still the predominant sublineage in the MDR TB cases from Fujian. Copyright © 2013 Elsevier Ltd. All rights reserved.
Viveiros, Miguel; Leandro, Clara; Rodrigues, Liliana; Almeida, Josefina; Bettencourt, Rosário; Couto, Isabel; Carrilho, Lurdes; Diogo, José; Fonseca, Ana; Lito, Luís; Lopes, João; Pacheco, Teresa; Pessanha, Mariana; Quirim, Judite; Sancho, Luísa; Salfinger, Max; Amaral, Leonard
2005-01-01
The INNO-LiPA Rif.TB assay for the identification of Mycobacterium tuberculosis complex strains and the detection of rifampin (RIF) resistance has been evaluated with 360 smear-positive respiratory specimens from an area of high incidence of multidrug-resistant tuberculosis (MDR-TB). The sensitivity when compared to conventional identification/culture methods was 82.2%, and the specificity was 66.7%; the sensitivity and specificity were 100.0% and 96.9%, respectively, for the detection of RIF resistance. This assay has the potential to provide rapid information that is essential for the effective management of MDR-TB. PMID:16145166
van Rijn, S P; Zuur, M A; van Altena, R; Akkerman, O W; Proost, J H; de Lange, W C M; Kerstjens, H A M; Touw, D J; van der Werf, T S; Kosterink, J G W; Alffenaar, J W C
2017-04-01
Ertapenem is a broad-spectrum carbapenem antibiotic whose activity against Mycobacterium tuberculosis is being explored. Carbapenems have antibacterial activity when the plasma concentration exceeds the MIC at least 40% of the time (40% T MIC ). To assess the 40% T MIC in multidrug-resistant tuberculosis (MDR-TB) patients, a limited sampling strategy was developed using a population pharmacokinetic model based on data for healthy volunteers. A two-compartment population pharmacokinetic model was developed with data for 42 healthy volunteers using an iterative two-stage Bayesian method. External validation was performed by Bayesian fitting of the model developed with data for volunteers to the data for individual MDR-TB patients (in which the fitted values of the area under the concentration-time curve from 0 to 24 h [AUC 0-24, fit values] were used) using the population model developed for volunteers as a prior. A Monte Carlo simulation ( n = 1,000) was used to evaluate limited sampling strategies. Additionally, the 40% T MIC with the free fraction ( f 40% T MIC ) of ertapenem in MDR-TB patients was estimated with the population pharmacokinetic model. The population pharmacokinetic model that was developed was shown to overestimate the area under the concentration-time curve from 0 to 24 h (AUC 0-24 ) in MDR-TB patients by 6.8% (range, -17.2 to 30.7%). The best-performing limited sampling strategy, which had a time restriction of 0 to 6 h, was found to be sampling at 1 and 5 h ( r 2 = 0.78, mean prediction error = -0.33%, root mean square error = 5.5%). Drug exposure was overestimated by a mean percentage of 4.2% (range, -15.2 to 23.6%). When a free fraction of 5% was considered and the MIC was set at 0.5 mg/liter, the minimum f 40% T MIC would have been exceeded in 9 out of 12 patients. A population pharmacokinetic model and limited sampling strategy, developed using data from healthy volunteers, were shown to be adequate to predict ertapenem exposure in MDR-TB patients. Copyright © 2017 American Society for Microbiology.
van Rijn, S. P.; Zuur, M. A.; van Altena, R.; Akkerman, O. W.; Proost, J. H.; de Lange, W. C. M.; Kerstjens, H. A. M.; Touw, D. J.; van der Werf, T. S.; Kosterink, J. G. W.
2017-01-01
ABSTRACT Ertapenem is a broad-spectrum carbapenem antibiotic whose activity against Mycobacterium tuberculosis is being explored. Carbapenems have antibacterial activity when the plasma concentration exceeds the MIC at least 40% of the time (40% TMIC). To assess the 40% TMIC in multidrug-resistant tuberculosis (MDR-TB) patients, a limited sampling strategy was developed using a population pharmacokinetic model based on data for healthy volunteers. A two-compartment population pharmacokinetic model was developed with data for 42 healthy volunteers using an iterative two-stage Bayesian method. External validation was performed by Bayesian fitting of the model developed with data for volunteers to the data for individual MDR-TB patients (in which the fitted values of the area under the concentration-time curve from 0 to 24 h [AUC0–24, fit values] were used) using the population model developed for volunteers as a prior. A Monte Carlo simulation (n = 1,000) was used to evaluate limited sampling strategies. Additionally, the 40% TMIC with the free fraction (f 40% TMIC) of ertapenem in MDR-TB patients was estimated with the population pharmacokinetic model. The population pharmacokinetic model that was developed was shown to overestimate the area under the concentration-time curve from 0 to 24 h (AUC0–24) in MDR-TB patients by 6.8% (range, −17.2 to 30.7%). The best-performing limited sampling strategy, which had a time restriction of 0 to 6 h, was found to be sampling at 1 and 5 h (r2 = 0.78, mean prediction error = −0.33%, root mean square error = 5.5%). Drug exposure was overestimated by a mean percentage of 4.2% (range, −15.2 to 23.6%). When a free fraction of 5% was considered and the MIC was set at 0.5 mg/liter, the minimum f 40% TMIC would have been exceeded in 9 out of 12 patients. A population pharmacokinetic model and limited sampling strategy, developed using data from healthy volunteers, were shown to be adequate to predict ertapenem exposure in MDR-TB patients. PMID:28137814
Lawrenz, Matthew B; denDekker, Ashley Eb; Cramer, Daniel E; Gabbard, Jon D; Lafoe, Kathryn M; Pfeffer, Tia L; Sotsky, Julie B; Vanover, Carol D; Ellis-Grosse, Evelyn J; Warawa, Jonathan M
2017-01-01
Abstract Background ZTI-01 (fosfomycin, FOS, for injection) is currently under US development to treat complicated urinary tract infections. ZTI-01 is unique compared with other antimicrobials in that it inhibits an early step in cell wall synthesis via covalent binding to MurA. ZTI-01 demonstrates broad in vitro activity against Gram-negative (GN) and -positive (GP) bacteria, including multidrug-resistant (MDR) organisms. Our study goals were to determine the efficacy of ZTI-01 as a monotherapy or in combination with meropenem against MDR Pseudomonas aeruginosa in a preclinical model of pulmonary infection. Methods 8 week old neutropenic mice were infected with a MDR strain of P. aeruginosa via intubation-mediated intratracheal (IMIT) instillation. 3 hours after instillation, mice received treatment with ZTI-01, meropenem, or ZTI-01 plus meropenem (combination therapy) q8h for 5 days. Mice were monitored every 8 hours for 7 days for development of disease and moribund animals were humanely euthanized. Lungs and spleens were harvested at euthanasia, or at 7 days for survivors, and processed for bacterial enumeration and development of pathology. Results Mice were challenged with a lethal dose of P. aeruginosa UNC-D. Mock treated animals succumbed to infection within 36 hours post-infection. Animals that received 6 g/kg/day ZTI-01 showed an increase in the MTD (52 hours) and 25% of the cohort were protected from lethal disease. Combining ZTI-01 with meropenem resulted in a significant increase in survival (≥75% of cohorts survived infection). Combination therapy also significantly decreased bacterial numbers in the lungs and inhibited dissemination to the spleens. Furthermore, animals receiving combination therapy were protected from significant inflammation in the lungs and the development of pneumonia. Conclusion Here we report that combination therapy with ZTI-01 and meropenem provides significant improvements in all disease manifestations over treatment with each drug individually in a preclinical model for pulmonary infection with MDR P. aeruginosa. These data strongly support further evaluation of ZTI-01 in combination with other antibiotics as potential therapies against pulmonary infections with MDR bacteria. Disclosures E. J. Ellis-Grosse, Zavante Therapeutics, Inc.: Employee and Shareholder, Salary
Harpstrite, Scott E.; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay
2014-01-01
Objective Histopathological studies indicate approximately 63% of pancreatic tumors express MDR1 Pgp and its polymorphic variants. However, Pgp expression detected at the messenger RNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations as well as the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate status of functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using 99mTc-Sestamibi were performed and correlated with western blot analysis. Methods Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug sensitive KB-3-1 cells and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Results 99mTc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp-inhibitor, and correlate to Western blot analysis. Conclusions These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from pancreatic duct and 99mTc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas. PMID:25036383
Flamm, Robert K.; Sader, Helio S.; Jones, Ronald N.
2013-01-01
Ceftolozane/tazobactam, a novel antimicrobial agent with activity against Pseudomonas aeruginosa (including drug-resistant strains) and other common Gram-negative pathogens (including most extended-spectrum-β-lactamase [ESBL]-producing Enterobacteriaceae strains), and comparator agents were susceptibility tested by a reference broth microdilution method against 7,071 Enterobacteriaceae and 1,971 P. aeruginosa isolates. Isolates were collected consecutively from patients in 32 medical centers across the United States during 2011 to 2012. Overall, 15.7% and 8.9% of P. aeruginosa isolates were classified as multidrug resistant (MDR) and extensively drug resistant (XDR), and 8.4% and 1.2% of Enterobacteriaceae were classified as MDR and XDR. No pandrug-resistant (PDR) Enterobacteriaceae isolates and only one PDR P. aeruginosa isolate were detected. Ceftolozane/tazobactam was the most potent (MIC50/90, 0.5/2 μg/ml) agent tested against P. aeruginosa and demonstrated good activity against 310 MDR strains (MIC50/90, 2/8 μg/ml) and 175 XDR strains (MIC50/90, 4/16 μg/ml). Ceftolozane/tazobactam exhibited high overall activity (MIC50/90, 0.25/1 μg/ml) against Enterobacteriaceae and retained activity (MIC50/90, 4/>32 μg/ml) against many 601 MDR strains but not against the 86 XDR strains (MIC50, >32 μg/ml). Ceftolozane/tazobactam was highly potent (MIC50/90, 0.25/0.5 μg/ml) against 2,691 Escherichia coli isolates and retained good activity against most ESBL-phenotype E. coli isolates (MIC50/90, 0.5/4 μg/ml), but activity was low against ESBL-phenotype Klebsiella pneumoniae isolates (MIC50/90, 32/>32 μg/ml), explained by the high rate (39.8%) of meropenem coresistance observed in this species phenotype. In summary, ceftolozane/tazobactam demonstrated high potency and broad-spectrum activity against many contemporary Enterobacteriaceae and P. aeruginosa isolates collected in U.S. medical centers. Importantly, ceftolozane/tazobactam retained potency against many MDR and XDR strains. PMID:24100499
Aleo, Michael D; Shah, Falgun; He, Kan; Bonin, Paul D; Rodrigues, A David
2017-05-15
The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC 50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å 2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective strategy for prioritizing drug candidates with less likelihood of causing clinical DILI.
Shewade, Hemant Deepak; Kokane, Arun M; Singh, Akash Ranjan; Verma, Manoj; Parmar, Malik; Chauhan, Ashish; Chahar, Sanjay Singh; Tiwari, Manoj; Khan, Sheeba Naz; Gupta, Vivek; Tripathy, Jaya Prasad; Nagar, Mukesh; Singh, Sanjai Kumar; Mehra, Pradeep Kumar; Kumar, Ajay Mv
2017-04-04
Pre-diagnosis attrition needs to be addressed urgently if we are to make progress in improving MDR-TB case detection and achieve universal access to MDR-TB care. We report the pre-diagnosis attrition, along with factors associated, and turnaround times related to the diagnostic pathway among patient with presumptive MDR-TB in Bhopal district, central India (2014). Study was conducted under the Revised National Tuberculosis Control Programme setting. It was a retrospective cohort study involving record review of all registered TB cases in Bhopal district that met the presumptive MDR-TB criteria (eligible for DST) in 2014. In quarter 1, Line Probe Assay (LPA) was used if sample was smear/culture positive. Quarter 2 onwards, LPA and Cartridge-based Nucleic Acid Amplification Test (CbNAAT) was used for smear positive and smear negative samples respectively. Pre-diagnosis attrition was defined as failure to undergo DST among patients with presumptive MDR-TB (as defined by the programme). Of 770 patients eligible for DST, 311 underwent DST and 20 patients were diagnosed as having MDR-TB. Pre-diagnosis attrition was 60% (459/770). Among those with pre-diagnosis attrition, 91% (417/459) were not identified as 'presumptive MDR-TB' by the programme. TAT [median (IQR)] to undergo DST after eligibility was 4 (0, 10) days. Attrition was more than 40% across all subgroups. Age more than 64 years; those from a medical college; those eligible in quarter 1; patients with presumptive criteria 'previously treated - recurrent TB', 'treatment after loss-to-follow-up' and 'previously treated-others'; and patients with extra-pulmonary TB were independent risk factors for not undergoing DST. High pre-diagnosis attrition was contributed by failure to identify and refer patients. Attrition reduced modestly with time and one factor that might have contributed to this was introduction of CbNAAT in quarter 2 of 2014. General health system strengthening which includes improvement in identification/referral and patient tracking with focus on those with higher risk for not undergoing DST is urgently required.
2014-01-01
Background Salmonella enterica includes the major serovars associated with human salmonellosis. In this study, 1764 clinical Salmonella enterica isolates from diarrhea outpatients were collected from fifteen cities in Guangdong province, China, between 2007 and 2012. These isolates represent all of the Salmonella isolates collected from the province during that period. Methods The isolates were characterized by serovar determination, antimicrobial susceptibility tests and PFGE fingerprint typing. Results The serovar distribution results demonstrated that Salmonella Typhimurium (n = 523, 29.65%) and Salmonella 4,5,12:i:- (n = 244, 13.83%) are the most common serovars causing infant salmonellosis, whereas Salmonella Enteritidis (n = 257, 14.57%) mainly causes human salmonellosis in adults. The serovar shift from Salmonella Enteritidis to Salmonella Typhimurium occurred in 2008. Antimicrobial susceptibility data showed a high burden of multidrug resistance (MDR) (n = 1128, 56.58%), and a 20%-30% increase in the number of isolates resistant to ciprofloxacin (n = 142, 8.05%) and third-generation cephalosporins (n = 88, 4.99%) from 2007–2012. Only 9.97% of isolates (n = 176) were fully susceptible to all agents tested. A high burden of MDR was observed in Salmonella Typhimurium and Salmonella 4,5,12:i:- for all age groups, and a reduced susceptibility to third-generation cephalosporins and quinolones occurred particularly in infants (≤6 years). The dominant PFGE patterns were JPXX01.GD0004, JEGX01.GD0006-7 and JNGX01.GD0006-7. ACSSuT was the predominant MDR profile in the Salmonella Typhimurium & 4,5,12:i:- complexes, while ASSuT-Nal and ASSu-Nal were the major MDR profiles in Salmonella Enteritidis. The predominant PFGE patterns of the Salmonella Typhimurium & 4,5,12:i:- complexes and Salmonella Stanley were most prevalent in infants (≤6 years). However, no obvious relationship was observed between these PFGE profiles and geographic location. Conclusions These data reveal the serovar distribution of isolates recovered from diarrhea patients, the characteristics of resistant strains and fingerprint typing in Guangdong from 2007 to 2012. These results highlight a serovar shift and a worrying percentage of MDR strains with increasing resistance to quinolones and third-generation cephalosporins. Thus, continued surveillance of Salmonella and their MDR profiles using combined molecular tools and efforts to control the rapid increase in antimicrobial resistance among Salmonella in Guangdong are needed. PMID:24939394
Snyder, E; Credille, B; Berghaus, R; Giguère, S
2017-03-01
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in North American beef cattle. () is the bacterial pathogen most frequently isolated from cattle with BRD and the prevalence of antimicrobial resistance in this pathogen has been increasing. Administration of antimicrobials to prevent BRD is commonplace in stocker cattle, but the impact of this practice on emergence of resistance in is unknown. High risk, sale barn origin bull and steer calves ( = 169) were transported to a stocker facility in central Georgia and sampled via deep nasopharyngeal swab (NPS) at arrival processing. All calves received the macrolide antimicrobial tulathromycin (2.5 mg/kg subcutaneously) at arrival processing. A second NPS was collected from each calf 10 to 14 d after arrival. The occasional calves diagnosed and treated for BRD prior to 10 to 14 d were swabbed and cultured prior to treatment. Swabs were submitted for culture and antimicrobial susceptibility testing using the Kirby-Bauer disk diffusion method. Of the 169 cattle enrolled, 27 (16.0%) were culture positive for at arrival processing and of these, a multi-drug resistant (MDR) strain of was detected in 1 (3.7%). In contrast, 123 (72.8%) cattle were culture positive for at second sampling and of these, a MDR strain of was detected in 122 (99.2%). The proportions of cattle culture positive for and positive for MDR at arrival processing and at second sampling were significantly different ( < 0.001). At the level of the individual bacterial isolate, 366 individual isolates were collected from the calves at the time of the second sampling. Of these isolates, 361 (98.6%) were intermediate or resistant to all macrolides tested (tilmicosin, gamithromycin, tulathromycin) and the fluoroquinolone enrofloxacin. In addition, 254 isolates (69.4%) were intermediate or resistant to florfenicol and 4 (1.1%) were intermediate or resistant to ceftiofur. There was a significant difference in the proportion of isolates resistant to all of the drug classes except cephalosporins at arrival processing versus second sampling ( < 0.001). Our results show that there was an increase in the proportion of calves positive for from arrival processing to second sampling, and that there was an increase in the proportion of calves that had MDR strains of detected from arrival processing to second sampling. More research is needed to understand the role of metaphylaxis on MDR in and the impact of MDR on morbidity and mortality in stocker cattle.
CTLA-4 and MDR1 polymorphisms increase the risk for ulcerative colitis: A meta-analysis
Zhao, Jia-Jun; Wang, Di; Yao, Hui; Sun, Da-Wei; Li, Hong-Yu
2015-01-01
AIM: To evaluate the correlations between cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and multi-drug resistance 1 (MDR1) genes polymorphisms with ulcerative colitis (UC) risk. METHODS: PubMed, EMBASE, Web of Science, Cochrane Library, CBM databases, Springerlink, Wiley, EBSCO, Ovid, Wanfang database, VIP database, China National Knowledge Infrastructure, and Weipu Journal databases were exhaustively searched using combinations of keywords relating to CTLA-4, MDR1 and UC. The published studies were filtered using our stringent inclusion and exclusion criteria, the quality assessment for each eligible study was conducted using Critical Appraisal Skill Program and the resultant high-quality data from final selected studies were analyzed using Comprehensive Meta-analysis 2.0 (CMA 2.0) software. The correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC were evaluated by OR at 95%CI. Z test was carried out to evaluate the significance of overall effect values. Cochran’s Q-statistic and I2 tests were applied to quantify heterogeneity among studies. Funnel plots, classic fail-safe N and Egger’s linear regression test were inspected for indication of publication bias. RESULTS: A total of 107 studies were initially retrieved and 12 studies were eventually selected for meta-analysis. These 12 case-control studies involved 1860 UC patients and 2663 healthy controls. Our major result revealed that single nucleotide polymorphisms (SNPs) of CTLA-4 gene rs3087243 G > A and rs231775 G > A may increase the risk of UC (rs3087243 G > A: allele model: OR = 1.365, 95%CI: 1.023-1.822, P = 0.035; dominant model: OR = 1.569, 95%CI: 1.269-1.940, P < 0.001; rs231775 G > A: allele model: OR = 1.583, 95%CI: = 1.306-1.918, P < 0.001; dominant model: OR = 1.805, 95%CI: 1.393-2.340, P < 0.001). In addition, based on our result, SNPs of MDR1 gene rs1045642 C > T might also confer a significant increases for the risk of UC (allele model: OR = 1.389, 95%CI: 1.214-1.590, P < 0.001; dominant model: OR = 1.518, 95%CI: 1.222-1.886, P < 0.001). CONCLUSION: CTLA-4 gene rs3087243 G > A and rs231775 G > A, and MDR1 gene rs1045642 C > T might confer an increase for UC risk. PMID:26379408
NASA Astrophysics Data System (ADS)
Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.
2017-02-01
Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.
Dias, Rubens Clayton da Silva; Borges-Neto, Armando Alves; Ferraiuoli, Giovanna Ianini D’Almeida; de-Oliveira, Márcia P.; Riley, Lee W.; Moreira, Beatriz Meurer
2010-01-01
Production of extended-spectrum β-lactamases (ESBL) has been reported in virtually all species of Enterobacteriaceae, which greatly complicates the therapy of infections caused by these organisms. However, the frequency of isolates producing AmpC β-lactamases, especially plasmid mediated AmpC (pAmpC), is largely unknown. These β-lactamases confer resistance to extended spectrum cephalosporins and aztreonam, a multidrug-resistant (MDR) profile. The aim of the present study was to determine the occurrence of ESBL and pAmpC β-lactamases in a hospital where MDR enterobacterial isolates recently emerged. A total of 123 consecutive enterobacterial isolates obtained from 112 patients at a university hospital in Rio de Janeiro, Brazil during March-June 2001 were included in the study. ESBL was detected by the addition of clavulanate to cephalosporin containing disks and by double diffusion. AmpC production was evaluated by a modified tridimensional test and a modified Hodge test. The presence of plasmid-mediated ampC β-lactamase genes was evaluated by multiplex-PCR. Sixty-five (53%) of 123 enterobacterial isolates were MDR, obtained from 56 patients. ESBL production was detected in 35 isolates; 5 clonal E. coli isolates exhibited high levels of chromosomal AmpC and ESBL production. However, no isolates contained pAmpC genes. Infection or colonization by MDR enterobacteria was not associated with any predominant resistant clones. A large proportion of hospital infections caused by ESBL-producing enterobacteria identified during the study period were due to sporadic infections rather than undetected outbreaks. This observation emphasizes the need to improve our detection methods for ESBL- and AmpC-producing organisms in hospitals where extended-spectrum cephalosporins are in wide use. PMID:17900845
Stoffels, Karolien; Allix-Béguec, Caroline; Groenen, Guido; Wanlin, Maryse; Berkvens, Dirk; Mathys, Vanessa; Supply, Philip; Fauville-Dufaux, Maryse
2013-01-01
Background Emergence of extensively drug-resistant tuberculosis (XDR-TB) represents an enormous challenge to Public Health globally. Methods Progression towards XDR-TB was investigated in Belgium, a country with a typically low TB incidence, by analyzing the magnitude, characteristics, and treatment success of multidrug-resistant tuberculosis (MDR-TB) through a population-based study from 1994 to 2008. Results Among the 174 MDR-TB patients, 81% were foreign-born, 48% of these being asylum seekers. Although the number of MDR-TB patients remained stable through the study period at around 15 new cases annually, frequencies of resistance of the patients’ first MDR-TB isolate to second-line drugs increased, as well as the total number of antibiotics it was resistant to (p<0.001). XDR-TB cases were detected from 2002 onwards. For 24 patients, additional resistance to several second-line drugs was acquired during treatment. Molecular-guided investigations indicated little to no contribution of in-country clonal spread or exogenous re-infection. The increase of pre-XDR and XDR cases could be attributed to rising proportions of patients from Asia and Central and Eastern Europe (p<0.001) and an increase in the isolation of Beijing strains in these groups (p<0.001). Despite augmented resistance, the treatment success rate improved from 63.0% to 75.8% (p = 0.080) after implementation in 2005 of improved surveillance measures and therapeutic access. Conclusions Increasing severity in drug resistance patterns leading to more XDR- and “panresistant” TB cases in a country with a low TB incidence like Belgium represents a strong alert on worsening situations in other world regions and requires intense public health measures. PMID:23671662
Biadglegne, Fantahun; Tessema, Belay; Sack, Ulrich; Rodloff, Arne C.
2014-01-01
Background & objectives: The emergence of drug resistance tuberculosis (TB) is a significant challenge for TB control and prevention programmes, and the major problem is multidrug resistant tuberculosis (MDR-TB). The present study was carried out to determine the frequency of drug resistant Mycobacterium tuberculosis isolates among newly and retreated TB lymphadenitis patients and risk factors for acquiring this infection. Methods: Two hundred twenty five M. tuberculosis isolates from TB lymphadenitis patients who were diagnosed as new and retreated tuberculosis cases between April 2012 and May 2012 were included in this study. Isolates were tested for susceptibility to isoniazed (INH), rifampicin (RMP), streptomycin (SM), ethambutol (EMB) and pyrazinamide (PZA) using the BacT/AlerT 3D system protocol. Results: Among 225 isolates, 15 (6.7%) were resistant to at least one first line anti-TB drug. Three (1.3%) were MDR-TB. Resistance to INH, RMP, SM, and EMB was found in 8 (3.6%), 4 (1.8%), 10 (4.4%), and 4 (1.8%) isolates, respectively. Of the 212 new TB lymphadenitis cases three (1.4%) were MDR-TB. A rifampicin resistant M. tuberculosis isolate was diagnosed from smear and culture negative newly treated cases. All isolates were susceptible to PZA. Matted cervical lymph nodes were the prominent sites involved. Newly treated TB lymphadenitis patients had a greater risk for presenting resistance to anti-TB drugs (P=0.046). Interpretation & conclusions: Our study showed that TB lymphadenitis patients harboured drug resistant TB and MDR-TB, although at a low rate. Resistance was not associated with age, sex, patients’ education and contact history. Further research is required to determine transmission dynamics of drug resistant strains. PMID:25222786
The TCA cycle is not required for selection or survival of multidrug-resistant Salmonella
Ricci, Vito; Loman, Nick; Pallen, Mark; Ivens, Alasdair; Fookes, Maria; Langridge, Gemma C.; Wain, John; Piddock, Laura J. V.
2012-01-01
Objectives The initial aim of this study was to use a systems biology approach to analyse a ciprofloxacin-selected multidrug-resistant (MDR) Salmonella enterica serotype Typhimurium, L664. Methods The whole genome sequence and transcriptome of L664 were analysed. Site-directed mutagenesis to recreate each mutation was carried out, followed by phenotypic characterization and mutation frequency analysis. As a mutation in the TCA cycle was detected we tested the controversial hypothesis regarding the bacterial response to bactericidal antibiotics, put forward by Kohanski et al. (Cell 2007; 130: 797–810 and Mol Cell 2010; 37: 311–20), that exposure of bacteria to agents such as ciprofloxacin produces reactive oxygen species (ROS), which transiently increase the mutation rate giving rise to MDR bacteria. Results L664 contained a mutation in ramR that conferred MDR. A mutation in tctA affected the TCA cycle and conferred the inability to grow on minimal agar. The virulence of L664 was not attenuated. Ciprofloxacin exposure produced ROS in L664 and SL1344 (tctA::aph), but it was reduced and occurred later. There were no significant differences in the rates of killing or mutations per generation to antibiotic resistance between the strains. Conclusions Whilst we confirm production of ROS in response to ciprofloxacin, we have no data to support the hypothesis that this leads to selection of MDR strains. Our results indicate that the mutations in tctA and glgA were random as they did not pre-exist in the parental strain, and that the mutation in tctA did not provide a survival advantage or disadvantage in the presence of antibiotic. PMID:22186876
Al Dawodeyah, Heba Y.; Obeidat, Nathir; Abu-Qatouseh, Luay F.; Shehabi, Asem A.
2018-01-01
Abstract Introduction Pseudomonas aeruginosa is a common agent causing community acquired and nosocomial respiratory tract infections, with particularly life-threatening manifestations in patients who are immunocompromised of who have cystic fibrosis. This study investigated the occurrence of extended-spectrum β-lactamases (ESBLs) and metallo β-lactamase (MBL) in association with important putative virulence genes and genotypes variation among P. aeruginosa isolates from respiratory tract infection of Jordanian patients. Methods Over a period of 8-month, a total of 284 respiratory tract samples were obtained from patients diagnosed with respiratory tract infection while attending the Pulmonary Clinic/Intensive Care Unit, Jordan University Hospital (JUH). At the time of sampling most were inpatients (86.9%). Samples were cultured specifically for P. aeruginosa. Results A total of 61/284 (21.5%) P. aeruginosa isolates were recovered from respiratory samples of patients. The percentage of MDR P. aeruginosa isolates was 52.5%, and all isolates were susceptible to colistin with lower rates of susceptibility to other tested antibiotics. Positive genes of blaCTX-M, blaVEB, blaTEM, blaGES and blaSHV were detected in 68.9%, 18.9%, 18.9%, 15.6% and 12.5% of isolates, respectively. Genotyping revealed no significant genetic relationship among MDR P. aeruginosa isolates from hospitalized patients as judged by the constructed dendrogram and the presence of 14 genotypic groups. The percentages of the virulence genes algD, lasB, toxA, exoS, and exoU among P. aeruginosa isolates were 98%, 98%, 80%, 33% and 33%, respectively, and 87% of isolates produced pyocyanin. Conclusion The present study demonstrates high occurrence of MDR P. aeruginosa isolates carrying blaCTX-M genes. No specific associations were found between antibiotic resistance, virulence genes and genotypes among MDR isolates. PMID:29564246
Rapid screening of MDR-TB using molecular Line Probe Assay is feasible in Uganda
2010-01-01
Background About 500 new smear-positive Multidrug-resistant tuberculosis (MDR-TB) cases are estimated to occur per year in Uganda. In 2008 in Kampala, MDR-TB prevalence was reported as 1.0% and 12.3% in new and previously treated TB cases respectively. Line probe assays (LPAs) have been recently approved for use in low income settings and can be used to screen smear-positive sputum specimens for resistance to rifampicin and isoniazid in 1-2 days. Methods We assessed the performance of a commercial line probe assay (Genotype MTBDRplus) for rapid detection of rifampicin and isoniazid resistance directly on smear-positive sputum specimens from 118 previously treated TB patients in a reference laboratory in Kampala, Uganda. Results were compared with MGIT 960 liquid culture and drug susceptibility testing (DST). LPA testing was also performed in parallel in a University laboratory to assess the reproducibility of results. Results Overall, 95.8% of smear-positive specimens gave interpretable results within 1-2 days using LPA. Sensitivity, specificity, positive and negative predictive values were 100.0%, 96.1%, 83.3% and 100.0% for detection of rifampicin resistance; 80.8%, 100.0%, 100.0% and 93.0% for detection of isoniazid resistance; and 92.3%, 96.2%, 80.0% and 98.7% for detection of multidrug-resistance compared with conventional results. Reproducibility of LPA results was very high with 98.1% concordance of results between the two laboratories. Conclusions LPA is an appropriate tool for rapid screening for MDR-TB in Uganda and has the potential to substantially reduce the turnaround time of DST results. Careful attention must be paid to training, supervision and adherence to stringent laboratory protocols to ensure high quality results during routine implementation. PMID:20187922