Science.gov

Sample records for reduction reaction catalysis

  1. Tuning nanoparticle catalysis for the oxygen reduction reaction.

    PubMed

    Guo, Shaojun; Zhang, Sen; Sun, Shouheng

    2013-08-12

    Advances in chemical syntheses have led to the formation of various kinds of nanoparticles (NPs) with more rational control of size, shape, composition, structure and catalysis. This review highlights recent efforts in the development of Pt and non-Pt based NPs into advanced nanocatalysts for efficient oxygen reduction reaction (ORR) under fuel-cell reaction conditions. It first outlines the shape controlled synthesis of Pt NPs and their shape-dependent ORR. Then it summarizes the studies of alloy and core-shell NPs with controlled electronic (alloying) and strain (geometric) effects for tuning ORR catalysis. It further provides a brief overview of ORR catalytic enhancement with Pt-based NPs supported on graphene and coated with an ionic liquid. The review finally introduces some non-Pt NPs as a new generation of catalysts for ORR. The reported new syntheses with NP parameter-tuning capability should pave the way for future development of highly efficient catalysts for applications in fuel cells, metal-air batteries, and even in other important chemical reactions.

  2. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  3. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  4. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.

  5. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  6. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  7. Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis.

    PubMed

    Xiang, Kaisong; Liu, Hui; Yang, Bentao; Zhang, Cong; Yang, Shu; Liu, Zhilou; Liu, Cao; Xie, Xiaofeng; Chai, Liyuan; Min, Xiaobo

    2016-04-01

    Fe(II)-EDTA, a typical chelated iron, is able to coordinate with nitric oxide (NO) which accelerates the rates and kinetics of the absorption of flue gas. However, Fe(II)-EDTA can be easily oxidized to Fe(III)-EDTA which is unable to absorb NO. Therefore, the regeneration of fresh Fe(II)-EDTA, which actually is the reduction of Fe(III)-EDTA to Fe(II)-EDTA, becomes a crucial step in the denitrification process. To enhance the reduction rate of Fe(III)-EDTA, selenium was introduced into the SO3 (2-)/Fe(III)-EDTA system as catalyst for the first time. By comparison, the reduction rate was enhanced by four times after adding selenium even at room temperature (25 °C). Encouragingly, elemental Se could precipitate out when SO3 (2-) was consumed up by oxidation to achieve self-separation. A catalysis mechanism was proposed with the aid of ultraviolet-visible (UV-Vis) spectroscopy, Tyndall scattering, horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR) spectroscopy, and X-ray diffraction (XRD). In the catalysis process, the interconversion between SeSO3 (2-) and nascent Se formed a catalysis circle for Fe(III)-EDTA reduction in SO3 (2-) circumstance.

  8. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  9. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  10. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  11. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  12. Diffusion and Surface Reaction in Heterogeneous Catalysis

    ERIC Educational Resources Information Center

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  13. Diffusion and Surface Reaction in Heterogeneous Catalysis

    ERIC Educational Resources Information Center

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  14. MOF catalysis of Fe(II)-to-Fe(III) reaction for an ultrafast and one-step generation of the Fe2O3@MOF composite and uranium(vi) reduction by iron(ii) under ambient conditions.

    PubMed

    Xiong, Yang Yang; Li, Jian Qiang; Yan, Chang Sheng; Gao, Heng Ya; Zhou, Jian Ping; Gong, Le Le; Luo, Ming Biao; Zhang, Le; Meng, Pan Pan; Luo, Feng

    2016-08-07

    Herein, we demonstrate that Zn-MOF-74 enables the ultrafast and one-step generation of the Fe2O3@MOF composite once Zn-MOF-74 contacts with FeSO4 solution. This unique reaction can be further applied in catalysis of U(vi) reduction by Fe(ii) under ambient conditions. The results provide a highly renovated strategy for U(vi) reduction by Fe(ii) just under ambient conditions, which completely subvert all established methods about U(vi) reduction by Fe(ii) in which O2- and CO2-free conditions are absolutely required.

  15. Catalysis by metallic nanoparticles in aqueous solution: model reactions.

    PubMed

    Hervés, Pablo; Pérez-Lorenzo, Moisés; Liz-Marzán, Luis M; Dzubiella, Joachim; Lu, Yan; Ballauff, Matthias

    2012-09-07

    Catalysis by metallic nanoparticles is certainly among the most intensely studied problems in modern nanoscience. However, reliable tests for catalytic performance of such nanoparticles are often poorly defined, which makes comparison and benchmarking rather difficult. We tackle in this tutorial review a subset of well-studied reactions that take place in aqueous phase and for which a comprehensive kinetic analysis is available. Two of these catalytic model reactions are under consideration here, namely the reduction of (i) p-nitrophenol and (ii) hexacyanoferrate (iii), both by borohydride ions. Both reactions take place at the surface of noble metal nanoparticles at room temperature and can be accurately monitored by UV-vis spectroscopy. Moreover, the total surface area of the nanoparticles in solution can be known with high precision and thus can be directly used for the kinetic analysis. Hence, these model reactions represent cases of heterogeneous catalysis that can be modelled with the accuracy typically available for homogeneous catalysis. Both model reactions allow us to discuss a number of important concepts and questions, namely the dependence of catalytic activity on the size of the nanoparticles, electrochemistry of nanoparticles, surface restructuring, the use of carrier systems and the role of diffusion control.

  16. Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites.

    PubMed

    Yamada, Ikuya; Fujii, Hiroshi; Takamatsu, Akihiko; Ikeno, Hidekazu; Wada, Kouhei; Tsukasaki, Hirofumi; Kawaguchi, Shogo; Mori, Shigeo; Yagi, Shunsuke

    2017-01-01

    Bifunctional electrocatalysts for oxygen evolution/reduction reaction (OER/ORR) are desirable for the development of energy conversion technologies. It is discovered that the manganese quadruple perovskites CaMn7 O12 and LaMn7 O12 show bifunctional catalysis in the OER/ORR. A possible origin of the high OER activity is the unique surface structure through corner-shared planar MnO4 and octahedral MnO6 units to promote direct OO bond formations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [In situ diffuse reflectance FTIR spectroscopy study of the selective catalytic reduction reaction of NO over Ag/SAPO-34 catalysis].

    PubMed

    Zhang, Ping; Wang, Le-fu; Xu, Jian-chang

    2003-02-01

    An in situ diffuse reflectance FTIR spectroscopy (DRIFTS) study of the selective catalytic reduction (SCR) of NO with propene in the presence of excess O2 was carried out over Ag/SAPO-34 catalyst. The SCR reaction was investigated at temperatures from 573 to 773 K, and the role of oxygen in the NO reduction process was determined by comparing experiments using an initial reaction mixture containing oxygen and without oxygen. The results show that both NO and propene are easily activated in oxygen. Furthermore, the presence of oxygen is necessary to form organo-NOx adsorbed species. Based on these experiments, a reaction mechanism is proposed that NO, propene and oxygen react to form organo-nitro and organo-nitrito adsorbed species as key intermediates, and then these intermediates decompose to nitrogen.

  18. Catalysis of Radical Reactions: A Radical Chemistry Perspective.

    PubMed

    Studer, Armido; Curran, Dennis P

    2016-01-04

    The area of catalysis of radical reactions has recently flourished. Various reaction conditions have been discovered and explained in terms of catalytic cycles. These cycles rarely stand alone as unique paths from substrates to products. Instead, most radical reactions have innate chains which form products without any catalyst. How do we know if a species added in "catalytic amounts" is a catalyst, an initiator, or something else? Herein we critically address both catalyst-free and catalytic radical reactions through the lens of radical chemistry. Basic principles of kinetics and thermodynamics are used to address problems of initiation, propagation, and inhibition of radical chains. The catalysis of radical reactions differs from other areas of catalysis. Whereas efficient innate chain reactions are difficult to catalyze because individual steps are fast, both inefficient chain processes and non-chain processes afford diverse opportunities for catalysis, as illustrated with selected examples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Exactly Embedded Wavefunction Methods for Characterizing Nitrogen Reduction Catalysis

    DTIC Science & Technology

    2015-01-15

    SUBTITLE Exactly Embedded Wavefunction Methods for Characterizing Nitrogen Reduction Catalysis 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA9550... catalysis , such as hydrogen and nitrogen reduction. In a significant methodological advance from the past year, we developed an accurate and...Pasadena, CA 91125 Telephone Number of PI: 626-395-6588 Email of PI: tfm@caltech.edu With AFOSR support in the last funding period ( Grant Number: FA9550-11

  20. Biodiesel forming reactions using heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  1. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  2. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  3. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    NASA Astrophysics Data System (ADS)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  4. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  5. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    PubMed Central

    Holby, Edward F.; Taylor, Christopher D.

    2015-01-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date. PMID:25788358

  6. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGES

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  7. Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: An electrochemical study in solution and a membrane-electrode-assembly study in fuel cells

    NASA Astrophysics Data System (ADS)

    He, Qinggang; Mugadza, Tawanda; Kang, Xiongwu; Zhu, Xiaobing; Chen, Shaowei; Kerr, John; Nyokong, Tebello

    2012-10-01

    This study was motivated by the need for improved understanding of the kinetics and transport phenomena in a homogeneous catalyst system for the oxygen reduction reaction (ORR). Direct interaction between the sulfonic groups of Nafion and an Fe(III) meso-tetra(N-methyl-4-pyridyl) porphine chloride (Fe(III)TMPyP) compound was observed using FTIR and in situ UV-Vis spectroelectrochemical characterizations. A positive shift of the half wave potential value (E1/2) for ORR on the iron porphyrin catalyst (Fe(III)TMPyP) was observed upon addition of a specific quantity of Nafion ionomer on a glassy carbon working electrode, indicating not only a faster charge transfer rate but also the role of protonation in the oxygen reduction reaction (ORR) process. A membrane electrode assembly (MEA) was made as a sandwich of a Pt-coated anode, a Nafion® 212 membrane, and a Fe(III)TMPyP + Nafion ionomer-coated cathode. This three-dimensional catalysis system has been demonstrated to be working in a H2/O2 proton exchange membrane (PEM) fuel cell test.

  8. Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis.

    PubMed

    Chatterjee, Tanmay; Iqbal, Naeem; You, Youngmin; Cho, Eun Jin

    2016-10-18

    Owing to their unique biological, physical, and chemical properties, fluoroalkylated organic substances have attracted significant attention from researchers in a variety of disciplines. Fluoroalkylated compounds are considered particularly important in pharmaceutical chemistry because of their superior lipophilicity, binding selectivity, metabolic stability, and bioavailability to those of their nonfluoroalkylated analogues. We have developed various methods for the synthesis of fluoroalkylated substances that rely on the use of visible-light photoredox catalysis, a powerful preparative tool owing to its environmental benignity and mechanistic versatility in promoting a large number of synthetically important reactions with high levels of selectivity. In this Account, we describe the results of our efforts, which have led to the development of visible-light photocatalytic methods for the introduction of a variety of fluoroalkyl groups (such as, -CF3, -CF2R, -CH2CF3, -C3F7, and -C4F9) and arylthiofluoroalkyl groups (such as, -CF2SPh, -C2F4SAr, and -C4F8SAr) to organic substances. In these studies, electron-deficient carbon-centered fluoroalkyl radicals were successfully generated by the appropriate choice of fluoroalkyl source, photocatalyst, additives, and solvent. The redox potentials of the photocatalysts and the fluoroalkyl sources and the choice of sacrificial electron donor or acceptor as the additive affected the photocatalytic pathway, determining whether an oxidative or reductive quenching pathway was operative for the generation of key fluoroalkyl radicals. Notably, we have observed that additives significantly affect the efficiencies and selectivities of these reactions and can even change the outcome of the reaction by playing additional roles during its course. For instance, a tertiary amine as an additive in the reaction medium can act not only as a sacrificial electron donor in photoredox catalysis but also as a hydrogen atom source, an elimination

  9. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  10. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires.

    PubMed

    Jiang, Kezhu; Zhao, Dandan; Guo, Shaojun; Zhang, Xu; Zhu, Xing; Guo, Jun; Lu, Gang; Huang, Xiaoqing

    2017-02-01

    The common knowledge is that Pt and Pt alloy nanoparticles (NPs) less than 2 nm are not desirable for oxygen reduction reaction (ORR). However, whether the same trend is expected in Pt-based nanowires (NWs) and nanoplates remains questionable because there is no scalable approach to make such Pt nanostructures. We report a general approach for preparing subnanometer Pt alloy NWs with a diameter of only 4 to 5 atomic layer thickness, ranging from monometallic Pt NWs to bimetallic PtNi and PtCo NWs and to trimetallic PtNiCo NWs. In a sharp contrast to Pt alloy NPs, the subnanometer Pt alloy NWs demonstrate exceptional mass and specific activities of 4.20 A/mg and 5.11 mA/cm(2) at 0.9 V versus reversible hydrogen electrode (RHE), respectively, 32.3 and 26.9 times higher than those of the commercial Pt/C. Density functional theory simulations reveal that the enhanced ORR activities are attributed to the catalytically active sites on high-density (111) facets in the subnanometer Pt alloy NWs. They are also very stable under the ORR condition with negligible activity decay over the course of 30,000 cycles. Our work presents a new approach to maximize Pt catalytic efficiency with atomic level utilization for efficient heterogeneous catalysis and beyond.

  11. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires

    PubMed Central

    Jiang, Kezhu; Zhao, Dandan; Guo, Shaojun; Zhang, Xu; Zhu, Xing; Guo, Jun; Lu, Gang; Huang, Xiaoqing

    2017-01-01

    The common knowledge is that Pt and Pt alloy nanoparticles (NPs) less than 2 nm are not desirable for oxygen reduction reaction (ORR). However, whether the same trend is expected in Pt-based nanowires (NWs) and nanoplates remains questionable because there is no scalable approach to make such Pt nanostructures. We report a general approach for preparing subnanometer Pt alloy NWs with a diameter of only 4 to 5 atomic layer thickness, ranging from monometallic Pt NWs to bimetallic PtNi and PtCo NWs and to trimetallic PtNiCo NWs. In a sharp contrast to Pt alloy NPs, the subnanometer Pt alloy NWs demonstrate exceptional mass and specific activities of 4.20 A/mg and 5.11 mA/cm2 at 0.9 V versus reversible hydrogen electrode (RHE), respectively, 32.3 and 26.9 times higher than those of the commercial Pt/C. Density functional theory simulations reveal that the enhanced ORR activities are attributed to the catalytically active sites on high-density (111) facets in the subnanometer Pt alloy NWs. They are also very stable under the ORR condition with negligible activity decay over the course of 30,000 cycles. Our work presents a new approach to maximize Pt catalytic efficiency with atomic level utilization for efficient heterogeneous catalysis and beyond. PMID:28275723

  12. Electrochemically responsive heterogeneous catalysis for controlling reaction kinetics.

    PubMed

    Mao, Xianwen; Tian, Wenda; Wu, Jie; Rutledge, Gregory C; Hatton, T Alan

    2015-01-28

    We report a method to control reaction kinetics using electrochemically responsive heterogeneous catalysis (ERHC). An ERHC system should possess a hybrid structure composed of an electron-conducting porous framework coated with redox-switchable catalysts. In contrast to other types of responsive catalysis, ERHC combines all the following desired characteristics for a catalysis control strategy: continuous variation of reaction rates as a function of the magnitude of external stimulus, easy integration into fixed-bed flow reactors, and precise spatial and temporal control of the catalyst activity. Herein we first demonstrate a facile approach to fabricating a model ERHC system that consists of carbon microfibers with conformal redox polymer coating. Second, using a Michael reaction whose kinetics depends on the redox state of the redox polymer catalyst, we show that use of different electrochemical potentials permits continuous adjustment of the reaction rates. The dependence of the reaction rate on the electrochemical potential generally agrees with the Nernstian prediction, with minor discrepancies due to the multilayer nature of the polymer film. Additionally, we show that the ERHC system can be employed to manipulate the shape of the reactant concentration-time profile in a batch reactor through applying customized potential-time programs. Furthermore, we perform COMSOL simulation for an ERHC-integrated flow reactor, demonstrating highly flexible manipulation of reactant concentrations as a function of both location and time.

  13. Numerical Implementation of Surface Catalysis, Reaction, and Sublimation

    DTIC Science & Technology

    2007-07-01

    Sublimation RTO-EN-AVT-142 16 - 13 the pores, the vapor molecule decomposes into smaller molecules. This decomposition process absorbs heat and...less than that to the Galileo Probe. There, not only the sublimation but the eactions, Eqs. (15) and (16) could conceivably become important . Surface...RTO-EN-AVT-142 16 - 1 Park, C. (2007) Numerical Implementation of Surface Catalysis, Reaction, and Sublimation . In Experiment, Modeling and

  14. Modelling enzyme reaction mechanisms, specificity and catalysis.

    PubMed

    Mulholland, Adrian J

    2005-10-15

    Modern modelling methods can now give uniquely detailed understanding of enzyme-catalyzed reactions, including the analysis of mechanisms and the identification of determinants of specificity and catalytic efficiency. A new field of computational enzymology has emerged that has the potential to contribute significantly to structure-based design and to develop predictive models of drug metabolism and, for example, of the effects of genetic polymorphisms. This review outlines important techniques in this area, including quantum-chemical model studies and combined quantum-mechanics and molecular-mechanics (QM/MM) methods. Some recent applications to enzymes of pharmacological interest are also covered, showing the types of problems that can be tackled and the insight they can give.

  15. Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via PIII/PV Redox Cycling

    PubMed Central

    Reichl, Kyle D.; Dunn, Nicole L.; Fastuca, Nicholas J.; Radosevich, Alexander T.

    2016-01-01

    We report that a regioselective reductive transposition of primary allylic bromides is catalyzed by a biphilic organophosphorus (phosphetane) catalyst. Spectroscopic evidence supports the formation of a pentacoordinate (σ5-P) hydridophosphorane as a key reactive intermediate. Kinetics experiments and computational modeling are consistent with a unimolecular decomposition of the σ5-P hydridophosphorane via a concerted cyclic transition structure that delivers the observed allylic transposition and completes a novel PIII/PV redox catalytic cycle. These results broaden the growing repertoire of reactions catalyzed within the PIII/PV redox couple and suggest additional opportunities for organophosphorus catalysis in a biphilic mode. PMID:25874950

  16. Anthraquinone catalysis in the glucose-driven reduction of indigo to leuco-indigo.

    PubMed

    Vuorema, Anne; John, Philip; Keskitalo, Marjo; Mahon, Mary F; Kulandainathan, M Anbu; Marken, Frank

    2009-03-21

    Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect" during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is ineffective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1 : 400 (at 65 degrees C; corresponding to 3 microM anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect (with a composite EA approximately 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture.

  17. Hot biological catalysis: isothermal titration calorimetry to characterize enzymatic reactions.

    PubMed

    Mazzei, Luca; Ciurli, Stefano; Zambelli, Barbara

    2014-04-04

    Isothermal titration calorimetry (ITC) is a well-described technique that measures the heat released or absorbed during a chemical reaction, using it as an intrinsic probe to characterize virtually every chemical process. Nowadays, this technique is extensively applied to determine thermodynamic parameters of biomolecular binding equilibria. In addition, ITC has been demonstrated to be able of directly measuring kinetics and thermodynamic parameters (kcat, KM, ΔH) of enzymatic reactions, even though this application is still underexploited. As heat changes spontaneously occur during enzymatic catalysis, ITC does not require any modification or labeling of the system under analysis and can be performed in solution. Moreover, the method needs little amount of material. These properties make ITC an invaluable, powerful and unique tool to study enzyme kinetics in several applications, such as, for example, drug discovery. In this work an experimental ITC-based method to quantify kinetics and thermodynamics of enzymatic reactions is thoroughly described. This method is applied to determine kcat and KM of the enzymatic hydrolysis of urea by Canavalia ensiformis (jack bean) urease. Calculation of intrinsic molar enthalpy (ΔHint) of the reaction is performed. The values thus obtained are consistent with previous data reported in literature, demonstrating the reliability of the methodology.

  18. Hot Biological Catalysis: Isothermal Titration Calorimetry to Characterize Enzymatic Reactions

    PubMed Central

    Mazzei, Luca; Ciurli, Stefano; Zambelli, Barbara

    2014-01-01

    Isothermal titration calorimetry (ITC) is a well-described technique that measures the heat released or absorbed during a chemical reaction, using it as an intrinsic probe to characterize virtually every chemical process. Nowadays, this technique is extensively applied to determine thermodynamic parameters of biomolecular binding equilibria. In addition, ITC has been demonstrated to be able of directly measuring kinetics and thermodynamic parameters (kcat, KM, ΔH) of enzymatic reactions, even though this application is still underexploited. As heat changes spontaneously occur during enzymatic catalysis, ITC does not require any modification or labeling of the system under analysis and can be performed in solution. Moreover, the method needs little amount of material. These properties make ITC an invaluable, powerful and unique tool to study enzyme kinetics in several applications, such as, for example, drug discovery. In this work an experimental ITC-based method to quantify kinetics and thermodynamics of enzymatic reactions is thoroughly described. This method is applied to determine kcat and KM of the enzymatic hydrolysis of urea by Canavalia ensiformis (jack bean) urease. Calculation of intrinsic molar enthalpy (ΔHint) of the reaction is performed. The values thus obtained are consistent with previous data reported in literature, demonstrating the reliability of the methodology. PMID:24747990

  19. Metal Carbonyl-Hydrosilane Reactions and Hydrosilation Catalysis

    SciTech Connect

    Cutler, A. R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a siloxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Three relevant catalytic reactions are shown. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(C0){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(I) precatalysts.

  20. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS

    SciTech Connect

    Bhatt, B.

    2000-08-20

    Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work

  1. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  2. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development

    PubMed Central

    Allen, Anna E.; MacMillan, David W. C.

    2012-01-01

    Synergistic catalysis is a synthetic strategy wherein both the nucleophile and the electrophile are simultaneously activated by two separate and distinct catalysts to afford a single chemical transformation. This powerful catalysis strategy leads to several benefits, specifically synergistic catalysis can (i) introduce new, previously unattainable chemical transformations, (ii) improve the efficiency of existing transformations, and (iii) create or improve catalytic enantioselectivity where stereocontrol was previously absent or challenging. This perspective aims to highlight these benefits using many of the successful examples of synergistic catalysis found in the literature. PMID:22518271

  3. Anion-π Catalysis of Diels-Alder Reactions.

    PubMed

    Liu, Le; Cotelle, Yoann; Bornhof, Anna-Bea; Besnard, Céline; Sakai, Naomi; Matile, Stefan

    2017-09-08

    Among concerted cycloadditions, the Diels-Alder reaction is the grand old classic, which is usually achieved with acid catalysis. In this report, hydroxypyrones, oxa-, and thiazolones are explored because they provide access to anionic dienes. Their [4+2] cycloaddition with cyclic and acyclic dienophiles, such as maleimides and fumarates, affords bicyclic products with four new stereogenic centers. Bifunctional anion-π catalysts composed of amine bases next to the π surface of naphthalenediimides (NDIs) are shown to selectively stabilize the "open", fully accessible anionic exo transition state on the π-acidic aromatic surface. Our results also include reactivities that are hard to access with conventional organocatalysts, such as the exo-specific and highly enantioselective Diels-Alder reaction of thiazolones and maleimides with complete suppression of the otherwise dominant Michael addition. With increasing π acidity of the anion-π catalysts, the rates, chemo-, diastereo-, and enantioselectivities increase consistently. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structural basis for antibody catalysis of a cationic cyclization reaction.

    PubMed

    Zhu, Xueyong; Heine, Andreas; Monnat, Frédéric; Houk, K N; Janda, Kim D; Wilson, Ian A

    2003-05-23

    Antibody 4C6 efficiently catalyzes a cationic cyclization reaction. Crystal structures of the antibody 4C6 Fab in complex with benzoic acid and in complex with its eliciting hapten were determined to 1.30A and 2.45A resolution, respectively. These crystal structures, together with computational analysis, have elucidated a possible mechanism for the monocyclization reaction. The hapten complex revealed a combining site pocket with high shape complementarity to the hapten. This active site cleft is dominated by aromatic residues that shield the highly reactive carbocation intermediates from solvent and stabilize the carbocation intermediates through cation-pi interactions. Modeling of an acyclic olefinic sulfonate ester substrate and the transition state (TS) structures shows that the chair-like transition state is favored, and trapping by water directly produces trans-2-(dimethylphenylsilyl)-cyclohexanol, whereas the less favored boat-like transition state leads to cyclohexene. The only significant change observed upon hapten binding is a side-chain rotation of Trp(L89), which reorients to form the base of the combining site. Intriguingly, a benzoic acid molecule was sequestered in the combining site of the unliganded antibody. The 4C6 active site was compared to that observed in a previously reported tandem cyclization antibody 19A4 hapten complex. These cationic cyclization antibodies exhibit convergent structural features with terpenoid cyclases that appear to be important for catalysis.

  5. Electrostatic catalysis of a Diels-Alder reaction

    NASA Astrophysics Data System (ADS)

    Aragonès, Albert C.; Haworth, Naomi L.; Darwish, Nadim; Ciampi, Simone; Bloomfield, Nathaniel J.; Wallace, Gordon G.; Diez-Perez, Ismael; Coote, Michelle L.

    2016-03-01

    It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon-carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels-Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

  6. Electrostatic catalysis of a Diels-Alder reaction.

    PubMed

    Aragonès, Albert C; Haworth, Naomi L; Darwish, Nadim; Ciampi, Simone; Bloomfield, Nathaniel J; Wallace, Gordon G; Diez-Perez, Ismael; Coote, Michelle L

    2016-03-03

    It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon-carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels-Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

  7. Asymmetric catalysis of epoxide ring-opening reactions.

    PubMed

    Jacobsen, E N

    2000-06-01

    The discovery of the metal salen-catalyzed asymmetric ring-opening (ARO) of epoxides is chronicled. A screening approach was adopted for the identification of catalysts for the addition of TMSN(3) to meso-epoxides, and the chiral (salen)CrN(3) complex was identified as optimal. Kinetic and structural studies served to elucidate the mechanism of catalysis, which involves cooperative activation of both epoxide and azide by two different metal centers. Covalently linked bimetallic complexes were constructed on the basis of this insight, and shown to catalyze the ARO with identical enantioselectivity but 1-2 orders of magnitude greater reactivity than the monomeric analogues. Extraordinarily high selectivity is observed in the kinetic resolution of terminal epoxides using the (salen)CrN(3)/TMSN(3) system. A search for a practical method for the kinetic resolution reaction led to the discovery of highly enantiomer-selective hydrolytic ring-opening using the corresponding (salen)Co(III) catalyst. This system displays extraordinary substrate generality, and allows practical access to enantiopure terminal epoxides on both laboratory and industrial scales.

  8. Origin of fast catalysis in allylic amination reactions catalyzed by Pd-Ti heterobimetallic complexes.

    PubMed

    Walker, Whitney K; Kay, Benjamin M; Michaelis, Scott A; Anderson, Diana L; Smith, Stacey J; Ess, Daniel H; Michaelis, David J

    2015-06-17

    Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd π allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(η(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations.

  9. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    SciTech Connect

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.; Wan, C.Z.; Rice, G.W.; Voss, K.E.

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  10. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction.

    PubMed

    Cai, Fan; Gao, Dunfeng; Zhou, Hu; Wang, Guoxiong; He, Ting; Gong, Huimin; Miao, Shu; Yang, Fan; Wang, Jianguo; Bao, Xinhe

    2017-04-01

    Electrochemical promotion of catalysis (EPOC) has been shown to accelerate the rate of many heterogeneous catalytic reactions; however, it has rarely been reported in low-temperature aqueous electrochemical reactions. Herein, we report a significant EPOC effect for the CO2 reduction to generate formate over Pd nanoparticles (NPs) in a 1 M KHCO3 aqueous solution. By applying a negative potential over differently-sized Pd NPs, the rate of formate production is greatly improved as compared to that at an open-circuit voltage, with a rate enhancement ratio ranging from 10 to 143. The thermocatalytic and electrocatalytic reduction of CO2 compete with each other and are promoted by the applied negative potential and H2 in the feeds, respectively. Inspired by the EPOC effect, a composite electrode containing Pd/C and Pt/C catalysts on different sides of a carbon paper was constructed for catalyzing the CO2 reduction without adding H2 to the feeds. Water electrolysis over Pt NPs generates H2, which then effectively promotes formate production over Pd NPs.

  11. Pop-It Beads to Introduce Catalysis of Reaction Rate and Substrate Depletion Effects

    ERIC Educational Resources Information Center

    Gehret, Austin U.

    2017-01-01

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the…

  12. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1).

    PubMed

    Kim, C H; Hollocher, T C

    1984-02-25

    The dissimilatory nitrite reductase (cytochrome c,d1) from Pseudomonas aeruginosa was observed at pH 7.5 to catalyze nitrosyl transfer (nitrosation) between [15N]nitrite and several N-nucleophiles or H2 18O, with rate enhancement of the order of 10(8) relative to analogous chemical reactions. The reducing system (ascorbate, N,N,N',N'-tetramethylphenylenediamine) could reduce nitrite (but not NO) enzymatically and had essentially no direct chemical reactivity toward nitrite or NO. The N-nitrosations showed saturation kinetics with respect to the nucleophile and, while exhibiting Vmax values which varied by about 40-fold, nevertheless showed little or no dependence of Vmax on nucleophile pKa. The N-nitrosations and NO-2/H2O-18O exchange required the reducing system, whereas NO/H2O-18O exchange was inhibited by the reducing system. NO was not detected to serve as a nitrosyl donor to N-nucleophiles. These and other kinetic observations suggest that the enzymatic nitrosyl donor is an enzyme-bound species derived from reduced enzyme and one molecule of nitrite, possibly a heme-nitrosyl compound (E-FeII X NO+) for which there is precedence. Nitrosyl transfer to N-nucleophiles may occur within a ternary complex of enzyme, nitrite, and nucleophile. Catalysis of nitrosyl transfer by nitrite reductase represents a new class of enzymatic reactions and may present another example of electrophilic catalysis by a metal center. The nitrosyl donor trapped by these reactions is believed to represent an intermediate in the reduction of nitrite by cytochrome c,d1.

  13. Improving gold catalysis of nitroarene reduction with surface Pd

    SciTech Connect

    Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.; Fang, Yu-Lun; Zhao, Zhun; Guo, Neng; Wu, Tianpin; Miller, Jeffrey T.; Wong, Michael S.

    2016-04-01

    Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPs and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.

  14. Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity.

    PubMed

    Osborne, James D; Willis, Michael C

    2008-10-28

    The pathway for the combination of enones and beta-S-substituted aldehydes using Rh-catalysis can be switched between a hydroacylation reaction or a reductive aldol reaction by simple choice of the phosphine ligand; this catalyst controlled switch allows access to new ketone hydroacylation products; useful 1,4-diketone intermediates for the synthesis of N-, S- and O-heterocycles.

  15. Heterogeneous Molecular Catalysis of Electrochemical Reactions: Volcano Plots and Catalytic Tafel Plots.

    PubMed

    Costentin, Cyrille; Savéant, Jean-Michel

    2017-06-14

    We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.

  16. Biphilic Organophosphorus Catalysis: Regioselective Reductive Transposition of Allylic Bromides via P(III)/P(V) Redox Cycling.

    PubMed

    Reichl, Kyle D; Dunn, Nicole L; Fastuca, Nicholas J; Radosevich, Alexander T

    2015-04-29

    We report that a regioselective reductive transposition of primary allylic bromides is catalyzed by a biphilic organophosphorus (phosphetane) catalyst. Spectroscopic evidence supports the formation of a pentacoordinate (σ(5)-P) hydridophosphorane as a key reactive intermediate. Kinetics experiments and computational modeling are consistent with a unimolecular decomposition of the σ(5)-P hydridophosphorane via a concerted cyclic transition structure that delivers the observed allylic transposition and completes a novel P(III)/P(V) redox catalytic cycle. These results broaden the growing repertoire of reactions catalyzed within the P(III)/P(V) redox couple and suggest additional opportunities for organophosphorus catalysis in a biphilic mode.

  17. Charge-tagged ligands: useful tools for immobilising complexes and detecting reaction species during catalysis

    PubMed Central

    Limberger, Jones; Leal, Bárbara C.; Monteiro, Adriano L.

    2015-01-01

    In recent years, charge-tagged ligands (CTLs) have become valuable tools in organometallic catalysis. Insertion of an ionic side chain into the molecular skeleton of a known ligand has become a useful protocol for anchoring ligands, and consequently catalysts, in polar and ionic liquid phases. In addition, the insertion of a cationic moiety into a ligand is a powerful tool that can be used to detect reaction intermediates in organometallic catalysis through electrospray ionisation mass spectrometry (ESI-MS) experiments. The insertion of an ionic tag ensures the charge in the intermediates independently of the ESI-MS. For this reason, these ligands have been used as ionic probes in mechanistic studies for several catalytic reactions. Here, we summarise selected examples on the use of CTLs as immobilising agents in organometallic catalysis and as probes for studying mechanisms through ESI-MS. PMID:28553458

  18. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.

    PubMed

    Tao, Franklin Feng; Crozier, Peter A

    2016-03-23

    Heterogeneous catalysis is a chemical process performed at a solid-gas or solid-liquid interface. Direct participation of catalyst atoms in this chemical process determines the significance of the surface structure of a catalyst in a fundamental understanding of such a chemical process at a molecular level. High-pressure scanning tunneling microscopy (HP-STM) and environmental transmission electron microscopy (ETEM) have been used to observe catalyst structure in the last few decades. In this review, instrumentation for the two in situ/operando techniques and scientific findings on catalyst structures under reaction conditions and during catalysis are discussed with the following objectives: (1) to present the fundamental aspects of in situ/operando studies of catalysts; (2) to interpret the observed restructurings of catalyst and evolution of catalyst structures; (3) to explore how HP-STM and ETEM can be synergistically used to reveal structural details under reaction conditions and during catalysis; and (4) to discuss the future challenges and prospects of atomic-scale observation of catalysts in understanding of heterogeneous catalysis. This Review focuses on the development of HP-STM and ETEM, the in situ/operando characterizations of catalyst structures with them, and the integration of the two structural analytical techniques for fundamentally understanding catalysis.

  19. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions.

    PubMed

    Tao, Franklin Feng; Zhang, Shiran; Nguyen, Luan; Zhang, Xueqiang

    2012-12-21

    Bimetallic catalysts are one of the main categories of metal catalysts due to the tunability of electronic and geometric structures through alloying a second metal. The integration of a second metal creates a vast number of possibilities for varying the surface structure and composition of metal catalysts toward designing new catalysts. It is well acknowledged that the surface composition, atomic arrangement, and electronic state of bimetallic catalysts could be different from those before a chemical reaction or catalysis based on ex situ studies. Thanks to advances in electron-based surface analytical techniques, the surface chemistry and structure of bimetallic nanoparticles can be characterized under reaction conditions and during catalysis using ambient pressure analytical techniques including ambient pressure XPS, ambient pressure STM, X-ray absorption spectroscopy and others. These ambient pressure studies revealed various restructurings in the composition and arrangement of atoms in the surface region of catalysts under reaction conditions or during catalysis compared to that before reaction. These restructurings are driven by thermodynamic and kinetic factors. The surface energy of the constituent metals and adsorption energy of reactant molecules or dissociated species on a metal component are two main factors from the point of view of thermodynamics. Correlations between the authentic surface structure and chemistry of catalysts during catalysis and simultaneous catalytic performance were built for understanding catalytic mechanisms of bimetallic catalysts toward designing new catalysts with high activity, selectivity, and durability.

  20. A Molecular Reaction Cycle with a Solvatochromic Merocyanine Dye: An Experiment in Photochemistry, Kinetics, and Catalysis.

    ERIC Educational Resources Information Center

    Abdel-Kader, M. H.; Steiner, U.

    1983-01-01

    Three experiments using merocyanine M suitable as an integrated laboratory experience for undergraduates are described. Experiments demonstrate: complete molecular cycle composed of photochemical, thermal, and protolytic reaction steps; kinetics of cis-trans isomerization of the dye; and mechanism of base catalysis for thermal isomerization of the…

  1. A Molecular Reaction Cycle with a Solvatochromic Merocyanine Dye: An Experiment in Photochemistry, Kinetics, and Catalysis.

    ERIC Educational Resources Information Center

    Abdel-Kader, M. H.; Steiner, U.

    1983-01-01

    Three experiments using merocyanine M suitable as an integrated laboratory experience for undergraduates are described. Experiments demonstrate: complete molecular cycle composed of photochemical, thermal, and protolytic reaction steps; kinetics of cis-trans isomerization of the dye; and mechanism of base catalysis for thermal isomerization of the…

  2. Brønsted acid catalyzed asymmetric aldol reaction: a complementary approach to enamine catalysis.

    PubMed

    Pousse, Guillaume; Le Cavelier, Fabien; Humphreys, Luke; Rouden, Jacques; Blanchet, Jérôme

    2010-08-20

    A syn-enantioselective aldol reaction has been developed using Brønsted acid catalysis based on H(8)-BINOL-derived phosphoric acids. This method affords an efficient synthesis of various beta-hydroxy ketones, some of which could not be synthesized using enamine organocatalysis.

  3. Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.

    PubMed

    Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei

    2017-06-15

    In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg(2+), Hg2(2+) and CH3Hg(+) according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Huisgen cycloaddition reaction of C-alkynyl ribosides under micellar catalysis: synthesis of ribavirin analogues.

    PubMed

    Youcef, Ramzi Aït; Dos Santos, Mickaël; Roussel, Sandrine; Baltaze, Jean-Pierre; Lubin-Germain, Nadège; Uziel, Jacques

    2009-06-05

    Carbonated analogues of ribavirin were synthesized from ethyl C-ribosylpropiolate obtained by an alkynylation reaction mediated by indium(0). The C-ribosides were then engaged in a Huisgen 1,3-dipolar cycloaddition reaction under a micellar catalysis. In these conditions, formation of 1,2,3-triazoles with control of the regioselectivity was observed. The regiochemistry of the adducts was determined by HMBC 2D-NMR analysis.

  5. Overcoming product inhibition in catalysis of the intramolecular Schmidt reaction.

    PubMed

    Motiwala, Hashim F; Fehl, Charlie; Li, Sze-Wan; Hirt, Erin; Porubsky, Patrick; Aubé, Jeffrey

    2013-06-19

    A method for carrying out the intramolecular Schmidt reaction of alkyl azides and ketones using a substoichiometric amount of catalyst is reported. Following extensive screening, the use of the strong hydrogen-bond-donating solvent hexafluoro-2-propanol was found to be consistent with low catalyst loadings, which ranged from 2.5 mol % for favorable substrates to 25 mol % for more difficult cases. Reaction optimization, broad substrate scope, and preliminary mechanistic studies of this improved version of the reaction are described.

  6. Overcoming Product Inhibition in Catalysis of the Intramolecular Schmidt Reaction

    PubMed Central

    Motiwala, Hashim F.; Fehl, Charlie; Li, Sze-Wan; Hirt, Erin; Porubsky, Patrick; Aubé, Jeffrey

    2014-01-01

    A method for carrying out the intramolecular Schmidt reaction of alkyl azides and ketones using a substoichiometric amount of catalyst is reported. Following extensive screening, the use of the strong hydrogen bond donating solvent hexafluoro-2-propanol was found to be consistent with low catalyst loadings, which range from 2.5 mol% for favorable substrates to 25 mol% for more difficult cases. Reaction optimization, broad substrate scope, and preliminary mechanistic studies of this improved version of the reaction are described. PMID:23687993

  7. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  8. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  9. Biological Phosphoryl-Transfer Reactions: Understanding Mechanism and Catalysis

    PubMed Central

    Lassila, Jonathan K.; Zalatan, Jesse G.; Herschlag, Daniel

    2012-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field. PMID:21513457

  10. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.

    PubMed

    Lassila, Jonathan K; Zalatan, Jesse G; Herschlag, Daniel

    2011-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.

  11. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  12. Uncovering the Role of Metal Catalysis in Tetrazole Formation by an In Situ Cycloaddition Reaction: An Experimental Approach.

    PubMed

    Zhong, Di-Chang; Wen, Ya-Qiong; Deng, Ji-Hua; Luo, Xu-Zhong; Gong, Yun-Nan; Lu, Tong-Bu

    2015-09-28

    Using an experimental approach, the role of metal catalysis has been investigated in the in situ cycloaddition reaction of nitrile with azide to form tetrazoles. It has been shown that metal catalysis serves to activate the cyano group in the nitrile reagent by a coordinative interaction.

  13. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions.

    PubMed

    Richard, John P

    2011-07-08

    Deprotonation of carbon and decarboxylation at enzyme active sites proceed through the same carbanion intermediates as for the uncatalyzed reactions in water. The mechanism for the enzymatic reactions can be studied at the same level of detail as for nonenzymatic reactions, using the mechanistic tools developed by physical organic chemists. Triosephosphate isomerase (TIM) catalyzed interconversion of D-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate is being studied as a prototype for enzyme catalyzed proton transfer, and orotidine monophosphate decarboxylase (OMPDC) catalyzed decarboxylation of orotidine 5'-monophosphate is being studied as a prototype for enzyme-catalyzed decarboxylation. (1)H NMR spectroscopy is an excellent analytical method to monitor proton transfer to and from carbon catalyzed by these enzymes in D2O. Studies of these partial enzyme-catalyzed exchange reactions provide novel insight into the stability of carbanion reaction intermediates, that is not accessible in studies of the full enzymatic reaction. The importance of flexible enzyme loops and the contribution of interactions between these loops and the substrate phosphodianion to the enzymatic rate acceleration are discussed. The similarity in the interactions of OMPDC and TIM with the phosphodianion of bound substrate is emphasized.

  14. Catalysis of concerted reactions by antibodies: the Claisen rearrangement.

    PubMed Central

    Hilvert, D; Carpenter, S H; Nared, K D; Auditor, M T

    1988-01-01

    Monoclonal antibodies were prepared against a transition state analog inhibitor of chorismate mutase (EC 5.4.99.5). One of the antibodies catalyzes the rearrangement of chorismate to prephenate with rate accelerations of more than 2 orders of magnitude compared to the uncatalyzed reaction. Saturation kinetics were observed, and at 25 degrees C the values of kcat and Km were 1.2 X 10(-3) s-1 and 5.1 X 10(-5) M respectively. The transition state analog was shown to be a competitive inhibitor of the reaction with Ki equal to 0.6 microM. These results demonstrate the feasibility of using rationally designed immunogens to generate antibodies that catalyze concerted reactions. PMID:3393525

  15. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  16. Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions.

    PubMed

    Zhou, G; Somasundaram, T; Blanc, E; Parthasarathy, G; Ellington, W R; Chapman, M S

    1998-07-21

    Arginine kinase belongs to the family of enzymes, including creatine kinase, that catalyze the buffering of ATP in cells with fluctuating energy requirements and that has been a paradigm for classical enzymological studies. The 1.86-A resolution structure of its transition-state analog complex, reported here, reveals its active site and offers direct evidence for the importance of precise substrate alignment in the catalysis of bimolecular reactions, in contrast to the unimolecular reactions studied previously. In the transition-state analog complex studied here, a nitrate mimics the planar gamma-phosphoryl during associative in-line transfer between ATP and arginine. The active site is unperturbed, and the reactants are not constrained covalently as in a bisubstrate complex, so it is possible to measure how precisely they are pre-aligned by the enzyme. Alignment is exquisite. Entropic effects may contribute to catalysis, but the lone-pair orbitals are also aligned close enough to their optimal trajectories for orbital steering to be a factor during nucleophilic attack. The structure suggests that polarization, strain toward the transition state, and acid-base catalysis also contribute, but, in contrast to unimolecular enzyme reactions, their role appears to be secondary to substrate alignment in this bimolecular reaction.

  17. Electrocatalysis and Vapor Phase Catalysis: Reaction Mechanisms and Catalyst Discovery

    NASA Astrophysics Data System (ADS)

    Herron, Jeffrey A.

    The world energy crisis requires innovation in the production and utilization of energy resources. Renewable, clean energy sources like wind power and solar energy are promising, but due to their intermittent nature, are difficult to utilize directly. Energy stored in chemical bonds (i.e. fuel) can be utilized in a variety of applications, including the crucial transportation sector. In order to economically and energy efficiently store, and later extract, this energy, catalysts must be used. These catalysts must be optimized for high activity, selectivity, and low cost. In this dissertation, self-consistent density functional theory calculations are employed to design catalysts for important energy-related reactions. The design methodology begins by first elucidating the atomic-scale elementary steps that are active in the reaction mechanisms. Through knowledge of the atomic-scale mechanisms, and the specific chemical challenges in these mechanisms, we developed a framework for the design of catalytic materials that overcome these challenges, while also conforming to other important design criteria (e.g. cost and stability). Together with state-of-the-art synthesis techniques, characterization methods, and reactivity studies, the utility of these methods is demonstrated. The work in this dissertation provides examples of the aspects of this design methodology, applied to various catalytic systems with an emphasis on electrocatalytic reactions for fuel cell applications. The four main areas of discussion include 1) elucidation of atomic-scale reaction mechanisms, 2) developing reactivity descriptors for rapid screening of materials, 3) assessment of materials stability under reaction conditions, and 4) collaboration of theory with experiments.

  18. Catalysis of Heterocyclic Azadiene Cycloaddition Reactions by Solvent Hydrogen Bonding: Concise Total Synthesis of Methoxatin.

    PubMed

    Glinkerman, Christopher M; Boger, Dale L

    2016-09-28

    Although it has been examined for decades, no general approach to catalysis of the inverse electron demand Diels-Alder reactions of heterocyclic azadienes has been introduced. Typically, additives such as Lewis acids lead to nonproductive consumption of the electron-rich dienophiles without productive activation of the electron-deficient heterocyclic azadienes. Herein, we report the first general method for catalysis of such cycloaddition reactions by using solvent hydrogen bonding of non-nucleophilic perfluoroalcohols, including hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE), to activate the electron-deficient heterocyclic azadienes. Its use in promoting the cycloaddition of 1,2,3-triazine 4 with enamine 3 as the key step of a concise total synthesis of methoxatin is described.

  19. Rhenium(VII) Catalysis of Prins Cyclization Reactions

    PubMed Central

    Tadpetch, Kwanruthai; Rychnovsky, Scott D.

    2009-01-01

    The rhenium(VII) complex O3ReOSiPh3 are particularly effective catalyst for Prins cyclizations using aromatic and α,β-unsaturated aldehydes. The reaction conditions are mild and the highly substituted 4-hydroxy tetrahydropyran products are formed stereoselectively. Rhenium(VII) complexes appear to spontaneously form esters with alcohols and to directly activate electron rich alcohols for solvolysis. Re2O7 and perrhenic acid were equally effective in catalyzing these cyclizations. PMID:18816133

  20. Water-wire catalysis in photoinduced acid-base reactions.

    PubMed

    Kwon, Oh-Hoon; Mohammed, Omar F

    2012-07-07

    The pronounced ability of water to form a hyperdense hydrogen (H)-bond network among itself is at the heart of its exceptional properties. Due to the unique H-bonding capability and amphoteric nature, water is not only a passive medium, but also behaves as an active participant in many chemical and biological reactions. Here, we reveal the catalytic role of a short water wire, composed of two (or three) water molecules, in model aqueous acid-base reactions synthesizing 7-hydroxyquinoline derivatives. Utilizing femtosecond-resolved fluorescence spectroscopy, we tracked the trajectories of excited-state proton transfer and discovered that proton hopping along the water wire accomplishes the reaction more efficiently compared to the transfer occurring with bulk water clusters. Our finding suggests that the directionality of the proton movements along the charge-gradient H-bond network may be a key element for long-distance proton translocation in biological systems, as the H-bond networks wiring acidic and basic sites distal to each other can provide a shortcut for a proton in searching a global minimum on a complex energy landscape to its destination.

  1. Lean NOx Reduction in Two Stages: Non-thermal Plasma Followed by Heterogeneous Catalysis

    SciTech Connect

    Tonkyn, Russell G.; Yoon, Ilsop S.; Barlow, Stephan E.; Panov, Alexander G.; Kolwaite, A; Balmer, Mari LOU.

    2000-10-16

    We present data in this paper showing that non-thermal plasma in combination with heterogeneous catalysis is a promising technique for the treatment of NOx in diesel exhaust. Using a commonly available zeolite catalyst, sodium Y, to treat synthetic diesel exhaust we report approximately 50% chemical reduction of NOx over a broad, representative temperature range. We have measured the overall efficiency as a function of the temperature and hydrocarbon concentration. The direct detection of N2 and N2O when the background gas is replaced by helium confirms that true chemical reduction is occurring.

  2. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to

  3. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.

    PubMed

    Min, Wei; Xie, X Sunney; Bagchi, Biman

    2008-01-17

    We introduce a two-dimensional (2D) multisurface reaction free energy description of the catalytic cycle that explicitly connects the recently observed multi-time-scale conformational dynamics as well as dispersed enzymatic kinetics to the classical Michaelis-Menten equation. A slow conformational motion on a collective enzyme coordinate Q facilitates the catalytic reaction along the intrinsic reaction coordinate X, providing a dynamic realization of Pauling's well-known idea of transition-state stabilization. The catalytic cycle is modeled as transitions between multiple displaced harmonic wells in the XQ space representing different states of the cycle, which is constructed according to the free energy driving force of the cycle. Subsequent to substrate association with the enzyme, the enzyme-substrate complex under strain exhibits a nonequilibrium relaxation toward a new conformation that lowers the activation energy of the reaction, as first proposed by Haldane. The chemical reaction in X is thus enslaved to the down hill slow motion on the Q surface. One consequence of the present theory is that, in spite of the existence of dispersive kinetics, the Michaelis-Menten expression of the catalysis rate remains valid under certain conditions, as observed in recent single-molecule experiments. This dynamic theory builds the relationship between the protein conformational dynamics and the enzymatic reaction kinetics and offers a unified description of enzyme fluctuation-assisted catalysis.

  4. Controlled trifluoromethylation reactions of alkynes through visible-light photoredox catalysis.

    PubMed

    Iqbal, Naeem; Jung, Jaehun; Park, Sehyun; Cho, Eun Jin

    2014-01-07

    The control of a reaction that can form multiple products is a highly attractive and challenging concept in synthetic chemistry. A set of valuable CF3 -containing molecules, namely trifluoromethylated alkenyl iodides, alkenes, and alkynes, were selectively generated from alkynes and CF3 I by environmentally benign and efficient visible-light photoredox catalysis. Subtle differences in the combination of catalyst, base, and solvent enabled the control of reactivity and selectivity for the reaction between an alkyne and CF3 I. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study on catalysis effect of TEPB on the curing reaction of HTPB binder system

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; Tang, J.; Liu, X.; Yan, W.

    2016-07-01

    The catalysis effect of tri (exhoxyphenyl) bismuthine (TEPB) on the curing reaction of HTPB binder system was studied by using DSC method. The curing peak temperatures of the catalyst systems were measured to calculate kinetic parameters by using Kissinger and Crane methods, respectively. Two curing reaction kinetic equations were established. The results show that TEPB has high catalytic activity and can decrease the curing temperature of HTPB binder system, down to 35 °C, in which the optimum volume of TEPB is 0.5% of HTPB binder system.

  6. Supramolecular assemblies in ionic liquid catalysis for aza-Michael reaction.

    PubMed

    Roy, Sudipta Raha; Chakraborti, Asit K

    2010-09-03

    Supramolecular assemblies formed by a relay of cooperative hydrogen bonds and charge-charge interactions have been identified/characterized by (+ve) ESI and MALDI-TOF-TOF MS and MS-MS studies during the aza-Michael reaction of amines with alpha,beta-unsaturated carbonyl compounds in the presence of ionic liquids (ILs) digging out the role of catalysis by ILs, forming the basis of rational design/selection as organocatalysts, and offering a diagnostic model to predict/rationalize the selectivity of the aza-Michael reaction in a competitive environment.

  7. Pop-it beads to introduce catalysis of reaction rate and substrate depletion effects.

    PubMed

    Gehret, Austin U

    2017-03-04

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the effect of substrate depletion on catalyzed reaction rate. Preliminary findings based on survey results and exam performance suggest the activity could prove beneficial to students in the targeted learning outcomes. Unique to previous kinesthetic approaches that model Michaelis-Menten kinetics, this activity models the effects of substrate depletion on catalyzed reaction rate. Therefore, it could prove beneficial for conveying the reasoning behind the initial rate simplification used in Michaelis-Menten kinetics. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):179-183, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  8. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip.

    PubMed

    Navin, Chelliah V; Krishna, Katla Sai; Theegala, Chandra S; Kumar, Challa S S R

    2016-03-14

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.

  9. Birnessite catalysis of the Maillard Reaction: Its significance in natural humification

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Frenkel, A. I.; Vairavamurthy, M. A.; Huang, P. M.

    Although mineral colloids are known to play a significant role in transforming organic matter in soils and sediments, there still are many gaps in our understanding of the mechanisms of organic-mineral interactions. In this study, we investigated the role of a major oxide-mineral birnessite (a form of Mn(IV) oxide) in catalyzing the condensation reaction between sugars and amino acids, the Maillard reaction, for forming humic substances. The Maillard reaction is perceived to be a major pathway in natural humification. Using a suite of spectroscopic methods (including ESR, XANES, EXAFS and 13C NMR), our results show that Mn(IV) oxide markedly accelerates the Maillard reaction between glucose and glycine at ranges of temperatures and pH typical of natural environments. These results demonstrate the importance of manganese oxide catalysis in the Maillard reaction, and its significance in the natural abiotic formation of humic substances.

  10. Linear scaling relationships and volcano plots in homogeneous catalysis - revisiting the Suzuki reaction.

    PubMed

    Busch, Michael; Wodrich, Matthew D; Corminboeuf, Clémence

    2015-12-01

    Linear free energy scaling relationships and volcano plots are common tools used to identify potential heterogeneous catalysts for myriad applications. Despite the striking simplicity and predictive power of volcano plots, they remain unknown in homogeneous catalysis. Here, we construct volcano plots to analyze a prototypical reaction from homogeneous catalysis, the Suzuki cross-coupling of olefins. Volcano plots succeed both in discriminating amongst different catalysts and reproducing experimentally known trends, which serves as validation of the model for this proof-of-principle example. These findings indicate that the combination of linear scaling relationships and volcano plots could serve as a valuable methodology for identifying homogeneous catalysts possessing a desired activity through a priori computational screening.

  11. Homogeneous catalysis on the gas-phase dehydration reaction of tertiary alcohols by hydrogen bromide. Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Maldonado, Alexis; Rosas, Felix; Mora, Jose R.; Brusco, Yannely; Córdova-Sintjago, Tania C.; Chuchani, Gabriel

    2015-02-01

    The gas-phase thermal dehydration mechanism of tert-butanol, 2-methyl-2-butanol, 2-methyl-2-pentanol and 2,3-dimethyl-2-butanol by homogeneous catalysis of hydrogen bromide was examined by density functional theory calculations with the hybrid functionals: M062X, CAMB3LYP and WB97XD. Reasonable agreements were found between theoretical and experimental enthalpy values at the WB97XD/6-311++G(d,p) level. The dehydration mechanism of tert-butanol with and without catalysis was evaluated in order to examine the catalyst effect on the mechanism. The elimination reaction without catalysis involves a four-membered transition state (TS), while the reaction with catalysis involves a six-membered TS. The mechanism without catalysis has enthalpy activation over 150 kJ mol-1 greater than the catalysed reaction. In all these reactions, the elongation of the C-O bond is significant in the TS. The un-catalysed reaction is controlled by breaking of C-O bond, and it was found to be more synchronous (Sy ≈ 0.91) than the hydrogen bromide catalysed reactions (Sy ≈ 0.75-0.78); the latter reactions are dominated by the three reaction coordinates associated with water formation. No significant effect on the enthalpies of activation was observed when the size of the alkyl chain was increased.

  12. A model reaction assesses contribution of H-tunneling and coupled motions to enzyme catalysis.

    PubMed

    Liu, Qi; Zhao, Yu; Hammann, Blake; Eilers, James; Lu, Yun; Kohen, Amnon

    2012-08-17

    To assess the contribution of physical features to enzyme catalysis, the enzymatic reaction has to be compared to a relevant uncatalyzed reaction. While such comparisons have been conducted for some hydrolytic and radical reactions, it is most challenging for biological hydride transfer and redox reactions in general. Here, the same experimental tools used to study the H-tunneling and coupled motions for enzymatic hydride transfer between two carbons were used in the study of an uncatalyzed model reaction. The enzymatic oxidations of benzyl alcohol and its substituted analogues mediated by alcohol dehydrogenases were compared to the oxidations by 9-phenylxanthylium cation (PhXn(+)). The PhXn(+) serves as an NAD(+) model, while the solvent, acetonitrile, models the protein environment. Experimental comparisons included linear free energy relations with Hammett reaction constant (ρ) of zero versus -2.7; temperature-independent versus temperature-dependent primary KIEs; deflated secondary KIEs with deuteride transfer (i.e., primary-secondary coupled motion) versus no coupling between secondary KIEs and H- or D-transfer; and large versus small secondary KIEs for the enzymatic versus uncatalyzed alcohol oxidation. Some of the differences may come from differences in the order of microscopic steps between the catalyzed versus uncatalyzed reactions. However, several of these comparative experiments indicate that in contrast to the uncatalyzed reaction the transition state of the enzymatic reaction is better reorganized for H-tunneling and its H-donor is better rehybridized prior to the C-H→C transfer. These findings suggest an important role for these physical features in enzyme catalysis.

  13. Oxygen reduction reaction: A framework for success

    SciTech Connect

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  14. Oxygen reduction reaction: A framework for success

    SciTech Connect

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  15. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    PubMed

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  16. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid.

    PubMed

    Zhang, Chengcheng; Li, Xiang; Bian, Xiujie; Zheng, Tian; Wang, Ce

    2012-08-30

    Polyacrylonitrile(PAN)/manganese acetate(Mn(CH(3)COO)(2)) composite nanofibers have been fabricated by electrospinning, a simple and effective technology. The obtained composite nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The composite nanofibers are amorphous in structure, continuous, even and smooth. At the same time, the reduction performance of Cr(VI) by oxalic acid in the presence of the composite nanofibers is also investigated. The results indicate that the composite nanofibers have exhibited excellent catalysis performance for Cr(VI) reduction from a Cr(2)O(7)(2-)-containing solution by oxalic acid. And the critical parameters, such as the catalyst dosage, oxalic acid content, chromium concentration, the pH value of the reaction solution and light have important impact on the reduction process. Under the simulated solar light irradiation, after only 60 min, 1.2mM initial Cr(VI) solution was reduced absolutely in the presence of PAN/Mn(CH(3)COO)(2) composite nanofibers containing 17.5 wt.% Mn(CH(3)COO)(2) by 0.3 mL 0.5M oxalic acid. In light, the reduction of Cr(VI) by oxalic acid is markedly accelerated. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Controllable Chemoselectivity in Visible-Light Photoredox Catalysis: Four Diverse Aerobic Radical Cascade Reactions.

    PubMed

    Liu, Xinfei; Ye, Xinyi; Bureš, Filip; Liu, Hongjun; Jiang, Zhiyong

    2015-09-21

    Reported is the controllable selectivity syntheses of four distinct products from the same starting materials by visible-light photoredox catalysis. By employing a dicyanopyrazine-derived chromophore (DPZ) as photoredox catalyst, an aerobic radical mechanism has been developed, and allows the reactions of N-tetrahydroisoquinolines (THIQs) with N-itaconimides to through four different pathways, including addition-cyclization, addition-elimination, addition-coupling, and addition-protonation, with satisfactory chemoselectivity. The current strategy provide straightforward access to four different but valuable N-heterocyclic adducts in moderate to excellent yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Catalysis of Dialanine Formation by Glycine in the Salt-Induced Peptide Formation Reaction.

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1998-02-01

    Mutual catalysis of amino acids in the salt-induced peptide formation (SIPF) reaction is demonstrated for the case of glycine/alanine. The presence of glycine enhances dialanine formation by a factor up to 50 and enables dialanine formation at much lower alanine concentrations. The actual amounts of glycine play an important role for this catalytic effect, the optimal glycine concentration is 1/8 of the alanine concentration. The mechanism appears to be based on the formation of the intermediate Gly-Ala-Ala tripeptide, connected to one coordination site of copper(II) ion, and subsequent hydrolysis to dialanine and glycine.

  19. Nanostructured MnxOy for oxygen reduction reaction (ORR) catalysts

    NASA Astrophysics Data System (ADS)

    Delmondo, Luisa; Salvador, Gian Paolo; Muñoz-Tabares, José Alejandro; Sacco, Adriano; Garino, Nadia; Castellino, Micaela; Gerosa, Matteo; Massaglia, Giulia; Chiodoni, Angelica; Quaglio, Marzia

    2016-12-01

    In the field of fuel cells, oxygen plays a key role as the final electron acceptor. To facilitate its reduction (Oxygen Reduction Reaction-ORR), a proper catalyst is needed and platinum is considered the best one due to its low overpotential for this reaction. By considering the high price of platinum, alternative catalysts are needed and manganese oxides (MnxOy) can be considered promising substitutes. They are inexpensive, environmental friendly and can be obtained into several forms; most of them show significant electro-catalytic performance, even if strategies are needed to increase their efficiency. In particular, by developing light and high-surface area materials and by optimizing the presence of catalytic sites, we can obtain a cathode with improved electro-catalytic performance. In this case, nanofibers and xerogels are two of the most promising nanostructures that can be used in the field of catalysis. In this work, a study of the morphological and catalytic behavior of MnxOy nanofibers and xerogels is proposed. Nanofibers were obtained by electrospinning, while xerogels were prepared by sol-gel and freeze drying techniques. Despite of the different preparation approaches, the obtained nanostructured manganese oxides exhibited similar catalytic performance for the ORR, comparable to those obtained from Pt catalysts.

  20. O-atom transport catalysis by atomic cations in the gas phase: reduction of N2O by CO.

    PubMed

    Blagojevic, Voislav; Orlova, Galina; Bohme, Diethard K

    2005-03-16

    Atomic cations (26), M+, have been shown to lie within a thermodynamic window for O-atom transport catalysis of the reduction of N2O by CO and have been checked for catalytic activity at room temperature with kinetic measurements using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Only 10 of these 26 atomic cations were seen to be catalytic: Ca+, Fe+, Ge+, Sr+, Ba+, Os+, Ir+, Pt+, Eu+, and Yb+. The remaining 16 cations that lie in the thermodynamic window (Cr+, Mn+, Co+, Ni+, Cu+, Se+, Mo+, Ru+, Rh+, Sn+, Te+, Re+, Pb+, Bi+, Tm+, and Lu+) react too slowly at room temperature either in the formation of MO+ or in its reduction by CO. Many of these reactions are known to be spin forbidden and a few actually may lie outside the thermodynamic window. A new measure of efficiency is introduced for catalytic cycles that allows the discrimination between catalytic cations on the basis of the efficiencies of the two legs of the catalytic cycle. Also, a potential-energy landscape is computed for the reduction of N2O by CO catalyzed by Fe+(6D) that vividly illustrates the operation of an ionic catalyst.

  1. Individual Reactions of Permanganate & Various Reductants

    SciTech Connect

    Gauger, Amber M.; Hallen, Richard T. )

    2000-11-01

    Tank waste on the Hanford Site contains radioactive elements that need to be removed from solution prior to disposal. One effective way to do this is to precipitate the radioactive elements with manganese solids, produced by permanganate oxidation. When added to tank waste, the permanganate, Mn(VII), reacts quickly producing manganese (IV) dioxide precipitate. Because of the speed of reaction it is difficult to tell what exactly is happening. Individual reactions using non-radioactive reductants found in the tanks were done to determine reaction kinetics, what permanganate was reduced to, and what oxidation products were formed. In this project sodium formate, sodium nitrite, glycolic acid, glycine, and sodium oxalate were studied using various concentrations of reductant in alkaline sodium hydroxide solutions. It was determined that formate reacted the quickest, followed by glycine and glycolic acid. Oxalate and nitrite did not appear to react with the permanganate solutions. The formate reactions quickly reduced permanganate, Mn(VII), to manganate, Mn(VI), and then to manganese (IV) dioxide. These reactions oxidized formate to carbonate and water. The glycolic acid was oxidized slower producing oxalate, water, and manganate, which would disproportionate to permanganate and manganese (IV) dioxide solids. The rate at which Mn(VI) disproportionates is usually slower than the rate at which Mn(VII) is reduced to Mn(VI), however in this case the rates were about equal. The glycine reactions formed some ammonia in solution, oxalate, and water. They reacted similar to the glycolic acid reactions, producing manganese dioxide precipitate before the solution turned totally green from Mn(VI). The formate reactions consumed one mole of hydroxide for every 3 moles of formate, while the glycolic acid and glycine reactions consumed 7 moles of hydroxide for every 3 moles of reductant. These reactions should help to determine the majority of products found in mixtures of solutions.

  2. Enantioselective direct Mannich reactions of cyclic β-ketoesters catalyzed by chiral phosphine via a novel dual-reagent catalysis.

    PubMed

    Lou, Yan-Peng; Zheng, Chang-Wu; Pan, Ren-Ming; Jin, Qiao-Wen; Zhao, Gang; Li, Zhong

    2015-02-06

    A combination of an amino acid derived chiral phosphine catalyst and methyl acrylate efficiently catalyzed the direct Mannich reaction of cyclic β-ketoesters and N-Boc-aldimines. The dual-reagent catalysis was presumed to function through the formation of a zwitterion, which catalyzed the reaction with excellent stereocontrol via a hydrogen-bonding assisted chiral ion-pair pathway.

  3. Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism.

    PubMed

    Wang, Jiade; Mei, Yu; Liu, Chenliang; Chen, Jianmeng

    2008-01-01

    This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis. The effects of current density, pH, and electrolyte concentration on CB degradation were determined. The degradation efficiency of CB was almost 100% with an initial CB concentration of 50 mg/L, current density 15 mA/cm2, initial pH 10, electrolyte concentration 0.1 mol/L, and temperature 25 degrees C after 90 min of reaction. Under the same conditions, the degradation efficiency of CB was only 51% by electrochemical (EC) process, which showed that electro-heterogeneous catalysis was more efficient than EC alone. The analysis results of Purge-and-Trap chromatography-mass spectrometry (P&T/GC/MS) and ion chromatography (IC) indicated that in the reaction process, the initial *OH attack could occur at the C-Cl bond of CB, yielding phenol and biphenyl with the release of Cl-. Further oxidation of phenol and biphenyl produced p-Vinylbenzoic acid and hydroquinol. Finally, the compounds were oxidized to butenedioic acid and other small-molecule acids.

  4. Anatomy of acetylcholinesterase catalysis: reaction dynamics analogy for human erythrocyte and electric eel enzymes.

    PubMed

    Acheson, S A; Quinn, D M

    1990-09-03

    The anatomy of catalysis (i.e., reaction dynamics, thermodynamics and transition state structures) is compared herein for acetylcholinesterases from human erythrocytes and Electrophorus electricus. The two enzymes have similar relative activities for the substrate o-nitrochloroacetanilide and o-nitrophenyl acetate. In addition, with each substrate K values and solvent deuterium kinetic isotope effects for kES and kE are similar for the two enzymes. Solvent isotope effects in mixed isotopic buffers indicate that the acylation stages of o-nitrochloroacetanilide turnover by the two enzymes are rate-limited by virtual transition states that are weighted averages of contributions from transition states of serial chemical and physical steps. Similar experiments show that the transition states for Vmax of o-nitrophenyl acetate turnover by the two enzymes are stabilized by simple general acid-base (i.e., one-proton) catalysis. These comparisons demonstrate that acetylcholinesterases from diverse sources display functional analogy in that reaction dynamics and transition state structures are closely similar.

  5. A General Approach to Catalytic Alkene Anti-Markovnikov Hydrofunctionalization Reactions via Acridinium Photoredox Catalysis.

    PubMed

    Margrey, Kaila A; Nicewicz, David A

    2016-09-20

    The development of methods for anti-Markovnikov alkene hydrofunctionalization has been a focal point of catalysis research for several decades. The vast majority of work on the control of regioselectivity for this reaction class has hinged on transition metal catalyst activation of olefin substrates. While progress has been realized, there are significant limitations to this approach, and a general solution for catalysis of anti-Markovnikov hydrofunctionalization reactions of olefins does not presently exist. In the past several years, this research lab has focused on alkene activation by single electron oxidation using organic photoredox catalysts to facilitate anti-Markovnikov hydrofunctionalization. By accessing reactive cation radical intermediates, we have realized a truly general approach to anti-Markovnikov olefin hydrofunctionalization reactions. We have identified a dual organic catalyst system consisting of an acridinium photooxidant, first reported by Fukuzumi, and a redox-active hydrogen atom donor that accomplishes a wide range of hydrofunctionalization reactions with complete anti-Markovnikov regiocontrol. This method relies on single electron oxidation of the alkene to reverse its polarity and results in the opposite regioselectivity for hydrofunctionalization. In 2012, we disclosed the anti-Markovnikov hydroetherification of alkenols employing an acridinium photocatalyst and a hydrogen atom donor that proceeds via interwoven polar and radical steps. This general catalyst system has enabled several important reactions in this area, including anti-Markovnikov alkene hydroacetoxylation, hydrolactonization, hydroamination, and hydrotrifluoromethylation reactions. More recently, we have also delineated conditions for intermolecular anti-Markovnikov hydroamination reactions of alkenes using either triflamide or nitrogen-containing heteroaromatic compounds such as pyrazole, indazole, imidazole, and 1,2,3-triazole. Further development led to a method for

  6. Shock tube propellant reactions: Ignition of M-9 and catalysis of RDX

    NASA Technical Reports Server (NTRS)

    Cohen, A.; Decker, L. J.

    1980-01-01

    The preliminary results of shock tube experiments to study RDX catalysis are presented. It is shown that using N2 as the test gas (P approximately equal to 90 KPa, T bar approximately equal to 650K), the replacement of RDX powder with NaBH4 (20% by weight) leads to a large increase in the amount of RDX reacting and a small decrease in ignition delays T sub i. It is further shown that higher temperatures due to exothermic pyrolysis reactions of NaBH4 are not responsible for these effects. Replacement of N2 by NO2 (10% by volume) in the environment of RDX powders (T bar approximately equal to 650K, P = 90-400 KPa) leads to an increase in T sub i and T sub i is directly proportional to NO2 pressure. Inhibition appears to be initiated by reactions between NO2 and either RDX or the RDX decomposition products.

  7. Difluoromethanesulfonyl hypervalent iodonium ylides for electrophilic difluoromethylthiolation reactions under copper catalysis

    PubMed Central

    Arimori, Sadayuki; Matsubara, Okiya; Takada, Masahiro; Shiro, Motoo; Shibata, Norio

    2016-01-01

    Difluoromethanesulfonyl hypervalent iodonium ylides 2 were developed as electrophilic difluoromethylthiolation reagents for a wide range of nucleophiles. Enamines, indoles, β-keto esters, silyl enol ethers and pyrroles were effectively reacted with 2 affording desired difluoromethylthio (SCF2H)-substituted compounds in good to high yields under copper catalysis. The reaction of allyl alcohols with 2 under the same conditions provided difluoromethylsulfinyl (S(O)CF2H) products in good yields. The difluoromethylthiolation of enamines is particularly effective with wide generality, thus the enamine method was nicely extended to the synthesis of a series of difluoromethythiolated cyclic and acyclic β-keto esters, 1,3-diketones, pyrazole and pyrimidine derivatives by a consecutive, two-step one-pot reaction using 2. PMID:27293790

  8. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy.

    PubMed

    Blasco, Teresa

    2010-12-01

    This tutorial review intends to show the possibilities of in situ solid state NMR spectroscopy in the elucidation of reaction mechanisms and the nature of the active sites in heterogeneous catalysis. After a brief overview of the more usual experimental devices used for in situ solid state NMR spectroscopy measurements, some examples of applications taken from the recent literature will be presented. It will be shown that in situ NMR spectroscopy allows: (i) the identification of stable intermediates and transient species using indirect methods, (ii) to prove shape selectivity in zeolites, (iii) the study of reaction kinetics, and (iv) the determination of the nature and the role played by the active sites in a catalytic reaction. The approaches and methodology used to get this information will be illustrated here summarizing the most relevant contributions on the investigation of the mechanisms of a series of reactions of industrial interest: aromatization of alkanes on bifunctional catalysts, carbonylation reaction of methanol with carbon monoxide, ethylbenzene disproportionation, and the Beckmann rearrangement reaction. Special attention is paid to the research carried out on the role played by carbenium ions and alkoxy as intermediate species in the transformation of hydrocarbon molecules on solid acid catalysts.

  9. Catalysis of Dioxygen Reduction by Thermus thermophilus Strain HB27 Laccase on Ketjen Black Electrodes

    PubMed Central

    Agbo, Peter; Heath, James R.

    2012-01-01

    We present electrochemical analyses of the catalysis of dioxygen reduction by Thermus thermophilus strain HB27 laccase on ketjen black substrates. Our cathodes reliably produce 0.56 mA cm−2 at 0.0 V vs. Ag|AgCl reference at 30 °C in air-saturated buffer, under conditions of non-limiting O2 flux. We report the electrochemical activity of this laccase as a function of temperature, pH, time, and the efficiency of its conversion of dioxygen to water. We have measured the surface concentration of electrochemically active species, permitting the extraction of electron transfer rates at the enzyme-electrode interface: 1 s−1 for this process at zero driving force at 30 °C and a limiting rate of 23 s−1 at 240 mV overpotential at 50 °C. PMID:23163614

  10. Exploring reaction pathways for O-GlcNAc transferase catalysis. A string method study.

    PubMed

    Kumari, Manju; Kozmon, Stanislav; Kulhánek, Petr; Štepán, Jakub; Tvaroška, Igor; Koča, Jaroslav

    2015-03-26

    The inverting O-GlcNAc glycosyltransferase (OGT) is an important post-translation enzyme, which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to the hydroxyl group of the Ser/Thr of cytoplasmic, nuclear, and mitochondrial proteins. In the past, three different catalytic bases were proposed for the reaction: His498, α-phosphate, and Asp554. In this study, we used hybrid quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello molecular dynamics to investigate reaction paths using α-phosphate and Asp554 as the catalytic bases. The string method was used to calculate the free-energy reaction profiles of the tested mechanisms. During the investigations, an additional mechanism was observed. In this mechanism, a proton is transferred to α-phosphate via a water molecule. Our calculations show that the mechanism with α-phosphate acting as the base is favorable. This reaction has a rate-limiting free-energy barrier of 23.5 kcal/mol, whereas reactions utilizing Asp554 and water-assisted α-phosphate have barriers of 41.7 and 40.9 kcal/mol, respectively. Our simulations provide a new insight into the catalysis of OGT and may thus guide rational drug design of transition-state analogue inhibitors with potential therapeutic use.

  11. Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Miura, Hideo; Meng, Yang; Tongxiang, Liang

    2017-03-01

    The thermal reduced graphene oxide deposition on nickel foam was successfully synthesized by ultrasonic and subsequent thermal reduction process. Ultrathin mesoporous Ni3S2 was formed on the bare nickel foam after hydrothermal process, while Ni3S2 nanotube arrays were formed on the surface of nickel foam with the thermal reduced graphene oxide due to catalysis action of thermal reduced graphene oxide. The resulting Ni3S2 nanotube arrays exhibited higher catalytic activity than ultrathin mesoporous Ni3S2 for hydrogen evolution reaction. In addition, and excellent stability was also obtained in Ni3S2 nanotube arrays.

  12. Cluster reactions: An approach to understanding the fundamentals of heterogeneous catalysis

    SciTech Connect

    Castleman, A.W. Jr.

    1994-11-01

    The physical basis for catalysis is not well understood and the motivation for this ongoing research is to provide a basis for unraveling the role which composition, morphology and electronic states have on the functioning of catalysts for various classes of reactions. The work during the first two and one-half year grant period has focused on unsupported clusters of selected composition, charge state, and size. Research has proceeded along three general lines of inquiry: (1) investigation of the reactivity of these cluster materials and determination of the influence of their charged state; (2) determination of the kinetics of association (adsorption) of various reactants and unraveling the mechanisms of certain oxidation reactions known to be catalyzed on metal cluster alloys, oxides and carbides, and (3) thermochemical measurement of the absorption of gaseous species onto alloy and metal oxide and carbide cluster systems. The authors have pursued the role of metal and metal-oxide clusters, and the charge states of these, as they function to influence the reactions of adsorbed species including ammonia, alcohols, water, NO{sub x}, as well as CO and hydrogen. Evidence has been obtained that small positively charged nickel clusters function to catalyze reactions between adsorbed CO and hydrogen. In supportive studies, they have investigated the clustering of ammonia, methanol and water to nickel clusters of varying size. These studies, in conjunction with density functional calculations which are in progress, provide insight into cluster structures and knowledge of adsorption energies.

  13. Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sai Siddhardha, R. S.; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2015-08-01

    Hydrogen has been proposed as the green fuel of the future in the wake of depleting fossil fuels. Recently, carbon paste electrodes (CPE) modified with nanomaterials as electrocatalysts have drawn wide attention for hydrogen evolution reaction (HER) in acid medium. The CPEs are advantageous owing to their chemical stability and ease of fabrication. Their applications for HER without any modification, however, are hampered on account of large hydrogen overpotential associated with carbon surface. In the present study, CPE has been modified with novel gold composites as electro-catalysts for HER in acid medium. The nanocomposites have shown ∼100 fold increased current density than unmodified CPE at -0.3 V. Most strikingly for the first time, this study has quantitatively brought out the difference in catalysis between surfactant capped and pristine gold nanoparticles in terms of their application as spot-free catalysts towards hydrogen gas production by electrochemical route.

  14. Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions.

    PubMed

    Pera-Titus, Marc; Leclercq, Loïc; Clacens, Jean-Marc; De Campo, Floryan; Nardello-Rataj, Véronique

    2015-02-09

    Pickering emulsions are surfactant-free dispersions of two immiscible fluids that are kinetically stabilized by colloidal particles. For ecological reasons, these systems have undergone a resurgence of interest to mitigate the use of synthetic surfactants and solvents. Moreover, the use of colloidal particles as stabilizers provides emulsions with original properties compared to surfactant-stabilized emulsions, microemulsions, and micellar systems. Despite these specific advantages, the application of Pickering emulsions to catalysis has been rarely explored. This Minireview describes very recent examples of hybrid and composite amphiphilic materials for the design of interfacial catalysts in Pickering emulsions with special emphasis on their assets and challenges for industrially relevant biphasic reactions in fine chemistry, biofuel upgrading, and depollution.

  15. Reduction Methods for Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  16. Nature-inspired cascade catalysis: reaction control through substrate concentration--double vs. quadruple domino reactions.

    PubMed

    Rueping, Magnus; Haack, KyoungLang; Ieawsuwan, Winai; Sundén, Henrik; Blanco, Magda; Schoepke, Fenja R

    2011-04-07

    The design of biologically inspired, multi-component cascade reactions enables the targeted synthesis of assorted structurally complex products. Similar to regulation in cells the reaction path is controlled by the substrate concentration and complex enantiopure products with high structural diversity are provided.

  17. Diphenylbutadienes Syntheses by Means of the Wittig Reaction: Experimental Introduction to the Use of Phase Transfer Catalysis.

    ERIC Educational Resources Information Center

    Gillois, J.; And Others

    1980-01-01

    The synthesis of 1,4-diphenylbutadiene by means of the Wittig reaction is presented as suitable for organic chemistry students at the end of a basic laboratory program to apply laboratory skills and display understanding of the use of phase transfer catalysis and its application in syntheses. (CS)

  18. Diphenylbutadienes Syntheses by Means of the Wittig Reaction: Experimental Introduction to the Use of Phase Transfer Catalysis.

    ERIC Educational Resources Information Center

    Gillois, J.; And Others

    1980-01-01

    The synthesis of 1,4-diphenylbutadiene by means of the Wittig reaction is presented as suitable for organic chemistry students at the end of a basic laboratory program to apply laboratory skills and display understanding of the use of phase transfer catalysis and its application in syntheses. (CS)

  19. The role of acid catalysis in the Baeyer-Villiger reaction. A theoretical study.

    PubMed

    Bach, Robert D

    2012-08-17

    Quantum mechanical calculations at the B3LYP/6-311+G(d,p) level have examined the overall mechanism of the Baeyer-Villiger (BV) reaction with peroxyacetic acid. A series of reactions that include both the addition step and the subsequent alkyl group migration step included ketones, acetone, t-butyl methyl ketone, acetophenone, cyclohexyl methyl ketone, and cyclohexyl phenyl ketone. The combined data suggested that the first step for addition of the peroxyacetic acid oxidation catalyst to the ketone carbonyl to produce the Criegee or tetrahedral intermediate is rate-limiting and has activation barriers that range from 38 to 41 kcal/mol without the aid of a catalyst. The rate of addition is markedly reduced by the catalytic action of a COOH functionality acting as a donor-acceptor group affecting both its proton transfer to the ketone C═O oxygen in concert with transfer of the OOH proton to the carboxylic acid carbonyl. The second or alkyl group migration step has a much reduced activation barrier, and its rate is not markedly influenced by acid catalysis. The rate of both steps in the BV reaction is greatly influenced by the catalytic action of very strong acids.

  20. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    PubMed

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed.

  1. Optimizing Accuracy and Computational Cost in Theoretical Squaramide Catalysis: the Henry Reaction.

    PubMed

    Herrera, Raquel Perez; Marqués-López, Eugenia; Alegre-Requena, Juan V

    2017-08-02

    This study represents the first example where the accuracy of different combinations of density functional theory (DFT) methods and basis sets has been compared in squaramide catalysis. After an optimization process of the precision obtained and the computational time required in the computational calculations, highly precise results were achieved compared to the experimental outcomes while using the least amount of time as possible. Here, we have explored computationally and experimentally the mechanism of squaramide-catalyzed Henry reaction. This is a complex reaction of about 100 atoms and a great number of diverse non-covalent interactions. Moreover, this research is one of the scarce examples where the organocatalyst acts in a trifunctional manner and is the first investigation in which a trifunctional squaramide catalyst has been employed. Functional ωB97X-D showed the best results when used with different versions of the 6-311 basis sets, leading to highly accurate calculations of the outcomes of the Henry reaction using nine aldehydes with different structural characteristics. Furthermore, in these relatively large systems, the use of a split-valence triple-zeta basis set saves a large amount of time compared to using larger basis sets that are sometimes employed in organocatalytic studies, such as the TZV and Def2TZV basis set families. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.

    PubMed

    Schauermann, Swetlana; Freund, Hans-Joachim

    2015-10-20

    Heterogeneous catalysts are widely employed in technological applications, such as chemical manufacturing, energy harvesting, conversion and storage, and environmental technology. Often they consist of disperse metal nanoparticles anchored onto a morphologically complex oxide support. The compositional and structural complexity of such nanosized systems offers many degrees of freedom for tuning their catalytic performance. However, a rational design of heterogeneous catalysts based on an atomistic-level understanding of underlying surface processes has not been fully achieved so far and remains one of the primary goals for catalysis research. In our group, we developed concepts for replacing highly complex real supported catalysts by simplified model systems, which complexity can be gradually increased in order to mimic certain structural aspects of practically relevant catalysts in a controlled way. Well-defined model systems consisting of metal-nanoparticle ensembles supported on planar oxide substrates have proven to provide a successful approach to achieve fundamental insights into heterogeneous catalysis. In this Account, two mechanistic case studies focusing on an atomistic-level understanding of surface chemistry are presented in which we investigate how the nanoscopic nature of metal clusters affects their interaction with the adsorbates and the reactive processes. Particularly, we investigate the effects of the particle size and the flexibility of the atoms constituting metal clusters on the binding energy of gas-phase adsorbates, such as CO and oxygen. We identified two major structural factors determining the binding energy of gas phase adsorbates on metal nanoparticles: the local configuration of the adsorption site and the particle size. While the effect of the local configuration of the adsorption site was found to be adsorbate specific, the reduction of the cluster size results in a pronounced decrease of binding energy for both adsorbates and

  3. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    NASA Astrophysics Data System (ADS)

    Silva Mojica, Ernesto

    Porous materials comprising polymeric and inorganic segments have attracted interest from the scientific community due to their unique properties and functionalities. The physical and chemical characteristics of these materials can be effectively exploited for adsorption applications. This dissertation covers the experimental techniques for fabrication of poly(vinyl alcohol) (PVA) and silica (SiO2) porous supports, and their functionalization with polyamines for developing adsorbents with potential applications in separation of CO2 and catalysis of organic reactions. The supports were synthesized by processes involving (i) covalent cross-linking of PVA, (ii) hydrolysis and poly-condensation of silica precursors (i,e,. sol-gel synthesis), and formation of porous structures via (iii) direct templating and (iv) phase inversion techniques. Their physical structure was controlled by the proper combination of the preparation procedures, which resulted in micro-structured porous materials in the form of micro-particles, membranes, and pellets. Their adsorption characteristics were tailored by functionalization with polyethyleneimine (PEI), and their physicochemical properties were characterized by vibrational spectroscopy (FTIR, UV-vis), microscopy (SEM), calorimetry (TGA, DSC), and adsorption techniques (BET, step-switch adsorption). Spectroscopic investigations of the interfacial cross-linking reactions of PEI and PVA with glutaraldehyde (GA) revealed that PEI catalyzes the cross-linking reactions of PVA in absence of external acid catalysts. In-situ IR spectroscopy coupled with a focal plane array (FPA) image detector allowed the characterization of a gradient interface on a PEI/PVA composite membrane and the investigation of the cross-linking reactions as a function of time and position. The results served as a basis to postulate possible intermediates, and propose the reaction mechanisms. The formulation of amine-functionalized CO2 capture sorbents was based on the

  4. A new paradigm for electrostatic catalysis of radical reactions in vitamin B12 enzymes.

    PubMed

    Sharma, Pankaz K; Chu, Zhen T; Olsson, Mats H M; Warshel, Arieh

    2007-06-05

    The catalytic power of enzymes containing coenzyme B(12) cofactor has been, in some respects, the "last bastion" for the strain hypothesis. The present work explores the origin of this effect by using simulation methods that overcome the sampling difficulties of previous energy minimization studies. It is found that the major part of the catalytic effect is due to the electrostatic interaction between the ribose and the protein, and that the strain contribution is very small. Remarkably, enzymes can use electrostatic effects even in a radical process, when the charge distribution of the reacting fragments does not change significantly during the reaction. Electrostatic catalysis can, in such cases, be obtained by attaching a polar group to the leaving fragment and designing an active site that interacts more strongly with this group in the product state than in the reactant state. The finding that evolution had to use this trick provides further evidence to the observation that it is extremely hard to catalyze enzymatic reactions by nonelectrostatic factors. The trick used by B(12) enzymes may, in fact, be a very powerful new strategy in enzyme design.

  5. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction.

    PubMed

    Ding, San-Yuan; Gao, Jia; Wang, Qiong; Zhang, Yuan; Song, Wei-Guo; Su, Cheng-Yong; Wang, Wei

    2011-12-14

    Covalent organic frameworks (COFs) are crystalline porous solids with well-defined two- or three-dimensional molecular structures. Although the structural regularity provides this new type of porous material with high potentials in catalysis, no example has been presented so far. Herein, we report the first application of a new COF material, COF-LZU1, for highly efficient catalysis. The easily prepared imine-linked COF-LZU1 possesses a two-dimensional eclipsed layered-sheet structure, making its incorporation with metal ions feasible. Via a simple post-treatment, a Pd(II)-containing COF, Pd/COF-LZU1, was accordingly synthesized, which showed excellent catalytic activity in catalyzing the Suzuki-Miyaura coupling reaction. The superior utility of Pd/COF-LZU1 in catalysis was elucidated by the broad scope of the reactants and the excellent yields (96-98%) of the reaction products, together with the high stability and easy recyclability of the catalyst. We expect that our approach will further boost research on designing and employing functional COF materials for catalysis.

  6. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents.

    PubMed

    Dzhioev, Alan A; Kosov, Daniel S; von Oppen, Felix

    2013-04-07

    We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.

  8. Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents

    NASA Astrophysics Data System (ADS)

    Dzhioev, Alan A.; Kosov, Daniel S.; von Oppen, Felix

    2013-04-01

    We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom.

  9. Selective Catalytic Reduction over Cu/SSZ-13: Linking Homo- and Heterogeneous Catalysis.

    PubMed

    Gao, Feng; Mei, Donghai; Wang, Yilin; Szanyi, János; Peden, Charles H F

    2017-03-21

    Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu(2+) and [Cu(II)(OH)](+) ions. A redox reaction mechanism has also been established, where Cu ions cycle between Cu(I) and Cu(II) oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (Cu(II) → Cu(I)) is reasonably well-understood, that for the oxidation half-cycle (Cu(I) → Cu(II)) remains an unsettled debate. Herein we report detailed reaction kinetics on low-temperature standard NH3-SCR, supplemented by DFT calculations, as strong evidence that the low-temperature oxidation half-cycle occurs with the participation of two isolated Cu(I) ions via formation of a transient [Cu(I)(NH3)2](+)-O2-[Cu(I)(NH3)2](+) intermediate. The feasibility of this reaction mechanism is confirmed from DFT calculations, and the simulated energy barrier and rate constants are consistent with experimental findings. Significantly, the low-temperature standard SCR mechanism proposed here provides full consistency with low-temperature SCR kinetics.

  10. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

    PubMed Central

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-01-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  11. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis.

    PubMed

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-10-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur.

  12. The Reductive Half-reaction of Xanthine Dehydrogenase from Rhodobacter capsulatus

    PubMed Central

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-01-01

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu232 in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu232 being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu232 of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. PMID:25258317

  13. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-07

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  14. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions.

    PubMed

    Claeyssens, Frederik; Ranaghan, Kara E; Lawan, Narin; Macrae, Stephen J; Manby, Frederick R; Harvey, Jeremy N; Mulholland, Adrian J

    2011-03-07

    Chorismate mutase is at the centre of current controversy about fundamental features of biological catalysts. Some recent studies have proposed that catalysis in this enzyme does not involve transition state (TS) stabilization but instead is due largely to the formation of a reactive conformation of the substrate. To understand the origins of catalysis, it is necessary to compare equivalent reactions in different environments. The pericyclic conversion of chorismate to prephenate catalysed by chorismate mutase also occurs (much more slowly) in aqueous solution. In this study we analyse the origins of catalysis by comparison of multiple quantum mechanics/molecular mechanics (QM/MM) reaction pathways at a reliable, well tested level of theory (B3LYP/6-31G(d)/CHARMM27) for the reaction (i) in Bacillus subtilis chorismate mutase (BsCM) and (ii) in aqueous solvent. The average calculated reaction (potential energy) barriers are 11.3 kcal mol(-1) in the enzyme and 17.4 kcal mol(-1) in water, both of which are in good agreement with experiment. Comparison of the two sets of reaction pathways shows that the reaction follows a slightly different reaction pathway in the enzyme than in it does in solution, because of a destabilization, or strain, of the substrate in the enzyme. The substrate strain energy within the enzyme remains constant throughout the reaction. There is no unique reactive conformation of the substrate common to both environments, and the transition state structures are also different in the enzyme and in water. Analysis of the barrier heights in each environment shows a clear correlation between TS stabilization and the barrier height. The average differential TS stabilization is 7.3 kcal mol(-1) in the enzyme. This is significantly higher than the small amount of TS stabilization in water (on average only 1.0 kcal mol(-1) relative to the substrate). The TS is stabilized mainly by electrostatic interactions with active site residues in the enzyme, with Arg

  15. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    PubMed Central

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448

  16. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    NASA Astrophysics Data System (ADS)

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.

  17. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol.

    PubMed

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-13

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C(3)N(4)) and Keggin-type polyoxometalate H(5)PMo(10)V(2)O(40) (PMoV(2)) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C(3)N(4) and O2 by the V-O-V structure of PMoV(2). This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway.

  18. Computational design of a lipase for catalysis of the Diels-Alder reaction.

    PubMed

    Linder, Mats; Hermansson, Anders; Liebeschuetz, John; Brinck, Tore

    2011-04-01

    Combined molecular docking, molecular dynamics (MD) and density functional theory (DFT) studies have been employed to study catalysis of the Diels-Alder reaction by a modified lipase. Six variants of the versatile enzyme Candida Antarctica lipase B (CALB) have been rationally engineered in silico based on the specific characteristics of the pericyclic addition. A kinetic analysis reveals that hydrogen bond stabilization of the transition state and substrate binding are key components of the catalytic process. In the case of substrate binding, which has the greater potential for optimization, both binding strength and positioning of the substrates are important for catalytic efficiency. The binding strength is determined by hydrophobic interactions and can be tuned by careful selection of solvent and substrates. The MD simulations show that substrate positioning is sensitive to cavity shape and size, and can be controlled by a few rational mutations. The well-documented S105A mutation is essential to enable sufficient space in the vicinity of the oxyanion hole. Moreover, bulky residues on the edge of the active site hinders the formation of a sandwich-like nearattack conformer (NAC), and the I189A mutation is needed to obtain enough space above the face of the α,β-double bond on the dienophile. The double mutant S105A/I189A performs quite well for two of three dienophiles. Based on binding constants and NAC energies obtained from MD simulations combined with activation energies from DFT computations, relative catalytic rates (v(cat)/v(uncat)) of up to 103 are predicted.

  19. Tuning the Interfacial Activity of Mesoporous Silicas for Biphasic Interface Catalysis Reactions.

    PubMed

    Xue, Fen; Zhang, Yabin; Zhang, Fengwei; Ren, Xiaomin; Yang, Hengquan

    2017-03-08

    Interface-active particle materials that are able to assemble at the oil/water interface so as to stabilize droplets, are gaining unprecedented interest due to the intriguing applications in catalysis and materials synthesis, etc. In contrast to these potential applications, this kind of materials are still limited and cannot meet some particular demands of practical utilizations such as rationally designed interfacial activity and high stability against concentrated salts. In this contribution, interface-active mesoporous silica nanospheres (MSS@CxZy) are synthesized through simultaneous incorporation of extremely hydrophilic zwitterionic moiety and hydrophobic octyl moiety in the shell. The textural properties of these materials are characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and nitrogen sorption. The successful decoration of these functionalities in the shell is confirmed by Fourier transform infrared spectra (FT-IR), (13)C nuclear cross-polar magnetic resonance ((13)C CP/MAS NMR), and (29)Si nuclear cross-polar magnetic resonance ((29)Si CP/MAS NMR). The prepared mesoporous silicas exhibit tunable interfacial activity, so that oil-in-water (O/W) and water-in-oil (W/O) Pickering emulsions can be easily obtained by varying the molar fraction of these two functionalities. The MSS@CxZy-stabilized Pickering emulsions exhibit high stability to coalescence even at 6.0 M NaCl and have relatively low surface coverage of droplets due to electrostatic repulsion, which is normally difficult to obtain for conventional particles. Interestingly, such interface-active mesoporous silicas can also carry polyoxometalate that is hosted in the nanopore to assemble at the oil/water interface and thus efficiently promotes biphasic epoxidation reactions without any external stirring, exemplifying an innovative application of theses developed mesoporous silicas.

  20. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    PubMed

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful.

  1. A study of the catalysis of cobalt hydroxide towards the oxygen reduction in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Zhang, Dun; Liu, Huaiqun

    A cobalt hydroxide modified glassy carbon (Co(OH) 2/GC) electrode has been fabricated by a galvanostatic electrodeposition method. The catalytic activity for the oxygen (O 2) reduction reaction (ORR) of this electrode in alkaline media is studied by cyclic voltammetry, rotating disk electrode voltammetry, and rotating ring-disk electrode voltammetry. The O 2 reduction at the Co(OH) 2/GC disk electrode has been found to undergo an electrochemical process followed by sequential disproportionation of the electrochemical reduction intermediates, i.e., superoxide anion (O 2 rad -) and hydrogen peroxide anion (HO 2 -) in 0.1 M KOH solution. The Co(OH) 2 is first found to possess an excellent catalytic activity not only for the disproportionation of the O 2 rad - produced into O 2 and HO 2 - but also for that of the HO 2 - produced, combined with electrochemical reduction of O 2 mediated by surface functional groups at the carbon electrode surface. The Co(OH) 2 is a potential electrode material for the ORR in alkaline fuel cells and metal-air batteries.

  2. Surface catalysis of uranium(VI) reduction by iron(II)

    NASA Astrophysics Data System (ADS)

    Liger, Emmanuelle; Charlet, Laurent; Van Cappellen, Philippe

    1999-10-01

    Colloidal hematite (α-Fe2O3) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (UVIO22+) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O2- and CO2-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: (≡FeIIIOFeII)+ (or ≡FeIIIOFeII(OH2)n+) and ≡FeIIIOFeIIOH0 (or ≡FeIIIOFeII(OH2)n-1OH0). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH > 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH > 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO3. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6-7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2-160 μM). When analyzing the rate data in terms of the calculated surface speciation, the

  3. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy)

    DOE PAGES

    Duan, Lele; Manbeck, Gerald F.; Kowalczyk, Marta; ...

    2016-04-14

    Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry,more » bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H+ with CO2.« less

  4. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3)](2+) (6DHBP = 6,6'-(OH)2bpy).

    PubMed

    Duan, Lele; Manbeck, Gerald F; Kowalczyk, Marta; Szalda, David J; Muckerman, James T; Himeda, Yuichiro; Fujita, Etsuko

    2016-05-02

    Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2″-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)](2+) generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H(+))](0)) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)](2+) (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H(+) with CO2.

  5. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

    DOE PAGES

    To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; ...

    2016-11-30

    The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O2-H2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of a regenerative fuel cell.more » The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.« less

  6. High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration

    SciTech Connect

    To, John W. F.; Ng, Jia Wei Desmond; Siahrostami, Samira; Koh, Ai Leen; Lee, Yangjin; Chen, Zhihua; Fong, Kara D.; Chen, Shucheng; He, Jiajun; Bae, Won -Gyu; Wilcox, Jennifer; Jeong, Hu Young; Kim, Kwanpyo; Studt, Felix; Nørskov, Jens K.; Jaramillo, Thomas F.; Bao, Zhenan

    2016-11-30

    The development of high-performance and low-cost oxygen reduction and evolution catalysts that can be easily integrated into existing devices is crucial for the wide deployment of energy storage systems that utilize O2-H2O chemistries, such as regenerative fuel cells and metal-air batteries. Herein, we report an NH3-activated N-doped hierarchical carbon (NHC) catalyst synthesized via a scalable route, and demonstrate its device integration. The NHC catalyst exhibited good performance for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), as demonstrated by means of electrochemical studies and evaluation when integrated into the oxygen electrode of a regenerative fuel cell. The activities observed for both the ORR and the OER were comparable to those achieved by state-of-the-art Pt and Ir catalysts in alkaline environments. We have further identified the critical role of carbon defects as active sites for electrochemical activity through density functional theory calculations and high-resolution TEM visualization. As a result, this work highlights the potential of NHC to replace commercial precious metals in regenerative fuel cells and possibly metal-air batteries for cost-effective storage of intermittent renewable energy.

  7. Exploring water catalysis in the reaction of thioformic acid with hydroxyl radical: a global reaction route mapping perspective.

    PubMed

    Kaur, Gurpreet; Vikas

    2014-06-12

    Hydrogen abstraction pathways, in the gas-phase reaction of tautomers of thioformic acid (TFA), TFA(thiol), and TFA(thione), with hydroxyl radical in the presence and absence of single water molecule acting as a catalyst, is investigated with high-level quantum mechanical calculations at CCSD(T)/6-311++G(2d,2p)//MP2/6-311++G(2d,2p), CCSD(T)/6-311++G(d,p)//DFT/BHandHLYP/6-311++G(d,p), and DFT/B3LYP/6-311++G(2df,2p) levels of the theory. A systematic and automated search of the potential energy surface (PES) for the reaction pathways is performed using the global reaction route mapping (GRRM) method that employs an uphill walking technique to search prereaction complexes and transition states. The computations reveal significant lowering of the PES and substantial reduction in the activation energy for the hydrogen abstraction pathway in the presence of water, thereby proving water as an efficient catalyst in the reaction of both the TFA tautomers with OH radical. The hydrogen-bonding interactions are observed to be responsible for the large catalytic effect of water. Notably, in the case of TFA(thiol), formyl hydrogen abstraction is observed to be kinetically more favorable, while acidic hydrogen abstraction is observed to be thermodynamically more feasible. Interestingly, in the case of TFA(thione), reaction pathways involving only formyl hydrogen abstraction were observed to be feasible. The water-catalyzed hydrogen abstraction reaction of TFA with hydroxyl radical, investigated in this work, can provide significant insights into the corresponding reaction in the biological systems.

  8. DFT study on the effects of catalysis by β-cyclodextrin in the reaction of p-nitrophenyl acetate.

    PubMed

    Cheng, Yamei; Wang, Xueye; Li, Weiwei; Chang, Dan

    2017-01-01

    The reaction of p-nitrophenyl acetate and α-alanine can be improved apparently with β-cyclodextrin (β-CD) according to previous research, the interaction mechanism between β-cyclodextrin and p-nitrophenyl acetate is described in this paper. Density functional theory (DFT) method is used throughout the study. According to the energy (the binding energy, the deformation energy) and structural deformation, entry models and reaction process can be pinpointed, viz p-nitrophenyl acetate embed β-CD from the wide rim. Then frontier molecular orbital, dual descriptor, natural bonding orbital (NBO), and nuclear magnetic resonance (NMR) are employed to reveal the mechanism of electron transferring. The mechanism illustrates that β-CD plays a catalytic role during the synthesis reaction, improving the reactivity and selectivity of the process. Graphical Abstract DFT study on the effects of catalysis by β-cyclodextrin in the reaction of p-nitrophenyl acetate.

  9. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water.

    PubMed

    García-Fernández, Almudena; Megens, Rik P; Villarino, Lara; Roelfes, Gerard

    2016-12-21

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a reaction that critically depends on the >700- to 990-fold rate acceleration caused by the presence of a DNA scaffold. The DNA-induced rate acceleration observed is the highest reported due to the environment presented by a biomolecular scaffold for any hybrid catalyst, to date. Based on a combination of kinetics and binding studies, it is proposed that the rate acceleration is in part due to the DNA acting as a pseudophase, analogous to micelles, in which all reaction components are concentrated, resulting in a high effective molarity. The involvement of additional second coordination sphere interactions is suggested by the enantioselectivity of the product. The results presented here show convincingly that the DNA-based catalysis concept, thanks to the DNA-accelerating effect, can be an effective approach to achieving a chemically challenging reaction in water.

  10. Detailed reduction of reaction mechanisms for flame modeling

    NASA Technical Reports Server (NTRS)

    Wang, Hai; Frenklach, Michael

    1991-01-01

    A method for reduction of detailed chemical reaction mechanisms, introduced earlier for ignition system, was extended to laminar premixed flames. The reduction is based on testing the reaction and reaction-enthalpy rates of the 'full' reaction mechanism using a zero-dimensional model with the flame temperature profile as a constraint. The technique is demonstrated with numerical tests performed on the mechanism of methane combustion.

  11. Combining Organocatalysis and Lanthanide Catalysis: A Sequential One-Pot Quadruple Reaction Sequence/Hetero-Diels-Alder Asymmetric Synthesis of Functionalized Tricycles.

    PubMed

    Dochain, Simon; Vetica, Fabrizio; Puttreddy, Rakesh; Rissanen, Kari; Enders, Dieter

    2016-12-23

    A stereoselective one-pot synthesis of functionalized complex tricyclic polyethers has been achieved using the combination of secondary amine and lanthanide catalysis. This one-pot quadruple reaction/Hetero-Diels-Alder sequence gave good yields (per step) as well as excellent diastereo- and enantioselectivities. Furthermore, the particular combination of lanthanide complexes with organocatalysis is one of the first examples described for sequential catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  13. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  14. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    SciTech Connect

    Nguyen, Luan; Tao, Franklin

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  15. Second sphere control of redox catalysis: selective reduction of O2 to O2- or H2O by an iron porphyrin catalyst.

    PubMed

    Samanta, Subhra; Mittra, Kaustuv; Sengupta, Kushal; Chatterjee, Sudipta; Dey, Abhishek

    2013-02-04

    "Click" reaction has been utilized to synthesize porphyrin ligands possessing distal superstructures functionalized with ferrocenes, carboxylic acid esters, and phenols. Both structural and spectroscopic evidence indicate that hydrogen bonding interaction between the triazole residues resulting from the "click" reaction promotes axial ligand binding into the sterically demanding distal pocket in preference to the open proximal side. An iron porphyrin complex with four ferrocene groups is found to bind O(2) and quantitatively reduce it by one electron to O(2)(-) in apolar organic solvents. However the same complex electro-catalytically reduces O(2) by four electrons to H(2)O in aqueous medium under fast, moderate, and slow electron fluxes. This selectivity for O(2) reduction is governed by the reduction potential of the electron transfer site (i.e., ferrocene) which in turn is governed by the solvent. This catalyst mimics control of catalysis of an enzyme active site by a second sphere electron transfer residue which is often encountered in naturally occurring metallo-enzymes.

  16. DNA‐Accelerated Catalysis of Carbene‐Transfer Reactions by a DNA/Cationic Iron Porphyrin Hybrid

    PubMed Central

    Rioz‐Martínez, Ana; Oelerich, Jens; Ségaud, Nathalie

    2016-01-01

    Abstract A novel DNA‐based hybrid catalyst comprised of salmon testes DNA and an iron(III) complex of a cationic meso‐tetrakis(N‐alkylpyridyl)porphyrin was developed. When the N‐methyl substituents were placed at the ortho position with respect to the porphyrin ring, high reactivity in catalytic carbene‐transfer reactions was observed under mild conditions, as demonstrated in the catalytic enantioselective cyclopropanation of styrene derivatives with ethyl diazoacetate (EDA) as the carbene precursor. A remarkable feature of this catalytic system is the large DNA‐induced rate acceleration observed in this reaction and the related dimerization of EDA. It is proposed that high effective molarity of all components of the reaction in or near the DNA is one of the key contributors to this unique reactivity. This study demonstrates that the concept of DNA‐based asymmetric catalysis can be expanded into the realm of organometallic chemistry. PMID:27730731

  17. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  18. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  19. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    SciTech Connect

    Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Singh, Gurpreet; Stork, Kevin; Hoard, John W.; Cho, Byong; Brooks, David J.; Nunn, Steven

    2004-10-01

    This annual report reviews FY 2003 progress of a program aimed at the development of a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Our previous work has shown that a non-thermal plasma in combination with an appropriate catalyst can provide NOx emission reduction efficiency of 60-80% using a simulated diesel exhaust. Based on these levels of NOx reduction obtained in the lab, a simple model was developed in this program that allows for the estimation of the fuel economy penalty that would be incurred by operating a plasma/catalyst system. Results obtained from this model suggest that a 5% fuel economy penalty is achievable with the then current (FY2000) state-of-the-art catalyst materials and plasma reactor designs. In this last year, we have continued to focus on (1) improving the catalyst and plasma reactor efficiencies for NOx reduction, (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts (focus 1), and (3) evaluating the performance of prototype systems on real engine exhaust. While studies of the effects of the plasma on PM in real diesel engine exhaust is meant to be part of the program, this year we did not conduct any experiments along these lines due to the major effort required to carry out the engine testing (focus 3).

  20. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    PubMed

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  1. Surface catalysis of uranium(VI) reduction by iron(II)

    SciTech Connect

    Liger, E.; Charlet, L.; Van Cappellen, P.

    1999-10-01

    Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the

  2. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.

    PubMed

    Ranaghan, Kara E; Ridder, Lars; Szefczyk, Borys; Sokalski, W Andrzej; Hermann, Johannes C; Mulholland, Adrian J

    2004-04-07

    To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this

  3. Metal Nanoparticle-Catalyzed Reduction Using Borohydride in Aqueous Media: A Kinetic Analysis of the Surface Reaction by Microfluidic SERS.

    PubMed

    Xie, Wei; Grzeschik, Roland; Schlücker, Sebastian

    2016-10-24

    Hydrides are widely used in reduction reactions. In protic solvents, their hydrolysis generates molecular hydrogen as a second reducing agent. The competition between these two parallel reduction pathways has been overlooked so far since both typically yield the same product. We investigated the platinum-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol in aqueous sodium borohydride solution as a prominent model reaction, by using label-free SERS monitoring in a microfluidic reactor. Kinetic analysis revealed a strong pH dependence. Surprisingly, only at pH>13 the reduction is driven exclusively by sodium borohydride. This study demonstrates the potential of microfluidics-based kinetic SERS monitoring of heterogeneous catalysis in colloidal suspension. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis propanol by esterification and reduction reaction

    NASA Astrophysics Data System (ADS)

    Salmahaminati; Jumina

    2017-01-01

    Synthesis of propanol from propanoic acid had been done. Propanol was synthesized via two steps. They are; esterification of propanoic acid and methanol in the presence of the sulfuric acid catalyst with the mole ratio of 4:3 to produce methyl propanoate, and reduction of methyl propanoate with sodium using ethylene glycol as the solvent to yield propanol. Structural characterizations of methyl propanoate and propanol were done using IR, 1H-NMR, and GC spectrometers. The results show that esterification of propanoic acid with methanol produced methyl propanoate in 75% yield. Reduction of methyl propanoate using ethylene glycol as a solvent produced propanol in yield of 77%.

  5. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  6. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  7. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis

    DOE PAGES

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun; ...

    2016-12-16

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-­Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-­Omore » bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.« less

  8. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis

    SciTech Connect

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun; Zhang, Xu; Li, Jing; Yao, Jianlin; Wu, Tao; Lu, Gang; Ma, Jing-Yuan; Su, Dong; Huang, Xiaoqing

    2016-12-16

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/Pt catalysts (where M can be Ni, Co, Fe). We report a class of PtPb/Pt core/shell nanoplate catalysts that exhibit large biaxial tensile strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere per centimeter square and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations revealed that the edge-­Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-­O bond strength. The intermetallic core and uniform 4 layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.

  9. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis.

    PubMed

    Bu, Lingzheng; Zhang, Nan; Guo, Shaojun; Zhang, Xu; Li, Jing; Yao, Jianlin; Wu, Tao; Lu, Gang; Ma, Jing-Yuan; Su, Dong; Huang, Xiaoqing

    2016-12-16

    Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/platinum (Pt) catalysts (where M can be nickel, cobalt, or iron). We report on a class of platinum-lead/platinum (PtPb/Pt) core/shell nanoplate catalysts that exhibit large biaxial strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere (mA) per centimeter squared and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations reveal that the edge-Pt and top (bottom)-Pt (110) facets undergo large tensile strains that help optimize the Pt-O bond strength. The intermetallic core and uniform four layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes. Copyright © 2016, American Association for the Advancement of Science.

  10. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition

    PubMed Central

    Okamoto, Ken; Matsumoto, Koji; Hille, Russ; Eger, Bryan T.; Pai, Emil F.; Nishino, Takeshi

    2004-01-01

    Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon–oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge–transfer band at ≈640 nm. The crystal structure of the complex indicates that the catalytically labile Mo—OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the Mo⋕S group of the oxidized enzyme has become protonated to afford Mo—SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide. PMID:15148401

  11. The strong catalytic effect of Pb(II) on the oxygen reduction reaction on 5 nm gold nanoparticles.

    PubMed

    Wang, Ying; Laborda, Eduardo; Plowman, Blake J; Tschulik, Kristina; Ward, Kristopher R; Palgrave, Robert G; Damm, Christine; Compton, Richard G

    2014-02-21

    Citrate-capped gold nanoparticles (AuNPs) of 5 nm in diameter are synthesized via wet chemistry and deposited on a glassy carbon electrode through electrophoresis. The kinetics of the oxygen reduction reaction (ORR) on the modified electrode is determined quantitatively in oxygen-saturated 0.5 M sulphuric acid solution by modelling the cathode as an array of interactive nanoelectrodes. Quantitative analysis of the cyclic voltammetry shows that no apparent ORR electrocatalysis takes place, the kinetics on AuNPs being effectively the same as on bulk gold. Contrasting with the above, a strong ORR catalysis is found when Pb(2+) is added to the oxygen saturated solution or when the modified electrode is cycled in lead alkaline solution such that lead dioxide is repeatedly electrodeposited and stripped off on the nanoparticles. In both cases, the underpotential deposition of lead on the gold nanoparticles is found to be related to the catalysis.

  12. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme.

    PubMed

    Hur, Sun; Bruice, Thomas C

    2002-02-05

    Molecular dynamics studies of the Escherichia coli chorismate mutase (EcCM), containing at the active site chorismate and in turn the transition state (TS), have been performed. The simulations show that TS is not bound any tighter than chorismate. Comparison of average polar interactions show they are virtually identical for interactions of EcCM with chorismate and the TS, whereas hydrophobic interactions with TS are much weaker than with chorismate. Interactions and the mechanism of catalysis of chorismate --> prephenate by the EcCM enzyme are discussed.

  13. Direct reductive amination of aldehydes and ketones using phenylsilane: catalysis by dibutyltin dichloride.

    PubMed

    Apodaca, R; Xiao, W

    2001-05-31

    A procedure for direct reductive amination of aldehydes and ketones was developed which uses phenylsilane as a stoichiometric reductant and dibutyltin dichloride as a catalyst. Suitable amines included anilines and dialkylamines but not monoalkylamines.

  14. Asymmetric catalysis at the mesoscale: gold nanoclusters embedded in chiral self-assembled monolayer as heterogeneous catalyst for asymmetric reactions.

    PubMed

    Gross, Elad; Liu, Jack H; Alayoglu, Selim; Marcus, Matthew A; Fakra, Sirine C; Toste, F Dean; Somorjai, Gabor A

    2013-03-13

    Research to develop highly versatile, chiral, heterogeneous catalysts for asymmetric organic transformations, without quenching the catalytic reactivity, has met with limited success. While chiral supramolecular structures, connected by weak bonds, are highly active for homogeneous asymmetric catalysis, their application in heterogeneous catalysis is rare. In this work, asymmetric catalyst was prepared by encapsulating metallic nanoclusters in chiral self-assembled monolayer (SAM), immobilized on mesoporous SiO2 support. Using olefin cyclopropanation as an example, it was demonstrated that by controlling the SAM properties, asymmetric reactions can be catalyzed by Au clusters embedded in chiral SAM. Up to 50% enantioselectivity with high diastereoselectivity were obtained while employing Au nanoclusters coated with SAM peptides as heterogeneous catalyst for the formation of cyclopropane-containing products. Spectroscopic measurements correlated the improved enantioselectivity with the formation of a hydrogen-bonding network in the chiral SAM. These results demonstrate the synergetic effect of the catalytically active metallic sites and the surrounding chiral SAM for the formation of a mesoscale enantioselective catalyst.

  15. A facile synthesis of highly stable modified carbon nanotubes as efficient oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Stenmark, Theodore Axel

    Proton Exchange Membrane Fuel Cell (PEMFC) technology is an exciting alternative energy prospect, especially in the field of transportation. PEMFCs are three times as efficient as internal combustion (IC) engines and emit only water as a byproduct. The latter point is especially important in a day and age when climate change is upon us. However, platinum required to catalyze the sluggish oxygen reduction reaction (ORR) which takes place on the cathode of the PEMFC has rendered fuel cell automobiles economically unviable. Therefore, the pursuit of an inexpensive replacement for platinum has become an active research area. Herein, a facile synthetic process for modified carbon nanotubes for ORR catalysis is described. These nanotubes display catalytic activity via rotating disc electrode (RDE) analysis which, in some cases, equals that of a Pt/C standard.

  16. Whole cell biotransformation for reductive amination reactions

    PubMed Central

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration. PMID:24406456

  17. Whole cell biotransformation for reductive amination reactions.

    PubMed

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration.

  18. N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions.

    PubMed

    Iturmendi, Amaia; García, Nestor; Jaseer, E A; Munárriz, Julen; Sanz Miguel, Pablo J; Polo, Victor; Iglesias, Manuel; Oro, Luis A

    2016-08-09

    The Ir(i) complexes [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 and [IrCl(cod)(κC-NHO(OMe))] (cod = 1,5-cyclooctadiene, NHO(PPh2) = 1,3-bis(2-(diphenylphosphanyl)ethyl)-2-methyleneimidazoline) and NHO(OMe) = 1,3-bis(2-(methoxyethyl)-2-methyleneimidazoline), both featuring an N-heterocyclic olefin ligand (NHO), have been tested in the transfer hydrogenation reaction; this representing the first example of the use of NHOs as ancillary ligands in catalysis. The pre-catalyst [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 has shown excellent activities in the transfer hydrogenation of aldehydes, ketones and imines using (i)PrOH as a hydrogen source, while [IrCl(cod)(κC-NHO(OMe))] decomposes throughout the reaction to give low yields of the hydrogenated product. Addition of one or two equivalents of a phosphine ligand to the latter avoids catalyst decomposition and significantly improves the reaction yields. The reaction mechanism has been investigated by means of stoichiometric studies and theoretical calculations. The formation of the active species ([Ir(κP,C,P'-NHO(PPh2))((i)PrO)]) has been proposed to occur via isopropoxide coordination and concomitant COD dissociation. Moreover, throughout the catalytic cycle the NHO moiety behaves as a hemilabile ligand, thus allowing the catalyst to adopt stable square planar geometries in the transition states, which reduces the energetic barrier of the process.

  19. Metal carbonyl-hydrosilane reactions and hydrosilation catalysis. Final report for period May 1, 1995 - August 14, 1999

    SciTech Connect

    Cutler, Alan R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a doxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(CO){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(l) precatalysts. The reaction chemistry of the above and other Mn alkyl complexes with hydrosilanes was studied in order to probe catalysis mechanism(s). Thus, Mn(CO){sub 5} methyl, benzyl, acetyl, and benzoyl (4 p-substituents) complexes reacted with hydrosilines by four different mechanisms, which were established. A noteworthy development was that the methyl and benzoyl complexes gave moderate yields of a new ({eta}{sup 2}-Si-H) silane adduct (CO){sub 4}Mn(SiMe{sub 2}Ph)(H-SiMe{sub 2}Ph), which is stable in the presence of excess silane. This silane adduct promotes all three catalytic reactions; its extraordinary activity and potential selectivity are under study.

  20. Monte Carlo simulations of surface reactions: NO reduction by CO or H2

    NASA Astrophysics Data System (ADS)

    Álvarez-Falcón, L.; Alas, S. J.; Vicente, L.

    2014-01-01

    The development of surface science has given an opportunity to investigate the process of heterogeneous catalysis at a molecular level. In this way there has been a great progress in understanding the mechanism in NO decomposition. Modeling has been an very important tool in this goal. In this work we analyze the reactions NO+H2 and NO+CO. The extremely narrow production peak of N2 and CO2 which occurs in the reaction of NO+CO on Pt(100), a phenomenon known as "surface explosion," is studied using a dynamic Monte Carlo method on a square lattice at low pressure under isothermal conditions. The catalytic reduction of nitric oxide by hydrogen over a Pt surface is also studied by using a dynamic Monte Carlo. Using a Langmuir-Hinshelwod mechanism of reaction, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on NO dissociation rate, the limiting step in the whole reaction, is inhibited by coadsorbed NO and H2 molecules, and is enhanced both by the presence of empty sites and adsorbed N atoms as nearest-neighbors. In these simulations experimental parameters values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied changing the temperature in the range of 300-550 K. The modeling reproduces well observed TPD and TPR experimental results and allows a visualization of the spatial development of the surface explosion.

  1. Catalysis of Ugi four component coupling reactions by rare earth metal triflates.

    PubMed

    Okandeji, Babajide O; Gordon, Jonathan R; Sello, Jason K

    2008-07-18

    Substoichiometric quantities of scandium and ytterbium triflate increase the yield of Ugi four component coupling reactions of aromatic aldehydes 2- to 7-fold. These rare earth metal triflates enhance the reaction yields primarily via activation of the imine intermediate of this multicomponent reaction.

  2. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.

    PubMed

    Catrina, Irina; O'Brien, Patrick J; Purcell, Jamie; Nikolic-Hughes, Ivana; Zalatan, Jesse G; Hengge, Alvan C; Herschlag, Daniel

    2007-05-02

    The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.

  3. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; ...

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With themore » core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  4. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]

  5. Lewis acid-Lewis acid heterobimetallic cooperative catalysis: mechanistic studies and application in enantioselective aza-Michael reaction.

    PubMed

    Yamagiwa, Noriyuki; Qin, Hongbo; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2005-09-28

    The full details of a catalytic asymmetric aza-Michael reaction of methoxylamine promoted by rare earth-alkali metal heterobimetallic complexes are described, demonstrating the effectiveness of Lewis acid-Lewis acid cooperative catalysis. First, enones were used as substrates, and the 1,4-adducts were obtained in good yield (57-98%) and high ee (81-96%). Catalyst loading was successfully reduced to 0.3-3 mol % with enones. To broaden the substrate scope of the reaction to carboxylic acid derivatives, alpha,beta-unsaturated N-acylpyrroles were used as monodentate, carboxylic acid derivatives. With beta-alkyl-substituted N-acylpyrroles, the reaction proceeded smoothly and the products were obtained in high yield and good ee. Transformation of the 1,4-adducts from enones and alpha,beta-unsaturated N-acylpyrroles afforded corresponding chiral aziridines and beta-amino acids. Detailed mechanistic studies, including kinetics, NMR analysis, nonlinear effects, and rare earth metal effects, are also described. The Lewis acid-Lewis acid cooperative mechanism, including the substrate coordination mode, is discussed in detail.

  6. Reduction Potentials of [FeFe]-Hydrogenase Accessory Iron–Sulfur Clusters Provide Insights into the Energetics of Proton Reduction Catalysis

    DOE PAGES

    Artz, Jacob H.; Mulder, David W.; Ratzloff, Michael W.; ...

    2017-06-21

    An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials formore » each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (~ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdredthat accumulates during fermentation. In conclusion, subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.« less

  7. Catalytic self-assembled monolayers on Au nanoparticles: the source of catalysis of a transphosphorylation reaction.

    PubMed

    Zaupa, Giovanni; Mora, Claudia; Bonomi, Renato; Prins, Leonard J; Scrimin, Paolo

    2011-04-18

    The catalytic activity of a series of Au monolayer protected colloids (Au MPCs) containing different ratios of the catalytic unit triazacyclononane⋅Zn(II) (TACN⋅Zn(II) ) and an inert triethyleneglycol (TEG) unit was measured. The catalytic self-assembled monolayers (SAMs) are highly efficient in the transphosphorylation of 2-hydroxy propyl 4-nitrophenyl phosphate (HPNPP), an RNA model substrate, exhibiting maximum values for the Michaelis-Menten parameters k(cat) and K(M) of 6.7×10(-3) s(-1) and 3.1×10(-4) M, respectively, normalized per catalytic unit. Despite the structural simplicity of the catalytic units, this renders these nanoparticles among the most active catalysts known for this substrate. Both k(cat) and K(M) parameters were determined as a function of the mole fraction of catalytic unit (x(1)) in the SAM. Within this nanoparticle (NP) series, k(cat) increases up till x(1) ≈0.4, after which it remains constant and K(M) decreases exponentially over the range studied. A theoretical analysis demonstrated that these trends are an intrinsic property of catalytic SAMs, in which catalysis originates from the cooperative effect between two neighboring catalytic units. The multivalency of the system causes an increase of the number of potential dimeric catalytic sites composed of two catalytic units as a function of the x(1) , which causes an apparent increase in binding affinity (decrease in K(M)). Simultaneously, the k(cat) value is determined by the number of substrate molecules bound at saturation. For values of x(1) >0.4, isolated catalytic units are no longer present and all catalytic units are involved in catalysis at saturation. Importantly, the observed trends are indicative of a random distribution of the thiols in the SAM. As indicated by the theoretical analysis, and confirmed by a control experiment, in case of clustering both k(cat) and K(M) values remain constant over the entire range of x(1) .

  8. [Characteristics of sulfate reduction-ammonia oxidation reaction].

    PubMed

    Yuan, Yi; Huang, Yong; Li, Xiang; Zhang, Chun-Lei; Zhang, Li; Pan, Yang; Liu, Fu-Xin

    2013-11-01

    The sulfate reduction-ammonia oxidation reaction with ANAMMOX sludge at autotrophic condition was implemented. It was found that the pH level decreased during the reaction. Elemental sulfur and nitrogen gas were the final products, while NO3(-) -N was the intermediate product during the sulfate reduction-ammonia oxidation reaction. The conversion ratio of NH4(+) -N/SO4(2-) -S decreased with the decrease in n(N)/n(S) (molar ratio) of raw water. n(N)/n(S) of raw water had little effect on the ammonia conversion ratio. Lower n(N)/n(S) could improve the SO4(2-)-S conversion ratio, but with more NH4(+) -N oxidized into NO3(-) -N, resulting in decreased n(TN)/n(TS) removal ratio. This indicates that the sulfate reduction-ammonia oxidation reaction is not an elementary reaction. Ammonia can be oxidized into NO2(-) -N or NO3(-) -N by sulfate. Shortening the reaction time would be conducive to nitrogen losses, because the reaction of NO3(-) -N production is the rate-limiting step.

  9. Catalysis of nuclear reactions in hydrogen in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Khersonskii, V. K.

    1986-10-01

    Calculations are made of the probabilities of nuclear reactions in HD(+), D2(+), and DT(+) molecular ions in a strong magnetic field. It is shown, that as the field intensity increases from 10 to the 12th to 10 to the 13 G, the probabilities of the nuclear reactions increase by ten orders of magnitude. The calculations allow for the effect of the vibrational-rotational state of the molecules on the reaction probabilities.

  10. Catalysis by manganese (III) 8-hydroxyquinolinates of the chemiluminescent reaction of luminol with hydrogen peroxide

    SciTech Connect

    Kalinichenko, I.E.; Matveeva, E.Y.; Pilipenko, A.T.

    1985-09-01

    This paper examines the kinetics of the reaction of luminol with H/sub 2/O/sub 2/ in the presence of Mn (III) 8-hydroxyquinolinate according to the data of measurements of the chemiluminescence intensity and the yield of light in this reaction. A reaction mechanism was proposed, providing for the oxidation of luminol by complexes of Mn (IV) that are formed in the decoposition of H/sub 2/O/sub 2/.

  11. The guanidinium unit in the catalysis of phosphoryl transfer reactions: from molecular spacers to nanostructured supports.

    PubMed

    Salvio, Riccardo

    2015-07-27

    Examples of guanidinium-based artificial phosphodiesterases are illustrated in this review article. A wide set of collected catalytic systems are presented, from the early examples to the most recent developments of the use of this unit in the design of supramolecular catalysts. Special attention is dedicated to illustrate the operating catalytic mechanism and the role of guanidine/ium units in the catalysis. One or more of these units can act by themselves or in conjunction with other active units. The analogy with the mechanism of enzymatic systems is presented and discussed. In the last part of this overview, recent examples of guanidinophosphodiesterases based on nanostructured supports are reported, namely gold-monolayer-protected clusters and polymer brushes grafted to silica nanoparticles. The issue of the dependence of the catalytic performance on the preorganization of the spacer is tackled and discussed in terms of effective molarity, a parameter that can be taken as a quantitative measurement of this preorganization for both conventional molecular linker and nanosized supports. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  13. Green synthesis of Fe0 and bimetallic Fe0 for oxidative catalysis and reduction applications

    EPA Science Inventory

    A single-step green approach to the synthesis of nanoscale zero valent iron (nZVI) and nanoscale bimetallic (Fe0/Pd) particles using tea (Camellia sinensis) polyphenols is described. The expedient reaction between polyphenols and ferric chloride (FeCl3) occurs within a minute at ...

  14. Green synthesis of Fe0 and bimetallic Fe0 for oxidative catalysis and reduction applications

    EPA Science Inventory

    A single-step green approach to the synthesis of nanoscale zero valent iron (nZVI) and nanoscale bimetallic (Fe0/Pd) particles using tea (Camellia sinensis) polyphenols is described. The expedient reaction between polyphenols and ferric chloride (FeCl3) occurs within a minute at ...

  15. Catalysis of Cascade and Multicomponent Reactions of Carbonyl Compounds and CH Acids by Electricity.

    PubMed

    Elinson, Michail N; Vereshchagin, Anatoly N; Ryzhkov, Fedor V

    2016-08-01

    This review is concerned with modern trends in the use of electrochemically induced chain reactions in cascade and multicomponent electroorganic synthesis. The review summarizes the data on the use of electrochemically induced chain reactions in cascade and multicomponent organic synthesis, which were published mainly in the last decade.

  16. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction.

    PubMed

    Dey, Sandeep Kumar; de Sousa Amadeu, Nader; Janiak, Christoph

    2016-06-14

    The first polyurethane material which is microporous (BET surface area of 312 m(2) g(-1)) is prepared by solvothermal synthesis and acts as highly efficient and recyclable heterogeneous catalyst in the Knoevenagel condensation showing size selectivity, and in the Henry reaction showing substrate selectivity under mild reaction conditions.

  17. Tandem Catalysis of an Aldol-'Click' Reaction System within a Molecular Hydrogel.

    PubMed

    Araújo, Marco; Muñoz Capdevila, Iván; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-06-08

    A heterogeneous supramolecular catalytic system for multicomponent aldol-'click' reactions is reported. The copper(I) metallohydrogel functionalized with a phenyltriazole fragment was able to catalyze the multicomponent reaction between phenylacetylene, p-nitrobenzaldehyde, and an azide containing a ketone moiety, obtaining the corresponding aldol products in good yields. A possible mechanistic pathway responsible for this unexpected catalytic behavior has been proposed.

  18. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  19. Ring-expansion reaction of oximes with aluminum reductants.

    PubMed

    Cho, Hidetsura; Iwama, Yusuke; Mitsuhashi, Nakako; Sugimoto, Kenji; Okano, Kentaro; Tokuyama, Hidetoshi

    2012-06-14

    The ring-expansion reactions of heterocyclic ketoximes and carbocyclic ketoximes with several reductants such as AlHCl2, AlH3 (alane), LiAlH4, LiAlH(OtBu)3, and (MeOCH2CH2O)2AlH2Na (Red-Al) were examined. Among reductants, AlHCl2 (LiAlH4:AlCl3 = 1:3) in cyclopentyl methyl ether (CPME) has been found to be a suitable reagent for the reaction, and the rearranged cyclic secondary amines were obtained in good to excellent yields.

  20. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis.

    PubMed

    Ramachary, Dhevalapally B; Jain, Sangeeta

    2011-03-07

    Creating sequential one-pot combinations of multi-component reactions (MCRs) and multi-catalysis cascade (MCC) reactions is a challenging task that has already emerged as a new technology in synthetic organic chemistry. Through one-pot sequential combination of MCRs/MCC reactions, the chemical products (fine chemicals, agrochemicals and pharmaceuticals) that add value to our lives can be produced with less waste and greater economic benefits. Within this Emerging Area, we describe our recent developments and designs for sequential one-pot MCRs/MCC reactions to facilitate their realization as biomimetics in organic chemistry.

  1. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    PubMed

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  2. Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis.

    PubMed

    Hyatt, David C; Croteau, Rodney

    2005-07-15

    Two monoterpene synthases, (-)-pinene synthase and (-)-camphene synthase, from grand fir (Abies grandis) produce different product mixtures despite having highly homologous amino acid sequences and, presumably, very similar three-dimensional structures. The major product of (-)-camphene synthase, (-)-camphene, and the major products of (-)-pinene synthase, (-)-alpha-pinene, and (-)-beta-pinene, arise through distinct mechanistic variations of the electrophilic reaction cascade that is common to terpenoid synthases. Structural modeling followed by directed mutagenesis in (-)-pinene synthase was used to replace selected amino acid residues with the corresponding residues from (-)-camphene synthase in an effort to identify the amino acids responsible for the catalytic differences. This approach produced an enzyme in which more than half of the product was channeled through an alternative pathway. It was also shown that several (-)-pinene synthase to (-)-camphene synthase amino acid substitutions were necessary before catalysis was significantly altered. The data support a model in which the collective action of many key amino acids, located both in and distant from the active site pocket, regulate the course of the electrophilic reaction cascade.

  3. [Recurrent relationship for the characteristic polynom of a system of enzymatic catalysis of nonbranched monomolecular reactions].

    PubMed

    Omel'ianchuk, L V; Kolchanov, N A

    1982-01-01

    A new mode is proposed to represent the characteristics equation for the system of monomolecular reaction on the basis of directed graphs method. A characteristic equation can be represented as a sum of weights of spanning trees derived from some graph which is connected with the initial graph of reaction. The recurrent relationship for the characteristic polynom of the system of nonbranched monomolecular reaction was obtained on the basis of this representation. A new proof on the matrix theorem about trees formulated by Volkenstein and Goldstein was established.

  4. Super acid catalysis in supercritical fluid reaction media for the formation of linear alkyl benzenes.

    PubMed

    Harmer, Mark A; Hutchenson, Keith W

    2002-01-07

    High catalytic activity is demonstrated for the formation of linear alkylbenzenes using a perfluorosulfonic acid catalyst in supercritical fluid reaction media: enhanced alkylation activity is observed in fluoroform (CHF3) compared to carbon dioxide.

  5. Reduction of chemical reaction networks through delay distributions

    NASA Astrophysics Data System (ADS)

    Barrio, Manuel; Leier, André; Marquez-Lago, Tatiana T.

    2013-03-01

    Accurate modelling and simulation of dynamic cellular events require two main ingredients: an adequate description of key chemical reactions and simulation of such chemical events in reasonable time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computational Biology. However, more often than not, it is the associated computational costs which actually limit our capabilities of representing complex cellular behaviour. In this paper, we propose a methodology aimed at representing chains of chemical reactions by much simpler, reduced models. The abridgement is achieved by generation of model-specific delay distribution functions, consecutively fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analytically described whenever the system is solely composed of consecutive first-order reactions, with or without additional "backward" bypass reactions, yielding an exact reduction. For models including other types of monomolecular reactions (constitutive synthesis, degradation, or "forward" bypass reactions), we discuss why one must adopt a numerical approach for its accurate stochastic representation, and propose two alternatives for this. In these cases, the accuracy depends on the respective numerical sample size. Our model reduction methodology yields significantly lower computational costs while retaining accuracy. Quite naturally, computational costs increase alongside network size and separation of time scales. Thus, we expect our model reduction methodologies to significantly decrease computational costs in these instances. We anticipate the use of delays in model reduction will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions, largely applicable in pharmaceutical and biological research.

  6. Aqueous catalysis: Methylrhenium trioxide (MTO) as a homogeneous catalyst for the Diels-Alder reaction

    SciTech Connect

    Zhu, Z.; Espenson, J.H.

    1997-04-16

    The title compound proves to be an effective and efficient catalyst for the Diels-Alder reaction when the dienophile is an {alpha},{beta}-unsaturated ketone or aldehyde. It is especially effective in water. Equal amounts of any such dienophile and any of six representative dienes (isoprene, 2-methyl-1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, cyclopentadiene, 1,2,3,4,5,-pentamethylcyclopentadiene, and 1,3-cyclohexadiene) were used, along with 1% MTO. The reactions gave usually > 90% isolated yield of the cycloaddition product except for the larger dienophiles. Nearly exclusively, there was formed one product isomer, the same one that usually predominates. The reactions were often run in chloroform (mostly) and in other organic solvents. A select number were carried out in water, where the reactions gave a greater product yield in a considerably shorter time. Water, itself, is known to enhance the rates of Diels-Alder reactions, but MTO exerts an additional accelerating effect. Kinetics studies were carried out to show that the rate is proportional to the catalyst concentration. The products do not inhibit the reaction. The desirability of MTO as a Diels-Alder catalyst stems from a combination of favorable properties: the inertness to air/oxygen, the tolerance for many substrates, the use of an aqueous medium, and the absence of product inhibition. The initial step appears to be the (weak) coordination of the carbonyl oxygen to the electropositive rhenium center. Steric crowding around rhenium inhibits reactions of the larger dienophiles. 26 refs., 3 figs., 4 tabs.

  7. Theory, Synthesis, and Oxygen Reduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Lee, Duck Hyun; Lee, Won Jun; Lee, Won Jong; Kim, Sang Ouk; Kim, Yong-Hyun

    2011-04-01

    We report the synthesis of a Fe-porphyrin-like carbon nanotube from conventional plasma-enhanced chemical vapor deposition. Covalent but seamless incorporation of the 5-6-5-6 porphyrinic Fe-N4 moiety into the graphene hexagonal side wall was elucidated by x-ray and ultraviolet photoemission spectroscopies and first-principles electronic structure calculations. The resulting biomimetic nanotube exhibits an excellent oxygen reduction catalytic activity with the extreme structural stability over 0.1×106 cycles, vastly superior to the commercial Pt-C catalyst.

  8. The reductive decyanation reaction: an overview and recent developments

    PubMed Central

    2017-01-01

    This review presents an overview of the reductive decyanation reaction with a special interest for recent developments. This transformation allows synthetic chemists to take advantages of the nitrile functional group before its removal. Mechanistic details and applications to organic synthesis are provided. PMID:28326136

  9. Insights into the mechanism and catalysis of the native chemical ligation reaction.

    PubMed

    Johnson, Erik C B; Kent, Stephen B H

    2006-05-24

    Native chemical ligation of unprotected peptide segments involves reaction between a peptide-alpha-thioester and a cysteine-peptide, to yield a product with a native amide bond at the ligation site. Peptide-alpha-thioalkyl esters are commonly used because of their ease of preparation. These thioalkyl esters are rather unreactive so the ligation reaction is catalyzed by in situ transthioesterification with thiol additives. The most common thiol catalysts used to date have been either a mixture of thiophenol/benzyl mercaptan, or the alkanethiol MESNA. Despite the use of these thiol catalysts, ligation reactions typically take 24-48 h. To gain insight into the mechanism of native chemical ligaton and in order to find a better catalyst, we investigated the use of a number of thiol compounds. Substituted thiophenols with pK(a) > 6 were found to best combine the ability to exchange rapidly and completely with thioalkyl esters, and to then act as effective leaving groups in reaction of the peptide-thioester with the thiol side chain of a cysteine-peptide. A highly effective and practical catalyst was (4-carboxylmethyl)thiophenol ('MPAA'), a nonmalodorous, water-soluble thiol. Use of MPAA gave an order of magnitude faster reaction in model studies of native chemical ligation and in the synthesis of a small protein, turkey ovomucoid third domain (OMTKY3). MPAA should find broad use in native chemical ligation and in the total synthesis of proteins.

  10. Low temperature reductive aminolysis of carbohydrates to diamines and aminoalcohols through heterogeneous catalysis.

    PubMed

    Pelckmans, Michiel; Vermandel, Walter; Van Waes, Frederik; Moonen, Kristof; Sels, Bert F

    2017-09-11

    Short amines such as ethanolamines and ethylene diamines are important compounds in today's bulk and fine chemicals industry. Unfortunately, current industrial manufacture of these chemicals relies on fossil resources and requires severe safety management to handle the explosive or toxic intermediates. Inspired by the elegant working mechanism of Aldolase enzymes, a novel heterogeneously catalyzed process, viz. reductive aminolysis, was developed for the efficient production of short amines from carbohydrates at low temperature. High-value bio-based amines containing a bio-derived C2 carbon backbone were synthesized in one step with yields up to 84 C% in absence of a solvent at a temperature below 405 K. A wide variety of available primary and secondary alkyl- and alkanolamines can be reacted with the carbohydrate to the corresponding C2-diamine. The presented reductive aminolysis is therefore a promising strategy to foresee a sustainable synthesis of short acyclic bio-based amines. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation of bifunctional mesoporous silica nanoparticles by orthogonal click reactions and their application in cooperative catalysis.

    PubMed

    Dickschat, Arne T; Behrends, Frederik; Bühner, Martin; Ren, Jinjun; Weiss, Mark; Eckert, Hellmut; Studer, Armido

    2012-12-21

    The synthesis of bifunctional mesoporous silica nanoparticles is described. Two chemically orthogonal functionalities are incorporated into mesoporous silica by co-condensation of tetraethoxysilane with two orthogonally functionalized triethoxyalkylsilanes. Post-functionalization is achieved by orthogonal surface chemistry. A thiol-ene reaction, Cu-catalyzed 1,3-dipolar alkyne/azide cycloaddition, and a radical nitroxide exchange reaction are used as orthogonal processes to install two functionalities at the surface that differ in reactivity. Preparation of mesoporous silica nanoparticles bearing acidic and basic sites by this approach is discussed. Particles are analyzed by solid state NMR spectroscopy, elemental analysis, infrared-spectroscopy, and scanning electron microscopy. As a first application, these particles are successfully used as cooperative catalysts in the Henry reaction.

  12. Role of tetraalkyl(benzyl)ammonium alkoxides in the catalysis of the alkaline dehydrochlorination reaction

    SciTech Connect

    Shavanov, S.S.; Tolstikov, G.A.; Shutenkova, T.V.; Viktorov, G.A.

    1988-01-10

    The reaction was conducted by the action of aqueous NaOH taken as a 50% solution at a molar ratio to dichloroethane of 2:1 at 50-55 C in the 1% of catalyst on the dichloroethane. The results of the experiments indicated the rising activity of the tetra-alkyl(benzyl) ammonium alkoxides as the lipophilicity of the anion increased, which proceeds in the organic phase. Reaction was effected through a complex formed by the association of quaternary ammonium salts with a hydroxyl-containing compound, the solvation of the associated species with the organochlorine substrate, and coordination with NaOH. The reaction goes in the organic phase and on the interphase surface.

  13. Highly Efficient Catalysis of Retro-Claisen Reactions: From a Quinone Derivative to Functionalized Imidazolium Salts.

    PubMed

    Visbal, Renso; Laguna, Antonio; Gimeno, M Concepción

    2016-03-14

    A new and efficient method for the preparation of several imidazolium salts containing an ester group in the C4 position of the aromatic ring through a retro-Claisen reaction pathway between a quinone derivative and several alcohols is described. This new organic transformation proceeds in the absence of a catalyst, but it is greatly catalyzed by different Lewis acids, especially with AgOAc at a very low catalyst loading and in very short reaction times. The process takes place by the nucleophilic attack of the carbonyl groups by the alcohol functionality, thus promoting a double C-C bond cleavage and C-H and C-O bond formation. This reaction represents the first example of this type between a quinone derivative and alcohols.

  14. Visible-Light-Mediated Thiol-Ene Reactions through Organic Photoredox Catalysis.

    PubMed

    Zhao, Gaoyuan; Kaur, Sarbjeet; Wang, Ting

    2017-06-16

    Synthetically useful radical thiol-ene reactions can be initiated by visible-light irradiation in the presence of an organic photocatalyst, 9-mesityl-10-methylacridinum tetrafluoroborate. The key thiyl radical intermediates are generated upon quenching of the photoexcited catalyst with a variety of thiols. The success of this method requires only the use of near-stoichiometric levels of alkene coupling partners. Using these highly efficient metal-free conditions, thiol-ene reactions between carbohydrates and peptides can be accomplished in excellent yields.

  15. Asymmetric Cooperative Catalysis of Strong Brønsted Acid-Promoted Reactions Using Chiral Ureas

    PubMed Central

    Xu, Hao; Zuend, Stephan J.; Woll, Matthew G.; Tao, Ye; Jacobsen, Eric N.

    2010-01-01

    Cationic organic intermediates participate in a wide variety of useful synthetic transformations, but their high reactivity can render selectivity in competing pathways difficult to control. We describe a strategy for inducing enantioselectivity in reactions of protio-iminium ions, wherein a chiral catalyst interacts with the highly reactive intermediate through a network of non-covalent interactions. This leads to an attenuation of the reactivity of the iminium ion, and allows high enantioselectivity in cycloadditions with electron-rich alkenes (the Povarov reaction). A detailed experimental and computational analysis of this catalyst system has revealed the precise nature of the catalyst-substrate interactions and the likely basis for enantioinduction. PMID:20167783

  16. Bimetallic redox synergy in oxidative palladium catalysis.

    PubMed

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  17. Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Hazen, Robert M.; Dworkin, Jason P.

    2007-10-01

    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  18. Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS “Branch” with Tunable Catalysis Properties

    PubMed Central

    Zhang, Xiangdan; Yang, Feifei; Cui, Shizhong; Wei, Wutao; Chen, Weihua; Mi, Liwei

    2016-01-01

    New CuS nanocrystals with a 3D hierarchical branched structure are successfully synthesized through in situ consecutive reaction method with copper foam as template. The formation mechanism of the 3D hierarchical branched structure obtained from the secondary reaction is investigated by adjusting the reaction time. The morphology of CuS nanosheet arrays with the 3D hierarchical branched structure is changed through Cu2+ exchange. In this method, the copper foam reacted completely, and the as-synthesized CuS@Cu9S5 nanocrystals are firmly grown on the surface of the 3D framework. This tunable morphology significantly influence the physical and chemical properties, particularly catalytic performance, of the materials. The as-obtained material of Cu@CuS-2 with the 3D hierarchical branched structure as catalyst for methylene blue degradation exhibits good catalytic performance than that of the material of Cu@CuS with 2D nanosheets in dark environment. Furthermore, the cation exchange between Cu and Cu2+ indicates that Cu2+ in wastewater could be absorbed by Cu@CuS-2 with the 3D hierarchical branched structure. The exchanged resultant of CuS@Cu9S5 retains its capability to degrade organic dyes. This in situ consecutive reaction method may have a significant impact on controlling the crystal growth direction of inorganic material. PMID:27465583

  19. Sequence analysis of trimer isomers formed by montmorillonite catalysis in the reaction of binary monomer mixtures.

    PubMed

    Ertem, Gözen; Hazen, Robert M; Dworkin, Jason P

    2007-10-01

    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  20. Computerized reduction of elementary reaction sets for combustion modeling

    NASA Technical Reports Server (NTRS)

    Wikstrom, Carl V.

    1991-01-01

    If the entire set of elementary reactions is to be solved in the modeling of chemistry in computational fluid dynamics, a set of stiff ordinary differential equations must be integrated. Some of the reactions take place at very high rates, requiring short time steps, while others take place more slowly and make little progress in the short time step integration. The goal is to develop a procedure to automatically obtain sets of finite rate equations, consistent with a partial equilibrium assumptions, from an elementary set appropriate to local conditions. The possibility of computerized reaction reduction was demonstrated. However, the ability to use the reduced reaction set depends on the ability of the CFD approach in incorporate partial equilibrium calculations into the computer code. Therefore, the results should be tested on a code with partial equilibrium capability.

  1. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Cheng, Niancai; Stambula, Samantha; Wang, Da; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Xiao, Biwei; Li, Ruying; Sham, Tsun-Kong; Liu, Li-Min; Botton, Gianluigi A.; Sun, Xueliang

    2016-11-01

    Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance.

  2. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems

    NASA Technical Reports Server (NTRS)

    Kilroy, W. P.

    1981-01-01

    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.

  3. Hydrogen-Bonding Catalysis of Tetraalkylammonium Salts in an Aza-Diels-Alder Reaction.

    PubMed

    Kumatabara, Yusuke; Kaneko, Shiho; Nakata, Satoshi; Shirakawa, Seiji; Maruoka, Keiji

    2016-08-05

    A piperidine-derived tetraalkylammonium salt with a non-coordinating counteranion worked as an effective hydrogen-bonding catalyst in an aza-Diels-Alder reaction of imines and a Danishefsky diene. The hydrogen-bonding interaction between the ammonium salt and an imine was observed as part of a (1) H NMR titration study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Noncovalent Bonding Controls Selectivity in Heterogeneous Catalysis: Coupling Reactions on Gold.

    PubMed

    Karakalos, Stavros; Xu, Yunfei; Cheenicode Kabeer, Fairoja; Chen, Wei; Rodríguez-Reyes, Juan Carlos F; Tkatchenko, Alexandre; Kaxiras, Efthimios; Madix, Robert J; Friend, Cynthia M

    2016-11-23

    Enhancing the selectivity of catalytic processes has potential for substantially increasing the sustainability of chemical production. Herein, we establish relationships between reaction selectivity and molecular structure for a homologous series of key intermediates for oxidative coupling of alcohols on gold using a combination of experiment and theory. We establish a scale of binding for molecules with different alkyl structures and chain lengths and thereby demonstrate the critical nature of noncovalent van der Waals interactions in determining the selectivity by modulating the stability of key reaction intermediates bound to the surface. The binding hierarchy is the same for Au(111) and Au(110), which demonstrates a relative lack of sensitivity to the surface structure. The hierarchy of binding established in this work provides guiding principles for predicting how molecular structure affects the competition for binding sites more broadly. Besides the nature of the primary surface-molecule bonding, three additional factors that affect the stabilities of the reactive intermediates are clearly established: (1) the number of C atoms in the alkyl chain, (2) the presence of C-C bond unsaturation, and (3) the degree of branching of the alkyl group of the adsorbed molecules. We suggest that this is a fundamental principle that is generally applicable to a broad range of reactions on metal catalysts.

  5. Mineral surface catalysis of reactions between Fe II and oxime carbamate pesticides

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Stone, Alan T.

    2003-08-01

    This study examines the reduction of oxime carbamate pesticides (oxamyl, methomyl, and aldicarb) by Fe II in aqueous suspensions containing twelve different (hydr)oxide and aluminosilicate minerals. In the absence of Fe II, mineral surfaces have no apparent effect on the pathways or rates of oxime carbamate degradation. In anoxic suspensions containing Fe II and mineral surfaces, rates of oxime carbamate reduction are significantly faster than in equivalent mineral-free homogeneous solutions. Rates increase with increasing surface area loading (mineral surface area per volume of suspension) and pH. Kinetic trends are interpreted in terms of changes in Fe II speciation. Quantitative modeling indicates a first-order dependence on total adsorbed Fe II concentration and no significant dependence on adsorbed oxime carbamate concentration. Bimolecular rate constants describing the reactivity of adsorbed Fe II with dissolved oxamyl decrease in the following order: silicon dioxide #2 > silicon dioxide #1 ≫ hematite #2 > titanium dioxide #1 > hematite #1 > titanium dioxide #2 > silicon dioxide #3 > aluminum oxide > kaolinite #1 > kaolinite #2 > goethite ≫ titanium dioxide #3. Possible factors responsible for the increased reactivity of adsorbed Fe II, as well as for the relative reactivity of Fe II adsorbed on different surfaces, are discussed. Results from this study demonstrate that mineral surfaces present in subsurface environments can substantially catalyze the reduction of oxime carbamate pesticides by Fe II. Overall rates of pesticide degradation may be under predicted by > 1 order of magnitude if the effects of mineral surfaces are not accounted for.

  6. Changing reaction pathways of the dimerization of 2-formylcinnamates by N-heterocyclic carbene/Lewis acid cooperative catalysis: an unusual cleavage of the carbon-carbon bond.

    PubMed

    Dang, Hai-Yan; Wang, Zi-Tian; Cheng, Ying

    2014-11-07

    Catalyzed by a triazole carbene, the dimerization of 2-formylcinnamates underwent benzoin condensation followed by intramolecular oxa-Michael addition to afford isochromeno[4,3-c]isochromene products. Under the catalysis of a combination of triazole carbene and Ti(OPr-i)4 catalysts, the dimerization reaction of 2-formylcinnamates proceeded through a completely different route to furnish the formation of isochromenone derivatives with the elimination of an acetate moiety.

  7. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Vannice, M. A.

    1979-01-01

    Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)

  8. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Vannice, M. A.

    1979-01-01

    Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)

  9. Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

    NASA Astrophysics Data System (ADS)

    Cheon, Dong-Ik; Jang, Eun-Jeong; Oh, Hwa-Suk

    2011-12-01

    Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced

  10. Bimetallic PtAu superlattice arrays: Highly electroactive and durable catalyst for oxygen reduction and methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Feng, Jiu-Ju; He, Li-Li; Fang, Rui; Wang, Qiao-Li; Yuan, Junhua; Wang, Ai-Jun

    2016-10-01

    Superlattice arrays, an important type of nanomaterials, have wide applications in catalysis, optic/electronics and energy storage for the synergetic effects determined by both individual metals and collective interactions. Herein, a simple one-pot solvothermal coreduction approach is developed for facile preparation of bimetallic PtAu alloyed superlattice arrays (PtAu SLAs) in oleylamine, with the assistance of urea via hydrogen bonding induced self-assembly. Urea is essential in morphology-controlled process and prevents PtAu nanoparticles from the disordered aggregation. The characterization and formation mechanism of PtAu SLAs are investigated in details. The as-synthesized hybrid nanocrystals exhibit enhanced electrocatalytic performances for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline electrolyte in comparison with commercial Pt-C (50%, wt.%) and Pt black catalysts.

  11. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  12. Asymmetric Cooperative Catalysis in a Three-Component Reaction: Mechanism and Origin of Enantio- and Diastereoselectivities.

    PubMed

    Kisan, Hemanta K; Sunoj, Raghavan B

    2016-08-05

    Mechanistic insights gained through density functional theory (DFT M06 and B3LYP) computations on a three-component cooperative asymmetric catalytic reaction between a diazo ester, a carbamate, and an imine, catalyzed by dirhodium acetate and chiral phosphoric acid (Brønsted acid), are presented. The addition of the dirhodium-bound enol to the imine yielding an α,β-diamino ester is energetically more preferred over a potentially competitive protonation of the same enol leading to an α-amino ester.

  13. Kinetochromic spectrophotometry-III Determination of fluoride by catalysis of the zirconimn-Methylthymol blue reaction.

    PubMed

    Hems, R V; Khucbright, G F; West, T S

    1970-05-01

    The determination of 0.5-4.75 mug of fluoride ion by its catalytic action upon the slow reaction between Methylthymol Blue and zirconium(IV) in aqueous solution is described. Calibration curves obtained after 60 min under optimal conditions are smooth, and yield an effective molar absorptivity of 3.23 x 10(4) 1.mole(-1)mm(-1) at 586 nm. There is considerably less cationic interference than in the alizarin complexan-cerium(III) or lanthanum procedure, but more serious anionic interference is encountered when phosphate, arsenate and, to a lesser extent, sulphate ions are present in the sample solution.

  14. Final Report for: "Bis-pi-allylpalladium Complexes in Catalysis of Multicomponent Reactions"

    SciTech Connect

    Malinakova, H. C.; Shiota, Atsushi

    2012-06-29

    The research project involved the development of new and functionally improved Pd(II) catalyst for a three-component reaction of boronic acids, allenes and imines to afford homoallylic amines that are useful in synthesis of biologically active heterocycles. Furthermore, insights into the reaction mechanism and the structure and reactivity of the catalytically active intermediates involved in this process were sought. As a result of this work, a new type of Pd-catalysts possessing an auxiliary ligand attached to the Pd center via a C-Pd and N-Pd bonds were identified, and found to be more active than the traditional catalysts derived from Pd(OAc)2. The new catalysts provided an access to a broader range of homoallylic amine products. Although the final unequivocal evidence regarding the structure of the Pd(II) complex involved in the nucleophilic transfer of the allyl fragment from the palladium center to the imine could not be obtained, mechanistic insights into the events that are detrimental to the activity of the originally reported Pd(OAc)2-based catalytic systems were uncovered.

  15. Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions.

    PubMed

    Kalz, Kai F; Kraehnert, Ralph; Dvoyashkin, Muslim; Dittmeyer, Roland; Gläser, Roger; Krewer, Ulrike; Reuter, Karsten; Grunwaldt, Jan-Dierk

    2017-01-09

    In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.

  16. Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions

    SciTech Connect

    Romero, Nathan A.; Nicewicz, David A.

    2014-11-12

    Here, we describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence.

  17. Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions

    DOE PAGES

    Romero, Nathan A.; Nicewicz, David A.

    2014-11-12

    Here, we describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step usingmore » DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS– becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence.« less

  18. Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions

    PubMed Central

    Kalz, Kai F.; Kraehnert, Ralph; Dvoyashkin, Muslim; Dittmeyer, Roland; Gläser, Roger; Krewer, Ulrike; Reuter, Karsten

    2016-01-01

    Abstract In the future, (electro‐)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power‐to‐chemical processes require a shift from steady‐state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well‐known that the structure of catalysts is very dynamic. However, in‐depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time‐resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions. PMID:28239429

  19. Mechanistic Insight into the Photoredox Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Reactions

    PubMed Central

    2015-01-01

    We describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS− becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence. PMID:25390821

  20. Mechanistic insight into the photoredox catalysis of anti-markovnikov alkene hydrofunctionalization reactions.

    PubMed

    Romero, Nathan A; Nicewicz, David A

    2014-12-10

    We describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr(+)) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr(+) is observed to engage in off-cycle adduct formation, presumably as buildup of PhS(-) becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence.

  1. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction

    PubMed Central

    Cheng, Niancai; Stambula, Samantha; Wang, Da; Banis, Mohammad Norouzi; Liu, Jian; Riese, Adam; Xiao, Biwei; Li, Ruying; Sham, Tsun-Kong; Liu, Li-Min; Botton, Gianluigi A.; Sun, Xueliang

    2016-01-01

    Platinum-based catalysts have been considered the most effective electrocatalysts for the hydrogen evolution reaction in water splitting. However, platinum utilization in these electrocatalysts is extremely low, as the active sites are only located on the surface of the catalyst particles. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their efficiency by utilizing nearly all platinum atoms. Here we report on a practical synthesis method to produce isolated single platinum atoms and clusters using the atomic layer deposition technique. The single platinum atom catalysts are investigated for the hydrogen evolution reaction, where they exhibit significantly enhanced catalytic activity (up to 37 times) and high stability in comparison with the state-of-the-art commercial platinum/carbon catalysts. The X-ray absorption fine structure and density functional theory analyses indicate that the partially unoccupied density of states of the platinum atoms' 5d orbitals on the nitrogen-doped graphene are responsible for the excellent performance. PMID:27901129

  2. Monte Carlo simulations of surface reactions: NO reduction by CO or H{sub 2}

    SciTech Connect

    Álvarez-Falcón, L.; Vicente, L.

    2014-01-14

    The development of surface science has given an opportunity to investigate the process of heterogeneous catalysis at a molecular level. In this way there has been a great progress in understanding the mechanism in NO decomposition. Modeling has been an very important tool in this goal. In this work we analyze the reactions NO+H{sub 2} and NO+CO. The extremely narrow production peak of N{sub 2} and CO{sub 2} which occurs in the reaction of NO+CO on Pt(100), a phenomenon known as “surface explosion,” is studied using a dynamic Monte Carlo method on a square lattice at low pressure under isothermal conditions. The catalytic reduction of nitric oxide by hydrogen over a Pt surface is also studied by using a dynamic Monte Carlo. Using a Langmuir-Hinshelwod mechanism of reaction, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on NO dissociation rate, the limiting step in the whole reaction, is inhibited by coadsorbed NO and H{sub 2} molecules, and is enhanced both by the presence of empty sites and adsorbed N atoms as nearest-neighbors. In these simulations experimental parameters values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied changing the temperature in the range of 300–550 K. The modeling reproduces well observed TPD and TPR experimental results and allows a visualization of the spatial development of the surface explosion.

  3. Coupling of the guanosine glycosidic bond conformation and the ribonucleotide cleavage reaction: implications for barnase catalysis.

    PubMed

    Roca, Maite; De Maria, Leonardo; Wodak, Shoshana J; Moliner, Vicente; Tuñón, Iñaki; Giraldo, Jesús

    2008-02-01

    To examine the possible relationship of guanine-dependent GpA conformations with ribonucleotide cleavage, two potential of mean force (PMF) calculations were performed in aqueous solution. In the first calculation, the guanosine glycosidic (Gchi) angle was used as the reaction coordinate, and computations were performed on two GpA ionic species: protonated (neutral) or deprotonated (negatively charged) guanosine ribose O2 '. Similar energetic profiles featuring two minima corresponding to the anti and syn Gchi regions were obtained for both ionic forms. For both forms the anti conformation was more stable than the syn, and barriers of approximately 4 kcal/mol were obtained for the anti --> syn transition. Structural analysis showed a remarkable sensitivity of the phosphate moiety to the conformation of the Gchi angle, suggesting a possible connection between this conformation and the mechanism of ribonucleotide cleavage. This hypothesis was confirmed by the second PMF calculations, for which the O2 '--P distance for the deprotonated GpA was used as reaction coordinate. The computations were performed from two selected starting points: the anti and syn minima determined in the first PMF study of the deprotonated guanosine ribose O2'. The simulations revealed that the O2 ' attack along the syn Gchi was more favorable than that along the anti Gchi: energetically, significantly lower barriers were obtained in the syn than in the anti conformation for the O--P bond formation; structurally, a lesser O2 '--P initial distance, and a better suited orientation for an in-line attack was observed in the syn relative to the anti conformation. These results are consistent with the catalytically competent conformation of barnase-ribonucleotide complex, which requires a guanine syn conformation of the substrate to enable abstraction of the ribose H2 ' proton by the general base Glu73, thereby suggesting a coupling between the reactive substrate conformation and enzyme structure

  4. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    PubMed Central

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-01-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm−2 at 80 °C with a low platinum loading of 0.09 mgPt cm−2, corresponding to a platinum utilization of 0.13 gPt kW−1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction. PMID:28737170

  5. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  6. High performance platinum single atom electrocatalyst for oxygen reduction reaction.

    PubMed

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-24

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm(-2) at 80 °C with a low platinum loading of 0.09 mgPt cm(-2), corresponding to a platinum utilization of 0.13 gPt kW(-1) in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  7. Low NO Concentration Dependence of Reductive Nitrosylation Reaction of Hemoglobin*

    PubMed Central

    Tejero, Jesús; Basu, Swati; Helms, Christine; Hogg, Neil; King, S. Bruce; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2012-01-01

    The reductive nitrosylation of ferric (met)hemoglobin is of considerable interest and remains incompletely explained. We have previously observed that at low NO concentrations the reaction with tetrameric hemoglobin occurs with an observed rate constant that is at least 5 times faster than that observed at higher concentrations. This was ascribed to a faster reaction of NO with a methemoglobin-nitrite complex. We now report detailed studies of this reaction of low NO with methemoglobin. Nitric oxide paradoxically reacts with ferric hemoglobin with faster observed rate constants at the lower NO concentration in a manner that is not affected by changes in nitrite concentration, suggesting that it is not a competition between NO and nitrite, as we previously hypothesized. By evaluation of the fast reaction in the presence of allosteric effectors and isolated β- and α-chains of hemoglobin, it appears that NO reacts with a subpopulation of β-subunit ferric hemes whose population is influenced by quaternary state, redox potential, and hemoglobin dimerization. To further characterize the role of nitrite, we developed a system that oxidizes nitrite to nitrate to eliminate nitrite contamination. Removal of nitrite does not alter reaction kinetics, but modulates reaction products, with a decrease in the formation of S-nitrosothiols. These results are consistent with the formation of NO2/N2O3 in the presence of nitrite. The observed fast reductive nitrosylation observed at low NO concentrations may function to preserve NO bioactivity via primary oxidation of NO to form nitrite or in the presence of nitrite to form N2O3 and S-nitrosothiols. PMID:22493289

  8. An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Sha, Liang; Qiu, Yuwei; Wang, Guangfeng; Jiang, Hong; Zhang, Xiaojun

    2015-02-01

    In the present study, based on the mimic oxidase catalytic character of nucleic-acid-stabilized silver nanoclusters (DNA/AgNCs) and hybridization chain reactions for signal amplification, the fabrication of a label-free sensitive ``turn-on'' electrochemical aptasensor for the amplified determination of lysozyme was demonstrated. First, the designed DNA duplex was modified on the electrode. With the specific binding of the target, lysozyme and its aptamer, the lysozyme-binding DNA sequence was liberated, exposing the induced DNA sequence, which in turn triggered the formation of the supersandwich DNA structure. Because the cytosine-rich sequence was designed ingeniously on the DNA sequence, DNA/AgNCs were formed on the supersandwich DNA structure. The peroxidase-like character of DNA/AgNCs produced detectable electrochemical signals for the lysozyme aptasensor, which showed a satisfying sensitive detection of lysozyme with a low detection limit of 42 pM and a wide linear range of 10-10 M to 10-5 M.In the present study, based on the mimic oxidase catalytic character of nucleic-acid-stabilized silver nanoclusters (DNA/AgNCs) and hybridization chain reactions for signal amplification, the fabrication of a label-free sensitive ``turn-on'' electrochemical aptasensor for the amplified determination of lysozyme was demonstrated. First, the designed DNA duplex was modified on the electrode. With the specific binding of the target, lysozyme and its aptamer, the lysozyme-binding DNA sequence was liberated, exposing the induced DNA sequence, which in turn triggered the formation of the supersandwich DNA structure. Because the cytosine-rich sequence was designed ingeniously on the DNA sequence, DNA/AgNCs were formed on the supersandwich DNA structure. The peroxidase-like character of DNA/AgNCs produced detectable electrochemical signals for the lysozyme aptasensor, which showed a satisfying sensitive detection of lysozyme with a low detection limit of 42 pM and a wide linear

  9. Lewis acid catalysis of photochemical reactions. 7. Photodimerization and cross-cycloaddition of cinnamic esters

    SciTech Connect

    Lewis, F.D.; Quillen, S.L.; Hale, P.D.; Oxman, J.D.

    1988-02-17

    The effects of Lewis acid complexation upon the molecular structure, solid-state photodimerization, and solution dimerization and cross-cycloaddition of cinnamic esters have been investigated. Comparison of crystal structures for free and SnCl/sub 4/-complexed ethyl cinnamate indicates that the enone double bonds are lengthened, the single bonds are shortened, and the enone conformation changes from s-cis to s-trans upon complexation. These changes are consistent with calculated changes in ..pi.. bonding and net charges. Solid-state photodimerization of free and complexed cinnamic esters and related molecules yield syn head-to-tail (..cap alpha..-truxillate) dimers. In most cases the Lewis acid complexes dimerize more efficiently and stereoselectively than the free esters. Photodimerization and cross-cycloaddition of methyl cinnamate in dilute solution is also catalyzed by Lewis acids. The mechanism of these reactions involves electronic excitation of a ground-state ester (dimerization) or simple olefin (cross cycloaddition). The catalytic effect of Lewis acids is attributed to an increase in excited-state lifetime and reactivity.

  10. Efficient Catalysis of Hydrogen Evolution Reaction from WS2(1-x) P2x Nanoribbons.

    PubMed

    Shifa, Tofik Ahmed; Wang, Fengmei; Liu, Kaili; Cheng, Zhongzhou; Xu, Kai; Wang, Zhenxing; Zhan, Xueying; Jiang, Chao; He, Jun

    2017-02-06

    The rational design of Earth abundant electrocatalysts for efficiently catalyzing hydrogen evolution reaction (HER) is believed to lead to the generation of carbon neutral energy carrier. Owing to their fascinating chemical and physical properties, transition metal dichalcogenides (TMDs) are widely studied for this purpose. Of particular note is that doping by foreign atom can bring the advent of electronic perturbation, which affects the intrinsic catalytic property. Hence, through doping, the catalytic activity of such materials could be boosted. A rational synthesis approach that enables phosphorous atom to be doped into WS2 without inducing phase impurity to form WS2(1-x) P2x nanoribbon (NRs) is herein reported. It is found that the WS2(1-x) P2x NRs exhibit considerably enhanced HER performance, requiring only -98 mV versus reversible hydrogen electrode to achieve a current density of -10 mA cm(-2) . Such a high performance can be attributed to the ease of H-atom adsorption and desorption due to intrinsically tuned WS2 , and partial formation of NRs, a morphology wherein the exposure of active edges is more pronounced. This finding can provide a fertile ground for subsequent works aiming at tuning intrinsic catalytic activity of TMDs.

  11. Polycyclization Enabled by Relay Catalysis: One-Pot Manganese-Catalyzed C-H Allylation and Silver-Catalyzed Povarov Reaction.

    PubMed

    Chen, Shi-Yong; Li, Qingjiang; Liu, Xu-Ge; Wu, Jia-Qiang; Zhang, Shang-Shi; Wang, Honggen

    2017-06-09

    In this study, a Mn(I) /Ag(I) -based relay catalysis process is described for the one-pot synthesis of polycyclic products by a formal [3+2] and [4+2] cycloaddition reaction cascade. A manganese(I) complex catalyzed the first example of directed C-H allylation with allenes, setting the stage for an in situ Povarov cyclization catalyzed by silver(I). The reaction proceeds with high bond-forming efficiency (three C-C bonds), broad substrate scope, high regio- and stereoselectivity, and 100 % atom economy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reaction mechanism of oxidation, hydroxylation, and epoxidation by hypofluorous acid: a theoretical study of unusual H-bond-assisted catalysis.

    PubMed

    Srnec, Martin; Oncak, Milan; Zahradník, Rudolf

    2008-04-24

    The oxidation of organic molecules by hypofluorous acid (HOF) was studied extensively and systematically by Rozen et al. Therefore, it seems appropriate to refer to the process as Rozen oxidation. An entire set of model molecules was selected for quantum chemical investigation of the oxidation mechanism: a C=C double bond in ethylene, sulfur and selenium in dimethyl derivatives, nitrogen and phosphorus in trimethyl derivatives, as well as methyl azides. In the gas phase, van der Waals complexes between HOF and the previously mentioned species easily are formed, but these complexes are reluctant to undergo oxidation. The addition of another HOF molecule connected with the formation of a cyclic complex (i.e., substrate and two molecules of HOF) seems to be decisive for the oxidation process. The attempt to substitute the second HOF molecule with H2O demonstrated the superiority of HOF. Complexes of this kind decompose along the reaction path smoothly (i.e., with a low activation energy) to the respective oxidation product. A potential role of the hydroxyl cation (HO+) in the oxidation step is mentioned. Besides an oxidation product, one HOF molecule is released (an essential feature of catalysis), and furthermore, hydrogen fluoride is formed. It was suggested by Sertchook et al. (J. Phys. Chem. A 2006, 110, 8275) that the interaction between the substrate to be oxidized and HOF is catalytically influenced by the HF molecule. The mechanism suggested here is more feasible and, particularly at the early stages of the oxidation process, decisive. Also, the role of acetonitrile, used as a solvent by Rozen et al., is discussed in terms of a continuum model. Moreover, passing from potential energies to Gibbs energies is considered.

  13. General base catalysis in the urate oxidase reaction: evidence for a novel Thr-Lys catalytic diad.

    PubMed

    Imhoff, Rebecca D; Power, Nicholas P; Borrok, M Jack; Tipton, Peter A

    2003-04-15

    Urate oxidase catalyzes the oxidation of urate without the involvement of any cofactors. The gene encoding urate oxidase from Bacillus subtilis has been cloned and expressed, and the enzyme was purified and characterized. Formation of the urate dianion is believed to be a key step in the oxidative reaction. Rapid-mixing chemical quench studies provide evidence that the dianion is indeed an intermediate; at 15 degrees C the dianion forms within the mixing time of the rapid-quench instrument, and it disappears with a rate constant of 8 s(-)(1). Steady-state kinetic studies indicate that an ionizable group on the enzyme with a pK of 6.4 must be unprotonated for catalysis, and it is presumed that the role of this group is to abstract a proton from the substrate. Surprisingly, examination of the active site provided by the previously reported crystal structure does not reveal any obvious candidates to act as the general base. However, Thr 69 is hydrogen-bonded to the ligand at the active site, and Lys 9, which does not contact the ligand, is hydrogen-bonded to Thr 69. The T69A mutant enzyme has a V(max) that is 3% of wild type, and the K9M mutant enzyme has a V(max) that is 0.4% of wild type. The ionization at pH 6.4 that is observed with wild-type enzyme is absent in both of these mutants. It is proposed that these residues form a catalytic diad in which K9 deprotonates T69 to allow it to abstract the proton from the N9 position of the substrate to generate the dianion.

  14. First principles based mean field model for oxygen reduction reaction.

    PubMed

    Jinnouchi, Ryosuke; Kodama, Kensaku; Hatanaka, Tatsuya; Morimoto, Yu

    2011-12-21

    A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated.

  15. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.

    PubMed

    Deféver, Thibaut; Druet, Michel; Rochelet-Dequaire, Murielle; Joannes, Martine; Grossiord, Céline; Limoges, Benoit; Marchal, Damien

    2009-08-19

    We described the proof-of-principle of a nonoptical real-time PCR that uses cyclic voltammetry for indirectly monitoring the amplified DNA product generated in the PCR reaction solution after each PCR cycle. To enable indirect measurement of the amplicon produced throughout PCR, we monitor electrochemically the progressive consumption (i.e., the decrease of concentration) of free electroactive deoxynucleoside triphosphates (dNTPs) used for DNA synthesis. This is accomplished by exploiting the fast catalytic oxidation of native deoxyguanosine triphosphate (dGTP) or its unnatural analogue 7-deaza-dGTP by the one-electron redox catalysts Ru(bpy)(3)(3+) (with bpy = 2,2'-bipyridine) or Os(bpy)(3)(3+) generated at an electrode. To demonstrate the feasibility of the method, a disposable array of eight miniaturized self-contained electrochemical cells (working volume of 50 microL) has been developed and implemented in a classical programmable thermal cycler and then tested with the PCR amplification of two illustrated examples of real-world biological target DNA sequences (i.e., a relatively long 2300-bp sequence from the bacterial genome of multidrug-resistant Achromobacter xylosoxidans and a shorter 283-bp target from the human cytomegalovirus). Although the method works with both mediator/base couples, the catalytic peak current responses recorded with the Ru(bpy)(3)(3+)/dGTP couple under real-time PCR conditions are significantly affected by a continuous current drift and interference with the background solvent discharge, thus leading to poorly reproducible data. Much more reproducible and reliable results are finally obtained with the Os(bpy)(3)(3+)/7-deaza-dGTP, a result that is attributed to the much lower anodic potential at which the catalytic oxidation of 7-deaza-dGTP by Os(bpy)(3)(3+) is detected. Under these conditions, an exponential decrease of the catalytic signal as a function of the number of PCR cycles is obtained, allowing definition of a cycle

  16. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction

    PubMed Central

    Chen, Dong; Ye, Feng; Liu, Hui; Yang, Jun

    2016-01-01

    Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy starts with the synthesis of core-shell Pt@Ag nanoparticles, followed by galvanic replacement reaction between the Ag shell and Pd2+ ions to form core-shell-shell Pt@Ag@Ag-Pd nanoparticles with a Pt core and double shells composed of Ag at inner and alloy Ag-Pd at outer, respectively. Then, the core-shell-shell templates are agitated with saturated NaCl solution to eliminate the Ag component from the double shells, leading to the formation of bimetallic Pt-Pd nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a porous Pd shell, which show enhanced catalytic activity for oxygen reduction compared with that of the Pt seeds due to the additional catalysis from Pd shell. In addition, owing to the different diffusion behavior of methanol and oxygen molecules in the porous Pd shell, the Pt-Pd cage-bell nanostructures also exhibit superior methanol tolerant property in catalyzing the oxygen reduction. PMID:27079897

  17. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Ye, Feng; Liu, Hui; Yang, Jun

    2016-04-01

    Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy starts with the synthesis of core-shell Pt@Ag nanoparticles, followed by galvanic replacement reaction between the Ag shell and Pd2+ ions to form core-shell-shell Pt@Ag@Ag-Pd nanoparticles with a Pt core and double shells composed of Ag at inner and alloy Ag-Pd at outer, respectively. Then, the core-shell-shell templates are agitated with saturated NaCl solution to eliminate the Ag component from the double shells, leading to the formation of bimetallic Pt-Pd nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a porous Pd shell, which show enhanced catalytic activity for oxygen reduction compared with that of the Pt seeds due to the additional catalysis from Pd shell. In addition, owing to the different diffusion behavior of methanol and oxygen molecules in the porous Pd shell, the Pt-Pd cage-bell nanostructures also exhibit superior methanol tolerant property in catalyzing the oxygen reduction.

  18. Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions

    DOE PAGES

    Vukmirovic, Miomir B.; Teeluck, Krishani M.; Liu, Ping; ...

    2017-08-08

    We prepared atomically dispersed catalyst consisting of Pt atoms arranged in a c(2 × 2) array on RuO2(110) substrate. A large interatomic distance of Pt atoms in a c(2 × 2) phase precludes the reactants to interact with more than one Pt atoms. A strong bond of Pt atoms with RuO2 prevents agglomeration of Pt atoms to form 2D-islands or 3D-clusters. The activities of single Pt atom catalyst for the oxygen reduction and hydrogen oxidation reactions were determined and compared with those of bulk Pt. It has lower catalytic activity for the oxygen reduction reaction and similar activity for hydrogenmore » oxidation reaction compared to Pt(111). This was explained by a large calculated up-shift of the dband center of Pt atoms and larger Pt-Pt interatomic distance than that of Pt(111). Our information is of considerable interest for further development of electrocatalysis.« less

  19. Silver nanowire catalysts on carbon nanotubes-incorporated bacterial cellulose membrane electrodes for oxygen reduction reaction.

    PubMed

    Kim, Bona; Choi, Youngeun; Cho, Se Youn; Yun, Young Soo; Jin, Hyoung-Joon

    2013-11-01

    Silver nanowires have unique electrical, thermal and optical properties, which support their potential application in numerous fields including catalysis, electronics, optoelectronics, sensing, and surface-enhanced spectroscopy. Especially, their application such as catalysts for alkaline fuel cells (AFCs) have attracted much interest because of their superior electrical conductivity over that of any metal and their lower cost compared to Pt. In this study, multiwalled carbon nanotubes (MWCNTs)-incorporated bacterial cellulose (BC) membrane electrode with silver nanowire catalyst was prepared. First, acid-treated MWCNTs were incorporated into BC membranes and then freeze-dried after solvent exchange to tert-butanol in order to maintain the 3D-network macroporous structure. Second, silver nanowires synthesized by polyol process were introduced onto the surface of the MWCNTs-incorporated BC membrane through easy vacuum filtration. Finally, thermal treatment was carried out to confirm the effect of the PVP on the silver nanowire catalysts toward oxygen reduction reaction. The electrode with thermally treated silver nanowire had great electrocatalytic activity compared with non-treated one. These results suggest that the MWCNTs-incorporated BC electrode with silver nanowire catalysts after thermal treatment could be potentially used in cathodes of AFCs.

  20. Polyaniline and Perfluorosulfonic Acid Co-Stabilized Metal Catalysts for Oxygen Reduction Reaction.

    PubMed

    Ye, Bei; Cheng, Kun; Li, Wenqiang; Liu, Jing; Zhang, Jie; Mu, Shichun

    2017-06-06

    A proton (perfluorosulfonic acid, PFSA) and electron (polyaniline, PANI) conductor polymer costabilized Pt catalyst (Pt-PFSA/C@PANI) is synthesized to improve the long-term stability of polymer electrolyte membrane fuel cells (PEMFCs). The prepared catalyst not only displays comparable oxygen reduction reaction (ORR) activity, but significantly higher electrochemical stability than commercial porous carbon nanosphere supported Pt catalysts (Pt/C). This robust electrochemical property can be due to the result of PFSA and PANI. PANI as protector inhibits carbon nanospheres from corrosion of carbon supports in harsh chemical and electrochemical conditions. Meanwhile, PFSA wrapped Pt NPs (Pt@PFSA) can also anchor Pt NPs on C@PANI to avoid aggregation and detachment of Pt NPs, due to the increased metal-support interaction caused by the strong electrostatic attraction between PANI and PFSA with corresponding positive and negative charges. Significantly, after coating PANI on carbon supports (C@PANI), almost all micropores in the surface of carbon disappear, effectively avoiding the embedding of Pt nanopaticles into micropores. Furthermore, the triple-phase boundary toward ORR catalysis can be facilitated by PFSA as proton conductor (solid electrolyte). These are of benefit to increase utilization of Pt noble metals and ORR activity of our new catalysts.

  1. Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion/enamine form of (alpha-hydroxyethyl)thiamin diphosphate in a "nonredox" flavoenzyme.

    PubMed

    Tittmann, Kai; Schröder, Kathrin; Golbik, Ralph; McCourt, Jennifer; Kaplun, Alexander; Duggleby, Ronald G; Barak, Ze'ev; Chipman, David M; Hübner, Gerhard

    2004-07-13

    Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)-ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

  2. Theoretical investigations of the oxygen reduction reaction on Pt(111).

    PubMed

    Keith, John A; Jerkiewicz, Gregory; Jacob, Timo

    2010-09-10

    Computational modeling can provide important insights into chemical reactions in both applied and fundamental fields of research. One of the most critical processes needed in practical renewable energy sources is the oxygen reduction reaction (ORR). Besides being the key process in combustion and corrosion, the ORR has an elusive mechanism that may proceed in a number of complicated reaction steps in electrochemical fuel cells. Indeed, the mechanism of the ORR on highly studied Pt(111) electrodes has been the subject of interest and debate for decades. Herein, we first outline the theory behind these types of simulations and then show how to use these quantum mechanical approaches and approximations to create a realistic model. After reviewing the performance of these methods in studying the binding of molecular oxygen to Pt(111), we then outline our own results in elucidating the ORR and its dependence on environmental parameters, such as solvent, thermodynamic energies, and the presence of an external electrode potential. This approach can, in principle, be applied to other equally complicated investigations of other surfaces or electrochemical reactions.

  3. Bio-inspired nanocatalysts for the oxygen reduction reaction.

    PubMed

    Grumelli, Doris; Wurster, Benjamin; Stepanow, Sebastian; Kern, Klaus

    2013-01-01

    Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.

  4. Bio-inspired nanocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Grumelli, Doris; Wurster, Benjamin; Stepanow, Sebastian; Kern, Klaus

    2013-12-01

    Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.

  5. Exploration of surface chemistry and structure of catalysts under reaction condition and during catalysis with surface-sensitive in-situ techniques

    NASA Astrophysics Data System (ADS)

    Tao, Franklin (Feng)

    2014-03-01

    In heterogeneous catalysis, each catalytic event occurs on a catalytic site. The catalytic site typically consists of a couple of or a few atoms of a catalyst which pack into a structure to offer specific electronic state to turn on a catalytic reaction. Surface structure and chemistry are the key for understanding a catalytic mechanism. From thermodynamic point of view, the surface structure of a catalyst depends on the environment of reactant gases or liquid around the catalyst. Thus, the surface chemistry and structure of a catalyst under a reaction condition or during catalysis (in an environment of reactant(s) with certainly pressure) could be different from those from ex-situ studies. In-situ surface science characterization techniques have been developed for disclosing the hidden surface chemistry and structure of catalysts under reaction conditions or during catalysis. In-situ ambient pressure XPS (AP-XPS) and ambient pressure STM (AP-STM) are two of these surface-sensitive techniques appropriate for exploring surface chemistry and structure, respectively. In this talk, I will present the origin of pressure dependent surface chemistry and structure from thermodynamic point of view. AP-XPS and AP-STM techniques will be introduced briefly. I will focus on (1) the evolution of surface composition and oxidation state of a reducible oxide and how the evolution is correlated to the corresponding catalytic performances, (2) the distribution of surface elements on surface of a bimetallic catalyst under a reaction condition and how a restructuring is used to generate a new surface with different catalytic performance, and (3) geometric restructuring of a metal catalyst surface at atomic scale and how it is related to its catalytic performances. This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under the grant DE-FG02-12ER1635.

  6. Pd(0)-Catalyzed PMHS reductions of aromatic acid chlorides to aldehydes.

    PubMed

    Lee, Kyoungsoo; Maleczka, Robert E

    2006-04-27

    [reaction: see text] Contrary to previous reports, polymethylhydrosiloxane (PMHS) under Pd(0) catalysis can efficiently reduce aryl acid chlorides to their corresponding aldehydes without requiring an additional reductant, provided the reactions are run in the presence of fluoride.

  7. Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis.

    PubMed

    Lee, Kyung Eun; Kim, Ji Eun; Maiti, Uday Narayan; Lim, Joonwon; Hwang, Jin Ok; Shim, Jongwon; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2014-09-23

    Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution. Here, we introduce a facile size selection of large-size GO exploiting liquid crystallinity and investigate the size-dependent N-doping and oxygen reduction catalysis. In the biphasic GO dispersion where both isotropic and liquid crystalline phases are equilibrated, large-size GO flakes (>20 μm) are spontaneously concentrated within the liquid crystalline phase. N-Doping and reduction of the size-selected GO exhibit that N-dopant type is highly dependent on GO flake size. Large-size GO demonstrates quaternary dominant N-doping and the lowest onset potential (-0.08 V) for oxygen reduction catalysis, signifying that quaternary N-dopants serve as principal catalytic sites in N-doped graphene.

  8. Anion-π catalysis: bicyclic products with four contiguous stereogenic centers from otherwise elusive diastereospecific domino reactions on π-acidic surfaces.

    PubMed

    Liu, Le; Cotelle, Yoann; Klehr, Juliane; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2017-05-01

    Anion-π interactions have been introduced recently to catalysis. The idea of stabilizing anionic intermediates and transition states on π-acidic surfaces is a new fundamental concept. By now, examples exist for asymmetric enolate, enamine, iminium and transamination chemistry, and the first anion-π enzyme has been created. Delocalized over large aromatic planes, anion-π interactions appear particularly attractive to stabilize extensive long-distance charge displacements during domino processes. Moving on from the formation of cyclohexane rings with five stereogenic centers in one step on a π-acidic surface, we here focus on asymmetric anion-π catalysis of domino reactions that afford bicyclic products with quaternary stereogenic centers. Catalyst screening includes a newly synthesized, better performing anion-π version of classical organocatalysts from cinchona alkaloids, and anion-π enzymes. We find stereoselectivities that are clearly better than the best ones reported with conventional catalysts, culminating in unprecedented diastereospecificity. Moreover, we describe achiral salts as supramolecular chirality enhancers and report the first artificial enzyme that operates in neutral water with anion-π interactions, i.e., interactions that are essentially new to enzymes. Evidence in support of contributions of anion-π interactions to asymmetric catalysis include increasing diastereo- and enantioselectivity with increasing rates, i.e., asymmetric transition-state stabilization in the presence of π-acidic surfaces and inhibition with the anion selectivity sequence NO3(-) > Br(-) > BF4(-) > PF6(-).

  9. Diversity of Contaminant Reduction Reactions by Zero-Valent Iron: Role of the Reductate

    SciTech Connect

    Miehr, R; Tratnyek, Paul G.; Bandstra, J; Scherer, Michelle; Alowitz, M; Bylaska, Eric J.

    2004-01-01

    The reactions of 8 model contaminants with 9 types of granular Fe(0) were studied in batch experiments using consistent experimental conditions. The model contaminants (herein referred to as reductates because they were reduced by the iron metal) included cations (Cu2+), anions (CrO42-; NO3-; and 5,5,7,7-indigotetrasulfonate), and neutral species (2-chloroacetophenone; 2,4,6-trinitrotoluene; carbon tetrachloride; and trichloroethene). The diversity of this range of reductates offers a uniquely broad perspective on the reactivity of Fe(0). Rate constants for disappearance of the reductates vary over as much as 4 orders of magnitude for particular reductates (due to differences in the 9 types of iron) but differences among the reductates were even larger, ranging over almost 7 orders of magnitude. Various ways of summarizing the data all suggest that relative reactivities with Fe(0) varies in the order: Cu2, I4S > 2CAP, TNT > CT, Cr6 > TCE > NO3. Although the reductate h as the largest effect on disappearance kinetics, more subtle differences in reactivity due to the type of Fe(0) suggests that removal of Cr6 and NO3 (the inorganic anions) involves adsorption to oxides on the Fe(0), whereas the disappearance kinetics of all other types of reductants is favored by reduction on comparatively oxide-free metal. Correlation analysis of the disappearance rate constants using descriptors of the reductates calculated by molecular modeling (energies of the lowest unoccupied molecular orbitals, LUMO, highest occupied molecular orbitals, HOMO, and HOMO-LUMO gaps) showed that reactivities generally increase with decreasing ELUMO and increasing EGAP (and, therefore, increasing chemical hardness h).

  10. Reduction of dynamical biochemical reactions networks in computational biology

    PubMed Central

    Radulescu, O.; Gorban, A. N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler models, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state (QSS) and quasi-equilibrium approximations (QE), and provide practical recipes for model reduction of linear and non-linear networks. We also discuss the application of model reduction to the problem of parameter identification, via backward pruning machine learning techniques. PMID:22833754

  11. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts.

    PubMed

    Cao, Shaowen; Tao, Franklin Feng; Tang, Yu; Li, Yuting; Yu, Jiaguo

    2016-08-22

    Heterogeneous catalysis is one of the most important chemical processes of various industries performed on catalyst nanoparticles with different sizes or/and shapes. In the past two decades, the catalytic performances of different catalytic reactions on nanoparticles of metals and oxides with well controlled sizes or shapes have been extensively studied thanks to the spectacular advances in syntheses of nanomaterials of metals and oxides. This review discussed the size and shape effects of catalyst particles on catalytic activity and selectivity of reactions performed at solid-gas or solid-liquid interfaces with a purpose of establishing correlations of size- and shape-dependent chemical and structural factors of surface of a catalyst with the corresponding catalytic performances toward understanding of catalysis at a molecular level.

  12. Racemic hemiacetals as oxygen-centered pronucleophiles triggering cascade 1,4-addition/Michael reaction through dynamic kinetic resolution under iminium catalysis. Development and mechanistic insights.

    PubMed

    Orue, Ane; Uria, Uxue; Roca-López, David; Delso, Ignacio; Reyes, Efraím; Carrillo, Luisa; Merino, Pedro; Vicario, Jose L

    2017-04-01

    2-Hydroxydihydropyran-5-ones behave as excellent polyfunctional reagents able to react with enals through oxa-Michael/Michael process cascade under the combination of iminium and enamine catalysis. These racemic hemiacetalic compounds are used as unconventional O-pronucleophiles in the initial oxa-Michael reaction, also leading to the formation of a single stereoisomer under a dynamic kinetic resolution (DKR) process. Importantly, by using β-aryl or β-alkyl substituted α,β-unsaturated substrates as initial Michael acceptors either kinetically or thermodynamically controlled diastereoisomers were formed with high stereoselection through the careful selection of the reaction conditions. Finally, a complete experimental and computational study confirmed the initially proposed DKR process during the catalytic oxa-Michael/Michael cascade reaction and also explained the kinetic/thermodynamic pathway operating in each case.

  13. Intracrystalline diffusion in metal organic framework during heterogeneous catalysis: influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions.

    PubMed

    Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Hwang, Young Kyu; Seo, You-Kyong; Corma, Avelino; Garcia, Hermenegildo

    2011-10-28

    Three MIL-100 (Fe) samples differing in average crystal size (from 60-70 to >400 nm) have been synthesized by microwave heating using three HF/Fe(3+) ratios. Oxidation of diphenylmethane with tert-butylhydroperoxide (TBHP) and thiophenol with oxygen are catalyzed by three MIL-100 (Fe) samples with similar reaction rates regardless of its average particle size. In contrast, the activity of the three MIL-100 (Fe) samples for the oxidation of bulky triphenylmethane by TBHP largely depends on the average crystal size of the sample: the smaller the average particle size, the larger the initial reaction rate of triphenylmethane oxidation. These results show that diffusion limitation takes place on MOF catalysis depending on the substrate size and provides indirect evidence that these reactions take place inside the intracrystalline space of the porous catalysts.

  14. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy)

    SciTech Connect

    Duan, Lele; Manbeck, Gerald F.; Kowalczyk, Marta; Szalda, David J.; Muckerman, James T.; Himeda, Yuichiro; Fujita, Etsuko

    2016-04-14

    Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H+ with CO2.

  15. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH3 )]2+ (6DHBP = 6,6'-(OH)2 bpy)

    SciTech Connect

    Duan, Lele; Manbeck, Gerald F.; Kowalczyk, Marta; Szalda, David J.; Muckerman, James T.; Himeda, Yuichiro; Fujita, Etsuko

    2016-04-14

    Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)]2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H+)]0) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)]2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H+ with CO2.

  16. Oxygen reduction reaction on stepped platinum surfaces in alkaline media.

    PubMed

    Rizo, Ruben; Herrero, Enrique; Feliu, Juan M

    2013-10-07

    The oxygen reduction reaction (ORR) in 0.1 M NaOH on platinum single crystal electrodes has been studied using hanging meniscus rotating disk electrode configuration. Basal planes and stepped surfaces with (111) and (100) terraces have been employed. The results indicate that the Pt(111) electrode has the highest electrocatalytic activity among all the studied surfaces. The addition of steps on this electrode surface significantly diminishes the reactivity of the surface towards the ORR. In fact, the reactivity of the steps on the surfaces with wide terraces can be considered negligible with respect to that measured for the terrace. On the other hand, Pt(100) and Pt(110) electrodes have much lower activity than the Pt(111) electrode. These results have been compared with those obtained in acid media to understand the effect of the pH and the adsorbed OH on the mechanism. It is proposed that the surface covered by adsorbed OH is active for the reduction of the oxygen molecules.

  17. Investigation of acid-base catalysis in the extradiol and intradiol catechol dioxygenase reactions using a broad specificity mutant enzyme and model chemistry.

    PubMed

    Brivio, Michela; Schlosrich, Janne; Ahmad, Mark; Tolond, Caroline; Bugg, Timothy D H

    2009-04-07

    The extradiol and intradiol catechol dioxygenase reaction mechanisms proceed via a common proximal hydroperoxide intermediate, which is processed via different Criegee 1,2-rearrangements. An R215W mutant of extradiol dioxygenase MhpB, able to produce a mixture of extradiol and intradiol cleavage products, was analysed at pH 5.2-8.6, and the yield of extradiol product was found to be highly pH-dependent, whereas the yield of intradiol product was pH-independent. The acid-base chemistry of a biomimetic reaction for extradiol oxidative catechol cleavage was also investigated, using 1,4,7-triazacyclononane, FeCl(2), and pyridine in methanol, in which pyridine is proposed to act as both a general base and (in protonated form) a general acid. Kinetic experiments using a range of meta- and para-substituted pyridines gave a Brønsted plot of log(v) vs. pK(a) showing a bell-shaped plot. Oxidative catechol cleavage by a pyridine-monosubstituted beta-cyclodextrin in the presence of TACN and FeCl(2) in methanol yielded only intradiol cleavage products. It is therefore proposed that bifunctional acid-base catalysis is required for iron (ii)-dependent extradiol catechol cleavage, whereas the rate-determining step for intradiol catechol cleavage does not involve acid-base catalysis.

  18. Confined catalysis under two-dimensional materials

    PubMed Central

    Li, Haobo; Xiao, Jianping; Bao, Xinhe

    2017-01-01

    Confined microenvironments formed in heterogeneous catalysts have recently been recognized as equally important as catalytically active sites. Understanding the fundamentals of confined catalysis has become an important topic in heterogeneous catalysis. Well-defined 2D space between a catalyst surface and a 2D material overlayer provides an ideal microenvironment to explore the confined catalysis experimentally and theoretically. Using density functional theory calculations, we reveal that adsorption of atoms and molecules on a Pt(111) surface always has been weakened under monolayer graphene, which is attributed to the geometric constraint and confinement field in the 2D space between the graphene overlayer and the Pt(111) surface. A similar result has been found on Pt(110) and Pt(100) surfaces covered with graphene. The microenvironment created by coating a catalyst surface with 2D material overlayer can be used to modulate surface reactivity, which has been illustrated by optimizing oxygen reduction reaction activity on Pt(111) covered by various 2D materials. We demonstrate a concept of confined catalysis under 2D cover based on a weak van der Waals interaction between 2D material overlayers and underlying catalyst surfaces. PMID:28533413

  19. Hydride-mediated homogeneous catalysis. Catalytic reduction of. alpha. ,. beta. -unsaturated ketones using ((Ph sub 3 P)CuH) sub 6 and H sub 2

    SciTech Connect

    Mahoney, W.S.; Stryker, J.M. )

    1989-11-22

    Hydride-mediated reduction of {alpha},{beta}-unsaturated ketones catalytic in the hydride reagent is reported using ((Ph{sub 3}P)CuH){sub 6} and molecular hydrogen. The reaction proceeds at room temperature and is highly regioselective, affording either the product of conjugate reduction or complete 1,4- and 1,2-reduction to the saturated alcohol, depending on reaction conditions. In the presence of excess phosphine, the process is homogeneous and chemoselective: isolated double bonds are not hydrogenated, even under forcing conditions. This novel catalytic reduction appears to proceed via the heterolytic activation of molecular hydrogen by highly reactive copper(I) enolate and alkoxide intermediates.

  20. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  1. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  2. A Study of Heterogeneous Catalysis by Nanoparticle-Embedded Paper-Spray Ionization Mass Spectrometry.

    PubMed

    Banerjee, Shibdas; Basheer, Chanbasha; Zare, Richard N

    2016-10-04

    We have developed nanoparticle-embedded paper-spray mass spectrometry for studying three types of heterogeneously catalyzed reactions: 1) Palladium-nanoparticle-catalyzed Suzuki cross-coupling reactions, 2) palladium- or silver-nanoparticle-catalyzed 4-nitrophenol reduction, and 3) gold-nanoparticle-catalyzed glucose oxidation. These reactions were almost instantaneous on the nanocatalyst-embedded paper, which subsequently transferred the transient intermediates and products to a mass spectrometer for their detection. This in situ method of capturing transient intermediates and products from heterogeneous catalysis is highly promising for investigating the mechanism of catalysis and rapidly screening catalytic activity under ambient conditions.

  3. Additive Effects on Asymmetric Catalysis.

    PubMed

    Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui

    2016-03-23

    This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.

  4. Fundamentals of several reactions for the carbothermic reduction of alumina

    NASA Astrophysics Data System (ADS)

    Walker, Matthew S.

    The current process used for primary aluminum production, the Hall-Heroult process, is reliable, but it also is expensive, consumes large amounts of energy, and generates significant quantities of greenhouse gas emissions. One possible alternative process is the carbothermic reduction of alumina, wherein aluminum is formed by reducing alumina with carbon at high temperatures. This process, if successful, has the potential for substantial reductions in energy consumption, capital costs, and greenhouse gas emissions. One critical component to making this process successful involves obtaining a better understanding of the thermodynamics. Specifically, the key thermodynamic data are the free energies of the reactions and the thermodynamic activities of the metal (Al-C) and slag systems (Al2O3-Al4C3). These are critical for evaluating and controlling the carbothermic process, but experimental data is extremely limited and much of it was measured many years ago when the experimental techniques available may not have been adequate. The overall objective for this research was to assess the validity of the thermodynamic data for this process, as well as its suitability for predicting the behavior of the process. This was done through experimental investigations into both the slag (carbide) making reaction and the binary Al2O 3-Al4C3 phase diagram. The comparison of these results, to those expected based on the current understanding for the process thermodynamics (using FactSage along with the ALCO database), assesses the validity of the thermodynamic data. In this document, the experimental results for investigating the reactions of Al2O3 with carbon are presented. This work involved measuring the operating line for the first step of the carbothermic aluminum process, slag making. This was done using two experimental methods. One involved measuring the evolution of CO from the reactions using a mass spectrometer. The other involved using a vacuum thermobalance (TGA) to

  5. Asymmetric trienamine catalysis: new opportunities in amine catalysis.

    PubMed

    Kumar, Indresh; Ramaraju, Panduga; Mir, Nisar A

    2013-02-07

    Amine catalysis, through HOMO-activating enamine and LUMO-activating iminium-ion formation, is receiving increasing attention among other organocatalytic strategies, for the activation of unmodified carbonyl compounds. Particularly, the HOMO-raising activation concept has been applied to the greatest number of asymmetric transformations through enamine, dienamine, and SOMO-activation strategies. Recently, trienamine catalysis, an extension of amine catalysis, has emerged as a powerful tool for synthetic chemists with a novel activation strategy for polyenals/polyenones. In this review article, we discuss the initial developments of trienamine catalysis for highly asymmetric Diels-Alder reactions with different dienophiles and emerging opportunities for other types of cycloadditions and cascade reactions.

  6. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  7. The Enantioselective α-Arylation of Aldehydes via Organo-SOMO Catalysis. An Ortho-Selective Arylation Reaction Based on an Open-Shell Pathway

    PubMed Central

    Conrad, Jay C.; Kong, Jongrock; Laforteza, Brian N.

    2009-01-01

    The intramolecular α-arylation of aldehydes has been accomplished using singly occupied molecular orbital (SOMO) catalysis. Selective oxidation of chiral enamines (formed by the condensation of an aldehyde and a secondary amine catalyst) leads to the formation of a 3π-electron radical species. These chiral SOMO-activated radical cations undergo enantioselective reaction with an array of pendent electron-rich aromatics and heterocycles thus efficiently providing cyclic α-aryl aldehyde products (10 examples: ≥70% yield and ≥90% ee). In accordance with our radical mechanism, when there is a choice between arylation at the ortho or para position of anisole substrates, we find that arylation proceeds selectively at the ortho position. PMID:19639997

  8. Enantioselective alpha-arylation of aldehydes via organo-SOMO catalysis. An ortho-selective arylation reaction based on an open-shell pathway.

    PubMed

    Conrad, Jay C; Kong, Jongrock; Laforteza, Brian N; MacMillan, David W C

    2009-08-26

    The intramolecular alpha-arylation of aldehydes has been accomplished using singly occupied molecular orbital (SOMO) catalysis. Selective oxidation of chiral enamines (formed by the condensation of an aldehyde and a secondary amine catalyst) leads to the formation of a 3pi-electron radical species. These chiral SOMO-activated radical cations undergo enantioselective reaction with an array of pendent electron-rich aromatics and heterocycles thus efficiently providing cyclic alpha-aryl aldehyde products (10 examples: > or = 70% yield and > or = 90% ee). In accordance with our radical mechanism, when there is a choice between arylation at the ortho or para position of anisole substrates, we find that arylation proceeds selectively at the ortho position.

  9. Dynamics, energetics, and structure of microclusters: elucidating the physical basis for catalysis and surface chemistry, reactions in condensed phases, and aerosol formation. Progress report

    SciTech Connect

    Castleman, A.W. Jr.

    1984-01-01

    During the last grant period, research in our laboratory has focused on the formation and properties of gas-phase clusters. The work was designed to provide information on the changing properties of chemical species as they undergo conversion from the gaseous to condensed phase. The results have contributed to an understanding of fundamental phenomena such as nucleation, catalysis, solvation, energy transfer, unimolecular dissociation, and the kinetics of association reactions. A brief summary of findings on the solvolysis of electrolytes in clusters of solvent; formation, polarity, and fragmentation studies; studies of cluster formation mechanisms, dissociation processes in ionized clusters; resonant two-photon ionization spectroscopy studies; studies of metal clusters (including photoionization studies, high pressure mass spectrometry studies); and molecular orbital calculations of cluster structure and bonding are included. 6 refs.

  10. Alkali metal ion catalysis and inhibition in nucleophilic displacement reactions at phosphorus centers: ethyl and methyl paraoxon and ethyl and methyl parathion.

    PubMed

    Um, Ik-Hwan; Shin, Young-Hee; Lee, Seung-Eun; Yang, Kiyull; Buncel, Erwin

    2008-02-01

    We report on the ethanolysis of the P=O and P=S compounds ethyl and methyl paraoxon (1a and 1b) and ethyl and methyl parathion (2a and 2b). Plots of spectrophotometrically measured rate constants, kobsd versus [MOEt], the alkali ethoxide concentration, show distinct upward and downward curvatures, pointing to the importance of ion-pairing phenomena and a differential reactivity of free ions and ion pairs. Three types of reactivity and selectivity patterns have been discerned: (1) For the P=O compounds 1a and 1b, LiOEt > NaOEt > KOEt > EtO-; (2) for the P=S compound 2a, KOEt > EtO- > NaOEt > LiOEt; (3) for P=S, 2b, 18C6-crown-complexed KOEt > KOEt = EtO(-) > NaOEt > LiOEt. These selectivity patterns are characteristic of both catalysis and inhibition by alkali-metal cations depending on the nature of the electrophilic center, P=O vs P=S, and the metal cation. Ground-state (GS) vs transition-state (TS) stabilization energies shed light on the catalytic and inhibitory tendencies. The unprecedented catalytic behavior of crowned-K(+) for the reaction of 2b is noteworthy. Modeling reveals an extreme steric interaction for the reaction of 2a with crowned-K(+), which is responsible for the absence of catalysis in this system. Overall, P=O exhibits greater reactivity than P=S, increasing from 50- to 60-fold with free EtO(-) and up to 2000-fold with LiOEt, reflecting an intrinsic P=O vs P=S reactivity difference (thio effect). The origin of reactivity and selectivity differences in these systems is discussed on the basis of competing electrostatic effects and solvational requirements as function of anionic electric field strength and cation size (Eisenman's theory).

  11. Catalysis of Supramolecular Hydrogelation.

    PubMed

    Trausel, Fanny; Versluis, Frank; Maity, Chandan; Poolman, Jos M; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk

    2016-07-19

    One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical

  12. Trichloramine Removal with Activated Carbon Is Governed by Two Reductive Reactions: A Theoretical Approach with Diffusion-Reaction Models.

    PubMed

    Matsushita, Taku; Matsui, Yoshihiko; Ikekame, Shohei; Sakuma, Miki; Shirasaki, Nobutaka

    2017-04-06

    Mechanisms underlying trichloramine removal with activated carbon treatment were proven by batch experiments and theoretical analysis with diffusion-reaction models. The observed values of trichloramine and free chlorine were explained only by the model in which (1) both trichloramine and free chlorine were involved as reactants, (2) the removals of reactants were affected both by the intraparticle diffusion and by the reaction with activated carbon, and (3) trichloramine decomposition was governed by two distinct reductive reactions. One reductive reaction was expressed as a first-order reaction: the reductive reaction of trichloramine with the basal plane of PAC, which consists of graphene sheets. The other reaction was expressed as a second-order reaction: the reductive reaction of trichloramine with active functional groups located on the edge of the basal plane. Free chlorine competitively reacted with both the basal plane and the active functional groups. The fact that the model prediction succeeded even in experiments with different activated carbon doses, with different initial trichloramine concentrations, and with different sizes of activated carbon particles clearly proved that the mechanisms described in the model were reasonable for explaining trichloramine removal with activated carbon treatment.

  13. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    SciTech Connect

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  14. Expanding the scope of Lewis acid catalysis in water: remarkable ligand acceleration of aqueous ytterbium triflate catalyzed Michael addition reactions.

    PubMed

    Ding, Rui; Katebzadeh, Kambiz; Roman, Lisa; Bergquist, Karl-Erik; Lindström, Ulf M

    2006-01-06

    [reaction: see text] Significant rate acceleration of metal-catalyzed Michael addition reactions in water was observed upon addition of small, dibasic ligands. Ytterbium triflate and TMEDA was the most effective combination leading to a nearly 20-fold faster reaction than in the absence of ligand.

  15. Enantioconvergent catalysis

    PubMed Central

    Mohr, Justin T; Moore, Jared T

    2016-01-01

    Summary An enantioconvergent catalytic process has the potential to convert a racemic starting material to a single highly enantioenriched product with a maximum yield of 100%. Three mechanistically distinct approaches to effecting enantioconvergent catalysis are identified, and recent examples of each are highlighted. These processes are compared to related, non-enantioconvergent methods. PMID:27829909

  16. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.

    PubMed

    Zhu, Shaoqun; Das, Arindam; Bui, Lan; Zhou, Hanjun; Curran, Dennis P; Rueping, Magnus

    2013-02-06

    Visible light photoredox catalyzed inter- and intramolecular C-H functionalization reactions of tertiary amines have been developed. Oxygen was found to act as chemical switch to trigger two different reaction pathways and to obtain two different types of products from the same starting material. In the absence of oxygen, the intermolecular addition of N,N-dimethyl-anilines to electron-deficient alkenes provided γ-amino nitriles in good to high yields. In the presence of oxygen, a radical addition/cyclization reaction occurred which resulted in the formation of tetrahydroquinoline derivatives in good yields under mild reaction conditions. The intramolecular version of the radical addition led to the unexpected formation of indole-3-carboxaldehyde derivatives. Mechanistic investigations of this reaction cascade uncovered a new photoredox catalyzed C-C bond cleavage reaction.

  17. Organic radicals for the enhancement of oxygen reduction reaction in Li-O2 batteries.

    PubMed

    Tesio, A Y; Blasi, D; Olivares-Marín, M; Ratera, I; Tonti, D; Veciana, J

    2015-12-25

    We examine for the first time the ability of inert carbon free-radicals as soluble redox mediators to catalyze and enhance the oxygen reduction reaction in a (TEGDME)-based electrolyte. We demonstrate that the tris(2,4,6-trichlorophenyl)methyl (TTM) radical is capable of chemically favoring the oxygen reduction reaction improving significantly the Li-O2 battery performance.

  18. X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy.

    PubMed

    Bauer, Matthias; Gastl, Christoph

    2010-06-07

    A survey over X-ray absorption methods in homogeneous catalysis research is given with the example of the iron-catalyzed Michael addition reaction. A thorough investigation of the catalytic cycle was possible by combination of conventional X-ray absorption spectroscopy (XAS), resonant inelastic X-ray scattering (RIXS) and multi-dimensional spectroscopy. The catalytically active compound formed in the first step of the Michael reaction of methyl vinyl ketone with 2-oxocyclopentanecarboxylate (1) could be elucidated in situ by RIXS spectroscopy, and the reduced catalytic activity of FeCl(3) x 6 H(2)O (2) compared to Fe(ClO(4))(3) x 9 H(2)O (3) could be further explained by the formation of a [Fe(III)Cl(4)(-)](3)[Fe(III)(1-H)(2)(H(2)O)(2)(+)][H(+)](2) complex. Chloride was identified as catalyst poison with a combined XAS-UV/vis study, which revealed that Cl(-) binds quantitatively to the available iron centers that are deactivated by formation of [FeCl(4)(-)]. Operando studies in the course of the reaction of methyl vinyl ketone with 1 by combined XAS-Raman spectroscopy allowed the exclusion of changes in the oxidation state and the octahedral geometry at the iron site; a reaction order of two with respect to methyl vinyl ketone and a rate constant of k = 1.413 min(-2) were determined by analysis of the C=C and C=O vibration band. Finally, a dedicated experimental set-up for three-dimensional spectroscopic studies (XAS, UV/vis and Raman) of homogeneous catalytic reactions under laboratory conditions, which emerged from the discussed investigations, is presented.

  19. Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Non-Heme Iron Oxidases.

    PubMed

    McNeill, Luke A; Brown, Toby J N; Sami, Malkit; Clifton, Ian J; Burzlaff, Nicolai I; Claridge, Timothy D W; Adlington, Robert M; Baldwin, Jack E; Rutledge, Peter J; Schofield, Christopher J

    2017-09-18

    Isopenicillin N synthase (IPNS) catalyses the four-electron oxidation of a tripeptide, l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV), to give isopenicillin N (IPN), the first-formed β-lactam in penicillin and cephalosporin biosynthesis. IPNS catalysis is dependent upon an iron(II) cofactor and oxygen as a co-substrate. In the absence of substrate, the carbonyl oxygen of the side-chain amide of the penultimate residue, Gln330, co-ordinates to the active-site metal iron. Substrate binding ablates the interaction between Gln330 and the metal, triggering rearrangement of seven C-terminal residues, which move to take up a conformation that extends the final α-helix and encloses ACV in the active site. Mutagenesis studies are reported, which probe the role of the C-terminal and other aspects of the substrate binding pocket in IPNS. The hydrophobic nature of amino acid side-chains around the ACV binding pocket is important in catalysis. Deletion of seven C-terminal residues exposes the active site and leads to formation of a new type of thiol oxidation product. The isolated product is shown by LC-MS and NMR analyses to be the ene-thiol tautomer of a dithioester, made up from two molecules of ACV linked between the thiol sulfur of one tripeptide and the oxidised cysteinyl β-carbon of the other. A mechanism for its formation is proposed, supported by an X-ray crystal structure, which shows the substrate ACV bound at the active site, its cysteinyl β-carbon exposed to attack by a second molecule of substrate, adjacent. Formation of this product constitutes a new mode of reaction for IPNS and non-heme iron oxidases in general. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Synthesis of the salts of weakly coordination stibate ions & Students' perceptions of two- and three-dimensional animations depicting an oxidation-reduction reaction

    NASA Astrophysics Data System (ADS)

    Rosenthal, Deborah Renee

    2011-12-01

    SYTHESIS OF SALTS OF WEAKLY COORDINATING STIBATE IONS. Weakly coordinating anions have many important applications including olefin polymerization co-catalysis. In an attempt to make tristibic acid, distibic acid and tetrastibic acid were made. Cesium, barium, nickel(II), and diethylammonium salts of tetrastibic acid were also synthesized. Tetrastibic acid and the ammonium salts were concluded to be stable. Elemental analyses showed that neither tristibic acid nor tristibic acid were stable under the reaction conditions employed. STUDENTS' PERCEPTIONS OF TWO- AND THREE-DIMENSIONAL ANIMATIONS DEPICTING AN OXIDATION-REDUCATION REACTION. Electrochemistry is a difficult subject for many students to comprehend. In order to improve teaching in this area of chemistry, semi-structured clinical interviews on second-semester introductory chemistry students were conducted in which students' were asked to explain the particulate behavior of the chemicals in an oxidation-reduction reaction. The interviews included questions after students viewed the chemical demonstration and two computer animations depicting the particulate nature of the same chemical reaction. Misinterpretations of the two animations were identified and described in detail. The simpler 2-D animation was beneficial in helping students understand the oxidation-reduction reaction and write the balanced chemical equation. However, the 3-D animation did not appear to be detrimental to student understanding. Suggestions, taken from the students' comments in the interviews, for improving the animations and for teaching electrochemistry were discussed.

  1. Multi-catalysis reactions: direct organocatalytic sequential one-pot synthesis of highly functionalized cyclopenta[b]chromen-1-ones.

    PubMed

    Ramachary, Dhevalapally B; Reddy, Y Vijayendar; Kishor, Mamillapalli

    2008-11-21

    We have developed a new technology called multi-catalysis for the sequential one-pot synthesis of highly functionalized heterocycles. A practical and novel multi-component aniline-, self- and Brønsted acid-catalyzed selective process for the sequential one-pot synthesis of highly substituted 2-(2-hydroxy-aryl)-cyclopentane-1,3-diones, 3,9-dihydro-2H-cyclopenta[b]chromen-1-ones and 3,3-dimethyl-2,3,4,9-tetrahydro-xanthen-1-ones is reported. Direct combination of aniline- and self-catalyzed cascade olefination-hydrogenation (O-H) and Brønsted acid-catalyzed cascade oxy-Michael-dehydration (OM-DH) of 1,3-diones, salicylic aldehydes and organic-hydrides is developed in one-pot to furnish the highly functionalized 3,9-dihydro-2H-cyclopenta[b]chromen-1-ones and 3,3-dimethyl-2,3,4,9-tetrahydro-xanthen-1-ones with high yields.

  2. Understanding the effects of cationic dopants on α-MnO2 oxygen reduction reaction electrocatalysis

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; ...

    2017-01-09

    Nickel-doped α-MnO2 nanowires (Ni–α-MnO2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO2 or Cu–α-MnO2 is provided. In general, Ni-α-MnO2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s–1), and lower charge transfer resistance (RCT = 2264 Ω at half-wave) values than MnO2 (n = 3.0, k = 0.006 cm s–1, RCT = 6104 Ω at half-wave) or Cu–α-MnO2 (Cu-2.9%, n = 3.5, k = 0.015 cm s–1, RCT = 3412more » Ω at half-wave), and the overall activity for Ni–α-MnO2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu–α-MnO2, the increase in ORR activity correlates with the amount of Mn3+ at the surface of the Ni–α-MnO2 nanowire. Examining the activity for both Ni–α-MnO2 and Cu–α-MnO2 materials indicates that the Mn3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO2, 16 of Cu–α-MnO2-2.9%, and 16 of Ni–α-MnO2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO2. As a result, the data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire.« less

  3. Computerized reduction of elementary reaction sets for CFD combustion modeling

    NASA Technical Reports Server (NTRS)

    Wikstrom, Carl V.

    1992-01-01

    Modeling of chemistry in Computational Fluid Dynamics can be the most time-consuming aspect of many applications. If the entire set of elementary reactions is to be solved, a set of stiff ordinary differential equations must be integrated. Some of the reactions take place at very high rates, requiring short time steps, while others take place more slowly and make little progress in the short time step integration.

  4. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offers a general approach to enhance Pd catalysis in acid for ORB.

  5. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; ...

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offersmore » a general approach to enhance Pd catalysis in acid for ORB.« less

  6. Switching on elusive organometallic mechanisms with photoredox catalysis.

    PubMed

    Terrett, Jack A; Cuthbertson, James D; Shurtleff, Valerie W; MacMillan, David W C

    2015-08-20

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to 'switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  7. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis

    PubMed Central

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-01-01

    Transition metal-catalyzed cross-coupling reactions have become one of the most utilized carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. More recently, nickel catalysis has been shown to participate in a wide variety of C–C bond forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada, and Hiyama couplings1,2. Despite the tremendous advances in C–C fragment couplings, the ability to forge C–O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C–O bond forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. In this manuscript, we demonstrate that visible light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon–oxygen coupling reaction using abundant alcohols and aryl bromides. More significantly, we have developed a general strategy to “switch on” important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron transfer (SET) catalysts. PMID:26266976

  8. Switching on elusive organometallic mechanisms with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-08-01

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to `switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  9. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.

    PubMed

    Motokura, Ken; Tomita, Mitsuru; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-01-01

    Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.

  10. Orthoplatinated triarylphosphite as a highly efficient catalyst for addition reactions of arylboronic acids with aldehydes: low catalyst loading catalysis and a new tandem reaction sequence.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; He, Ping; Hu, Qiao-Sheng

    2008-06-19

    Readily available, air/moisture-stable orthoplatinated triarylphosphite catalyzes the addition reactions of arylboronic acids with aldehydes with the catalyst loading as low as 0.01%. It also cataylzes a new tandem reaction of arylboronic acids with alpha,beta-unsaturated aldehydes to form 1,3-diaryl-1-propanols. Our study provides a new paradigm for the application of orthoplatinated triarylphosphites, and may pave the road to develop other Pt(II) catalysts for such addition reactions and other tandem reactions with such addition reactions as part of the reaction sequence.

  11. Cyclopalladated complexes in enantioselective catalysis

    NASA Astrophysics Data System (ADS)

    Dunina, Valeria V.; Gorunova, Olga N.; Zykov, P. A.; Kochetkov, Konstantin A.

    2011-01-01

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  12. The cooperativity effect in the reaction of soluble quinoprotein (PQQ-containing) glucose dehydrogenase is not due to subunit interaction but to substrate-assisted catalysis.

    PubMed

    Duine, Johannis A; Strampraad, Marc J F; Hagen, Wilfred R; de Vries, Simon

    2016-10-01

    Soluble quinoprotein (PQQ-containing) glucose dehydrogenase (sGDH, EC 1.1.99.35) catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone. Although sGDH has many analytical applications, the relationship between activity and substrate concentration is not well established. Previous steady-state kinetic studies revealed a negative cooperativity effect which has recently been ascribed to subunit interaction. To investigate this conclusion, stopped-flow kinetic experiments were carried out on the reaction in which oxidized enzyme (Eox ) was reduced with substrates to Ered . The appearance of Ered is observed to be preceded by formation of an intermediate enzyme form, Int, which is mono-exponentially formed from Eox . However, the rate of conversion of Int into Ered depends hyperbolically on the concentration of substrate (leading to a 35-fold stimulation in the case of glucose). Evidence is provided that substrate not only binds to Eox but also to Int and Ered as well, and that the binding to Int causes the significant stimulation of Int decay. It is proposed that a proton shuffling step is involved in the decay, which is facilitated by binding of substrate to Int. Substituting the PQQ-activating Ca by a Ba ion lowered all reaction rates but did not change the stimulation factor. In summary, the previous proposal that the cooperativity effect of sGDH is due to interaction between its substrate-loaded subunits is incorrect; it is due to substrate-assisted catalysis of the enzyme.

  13. Investigating synergistic interactions of group 4, 5 and 6 metals with gold nanoparticles for the catalysis of the electrochemical hydrogen evolution reaction.

    PubMed

    Joshi, Ubisha; Malkhandi, Souradip; Siang Yeo, Boon

    2017-08-09

    An investigation of the catalysis of the electrochemical hydrogen evolution reaction (HER, 2H(+) + 2e(-) → H2) in aqueous 0.5 M H2SO4 electrolyte using composites consisting of gold nanoparticles (AuNP), carbon (Black Pearl 2000) and group 4, 5, and 6 metals is presented. This study is a continuation of our earlier work (Phys. Chem. Chem. Phys., 2016, 18, 21548-21553) on molybdenum and AuNP, which we found to interact synergistically to enhance the HER. We demonstrate here that tungsten not only also showed synergy with AuNP, but the extent of synergy is even larger than that of the Mo-AuNP composite. The average overpotential needed by the tungsten-based composite catalyst to drive a H2 current density (jH2) of 10 mA cm(-2) was 300 mV. In contrast, other metals such as Ti, Zr, V, Nb and Ta did not have any observable synergy with AuNP. Our experimental results indicate that the absence of synergy with these non-performing composites could be related to the absorption of hydrogen into the bulk lattice of the metals to give hydrides. The strong binding of H to these metals could have also prevented their further reaction. We also propose that the aforementioned metal hydrides suppressed HER because they are ineffective for the initial proton discharge step.

  14. The pH-dependence of the Escherichia coli RNase HII-catalysed reaction suggests that an active site carboxylate group participates directly in catalysis.

    PubMed

    Bastock, James A; Webb, Michelle; Grasby, Jane A

    2007-04-27

    RNase HII specifically catalyses the hydrolysis of phosphate diester linkages contained within the RNA portion of DNA/RNA hybrids. The catalytic parameters of the enzyme derived from Escherichia coli BL21 have been measured using 5'-fluorescent oligodeoxynucleotide substrates containing embedded ribonucleotides. The products of the reaction and the chemistry of phosphate diester hydrolysis were assigned unequivocally using mass spectrometry. The pH-dependence of the catalytic parameters was measured under conditions of optimal magnesium ion concentration. The logarithm of the turnover number of the enzyme increases steeply with pH until a pH-independent region is reached close to neutrality. The slope of the pH-dependent region is 2, indicating that the catalytically proficient form of RNase HII is di-anionic. The pH-dependence of log 1/K(M) is a sigmoidal curve reaching a maximal value at higher pH, suggesting deprotonation of a residue stabilises substrate binding. Possible mechanisms for the RNase HII-catalysed reaction consistent with the pH-dependent behaviour of the enzyme are discussed. The active sites of RNase H enzymes contain a cluster of four strictly conserved carboxylate groups. Together, the data suggest a requirement for ionisation of an active site carboxylic acid for metal ion binding or correct positioning of metal ion(s) in the enzyme-substrate complex and a role for a second active site carboxylate in general base catalysis.

  15. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    PubMed

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  16. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Strasser, Peter; Driess, Matthias

    2015-01-01

    Recently, there has been much interest in the design and development of affordable and highly efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts that can resolve the pivotal issues that concern solar fuels, fuel cells, and rechargeable metal-air batteries. Here we present the synthesis and application of porous CoMn2 O4 and MnCo2 O4 spinel microspheres as highly efficient multifunctional catalysts that unify the electrochemical OER with oxidant-driven and photocatalytic water oxidation as well as the ORR. The porous materials were prepared by the thermal degradation of the respective carbonate precursors at 400 °C. The as-prepared spinels display excellent performances in electrochemical OER for the cubic MnCo2 O4 phase in comparison to the tetragonal CoMn2 O4 material in an alkaline medium. Moreover, the oxidant-driven and photocatalytic water oxidations were performed and they exhibited a similar trend in activity to that of the electrochemical OER. Remarkably, the situation is reversed in ORR catalysis, that is, the oxygen reduction activity and stability of the tetragonal CoMn2 O4 catalyst outperformed that of cubic MnCo2 O4 and rivals that of benchmark Pt catalysts. The superior catalytic performance and the remarkable stability of the unifying materials are attributed to their unique porous and robust microspherical morphology and the intrinsic structural features of the spinels. Moreover, the facile access to these high-performance materials enables a reliable and cost-effective production on a large scale for industrial applications.

  17. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    SciTech Connect

    Sawyer, Karma Rae

    2008-12-01

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  18. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-05

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  19. Catalytic asymmetric allylation reactions using BITIP catalysis and 2-substituted allylstannanes as surrogates for beta-keto ester dianions.

    PubMed

    Keck, G E; Yu, T

    1999-07-29

    [formula: see text] Catalytic asymmetric allylation (CAA) reactions using the indicated allylstannane and the BITIP catalysts previously described by us give high yields and enantioselectivities in additions to aldehydes. The products are convertible to beta-keto esters by oxidative cleavage of the olefin. These reactions thus provide a useful catalytic enantioselective method for chain extension with introduction of a versatile four-carbon unit.

  20. The Experimental Reduction of Stress Reaction by Cognitive Manipulation.

    ERIC Educational Resources Information Center

    Buck, John L.; And Others

    A cognitive appraisal of threat is believed to intervene between the appearance of a stressful stimulus and a stress reaction to the stimulus. The effect of a "rational" treatment on the appraisal of threat is investigated. Five groups of 13 college students each heard one of five treatment orientations before viewing slides showing the victims of…

  1. Rates of membrane-associated reactions: reduction of dimensionality revisited

    PubMed Central

    1986-01-01

    The hypothesis that reactions associated with intracellular membranes enjoy a kinetic advantage from a reduced dimensionality for diffusion is inconsistent with available data on lateral diffusion rates, membrane-substrate affinities, and endogenous concentrations of enzymes and their aqueous substrates. PMID:3001105

  2. Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogen-Doped Hollow Carbon Spheres for Oxygen Reduction Reaction

    SciTech Connect

    Zhong, Xing; Liu, Lin; Jiang, Yu; Wang, Xinde; Wang, Lei; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jian-guo; Su, Dang S.

    2015-06-15

    The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN, could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  3. Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogen‐Evolution Reaction

    PubMed Central

    Han, Yongzhen; Fang, Huayi; Jing, Huize; Sun, Huiling; Lei, Haitao

    2016-01-01

    Abstract A nickel(II) porphyrin Ni‐P (P=porphyrin) bearing four meso‐C6F5 groups to improve solubility and activity was used to explore different hydrogen‐evolution‐reaction (HER) mechanisms. Doubly reduced Ni‐P ([Ni‐P]2−) was involved in H2 production from acetic acid, whereas a singly reduced species ([Ni‐P]−) initiated HER with stronger trifluoroacetic acid (TFA). High activity and stability of Ni‐P were observed in catalysis, with a remarkable i c/i p value of 77 with TFA at a scan rate of 100 mV s−1 and 20 °C. Electrochemical, stopped‐flow, and theoretical studies indicated that a hydride species [H‐Ni‐P] is formed by oxidative protonation of [Ni‐P]−. Subsequent rapid bimetallic homolysis to give H2 and Ni‐P is probably involved in the catalytic cycle. HER cycling through this one‐electron‐reduction and homolysis mechanism has been proposed previously but rarely validated. The present results could thus have broad implications for the design of new exquisite cycles for H2 generation. PMID:27028563

  4. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells

    PubMed Central

    Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan

    2016-01-01

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116

  5. Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells.

    PubMed

    Sawant, Sandesh Y; Han, Thi Hiep; Cho, Moo Hwan

    2016-12-24

    Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored.

  6. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single-molecule Force Spectroscopy Approach to Enzyme Catalysis*

    PubMed Central

    Alegre-Cebollada, Jorge; Perez-Jimenez, Raul; Kosuri, Pallav; Fernandez, Julio M.

    2010-01-01

    Enzyme catalysis has been traditionally studied using a diverse set of techniques such as bulk biochemistry, x-ray crystallography, and NMR. Recently, single-molecule force spectroscopy by atomic force microscopy has been used as a new tool to study the catalytic properties of an enzyme. In this approach, a mechanical force ranging up to hundreds of piconewtons is applied to the substrate of an enzymatic reaction, altering the conformational energy of the substrate-enzyme interactions during catalysis. From these measurements, the force dependence of an enzymatic reaction can be determined. The force dependence provides valuable new information about the dynamics of enzyme catalysis with sub-angstrom resolution, a feat unmatched by any other current technique. To date, single-molecule force spectroscopy has been applied to gain insight into the reduction of disulfide bonds by different enzymes of the thioredoxin family. This minireview aims to present a perspective on this new approach to study enzyme catalysis and to summarize the results that have already been obtained from it. Finally, the specific requirements that must be fulfilled to apply this new methodology to any other enzyme will be discussed. PMID:20382731

  8. Single-molecule force spectroscopy approach to enzyme catalysis.

    PubMed

    Alegre-Cebollada, Jorge; Perez-Jimenez, Raul; Kosuri, Pallav; Fernandez, Julio M

    2010-06-18

    Enzyme catalysis has been traditionally studied using a diverse set of techniques such as bulk biochemistry, x-ray crystallography, and NMR. Recently, single-molecule force spectroscopy by atomic force microscopy has been used as a new tool to study the catalytic properties of an enzyme. In this approach, a mechanical force ranging up to hundreds of piconewtons is applied to the substrate of an enzymatic reaction, altering the conformational energy of the substrate-enzyme interactions during catalysis. From these measurements, the force dependence of an enzymatic reaction can be determined. The force dependence provides valuable new information about the dynamics of enzyme catalysis with sub-angstrom resolution, a feat unmatched by any other current technique. To date, single-molecule force spectroscopy has been applied to gain insight into the reduction of disulfide bonds by different enzymes of the thioredoxin family. This minireview aims to present a perspective on this new approach to study enzyme catalysis and to summarize the results that have already been obtained from it. Finally, the specific requirements that must be fulfilled to apply this new methodology to any other enzyme will be discussed.

  9. Enantioselective Lewis Acid Catalysis in Intramolecular [2 + 2] Photocycloaddition Reactions: A Mechanistic Comparison between Representative Coumarin and Enone Substrates.

    PubMed

    Brimioulle, Richard; Bauer, Andreas; Bach, Thorsten

    2015-04-22

    The intramolecular [2 + 2] photocycloaddition of three 4-(alk-4-enyl)coumarins and three 1-(alk-4-enoyl)-2,3-dihydropyridones was studied in the absence and in the presence of Lewis acids (irradiation wavelength λ = 366 nm). Spectral and kinetic data were collected for the respective parent compounds with a pent-4-enyl and a pent-4-enoyl chain. For the substrates with a methyl group in cis- or trans-position of the terminal alkene carbon atom (hex-4-enyl and hex-4-enoyl substitution), the stereochemical outcome of the [2 + 2] photocycloaddition was investigated. The mechanistic course of the uncatalyzed coumarin reactions was found to be a singlet pathway, whereas Lewis acid-catalyzed reactions proceeded with higher reaction rates in the triplet manifold. Contrary to that, the dihydropyridones underwent a fast triplet reaction in the absence of the Lewis acid. In the presence of a chiral Lewis acid the reactions slowed down but, due to the high extinction coefficient of the Lewis acid/dihydropyridone complexes at λ = 366 nm, still resulted in high enantioselectivity.

  10. Oxygen reduction reaction on anisotropic silver nanoparticles in alkaline media

    NASA Astrophysics Data System (ADS)

    Gupta, Rajeev Kumar; Verma, A. D.; Sinha, I.; Malviya, Manisha

    2017-07-01

    The effect of anisotropy of Ag nanoparticles on their electrocatalytic activity was investigated. By using increasing amounts of Cu salt etchant, we could obtain two AgNPs samples (S1 and S2) with different percentages of anisotropic nanoparticles. The third AgNPs sample was synthesized in the absence of any etchant and therefore resulted in the formation of only spherical nanoparticles. Investigation of ORR activity in an alkaline solution of these AgNPs samples showed that the S1/GC electrode gives rise to better reduction peak current, more positive reduction peak potential and stable electrocatalytic performance. Better results for the S1/GC electrode as compared to S2/GC electrode & S3/GC electrode can be owed to a higher percentage of anisotropic nanoparticles in S1 sample.

  11. Water Catalysis of the Reaction between Methanol and OH at 294 K and the Atmospheric Implications.

    PubMed

    Jara-Toro, Rafael A; Hernández, Federico J; Taccone, Raúl A; Lane, Silvia I; Pino, Gustavo A

    2017-02-13

    The rate coefficient for the reaction CH3 OH+OH was determined by means of a relative method in a simulation chamber under quasi-real atmospheric conditions (294 K, 1 atm of air) and variable humidity or water concentration. Under these conditions, a quadratic dependence of the rate coefficient for the reaction CH3 OH+OH on the water concentration was found. Thus the catalytic effect of water is not only important at low temperatures, but also at room temperature. The detailed mechanism responsible of the reaction acceleration is still unknown. However, this dependence should be included in the atmospheric global models since it is expected to be important in humid regions as in the tropics. Additionally, it could explain several differences regarding the global and local atmospheric concentration of methanol in tropical areas, for which many speculations about the sinks and sources of methanol have been reported.

  12. Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: A model for enzymatic catalysis

    NASA Astrophysics Data System (ADS)

    Mincer, Joshua S.; Schwartz, Steven D.

    2004-04-01

    A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.

  13. Enantioselective Lewis acid-catalyzed Mukaiyama-Michael reactions of acyclic enones. Catalysis by allo-threonine-derived oxazaborolidinones.

    PubMed

    Wang, Xiaowei; Adachi, Shinya; Iwai, Hiroyoshi; Takatsuki, Hiroshi; Fujita, Katsuhiro; Kubo, Mikako; Oku, Akira; Harada, Toshiro

    2003-12-26

    allo-Threonine-derived O-aroyl-B-phenyl-N-tosyl-1,3,2-oxazaborolidin-5-ones 1g,n catalyze the asymmetric Mukaiyama-Michael reaction of acyclic enones with a trimethylsilyl ketene S,O-acetal in high enantioselectivity. A range of alkenyl methyl ketones is successfully employed as Michael acceptors affording ee values of 85-90% by using 10 mol % of the catalyst. The use of 2,6-diisopropylphenol and tert-butyl methyl ether as additives is found to be essential to achieve high enantioselectivity in these reactions. The effects of the additives are discussed in terms of the retardation of an Si(+)-catalyzed racemic pathway, which seriously deteriorates the enantioselectivity of asymmetric Mukaiyama-Michael reactions. A working model for asymmetric induction is proposed based on correlation between catalyst structures and enantioselectivities.

  14. Opening gates to oxygen reduction reactions on Cu(111) surface

    SciTech Connect

    Sumer, Aslihan; Chaudhuri, Santanu

    2015-03-28

    Electrocatalytic reduction of oxygen is composed of multiple steps, including the diffusion-adsorption-dissociation of molecular oxygen. This study explores the role of electrical double layer in aqueous medium in quantifying the rate of these coupled electrochemical processes at the electrode interface during oxygen reduction. The electronic, energetic, and configurational aspects of molecular oxygen diffusion and adsorption onto Cu(111) in water are identified through density functional theory based computations. The liquid phase on Cu(111) is modeled with hexagonal-ordered water bilayers, at two slightly different structures, with O–H bonds either facing the vacuum or the metal surface. The results indicate that the energetically preferred structure of water bilayers and adsorption configuration of O{sub 2} are different in cathodic and anodic potentials. The diffusion of O{sub 2} is found to be heavily hindered at the water/metal interface because of the ordering of water molecules in bilayers as compared to the bulk liquid. The unique correlations of diffusion and adsorption kinetics with water structure identified in this work can provide clues for improving oxygen reduction efficiency.

  15. Hybrid metal/organo relay catalysis enables enynes to be latent dienes for asymmetric Diels-Alder reaction.

    PubMed

    Han, Zhi-Yong; Chen, Dian-Feng; Wang, Ya-Yi; Guo, Rui; Wang, Pu-Sheng; Wang, Chao; Gong, Liu-Zhu

    2012-04-18

    The hybrid Au(I)/Brønsted acid binary catalyst system enables enynes to serve as latent 1,3-silyloxydienes capable of participating in the first cascade hydrosiloxylation of an enynyl silanol/asymmetric Diels-Alder reaction. A variety of polycyclic compounds bearing multistereogenic centers were obtained in high yields and excellent enantioselectivities from the relay catalytic cascade reaction between (2-(but-3-en-1-ynyl)phenyl) silanols and quinones catalyzed by the combined achiral gold complex and chiral N-triflyl phosphoramide.

  16. Fatty and resin acid analysis in tall oil products via supercritical fluid extraction-supercritical fluid reaction using enzymatic catalysis.

    PubMed

    Taylor, S L; King, J W

    2001-07-01

    Supercritical fluid extraction (SFE) is combined with supercritical fluid reaction (SFR) in an analytical mode to assess tall oil products for their fatty or resin acid content or both. The SFR consists of an inline enzymatically catalyzed reaction in which a lipase transesterifies specific lipids with methanol. The SFE-SFR sequence is conducted employing commercially available extractors using supported lipases in the extraction cell to form methyl esters. In this study, six different commercially available lipases are screened for activity. The SFE-SFR extracts are analyzed by capillary gas chromatography and supercritical fluid chromatography and then compared with tall oil products derivatized by conventional chemical derivatization techniques.

  17. A New Approach to Nitrones through Cascade Reaction of Nitro Compounds Enabled by Visible Light Photoredox Catalysis.

    PubMed

    Lin, Cheng-Wei; Hong, Bor-Cherng; Chang, Wan-Chen; Lee, Gene-Hsiang

    2015-05-15

    A series of nitroalkanes were efficiently transformed to alkylnitrones using a visible light irradiation photocatalytic process. The mild, efficient, and environmentally benign reaction method, involving dynamic reciprocations of cascade pathways, comprises a mixture of a Ru(bpy)3Cl2 photoredox catalyst and DIPIBA or Hünig's base in CH3CN. Notably, DIPIBA was found to be the best additive for the cross condensation reaction of nitroalkanes with aldehydes. The structures of appropriate products were confirmed by X-ray analysis.

  18. Heterogeneous basic catalysis

    SciTech Connect

    Hattori, Hideshi

    1995-05-01

    Heterogeneous acid catalysis attracted much attention primarily because heterogeneous acidic catalysts act as catalysts in petroleum refinery and are known as a main catalyst in the cracking process which is the largest process among the industrial chemical processes. In contrast to these extensive studies of heterogeneous acidic catalysts, fewer efforts have been given to the study of heterogeneous basic catalysts. The types of heterogeneous basic catalysts are listed in Table 1. Except for non-oxide catalysts, the basic sites are believed to be surface O atoms. The studies of heterogeneous catalysis have been continuous and progressed steadily. They have never been reviewed in the chemical Reviews before. It is more useful and informative to describe the studies of heterogeneous basic catalysis performed for a long period. In the present article, therefore, the cited papers are not restricted to those published recently, but include those published for the last 25 years. The paper first describes the generation of basic sites before describing methods used in the characterization of basic surfaces. These are indicator methods, temperature programmed desorption (TPD) of CO{sub 2}, UV absorption and luminescence spectroscopies, TPD of H{sub 2}, XPS, IR of CO{sub 2}, IR of pyrrole, and oxygen exchange between CO{sub 2} and the surface. The paper then discusses studies on the catalysis by heterogeneous basic catalysts. Some of these reactions are dehydration, dehydrogenation, hydrogenation, amination, alkylation, ring transformation, and reactions of organosilanes. Catalysts discussed are single component metal oxides, zeolites, non-oxide types, and superbasic catalysts. 141 refs.

  19. Scanning probe microscopy in catalysis.

    PubMed

    Yeung, King Lun; Yao, Nan

    2004-09-01

    This review discusses the recent progress in the application of scanning probe microscopy (SPM) in catalysis. SPM proves to be an invaluable technique for imaging catalytic surfaces and interfaces. Most SPM research is related to the structural and morphological transformation associated with catalyst preparation and use. Real-time SPM observation of surface dynamics including adsorption, diffusion and reaction, provides invaluable insights to the mechanism of catalysis. SPM is also used to shape and manipulate surfaces and surface processes. Fabrication of nanostructured catalysts, direct manipulation of adsorbed atoms and molecules and tip-mediated reactions are some examples of new SPM approach in catalyst research.

  20. DOE Laboratory Catalysis Research Symposium - Abstracts

    SciTech Connect

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  1. Probing the chemistry of thioredoxin catalysis with force

    PubMed Central

    Wiita, Arun P.; Perez-Jimenez, Raul; Walther, Kirstin A.; Gräter, Frauke; Berne, B. J.; Holmgren, Arne; Sanchez-Ruiz, Jose M.; Fernandez, Julio M.

    2014-01-01

    Thioredoxins are enzymes that catalyse disulphide bond reduction in all living organisms1. Although catalysis is thought to proceed through a substitution nucleophilic bimolecular (SN2) reaction1,2, the role of the enzyme in modulating this chemical reaction is unknown. Here, using single-molecule force-clamp spectroscopy3,4, we investigate the catalytic mechanism of Escherichia coli thioredoxin (Trx). We applied mechanical force in the range of 25–600 pN to a disulphide bond substrate and monitored the reduction of these bonds by individual enzymes. We detected two alternative forms of the catalytic reaction, the first requiring a reorientation of the substrate disulphide bond, causing a shortening of the substrate polypeptide by 0.79 ± 0.09 Å (± s.e.m.), and the second elongating the substrate disulphide bond by 0.17 ± 0.02 Å (±s.e.m.). These results support the view that the Trx active site regulates the geometry of the participating sulphur atoms with sub-ångström precision to achieve efficient catalysis. Our results indicate that substrate conformational changes may be important in the regulation of Trx activity under conditions of oxidative stress and mechanical injury, such as those experienced in cardiovascular disease5,6. Furthermore, single-molecule atomic force microscopy techniques, as shown here, can probe dynamic rearrangements within an enzyme’s active site during catalysis that cannot be resolved with any other current structural biological technique. PMID:17972886

  2. Efficient Three-Component Strecker Reaction of Aldehydes/Ketones via NHC-Amidate Palladium(II) Complex Catalysis

    PubMed Central

    Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil

    2009-01-01

    A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413

  3. Deciphering the origin of cooperative catalysis by dirhodium acetate and chiral spiro phosphoric acid in an asymmetric amination reaction.

    PubMed

    Kisan, Hemanta K; Sunoj, Raghavan B

    2014-12-04

    The mechanism of asymmetric amination of diazo-acetate by tert-butyl carbamate catalyzed by dirhodium tetra(trifluoro)acetate and chiral SPINOL-phosphoric acid is examined using DFT (M06 and B3LYP) computations. A cooperative participation of both catalysts is noticed in the stereo-controlling transition state of the reaction.

  4. Catalysis with two-dimensional materials and their heterostructures

    NASA Astrophysics Data System (ADS)

    Deng, Dehui; Novoselov, K. S.; Fu, Qiang; Zheng, Nanfeng; Tian, Zhongqun; Bao, Xinhe

    2016-03-01

    Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications.

  5. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: Controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction stepsa)

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-01

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  6. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: Controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction steps

    SciTech Connect

    Das, Biswajit; Gangopadhyay, Gautam; Banerjee, Kinshuk

    2013-12-28

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  7. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction steps.

    PubMed

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-28

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  8. Evidence that Ferredoxin Interfaces with an Internal Redox Shuttle in Acetyl-CoA Synthase During Reductive Activation and Catalysis

    PubMed Central

    Bender, Güneş; Ragsdale, Stephen W.

    2011-01-01

    Acetyl-CoA synthase (ACS), a subunit of the bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex of Moorella thermoacetica requires reductive activation in order to catalyze acetyl-CoA synthesis and related partial reactions, including the CO/[1-14C]-acetyl-CoA exchange reaction. We show that the M. thermoacetica ferredoxin(II) (Fd-II), which harbors two [4Fe-4S] clusters and is an electron acceptor for CODH, serves as a redox activator of ACS. The level of activation depends on the oxidation states of both ACS and Fd-II, which strongly suggests that Fd-II acts as a reducing agent. By the use of controlled potential enzymology, the midpoint reduction potential for the catalytic one-electron redox-active species in the CO/acetyl-CoA exchange reaction is −511 mV, which is similar to the midpoint reduction potential that was earlier measured for other reactions involving ACS. Incubation of ACS with Fd-II and CO leads to the formation of the NiFeC species, which also supports the role of Fd-II as a reductant for ACS. In addition to being a reductant, Fd-II can accept electrons from acetylated ACS, as observed by the increased intensity of the EPR spectrum of reduced Fd-II, indicating that there is a stored electron within an “electron shuttle” in the acetyl-Ni(II) form of ACS. This “shuttle” is proposed to serve as a redox mediator during activation and at different steps of the ACS catalytic cycle. PMID:21141812

  9. Point-group selection rules for ΔS=2 multiplicity change: Application to catalysis and organo-transition metal reaction

    NASA Astrophysics Data System (ADS)

    Chiu, Ying-Nan; Chow Chiu, Lue-Yung

    1983-02-01

    Electron spin-spin and second-order spin-orbit interaction operators are expanded as products of irreducible representations of symmetry point groups (Oh, Td, D5d, D6d, and C4v). From the transformation of the separated orbit and of the spin part, the selection rules for off-diagonal matrix elements may be deduced by taking direct products of the ``initial'' and ``final'' states. The special ΔMl selection rule for the orbital part of spin-spin interaction after expansion is also discussed. Emphasis is given to the ΔS=2 change connected by these operators. Possible examples of ΔS=2 change in d4, d5, and d6 configurations under the above mentioned point groups are given. As illustrations of the selection rules, the matrix elements for ΔS=2 and ΔMs=2 for these configurations are evaluated in the decoupled representation and given in terms of common parameters. The relevance of these multiplicity change to catalysis and reaction of organo-transition metal complexes is briefly alluded to.

  10. New insights in understanding plasma-catalysis reaction pathways: study of the catalytic ozonation of an acetaldehyde saturated Ag/TiO2/SiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Sauce, Sonia; Vega-González, Arlette; Jia, Zixian; Touchard, Sylvain; Hassouni, Khaled; Kanaev, Andrei; Duten, Xavier

    2015-07-01

    This paper is a preliminary study intended to straighten out the role of reactive oxygen species in the activation mechanisms occurring in a plasma driven catalysis process for acetaldehyde decomposition. For this purpose, the interaction between the surface, the pollutant and one of the main oxidative species generated by non-thermal plasma, namely ozone, was studied. Acetaldehyde catalytic ozonation over a nanostructured Ag/TiO2/SiO2 catalyst is carried out at room temperature and atmospheric pressure, and followed by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). For this, the catalyst is firstly saturated with acetaldehyde. At the end of the saturation, acetaldehyde and crotonaldehyde, its condensation product, are identified as the major adsorbed species. In a second step, the surface ozonation is carried out and three additional intermediates are identified, namely, acetone, formic acid and acetic acid. Gaseous CO, CO2, methyl formate and methyl acetate are detected at the DRIFTS outlet, evidencing the partial mineralization of the adsorbed species. A global reaction scheme is proposed for explaining the formation of those adsorbed intermediates and gaseous products. This proposed heterogeneous ozone induced chemistry has to be taken into account when associating non-thermal plasma in air to a catalyst. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  11. A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase.

    PubMed

    Boyarshin, Konstantin S; Priss, Anastasia E; Rayevskiy, Alexsey V; Ilchenko, Mykola M; Dubey, Igor Ya; Kriklivyi, Ivan A; Yaremchuk, Anna D; Tukalo, Michael A

    2017-02-01

    Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNA(Pro). The most important functional element of this catalytic mechanism is the 2'-OH group of the terminal adenosine 76 of Ala-tRNA(Pro), which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3'-O atom of A76.

  12. Ozone reactions with alkaline-earth metal cations and dications in the gas phase: room-temperature kinetics and catalysis.

    PubMed

    Feil, S; Koyanagi, G K; Viggiano, A A; Bohme, D K

    2007-12-27

    Room-temperature rate coefficients and product distributions are reported for the reactions of ozone with the cations and dications of the alkaline-earth metals Ca, Sr, and Ba. The measurements were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer in conjunction with either an electrospray (ESI) or an inductively coupled plasma (ICP) ionization source. All the singly charged species react with ozone by O-atom transfer and form monoxide cations rapidly, k = 4.8, 6.7, and 8.7 x 10(-10) cm3 molecule(-1) s(-1) for the reactions of Ca+, Sr+, and Ba+, respectively. Further sequential O-atom transfer occurs to form dioxide and trioxide cations. The efficiencies for all O-atom transfer reactions are greater than 10%. The data also signify the catalytic conversion of ozone to oxygen with the alkaline-earth metal and metal oxide cations serving as catalysts. Ca2+ reacts rapidly with O3 by charge separation to form CaO+ and O2+ with a rate coefficient of k = 1.5 x 10(-9) cm3 molecule(-1) s(-1). In contrast, the reactions of Sr2+ and Ba2+ are found to be slow and add O3, (k >/= 1.1 x 10-11 cm3 molecule-1 s-1). The initial additions are followed by the rapid sequential addition of up to five O3 molecules with values of k between 1 and 5 x 10(-10) cm3 molecule(-1) s(-1). Metal/ozone cluster ions as large as Sr2+(O3)5 and Ba2+(O3)4 were observed for the first time.

  13. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    DOEpatents

    Shah, Manish M.; Campbell, James A.

    1998-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase.

  14. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    DOEpatents

    Shah, M.M.; Campbell, J.A.

    1998-07-07

    A method is described for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase. 6 figs.

  15. Enhanced electrocatalysis of the oxygen reduction reaction based on pattering of platinum surfaces with cyanide.

    SciTech Connect

    Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.; Materials Science Division; Inst. de Quimica Fisica; Toyota Central R&D Labs., Inc.

    2010-08-15

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  16. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide

    SciTech Connect

    Strmcnik, D.; Escudero, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.

    2010-10-01

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  17. Method of reduction of nitroaromatics by enzymatic reaction with redox enzymes

    DOEpatents

    Shah, Manish M.

    2000-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with redox enzymes, such as Oxyrase (Trademark of Oxyrase, Inc., Mansfield, Ohio).

  18. Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects.

    PubMed

    Liu, Fudong; Yu, Yunbo; He, Hong

    2014-08-11

    Selective catalytic reduction of NOx using NH3 or hydrocarbons (NH3-SCR or HC-SCR) in oxygen-rich exhaust from diesel engines remains a major challenge in environmental catalysis. The development of highly efficient, stable and environmentally-benign catalysts for SCR processes is very important for practical use. In this feature article, the structure-activity relationship of vanadium-free catalysts in the NH3-SCR reaction is discussed in detail, including Fe-, Ce-based oxide catalysts and Fe-, Cu-based zeolite catalysts, which is beneficial for catalyst redesign and activity improvement. Based on our research, a comprehensive mechanism contributing to the performance of Ag/Al2O3 in HC-SCR is provided, giving a clue to the design of a catalytic system with high efficiency.

  19. Kinetic Isotope Effects for Alkaline Phosphatase Reactions: Implications for the Role of Active Site Metal Ions in Catalysis

    PubMed Central

    Zalatan, Jesse G.; Catrina, Irina; Mitchell, Rebecca; Grzyska, Piotr K.; O’Brien, Patrick J.; Herschlag, Daniel; Hengge, Alvan C.

    2011-01-01

    Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis. PMID:17630738

  20. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

    PubMed

    Zalatan, Jesse G; Catrina, Irina; Mitchell, Rebecca; Grzyska, Piotr K; O'brien, Patrick J; Herschlag, Daniel; Hengge, Alvan C

    2007-08-08

    Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject of intensive scrutiny. Recent linear free energy relationship (LFER) studies suggest that AP catalyzes phosphate monoester hydrolysis through a loose transition state, similar to that in solution. To gain further insight into the nature of the transition state and active-site interactions, we have determined kinetic isotope effects (KIEs) for AP-catalyzed hydrolysis reactions with several phosphate monoester substrates. The LFER and KIE data together provide a consistent picture for the nature of the transition state for AP-catalyzed phosphate monoester hydrolysis and support previous models suggesting that the enzymatic transition state is similar to that in solution. Moreover, the KIE data provides unique information regarding specific interactions between the transition state and the active-site Zn2+ ions. These results provide strong support for a model in which electrostatic interactions between the bimetallo Zn2+ site and a nonbridging phosphate ester oxygen atom make a significant contribution to the large rate enhancement observed for AP-catalyzed phosphate monoester hydrolysis.

  1. Direct sp(3)C-H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis.

    PubMed

    Feng, Zhu-Jia; Xuan, Jun; Xia, Xu-Dong; Ding, Wei; Guo, Wei; Chen, Jia-Rong; Zou, You-Quan; Lu, Liang-Qiu; Xiao, Wen-Jing

    2014-04-07

    Sequence catalysis merging photoredox catalysis (PC) and nucleophilic catalysis (NC) has been realized for the direct sp(3) C-H acroleination of N-aryl-tetrahydroisoquinoline (THIQ). The reaction was performed under very mild conditions and afforded products in 50-91% yields. A catalytic asymmetric variant was proved to be successful with moderate enantioselectivities (up to 83 : 17 er).

  2. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy.

    PubMed

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P; Gaucher, Eric A; Gaucher, Eric; Sanchez-Ruiz, Jose M; Berne, Bruce J; Fernandez, Julio M

    2009-08-01

    Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.

  3. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    PubMed Central

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P.; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P.; Gaucher, Eric; Sanchez-Ruiz, Jose M.; Berne, Bruce J.; Fernandez, Julio M.

    2009-01-01

    Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. PMID:19597482

  4. Silicon-based Lewis acid assisted cinchona alkaloid catalysis: highly enantioselective aza-Michael reaction under solvent-free conditions.

    PubMed

    Yang, Hua-Meng; Li, Li; Li, Fei; Jiang, Ke-Zhi; Shang, Jun-Yan; Lai, Guo-Qiao; Xu, Li-Wen

    2011-12-16

    The study showed that a combination of an achiral silicon-based Lewis acid and chiral Lewis base, such as iodotrimethylsilane (TMSI) and cinchonine, generated a highly enantioselective catalyst system under solvent-free conditions which gave aromatic β-amino ketones with up to >99% ee. Mechanistic studies demonstrate the enhanced asymmetric induction may be due to the combined and competitive activation of a carbonyl moiety of chalcone with cinchonine and the silicon-based Lewis acid in the aza-Michael reaction.

  5. Analyzing power reduction in quasifree pion-nucleon knockout reactions

    NASA Astrophysics Data System (ADS)

    Khayat, Mohammad G.; Roos, P. G.; Chant, N. S.; Dvoredsky, A. P.; Breuer, H.; Kelly, J. J.; Flanders, B. S.; Payerle, T. M.; Adimi, F.; Gu, T.; Huffman, J.; Klein, A.; Dooling, T.; Greco, T.; Kyle, G. S.; Chang, T.; Lin, Z.; Wang, M.; Meier, R.; Ritt, S.; Koch, K.; Konter, J.; Kovalev, S.; Mango, S.; van den Brandt, B.; Lawrie, J.

    2001-12-01

    Unpolarized cross sections and vector target analyzing powers for the 7Li-->(π+,π+'p) proton knockout reaction were measured using a vector polarized 7LiH target and a 240 MeV π+ beam at the πM1 channel of PSI. Typical target polarizations were >30% for 7Li. Coincident π+-p data are presented for three emitted pion angles (60°, 85°, and 108°). For each π+ angle coincident data with adequate statistics were obtained for three proton angles near the quasifree π+-p angle. The π+ angles were chosen to emphasize and isolate contributions to the target analyzing powers from the two-body π-nucleon interaction with a polarized nucleon whose polarization resulted from either the target polarization or from the distortion-induced effective polarization. The data are compared with factorized-amplitude distorted-wave impulse approximation (DWIA) calculations. The unpolarized cross sections are rather well described by these calculations. However, for all three angles the target analyzing powers are substantially reduced from predictions of conventional DWIA calculations. This result suggests a rather strong spin dependence in the Δ-nucleus spreading potential.

  6. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control.

    PubMed

    Fan, Xiaomeng; Guan, Xiaohong; Ma, Jun; Ai, Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic conditions with invariable pH that was unsuitable for practical application. Without reaction conditions (dissolved oxygen or reaction pH) control, this work aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface. Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant. The reduction rate of nitrate increased with increasing Fe0 dosage. The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage. Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration. The analyses of X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5. The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  7. Utilizing light-triggered plasmon-driven catalysis reactions as a template for molecular delivery and release.

    PubMed

    Gu, Xin; Wang, Huan; Camden, Jon P

    2017-09-01

    Due to the facile manipulation and non-invasive nature of light-triggered release, it is one of the most potent ways to selectively and remotely deliver a molecular target. Among the various carrier platforms, plasmonic nanoparticles possess advantages such as enhanced cellular uptake and easy loading of "cargo" molecules. Two general strategies are currently utilized to achieve light-induced molecule release from plasmonic nanoparticles. The first uses femtosecond laser pulses to directly break the bond between the nanoparticle and the loaded target. The other requires significant photo-thermal effects to weaken the interaction between the cargo molecules and nanoparticle-attached host molecules. Different from above mechanisms, herein, we introduce a new light-controlled molecular-release method by taking advantage of a plasmon-driven catalytic reaction at the particle surface. In this strategy, we link the target to a plasmon responsive molecule, 4-aminobenzenethiol (4-ABT), through the robust and simple EDC coupling reaction and subsequently load the complex onto the particles via the strong Au-thiol interaction. Upon continuous-wave (CW) laser illumination, the excited surface plasmon catalyzes the formation of 4,4'-dimercaptoazobenzenethiol (DMAB) and simultaneously releases the loaded molecules with high efficiency. This method does not require the use of high-power pulsed lasers, nor does it rely on photo-thermal effects. We believe that plasmon-driven release strategies open a new direction for the designing of next-generation light-triggered release processes.

  8. Metal Catalysis in Thiolation and Selenation Reactions of Alkynes Leading to Chalcogen‐Substituted Alkenes and Dienes

    PubMed Central

    2015-01-01

    Abstract This review covers recent achievements in metal‐catalyzed Z−H and Z−Z (Z=S, Se) bond addition to the triple bonds of alkynes—a convenient and atom‐efficient way to carbon‐element bond formation. Various catalytic systems (both homogeneous and heterogeneous) developed to date to obtain mono‐ and bis‐chalcogen‐substituted alkenes or dienes, as well as carbonyl compounds or heterocycles, starting from simple and available alkynes and chalcogenols or dichalcogenides are described. The right choice of metal and ligands allows us to perform these transformations with high selectivities under mild reaction conditions, thus tolerating unprotected functional groups in substrates and broadening ways of further modification of the products. The main aim of the review is to show the potential of the catalytic methods developed in synthetic organic chemistry. Thus, emphasis is made on the scope of reactions, types of products that can be selectively formed, convenience, and scalability of the catalytic procedures. A brief mechanistic description is also given to introduce new readers to the topic. PMID:27308193

  9. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals.

  10. Super Brønsted acid catalysis.

    PubMed

    Cheon, Cheol Hong; Yamamoto, Hisashi

    2011-03-21

    Brønsted acid catalysis has emerged as a new class of catalysis in modern organic synthesis. However, in order to make the utility of the Brønsted acid catalysis as broad as the well-developed Lewis acid catalysis, it is desirable to develop Brønsted acids demonstrating both high reactivities and selectivities. In this feature article, we will present our achievement in the design and development of strong Brønsted acids and their application to organic reactions. Furthermore, we will describe the Tf(2)NH-catalyzed Mukaiyama aldol reaction of super silyl enol ethers. We also will highlight the differences in reactivity and chemo- and stereo-selectivity between Brønsted and Lewis acid catalysis.

  11. Cobalt catalysis involving π components in organic synthesis.

    PubMed

    Gandeepan, Parthasarathy; Cheng, Chien-Hong

    2015-04-21

    Over the last three decades, transition-metal-catalyzed organic transformations have been shown to be extremely important in organic synthesis. However, most of the successful reactions are associated with noble metals, which are generally toxic, expensive, and less abundant. Therefore, we have focused on catalysis using the abundant first-row transition metals, specifically cobalt. In this Account, we demonstrate the potential of cobalt catalysis in organic synthesis as revealed by our research. We have developed many useful catalytic systems using cobalt complexes. Overall, they can be classified into several broad types of reactions, specifically [2 + 2 + 2] and [2 + 2] cycloadditions; enyne reductive coupling; reductive [3 + 2] cycloaddition of alkynes/allenes with enones; reductive coupling of alkyl iodides with alkenes; addition of organoboronic acids to alkynes, alkenes, or aldehydes; carbocyclization of o-iodoaryl ketones/aldehydes with alkynes/electron-deficient alkenes; coupling of thiols with aryl and alkyl halides; enyne coupling; and C-H bond activation. Reactions relying on π components, specifically cycloaddition, reductive coupling, and enyne coupling, mostly afford products with excellent stereo- and regioselectivity and superior atom economy. We believe that these cobalt-catalyzed π-component coupling reactions proceed through five-membered cobaltacyclic intermediates formed by the oxidative cyclometalation of two coordinated π bonds of the substrates to the low-valent cobalt species. The high regio- and stereoselectivity of these reactions are achieved as a result of the electronic and steric effects of the π components. Mostly, electron-withdrawing groups and bulkier groups attached to the π bonds prefer to be placed near the cobalt center of the cobaltacycle. Most of these transformations proceed through low-valent cobalt complexes, which are conveniently generated in situ from air-stable Co(II) salts by Zn- or Mn-mediated reduction

  12. Cooperative catalysis of noncompatible catalysts through compartmentalization: wacker oxidation and enzymatic reduction in a one-pot process in aqueous media.

    PubMed

    Sato, Hirofumi; Hummel, Werner; Gröger, Harald

    2015-04-07

    A Wacker oxidation using CuCl/PdCl2 as a catalyst system was successfully combined with an enzymatic ketone reduction to convert styrene enantioselectively into 1-phenylethanol in a one-pot process, although the two reactions conducted in aqueous media are not compatible due to enzyme deactivation by Cu ions. The one-pot feasibility was achieved via compartmentalization of the reactions. Conducting the Wacker oxidation in the interior of a polydimethylsiloxane thimble enables diffusion of only the organic substrate and product into the exterior where the biotransformation takes place. Thus, the Cu ions detrimental to the enzyme are withheld from the reaction media of the biotransformation. In this one-pot process, which formally corresponds to an asymmetric hydration of alkenes, a range of 1-arylethanols were formed with high conversions and 98-99 % ee. In addition, the catalyst system of the Wacker oxidation was recycled 15 times without significant decrease in conversion.

  13. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mao, Wujian; Wu, Zheng; Xu, Xiaoli; You, Huilin; Xue, A'xi; Jia, Yanmin

    2016-03-01

    A strong pyro-catalytic dye degradation with an ultrahigh degradation efficiency (>99%) in hydrothermally synthesized pyroelectric BiFeO3 nanoparticles was achieved under a room-temperature cold-hot alternating excitation (between 27 °C to 38 °C). The pyro-catalysis originated from a combination of the pyroelectric effect and the electrochemical oxidation-reduction reaction. The intermediate products (hydroxyl radicals and superoxide radicals) of pyro-electro-catalysis were observed. Pyro-catalysis provides a highly efficient and reusable dye wastewater decomposition technology through utilizing environmental day-night temperature variation.

  14. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  15. Hydrolysis of Ketene Catalyzed by Formic Acid: Modification of Reaction Mechanism, Energetics, and Kinetics with Organic Acid Catalysis

    SciTech Connect

    Louie, Matthew K.; Francisco, Joseph S.; Verdicchio, Marco; Klippenstein, Stephen J.; Sinha, Amitabha

    2015-05-14

    The hydrolysis of ketene (H2C=C=O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C=O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C=C double bond to directly produce acetic acid becomes the kinetically favored pathway for temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H(2)O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C=C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C=O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H(2)O + FA), the barrier for the direct addition of water across the C=C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C=O bond. In fact, the hydrolysis barrier for the H2C2O + 2H(2)O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the carbonyl

  16. Protein Conformational Landscapes and Catalysis. Influence of Active Site Conformations in the Reaction Catalyzed by L-Lactate Dehydrogenase

    PubMed Central

    Świderek, Katarzyna; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2015-01-01

    In the last decade L-Lactate Dehydrogenase (LDH) has become an extremely useful marker in both clinical diagnosis and in monitoring the course of many human diseases. It has been assumed from the 80s that the full catalytic process of LDH starts with the binding of the cofactor and the substrate followed by the enclosure of the active site by a mobile loop of the protein before the reaction to take place. In this paper we show that the chemical step of the LDH catalyzed reaction can proceed within the open loop conformation, and the different reactivity of the different protein conformations would be in agreement with the broad range of rate constants measured in single molecule spectrometry studies. Starting from a recently solved X-ray diffraction structure that presented an open loop conformation in two of the four chains of the tetramer, QM/MM free energy surfaces have been obtained at different levels of theory. Depending on the level of theory used to describe the electronic structure, the free energy barrier for the transformation of pyruvate into lactate with the open conformation of the protein varies between 12.9 and 16.3 kcal/mol, after quantizing the vibrations and adding the contributions of recrossing and tunneling effects. These values are very close to the experimentally deduced one (14.2 kcal·mol−1) and ~2 kcal·mol−1 smaller than the ones obtained with the closed loop conformer. Calculation of primary KIEs and IR spectra in both protein conformations are also consistent with our hypothesis and in agreement with experimental data. Our calculations suggest that the closure of the active site is mainly required for the inverse process; the oxidation of lactate to pyruvate. According to this hypothesis H4 type LDH enzyme molecules, where it has been propose that lactate is transformed into pyruvate, should have a better ability to close the mobile loop than the M4 type LDH molecules. PMID:25705562

  17. Reaction calorimetry for coal chemistry and catalysis. Final report, August 1, 1982-July 30, 1985. [Heats of immersion

    SciTech Connect

    Arnett, E.M.

    1985-01-01

    All of the areas of research proposed for study in our 1982 proposal have been attacked, but with differing degrees of intensity and success. (1) The most intensive and successful study has been a thermochemical comparison of heats of reaction of a series of nitrogen bases with p-toluene-sulfonic acid solutions (mostly in acetonitrile) and solid Dowex sulfonic acid resin in the same solvent. An excellent linear correlation between these homogeneous and hetrogeneous acids bearing the same acidic function proves the capability of the thermochemical approach to relating the acidity of solid Broensted acids to well-established scales of acidity for solutions. (2) Several samples of silica gels have been examined as prototype hydrogen-bonding acids and are presently under intense study as models for solid acids which react through hydrogen bonds. (3) A flow adsorption calorimeter system capable of operating from ambient conditions to 300/sup 0/C and 5500 psi has been built and used to study the interaction of silica gel with isopropylamine in isopentane solution from ambient conditions through the supercritical regime to 250/sup 0/C and 1500 psi. This is (to the best of our knowledge) the first such study and opens a wide range of research of importance to fossil fuel chemistry. (4) Heats of immersion of three types of coal have been measured in many of the same liquid bases to study Dowex resin, as a prototype solid Broensted acid, and silica gel as a prototype hydrogen bonding acid. These solids and several others were compared in terms of their thermochemical acidities by means of a multiparameter correlation equation which is shown as a promising approach to classifying the various of acid-base interactions of solids. 33 refs., 14 figs., 7 tabs.

  18. Photoredox Catalysis in Organic Chemistry

    PubMed Central

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  19. Recent Advances in Nickel Catalysis

    PubMed Central

    Tasker, Sarah Z.; Standley, Eric A.; Jamison, Timothy F.

    2015-01-01

    Preface The field of nickel catalysis has made tremendous advances in the past decade. There are several key properties of nickel that have allowed for a broad range of innovative reaction development, such as facile oxidative addition and ready access to multiple oxidation states. In recent years, these properties have been increasingly understood and leveraged to perform transformations long considered exceptionally challenging. Herein, we discuss some of the most recent and significant developments in homogeneous nickel catalysis with an emphasis on both synthetic outcome and mechanism. PMID:24828188

  20. Heterogeneous catalysis.

    PubMed

    Schlögl, Robert

    2015-03-09

    A heterogeneous catalyst is a functional material that continually creates active sites with its reactants under reaction conditions. These sites change the rates of chemical reactions of the reactants localized on them without changing the thermodynamic equilibrium between the materials.

  1. Peptide-capped nanoparticles for catalysis and assembly

    NASA Astrophysics Data System (ADS)

    Briggs, Beverly D.

    Nature possesses methods for the formation and manipulation of inorganic materials with controlled size, shape, and compositions. Biomolecules, such as peptides, are known to be responsible for the generation of such inorganic materials on the nanoscale, where the enhanced properties can be exploited for various applications. Pd nanoparticles, capped with the Pd-specific Pd4 peptide (TSNAVHPTLRHL), were found to be active catalysts for Stille coupling, where the debated mechanism of oxidative addition was explored. Furthermore, the same Pd4-capped nanoparticles were found to be active in Suzuki coupling, another C-C coupling reaction that undergoes catalysis following a similar mechanism. Other considerations with peptide-capped metal catalysis involved the role of the reductant and the subsequent effects on morphology and reactivity, as seen by use of Au nanoparticles capped with a library of peptides. The role of the reductant was studied using varied reductants and was found to directly affect the catalytic activity. Additionally, such Au and Ag materials-binding peptides were expanded to generate multi-domain biomolecules capable of metal-specific binding and nanoparticle assembly. Such in-depth studies of peptide-capped nanomaterials and their uses in catalysis and assembly is important for optimized functionality and application.

  2. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  3. Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction.

    PubMed

    Qian, Yingdan; Liu, Zheng; Zhang, Hui; Wu, Ping; Cai, Chenxin

    2016-12-07

    The catalytic mechanism and the nature of active sites are revealed for the oxygen reduction reaction (ORR) with new non-noble-metal nitrogen-doped carbon-supported transition-metal catalysts (metal-N-C catalyst). Specifically, new nitrogen-doped carbon-supported cobalt catalysts (Co-N-C catalysts) are made by pyrolyzing various ratios of the nitrogen-atom rich heterocycle compound, 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-dca) and cobalt salt (Co(NO3)2). The ORR activity (JK at 0.8 V vs RHE, in 0.1 M KOH solution) of a typical catalyst in this family, Co15-N-C800, is 8.25 mA/mg, which is much higher than the ORR activity values of N-C catalysts (0.41 mA/mg). The active site in the catalyst is found to be the Co-N species, which is most likely in the form of Co2N. Metallic cobalt (Co) particles, Co3C species, and N-C species are not catalytically active sites, nor do these moieties interact with the Co-N active sites during the catalysis of the ORR. Increasing the Co salt content during the synthesis favors the formation of Co-N active sites in the final catalyst. Higher pyrolysis temperatures (e.g., a temperature higher than 800 °C) do not favor the formation of the Co-N active sites, but cause the formed Co-N active sites to decompose, which, therefore, leads to a lower catalytic activity. This reveals that the control of the parameters that affect the final structure is critical to catalyst performance and, therefore, the effective development of high-performance heteroatom-doped non-noble-metal ORR catalysts.

  4. Asymmetric reduction of ketones by biocatalysis using clementine mandarin (Citrus reticulata) fruit grown in Annaba or by ruthenium catalysis for access to both enantiomers.

    PubMed

    Bennamane, Manhel; Zeror, Saoussen; Aribi-Zouioueche, Louisa

    2015-03-01

    Biocatalytic reduction of prochiral ketones using freshly ripened clementine mandarin (Citrus reticulata) in aqueous medium is reported. High enantioselectivities were observed, especially for the bioreduction of indanone , tetralone , and thiochromanone with respectively 95%, 99%, and 86% enantiomeric excess (ee). Enantioselective bio- and metal-catalyzed reactions were compared. Chiral ruthenium catalysts afforded good asymmetric inductions (>75% ee) in most cases, enantiomeric excesses depending on the nature of substrate and ligand. N-aminoindanol prolinamide was revealed as the best ligand for most ketones. Interestingly, for several substrates both enantiomers could be obtained using either Citrus reticulata or ruthenium complex.

  5. Shuttle Catalysis-New Strategies in Organic Synthesis.

    PubMed

    Bhawal, Benjamin N; Morandi, Bill

    2017-01-26

    Shuttle catalysis has recently emerged as a powerful new concept that provides a platform for performing both functionalization and defunctionalization reactions. In this concept article, applications of shuttle catalysis as a novel strategy in organic synthesis are discussed. This includes using forward shuttle catalysis reactions for challenging bond-forming processes that avoid the use of hazardous chemicals. Shuttle catalysis also facilitates the transfer of reactive functionality as a route to procure a broad range of compounds using one simple procedure. Reverse shuttle catalysis reactions are also discussed as a method for the valorization of biomass and waste materials. Another area of interest, shuttle-catalysis-assisted reactions, wherein the transfer of a small molecule is utilized in a catalytic cycle, is also described. Possible future directions in this exciting new field are also suggested.

  6. Evidence for Localization of Reaction Upon Reduction of Carbon Tetrachloride by Granular Iron

    SciTech Connect

    Gaspar, Daniel J.; Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.; Miehr, R.; Tratnyek, Paul G.

    2002-10-01

    The distribution of reaction sites on iron particles exposed to water containing carbon tetrachloride has been examined by measuring the locations of reaction products. The uniformity or localization of reaction sites has implications for understanding and modeling the reduction of environmental contaminants by iron in ground water systems. Granular iron surfaces similar to those being used for environmental remediation applications were studied using surfaces analysis techniques to develop an understanding of the physical and chemical structure of the surface and oxide films. Scanning Auger microscopy and imaging time-of-flight secondary ion mass spectrometry revealed that granular iron exposed to carbon tetrachloride-saturated water exhibits chloride-enriched regions occurred at pits rather than on the passive oxide film on the metal. Understanding the nature of the local solute reduction sites will play an important role in modeling the kinetics of reaction at passive iron oxide films in environmental systems.

  7. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors.

    PubMed

    Hashiba, Hiroshi; Yotsuhashi, Satoshi; Deguchi, Masahiro; Yamada, Yuka

    2016-04-11

    Applying combinatorial technology to electrochemical CO2 reduction offers a broad range of possibilities for optimizing the reaction conditions. In this work, the CO2 pressure, stirring speed, and reaction temperature were varied to investigate the effect on the rate of CO2 supply to copper electrode and the associated effects on reaction products, including CH4. Experiments were performed in a 0.5 M KCl solution using a combinatorial screening reactor system consisting of eight identical, automatically controlled reactors. Increasing the CO2 pressure and stirring speed, or decreasing the temperature, steadily suppressed H2 production and increased the production of other reaction products including CH4 across a broad range of current densities. Our analysis shows that the CO2 pressure, stirring speed, and reaction temperature independently contributed to the limiting rate of CO2 supply to the electrode (Jlim). At a constant temperature, the limiting current density of CH4 increased proportionally with Jlim, illustrating that the production rate of CH4 was proportional to CO2 supply. Varying the CO2 pressure and stirring speed hardly affected the maximum Faradaic efficiency of CH4 production. However, changes to the reaction temperature showed a significant contribution to CH4 selectivity. This study highlights the importance of quantitative analysis of CO2 supply in clarifying the role of various reaction parameters and understanding more comprehensively the selectivity and reaction rate of electrochemical CO2 reduction.

  8. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  9. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  10. Redox reactions in micellar systems. communication 4. Eosin-photosensitized reduction of methylviologen

    SciTech Connect

    Nadtochenko, V.; Dzhabiev, T.S.; Rubtsov, I.V.

    1985-12-10

    The authors present data on photosensitized reduction of methylviologen (MV/sup 2 +/) by disodium ethylenediaminetetraacetate (EDTA) in micellar systems modeling, in a first approximation, the structural organization of components of the chain of energy and electron transfer in natural photosynthesis. Photosensitized reduction of methylviologen by EDTA in micellar solutions can model photosystem I of plants with structure formation of reagents and transfer of excitation energy before the step of occurrence of a redox reaction in the active center.

  11. Supramolecular catalysis beyond enzyme mimics.

    PubMed

    Meeuwissen, Jurjen; Reek, Joost N H

    2010-08-01

    Supramolecular catalysis - the assembly of catalyst species by harnessing multiple weak intramolecular interactions - has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst-substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.

  12. Computational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Corona, Benjamin; Howard, Marco; Zhang, Liang; Henkelman, Graeme

    2016-12-01

    Using density functional theory calculations, a set of candidate nanoparticle catalysts are identified based on reactivity descriptors and segregation energies for the oxygen reduction and hydrogen evolution reactions. Trends in the data were identified by screening over 700 core@shell 2 nm transition metal nanoparticles for each reaction. High activity was found for nanoparticles with noble metal shells and a variety of core metals for both reactions. By screening for activity and stability, we obtain a set of interesting bimetallic catalysts, including cases that have reduced noble metal loadings and a higher predicted activity as compared to monometallic Pt nanoparticles.

  13. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  14. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  15. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface.

    PubMed

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-13

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of [Formula: see text] hydrogenation reaction is much lower than that of [Formula: see text] dissociation, indicating that [Formula: see text] hydrogenation reaction is more appropriate at the first step than [Formula: see text] dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e (-) ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e (-) reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  16. Advances in Stereoconvergent Catalysis from 2005 to 2015: Transition-Metal-Mediated Stereoablative Reactions, Dynamic Kinetic Resolutions, and Dynamic Kinetic Asymmetric Transformations.

    PubMed

    Bhat, Vikram; Welin, Eric R; Guo, Xuelei; Stoltz, Brian M

    2017-03-08

    Stereoconvergent catalysis is an important subset of asymmetric synthesis that encompasses stereoablative transformations, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Initially, only enzymes were known to catalyze dynamic kinetic processes, but recently various synthetic catalysts have been developed. This Review summarizes major advances in nonenzymatic, transition-metal-promoted dynamic asymmetric transformations reported between 2005 and 2015.

  17. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  18. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles.

    PubMed

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-11

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  19. REDUCTION OF NITROSOBENZENES AND N-HYDROXYLANILINES BY FE (II) SPECIES: ELUCIDATION OF REACTION MECHANISM

    EPA Science Inventory

    There has been a substantial effort toward understanding the reduction of nitroaromatics in Fe(II)-treated ferric oxide systems, little has been done to gain insight into the factors controlling the transformation of their reaction intermediates, nitrosobenzenes and N-hydroxylani...

  20. REDUCTION OF NITROSOBENZENES AND N-HYDROXYLANILINES BY FE (II) SPECIES: ELUCIDATION OF REACTION MECHANISM

    EPA Science Inventory

    There has been a substantial effort toward understanding the reduction of nitroaromatics in Fe(II)-treated ferric oxide systems, little has been done to gain insight into the factors controlling the transformation of their reaction intermediates, nitrosobenzenes and N-hydroxylani...

  1. Aqueous complexation reactions governing the rate and extent of biogeochemical U(VI) reduction

    SciTech Connect

    Kemner, K.M.; Kelly, S.D.; Brooks, Scott C.; Dong, Wenming; Carroll, Sue; Fredrickson, James K.

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments.

  2. A universal method to synthesize nanoscale carbides as electrocatalyst supports towards oxygen reduction reaction.

    PubMed

    He, Guoqiang; Yan, Zaoxue; Ma, Xueming; Meng, Hui; Shen, Pei Kang; Wang, Chengxin

    2011-09-01

    We have developed a general ion-exchange method of preparing a composite of low nanometre size carbide particles with controllable size less than 10 nm on carbon foams. The nanoarchitectures of the carbide nanoparticles on carbon foam are used to load Pt nanoparticles as electrocatalysts which show enhanced activity for the oxygen reduction reaction.

  3. Some reflections on the understanding of the oxygen reduction reaction at Pt(111).

    PubMed

    Gómez-Marín, Ana M; Rizo, Ruben; Feliu, Juan M

    2013-12-27

    The oxygen reduction reaction (ORR) is a pivotal process in electrochemistry. Unfortunately, after decades of intensive research, a fundamental knowledge about its reaction mechanism is still lacking. In this paper, a global and critical view on the most important experimental and theoretical results regarding the ORR on Pt(111) and its vicinal surfaces, in both acidic and alkaline media, is taken. Phenomena such as the ORR surface structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic reaction models, which are deducted from reliable experimental results that need to be carefully taken under strict working conditions is shown. Therefore, progress in the understanding of this important reaction on a molecular level, and the choice of the right approach for the design of the electrocatalysts for fuel-cell cathodes is only possible through a cooperative approach between theory and experiments.

  4. Some reflections on the understanding of the oxygen reduction reaction at Pt(111)

    PubMed Central

    Gómez-Marín, Ana M; Rizo, Ruben

    2013-01-01

    Summary The oxygen reduction reaction (ORR) is a pivotal process in electrochemistry. Unfortunately, after decades of intensive research, a fundamental knowledge about its reaction mechanism is still lacking. In this paper, a global and critical view on the most important experimental and theoretical results regarding the ORR on Pt(111) and its vicinal surfaces, in both acidic and alkaline media, is taken. Phenomena such as the ORR surface structure sensitivity and the lack of a reduction current at high potentials are discussed in the light of the surface oxidation and disordering processes and the possible relevance of the hydrogen peroxide reduction and oxidation reactions in the ORR mechanism. The necessity to build precise and realistic reaction models, which are deducted from reliable experimental results that need to be carefully taken under strict working conditions is shown. Therefore, progress in the understanding of this important reaction on a molecular level, and the choice of the right approach for the design of the electrocatalysts for fuel-cell cathodes is only possible through a cooperative approach between theory and experiments. PMID:24455454

  5. Solvent and temperature effects on the reduction and amination reactions of electrophiles by lithium dialkylaminoborohydrides.

    PubMed

    Pasumansky, Lubov; Collins, Christopher J; Pratt, Lawrence M; Nguyên, Ngân Van; Ramachandran, B; Singaram, Bakthan

    2007-02-02

    The influence of temperature and solvent effects on the reduction and amination mechanisms of iodomethane by lithium N,N-diisopropylaminoborohydride (iPr-LAB) was examined in varying concentrations of THF and dioxane. The reactions of benzyl chloride and trimethylsilyl chloride with iPr-LAB in THF were also studied. The amination of iodomethane is favored over reduction at low and room temperatures in pure THF and with increasing the amount of dioxane in THF. At higher temperatures, the reduction reaction appears to compete with the amination. In dioxane solvent, however, iodomethane yields exclusively the amination product regardless of temperature. On the other hand, reduction by iPr-LAB to the aminoborane is the only product observed in THF when benzyl chloride and trimethylsilyl chloride are used. To understand the solvent effects on the product distribution, ab initio and density functional theory (DFT) calculations were used to examine the mechanisms of reduction and amination of chloromethane and bromomethane by lithium dimethylaminoborohydride (LAB) in THF and dioxane. The results of these calculations show that the relative reaction barrier heights are significantly affected by the nature of the coordinated solvent molecule and thus lend support to the experimental observations.

  6. Reaction of 1,1,1-trichloroethane with zero-valent metals and bimetallic reductants

    SciTech Connect

    Fennelly, J.P.; Roberts, A.L.

    1998-07-01

    Information concerning the pathways and products of reaction of 1,1,1-trichloroethane (1,1,1-TCA) with zero-valent metals may be critical to the success of in situ treatment techniques. Many researchers assume that alkyl polyhalides undergo reduction via stepwise hydrogenolysis (replacement of halogen by hydrogen). Accordingly, 1,1,1-TCA should react to 1,1-dichloroethane (1,1-DCA), to chloroethane, and finally to ethane. Experiments conducted in laboratory-scale batch reactors indicate, however, that with zinc, iron, and two bimetallic reductants (nickel-plated iron and copper-plated iron) this simplistic stepwise scheme cannot explain observed results. 1,1,1-TCA was found to react rapidly with zinc to form ethane and 1,1-DCA. Independent experiments confirmed that 1,1-DCA reacts too slowly to represent an intermediate in the formation of ethane. In reactions with iron, nickel/iron, and copper/iron, cis-2-butene, ethylene, and 2-butyne were also observed as minor products. Product ratios were dependent on the identity of the metal or bimetallic reductant, with zinc resulting in the lowest yield of chlorinated product. For reactions with iron and bimetallic reductants, a scheme involving successive one-electron reduction steps to form radicals and carbenoids can be invoked to explain the absence of observable intermediates, as well as the formation of products originating from radical or possibly from carbenoid coupling.

  7. Reaction engineering for materials processing in space: Reduction of ilmenite by hydrogen and carbon monoxide

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Shadman, F.

    1991-01-01

    Oxygen is a consumable material which needs to be produced continuously in most space missions. Its use for propulsion as well as life support makes oxygen one of the largest volume chemicals to be produced in space. Production of oxygen from lunar materials is of particular interest and is very attractive possibility. The kinetics and mechanism of reduction of ilmenite by carbon monoxide and hydrogen at 800 to 1100 C were investigated. The temporal profiles of conversion for carbon monoxide have a sigmoidal shape and indicate the presence of three different stages (induction, acceleration, and deceleration) during the reduction reaction. The apparent activation energy decreases from 18 kcal/mole at 10 percent conversion to 10 kcal/mole at 50 percent conversion. The reaction is first order with respect to carbon monoxide under the experimental conditions studied. Both SEM and EDX analysis show that the diffusion of Fe product away from the reaction front and through the TiO2 phase, followed by the nucleation and growth of a separate Fe phase are important steps affecting the process kinetics. The results from hydrogen reduction show that the mechanism of ilmenite reduction by hydrogen is similar to that by carbon monoxide. However, the titanium dioxide can be further reduced by hydrogen at 800 to 1000 C. The detailed comparison and theoretical modeling of both reduction processes is presented.

  8. Reaction engineering for materials processing in space: Reduction of ilmenite by hydrogen and carbon monoxide

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Shadman, F.

    1991-01-01

    Oxygen is a consumable material which needs to be produced continuously in most space missions. Its use for propulsion as well as life support makes oxygen one of the largest volume chemicals to be produced in space. Production of oxygen from lunar materials is of particular interest and is very attractive possibility. The kinetics and mechanism of reduction of ilmenite by carbon monoxide and hydrogen at 800 to 1100 C were investigated. The temporal profiles of conversion for carbon monoxide have a sigmoidal shape and indicate the presence of three different stages (induction, acceleration, and deceleration) during the reduction reaction. The apparent activation energy decreases from 18 kcal/mole at 10 percent conversion to 10 kcal/mole at 50 percent conversion. The reaction is first order with respect to carbon monoxide under the experimental conditions studied. Both SEM and EDX analysis show that the diffusion of Fe product away from the reaction front and through the TiO2 phase, followed by the nucleation and growth of a separate Fe phase are important steps affecting the process kinetics. The results from hydrogen reduction show that the mechanism of ilmenite reduction by hydrogen is similar to that by carbon monoxide. However, the titanium dioxide can be further reduced by hydrogen at 800 to 1000 C. The detailed comparison and theoretical modeling of both reduction processes is presented.

  9. Asymmetric catalysis with short-chain peptides.

    PubMed

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  10. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    SciTech Connect

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.

  11. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE PAGES

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently andmore » a new strategy of developing the catalyst for oxygen evolution reaction.« less

  12. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  13. Cobalt catalysis in the gas phase: experimental characterization of cobalt(I) complexes as intermediates in regioselective Diels-Alder reactions.

    PubMed

    Fiebig, Lukas; Kuttner, Julian; Hilt, Gerhard; Schwarzer, Martin C; Frenking, Gernot; Schmalz, Hans-Günther; Schäfer, Mathias

    2013-10-18

    In situ-formed cobalt(I) complexes are proposed to act as efficient catalysts in regioselective Diels-Alder reactions of unactivated substrates such as 1,3-dienes and alkynes. We report the first experimental evidence for the in situ reduction of CoBr2(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] by Zn/ZnI2 to [Co(I)(dppe)](+) by means of electrospray MS(n) experiments. Additionally, the reactivities of Co(II) and Co(I) dppe complexes toward the Diels-Alder substrates isoprene and phenylacetylene were probed in gas-phase ion/molecule reactions (IMRs). Isoprene and phenylacetylene were introduced into the mass spectrometer via the buffer gas flow of a linear ion trap. The IMR experiments revealed a significantly higher substrate affinity of [Co(I)(dppe)](+) compared with [Co(II)Br(dppe)](+). Furthermore, the central intermediate of the solution-phase cobalt-catalyzed Diels-Alder reaction, [Co(I)(dppe)(isoprene)(phenylacetylene)](+), could be generated via IMR and examined in the gas phase. Collision activation of this complex ion delivered evidence for the gas-phase reaction of isoprene with phenylacetylene in the coordination sphere of the cobalt ion. The experimental findings are consistent with the results of quantum-chemical calculations on all of the observed Co(I) dppe complex ions. The results constitute strong analytical evidence for the formation and importance of different cobalt(I) species in regioselective Diels-Alder reactions of unactivated substrates and identify [Co(I)(dppe)](+) as the active Diels-Alder catalyst.

  14. Electrochemical Investigations on Graphene and Lithium Phthalocyanine as Catalysts for Reversible Oxygen Reduction Reaction in Li-O2 Cells

    DTIC Science & Technology

    2015-05-11

    phthalocyanine as catalysts for reversible oxygen reduction reaction in Li-O2 cells 5a. CONTRACT NUMBER FA2386-13-1-4006 5b. GRANT NUMBER Grant...Electrochemical investigations on graphene and lithium phthalocyanine as catalysts for reversible oxygen reduction reaction in Li-O2 cells 5a...catalysts for reversible oxygen reduction reaction in Li-O2 cells (FA2386-13-1-4006) Final Report Submitted to: Asian Office of Aerospace

  15. Frustrated Lewis pairs: from concept to catalysis.

    PubMed

    Stephan, Douglas W

    2015-02-17

    CONSPECTUS: Frustrated Lewis pair (FLP) chemistry has emerged in the past decade as a strategy that enables main-group compounds to activate small molecules. This concept is based on the notion that combinations of Lewis acids and bases that are sterically prevented from forming classical Lewis acid-base adducts have Lewis acidity and basicity available for interaction with a third molecule. This concept has been applied to stoichiometric reactivity and then extended to catalysis. This Account describes three examples of such developments: hydrogenation, hydroamination, and CO2 reduction. The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation. This finding of stoichiometric reactivity was subsequently evolved to employ simple main-group species as catalysts in hydrogenations. While the initial studies focused on imines, subsequent studies uncovered FLP catalysts for a variety of organic substrates, including enamines, silyl enol ethers, olefins, and alkynes. Moreover, FLP reductions of aromatic anilines and N-heterocycles have been developed, while very recent extensions have uncovered the utility of FLP catalysts for ketone reductions. FLPs have also been shown to undergo stoichiometric reactivity with terminal alkynes. Typically, either deprotonation or FLP addition reaction products are observed, depending largely on the basicity of the Lewis base. While a variety of acid/base combinations have been exploited to afford a variety of zwitterionic products, this reactivity can also be extended to catalysis. When secondary aryl amines are employed, hydroamination of alkynes can be performed catalytically, providing a facile, metal-free route to enamines. In a similar fashion, initial studies of FLPs with CO2 demonstrated their ability to capture this greenhouse gas. Again, modification of the constituents of the FLP led to the discovery of reaction

  16. Entropy and Enzyme Catalysis.

    PubMed

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  17. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.

  18. A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell.

    PubMed

    Gong, Xiao-Bo; You, Shi-Jie; Wang, Xiu-Heng; Zhang, Jin-Na; Gan, Yang; Ren, Nan-Qi

    2014-05-15

    To explore efficient and cost-effective cathode material for microbial fuel cells (MFCs), the present study fabricates a new type of binder-free gas diffusion electrode made of cobalt oxide (Co3O4) micro-particles directly grown on stainless steel mesh (SSM) by using an ammonia-evaporation-induced method. In various electrochemical analyses and evaluations in batch-fed dual-chamber MFCs, the SSM/Co3O4 hybrid electrode demonstrates improved performances in terms of electrocatalytic activity, selectivity, durability and economics toward oxygen reduction reaction (ORR) in pH-neutral solution, in comparison with conventional carbon supported platinum catalyst. This study suggests a new strategy to fabricate a more effective electrode for ORR in MFCs, making it more technically and economically viable to produce electrical energy from organic materials for practical applications.

  19. Phosphine Catalysis of Allenes with Electrophiles

    PubMed Central

    Wang, Zhiming; Xu, Xingzhu; Kwon, Ohyun

    2014-01-01

    Nucleophilic phosphine catalysis of allenes with electrophiles is one of the most powerful and straightforward synthetic strategies for the generation of highly functionalized carbocycle or heterocycle structural motifs, which are present in a wide range of bioactive natural products and medicinally important substances. The reaction topologies can be controlled through judicious choice of the phosphine catalyst and the structural variations of starting materials. This Tutorial Review presents selected examples of nucleophilic phosphine catalysis using allenes and electrophiles. PMID:24663290

  20. Recent advances in homogeneous nickel catalysis

    NASA Astrophysics Data System (ADS)

    Tasker, Sarah Z.; Standley, Eric A.; Jamison, Timothy F.

    2014-05-01

    Tremendous advances have been made in nickel catalysis over the past decade. Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions. In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging. Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism.

  1. Towards organo-click reactions: development of pharmaceutical ingredients by using direct organocatalytic bio-mimetic reductions.

    PubMed

    Ramachary, Dhevalapally B; Reddy, G Babul

    2006-12-21

    Economic and environmentally friendly bio-mimetic one-pot three and four-component Knoevenagel-hydrogenation (K-H), five-component Knoevenagel-hydrogenation-alkylation (K-H-A) and six-component Knoevenagel-hydrogenation-alkylation-Huisgen cycloaddition (K-H-A-HC) reactions of aldehydes, CH-acids, o-phenylenediamine, alkyl halides and azides using proline, proline-metal carbonate and proline-metal carbonate-Cu(I)-catalysis, respectively have been developed. Many of K-H and K-H-A compounds have direct application in pharmaceutical chemistry.

  2. Enzyme catalysis on solid surfaces.

    PubMed

    Laurent, Nicolas; Haddoub, Rose; Flitsch, Sabine L

    2008-06-01

    Enzyme-catalysed reactions in which substrates are bound (immobilised) to solid surfaces are becoming increasingly important in biotechnology. There is a general drive for miniaturisation and automation in chemistry and biology, and immobilisation of the reaction intermediates and substrates, for example on microarrays or nanoparticles, helps to address technical challenges in this area. In bionanotechnology, enzyme catalysis can provide highly selective and biocompatible tools for the modification of surfaces on the nano-scale. Here, we review the range of enzyme-catalysed reactions that have been successfully performed on the solid phase and discuss their application in biotechnology.

  3. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.

    PubMed

    Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang

    2014-09-01

    A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  5. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    SciTech Connect

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; Zhou, Wu; Yang, Shubin; Ye, Gonglan; Liu, Zheng; Peng, Zhiwei; Lou, Jun; Vajtai, Robert; Yakobson, Boris I.; Tour, James M.; Ajayan, Pulickel M.

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energy barriers of the rate-determining steps of the ORR reaction.

  6. Dynamic order reduction of thin-film deposition kinetics models: A reaction factorization approach

    SciTech Connect

    Adomaitis, Raymond A.

    2016-01-15

    A set of numerical tools for the analysis and dynamic dimension reduction of chemical vapor and atomic layer deposition (ALD) surface reaction models is developed in this work. The approach is based on a two-step process where in the first, the chemical species surface balance dynamic equations are factored to effectively decouple the (nonlinear) reaction rates, a process that eliminates redundant dynamic modes and that identifies conserved quantities. If successful, the second phase is implemented to factor out redundant dynamic modes when species relatively minor in concentration are omitted; if unsuccessful, the technique points to potential model structural problems. An alumina ALD process is used for an example consisting of 19 reactions and 23 surface and gas-phase species. Using the approach developed, the model is reduced by nineteen modes to a four-dimensional dynamic system without any knowledge of the reaction rate values. Results are interpreted in the context of potential model validation studies.

  7. Simulations of chemical catalysis

    NASA Astrophysics Data System (ADS)

    Smith, Gregory K.

    This dissertation contains simulations of chemical catalysis in both biological and heterogeneous contexts. A mixture of classical, quantum, and hybrid techniques are applied to explore the energy profiles and compare possible chemical mechanisms both within the context of human and bacterial enzymes, as well as exploring surface reactions on a metal catalyst. A brief summary of each project follows. Project 1 - Bacterial Enzyme SpvC The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. The dynamics of the enzyme substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31 G(d,p) level of theory. The truncated model suggested the reaction proceeds via a single transition state. After including the enzyme environment in ab initio QM/MM studies, it was found to proceed via an E1cB-like pathway, in which the carbanion intermediate is stabilized by an enzyme oxyanion hole provided by Lys104 and Tyr158 of SpvC. Project 2 - Human Enzyme CDK2 Phosphorylation reactions catalyzed by kinases and phosphatases play an indispensable role in cellular signaling, and their malfunctioning is implicated in many diseases. Ab initio quantum mechanical/molecular mechanical studies are reported for the phosphoryl transfer reaction catalyzed by a cyclin-dependent kinase, CDK2. Our results suggest that an active-site Asp residue, rather than ATP as previously proposed, serves as the general base to activate the Ser nucleophile. The corresponding transition state features a

  8. Reduction of carbadox mediated by reaction of Mn(III) with oxalic acid.

    PubMed

    Chen, Wan-Ru; Liu, Cun; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2013-02-05

    Manganese(III) geocomponents are commonly found in the soil environment, yet their roles in many biogeochemical processes remain unknown. In this study, we demonstrated that Mn(III) generated from the reaction of MnO(2) and oxalic acid caused rapid and extensive decompositions of a quinoxaline-di-N-oxide antibiotics, viz carbadox. The reaction occurred primarily at the quinoxaline-di-N-oxide moiety resulting in the removal of one -O from N1-oxide and formation of desoxycarbadox. The reaction rate was accelerated by increasing amounts of Mn(III), carbadox and oxalate. The critical step in the overall reaction was the formation of a quinoxaline-di-N-oxide/Mn(III)/oxalate ternary complex in which Mn(III) functioned as the central complexing cation and electron conduit in which the arrangement of ligands facilitated electron transfer from oxalate to carbadox. In the complex, the C-C bond in oxalate was cleaved to create CO(2)(-•) radicals, followed by electron transfer to carbadox through the Mn(III) center. This proposed reaction mechanism is supported by the reaction products formed, reaction kinetics, and quantum mechanical calculations. The results obtained from this study suggest that naturally occurring Mn(III)-oxalic acid complexes could reductively decompose certain organic compounds in the environment such as the antibiotic quinoxaline-di-N-oxide.

  9. Investigation of hydrogen peroxide reduction reaction on graphene and nitrogen doped graphene nanoflakes in neutral solution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Binny, Dustin; Meunier, Jean-Luc; Berk, Dimitrios

    2014-07-01

    H2O2 reduction reaction (HPRR) is studied on both graphene (GNF) and nitrogen doped graphene nanoflakes in 0.1 M Na2SO4 solution by rotating disk electrode. The XPS results indicate that N-doped graphene nanoflakes with high nitrogen content, 32 at%N (N-GNF32), are synthesised successfully by an inductively-coupled thermal plasma (ICP) reactor. Pyridinic, pyrrolic and graphitic N species contribute up to 67% of the total nitrogen. Kinetic parameters such as Tafel slope and stoichiometric number suggest that HPRR occurs by the same mechanism on both GNF and N-GNF32. Although nitrogen does not change the mechanism of HPRR, the results indicate that the reaction rate of H2O2 reduction is enhanced on N-GNF32. The exchange current density of H2O2 reduction based on the active surface area of N-GNF32 is (8.3 ± 0.3) × 10-9 A cm-2, which is 6 times higher than the value determined for GNF. The apparent number of electrons involved in the process suggests that H2O2 decomposition competes with H2O2 reduction on both catalysts. Evaluation of the apparent heterogeneous reaction rate constant and the Tafel slope indicate that simultaneous reduction of O2 and H2O2 is negligible on the N-GNF32. On the other hand, the reduction of O2 and H2O2 occurs simultaneously on the GNF surface.

  10. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Zhuang; Li, Mian; Fan, Liquan; Han, Jianan; Xiong, Yueping

    2017-04-01

    The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-Nx and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  11. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries

    SciTech Connect

    Cao, Ruiguo; Walter, Eric D.; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Jiguang

    2014-09-01

    The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic resonance spectroscopy in this work. We identified the superoxide radical anion (O2•-) as an intermediate in the ORR process using 5,5-dimethyl-pyrroline N-oxide as a spin trap, while no O2•- in OER was detected during the charge process. These findings provide insightful understanding on the fundamental oxygen reaction mechanisms in rechargeable nonaqueous Li-O2 batteries.

  12. (Diisopinocampheyl)borane-mediated reductive aldol reactions of acrylate esters: enantioselective synthesis of anti-aldols.

    PubMed

    Allais, Christophe; Nuhant, Philippe; Roush, William R

    2013-08-02

    The (diisopinocampheyl)borane promoted reductive aldol reaction of acrylate esters 4 is described. Isomerization of the kinetically formed Z(O)-enolborinate 5Z to the thermodynamic E(O)-enolborinate 5E via 1,3-boratropic shifts, followed by treatment with representative achiral aldehydes, leads to anti-α-methyl-β-hydroxy esters 9 or 10 with excellent diastereo- (up to ≥20:1 dr) and enantioselectivity (up to 87% ee). The results of double asymmetric reactions of 5E with several chiral aldehydes are also presented.

  13. (Diisopinocampheyl)borane-Mediated Reductive Aldol Reactions of Acrylate Esters: Enantioselective Synthesis of Anti-Aldols

    PubMed Central

    Allais, Christophe; Nuhant, Philippe; Roush, William R.

    2013-01-01

    The (diisopinocampheyl)borane promoted reductive aldol reaction of acrylate esters 4 is described. Isomerization of the kinetically formed Z(O)-enolborinate 5Z to the thermodynamic E(O)-enolborinate 5E via 1,3-boratropic shifts, followed by treatment with representative achiral aldehydes, leads to anti-α-methyl-β-hydroxy esters 9 or 10 with excellent diastereo- (up to ≥20:1 dr) and enantioselectivity (up to 87% ee). Results of double asymmetric reactions of 5E with several chiral aldehydes are also presented. PMID:23885946

  14. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts.

    PubMed

    Peng, Peng; Schmidt, Richard R

    2015-10-07

    Gold(III) chloride as catalyst for O-glycosyl trichloroacetimidate activation revealed low affinity to the glycosyl donor but high affinity to the hydroxy group of the acceptor alcohol moiety, thus leading to catalyst-acceptor adduct formation. Charge separation in this adduct, increasing the proton acidity and the oxygen nucleophilicity, permits donor activation and concomitant acceptor transfer in a hydrogen-bond mediated S(N)2-type transition state. Hence, the sequential binding between acceptor and catalyst and then with the glycosyl donor enables self-organization of an ordered transition-state. This way, with various acceptors, even at temperatures below -60 °C, fast and high yielding glycosidations in high anomeric selectivities were recorded, showing the power of this gold(III) chloride acid-base catalysis. Alternative reaction courses via hydrogen chloride or HAuCl4 activation or intermediate generation of glycosyl chloride as the real donor could be excluded. With partially O-protected acceptors, prone to bidentate ligation to gold(III) chloride, particularly high reactivities and anomeric selectivities were observed. Gold(I) chloride follows the same catalyst-acceptor adduct driven acid-base catalysis reaction course.

  15. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.

    PubMed

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela C; Calle-Vallejo, Federico; Nørskov, Jens K; Jaramillo, Thomas F; Rossmeisl, Jan

    2012-10-28

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn(2)O(3) and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V and 1.0 V, a potential region between the ORR and the OER relevant conditions. Next, we perform density function theory (DFT) calculations to understand the changes in the MnO(x) surface as a function of potential and to elucidate reaction mechanisms that lead to high activities observed in the experiments. Using DFT, we construct surface Pourbaix and free energy diagrams of three different MnO(x) surfaces and identify 1/2 ML HO* covered Mn(2)O(3) and O* covered MnO(2), as the active surfaces for the ORR and the OER, respectively. Additionally, we find that the ORR occurs through an associative mechanism and that its overpotential is highly dependent on the stabilization of intermediates through hydrogen bonds with water molecules. We also determine that OER occurs through direct recombination mechanism and that its major source of overpotential is the scaling relationship between HOO* and HO* surface intermediates. Using a previously developed Sabatier model we show that the theoretical predictions of catalytic activities match the experimentally determined onset potentials for the ORR and the OER, both qualitatively and quantitatively. Consequently, the combination of first-principles theoretical analysis and experimental methods offers an understanding of manganese oxide oxygen electrocatalysis at the atomic level, achieving fundamental insight that can potentially be

  16. Synthesis of Functionalized Furans via Chemoselective Reduction/Wittig Reaction Using Catalytic Triethylamine and Phosphine.

    PubMed

    Lee, Chia-Jui; Chang, Tzu-Hsiu; Yu, Jhen-Kuei; Madhusudhan Reddy, Ganapuram; Hsiao, Ming-Yu; Lin, Wenwei

    2016-08-05

    An efficient protocol for the synthesis of highly functionalized furans via intramolecular Wittig reaction has been developed using catalytic amounts of phosphine and triethylamine. Silyl chloride served as the initial promoter to activate the phosphine oxide. Reduction of the activated phosphine oxide by hydrosilane resulted in generation of phosphine, while decomposition of Et3N·HCl resulted in regeneration of base, which mediated formation of phosphorus ylide. Remarkably, the in situ generated byproduct, Et3N·HCl, also catalyzes reduction of phosphine oxide.

  17. Characterization of alternate reductant binding and electron transfer in the dopamine. beta. -monooxygenase reaction

    SciTech Connect

    Stewart, L.C.; Klinman, J.P.

    1987-08-25

    The steady-state limiting kinetic parameters V/sub max/, V/K/sub DA/, and V/K/sub O/sub 2//, together with deuterium isotope effects on these parameters, have been determined for the dopamine ..beta..-monooxygenase (D..beta..M) reaction in the presence of structurally distinct reductants. The results show the one-electron reductant ferrocyanide to be nearly as kinetically competent as the presumed in vivo reductant ascrobate. Further, a reductant system of ferricyanide plus substrate dopamine yields steady-state kinetic parameters and isotope effects very similar to those measured solely in the presence of ferrocyanide, indicating a role for catecholamine in the rapid recycling of oxidized ferrocyanide. Use of substrate dopamine as the sole reductant is found to lead to a highly unusual kinetic independence of oxygen concentration, as well as significantly reduced values of V/sub max/ and V/K/sub DA/, and the authors conclude that dopamine reduces enzymic copper in a rate-limiting step that is 40-fold slower than with ascorbate. The near-identical kinetic parameters measured in the presence of either ascorbate or ferrocyanide, together with markedly reduced rates with dopamine, are interpreted in terms of a binding site for reductant that is physically distinct from the substrate binding site. This view is supported by molecular modeling, which reveals ascorbate and ferrocyanide to possess an unexpected similarity in potential sites for interaction with enzymic residues. With regard to electron flux, identical values of V/K/sub O/sub 2// have been measured with (2,2-/sup 2/H/sub 2/)dopamine as substrate both in the presence and in the absence of added ascorbate. This key result unambiguously rules out an entry of electrons to enzyme forms leading from the enzyme-dopamine complex to enzyme-bound product and, hence, reaction mechanisms involving a reductive activation of the putative Cu(II)-OOH prior to substrate hydroxylation.

  18. Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction.

    PubMed

    Ruvinskiy, Pavel S; Bonnefont, Antoine; Pham-Huu, Cuong; Savinova, Elena R

    2011-07-19

    Insufficient understanding of the mechanism of the cathodic oxygen reduction reaction puts constraints on the improvement of the efficiency of polymer electrolyte fuel cells (PEMFCs). We apply ordered catalytic layers based on vertically aligned carbon nanofilaments and combine experimental rotating ring-disk studies with mathematical modeling for shedding light on the mechanism of the oxygen reduction reaction on Pt nanoparticles. Based on the experimental and simulation evidence we propose a dual path ORR mechanism which comprises a "direct 4e(-)" and a "series 2e(-) + 2e(-)" pathway and explains switching between the two. For the first time we show that below 0.8 V the "direct" path may be discarded and the ORR predominantly occurs via H(2)O(2) mediated pathway, while in the potential interval between ca. 0.8 V and the onset of the ORR the "direct" path is dominating.

  19. Catalytic reduction of CN−, CO and CO2 by nitrogenase cofactors in lanthanide-driven reactions**

    PubMed Central

    Lee, Chi Chung

    2014-01-01

    Nitrogenase cofactors can be extracted into an organic solvent and added in an adenosine triphosphate (ATP)-free, organic solvent-based reaction medium to catalyze the reduction of cyanide (CN−), carbon monoxide (CO) and carbon dioxide (CO2) when samarium (II) iodide (SmI2) and 2,6-lutidinium triflate (Lut-H) are supplied as a reductant and a proton source, respectively. Driven by SmI2, the cofactors not only catalytically reduce CN− or CO to C1-C4 hydrocarbons, but also catalytically reduce CO2 to CO and C1-C3 hydrocarbons. The observation of C-C coupling from CO2 reveals a unique, Fischer-Tropsch-like reaction with an atypical carbonaceous substrate; whereas the achievement of catalytic turnover of CN−, CO and CO2 by isolated cofactors suggests the possibility to develop nitrogenase-based electrocatalysts for hydrocarbon production from these carbon-containing compounds. PMID:25420957

  20. Novel nanowire-structured polypyrrole-cobalt composite as efficient catalyst for oxygen reduction reaction

    PubMed Central

    Yuan, Xianxia; Li, Lin; Ma, Zhong; Yu, Xuebin; Wen, Xiufang; Ma, Zi-Feng; Zhang, Lei; Wilkinson, David P.; Zhang, Jiujun

    2016-01-01

    A novel nanowire-structured polypyrrole-cobalt composite, PPy-CTAB-Co, is successfully synthesized with a surfactant of cetyltrimethylammounium bromide (CTAB). As an electro-catalyst towards oxygen reduction reaction (ORR) in alkaline media, this PPy-CTAB-Co demonstrates a superior ORR performance when compared to that of granular PPy-Co catalyst and also a much better durability than the commercial 20 wt% Pt/C catalyst. Physiochemical characterization indicates that the enhanced ORR performance of the nanowire PPy-CTAB-Co can be attributed to the high quantity of Co-pyridinic-N groups as ORR active sites and its large specific surface area which allows to expose more active sites for facilitating oxygen reduction reaction. It is expected this PPy-CTAB-Co would be a good candidate for alkaline fuel cell cathode catalyst. PMID:26860889

  1. Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction

    DOE PAGES

    Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; ...

    2016-04-11

    In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have beenmore » made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR).« less

  2. Reaction mechanisms involved in reduction of halogenated hydrocarbons using sulfated iron

    SciTech Connect

    Hassan, S.M.; Cipollone, M.G.; Wolfe, N.L.

    1995-12-01

    Experiments were carried out to investigate the mechanisms and pathways involved in the reduction of halogenated hydrocarbons represented by trichloroethylene (TCE) and tetrachloroethylene (PCE) with sulfated iron aqueous media. Results suggested that iron sulfide acted as the dehalogenation center. Zero-valent iron acted as a generator for molecular hydrogen through its reaction with water. Results of experiments in which iron sulfide was replaced by other transition metal sulfides and experiments in which zero-valent iron was replaced by other sources of molecular hydrogen will be reported. The main reduction product of chloroethylene derivatives was ethyne which under the catalytic reaction of zero-valent iron was reduced further to ethene and finally to ethane. Intermediate products were identified using GC-MS. Mechanisms and pathways will be presented.

  3. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Wang, Hui; Ji, Shan; Key, Julian; Wang, Rongfang

    2014-04-01

    A highly active electrocatalyst for oxygen reduction reaction, manganese modified glycine derivative-carbon (Mn-CNx), is synthesized by a two-step carbonizing process. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy are used to characterize structure and morphology of the catalysts. Electrochemical tests show that Mn-CNx has higher catalytic activity for oxygen reduction reaction than CNx derived glycine and Mn modified Vulcan carbon. Moreover, the half-wave potential of Mn-CNx is only 12 mV lower than that of commercial Pt/C. Mn-CNx also has excellent durability to methanol crossover in alkaline solution, and thus provides a promising low cost, non-precious metal cathode catalyst for fuel cells.

  4. Homogeneous Catalysis by Transition Metal Compounds.

    ERIC Educational Resources Information Center

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  5. Homogeneous Catalysis by Transition Metal Compounds.

    ERIC Educational Resources Information Center

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  6. Catalysis by molten metals and molten alloys

    SciTech Connect

    Ogino, Y.

    1981-01-01

    Various reactors and techniques for activity measurement are described. Possible applications of the catalysis include the dehydrogenation of alcohols, amines, hydrocarbons, and coal liquefaction. Chemical reaction kinetics and electronic aspects of the reactions are discussed. 69 references, 28 figures, 7 tables.

  7. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments.

  8. Abiotic reduction reactions of dichloroacetamide safeners: transformations of "inert" agrochemical constituents.

    PubMed

    Sivey, John D; Roberts, A Lynn

    2012-02-21

    Safeners are so-called "inert" constituents of herbicide formulations added to protect crops from the toxic effects of herbicides. We examined the reactivity of three dichloroacetamide safeners and 12 structural analogues [all neutral compounds of the form Cl(2)CXC(═O)NRR'; X = H, Cl; R-groups include alkyl, branched alkyl, n-allyl, and cyclic moieties] in one homogeneous and two heterogeneous reductant systems: solutions of Cr(H(2)O)(6)(2+), suspensions of Fe(II)-amended goethite, and suspensions of Fe(II)-amended hematite. Analyses of reaction products indicate each safener can undergo stepwise hydrogenolysis (replacement of chlorine by hydrogen) in each system at near-neutral pH. The first hydrogenolysis step generates compounds similar (in one case, identical) to herbicide active ingredients. Rates of product formation and (when reactions were sufficiently fast) parent loss were quantified; reaction rates in heterogeneous systems spanned 2 orders of magnitude and were strongly influenced by R-group structure. The length of n-alkyl R-groups exerted opposite effects on hydrogenolysis rates in homogeneous versus heterogeneous systems: as R-group size increased, reduction rates in heterogeneous systems increased, whereas reduction rates in the homogeneous system decreased. Branched alkyl R-groups decreased hydrogenolysis rates relative to their straight-chain homologues in both homogeneous and heterogeneous systems. Reaction rates in heterogeneous systems can be described via polyparameter linear free energy relationships employing molecular parameters likely to influence dichloroacetamide adsorption. The propensity of dichloroacetamide safeners to undergo reductive transformations into herbicide-like products challenges their classification as "inert" agrochemical ingredients.

  9. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Kong, Jiangrong; Liu, Yaru; Liu, Qicheng; Zhu, Hongze

    2015-03-01

    Mesoporous carbon is constructed by monolithic polyaromatic mesophase deriving from the hexane insoluble of coal-tar pitch. This carbon material exhibits spherical morphology and layered crystallite, and thereby can be graphitized at 900 °C without destroying the mesoporous structure. Electrochemical measurements indicate that graphitic mesoporous carbon (GMC) support not only improves the activity of Pt electrocatalyst to oxygen reduction reaction (ORR), but also shows higher corrosion resistance than commercial XC-72 carbon black in the acid cathode environment.

  10. Computational Exploration of Rh(III)/Rh(V) and Rh(III)/Rh(I) Catalysis in Rhodium(III)-Catalyzed C-H Activation Reactions of N-Phenoxyacetamides with Alkynes.

    PubMed

    Yang, Yun-Fang; Houk, K N; Wu, Yun-Dong

    2016-06-01

    The selective rhodium-catalyzed functionalization of arenes is greatly facilitated by oxidizing directing groups that act both as directing groups and internal oxidants. We report density functional theory (B3LYP and M06) investigations on the mechanism of rhodium(III)-catalyzed redox coupling reaction of N-phenoxyacetamides with alkynes. The results elucidated the role of the internal oxidizing directing group, and the role of Rh(III)/Rh(I) and Rh(III)/Rh(V) catalysis of C-H functionalizations. A novel Rh(III)-Rh(V)-Rh(III) cycle successfully rationalizes recent experimental observations by Liu and Lu et al. ( Liu , G. Angew. Chem. Int. Ed. 2013 , 52 , 6033 ) on the reactions of N-phenoxyacetamides with alkynes in different solvents. Natural Bond Orbital (NBO) analysis confirms the identity of Rh(V) intermediate in the catalytic cycle.

  11. Special Issue: Coinage Metal (Copper, Silver, and Gold) Catalysis.

    PubMed

    Carabineiro, Sónia Alexandra Correia

    2016-06-08

    The subject of catalysis by coinage metals (copper, silver, and gold) comes up increasingly day-by-day. This Special Issue aims to cover the numerous aspects of the use of these metals as catalysts for several reactions. It deals with synthesis and characterization of copper, silver and gold based catalysis, their characterization and use, both for heterogeneous and homogeneous catalysis, and some of their potential applications.

  12. Controlling the Active Sites of Sulfur-Doped Carbon Nanotube-Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis

    DOE PAGES

    El-Sawy, Abdelhamid M.; Mosa, Islam M.; Su, Dong; ...

    2015-12-03

    Controlling active sites of metal-free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). We made many attempts have been made to develop metal-free catalysts, but the lack of understanding of active-sites at the atomic-level has slowed the design of highly active and stable metal-free catalysts. We also developed a sequential two-step strategy to dope sulfur into carbon nanotube–graphene nanolobes. This bidoping strategy introduces stable sulfur–carbon active-sites. Fluorescence emission of the sulfur K-edge by X-ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) mapping and spectra confirm thatmore » increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm-2, but also retains 100% of stability after 75 h. Furthermore, the bidoped sulfur carbon nanotube–graphene nanolobes behave like the state-of-the-art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm-2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light-weight bidoped sulfur carbon nanotubes are potential candidates for next-generation metal-free regenerative fuel cells.« less

  13. Controlling the Active Sites of Sulfur-Doped Carbon Nanotube-Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis

    SciTech Connect

    El-Sawy, Abdelhamid M.; Mosa, Islam M.; Su, Dong; Guild, Curtis J.; Khalid, Syed; Joesten, Raymond; Rusling, James F.; Suib, Steven L.

    2015-12-03

    Controlling active sites of metal-free catalysts is an important strategy to enhance activity of the oxygen evolution reaction (OER). We made many attempts have been made to develop metal-free catalysts, but the lack of understanding of active-sites at the atomic-level has slowed the design of highly active and stable metal-free catalysts. We also developed a sequential two-step strategy to dope sulfur into carbon nanotube–graphene nanolobes. This bidoping strategy introduces stable sulfur–carbon active-sites. Fluorescence emission of the sulfur K-edge by X-ray absorption near edge spectroscopy (XANES) and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) mapping and spectra confirm that increasing the incorporation of heterocyclic sulfur into the carbon ring of CNTs not only enhances OER activity with an overpotential of 350 mV at a current density of 10 mA cm-2, but also retains 100% of stability after 75 h. Furthermore, the bidoped sulfur carbon nanotube–graphene nanolobes behave like the state-of-the-art catalysts for OER but outperform those systems in terms of turnover frequency (TOF) which is two orders of magnitude greater than (20% Ir/C) at 400 mV overpotential with very high mass activity 1000 mA cm-2 at 570 mV. Moreover, the sulfur bidoping strategy shows high catalytic activity for the oxygen reduction reaction (ORR). Stable bifunctional (ORR and OER) catalysts are low cost, and light-weight bidoped sulfur carbon nanotubes are potential candidates for next-generation metal-free regenerative fuel cells.

  14. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage

    PubMed Central

    Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G.; Jaffray, David A.; Lu, Qing-Bin

    2011-01-01

    Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of with various scavengers (KNO3, isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by and OH• radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each is twice the yield of oxidative DNA strand breaks induced by each OH• radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of in many processes in chemistry, physics, biology, and the environment. PMID:21730183

  15. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  16. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction

    PubMed Central

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum–nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum–nickel catalyst, and this composite catalyst composed of crystalline platinum–nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  17. Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity

    PubMed Central

    Tiwari, Jitendra N.; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N.; Kemp, K. Christian; Le, Nhien H.; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S.

    2013-01-01

    Nanosize platinum clusters with small diameters of 2–4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA–graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA–graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA–graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries. PMID:23900456

  18. The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide

    PubMed Central

    2017-01-01

    A seemingly catalytically inactive electrode, boron-doped diamond (BDD), is found to be active for CO2 and CO reduction to formaldehyde and even methane. At very cathodic potentials, formic acid and methanol are formed as well. However, these products are the result of base-catalyzed Cannizzaro-type disproportionation reactions. A local alkaline environment near the electrode surface, caused by the hydrogen evolution reaction, initiates aldehyde disproportionation promoted by hydroxide ions, which leads to the formation of the corresponding carboxylic acid and alcohol. This phenomenon is strongly influenced by the electrolyte pH and buffer capacity and not limited to BDD or formaldehyde, but can be generalized to different electrode materials and to C2 and C3 aldehydes as well. The importance of these reactions is emphasized as the formation of acids and alcohols is often ascribed to direct CO2 reduction products. The results obtained here may explain the concomitant formation of acids and alcohols often observed during CO2 reduction. PMID:28099805

  19. Stable platinum nanoclusters on genomic DNA-graphene oxide with a high oxygen reduction reaction activity.

    PubMed

    Tiwari, Jitendra N; Nath, Krishna; Kumar, Susheel; Tiwari, Rajanish N; Kemp, K Christian; Le, Nhien H; Youn, Duck Hyun; Lee, Jae Sung; Kim, Kwang S

    2013-01-01

    Nanosize platinum clusters with small diameters of 2-4 nm are known to be excellent catalysts for the oxygen reduction reaction. The inherent catalytic activity of smaller platinum clusters has not yet been reported due to a lack of preparation methods to control their size (<2 nm). Here we report the synthesis of platinum clusters (diameter ≤1.4 nm) deposited on genomic double-stranded DNA-graphene oxide composites, and their high-performance electrocatalysis of the oxygen reduction reaction. The electrochemical behaviour, characterized by oxygen reduction reaction onset potential, half-wave potential, specific activity, mass activity, accelerated durability test (10,000 cycles) and cyclic voltammetry stability (10,000 cycles) is attributed to the strong interaction between the nanosize platinum clusters and the DNA-graphene oxide composite, which induces modulation in the electronic structure of the platinum clusters. Furthermore, we show that the platinum cluster/DNA-graphene oxide composite possesses notable environmental durability and stability, vital for high-performance fuel cells and batteries.

  20. Direct observation of ultrafast-electron-transfer reactions unravels high effectiveness of reductive DNA damage.

    PubMed

    Nguyen, Jenny; Ma, Yuhan; Luo, Ting; Bristow, Robert G; Jaffray, David A; Lu, Qing-Bin

    2011-07-19

    Both water and electron-transfer reactions play important roles in chemistry, physics, biology, and the environment. Oxidative DNA damage is a well-known mechanism, whereas the relative role of reductive DNA damage is unknown. The prehydrated electron (e(pre)-), a novel species of electrons in water, is a fascinating species due to its fundamental importance in chemistry, biology, and the environment. e(pre)- is an ideal agent to observe reductive DNA damage. Here, we report both the first in situ femtosecond time-resolved laser spectroscopy measurements of ultrafast-electron-transfer (UET) reactions of e(pre)- with various scavengers (KNO(3), isopropanol, and dimethyl sulfoxide) and the first gel electrophoresis measurements of DNA strand breaks induced by e(pre)- and OH(•) radicals co-produced by two-UV-photon photolysis of water. We strikingly found that the yield of reductive DNA strand breaks induced by each e(pre)- is twice the yield of oxidative DNA strand breaks induced by each OH(•) radical. Our results not only unravel the long-standing mystery about the relative role of radicals in inducing DNA damage under ionizing radiation, but also challenge the conventional notion that oxidative damage is the main pathway for DNA damage. The results also show the potential of femtomedicine as a new transdisciplinary frontier and the broad significance of UET reactions of e(pre)- in many processes in chemistry, physics, biology, and the environment.

  1. Reaction cell for in situ soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering measurements of heterogeneous catalysis up to 1 atm and 250 °C.

    PubMed

    Kristiansen, P T; Rocha, T C R; Knop-Gericke, A; Guo, J H; Duda, L C

    2013-11-01

    We present a novel in situ reaction cell for heterogeneous catalysis monitored in situ by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). The reaction can be carried out at a total pressure up to 1 atm, a regime that has not been accessible to comparable in situ techniques and thus closes the pressure gap to many industrial standard conditions. Two alternate catalyst geometries were tested: (A) a thin film evaporated directly onto an x-ray transparent membrane with a flowing reaction gas mixture behind it or (B) a powder placed behind both the membrane and a gap of flowing reaction gas mixture. To illustrate the working principle and feasibility of our reaction cell setup we have chosen ethylene epoxidation over a silver catalyst as a test case. The evolution of incorporated oxygen species was monitored by total electron/fluorescence yield O K-XAS as well as O K-RIXS, which is a powerful method to separate contributions from inequivalent sites. We find that our method can reliably detect transient species that exist during catalytic reaction conditions that are hardly accessible using other spectroscopic methods.

  2. Reaction cell for in situ soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering measurements of heterogeneous catalysis up to 1 atm and 250 °C

    SciTech Connect

    Kristiansen, P. T.; Rocha, T. C. R.; Knop-Gericke, A.; Guo, J. H.; Duda, L. C.

    2013-11-15

    We present a novel in situ reaction cell for heterogeneous catalysis monitored in situ by x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS). The reaction can be carried out at a total pressure up to 1 atm, a regime that has not been accessible to comparable in situ techniques and thus closes the pressure gap to many industrial standard conditions. Two alternate catalyst geometries were tested: (A) a thin film evaporated directly onto an x-ray transparent membrane with a flowing reaction gas mixture behind it or (B) a powder placed behind both the membrane and a gap of flowing reaction gas mixture. To illustrate the working principle and feasibility of our reaction cell setup we have chosen ethylene epoxidation over a silver catalyst as a test case. The evolution of incorporated oxygen species was monitored by total electron/fluorescence yield O K-XAS as well as O K-RIXS, which is a powerful method to separate contributions from inequivalent sites. We find that our method can reliably detect transient species that exist during catalytic reaction conditions that are hardly accessible using other spectroscopic methods.

  3. Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions

    NASA Astrophysics Data System (ADS)

    Liebensteiner, Martin G.; Pinkse, Martijn W. H.; Schaap, Peter J.; Stams, Alfons J. M.; Lomans, Bart P.

    2013-04-01

    Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show (per)chlorate reduction also extends into the archaeal domain of life. The (per)chlorate reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity with bacterial enzymes; however, chlorite is not enzymatically split into chloride and oxygen. Evidence suggests that it is eliminated by an interplay of abiotic and biotic redox reactions involving sulfur compounds. Biological (per)chlorate reduction by ancient archaea at high temperature may have prevented accumulation of perchlorate in early terrestrial environments and consequently given rise to oxidizing conditions on Earth before the rise of oxygenic photosynthesis.

  4. Experiments to Determine Neighborhood Reactions to Light Airplanes With and Without External Noise Reduction

    NASA Technical Reports Server (NTRS)

    Elwell, Fred S

    1953-01-01

    The work reported was part of a program of experimentation with external noise reduction on light airplanes. This particular study was in effect a byproduct survey conceived to utilize already available equipment and personnel to further the findings of the original research and to determine reactions in populated neighborhoods to light aircraft with and without noise-reduction equipment. The findings indicate that at the 10 sites within and about metropolitan Boston the degree of noise reduction previously found to be aerodynamically and structurally feasible did eliminate substantially all neighborhood objections to noise per se. The evidence clearly suggests that, when the noise nuisance is minimized to the extent found feasible, the number and severity of other objections also diminish -- evidently because the flight operations are noticed less when heard less.

  5. Operando chemistry of catalyst surfaces during catalysis.

    PubMed

    Dou, Jian; Sun, Zaicheng; Opalade, Adedamola A; Wang, Nan; Fu, Wensheng; Tao, Franklin Feng

    2017-04-03

    Chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of mechanism of a catalytic reaction performed on the catalyst in the gas or liquid phase. Due to the pressure- or molecular density-dependent entropy contribution of gas or liquid phase of the reactants and the potential formation of a catalyst surface during catalysis different from that observed in an ex situ condition, the characterization of the surface of a catalyst under reaction conditions and during catalysis can be significant and even necessary for understanding the catalytic mechanism at a molecular level. Electron-based analytical techniques are challenging for studying catalyst nanoparticles in the gas or liquid phase although they are necessary techniques to employ. Instrumentation and further development of these electron-based techniques have now made in situ/operando studies of catalysts possible. New insights into the chemistry and structure of catalyst nanoparticles have been uncovered over the last decades. Herein, the origin of the differences between ex situ and in situ/operando studies of catalysts, and the technical challenges faced as well as the corresponding instrumentation and innovations utilized for characterizing catalysts under reaction conditions and during catalysis, are discussed. The restructuring of catalyst surfaces driven by the pressure of reactant(s) around a catalyst, restructuring in reactant(s) driven by reaction temperature and restructuring during catalysis are also reviewed herein. The remaining challenges and possible solutions are briefly discussed.

  6. Microheterogeneous catalysis.

    PubMed

    Bernal, Eva; Marchena, María; Sánchez, Francisco

    2010-07-09

    The catalytic effect of micelles, polymers (such as DNA, polypeptides) and nanoparticles, saturable receptors (cyclodextrins and calixarenes) and more complex systems (mixing some of the above mentioned catalysts) have been reviewed. In these microheterogeneous systems the observed changes in the rate constants have been rationalized using the Pseudophase Model. This model produces equations that can be derived from the Brönsted equation, which is the basis for a more general formulation of catalytic effects, including electrocatalysis. When, in the catalyzed reaction one of the reactants is in the excited state, the applicability (at least formally) of the Pseudophase Model occurs only in two limiting situations: the lifetime of the fluorophore and the distributions of the quencher and the probe are the main properties that define the different situations.

  7. Reaction-based modeling of quinone-mediated bacterial iron(III) reduction

    NASA Astrophysics Data System (ADS)

    Burgos, William D.; Fang, Yilin; Royer, Richard A.; Yeh, Gour-Tsyh; Stone, James J.; Jeon, Byong-Hun; Dempsey, Brian A.

    2003-08-01

    This paper presents and validates a new paradigm for modeling complex biogeochemical systems using a diagonalized reaction-based approach. The bioreduction kinetics of hematite (α-Fe 2O 3) by the dissimilatory metal-reducing bacterium (DMRB) Shewanella putrefaciens strain CN32 in the presence of the soluble electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) is used for presentation/validation purposes. Experiments were conducted under nongrowth conditions with H 2 as the electron donor. In the presence of AQDS, both direct biological reduction and indirect chemical reduction of hematite by bioreduced anthrahydroquinone-2,6-disulfonate (AH 2DS) can produce Fe(II). Separate experiments were performed to describe the bioreduction of hematite, bioreduction of AQDS, chemical reduction of hematite by AH 2DS, Fe(II) sorption to hematite, and Fe(II) biosorption to DMRB. The independently determined rate parameters and equilibrium constants were then used to simulate the parallel kinetic reactions of Fe(II) production in the hematite-with-AQDS experiments. Previously determined rate formulations/parameters for the bioreduction of hematite and Fe(II) sorption to hematite were systematically tested by conducting experiments with different initial conditions. As a result, the rate formulation/parameter for hematite bioreduction was not modified, but the rate parameters for Fe(II) sorption to hematite were modified slightly. The hematite bioreduction rate formulation was first-order with respect to hematite "free" surface sites and zero-order with respect to DMRB based on experiments conducted with variable concentrations of hematite and DMRB. The AQDS bioreduction rate formulation was first-order with respect to AQDS and first-order with respect to DMRB based on experiments conducted with variable concentrations of AQDS and DMRB. The chemical reduction of hematite by AH 2DS was fast and considered to be an equilibrium reaction. The simulations of hematite

  8. Catalysis for Fluorination and Trifluoromethylation

    PubMed Central

    Furuya, Takeru; Kamlet, Adam S.; Ritter, Tobias

    2011-01-01

    Preface Recent advances in catalysis have made the incorporation of fluorine into complex organic molecules easier than ever before, but selective, general, and practical fluorination reactions remain sought after. Fluorination of molecules often imparts desirable properties such as metabolic and thermal stability, and fluorinated molecules are therefore frequently used as pharmaceuticals or materials. Even with the latest advances in chemistry, carbon–fluorine bond formation in complex molecules is still a significant challenge. Within the last few years, new reactions to make organofluorides have emerged and exemplify how to overcome some of the intricate challenges associated with fluorination. PMID:21614074

  9. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM).

    PubMed

    Schiffmann, Christian; Hansen, Rasmus; Baumann, Sven; Kublik, Anja; Nielsen, Per Halkjær; Adrian, Lorenz; von Bergen, Martin; Jehmlich, Nico; Seifert, Jana

    2014-01-01

    Targeted absolute protein quantification yields valuable information about physiological adaptation of organisms and is thereby of high interest. Especially for this purpose, two proteomic mass spectrometry-based techniques namely selective reaction monitoring (SRM) and precursor reaction monitoring (PRM) are commonly applied. The objective of this study was to establish an optimal quantification assay for proteins with the focus on those involved in housekeeping functions and putative reductive dehalogenase proteins from the strictly anaerobic bacterium Dehalococcoides mccartyi strain CBDB1. This microbe is small and slow-growing; hence, it provides little biomass for comprehensive proteomic analysis. We therefore compared SRM and PRM techniques. Eleven peptides were successfully quantified by both methods. In addition, six peptides were solely quantified by SRM and four by PRM, respectively. Peptides were spiked into a background of Escherichia coli lysate and the majority of peptides were quantifiable down to 500 amol absolute on column by both methods. Peptide quantification in CBDB1 lysate resulted in the detection of 15 peptides using SRM and 14 peptides with the PRM assay. Resulting quantification of five dehalogenases revealed copy numbers of <10 to 115 protein molecules per cell indicating clear differences in abundance of RdhA proteins during growth on hexachlorobenzene. Our results indicated that both methods show comparable sensitivity and that the combination of the mass spectrometry assays resulted in higher peptide coverage and thus more reliable protein quantification.

  10. Concepts in Heterogeneous Catalysis

    DTIC Science & Technology

    1974-06-01

    adsorption seemns likely.66 4. Some Problems in Catalysis on Metals.. a. Recent Work Supporting the Localized Bonding and Molecular Orbital Approach in...represents molecular hydro- gen adsorption and tilhe high .energy state, atoivi I hydrogen adsorption . Molecular adsorbedl hydrogen onl plattitnu has niot...Analogies lIetwon Hetterogeneous Catalysis, Transition Metal Complex Chemistry, and Homogeneous Catalysis 81 a. Applications or the Molecular Orbital

  11. Micrometer-scale mixing with Pickering emulsions: biphasic reactions without stirring.

    PubMed

    Zhang, Wenjuan; Fu, Luman; Yang, Hengquan

    2014-02-01

    A general strategy that avoids stirring for organic/aqueous reactions involving solid catalysts is reported. The strategy involves converting a conventional biphasic system into a Pickering emulsion phase with micrometer-scale droplets ensuring good mixing. In test reactions, nitrotoluene reduction and epoxidation of allylic alcohols, the reaction efficiency is comparable to conventional stirrer-driven biphasic catalysis reaction systems. Short diffusion distances, arising from the compartmentalization of densely packed droplets, play an important role in boosting the reaction efficiency.

  12. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    PubMed Central

    Vorbeck, Claudia; Lenke, Hiltrud; Fischer, Peter; Spain, Jim C.; Knackmuss, Hans-Joachim

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H−-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H−-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT−), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur. PMID:16349484

  13. Electrocatalytic oxygen reduction reaction on perovskite oxides: series versus direct pathway.

    PubMed

    Poux, Tiphaine; Bonnefont, Antoine; Kéranguéven, Gwénaëlle; Tsirlina, Galina A; Savinova, Elena R

    2014-07-21

    The mechanism of the oxygen reduction reaction (ORR) on LaCoO(3) and La(0.8)Sr(0.2)MnO(3) perovskite oxides is studied in 1 M NaOH by using the rotating ring disc electrode (RRDE) method. By combining experimental studies with kinetic modeling, it was demonstrated that on perovskite, as well as on perovskite/carbon electrodes, the ORR follows a series pathway through the intermediate formation of hydrogen peroxide. The escape of this intermediate from the electrode strongly depends on: 1) The loading of perovskite; high loadings lead to an overall 4 e(-) oxygen reduction due to efficient hydrogen peroxide re-adsorption on the active sites and its further reduction. 2) The addition of carbon to the catalytic layer, which affects both the utilization of the perovskite surface and the production of hydrogen peroxide. 3) The type of oxide; La(0.8)Sr(0.2)MnO(3) displays higher (compared to LaCoO(3)) activity in the reduction of oxygen to hydrogen peroxide and in the reduction/oxidation of the latter.

  14. Electrochemical oxygen reduction reaction by Pt nanoparticles on carbon support stabilized by polyoxometalates.

    PubMed

    Kishore, Pilli Satyananda; Viswanathan, Balasubramanian; Varadarajan, Thirukkallam Kanthadai

    2009-09-01

    The abilities of Keggin type polyoxometalate, silicotungstic acid (STA) to reduce metal ions by electron transfer and to modify carbon surface by strong adsorption have been explored for the preparation of Pt nanoparticles supported on carbon composites (20% Pt/STA-C). The prepared composites were characterized by Transmission electron microscopy (TEM and HRTEM)), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The electrocatalytic activities of the prepared nanocomposites were examined by using Cyclic voltammetry (CV) for oxygen reduction reaction which takes place at cathode in fuel cells. The prepared composite (20% Pt/STA-C) proved efficient compared to STA free 20% Pt/C, prepared by hydrogen reduction method. H2O2 intermediate formation is a serious concern as it reduces the activity of Pt sites during oxygen reduction. The composites prepared by polyoxometalate reduction method (20% Pt/STA-C) showed better reduction ability towards H2O2 compared to STA free 20% Pt/C composite and thus showed better performance as cathode electrocatalyst for fuel cells.

  15. Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene.

    PubMed

    Vorbeck, C; Lenke, H; Fischer, P; Spain, J C; Knackmuss, H J

    1998-01-01

    Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.

  16. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.

    PubMed

    Szefczyk, Borys; Mulholland, Adrian J; Ranaghan, Kara E; Sokalski, W Andrzej

    2004-12-15

    Chorismate mutase is a key model system in the development of theories of enzyme catalysis. To analyze the physical nature of catalytic interactions within the enzyme active site and to estimate the stabilization of the transition state (TS) relative to the substrate (differential transition state stabilization, DTSS), we have carried out nonempirical variation-perturbation analysis of the electrostatic, exchange, delocalization, and correlation interactions of the enzyme-bound substrate and transition-state structures derived from ab initio QM/MM modeling of Bacillus subtilis chorismate mutase. Significant TS stabilization by approximately -23 kcal/mol [MP2/6-31G(d)] relative to the bound substrate is in agreement with that of previous QM/MM modeling and contrasts with suggestions that catalysis by this enzyme arises purely from conformational selection effects. The most important contributions to DTSS come from the residues, Arg90, Arg7, Glu78, a crystallographic water molecule, Arg116, and Arg63, and are dominated by electrostatic effects. Analysis of the differential electrostatic potential of the TS and substrate allows calculation of the catalytic field, predicting the optimal location of charged groups to achieve maximal DTSS. Comparison with the active site of the enzyme from those of several species shows that the positions of charged active site residues correspond closely to the optimal catalytic field, showing that the enzyme has evolved specifically to stabilize the TS relative to the substrate.

  17. Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction.

    PubMed

    Liang, Yongye; Li, Yanguang; Wang, Hailiang; Zhou, Jigang; Wang, Jian; Regier, Tom; Dai, Hongjie

    2011-10-01

    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

  18. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2008-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  19. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  20. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2008-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA's oxygen production system modeling tool is noted.

  1. Nanostructured Materials for Heterogeneous Electrocatalytic CO2 Reduction and Related Reaction Mechanisms.

    PubMed

    Gong, Jinlong; Zhang, Lei; Zhao, Zhi-Jian

    2017-02-06

    The gradually increased concentration of carbon dioxide (CO2) in the atmosphere has been recognized as the primary culprit for the raise of the global mean temperature, thus resulting in the aggravated desert formation and extinction of species. In recent years, development of the routes for highly efficient conversion of CO2 has received numerous attentions. Among them, the reduction of CO2 with electric power is an important transformation route with high application prospect, due to its high environmental compatibility and good combination with other renewable energy sources such as solar and wind energy. This review describes recent progress on the design and synthesis of solid state catalysts (i.e., heterogeneous catalysts) and their emerging catalytic performances in the CO2 reduction. The significance for catalytic conversion of CO2 and the advantages of CO2 electroreduction will be presented in the introduction section, followed by the general parameters for CO2 electroreduction and the summary of reaction apparatus. We also discuss various types of solid catalysts according to CO2 conversion mechanisms. Furthermore, we summarize the crucial factors (particle size, surface structure, composition and etc.) determining the performance for electroreduction. These studies in improvement of solid state catalysts for CO2 reduction offer numerous experiences for developing potential industrialized CO2 electroreduction catalysts in the future. Additionally, the abundant experience for controllable synthesis of solid state catalysts could effectively guide the rational design of catalysts for other electrocatalytic reactions.

  2. Study on Reaction Products in Plasma-Assisted Selective Catalytic Reduction of NOx

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Hayato; Tochikubo, Fumiyoshi; Uchida, Satoshi; Watanabe, Tsuneo

    Since the gas discharge plasma easily converts NO to NO2, which can be reduced more actively in selective catalytic reduction with hydrocarbons (HC-SCR), the plasma-assisted HC-SCR is an effective method for NOx reduction from diesel engine exhaust gases. In this work, the relation between NOx removal and reaction products is investigated in plasma-assisted HC-SCR in simulated flue gas as parameters of gas composition, plasma specific energy and catalyst temperature. C2H4 is used as a hydrocarbon and commercially available Al2O3 is used as a catalyst. After the plasma treatment of simulated flue gas, HCHO and HCOOH were generated as by-products, while NO was effectively converted to NO2. These by-products were confirmed to be reactive at lower catalyst temperature than C2H4 in HC-SCR. The relation between NOx removal and reaction products suggests that HCHO and HCOOH contribute the effective NOx reduction at low catalyst temperature in plasma-assisted HC-SCR.

  3. Reaction-Based Reactive Transport Modeling of Fe(III) and U(V) Reduction

    SciTech Connect

    Burgos, William D.; Roden, Eric E.; Yeh, Gour-Tsyh

    2005-06-01

    Our new research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Our previous NABIR project (DE-FG02-01ER63180/63181/63182, funded within the Biotransformation Element) focused on (1) microbial reduction of Fe(III) and U(VI) individually, and concomitantly in natural sediments, (2) Fe(III) oxide surface chemistry, specifically with respect to reactions with Fe(II) and U(VI), (3) the influence of humic substances on Fe(III) and U(VI) bioreduction, and on U(VI) complexation, and (4) the development of reaction-based reactive transport biogeochemical models to numerically simulate our experimental results. The new project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  4. Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Li, Jiajie; Zhang, Yumin; Zhang, Xinghong; Han, Jiecai; Wang, Yi; Gu, Lin; Zhang, Zhihua; Wang, Xianjie; Jian, Jikang; Xu, Ping; Song, Bo

    2015-09-09

    Carbon-based nanomaterials provide an attractive perspective to replace precious Pt-based electrocatalysts for oxygen reduction reaction (ORR) to enhance the practical applications of fuel cells. Herein, we demonstrate a one-pot direct transformation from graphitic-phase C3N4 (g-C3N4) to nitrogen-doped graphene. g-C3N4, containing only C and N elements, acts as a self-sacrificing template to construct the framework of nitrogen-doped graphene. The relative contents of graphitic and pyridinic-N can be well-tuned by the controlled annealing process. The resulting nitrogen-doped graphene materials show excellent electrocatalytic activity toward ORR, and much enhanced durability and tolerance to methanol in contrast to the conventional Pt/C electrocatalyst in alkaline medium. It is determined that a higher content of N does not necessarily lead to enhanced electrocatalytic activity; rather, at a relatively low N content and a high ratio of graphitic-N/pyridinic-N, the nitrogen-doped graphene obtained by annealing at 900 °C (NGA900) provides the most promising activity for ORR. This study may provide further useful insights on the nature of ORR catalysis of carbon-based materials.

  5. Nitrogen-Doped Carbon Nanoparticle-Carbon Nanofiber Composite as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction Reaction.

    PubMed

    Panomsuwan, Gasidit; Saito, Nagahiro; Ishizaki, Takahiro

    2016-03-23

    Metal-free nitrogen-doped carbon materials are currently considered at the forefront of potential alternative cathode catalysts for the oxygen reduction reaction (ORR) in fuel cell technology. Despite numerous efforts in this area over the past decade, rational design and development of a new catalyst system based on nitrogen-doped carbon materials via an innovative approach still present intriguing challenges in ORR catalysis research. Herein, a new kind of nitrogen-doped carbon nanoparticle-carbon nanofiber (NCNP-CNF) composite with highly efficient and stable ORR catalytic activity has been developed via a new approach assisted by a solution plasma process. The integration of NCNPs and CNFs by the solution plasma process can lead to a unique morphological feature and modify physicochemical properties. The NCNP-CNF composite exhibits a significantly enhanced ORR activity through a dominant four-electron pathway in an alkaline solution. The enhancement in ORR activity of NCNP-CNF composite can be attributed to the synergistic effects of good electron transport from highly graphitized CNFs as well as abundance of exposed catalytic sites and meso/macroporosity from NCNPs. More importantly, NCNP-CNF composite reveals excellent long-term durability and high tolerance to methanol crossover compared with those of a commercial 20 wt % supported on Vulcan XC-72. We expect that NCNP-CNF composite prepared by this synthetic approach can be a promising metal-free cathode catalyst candidate for ORR in fuel cells and metal-air batteries.

  6. Tuning nanoparticle structure and surface strain for catalysis optimization.

    PubMed

    Zhang, Sen; Zhang, Xu; Jiang, Guangming; Zhu, Huiyuan; Guo, Shaojun; Su, Dong; Lu, Gang; Sun, Shouheng

    2014-05-28

    Controlling nanoparticle (NP) surface strain, i.e. compression (or stretch) of surface atoms, is an important approach to tune NP surface chemistry and to optimize NP catalysis for chemical reactions. Here we show that surface Pt strain in the core/shell FePt/Pt NPs with Pt in three atomic layers can be rationally tuned via core structural transition from cubic solid solution [denoted as face centered cubic (fcc)] structure to tetragonal intermetallic [denoted as face centered tetragonal (fct)] structure. The high activity observed from the fct-FePt/Pt NPs for oxygen reduction reaction (ORR) is due to the release of the overcompressed Pt strain by the fct-FePt as suggested by quantum mechanics-molecular mechanics (QM-MM) simulations. The Pt strain effect on ORR can be further optimized when Fe in FePt is partially replaced by Cu. As a result, the fct-FeCuPt/Pt NPs become the most efficient catalyst for ORR and are nearly 10 times more active in specific activity than the commercial Pt catalyst. This structure-induced surface strain control opens up a new path to tune and optimize NP catalysis for ORR and many other chemical reactions.

  7. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    SciTech Connect

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero

  8. Catalysis by unsupported skeletal gold catalysts.

    PubMed

    Wittstock, Arne; Bäumer, Marcus

    2014-03-18

    Catalysis is one of the key technologies for the 21st century for achieving the required sustainability of chemical processes. Critical improvements are based on the development of new catalysts and catalytic concepts. In this context, gold holds great promise because it is more active and selective than other precious metal catalysts at low temperatures. However, gold becomes only chemically and catalytically active when it is nanostructured. Since the 1970s and 1980s, the first type of gold catalysts that chemists studied were small nanoparticles on oxidic supports. With the later onset of nanotechnology, a variety of nanostructured materials not requiring a support or organic stabilizers became available within about the last 10 years. Among these are gold nanofoams generated by combustion of gold compounds, nanotube membranes prepared by electroless deposition of gold inside a template, and corrosion-derived nanoporous gold. Even though these materials are macroscopic in their geometric dimensions (e.g., disks, cubes, and membranes with dimensions of millimeters), they are comprised of gold nanostructures, for example, in the form of ligaments as small as 15 nm in diameter (nanoporous gold, npAu). The nanostructure brings about a high surface to volume ratio and a large fraction of low coordinated surface atoms. In this Account, we discuss how unsupported materials are active catalysts for aerobic oxidation reaction in gas phase (oxidation of CO and primary alcohols), as well as liquid phase oxidation and reduction reactions. It turns out that the bonding and activation of molecular oxygen for gas phase oxidations strongly profits from trace amounts of an ad-metal residue such as silver. It is noteworthy that these catalysts still exhibit the special gold type chemistry, characterized by activity at very low temperatures and high selectivity for partial oxidations. For example, we can oxidize CO over these unsupported catalysts (npAu, nanotubes, and powder) at

  9. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  10. Preparation of gold nanoparticles by surfactant-promoted reductive reaction without extra reducing agent.

    PubMed

    Tang, Junqi; Huang, Jiamin; Man, Shi-Qing

    2013-02-15

    Cetyltrimethyl ammonium bromide (CTAB) has been extensively applied in the solution-phase synthesis of many types of colloidal nanoparticles. However, the uses of CTAB were mainly considered as template or capping agents to form controllable shape and protect the product from agglomeration. Here it was discovered that CATB could serve as a very mild reductant to reduce gold salt precursors preparing gold nanoparticles (GNPs) at base environment. CTAB acted as the reducing agent suffering a partial degradation and forming CTA macro radicals. FTIR proved the formation of CCl and/or CBr bond after CTAB degraded. The characterization of synthesized GNPs was examined by UV-Vis spectra, TEM and XRD. Several factors affecting the process of reaction, such as the amount of NaOH, the molar ratio of CTAB and HAuCl(4), the reaction temperature, the effect of light and oxygen, and stirring were discussed.

  11. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction

    SciTech Connect

    Raciti, David; Kubal, Joseph; Ma, Cheng; Barclay, Michael; Gonzalez, Matthew; Chi, Miaofang; Greeley, Jeffrey; More, Karren L.; Wang, Chao

    2015-12-25

    Development of renewable energy technologies requires advanced catalysts for efficient electrical-chemical energy conversion reactions. Here in this paper, we report the study of Pt-Re alloy nanoparticles as an electrocatalyst for the oxygen reduction reaction (ORR). An organic solution approach is developed to synthesize monodisperse and homogeneous Pt3Re alloy nanoparticles. Electrochemical studies show that these nanoparticles exhibit an improvement factor of 4 in catalytic activity for the ORR compared to commercial Pt catalysts of similar particle sizes. Fundamental understanding of the structure-property relationship is established by combining material characterization using X-ray spectroscopy and atomically resolved electron microscopy, as well as Density Functional Theory (DFT) calculations. Lastly, our work revealed that an electronic modification of the surface properties of Pt by subsurface Re (ligand effect) accounts for the catalytic enhancement.

  12. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction

    DOE PAGES

    Raciti, David; Kubal, Joseph; Ma, Cheng; ...

    2015-12-25

    Development of renewable energy technologies requires advanced catalysts for efficient electrical-chemical energy conversion reactions. Here in this paper, we report the study of Pt-Re alloy nanoparticles as an electrocatalyst for the oxygen reduction reaction (ORR). An organic solution approach is developed to synthesize monodisperse and homogeneous Pt3Re alloy nanoparticles. Electrochemical studies show that these nanoparticles exhibit an improvement factor of 4 in catalytic activity for the ORR compared to commercial Pt catalysts of similar particle sizes. Fundamental understanding of the structure-property relationship is established by combining material characterization using X-ray spectroscopy and atomically resolved electron microscopy, as well as Densitymore » Functional Theory (DFT) calculations. Lastly, our work revealed that an electronic modification of the surface properties of Pt by subsurface Re (ligand effect) accounts for the catalytic enhancement.« less

  13. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    SciTech Connect

    Ham, Hyung Chul; Hwang, Gyeong S.; Manogaran, Dhivya; Lee, Kang Hee; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Kwon, Kyungjung

    2013-11-28

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd{sub 3}Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd{sub 3}Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  14. Covalent grafting of carbon nanotubes with a biomimetic heme model compound to enhance oxygen reduction reactions.

    PubMed

    Wei, Ping-Jie; Yu, Guo-Qiang; Naruta, Yoshinori; Liu, Jin-Gang

    2014-06-23

    The oxygen reduction reaction (ORR) is one of the most important reactions in both life processes and energy conversion systems. The replacement of noble-metal Pt-based ORR electrocatalysts by nonprecious-metal catalysts is crucial for the large-scale commercialization of automotive fuel cells. Inspired by the mechanisms of dioxygen activation by metalloenzymes, herein we report a structurally well-defined, bio-inspired ORR catalyst that consists of a biomimetic model compound-an axial imidazole-coordinated porphyrin-covalently attached to multiwalled carbon nanotubes. Without pyrolysis, this bio-inspired electrocatalyst demonstrates superior ORR activity and stability compared to those of the state-of-the-art Pt/C catalyst in both acidic and alkaline solutions, thus making it a promising alternative as an ORR electrocatalyst for application in fuel-cell technology.

  15. Cobalt-Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction.

    PubMed

    Kim, Sujin; Jang, Dawoon; Lim, Joonwon; Oh, Junghoon; Kim, Sang Ouk; Park, Sungjin

    2017-09-11

    Hybrid systems in which molecule-based active species are combined with nanoscale materials may offer valuable routes to enhance catalytic performances for electrocatalytic reactions. The development of rationally designed, cost-effective, efficient catalysts for the oxygen reduction reaction (ORR) is a crucial challenge for applications in fuel cells and metal-air batteries. A new hybrid ORR catalyst has been synthesized through a well-defined reaction between Co-based organometallic molecules and N-doped multiwalled carbon nanotubes (MWCNTs) at room temperature. The hybrid ORR catalyst shows excellent catalytic performance with an onset potential of 0.95 V [vs. the reversible hydrogen electrode (RHE)], superior durability, and good methanol tolerance. Chemical and structural characterization after many reaction cycles reveals that the Co-based organometallic species maintained the original structure of cobalt(II) acetylacetonate with coordination to the heteroatoms of the MWCNTs. A thorough electrochemical investigation indicates that the major catalytically active site is Co-O4 -NCNT . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface

    SciTech Connect

    Kattel, Shyam; Wang, Guofeng

    2014-09-28

    We investigated the influence of compressive surface strain on the progression of oxygen reduction reaction (ORR) on Pt(111) surface using the density functional theory (DFT) calculation method. Specifically, we calculated the binding energies of all the chemical species possibly involved in ORR and the reaction energies (heat of reaction and activation energy) of all the possible ORR elementary reactions on the Pt(111) surfaces with −2% and −3% strain. Our DFT results indicate that all the ORR species bind more weakly on the compressively strained surfaces than on an unstrained surface owing to strain-induced d-electron band broadening. Our DFT calculations further predict that both OOH dissociation and HOOH dissociation pathways could be active for ORR on the Pt(111) surface with compressive strain between −2% and −3%. Moreover, the activation energies of the ORR rate-determining steps on the compressively strained Pt(111) surfaces were found to be lower than that on the unstrained Pt(111) surface. It was thus inferred that a −2% to −3% surface strain could lead to enhanced ORR activity on the Pt(111) catalysts. Consequently, our study suggests that tuning surface strain is an effective way to improve the performance of Pt-based electrocatalysts for ORR.

  17. Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction

    PubMed Central

    Zhou, Wei; Liang, Fengli; Shao, Zongping; Zhu, Zhonghua

    2012-01-01

    The widespread application of intermediate-temperature solid oxide fuel cells is mainly being hurdled by the cathode's low efficiency on oxygen reduction reaction and poor resistance to carbon dioxide impurity. Here we report the fabrication of a hierarchical shell-covered porous cathode through infiltration followed by microwave plasma treatment. The hierarchical shell consists of a dense thin-film substrate with cones on the top of the substrate, leading to a three-dimensional (3D) heterostructured electrode. The shell allows the cathode working stably in CO2-containing air, and significantly improving the cathode's oxygen reduction reactivity with an area specific resistance of ∼0.13 Ωcm2 at 575°C. The method is also suitable for fabricating functional shell on the irregularly shaped substrate in various applications. PMID:22439104

  18. Trend in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium

    SciTech Connect

    Dathar, Gopi Krishna Phani; Shelton Jr, William Allison; Xu, Ye

    2012-01-01

    Periodic density functional theory (DFT) calculations indicate that the intrinsic activity of Au, Ag, Pt, Pd, Ir, and Ru for the oxygen reduction reaction by Li (Li-ORR) forms a volcano-like trend with respect to the adsorption energy of oxygen, with Pt and Pd being the most active. The trend is based on two mechanisms: the reduction of molecular O{sub 2} on Au and Ag and of atomic O on the remaining metals. Step edges are found to be more active for catalyzing the Li-ORR than close-packed surfaces. Our findings identify important considerations in the design of catalyst-promoted air cathodes for nonaqueous Li-air batteries.

  19. Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium.

    PubMed

    Dathar, Gopi Krishna Phani; Shelton, William A; Xu, Ye

    2012-04-05

    Periodic density functional theory (DFT) calculations indicate that the intrinsic activity of Au, Ag, Pt, Pd, Ir, and Ru for the oxygen reduction reaction by Li (Li-ORR) forms a volcano-like trend with respect to the adsorption energy of oxygen, with Pt and Pd being the most active. The trend is based on two mechanisms: the reduction of molecular O2 on Au and Ag and of atomic O on the remaining metals. Step edges are found to be more active for catalyzing the Li-ORR than close-packed surfaces. Our findings identify important considerations in the design of catalyst-promoted air cathodes for nonaqueous Li-air batteries.

  20. Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction.

    PubMed

    Garsany, Yannick; Baturina, Olga A; Swider-Lyons, Karen E; Kocha, Shyam S

    2010-08-01

    A tutorial is provided for methods to accurately and reproducibly determine the activity of Pt-based electrocatalysts for the oxygen reduction reaction in proton exchange membrane fuel cells and other applications. The impact of various experimental parameters on electrocatalyst activity is demonstrated, and explicit experimental procedures and measurement protocols are given for comparison of electrocatalyst activity to fuel cell standards. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).