Science.gov

Sample records for reduction scr technology

  1. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  2. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  3. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1991-08-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  4. UREA INFRASTRUCTURE FOR UREA SCR NOX REDUCTION

    SciTech Connect

    Bunting, Bruce G.

    2000-08-20

    Urea SCR is currently the only proven NOX aftertreatment for diesel engines - high NOX reduction possible - some SCR catalyst systems are robust against fuel sulfur - durability has been demonstrated - many systems in the field - long history in other markets - Major limitations to acceptance - distribution of urea solution to end user - ensuring that urea solution is added to vehicle.

  5. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxides (NOx) emissions from high sulfur coal-fired utility boilers at Plant Crist SCR test facility

    SciTech Connect

    Hinton, W.S.; Maxwell, J.D.; Baldwin, A.L.

    1996-01-01

    This paper describes the status of the Innovative Clean Coal Technology project to demonstrate SCR technology for reduction of NOx emissions from flue gas of utility boilers burning U.S. high-sulfur coal. The project is sponsored by the U.S. Department of Energy, managed and co- funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro; and is located at Gulf Power Company`s Plant Crist Unit 5 (75 MW tangentially-fired boiler burning U.S. coals that have a sulfur content near 3.0%), near Pensacola, Florida. The test program is being conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility has nine reactors: three 2.5 MW (5000 scfm), and six 0.2 MW(400 scfm). Eight reactors operate on high-dust flue gas, while the ninth reactor operates on low-dust flue gas using a slip stream at the exit of the host unit`s hot side precipitator. The reactors operate in parallel with commercially available SCR catalysts obtained from vendors throughout the world. Long-term performance testing began in July 1993. A general test facility description and the results from three parametric test sequences and long term test data through December 1994 are presented in this paper.

  6. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1991-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  7. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  8. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect

    1992-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  9. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  10. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  11. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1991-07-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  12. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991

    SciTech Connect

    Not Available

    1991-07-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

  13. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  14. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1992-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3] and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  15. Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Third quarterly technical progress report 1992

    SciTech Connect

    Not Available

    1992-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur, coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3} and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high-sulfur US coal. The demonstration will be performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida.

  16. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  17. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, October 1993--December 1993

    SciTech Connect

    1995-06-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal.

  18. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 4, April--June 1991

    SciTech Connect

    Not Available

    1991-08-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor, Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuel performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  19. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  20. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers. Quarterly report No. 5, July--September 1991

    SciTech Connect

    Not Available

    1991-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  1. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    SciTech Connect

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  2. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    PubMed

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  3. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Draft final report

    SciTech Connect

    1996-06-14

    The primary goal of this project was to demonstrate the use of Selective Catalytic Reduction (SCR) to reduce NO{sub x} emissions from pulverized-coal utility boilers using medium- to high-sulfur US coal. The prototype SCR facility, built in and around the ductwork of Plant Crist Unit 5, consisted of three large SCR reactor units (Reactors A, B, and C), each with a design capacity of 5,000 standard cubic feet per minute (scfm) of flue gas, and six smaller reactors (Reactors D through J), each with a design capacity of 400 scfm of flue gas. The three large reactors contained commercially available SCR catalysts as offered by SCR catalyst suppliers. These reactors were coupled with small-scale air preheaters to evaluate (1) the long-term effects of SCR reaction chemistry on air preheater deposit formation and (2) the impact of these deposits on the performance of air preheaters. The small reactors were used to test additional varieties of commercially available catalysts. The demonstration project was organized into three phases: (1) Permitting, Environmental Monitoring Plan (EMP) Preparation, and Preliminary Engineering; (2) Detail Design Engineering and Construction; and (3) Operation, Testing, Disposition, and Final Report Preparation. Section 2 discusses the planned and actual EMP monitoring for gaseous, aqueous, and solid streams over the course of the SCR demonstration project; Section 3 summarizes sampling and analytical methods and discusses exceptions from the methods specified in the EMP; Section 4 presents and discusses the gas stream monitoring results; Section 5 presents and discusses the aqueous stream monitoring results; Section 6 presents and discusses the solid stream monitoring results; Section 7 discusses EMP-related quality assurance/quality control activities performed during the demonstration project; Section 8 summarizes compliance monitoring reporting activities; and Section 9 presents conclusions based on the EMP monitoring results.

  4. Development of the integrated environmental control model: Cost models of selective catalytic reduction (SCR) NO{sub x} control systems. Quarterly progress report, October--December 1993

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1994-01-31

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. Increasingly strict NO{sub x} control requirements are being imposed by various state and local regulatory agencies in the U.S. These requirements may lead to U.S. SCR applications, particularly for plants burning low sulfur coals (Robie et al.). Furthermore, implicit in Title IV of the 1990 Clean Air Act Amendment is a national NO{sub x} emission reduction of 2 million tons per year. Thus, there may be other incentives to adapt SCR technology more generally to U.S. coal-fired power plants with varying coal sulfur contents. However, concern remains over the applicability of SCR technology to U.S. plants burning high sulfur coals or coals with significantly different fly ash characteristics than those burned in Germany and Japan. There is also concern regarding the application of SCR to peaking units due to potential startup and shutdown problems (Lowe et al.). In this report, new capital cost models of two SCR systems are developed. These are {open_quotes}hot-side high-dust{close_quotes} and {open_quotes}tail-end low-dust{close_quotes} options. In a previous quarterly report, performance models for these two systems were developed.

  5. SCR comes of age

    SciTech Connect

    Alfred Mann; Thomas Sarkus; James Staudt

    2005-11-01

    The authors take a close look at selective catalytic reduction (SCR), which has become the predominant post-combustion technology for reducing emissions of nitrogen oxides (NOx) from utility boilers, both in the United States and worldwide. An added, unanticipated benefit of SCR technology is the enhancement of Hg removal in coal-fired power plants. However, additional work remains to be done in developing low-temperature catlysts, in-situ catalyst regeneration processes, and hybrid SNCR/SCR systems. 10 refs., 1 fig., 1 photo.

  6. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  7. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  8. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  9. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  10. POWER PLANT EVALUATION OF THE EFFECT OF SCR TECHNOLOGY ON MERCURY

    EPA Science Inventory

    The paper presents results of research on the impact that selective catalytic reduction (SCR) systems have on speciation and total emissions of mercury. Although SCR systems are designed to reduce nitrogen oxides (NOx), they may oxidize elemental mercury (Hg0) to Hg2+, which is m...

  11. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    ERIC Educational Resources Information Center

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  12. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    ERIC Educational Resources Information Center

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  13. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  14. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the

  15. NO sub x reduction by the Econ-Nox trademark SCR process

    SciTech Connect

    Hardison, L.C.; Nagl, G.J.; Addison, G.E. )

    1991-11-01

    SCR systems are used extensively in Japan and West Germany to eliminate 80-90% NO{sub x} emissions from utility boilers and industrial furnace stacks. Costs have been lowered considerably over the past ten years. Further reduced costs and stringent regulations on NO{sub x} emission make this simple system attractive for refinery and industrial process heaters, boilers, and gas turbines. The Econ-Nox{trademark} process uses a fluidized catalyst bed to accomplish selective total reduction of oxides of nitrogen to elemental nitrogen using ammonia as a reactant. The process can be designed for operating temperatures between 550 F and 750 F and for a wide range of operating variables. The process brings together some old technology on selective reduction chemistry, relatively new fluidized bed oxidation techniques and a non-precious metal Econ-Acat{trademark} catalyst which permits operation over a broader temperature range than has been practical in the past. This paper reports some of the distinctions made between this reactor configuration and the historical thermal and catalytic systems used for this type of process.

  16. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  17. Optimization of internals for Selective Catalytic Reduction (SCR) for NO removal.

    PubMed

    Lei, Zhigang; Wen, Cuiping; Chen, Biaohua

    2011-04-15

    This work tried to identify the relationship between the internals of selective catalytic reduction (SCR) system and mixing performance for controlling ammonia (NH(3)) slip. In the SCR flow section, arranging the flow-guided internals can improve the uniformity of velocity distribution but is unfavorable for the uniformity of NH(3) concentration distribution. The ammonia injection grids (AIG) with four kinds of nozzle diameters (i.e., 1.0 mm, 1.5 mm, 2.0 mm, and mixed diameters) were investigated, and it was found that the AIG with mixed nozzle diameters in which A3, A4, B3, and B4 nozzles' diameters are 1.0 mm and other nozzles' diameters are 1.5 mm is the most favorable for the uniformity of NH(3) concentration distribution. In the SCR reactor section, the appropriate space length between two catalyst layers, which serves as gas mixing in order to prevent maldistribution of gas concentrations into the second catalyst layer, under the investigated conditions is about 100, 1000, and 12 mm for honeycomb-like cordierite catalyst, plate-type catalysts with parallel channel arrangement, and with cross channel arrangement, respectively. Therefore, the cross channel arrangement is superior to the parallel channel arrangement in saving the SCR reactor volume.

  18. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 degrees C: the SCR mechanism.

    PubMed

    Zeng, Zheng; Lu, Pei; Li, Caiting; Zeng, Guangming; Jiang, Xiao; Zhai, Yunbo; Fan, Xiaopeng

    2012-06-01

    Selective catalytic reduction (SCR) of NO by urea loaded on rayon-based activated carbon fibre (ACF) and CeO2/ACF (CA) was studied at ambient temperature (30 degrees C) to establish a basic scheme for its reduction. Nitric oxide was found to be reduced to N2 with urea deposited on the ACF and CA. When oxygen was present, the greater the amount of loaded urea (20-60%), the greater the NO(x) conversions, which were between 72.03% and 77.30%, whereas the NO(x) conversions were about 50% when oxygen was absent. Moreover, when the urea was loaded on CA, a catalyst containing 40% urea/ACF loaded with 10% CeO2 (UCA4) could yield a NO(x) conversion of about 80% for 24.5 h. Based on the experimental results, the catalytic mechanisms of SCR with and without oxygen are discussed. The enhancing effect of oxygen resulted from the oxidation of NO to NO2, and urea was the main reducing agent in the SCR of loaded catalysts. ACF-C was the catalytic centre in the SCR of NO of ACF, while CeO2 of urea-loaded CA was the catalytic centre.

  19. HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT

    EPA Science Inventory

    The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...

  20. HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT

    EPA Science Inventory

    The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...

  1. Distributed Parameter Control of Selective Catalytic Reduction (SCR) for Diesel-Powered Vehicles

    NASA Astrophysics Data System (ADS)

    Pakravesh, Hallas

    The main scope of this work is to design a distributed parameter control for SCR, which is modelled by using coupled hyperbolic and parabolic partial differential equations (PDEs). This is a boundary control problem where the control objectives are to reduce the amount of NOx emissions and ammonia slip as far as possible. Two strategies are used to control SCR. The first strategy includes using the direct transcription (DT) as the open-loop control technique. The second strategy includes the design of a closed-loop control technique that uses a new numerical method developed in this work, which combines the method of characteristics and spectral decomposition, and the characteristic-based nonlinear model predictive control (CBNMPC) as the control algorithm. The results show that the designed advanced controllers are able to achieve very high control performance in terms of NOx and ammonia slip reduction.

  2. Selective Catalytic Reduction of NO by NH3 over Photocatalysts (Photo-SCR): Mechanistic Investigations and Developments.

    PubMed

    Yamamoto, Akira; Teramura, Kentaro; Tanaka, Tsunehiro

    2016-10-01

    This account describes the work of our group in the selective catalytic reduction of nitrogen oxides (NOx ) with ammonia over heterogeneous photocatalysts (photo-SCR) in the past 16 years. We have found that the photo-SCR proceeds over heterogeneous photocatalysts using a gas flow reactor, elucidated the reaction mechanism under UV- and visible-light irradiation by spectroscopic and kinetic studies, and developed a highly active photo-SCR system by improving the photocatalyst material itself and the reaction system with several approaches based on the reaction mechanism. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE PAGES

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; ...

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  4. SCR`s success

    SciTech Connect

    Seeley, R.S.

    1996-04-01

    The use of selective catalytic reduction (SCR) for reducing emissions of nitrous oxides is described. Suppliers of SCR systems for many oil-, coal- and gas-fired plants in the U.S. and internationally are listed. The cost and cost factors of SCR are also discussed.

  5. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  6. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    EPA Science Inventory

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  7. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    EPA Science Inventory

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  8. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    SciTech Connect

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-04-01

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

  9. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  10. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    SciTech Connect

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem

  11. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  12. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    PubMed

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-02

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O.

  13. Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends

    DOE PAGES

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.; ...

    2016-09-04

    This paper focuses on the activity for lean NOx reduction over sol-gel synthesized silver alumina (Ag/Al2O3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C3H6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NOx ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NOx reduction is demonstrated for powder catalysts for EtOH and EtOH/C3H6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al2O3 catalysts display higher NOx reduction and lower light-off temperature as compared to the platinum dopedmore » samples. The 4 wt.% Ag/Al2O3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH3-SCR catalyst, be utilized to construct a NOx reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO2 emissions.« less

  14. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

    SciTech Connect

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-06-01

    It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

  15. Reduction of myocardial infarct size with sCR1sLe(x), an alternatively glycosylated form of human soluble complement receptor type 1 (sCR1), possessing sialyl Lewis x.

    PubMed

    Zacharowski, K; Otto, M; Hafner, G; Marsh, H C; Thiemermann, C

    1999-11-01

    1 This study investigated the effects of soluble complement receptor type 1 (sCR1) or sCR1sLex, agents which function as a complement inhibitor or as a combined complement inhibitor and selectin adhesion molecule antagonist, respectively, on the infarct size and cardiac troponin T (cTnT) release caused by regional myocardial ischaemia and reperfusion in the rat. 2 Eighty-two, male Wistar rats were subjected to 30 min occlusion of the left anterior descending coronary artery (LAD) followed by 2 h of reperfusion. Haemodynamic parameters were continuously recorded and at the end of the experiments infarct size (with p-nitro-blue tetrazolium) and cTnT release were determined. 3 Infusion of sCR1 (1, 5 or 15 mg kg-1, each n=7) or sCR1sLe(x) (1, 5 or 15 mg kg-1, n=7, 13 or 13, respectively) 5 min prior to LAD-reperfusion caused a reduction in infarct size from 59+/-2% (PBS - control, n=12) to 46+/-6%, 25+/-9% and 37+/-6% or 42+/-6%, 35+/-6% and 35+/-4%, respectively. 4 Infusion of sCR1 (15 mg kg-1, n=5) or sCR1sLe(x) (15 mg kg-1, n=5) also reduces the myocardial TnT release from 80+/-20 ng ml-1 (control) to 13+/-7 or 4+/-1 ng ml-1, respectively. 5 Thus, sCR1 or sCRsLe(x) significantly reduce infarct size and cardiac TnT release caused by 30 min of regional myocardial ischaemia and 2 h of reperfusion in the rat. The mechanisms of the cardioprotective effects of sCR1 or sCR1sLe(x) are not entirely clear, but may be due complement inhibition and/or prevention of the adhesion and activation of neutrophils.

  16. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    SciTech Connect

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.

  17. A novel HBT trigger SCR in 0.35 μm SiGe BiCMOS technology

    NASA Astrophysics Data System (ADS)

    Changjun, Liao; Jizhi, Liu; Zhiwei, Liu

    2016-09-01

    The silicon-controlled rectifier (SCR) device is known as an efficient electrostatic discharge (ESD) protection device due to the highest ESD robustness in the smallest layout area. However, SCR has some drawbacks, such as high trigger voltage and low holding voltage. In order to reduce the trigger voltage of the SCR device for ESD protection, a new heterojunction bipolar transistor (HBT) trigger silicon controlled rectifier (HTSCR) device in 0.35 μm SiGe BiCMOS technology are proposed. The underlying physical mechanisms critical to the trigger voltage are demonstrated based on transmission line pulsing (TLP) measurement and physics-based simulation results. The simulation results prove that the trigger voltage of the HTSCR is decided by the collector-to-emitter breakdown voltage of the HBT structure in floating base configuration. The ESD experiment test results demonstrate the HTSCR can offer superior performance with a small trigger voltage, an adjustable holding voltage and a high ESD robustness. In comparison to the conventional MLSCR, the trigger voltage of the fabricated HTSCR can reduce to less than 50% of that of the MLSCR, and the I t2 of the HBT trigger SCR is 80% more than that of the MLSCR. Project supported by the Central Universities Fundamental Research Project (No. ZYGX2015J035) and the Sichuan Science and Technology Support Project (No. 2016GZ0115).

  18. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction

    SciTech Connect

    Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

    2012-04-30

    Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

  19. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  20. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

  1. Optimization and reconstruction technology of SCR flue gas denitrification ultra low emission in coal fired power plant

    NASA Astrophysics Data System (ADS)

    Li, Xinhao

    2017-09-01

    In recent decades, nitrogen oxides (NOx) emissions from thermal power plant increased year by year in China. A large number of nitrogen oxides (NOx) emissions caused by the growing environmental problems have been widely attached importance to people. SCR denitrification technology has the advantages of cleanliness and high efficiency. At present, it has been the major technology to control NOx emission because of its high denitrification efficiency, reliable operation, no by-products and simple structure of the device. The denitrification efficiency can be stabilized at 70%. In this paper, three different denitrification methods are compared. The factors influencing the denitrification efficiency, the system arrangement and the key factors of the denitrification system are discussed in detail. And the numerical simulation of how to use this calculation software in the SCR reactor flue, baffle, reactor, spray ammonia grille and spray ammonia, mixer, etc. are reviewed, as well as the effect of system operation control on the deoxidation performance.

  2. EVALUATION OF THE EFFECT OF SCR ON MERCURY SPECIATION AND EMISSIONS

    EPA Science Inventory

    The paper presents the results of an investigation on the impact that selective catalytic reduction (SCR) has on both the total emissions and the speciation of mercury (Hg). SCR systems can be used as multipollutant technologies if they enhance Hg conversion/capture. Previous pil...

  3. EVALUATION OF THE EFFECT OF SCR ON MERCURY SPECIATION AND EMISSIONS

    EPA Science Inventory

    The paper presents the results of an investigation on the impact that selective catalytic reduction (SCR) has on both the total emissions and the speciation of mercury (Hg). SCR systems can be used as multipollutant technologies if they enhance Hg conversion/capture. Previous pil...

  4. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  5. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    NASA Astrophysics Data System (ADS)

    Choi, Cheolyong; Sung, Yonmo; Choi, Gyung Min; Kim, Duck Jool

    2015-11-01

    In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  6. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  7. Using SCR methods to analyze requirements documentation

    NASA Technical Reports Server (NTRS)

    Callahan, John; Morrison, Jeffery

    1995-01-01

    Software Cost Reduction (SCR) methods are being utilized to analyze and verify selected parts of NASA's EOS-DIS Core System (ECS) requirements documentation. SCR is being used as a spot-inspection tool. Through this formal and systematic approach of the SCR requirements methods, insights as to whether the requirements are internally inconsistent or incomplete as the scenarios of intended usage evolve in the OC (Operations Concept) documentation. Thus, by modelling the scenarios and requirements as mode charts using the SCR methods, we have been able to identify problems within and between the documents.

  8. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  9. Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends

    SciTech Connect

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.; Skoglundh, Magnus; Härelind, Hanna

    2016-09-04

    This paper focuses on the activity for lean NOx reduction over sol-gel synthesized silver alumina (Ag/Al2O3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C3H6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NOx ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NOx reduction is demonstrated for powder catalysts for EtOH and EtOH/C3H6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al2O3 catalysts display higher NOx reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al2O3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH3-SCR catalyst, be utilized to construct a NOx reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO2 emissions.

  10. Lean NOx reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends

    SciTech Connect

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.; Skoglundh, Magnus; Härelind, Hanna

    2016-09-04

    This paper focuses on the activity for lean NOx reduction over sol-gel synthesized silver alumina (Ag/Al2O3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C3H6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NOx ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NOx reduction is demonstrated for powder catalysts for EtOH and EtOH/C3H6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al2O3 catalysts display higher NOx reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al2O3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH3-SCR catalyst, be utilized to construct a NOx reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO2 emissions.

  11. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  12. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  13. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  14. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia. I. Combined temperature programmed in situ FTIR and on-line mass spectroscopy studies

    SciTech Connect

    Topsoe, N.Y.; Topsoe, H.; Dumesic, J.A.

    1995-01-01

    Combined in situ FTIR and on-line mass spectroscopic studies have provided simultaneous information of the surface adsorbed species on vanadia/titania catalysts and the composition of reaction products during the selective catalytic reduction (SCR) of NO. The experiments were carried out as temperature programmed surface reaction (TPSR) studies by exposing catalysts with preadsorbed ammonia to either pure NO, pure O{sub 2}, or a mixture of NO and O{sub 2}. This allowed detailed information to be obtained concerning the changes in the concentrations and the nature of the surface V=O and V-OH species. The TPSR studies in O{sub 2} showed mainly ammonia desorption and some ammonia oxidation at high temperatures. The SCR reaction was observed to take placing during the TPSR studies in both NO and NO + O{sub 2}, but a greater rate was observed in the latter case. It was found that NH{sub 3} reduces the V=O species and subsequent reaction with NO results in the formation of reduced V-OH species. The results showed that the NO reduction reaction involves the ammonia species adsorbed on V-OH Bronsted acid sites. Evidence for the importance of redox reactions was also found. Separate temperature programmed reduction (TPR) studies in H{sub 2} showed that the surface vanadia layer breaks up while re-exposing TiOH groups. Subsequent temperature programmed oxidation (TPO) studies in O{sub 2} showed this phenomenon to be completely reversible, thus providing direct evidence for spreading/redispersion of vanadia on titania. The TPR/TPO studies also indicated that the Bronsted acid sites essential for the deNO{sub x} reaction are associated with V{sup 5+} -OH surface sites. 40 refs., 15 figs.

  15. Argus NOx/SCR report

    SciTech Connect

    2005-05-15

    This document reports on NOx units at more than 350 coal and gas-fired power plants in the USA. Formerly known as the Argus SCR Report, the data are now expanded to include other forms of NOx control, including selective non-catalytic reduction (SNCR), low NOx burners and overfire air.

  16. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures.

    PubMed

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo

    2014-09-07

    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.

  17. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  18. DEVELOPMENT OF UREA-SCR FOR HEAVY-DUTY TRUCKS DEMONSTRATION UPDATE

    SciTech Connect

    Miller, William

    2000-08-20

    This study included engine cell and vehicle tests. The engine cell tests are aimed at determining NOX reduction using the US transient and OICA emissions test cycles. These cycles will be included in future US HD emissions standards. The vehicle tests will show urea-SCR system performance during real-world operation. These tests will prove that the technology can be successfully implemented and demonstrated over-the-road. The program objectives are to: (a) apply urea-SCR to a US HD diesel engine; (b) determine engine cell emissions reduction during US-transient and OICA cycles; (c) apply urea-SCR to a US HD diesel truck; and (d) determine NOX reduction and urea consumption during over-the-road operation.

  19. Optimal SCR Control Using Data-Driven Models

    SciTech Connect

    Stevens, Andrew J.; Sun, Yannan; Lian, Jianming; Devarakonda, Maruthi N.; Parker, Gordon

    2013-04-16

    We present an optimal control solution for the urea injection for a heavy-duty diesel (HDD) selective catalytic reduction (SCR). The approach taken here is useful beyond SCR and could be applied to any system where a control strategy is desired and input-output data is available. For example, the strategy could also be used for the diesel oxidation catalyst (DOC) system. In this paper, we identify and validate a one-step ahead Kalman state-space estimator for downstream NOx using the bench reactor data of an SCR core sample. The test data was acquired using a 2010 Cummins 6.7L ISB production engine with a 2010 Cummins production aftertreatment system. We used a surrogate HDD federal test procedure (FTP), developed at Michigan Technological University (MTU), which simulates the representative transients of the standard FTP cycle, but has less engine speed/load points. The identified state-space model is then used to develop a tunable cost function that simultaneously minimizes NOx emissions and urea usage. The cost function is quadratic and univariate, thus the minimum can be computed analytically. We show the performance of the closed-loop controller in using a reduced-order discrete SCR simulator developed at MTU. Our experiments with the surrogate HDD-FTP data show that the strategy developed in this paper can be used to identify performance bounds for urea dose controllers.

  20. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  1. About the Drift Reduction Technology Program

    EPA Pesticide Factsheets

    The new voluntary Drift Reduction Technology (DRT) Program will encourage the manufacture, marketing, and use of safer spray technology and equipment scientifically verified to reduce pesticide drift.

  2. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts.

    PubMed

    Heo, Iljeong; Kim, Mun Kyu; Sung, Samkyung; Nam, In-Sik; Cho, Byong K; Olson, Keith L; Li, Wei

    2013-04-16

    A photocatalytic HC/SCR system has been developed and its high deNOx performance (54.0-98.6% NOx conversion) at low temperatures (150-250 °C) demonstrated by using a representative diesel fuel hydrocarbon (dodecane) as the reductant over a hybrid SCR system of a photocatalytic reactor (PCR) and a dual-bed HC/SCR reactor. The PCR generates highly active oxidants such as O3 and NO2 from O2 and NO in the feed stream, followed by the subsequent formation of highly efficient reductants such as oxygenated hydrocarbon (OHC), NH3, and organo-nitrogen compounds. These reductants are the key components for enhancing the low temperature deNOx performance of the dual-bed HC/SCR system containing Ag/Al2O3 and CuCoY in the front and rear bed of the reactor, respectively. The OHCs are particularly effective for both NOx reduction and NH3 formation over the Ag/Al2O3 catalyst, while NH3 and organo-nitrogen compounds are effective for NOx reduction over the CuCoY catalyst. The hybrid HC/SCR system assisted by photocatalysis has shown an overall deNOx performance comparable to that of the NH3/SCR, demonstrating its potential as a promising alternative to the current urea/SCR and LNT technologies. Superior durability of HC/SCR catalysts against coking by HCs has also been demonstrated by a PCR-assisted regeneration scheme for deactivating catalysts.

  3. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts.

    PubMed

    Long, Richard Q; Yang, Ralph T; Chang, Ramsay

    2002-03-07

    Fe-Mn based transition metal oxides (Fe-Mn, Fe-Mn-Zr and Fe-Mn-Ti) show nearly 100% NO conversion at 100-180 degrees C for selective catalytic reduction of NO with NH3 under the applied conditions with a space velocity of 15,000 h-1.

  4. LPV gain-scheduled control of SCR aftertreatment systems

    NASA Astrophysics Data System (ADS)

    Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.

    2012-01-01

    Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.

  5. SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005

    SciTech Connect

    Frank, W; Huethwohl, G; Maurer, B

    2003-08-24

    Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for Ad

  6. [Deactivation by SO2 of transition metal oxides modified low-temperature SCR catalyst for NOx reduction with NH3].

    PubMed

    Shen, Bo-xiong; Liu, Ting; Yang, Ting-ting; Xiong, Li-xian; Wang, Jing

    2009-08-15

    MnOx-CeOx/ACF catalyst was prepared by impregnation method, which exhibited high activity for low-temperature selective catalytic reduction of NOx over the temperature range 110-230 degrees C. Experiments results indicated that the catalyst yielded 80% NO conversion at 150 degrees C and 90% at 230 degrees C. The Oxides of Fe,Cu and V were added to the catalysts based on MnOx-CeOx/ACF. The additions of these transition metal oxides had a negative effect on the activity of the catalysts. Compared with MnOx-CeOx/ACF and Cu and V modified catalysts, NO conversion for Fe-MnOx-CeOx/ACF catalyst leveled off at nearly 75% in the first 6 h in the presence of SO2. Two mechanisms of catalyst deactivation by SO2 were discovered by the methods of X-ray photoelectron spectrum (XPS) and Fourier transform infrared spectra (FTIR), indicating that the catalysts were covered by ammonium sulfates and the metal oxides, acting as active components, were also sulfated by SO2 to form metal sulfates.

  7. Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Lee, Jong H.

    2012-04-16

    Although the urea-SCR technology exhibits high NOx reduction efficiency over a wide range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NOx reduction performance at low temperature operating conditions (T < 150 C). We postulate that the poor performance is either due to NH3 storage inhibition by species like hydrocarbons or due to competitive adsorption between NH3 and other adsorbates such as H2O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite based urea-SCR catalysts based on bench reactor experiments. We further use the competitive adsorption (CA) model to develop a standard SCR model based on previously identified kinetics. Simulation results indicate that the CA model predicts catalyst outlet NO and NH3 concentrations with minimal root mean square error.

  8. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1

  9. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  10. Study on the characters of control valve for ammonia injection in selective catalytic reduction (SCR) system of coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Yao, Che; Li, Tao; Zhang, Hong; Zhou, Yanming

    2017-08-01

    In this paper, the characters of two control valves used for ammonia injection in SCR system are discussed. The linear/quadratic character between pressure drop/outlet flow rate and valve opening/dynamic pressure inlet are investigated using computational fluid dynamic (CFD) and response surface analysis (RSA) methods. The results show that the linear character of brake valve is significantly better than butterfly valve, which means that the brake valve is more suitable for ammonia injection adjustment than the butterfly valve.

  11. EFFECT OF SCR CATALYST ON MERCURY SPECIATION

    EPA Science Inventory

    A pilot-scale research study was conducted to investigate the effect of selective catalytic reduction (SCR) on elemental mercury speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois bituminous coals and one Powder River Basin (PRB) coal...

  12. EFFECT OF SCR CATALYST ON MERCURY SPECIATION

    EPA Science Inventory

    A pilot-scale research study was conducted to investigate the effect of selective catalytic reduction (SCR) on elemental mercury speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois bituminous coals and one Powder River Basin (PRB) coal...

  13. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH3/O2 SCR of V2O5-WO3/TiO2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH)2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO2(anatase) particles and that VOx and WOx do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Low Energy Ion Scattering (HS-LEIS) confirms that the VOx and WOx aremore » surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO3 and O = WO4 sites on the TiO2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO4 and WO4 sites that appear to be anchored at surface defects of the TiO2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH3* on Lewis acid sites and surface NH4+* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO4 species and that the surface kinetics was independent of TiO2 synthesis method or presence of surface WO5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of

  14. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the

  15. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the

  16. Environmental Technology Verification: Test Report of Mobile Source Selective Catalytic Reduction--Nett Technologies, Inc., BlueMAX 100 version A urea-based selective catalytic reduction technology

    EPA Science Inventory

    Nett Technologies’ BlueMAX 100 version A Urea-Based SCR System utilizes a zeolite catalyst coating on a cordierite honeycomb substrate for heavy-duty diesel nonroad engines for use with commercial ultra-low–sulfur diesel fuel. This environmental technology verification (ETV) repo...

  17. Environmental Technology Verification: Test Report of Mobile Source Selective Catalytic Reduction--Nett Technologies, Inc., BlueMAX 100 version A urea-based selective catalytic reduction technology

    EPA Science Inventory

    Nett Technologies’ BlueMAX 100 version A Urea-Based SCR System utilizes a zeolite catalyst coating on a cordierite honeycomb substrate for heavy-duty diesel nonroad engines for use with commercial ultra-low–sulfur diesel fuel. This environmental technology verification (ETV) repo...

  18. Single and compact ESD device Beta-Matrix solution based on bidirectional SCR Network in advanced 28/32 nm technology node

    NASA Astrophysics Data System (ADS)

    Bourgeat, Johan; Galy, Philippe

    2013-09-01

    Advanced CMOS technologies, like CMOS32 nm high K metal gate, become more and more sensitive to electrostatic discharge (ESD) phenomenon particularly because of their low overvoltage robustness. In this context, we develop a Beta-Matrix concept [1] which merges six silicon controlled rectifier (SCR) in a same structure and having one single triggering gate N (GN) for a high integration and high flexibility in IO frame. This device is the center of a new protection strategy which combined both local and global protection approach [1]. Also, a specific trigger circuit has been developed to turn-on Beta-Matrix whatever stressed pins during an ESD event and to keep it off when IC is in normal operation mode and is presented in [2]. Both, Beta-Matrix and trigger circuit, make a robust and very efficient ESD network which allows removing all IO placement constraint and power IO [3]. Also, this study is a synthesis of both previous work and a development of new Beta-Matrix topology to improve the device behavior, particularly by improving the uniformity of activation and decreasing triggering voltage of the structure. This work presents results of 3 dimensional TCAD simulations and measurements of transmission line pulse (TLP) and very fast-TLP.

  19. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in

  20. Predictable SCR co-benefits for mercury control

    SciTech Connect

    Pritchard, S.

    2009-01-15

    A test program, performed in cooperation with Dominion Power and the Babcock and Wilcox Co., was executed at Dominion Power's Mount Storm power plant in Grant County, W. Va. The program was focused on both the selective catalytic reduction (SCR) catalyst capability to oxide mercury as well as the scrubber's capability to capture and retain the oxidized mercury. This article focuses on the SCR catalyst performance aspects. The Mount Storm site consists of three units totaling approximately 1,660 MW. All units are equipped with SCR systems for NOx control. A full-scale test to evaluate the effect of the SCR was performed on Unit 2, a 550 MWT-fired boiler firing a medium sulfur bituminous coal. This test program demonstrated that the presence of an SCR catalyst can significantly affect the mercury speciation profile. Observation showed that in the absence of an SCR catalyst, the extent of oxidation of element a mercury at the inlet of the flue gas desulfurization system was about 64%. The presence of a Cornertech SCR catalyst improved this oxidation to levels greater than 95% almost all of which was captured by the downstream wet FGD system. Cornertech's proprietary SCR Hg oxidation model was used to accurately predict the field results. 1 ref., 2 figs., 1 tab.

  1. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  2. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  3. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2016-01-01

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel

  4. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE PAGES

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; ...

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCRmore » approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering

  5. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  6. Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur, coal-fired boilers

    SciTech Connect

    Hinton, W.S.; Powell, C.A.; Maxwell, J.D.

    1993-11-01

    This paper describes the status of the Innovative Clean Coal Technology project to demonstrate SCR technology for reduction of NO{sub x} emissions from flue gas of utility boilers burning US high-sulfur coal. The funding participants are the US Department of Energy (DOE), Southern Company Services, Inc. (SCS), on behalf of the entire Southern Company, Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of the project. The project is being conducted on Gulf Power Company`s Plant Crist Unit 5 (75-MW nominal capacity), located near Pensacola, Florida, on US coals that have a sulfur content near 3.0%. The SCR facility treats a 17,400 scfm slip-stream of flue gas and consists of three 2.5-MW (5000 scfm) and six 0.2-MW (400 scfm) SCR reactors. The reactors operate in parallel with commercially available SCR catalysts obtained from vendors throughout the world. The design engineering and construction have been completed, and the startup/shakedown was completed in June 1993. Long-term performance testing began in July 1993 and will be conducted for two years. Test facility description and test plans, as well as start-up issues and preliminary commissioning test results are reported in this paper.

  7. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia.

    PubMed

    Chen, Biaohua; Xu, Ruinian; Zhang, Runduo; Liu, Ning

    2014-12-02

    In this study, an economical way for SSZ-13 preparation with the essentially cheap choline chloride as template has been attempted. The as-synthesized SSZ-13 zeolite after ion exchange by copper nitrate solution exhibited a superior SCR performance (over 95% NOx conversion across a broad range from 150 to 400 °C) to the traditional zeolite-based catalysts of Cu-Beta and Cu-ZSM-5. Furthermore, the opportune size of pore opening (∼3.8 Å) made Cu-SSZ-13 exhibiting the best selectivity to N2 as well as satisfactory tolerance toward SO2 and C3H6 poisonings. The characterization (XRD, XPS, XRF, and H2-TPR) of samples confirmed that Cu-SSZ-13 possessed the most abundant Cu cations among three investigated Cu-zeolites; furthermore, either on the surface or in the bulk the ratio of Cu(+)/Cu(2+) ions for Cu-SSZ-13 is also the highest. New finding was announced that CHA-type topology is in favor of the formation of copper cations, especially generating much more Cu(+) ions than the others, rather than CuO. The activity test of Cu(CuCl)-ZSM-5 (prepared by a solid-state ion-exchange method) clearly indicated that Cu(+) ions could make a major contribution to the low-temperature deNOx activity. The activity of protonic zeolites (H-SSZ-13, H-Beta, H-ZSM-5) revealed the topology effect on SCR performances.

  8. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  9. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  10. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  11. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  12. Fast SCR Thyratron Driver

    SciTech Connect

    Nguyen, M.N.; /SLAC

    2007-06-18

    As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.

  13. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

  14. New portable biosensor technology for area reduction

    NASA Astrophysics Data System (ADS)

    Christensson, Magnus; Gardhagen, Peter

    1999-08-01

    This paper describes the expected performance of a new portable vapor detection system under development by Biosensor Applications Sweden AB. The system is designed for area reduction n humanitarian mine clearance operations. It consists of a collection system and a biosensor with a sensitivity capable of detecting picogram levels of TNT molecules. Biosensor has over the past four years developed the base technology for detection of TNT for a land mine application. A prototype for TNT detection will be tested in minefields during 1999. Our technology, sometimes called 'the artificial dog nose', has by many experts been described as revolutionary.

  15. Noise Reduction Technologies for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2007-01-01

    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.

  16. Pollution reduction technology program for turboprop engines

    NASA Technical Reports Server (NTRS)

    Tomlinson, J. G.

    1977-01-01

    The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.

  17. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE PAGES

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; ...

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  18. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  19. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  20. Environmental Technology Verification Test Report of Mobile Source Selective Catalytic Reduction, Johnson Matthey SCCRT, Version 1, Selective Catalytic Reduction Technology with a Catalyzed Continuously Regenerating Trap

    EPA Science Inventory

    The Johnson Matthey SCCRT, v.1 technology is a urea-based SCR system combined with a CCRT filter designed for on-highway light, medium, and heavy heavy-duty diesel, urban and non-urban, bus exhaust gas recirculation (EGR)-or non-EGR-equipped engines for use with commercial ultra-...

  1. Environmental Technology Verification Test Report of Mobile Source Selective Catalytic Reduction, Johnson Matthey SCCRT, Version 1, Selective Catalytic Reduction Technology with a Catalyzed Continuously Regenerating Trap

    EPA Science Inventory

    The Johnson Matthey SCCRT, v.1 technology is a urea-based SCR system combined with a CCRT filter designed for on-highway light, medium, and heavy heavy-duty diesel, urban and non-urban, bus exhaust gas recirculation (EGR)-or non-EGR-equipped engines for use with commercial ultra-...

  2. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  3. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Ewert, Michael K.; Schlesinger, Thilini

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logistical mass can have a significant impact because it also reduces the packaging burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting, and trash processing technologies are under development to increase habitable volume and improve protection against solar storm events. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and to help locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio-frequency-identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and their mission benefits for exploration missions.

  4. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  5. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  6. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  7. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  8. Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst

    SciTech Connect

    Auvray, Xavier P; Partridge Jr, William P; Choi, Jae-Soon; Pihl, Josh A; Yezerets, Alex; Kamasamudram, Krishna; Currier, Neal; Olsson, Louise

    2012-01-01

    Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

  9. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James Lee, Jr.

    2013-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  10. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L.

    2012-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  11. Integrated diesel engine NOx reduction technology development

    SciTech Connect

    Hoelzer, J.; Zhu, J.; Savonen, C.L.; Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J.

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  12. The Space Technology 7 Disturbance Reduction System

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. R., Jr.; Hsu, O. C.; Hanson, J.; Hruby, V.

    The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for the spacecraft's attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.

  13. The Space Technology-7 Disturbance Reduction Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad

    2004-01-01

    The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.

  14. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: assessment of pollutant dispersion and health risk.

    PubMed

    Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions.

  15. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC respectively.

    PubMed

    Misra, Chandan; Ruehl, Chris; Collins, John Francis; Chernich, Don; Herner, Jorn

    2017-02-07

    The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG) and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks: two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC) and one hydraulic hybrid diesel equipped with SCR were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.

  16. Ammonia Production and Utilization in a Hybrid LNT+SCR System

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E

    2009-01-01

    A hybrid LNT+SCR system is used to control NOx from a light-duty diesel engine with in-cylinder regeneration controls. A diesel oxidation catalyst and diesel particulate filter are upstream of the LNT and SCR catalysts. Ultraviolet (UV) adsorption spectroscopy performed directly in the exhaust path downstream of the LNT and SCR catalysts is used to characterize NH3 production and utilization in the system. Extractive exhaust samples are analyzed with FTIR and magnetic sector mass spectrometry (H2) as well. Furthermore, standard gas analyzers are used to complete the characterization of exhaust chemistry. NH3 formation increases strongly with extended regeneration (or over regeneration ) of the LNT, but the amount of NOx reduction occurring over the SCR catalyst is limited by the amount of NH3 produced as well as the amount of NOx available downstream of the LNT. Control of lean-rich cycling parameters enables control of the ratio of NOx reduction between the LNT and SCR catalysts. During lean-rich cycling, fuel penalties are similar for either LNT dominant or LNT with supplemental SCR NOx reduction. However, stored NH3 after multiple lean-rich cycles can enable continued NOx reduction by the SCR after lean-rich cycling stops; thus, requirements for active regeneration of the LNT+SCR system can be modified during transient operation.

  17. MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOX CONTROL

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-17

    Although the SCR technology exhibits higher NOx reduction efficiency over a wider range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NOx reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional detailed kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas.

  18. Evaluation of air emissions-reduction technologies for aerospace ground equipment. Final report, 25 July 1995--31 December 1996

    SciTech Connect

    Reuther, J.J.

    1998-04-01

    Reported are results of a US Air Force effort to reduce air emissions from aerospace ground equipment (AGE), called the ``Green Age`` initiative. In Phase 1, promising NOx-reduction technologies were identified for deployment on A/M32A-86 generators at March AFB, California. In Phase 2, Battelle was contracted to devise and use a numerical rating system by which to evaluate these technologies for merit. The rating system had five criteria, totaling 100 points: Emission Reduction (25), Cost (25), Reliability/Maintainability (20), Deployability (20), and Fidelity of Data (10). A reduction in NOx of greater than or equal to 70% was the prime requirement, with no accompanying increase in the emission of carbon monoxide, particulates, or reactive hydrocarbons. Based on this numerical rating system, the six candidate Green Age NOx-reduction technologies considered were ranked in the following order of decreasing merit: (1) Water-in-Fuel Firing (WFF), Tyndall AFB, FL; (2) Selective Catalytic Reduction (SCR), Houston Industrial Silencing, TX; (3) NOx-Filter Cart (NFC), Tyndall AFB, FL; (4) Dual-Fuel Firing (DFF), BKM, San Diego, CA; (5) Oxygen-Enriched Air (OEA), Brooks AFB, TX; and (6) Non-Thermal Discharge (NTD), Eglin AFB, FL. WFF and NFC are recommended for further development and demonstration under Green Age Phase 3. DFF, OEA, and NTD have technical deficiencies, the resolution of which is doubtful, technically or within time.

  19. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia.

    PubMed

    Zhang, Yaping; Zhao, Xiaoyuan; Xu, Haitao; Shen, Kai; Zhou, Changcheng; Jin, Baosheng; Sun, Keqin

    2011-09-01

    A novel ultrasonic-modified MnO(x)/TiO(2) catalyst was prepared and compared with two different kinds of MnO(x)/TiO(2) catalysts in the process of low-temperature selective catalytic reduction of NO with NH(3). The physicochemical properties of the catalysts were studied by using various characterization techniques, such as Brunauer-Emmett-Teller (BET) surface measurement, X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), and in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ultrasonic-modified process introduced ultrasound in the solution impregnation step of traditional impregnation method for MnO(x)/TiO(2) catalyst preparation. In this study, ultrasonic process significantly improved the dispersion behavior and surface acid property of manganese oxide on TiO(2) as well as the catalytic activity, especially at temperature below 120°C. The NO conversion could reach 90% at 100°C. For the novel ultrasonic-modified catalyst, the combination analysis of XRD and HRTEM confirmed that manganese oxide was in a highly dispersed state and Ti and Mn had strong interaction. Furthermore, in situ FT-IR studies revealed that there were significant amounts of Lewis acidity and high Mn atom concentration on the surface of the novel catalysts. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.

    PubMed

    Bourikas, Kyriakos; Fountzoula, Christine; Kordulis, Christos

    2004-11-23

    Monolayer catalysts containing binary active phases (VOx-CrOx, VOx-MoOx) were prepared by simultaneous deposition of the corresponding transition metal-oxo species on the TiO2 (anatase) surface using the equilibrium deposition filtration technique. The prepared samples contained various amounts of each transition metal but almost the same total metal loading. They were characterized by atomic absorption spectroscopy, N2 adsorption, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and tested for the selective catalytic reduction of NO by NH3 in the temperature range 250-450 degrees C. It was found that the transition-metal ionic species used for the preparation of these catalysts compete for the same surface sites of the TiO2 carrier upon co-deposition. Small amounts of the second phase (Mo- or Cr-oxo phase) are sufficient in order to promote the catalytic activity at relatively high temperatures, in contrast to what happens in the corresponding industrial catalysts prepared by conventional methods. An electronic interaction between V- and Cr-oxo species favored at a V/Cr atomic ratio around 3 is probably responsible for the relatively high catalytic performance of the corresponding TiCrV catalyst. The activity of the studied catalysts is well correlated with the intensity of a DRS absorption band that appeared at ca. 400 nm, which is considered as a measure of the magnitude of interactions exerted between the monolayer transition metal-oxo species and the TiO2 carrier. This correlation is independent of the transition metals combination used and follows the same linear relationship found previously for single-active-phase catalysts.

  1. Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR

    SciTech Connect

    Tom Campbell

    2008-12-31

    This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

  2. Systems and methods to reduce reductant consumption in exhaust aftertreament systems

    DOEpatents

    Gupta, Aniket; Cunningham, Michael J.

    2017-02-14

    Systems, apparatus and methods are provided for reducing reductant consumption in an exhaust aftertreatment system that includes a first SCR device and a downstream second SCR device, a first reductant injector upstream of the first SCR device, and a second reductant injector between the first and second SCR devices. NOx conversion occurs with reductant injection by the first reductant injector to the first SCR device in a first temperature range and with reductant injection by the second reductant injector to the second SCR device when the temperature of the first SCR device is above a reductant oxidation conversion threshold.

  3. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  4. Urea for SCR-based NOx Control Systems and Potential Impacts to Ground Water Resources

    SciTech Connect

    Layton, D.

    2002-01-03

    One of the key challenges facing manufacturers of diesel engines for light- and heavy-duty vehicles is the development of technologies for controlling emissions of nitrogen oxides, In this regard, selective catalytic reduction (SCR) systems represent control technology that can potentially achieve the NOx removal efficiencies required to meet new U.S. EPA standards. SCR systems rely on a bleed stream of urea solution into exhaust gases prior to catalytic reduction. While urea's role in this emission control technology is beneficial, in that it supports reduced NOx emissions, it can also be an environmental threat to ground water quality. This would occur if it is accidentally released to soils because once in that environmental medium, urea is subsequently converted to nitrate--which is regulated under the U.S. EPA's primary drinking water standards. Unfortunately, nitrate contamination of ground waters is already a significant problem across the U.S. Historically, the primary sources of nitrate in ground waters have been septic tanks and fertilizer applications. The basic concern over nitrate contamination is the potential health effects associated with drinking water containing elevated levels of nitrate. Specifically, consumption of nitrate-contaminated water can cause a blood disorder in infants known as methemoglobinemia.

  5. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    SciTech Connect

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).

  6. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin

    2013-05-01

    NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China.

  7. Economic analysis of selective catalytic reduction applied to coal-fired boilers for NO{sub x} reduction

    SciTech Connect

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.; Baldwin, A.L.

    1997-12-31

    Selective Catalytic Reduction (SCR) technology is one of many compliance options electric utilities have at their disposal when considering reduction of nitrogen oxide (NO{sub x}) emissions at coal-fired power plants. This paper describes the results of an economic analysis that was completed as part of an Innovative Clean Coal Technology project, which demonstrated SCR technology for reduction of NO{sub x} emission from utility boilers burning high-sulfur coal. The project, conducted at Gulf Power Company`s Plant Crist Unit 5, was sponsored by the US Department of Energy, managed and cofunded by Southern Company Services, Inc., on behalf of Southern Company, and also cofunded by The Electric Power Research Institute and Ontario Hydro. The test program was conducted for approximately 2 years to evaluate catalyst deactivation and to quantify operational impacts of SCR technology employed in a high-sulfur environment. Measured data and operational lessons learned at the test facility form the basis of the technical premises and economic analysis. Capital and O and M costs were prepared for commercial-scale new and retrofit applications of SCR technology. Additionally, the results of the economic analysis presented in this paper are enhanced by incorporating current market trends based on US coal-fired SCR installations.

  8. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased.

  9. Optimal deployment of emissions reduction technologies for construction equipment.

    PubMed

    Bari, Muhammad Ehsanul; Zietsman, Josias; Quadrifoglio, Luca; Farzaneh, Mohamadreza

    2011-06-01

    The objective of this research was to develop a multiobjective optimization model to deploy emissions reduction technologies for nonroad construction equipment to reduce emissions in a cost-effective and optimal manner. Given a fleet of construction equipment emitting different pollutants in the nonattainment (NA) and near -nonattainment (NNA) counties of a state and a set of emissions reduction technologies available for installation on equipment to control pollution/emissions, the model assists in determining the mix of technologies to be deployed so that maximum emissions reduction and fuel savings are achieved within a given budget. Three technologies considered for emissions reduction were designated as X, Y, and Z to keep the model formulation general so that it can be applied for any other set of technologies. Two alternative methods of deploying these technologies on a fleet of equipment were investigated with the methods differing in the technology deployment preference in the NA and NNA counties. The model having a weighted objective function containing emissions reduction benefits and fuel-saving benefits was programmed with C++ and ILOG-CPLEX. For demonstration purposes, the model was applied for a selected construction equipment fleet owned by the Texas Department of Transportation, located in NA and NNA counties of Texas, assuming the three emissions reduction technologies X, Y, and Z to represent, respectively, hydrogen enrichment, selective catalytic reduction, and fuel additive technologies. Model solutions were obtained for varying budget amounts to test the sensitivity of emissions reductions and fuel-savings benefits with increasing the budget. Different mixes of technologies producing maximum oxides of nitrogen (NO(x)) reductions and total combined benefits (emissions reductions plus fuel savings) were indicated at different budget ranges. The initial steep portion of the plots for NO(x) reductions and total combined benefits against budgets

  10. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    SciTech Connect

    n /a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed-wall burners

  11. Advanced supersonic technology and its implications for the future

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1979-01-01

    A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.

  12. Electricity on the rig. Part 3 - New electric rig technology

    SciTech Connect

    McNair, W.L.

    1983-07-01

    The use of an SCR-controlled power system on an offshore drilling rig has lead to an increased acceptance of high technology equipment. Such equipment increases drilling productivity, reduces maintenance, and improves reliability. Most new rigs now have AC squirrel cage motors, brushless AC generators, silicon controlled rectifiers, DC motors, and swtichgear and motor starters. Several opportunities for cost reductions in SCR systems, such as improving the power factor, are studied in this paper.

  13. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: a comparative study.

    PubMed

    Yu, Chenglong; Dong, Lifu; Chen, Feng; Liu, Xiaoqing; Huang, Bichun

    2017-04-01

    The low-temperature selective catalytic reduction (SCR) of NOx is a promising technology for removing NOx from flue gases. However, the vulnerability of Mn-based catalysts to SO2 and H2O poisoning makes them unsuitable for industrial application. Herein, catalysts based on the MnOx/SAPO-34 catalysts were prepared by conventional impregnation and an improved molecularly designed dispersion method for use in the low-temperature SCR. The improved molecularly designed catalyst containing 20 wt% of MnOx exhibited high low-temperature NH3-SCR activity. Nearly 90% of the NOx was converted exclusively to N2 at 160°C using this catalyst. The structure and morphological analyses of the catalyst showed that the amorphous MnOx was well dispersed on the surface of the support. The reasons for the high performance of the catalysts were ascertained using surface N2 adsorption, XPS, H2-TPR and NH3-TPD. The results of these analyses indicated that high specific surface area and the redox capability, of the abundant Mn(4+) and Mn(3+) species, coupled with the surface chemisorbed oxygen and strong acid sites had a significant effect on the SCR reaction. In addition, the effects of SO2 and H2O on activity of the catalysts were also investigated and it was found that the highly dispersed 20 wt% MnOx/SAPO-34 catalyst exhibited better SO2 poisoning resistance than the other impregnated catalysts.

  14. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    SciTech Connect

    Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  15. Size Reduction Machine. Innovative Technology Summary Report

    SciTech Connect

    2000-04-01

    The Size Reduction and Deployment Shear Platform, manufactured by Utility Engineering, provides a non-robotic, manually moved platform that mounts a Champion hydraulic shear manufactured by Mega-Tech Services, Inc. This platform is a hydraulic/mechanical assist device that takes the weight of the shear off the operator. It is anticipated that it will increase production and provide a much safer means of size-reduction with less fatigue to the operator. The counterweighted platform is moved and positioned manually. This device will be able to shear items from 6 inches below floor level to 15 feet above, and is capable of cutting within 2 inches of a wall or floor surface. Cutting in overhead configurations should require only the use of ladders to assist in positioning the shear head without the need to erect scaffolds. The shear has the capacity to cut stainless steel 3' x 3' angles, 4' schedule 40 pipes, and 3 1/2' by 1/2' SS flat bars. The hydraulic power pack uses standard 110/120 voltage.

  16. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    SciTech Connect

    Federal Energy Technology Center

    1999-12-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO{sub x}) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of $23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO{sub x} and NH{sub 3} react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  17. E-SMARRT: Energy Saving Melting and Revert Reduction Technology

    SciTech Connect

    2004-11-01

    This factsheet describes the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) program developed by Advanced Technology Institute (ATI). E-SMARRT is a balanced portfolio of projects to address energy-saving opportunities in the metalcasting industry.

  18. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  19. Folding and conformational studies on SCR1-3 domains of human complement receptor 1.

    PubMed

    Clark, N S; Dodd, I; Mossakowska, D E; Smith, R A; Gore, M G

    1996-10-01

    Short consensus repeats SCR3 and SCR1-3 are soluble recombinant proteins, consisting of the third and first three N-terminal domains of complement receptor 1, respectively, which retain some anti-complement activity. The conformational stabilities and folding/unfolding of SCR3 and SCR1-3 have been studied using circular dichroism and equilibrium and pre-equilibrium fluorescence spectroscopy. Denaturation by guanidinium hydrochloride (GdnHCl) is rapid and completely reversible. Reduction of disulphide bridges in the folded proteins by beta-mercaptoethanol leads to an increase in fluorescence intensity. The fluorescence intensity of the folded proteins is approximately 7.5% of that of the respective unfolded proteins. The data can be approximated to a two-state transition between native and denatured forms of the proteins. SCR3 has a conformational stability in water of 12-13 kJ/mol whereas that of SCR1-3 is 19.5-19.9 kJ/mol depending upon the technique utilized. The heat capacity change associated with the unfolding of SCR1-3 was obtained by a series of GdnHCl unfolding experiments over a range of temperatures and was found to be 6.6 kJ/K.mol or 33.8 J/K.mol(residue). The refolding process of SCR3 was found to be simple, described by a single exponential equation, whereas that of SCR1-3 was found to be complex and could be fitted to a double exponential equation indicating the presence of folding intermediates.

  20. Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR

    PubMed Central

    Simons, Thomas

    2012-01-01

    Summary In a proof-of-concept study we demonstrate in situ reaction monitoring of DeNOx-SCR on proton-conducting zeolites serving as catalyst and gas sensor at the same time. By means of temperature-dependent impedance spectroscopy we found that the thermally induced NH3 desorption in H-form and in Fe-loaded zeolite H-ZSM-5 follow the same process, while a remarkable difference under DeNOx-SCR reaction conditions was found. The Fe-loaded catalyst shows a significantly lower onset temperature, and time-dependent measurements suggest different SCR reaction mechanisms for the two catalysts tested. These results may help in the development of catalysts for the reduction of NOx emissions and ammonia consumption, and provide insight into the elementary catalytic process promoting a full description of the NH3-SCR reaction system. PMID:23213630

  1. Allograft immune response with sCR1 intervention.

    PubMed

    Pratt, J R; Hibbs, M J; Laver, A J; Smith, R A; Sacks, S H

    1996-03-01

    The deposition of complement (C) components on tissues of transplanted organs may induce many proinflammatory responses. The role of such C activation in allograft rejection is uncertain. We addressed this question by inhibiting C at the level of the C3 and C5 convertases, preventing C activation and progression of its cascade, using recombinant human soluble complement receptor 1 (sCR1) in an unsensitized rat renal allograft model. Fully MHC disparate Lewis to DA rat renal allograft recipients given 25 mg/kg sCR1 daily, with saline-treated allograft recipients as controls (n = 15 in each group), were sacrificed from day 1 to day 5 post-transplant, and examined histopathologically, and for the deposition of C3 and C5b-9 membrane attack complex (MAC), and for the presence of leucocyte antigen markers. Treated animals demonstrated a reduction in vascular injury and cellular infiltration, coincident with reduced C deposition. Flow cytometric analysis of leucocyte subpopulations in the spleen showed a reduction in activated (CD25 positive) B and T cells in treated animals, compared to saline treated controls. The results suggest that C inhibition with sCR1, in an unsensitized model of allograft rejection, was able to suppress the vascular and cell mediated components of tissue injury. The data support not only a role for C in antibody and possibly cell mediated cytotoxicity in the graft, but also suggest a role in the primary immune response leading to both T cell and B cell activation.

  2. Transformation of mercury speciation through the SCR system in power plants.

    PubMed

    Yang, Hong-min; Pan, Wei-ping

    2007-01-01

    Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.

  3. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  4. Waiting for Disasters: A Risk Reduction Assessment of Technological Disasters

    NASA Astrophysics Data System (ADS)

    Rovins, Jane; Winningham, Sam

    2010-05-01

    This session provides a risk reduction/mitigation assessment of natural hazards causation of technological disasters and possible solution. People use technology in an attempt to not only control their environment but nature itself in order to make them feel safe and productive. Most strategies for managing hazards followed a traditional planning model i.e. study the problem, identify and implement a solution, and move on to the next problem. This approach is often viewed as static model and risk reduction is more of an upward, positive, linear trend. However, technological disasters do not allow risk reduction action to neatly fit this upward, positive, linear trend with actual or potential threats to the environment and society. There are different types of technological disasters, including industrial accidents; pipeline ruptures; accidents at power, water and heat supply systems and other lines of communication; sudden collapse of buildings and mines; air crashes; shipwrecks; automobile and railway accidents to name a few. Natural factors can play an essential role in triggering or magnifying technological disasters. They can result from the direct destruction of given technical objects by a hazardous natural process such as the destruction of an atomic power plant or chemical plant due to an earthquake. Other examples would include the destruction of communications or infrastructure systems by heavy snowfalls, strong winds, avalanches. Events in the past ten years clearly demonstrate that natural disasters and the technological disasters that accompany them are not problems that can be solved in isolation and risk reduction can play an important part. Risk reduction was designed to head off the continuing rising financial and structural tolls from disasters. All Hazard Risk Reduction planning was supposed to include not only natural, but technological, and human-made disasters as well. The subsequent disaster risk reduction (DRR) indicators were to provide the

  5. Proposed Rule and Related Materials for Heavy-Duty Highway Program: Revisions for Emergency Vehicles and SCR Maintenance

    EPA Pesticide Factsheets

    May 23, 2012, Notice of Proposed Rulemaking with revisions related to emissions controls on diesel-powered emergency vehicles and revisions related to scheduled maintenance intervals for diesel engines and vehicles using Selective Catalytic Reduction (SCR)

  6. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  7. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    SciTech Connect

    Laughlin, Michael; Owens, Russell J.

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  8. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  9. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  10. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  11. Center for BioBased Binders and Pollution Reduction Technology

    SciTech Connect

    Thiel, Jerry

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  12. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal

    SciTech Connect

    Yan Cao; Bobby Chen; Jiang Wu; Hong Cui; John Smith; Chi-Kuan Chen; Paul Chu; Wei-Ping Pan

    2007-01-15

    One of the cost-effective mercury control technologies in coal-fired power plants is the enhanced oxidation of elemental mercury in selective catalytic reduction (SCR) followed by the capture of the oxidized mercury in the wet scrubber. This paper is the first in a series of two in which the validation of the SCR slipstream test and Hg speciation variation in runs with or without SCR catalysts inside the SCR slipstream reactor under special gas additions (HCl, Cl{sub 2}, SO{sub 2}, and SO{sub 3}) are presented. Tests indicate that the use of a catalyst in a SCR slipstream reactor can achieve greater than 90% NO reduction efficiency with a NH{sub 3}/NO ratio of about 1. There is no evidence to show that the reactor material affects mercury speciation. Both SCR catalysts used in this study exhibited a catalytic effect on the elemental mercury oxidation but had no apparent adsorption effect. SCR catalyst 2 seemed more sensitive to the operational temperature. The spike gas tests indicated that HCl can promote Hg{sup 0} oxidation but not Cl{sub 2}. The effect of Cl{sub 2} on mercury oxidation may be inhibited by higher concentrations of SO{sub 2}, NO, or H{sub 2}O in real flue-gas atmospheres within the typical SCR temperature range (300-350{sup o}C). SO{sub 2} seemed to inhibit mercury oxidation; however, SO{sub 3} may have some effect on the promotion of mercury oxidation in runs with or without SCR catalysts. 25 refs., 9 figs., 2 tabs.

  13. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: nature of the Fe-ions and structure-function relationships

    SciTech Connect

    Gao, Feng; Zheng, Yang; Kukkadapu, Ravi K.; Wang, Yilin; Walter, Eric D.; Schwenzer, Birgit; Szanyi, Janos; Peden, Charles HF

    2016-05-06

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, a series of Fe/SSZ-13 catalysts with various Fe loadings were synthesized. UV-Vis, EPR and Mössbauer spectroscopies, coupled with temperature programmed reduction and desorption techniques, were used to probe the nature of the Fe sites. The major monomeric and dimeric Fe species are extra-framework [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+. Larger oligomers with unknown nuclearity, poorly crystallized Fe2O3 particles, together with isolated Fe2+ ions, are minor Fe-containing moieties. Reaction rate and Fe loading correlations suggest that isolated Fe3+ ions are the active sites for standard SCR while the dimeric sites are the active centers for NO oxidation. NH3 oxidation, on the other hand, is catalyzed by sites with higher nuclearity. A low-temperature standard SCR reaction network is proposed that includes redox cycling of both monomeric and dimeric Fe species, for SCR and NO2 generation, respectively. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  14. Surface Contour Radar (SCR) contributions to FASINEX

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1988-01-01

    The SCR was asked to participate in the Frontal Air-Sea Interaction Experiment (FASINEX) to provide directional wave spectra. The NASA P-3 carrying the SCR, the Radar Ocean Wave Spectrometer, and the Airborne Oceanographic Lidar was one of five aircrafts and two ocean research ships participating in this coordinated study of the air sea interaction in the vicinity of a sea surface temperature front near 28 deg N, 70 deg W. Analysis of data from the February 1986 experiment is still ongoing, but results already submitted for publication strengthen the hypothesis that off-nadir radar backscatter is closely correlated to wind stress. The SCR provided valuable information on the directional wave spectrum and its spatial variation.

  15. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology

  16. The Ultra-Low Aspect Ratio Stellarator SCR-1

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso; Vargas, Ivan; Mora, Jaime; Zamora, Esteban; Asenjo, Jose; Ribas, Leonardo; Guadamuz, Saul

    2012-10-01

    The world most compact stellarator is currently being designed at the Costa Rica Institute of Technology (ITCR). The SCR-1(Stellarator of Costa Rica 1) is a 2-field period modular device with a circular cross-section vessel (Ro=0.238m, a=0.097m, Ro{/a≈ 2.5}, 0.014m3, {4mm} thickness 6061-T6 aluminum). The expected D-shaped high elongated plasma cross section has a maximum average radius of < a> ≈ 0.062m, leading to Ro/< a> ≥ 3.8. Such compactness was reached after a SCR-1 earlier proposal [1] was redesigned, both based on the low shear stellarator UST/1: Ro/< a> ≈ 6, ι =0.32/0.28 (core/edge) [2]. The set field at centre is 88mT produced by 12 copper modular coils, 8.7kA-turn each. This field is EC resonant at Ro with a 2.45GHz μ w, 1st harmonic, from 2/3kW magnetrons which will produce a second time-scale plasma pulse. The coil current will be produced by a bank of cell batteries. Poincar'{e} and EC deposition plots will be presented using COMSOL Multiphysics software. SCR-1 will be synergetic to the ST MEDUSA currently under donation to ITCR [3]. Both will benefit of the local new activities in technological plasmas.[4pt] [1] Barillas L et al., Proc.19th Int.Conf. Nucl.Eng., Japan, 2011[0pt] [2] Queral V, Stellarator News, 118, 2008[0pt] [3] Ribeiro C et al., 54th APS, Plasma Phys. Div., US, 2012

  17. Using the SCR Specification Technique in a High School Programming Course.

    ERIC Educational Resources Information Center

    Rosen, Edward; McKim, James C., Jr.

    1992-01-01

    Presents the underlying ideas of the Software Cost Reduction (SCR) approach to requirements specifications. Results of applying this approach to the teaching of programing to high school students indicate that students perform better in writing programs. An appendix provides two examples of how the method is applied to problem solving. (MDH)

  18. EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY

    EPA Science Inventory

    The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...

  19. Results of the pollution reduction technology program for turboprop engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 50-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  20. LISA Technology Development, Risk Reduction and Mission Formulation at NASA

    NASA Astrophysics Data System (ADS)

    Stebbins, Robin; Ziemer, John; Livas, Jeffrey; Ira Thorpe, James; Merkowitz, Stephen

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust levels between 5 and 30 µN with a resolution ¡0.1 µN and a thrust noise ¡0.1 µN/sqrtHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of 1 pm/sqrtHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over 1° annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the mission formulation. The results of systems engineering work on flight

  1. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.

  2. Space Technology 7 Disturbance Reduction System - precision control flight Validation

    NASA Technical Reports Server (NTRS)

    Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.; hide

    2005-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.

  3. Space Technology 7 Disturbance Reduction System - precision control flight Validation

    NASA Technical Reports Server (NTRS)

    Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.; Roy, T.; Gasdaska, C.; Young, J.; Connolly, W.; McCormick, R.; Gasdaska, C.

    2005-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.

  4. Development and analysis of SCR requirements tables for system scenarios

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Morrison, Jeffery L.

    1995-01-01

    We describe the use of scenarios to develop and refine requirement tables for parts of the Earth Observing System Data and Information System (EOSDIS). The National Aeronautics and Space Administration (NASA) is developing EOSDIS as part of its Mission-To-Planet-Earth (MTPE) project to accept instrument/platform observation requests from end-user scientists, schedule and perform requested observations of the Earth from space, collect and process the observed data, and distribute data to scientists and archives. Current requirements for the system are managed with tools that allow developers to trace the relationships between requirements and other development artifacts, including other requirements. In addition, the user community (e.g., earth and atmospheric scientists), in conjunction with NASA, has generated scenarios describing the actions of EOSDIS subsystems in response to user requests and other system activities. As part of a research effort in verification and validation techniques, this paper describes our efforts to develop requirements tables from these scenarios for the EOSDIS Core System (ECS). The tables specify event-driven mode transitions based on techniques developed by the Naval Research Lab's (NRL) Software Cost Reduction (SCR) project. The SCR approach has proven effective in specifying requirements for large systems in an unambiguous, terse format that enhance identification of incomplete and inconsistent requirements. We describe development of SCR tables from user scenarios and identify the strengths and weaknesses of our approach in contrast to the requirements tracing approach. We also evaluate the capabilities of both approach to respond to the volatility of requirements in large, complex systems.

  5. WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM

    EPA Science Inventory

    The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...

  6. WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM

    EPA Science Inventory

    The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...

  7. Technological, sensory and microbiological impacts of sodium reduction in frankfurters.

    PubMed

    Yotsuyanagi, Suzana E; Contreras-Castillo, Carmen J; Haguiwara, Marcia M H; Cipolli, Kátia M V A B; Lemos, Ana L S C; Morgano, Marcelo A; Yamada, Eunice A

    2016-05-01

    Initially, meat emulsions were studied in a model system to optimize phosphate and potassium chloride concentrations. In the second step, frankfurters containing 1.00%, 1.30% and 1.75% sodium chloride (NaCl) were processed and their stability was monitored over 56 days. In the emulsion tests, the best levels in relation to shear force found in model system were 0.85% and 0.25% of potassium chloride and phosphate, respectively. In the second step, treatments with 1.30% and 1.75% NaCl performed better in most of the analysis, particularly the sensory analysis. Consumers could identify the levels of salt, but this was not the factor that determined the overall acceptability. In some technological parameters, frankfurters with 1.30% NaCl were better than those with 1.75%. This represents a reduction of approximately 25% sodium chloride, or 18% reduction in sodium (916 mg/100g to 750 mg/100g), and it appears to be feasible from a technological, microbiological and sensory point of view. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Performance of optimised SCR retrofit buses under urban driving and controlled conditions

    NASA Astrophysics Data System (ADS)

    Carslaw, David C.; Priestman, Max; Williams, Martin L.; Stewart, Gregor B.; Beevers, Sean D.

    2015-03-01

    This work presents the first comprehensive real-world emissions results from urban buses retrofitted with an optimised low-NO2 selective catalytic reduction (SCR) system. The SCRT system combines a CRT (Continuously Regenerating Trap) to reduce particle emissions and SCR to reduce NOx emissions. The optimised low-NO2 SCRT was designed to work under urban conditions where the vehicle exhaust gas temperature is often too low for many SCR systems to work efficiently. The system was extensively tested through on-road and test track measurements using a vehicle emission remote sensing instrument capable of measuring both nitric oxide (NO) and nitrogen dioxide (NO2). Over 700 on-road measurements of the SCRT system were made in London. Compared with identical buses operating under the same conditions fitted with a CRT, NO2 emissions were reduced by 61% and total NOx by 45%. Under test track conditions reductions in NOx of 77% were observed. The test track results do reveal however that compared with an original Euro III bus without a CRT, the SCRT retrofit bus emissions of NO2 are 50% higher. Engine-out and tailpipe measurements of several important engine parameters under test track conditions showed the important effect of SCR inlet temperature on NOx conversion efficiency. Overall, we conclude that retrofitting urban buses to use low-NO2 SCRT systems is an effective method for delivering NOx and NO2 emissions reduction.

  9. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  10. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the

  11. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the

  12. Reductive photo-dechlorination (RPD) technology for remediation of TCA

    SciTech Connect

    Lavid, M.; Gulati, S.K.; Teytelboym, M.

    1994-12-31

    The Reductive Photo-Dechlorination (RPD) technology uses ultraviolet light in a reducing atmosphere to remove chlorine atoms from organo-chlorine waste streams at low to moderate temperatures. Because chlorinated organics are destroyed in a reducing environment, process products include valuable hydrocarbons and hydrogen chloride with no toxic oxygenated chlorocarbon by-products. The RPD process is designed specifically to treat volatile chlorinated wastes in the liquid or gaseous phases. Field applications include organic wastes produced from soil venting operations and those adsorbed on activated carbon. The process can also be used to pretreat gas streams entering catalytic oxidation systems, reducing chlorine content and hereby protecting the catalyst against poisoning. This paper focuses on photo-thermal remediation of 1,1,1-trichloroethane (TCA). It describes bench-scale experimental results, kinetic modeling predictions, and selected design parameters for a pilot-scale demonstration.

  13. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  14. Evaluation of the SCR controller noise problem

    SciTech Connect

    Bassett, R R; Barnaby, B E

    1981-12-01

    Several types of solid state controllers are available for application to electric vehicles. The silicon controlled rectifier (SCR) type provides a current waveform of fixed pulse height and variable ratio on to off time. The controller provides step-free operation through a four-speed manual transmission. However, because the current is chopped, the circuits produce loud hums of varying frequency, which in some mounting situations may be amplified. This noise disappoints those who expect an electric vehicle to boast relatively silent operation. To evaluate the problem, components of a test bed, consisting of a battery bank, dc motor, SCR controller, charger, and appropriate cabling, were fitted with accelerometers, and the noises were evaluated for amplitude and spectral characteristics. Transient currents and voltages were also measured and analyzed to identify the source of the noise and the frequencies involved.

  15. Research on the application in disaster reduction for using cloud computing technology

    NASA Astrophysics Data System (ADS)

    Tao, Liang; Fan, Yida; Wang, Xingling

    Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.

  16. IDENTIFICATION AND RESPONSES TO POTENTIAL EFFECTS OF SCR AND WET SCRUBBERS ON SUBMICRON PARTICULATE EMISSIONS AND PLUME CHARACTERISTICS

    EPA Science Inventory

    Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...

  17. IDENTIFICATION AND RESPONSES TO POTENTIAL EFFECTS OF SCR AND WET SCRUBBERS ON SUBMICRON PARTICULATE EMISSIONS AND PLUME CHARACTERISTICS

    EPA Science Inventory

    Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...

  18. Reactive nitrogen compounds (RNCs) in exhaust of advanced PM-NO x abatement technologies for future diesel applications

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Zimmerli, Yan; Czerwinski, Jan; Schmid, Peter; Zennegg, Markus; Haag, Regula; Seiler, Cornelia; Wichser, Adrian; Ulrich, Andrea; Honegger, Peter; Zeyer, Kerstin; Emmenegger, Lukas; Mosimann, Thomas; Kasper, Markus; Mayer, Andreas

    2011-06-01

    Long-term exposure to increased levels of reactive nitrogen compounds (RNCs) and particulate matter (PM) affect human health. Many cities are currently not able to fulfill European air quality standards for these critical pollutants. Meanwhile, promising new abatement technologies such as diesel particle filters (DPFs) and selective catalytic reduction (SCR) catalysts are developed to reduce PM and RNC emissions. Herein, effects of a urea-based SCR system on RNC emissions are discussed and we quantified the highly reactive intermediates isocyanic acid (HNCO) and ammonia (NH 3), both potential secondary pollutants of the urea-based SCR chemistry. A diesel engine (3.0 L, 100 kW), operated in the ISO 8178/4 C1, cycle was used as test platform. A V 2O 5-based SCR catalyst was either applied as such or down-stream of a high oxidation potential-DPF (hox-DPF). With active SCR, nitric oxide (NO) and nitrogen dioxide (NO 2) conversion efficiencies of 0.86-0.94 and 0.86-0.99 were obtained. On the other hand, mean HNCO and NH 3 emissions increased to 240-280 and 1800-1900 mg h -1. On a molar basis, HNCO accounted for 0.8-1.4% and NH 3 for 14-25% of the emitted RNCs. On roads, SCR systems will partly be inactive when exhaust temperatures drop below 220 °C. The system was active only during 75% of the test cycle, and urea dosing was stopped and restarted several times. Consequently, NO conversion stopped but interestingly, NO 2 was still converted. Such light-off and shutdown events are frequent in urban driving, compromising the overall deNO x efficiency. Another important effect of the SCR technology is illustrated by the NH 3/NO 2 ratio, which was >1 with active SCR, indicating that exhaust is basic rather than acidic after the SCR catalyst. Under these conditions, isocyanic acid is stable. The widespread use of various converter technologies already affected RNC release. Diesel oxidation catalysts (DOCs) and hox-DPFs increased NO 2 emissions, three-way catalysts (TWCs

  19. Technology innovations and experience curves for nitrogen oxides control technologies

    SciTech Connect

    Sonia Yeh; Edward S. Rubin; Margaret R. Taylor; David A. Hounshell

    2005-12-15

    This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO{sub 2}) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. Patent data are used to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus 'forcing' innovation. It is demonstrated that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to {approximately} 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale. 38 refs., 10 figs., 3 tabs.

  20. Technology innovations and experience curves for nitrogen oxides control technologies.

    PubMed

    Yeh, Sonia; Rubin, Edward S; Taylor, Margaret R; Hounshell, David A

    2005-12-01

    This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. We use patent data to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus "forcing" innovation. We also demonstrate that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to approximately 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale.

  1. Salt reduction in sheeted dough: A successful technological approach.

    PubMed

    Diler, Guénaëlle; Le-Bail, Alain; Chevallier, Sylvie

    2016-10-01

    The challenge of reducing the salt content while maintaining shelf life, stability and acceptability of the products is major for the food industry. In the present study, we implemented processing adjustments to reduce salt content while maintaining the machinability and the saltiness perception of sheeted dough: the homogeneous distribution of a layer of encapsulated salt grains on the dough during the laminating process. During sheeting, for an imposed deformation of 0.67, the final strain remained unchanged around 0.50 for salt reduction below 50%, and then, increased significantly up to 0.53 for a dough without salt. This increase is, in fine, positive regarding the rolling process since the decrease of salt content induces less shrinkage of dough downstream, which is the main feature to be controlled in the process. Moreover, the final strain was negatively correlated to the resistance to extension measured with a texture analyzer, therefore providing a method to evaluate the machinability of the dough. From these results, a salt reduction of 25% was achieved by holding 50% of the salt in the dough recipe to maintain the dough properties and saving 25% as salt grains to create high-salted areas that would enhance the saltiness perception of the dough. The distributor mounted above the rollers of the mill proved to be able to distribute evenly salt grains at a calculated step of the rolling out process. An innovative method based on RX micro-tomography allowed to follow the salt dissolving and to demonstrate the capability of the coatings to delay the salt dissolving and consequently the diffusion of salt within the dough piece. Finally, a ranking test on the salted perception of different samples having either an even distribution of encapsulated salt grains, a single layer of salt grains or a homogeneous distribution of salt, demonstrated that increasing the saltiness perception in salt-reduced food product could be achieved by a technological approach

  2. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  3. Disturbance reduction system: testing technology for drag-free operation

    NASA Astrophysics Data System (ADS)

    Hanson, John; Keiser, George; Buchman, Sasha; Byer, Robert L.; Lauben, Dave; Shelef, Ben; Shelef, Gad; Hruby, Vlad; Gamero-Castano, Manuel

    2003-03-01

    The Disturbance Reduction System (DRS) is designed to demonstrate technology required for future gravity missions, including the planned LISA gravitational-wave observatory, and for precision formation-flying missions. The DRS is based on a freely floating test mass contained within a spacecraft that shields the test mass from external forces. The spacecraft position will be continuously adjusted to stay centered about the test mass, essentially flying in formation with the test mass. Any departure of the test mass from a gravitational trajectory is characterized as acceleration noise, resulting from unwanted forces acting on the test mass. The DRS goal is to demonstrate a level of acceleration noise more than four orders of magnitude lower than previously demonstrated in space. The DRS will consist of an instrument package and a set of microthrusters, which will be attached to a suitable spacecraft. The instrument package will include two Gravitational Reference Sensors comprised of a test mass within a reference housing. The spacecraft position will be adjusted using colloidal microthrusters, which are miniature ion engines that provide continuous thrust with a range of 1-20 mN with resolution of 0.1 mN. The DRS will be launched in 2007 as part of the ESA SMART-2 spacecraft. The DRS is a project within NASA's New Millennium Program.

  4. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  5. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  6. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  7. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  8. DFT insights into the adsorption of NH3-SCR related small gases in Mn-MOF-74.

    PubMed

    Zhang, Minhua; Huang, Xuewei; Chen, Yifei

    2016-10-19

    Mn-MOF-74 has great potential to catalyze selective catalytic reduction (SCR) reaction with NH3 being the reductant (NH3-SCR). However, the reaction mechanism, in particular the adsorptive properties of key reactive species in Mn-MOF-74, remains ambiguous. Besides, the effects of impurities such as H2O and SO2 on the process need further investigation. In this paper, based on density functional theory (DFT) calculations, we studied the adsorption characteristics of six NH3-SCR related small gases, namely NH3, NO2, NO, O2, H2O and SO2. DFT results show that the Mn-MOF-74 structure can bind these molecules relatively strongly in the following order: NH3 > NO2 > NO > O2, allowing for subsequent NH3-SCR reaction. In addition, a possible pathway of NO conversion to NO2 was calculated. Investigation on competitive adsorption of NH3 and H2O, NH3 and SO2 reveals that both H2O and SO2 are probable to replace NH3 under certain conditions, indicating that the two impurity gases may affect the activity of the NH3-SCR reaction. Compared with H2O, SO2 can displace NH3 more easily and should not be neglected.

  9. Impact of new technologies on dose reduction in CT.

    PubMed

    Lee, Ting-Yim; Chhem, Rethy K

    2010-10-01

    The introduction of slip ring technology enables helical CT scanning in the late 1980's and has rejuvenated CT's role in diagnostic imaging. Helical CT scanning has made possible whole body scanning in a single breath hold and computed tomography angiography (CTA) which has replaced invasive catheter based angiography in many cases because of its easy of operation and lesser risk to patients. However, a series of recent articles and accidents have heightened the concern of radiation risk from CT scanning. Undoubtedly, the radiation dose from CT studies, in particular, CCTA studies, are among the highest dose studies in diagnostic imaging. Nevertheless, CT has remained the workhorse of diagnostic imaging in emergent and non-emergent situations because of their ubiquitous presence in medical facilities from large academic to small regional hospitals and their round the clock accessibility due to their ease of use for both staff and patients as compared to MR scanners. The legitimate concern of radiation dose has sparked discussions on the risk vs benefit of CT scanning. It is recognized that newer CT applications, like CCTA and perfusion, will be severely curtailed unless radiation dose is reduced. This paper discusses the various hardware and software techniques developed to reduce radiation dose to patients in CT scanning. The current average effective dose of a CT study is ∼10 mSv, with the implementation of dose reduction techniques discussed herein; it is realistic to expect that the average effective dose may be decreased by 2-3 fold. Copyright © 2010. Published by Elsevier Ireland Ltd.

  10. Validation testing of drift reduction technology testing protocol

    EPA Science Inventory

    A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on the effectiveness of these technologies in reducing spray drift. Working with a stakeholder technical panel under EPA's Env...

  11. Validation testing of drift reduction technology testing protocol

    EPA Science Inventory

    A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on the effectiveness of these technologies in reducing spray drift. Working with a stakeholder technical panel under EPA's Env...

  12. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention.

    PubMed

    Nakamura, Shigeru; Kobayashi, Tomoko; Funatsu, Atsushi; Okada, Tadahisa; Mauti, Maria; Waizumi, Yuki; Yamada, Shinichi

    2016-05-01

    Coronary angiography and intervention can expose patients to high radiation dose. This retrospective study quantifies the patient dose reduction due to the introduction of a novel X-ray imaging noise reduction technology using advanced real-time image noise reduction algorithms and optimized acquisition chain for fluoroscopy and exposure in interventional cardiology. Patient, procedure and radiation dose data were retrospectively collected in the period August 2012-August 2013 for 883 patients treated with the image noise reduction technology (referred as "new system"). The same data were collected for 1083 patients in the period April 2011-July 2012 with a system using state-of-the-art image processing and reference acquisition chain (referred as "reference system"). Procedures were divided into diagnostic (CAG) and intervention (PCI). Acquisition parameters such as fluoroscopy time, volume of contrast medium, number of exposure images and number of stored fluoroscopy images were collected to classify procedure complexity. The procedural dose reduction was investigated separately for three main cardiologists. The new system provides significant dose reduction compared to the reference system. Median DAP values decreased for all procedures (p < 0.0001) from 172.7 to 59.4 Gy cm(2), for CAG from 155.1 to 52.0 Gy cm(2) and for PCI from 229.0 to 85.8 Gy cm(2) with reduction quantified at 66, 66 and 63 %, respectively. Based on median values, the dose reduction for all procedures was 68, 60 and 67 % for cardiologists 1, 2 and 3, respectively. The X-ray imaging technology combining advanced real-time image noise reduction algorithms and anatomy-specific optimized fluoroscopy and cine acquisition chain provides 66 % patient dose reduction in interventional cardiology.

  13. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Guard and the Environmental Protection Agency will survey new technology and new applications of... commercial maritime industry to implement new technology that will reduce NO X , SO X and PM emissions from... additional information about new and existing technology for reducing these air emissions from cargo or...

  14. Method and system for SCR optimization

    DOEpatents

    Lefebvre, Wesley Curt [Boston, MA; Kohn, Daniel W [Cambridge, MA

    2009-03-10

    Methods and systems are provided for controlling SCR performance in a boiler. The boiler includes one or more generally cross sectional areas. Each cross sectional area can be characterized by one or more profiles of one or more conditions affecting SCR performance and be associated with one or more adjustable desired profiles of the one or more conditions during the operation of the boiler. The performance of the boiler can be characterized by boiler performance parameters. A system in accordance with one or more embodiments of the invention can include a controller input for receiving a performance goal for the boiler corresponding to at least one of the boiler performance parameters and for receiving data values corresponding to boiler control variables and to the boiler performance parameters. The boiler control variables include one or more current profiles of the one or more conditions. The system also includes a system model that relates one or more profiles of the one or more conditions in the boiler to the boiler performance parameters. The system also includes an indirect controller that determines one or more desired profiles of the one or more conditions to satisfy the performance goal for the boiler. The indirect controller uses the system model, the received data values and the received performance goal to determine the one or more desired profiles of the one or more conditions. The system model also includes a controller output that outputs the one or more desired profiles of the one or more conditions.

  15. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    PubMed

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust.

  16. Biological degradation of catechol in wastewater using the sequencing continuous-inflow reactor (SCR)

    PubMed Central

    2013-01-01

    Catechol is used in many industries. It can be removed from wastewater by various methods but biological processes are the most superior and commonly used technology. The SCR is a modified form of SBR used to degrade catechol. The objective of this study was to investigate the performance of SCR for biodegradation and mineralization of catechol under various inlet concentrations (630–1500 mg/L) and hydraulic retention times (HRT) (18–9 h). This study used a bench scale SCR setup to test catechol degradation. The acclimation time of biomass for catechol at degradation at 630 mg/L was 41 d. The SCR operating cycle time was 6 h and the consecutive times taken for aerating, settling and decanting were 4, 1.5 and 0.5 h, respectively. This study investigated the effects of inlet catechol concentration (630–1560 mg/L) and HRT (18–9 h). The average catechol removal efficiencies in steady-state conditions of 630, 930, 12954 and 1559 mg/L of catechol were 98.5%, 98.5%, 98.2% and 96.9% in terms catechol and 97.8%, 97.7%, 96.4% and 94.3% for COD, respectively. SCR with acclimated biomasses could effectively remove the catechol and the corresponding COD from wastewater with concentrations of up to 1560, at the loading rate of 5.38 kg COD/m3.d and at a HRT of up to 13 h. The HRT was determined as an important variable affecting catechol removal from wastewater. Reducing the HRT to below 13 h led to reduced removal of catechol and COD. PMID:24499534

  17. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  18. XAFS Study of Active Tungsten Species on WO3/TiO2 as a Catalyst for Photo-SCR

    SciTech Connect

    Yamazoe, Seiji; Masutani, Yasuyuki; Shishido, Tetsuya; Tanaka, Tsunehiro

    2007-02-02

    The activity of the photo-assisted selective catalytic reduction of NO with NH3 (photo-SCR) was enhanced by the addition of WO3 to TiO2. From the result of XAFS analysis, the W species on TiO2 had a WO4 tetrahedral structure and agglutination took place as the addition of WO3 was increased. We conclude that the isolated W species enhances the surface acidity and photo-SCR activity whereas the agglutinated W species is an inactive species.

  19. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  20. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    EPA Science Inventory

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  1. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    EPA Science Inventory

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  2. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    EPA Science Inventory

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  3. IN-SITU CHEMICAL OXIDATION - DNAPL MASS REDUCTION TECHNOLOGY

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) is a rapidly developing technology used at hazardous waste sites where oxidants and complimentary reagents are injected into the subsurface to transform organic contaminants into less toxic byproducts. This technology is being used at new sites ...

  4. Achieving cost reductions in EOSDIS operations through technology evolution

    NASA Technical Reports Server (NTRS)

    Newsome, Penny; Moe, Karen; Harberts, Robert

    1996-01-01

    The earth observing system (EOS) data information system (EOSDIS) mission includes the cost-effective management and distribution of large amounts of data to the earth science community. The effect of the introduction of new information system technologies on the evolution of EOSDIS is considered. One of the steps taken by NASA to enable the introduction of new information system technologies into the EOSDIS is the funding of technology development through prototyping. Recent and ongoing prototyping efforts and their potential impact on the performance and cost-effectiveness of the EOSDIS are discussed. The technology evolution process as it related to the effective operation of EOSDIS is described, and methods are identified for the support of the transfer of relevant technology to EOSDIS components.

  5. Achieving cost reductions in EOSDIS operations through technology evolution

    NASA Technical Reports Server (NTRS)

    Newsome, Penny; Moe, Karen; Harberts, Robert

    1996-01-01

    The earth observing system (EOS) data information system (EOSDIS) mission includes the cost-effective management and distribution of large amounts of data to the earth science community. The effect of the introduction of new information system technologies on the evolution of EOSDIS is considered. One of the steps taken by NASA to enable the introduction of new information system technologies into the EOSDIS is the funding of technology development through prototyping. Recent and ongoing prototyping efforts and their potential impact on the performance and cost-effectiveness of the EOSDIS are discussed. The technology evolution process as it related to the effective operation of EOSDIS is described, and methods are identified for the support of the transfer of relevant technology to EOSDIS components.

  6. Progress in supersonic cruise technology

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1983-01-01

    The Supersonic Cruise Research (SCR) program identified significant improvements in the technology areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements, when combined in a large supersonic cruise vehicle, offer a far greater technology advance than generally realized. They offer the promise of an advanced commercial family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. These same areas of technology have direct application to smaller advanced military aircraft and to supersonic executive aircraft. Several possible applications will be addressed.

  7. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  8. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  9. An SCR inverter for electric vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  10. An SCR inverter for electric vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  11. Application of Circulation Control Technology to Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  12. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  13. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  14. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  15. Patient safety, error reduction, and pediatric nurses' perceptions of smart pump technology.

    PubMed

    Mason, Janice Jackson; Roberts-Turner, Renée; Amendola, Virginia; Sill, Anne M; Hinds, Pamela S

    2014-01-01

    Patient safety and error reduction are essential to improve patient care, and new technology is expected to contribute to such improvements while reducing costs and increasing care efficiency in health care organizations. The purpose of this study was to assess the relationships among pediatric nurses' perceptions of smart infusion pump (SIP) technology, patient safety, and error reduction. Findings revealed that RNs' perceptions of SIP correlated with patient safety. No significant relationship was found between RNs' perceptions of SIP and error reduction, but data retrieved from the pumps revealed 93 manipulations of the pumps, of which error reduction was captured 65 times.

  16. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  17. Tactical Idle Reduction for Heavy Tactical Vehicles Technology Transition Initiative

    DTIC Science & Technology

    2008-11-01

    Power Generation and Alternative Energy Branch Army Power Division US Army RDECOM CERDEC C2D Aberdeen Proving Ground, MD...develop and demonstrate a suitable idling reduction auxiliary power and energy system for the next- generation M915 and family of line haul replacement...being idled as significantly as is believed by the Army. The comprehensive requirements generated from these two activities will form the basis of the

  18. Noise and vibration reduction technology in aircraft internal cabin

    NASA Astrophysics Data System (ADS)

    Takahashi, Kosaku; Monzen, Hirotaka; Yamaoka, Toshihiro; Kusumoto, Koji; Bansaku, Kazuhiro; Kimoto, Junichi; Isoe, Akira; Hirose, Yasuo; Sanda, Tomio; Matsuzaki, Yuji

    2003-08-01

    The study to reduce noise and vibration in aircraft cabin through PZT was implemented, using a semi-monocoque structure, 1.5m in diameter and 3.0m long with 2.3mm skin, which stimulates an aircraft body. We utilized PZT of 480 pieces bonded on inner surface of the structure as sensor and actuator. We applied random noise of low frequency range between 0~500Hz to the test model. We tried to reduce the vibration level of structure and internal air due to the external load by controlling the PZTs. Two control methods, gain control and feed-forward control, were tried. We measured internal sound pressure on 150 spots and compared overall values of sound pressure with gain control to them without control and evaluated its reduction capability. The tests showed 4.0dB O.A. reduction at maximum in gain control and 3.5dB O.A. reduction at maximum in feed forward control.

  19. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  20. DESIGN AND COST REDUCTION OF REMEDIATION TECHNOLOGY PILOT TESTING

    EPA Science Inventory

    In order to effectively address the inherent variability of MTBE concentrations at a small fuel contamination site chosen for an in-situ remedial technology test demonstration, curtain walls for metering mixtures of conservative and non-conservative tracers into an aquifer were u...

  1. DESIGN AND COST REDUCTION OF REMEDIATION TECHNOLOGY PILOT TESTING

    EPA Science Inventory

    In order to effectively address the inherent variability of MTBE concentrations at a small fuel contamination site chosen for an in-situ remedial technology test demonstration, curtain walls for metering mixtures of conservative and non-conservative tracers into an aquifer were u...

  2. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  3. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  4. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use.

    PubMed

    Cicchetti, Americo; Berrino, Alexandra; Casini, Marina; Codella, Paola; Facco, Giuseppina; Fiore, Alessandra; Marano, Giuseppe; Marchetti, Marco; Midolo, Emanuela; Minacori, Roberta; Refolo, Pietro; Romano, Federica; Ruggeri, Matteo; Sacchini, Dario; Spagnolo, Antonio G; Urbina, Irene; Vaglio, Stefania; Grazzini, Giuliano; Liumbruno, Giancarlo M

    2016-07-01

    Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains.Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed.

  5. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use

    PubMed Central

    Cicchetti, Americo; Berrino, Alexandra; Casini, Marina; Codella, Paola; Facco, Giuseppina; Fiore, Alessandra; Marano, Giuseppe; Marchetti, Marco; Midolo, Emanuela; Minacori, Roberta; Refolo, Pietro; Romano, Federica; Ruggeri, Matteo; Sacchini, Dario; Spagnolo, Antonio G.; Urbina, Irene; Vaglio, Stefania; Grazzini, Giuliano; Liumbruno, Giancarlo M.

    2016-01-01

    Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains. Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed. PMID:27403740

  6. Combined SO sub 2 /NO sub x reduction technology

    SciTech Connect

    Livengood, C.D.; Huang, H.S. ); Markussen, J.M. )

    1992-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  7. Reduction of Milling Time by Using CAQ Technologies

    NASA Astrophysics Data System (ADS)

    Zaujec, Rudolf; Pokorný, Peter; Šimna, Vladimír; Vopát, Tomáš; Urminský, Ján; Bodišová, Petra

    2016-09-01

    The paper is focused on reducing machining time by using 3D optical scanner of ATOS Triplescan II. Workpiece was a forging die, which was renovated by hard facing. The contribution deals with comparing the CAM simulation of roughing process according to the STL model imported from ATOS, and simulation without thus-defined workpiece. The results indicate a significant improvement of machining time based on CAQ technology and usage of the ATOS device for measuring the errors of weld deposit.

  8. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides

    NASA Astrophysics Data System (ADS)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH3 at low temperature (150-300 °C). It is evidenced that CeO2 loaded catalysts present the best performance, and the optimum loading amount of CeO2 is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO2 are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O2 and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH3 at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir-Hinshlwood mechanism.

  9. Compact SCR trigger circuit for ignitron switch operates efficiently

    NASA Technical Reports Server (NTRS)

    Foster, L. E.

    1965-01-01

    Trigger circuit with two series-connected SCR triggers an ignitron switch used to discharge high-energy capacitor banks. It does not require a warmup period and operates at relatively high efficiency.

  10. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  11. Novel drilling technology and reduction in drilling costs

    SciTech Connect

    Enger, T.; Torvund, T.; Mikkelsen, J.

    1995-12-31

    Historically offshore drilling costs represent a large part of Norsk Hydro`s E and P investments. Thus a reduction in drilling costs is a major issue. Consequently an aggressive approach to drilling has taken place focusing upon: (1) Reduction in conventional drilling costs, both in exploration and production drilling. An ambitious program to reduce drilling costs by 50% has been introduced. The main improvement potentials include rapid drilling, improved contracts and more selective data gathering. (2) Drilling of long reach wells up to approximately 9 km to reduce the number of subsea wells and fixed platforms, and thus improving the total field economy. Norsk Hydro has also been aggressive in pursuing drilling techniques which could improve the total oil recovery. Horizontal drilling has made possible the development of the giant Troll oil field, even though the oil leg is only 0--26 m thick. Oil reserves in the order of up to 650 mill bbl will be recovered solely due to introduction of horizontal wells. Recently, offshore tests of techniques such as coiled tubing drilling and conventional slim hole drilling have been carried out. The aim is to qualify a concept which could enable them to use a light vessel for exploration drilling, and not the large semi submersible rigs presently used. Potential future savings could be substantial.

  12. Mobil-Badger technologies for benzene reduction in gasoline

    SciTech Connect

    Goelzer, A.R.; Ram, S.; Hernandez, A. ); Chin, A.A.; Harandi, M.N.; Smith, C.M. Mobil Research and Development Corp., Paulsboro, NJ )

    1993-01-01

    Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformate with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.

  13. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  14. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    SciTech Connect

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  15. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  16. Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts

    SciTech Connect

    Gao, Feng; Szanyi, János; Wang, Yilin; Schwenzer, Birgit; Kollár, Márton; Peden, Charles H. F.

    2016-05-05

    Cu/SSZ-13 has been successfully commercialized as a diesel engine exhaust aftertreatment SCR catalyst in the past few years. This catalyst, however, displays undesirable NH3-SCR selectivity at elevated reaction temperature (≥ 350 C) after hydrothermal aging. Fe/zeolites, despite the fact that most of them degrade beyond tolerance after hydrothermal aging at temperatures ≥ 650 C, typically maintain good SCR selectivities. In recent years, Fe/beta has been identified as one of the more robust Fe/zeolites for use in NH3-SCR, where activity maintains even after hydrothermal aging at 750 C. Very recently, we, for the first time, synthesized and tested NH3-SCR performance for fresh and hydrothermally aged Fe/SSZ-13 catalysts. This study demonstrated that Fe/SSZ-13 is also a promising robust SCR catalyst, especially for high-temperature applications. In the present study, we compare catalytic performance between Fe/SSZ-13 and Fe/beta with similar Fe loadings and Si/Al ratios. Special attention is paid to effects from hydrothermal aging, aiming to understanding similarities and differences between these two catalysts. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  17. Selective inhibition of the alternative complement pathway by sCR1[desLHR-A] protects the rabbit isolated heart from human complement-mediated damage.

    PubMed

    Gralinski, M R; Wiater, B C; Assenmacher, A N; Lucchesi, B R

    1996-09-01

    Evidence is presented that treatment with a selective inhibitor of the alternative complement pathway, sCR1[desLHR-A], protects the ex vivo perfused rabbit heart from human complement-mediated injury. Hearts from male New Zealand white rabbits were perfused in the Langendorff mode. After equilibration, normal human plasma was added to the perfusate as a source of complement. Concomitant with the addition of human plasma, vehicle (n = 13), soluble complement receptor type 1 (sCR1) (n = 10), or sCR1[desLHR-A], a truncated version of sCR1 that lacks the C4b binding region (n = 10) was included in the perfusate. Hemodynamic variables were obtained for all groups before (baseline) and after the addition of human plasma. Compared to vehicle-treated hearts, variables recorded during perfusion with human plasma including coronary perfusion pressure, left ventricular developed pressure, and left ventricular end diastolic pressure, along with a reduction of creatine kinase efflux, were improved in hearts perfused with either complement inhibitor. In addition, in vitro hemolysis assays were utilized to discriminate between the classical and alternative pathways. The addition of sCR1 to human serum prevented both the classical and alternative pathway-mediated hemolysis while sCR1[desLHR-A] prevented only the alternative pathway-mediated lysis. This study indicates that deletion of the C4b-binding site from sCR1 results in a new pharmacological moiety, sCR1[desLHR-A], that primarily inhibits the alternative pathway of human complement.

  18. Technology could deliver 90% Hg reduction from coal

    SciTech Connect

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  19. Sex combs reduced (Scr) regulatory region of Drosophila revisited.

    PubMed

    Calvo-Martín, Juan M; Papaceit, Montserrat; Segarra, Carmen

    2017-08-01

    The Hox gene Sex combs reduced (Scr) is responsible for the differentiation of the labial and prothoracic segments in Drosophila. Scr is expressed in several specific tissues throughout embryonic development, following a complex path that must be coordinated by an equally complex regulatory region. Although some cis-regulatory modules (CRMs) have been identified in the Scr regulatory region (~75 kb), there has been no detailed and systematic study of the distinct regulatory elements present within this region. In this study, the Scr regulatory region was revisited with the aim of filling this gap. We focused on the identification of Initiator elements (IEs) that bind segmentation factors, Polycomb response elements (PREs) that are recognized by the Polycomb and Trithorax complexes, as well as insulators and tethering elements. To this end, we summarized all currently available information, mainly obtained from high throughput ChIP data projects. In addition, a bioinformatic analysis based on the evolutionary conservation of regulatory sequences using the software MOTEVO was performed to identify IE and PRE candidates in the Scr region. The results obtained by this combined strategy are largely consistent with the CRMs previously identified in the Scr region and help to: (i) delimit them more accurately, (ii) subdivide two of them into different independent elements, (iii) identify a new CRM, (iv) identify the composition of their binding sites and (v) better define some of their characteristics. These positive results indicate that an approach that integrates functional and bioinformatic data might be useful to characterize other regulatory regions.

  20. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  1. Pollution Reduction Technology Program, Turboprop Engines, Phase 1

    NASA Technical Reports Server (NTRS)

    Anderson, R. D.; Herman, A. S.; Tomlinson, J. G.; Vaught, J. M.; Verdouw, A. J.

    1976-01-01

    Exhaust pollutant emissions were measured from a 501-D22A turboprop engine combustor and three low emission combustor types -- reverse flow, prechamber, and staged fuel, operating over a fuel-air ratio range of .0096 to .020. The EPAP LTO cycle data were obtained for a total of nineteen configurations. Hydrocarbon emissions were reduced from 15.0 to .3 lb/1000 Hp-Hr/cycle, CO from 31.5 to 4.6 lb/1000 Hp-Hr/cycle with an increase in NOx of 17 percent, which is still 25% below the program goal. The smoke number was reduced from 59 to 17. Emissions given here are for the reverse flow Mod. IV combustor which is the best candidate for further development into eventual use with the 501-D22A turboprop engine. Even lower emissions were obtained with the advanced technology combustors.

  2. The role and future of space technology in disaster reduction

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1992-01-01

    Disaster mitigation consists of many activities, including vulnerability assessment, disaster warning and prediction and disaster relief. Various types of satellites can be applied to these endeavors: communications, geophysical, meteorological and Earth resources. The latter two are considered 'remote sensing' satellites. There are many limitations in the design and development of remote sensing satellites; limitations in cost and the acceptable data rate and limitations in our technology. Nevertheless, there are a large number of satellites, both currently in orbit and planned, with capabilities pertinent to disaster mitigation. Some of these are operational and can be relied upon to provide continued data sources. Others are experimental and provide the disaster management community and opportunity to assess the potential usefulness of the techniques and to impact the design of future operational systems. A table lists the operational parameters and potential application in disaster mitigation of 44 current and planned remote sensing satellites and instruments.

  3. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations.

    PubMed

    Liu, Z Gerald; Wall, John C; Barge, Patrick; Dettmann, Melissa E; Ottinger, Nathan A

    2011-04-01

    This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.

  4. Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction

    SciTech Connect

    Robichaud, R.

    2007-06-01

    This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

  5. Technology transfer during the ``middle game`` of the international decade for natural disaster reduction

    SciTech Connect

    Rouhban, B.M.; Hays, W.W.

    1995-12-31

    This paper describes the urgency for and the importance of technology transfer during the remainder of the International Decade for Natural Disaster Reduction (IDNDR). Eleven case histories are cited to illustrate the types of activities involving technology transfer that every nation can undertake.

  6. In situ evaluation of aircraft interior noise reduction technologies

    NASA Astrophysics Data System (ADS)

    Klos, Jacob; Palumbo, Daniel L.

    2003-10-01

    In order to quantify the performance of interior noise treatments under flight conditions, it is desirable to evaluate the noise reduction due to treatment of a limited portion of an aircraft fuselage. However, radiation from the untreated areas of the fuselage can corrupt an intensity measurement in front of the treated area. In the past, this problem of corrupting noise has been solved by acoustically isolating the treated area from the rest of the fuselage. In this presentation, a method to evaluate the performance of an acoustic treatment applied to an aircraft fuselage in situ using correlation analysis is documented. The insertion loss of the acoustic treatments is estimated from the ratio of the intensity, correlated to reference transducers, measured with and without the treatment applied. The formulation is presented for both single and multiple reference transducers. Several experimental studies and numerical simulations have been conducted, and the results are documented. Through these case studies, it is demonstrated that this method can be used to evaluate the insertion loss of fuselage treatments without having to acoustically isolate the treated area.

  7. Jet Noise Reduction Potential From Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  8. Developments in management and technology of waste reduction and disposal.

    PubMed

    Rushbrook, Philip

    2006-09-01

    Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future.

  9. Jet Noise Reduction Potential from Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  10. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 3, Appendices O--T. Final report

    SciTech Connect

    1996-10-01

    Volume 3 contains the following appendices: Appendix O, Second Series-Manual APH Tests; Appendix P, Third Series-Manual APH Tests; Appendix Q, ABB Analysis of Air Preheaters-Final Report; Appendix R, ABB Corrosion Analysis Study; Appendix S, SRI Waste Stream Impacts Study; and Appendix T, Economic Evaluation.

  11. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 2, Appendices A--N. Final report

    SciTech Connect

    1996-10-01

    Volume 2 contains the following appendices: Appendix A, Example Material Safety Data Sheet; Appendix B, Initial Site Characterization Test Results; Appendix C, Testing Proposal, Southern Research Institute; Appendix D, Example Laboratory Catalyst Test Protocol; Appendix E, Detailed Coal Analysis Data; Appendix F, Standard Methods-QA/QC Document; Appendix G, Task No. 1 Commissioning Tests; Appendix H, Task No. 2 Commissioning Tests; Appendix I, First Parametric Sequence Spreadsheets; Appendix J, Second Parametric Sequence Spreadsheets; Appendix K, Third Parametric Sequence Spreadsheets; Appendix L, Fourth Parametric Sequence Spreadsheets; Appendix M, Fifth Parametric Sequence Spreadsheets; and Appendix N, First Series-Manual APH Tests.

  12. Environmental Technology Verification: Pesticide Spray Drift Reduction Technologies for Row and Field Crops

    EPA Pesticide Factsheets

    The Environmental Technology Verification Program, established by the EPA, is designed to accelerate the development and commercialization of new or improved technologies through third-party verification and reporting of performance.

  13. Low temperature SCR of NO with catalysts prepared by modified ACF loading Mn and Ce: effects of modification method.

    PubMed

    Li, Ping; Lu, Pei; Zhai, Yunbo; Li, Caiting; Chen, Ting; Qing, Renpeng; Zhang, Wei

    2015-01-01

    Achievement of a higher NOx conversion ratio in selective catalytic reduction (SCR) at low temperature is challenging. In this work, pure activated carbon fibres (ACFs) were modified with different ratios of H2O (g), NaOH, CO2 and HNO3, respectively (named as modified ACF). The chemical and physical properties of modified ACFs were identified by Brunauer-Emmett-Teller, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods. The NOx conversion ratio of ACF was improved from 56.1% to 82.4% at 80°C after modification with 30% (mass ratio) NaOH. These modified ACFs were further loaded with the mixture of MnO2 and CeO2 in the form of metal salt solutions (named as Mn0.5Ce0.5O2/modified ACF). The NOx conversion ratio of 30% SHACF remained similar at 80°C but was increased from 60.0% to 98.5% at 360°C after loading with Mn and Ce, which showed the best performance in SCR of NOx at low temperature. It could be seen that ACF delivered higher performance in low temperature SCR after being modified with the aforementioned reactants and further loading with metals. Based on chemical and physical characterization and the performance of the catalysts, the reasons for different performances of these catalysts in low temperature SCR are discussed.

  14. Local therapy with soluble complement receptor 1 (sCR1) suppresses inflammation in rat mono-articular arthritis.

    PubMed

    Goodfellow, R M; Williams, A S; Levin, J L; Williams, B D; Morgan, B P

    1997-10-01

    Complement activation has been implicated in the pathogenesis of human rheumatoid arthritis. We sought to determine whether inhibition of complement (C) using sCR1 could influence the development and progression of antigen arthritis in the rat, a recognized model of human chronic synovitis. The effect of C inhibition, systemically and locally, on three different stages of disease was examined: (i) prophylaxis, (ii) treatment of established inflammation, and (iii) prevention of antigen-induced flares of disease. Arthritis was assessed by knee swelling and by histological examination. Our results show that intra-articular injection of sCR1 prior to disease onset reduced joint swelling and development of arthritis, whereas systemic administration was ineffective. Treatment of established arthritis with intraarticular sCR1 3 days after disease onset caused a transient reduction in swelling, but treatment 7 days after disease onset had no effect on disease. An intra-articular dose of sCR1 given at the time of disease flares had a small, yet significant effect on knee swelling. We conclude that complement activation is important in the initiation and maintenance of inflammation in antigen arthritis. The potent effect of local C inhibition suggests that C biosynthesis and activation within the joint contributes to inflammation in this model of arthritis.

  15. Atmospheric emissions from a passenger ferry with selective catalytic reduction.

    PubMed

    Nuszkowski, John; Clark, Nigel N; Spencer, Thomas K; Carder, Daniel K; Gautam, Mridul; Balon, Thomas H; Moynihan, Paul J

    2009-01-01

    The two main propulsion engines on Staten Island Ferry Alice Austen (Caterpillar 3516A, 1550 hp each) were fitted with selective catalytic reduction (SCR) aftertreatment technology to reduce emissions of oxides of nitrogen (NOx). After the installation of the SCR system, emissions from the ferry were characterized both pre- and post-aftertreatment. Prior research has shown that the ferry operates in four modes, namely idle, acceleration, cruise, and maneuvering modes. Emissions were measured for both engines (designated NY and SI) and for travel in both directions between Manhattan and Staten Island. The emissions characterization used an analyzer system, a data logger, and a filter-based particulate matter (PM) measurement system. The measurement of NOx, carbon monoxide (CO), and carbon dioxide (CO2) were based on federal reference methods. With the existing control strategy for the SCR urea injection, the SCR provided approximately 64% reduction of NOx for engine NY and 36% reduction for engine SI for a complete round trip with less than 6.5 parts per million by volume (ppmv) of ammonia slip during urea injection. Average reductions during the cruise mode were 75% for engine NY and 47% for engine SI, which was operating differently than engine NY. Reductions for the cruise mode during urea injection typically exceeded 94% from both engines, but urea was injected only when the catalyst temperature reached a 300 degrees C threshold pre- and postcatalyst. Data analysis showed a total NOx mass emission split with 80% produced during cruise, and the remaining 20% spread across idle, acceleration, and maneuvering. Examination of continuous NOx data showed that higher reductions of NOx could be achieved on both engines by initiating the urea injection at an earlier point (lower exhaust temperature) in the acceleration and cruise modes of operation. The oxidation catalyst reduced the CO production 94% for engine NY and 82% for engine SI, although the high CO levels

  16. Interface specifications for the SCR (a-7e) Extended Computer Module

    SciTech Connect

    Parnas, D.L.; Weiss, D.M.; Clements, P.C.; Britton, K.H.

    1983-01-01

    This document describes the programmer interface to a computing machine partially implemented in software. The Extended Computer is part of NRL's Software Cost Reduction (SCR) project, to demonstrate the feasibility of applying advanced software engineering techniques to complex real-time systems in order to simplify maintenance. The Extended Computer allows code portability among avionics computers by providing extensible addressing, uniform i/o and data access, representation-independent data types, uniform event signalling, a standard subprogram invocation mechanism, and parallel process capability. The purpose of the Extended Computer is to allow the remainder of the software to remain unchanged when the host computer is changed or replaced.

  17. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  18. Shuttle to Shuttle 2: Subsystem weight reduction potential (estimated 1992 technology readiness date)

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.

    1988-01-01

    The objective of this study was to make estimates of the weight savings that might be realized on all the subsystems on an advanced rocket-powered shuttle (designated Shuttle 2) by using advanced technologies having a projected maturity date of 1992. The current Shuttle with external tank was used as a baseline from which to make the estimates of weight savings on each subsystem. The subsystems with the greatest potential for weight reduction are the body shell and the thermal protection system. For the body shell, a reduction of 5.2 percent in the weight of the vehicle at main engine cutoff is projected through the application of new technologies, and an additional configuration-based reduction of 5 percent is projected through simplification of body shape. A reduction of 5 percent is projected for the thermal protection system through experience with the current Space Shuttle and the potential for reducing thermal protection system thicknesses in selected areas. Main propellant tanks are expected to increase slightly in weight. The main propulsion system is also projected to increase in weight because of the requirement to operate engines at derated power levels in order to accommodate one-engine-out capability. The projections for weight reductions through improvements in the remaining subsystems are relatively small. By summing all the technology factors, a projected reduction of 16 percent in the vehicle weight at main engine cutoff is obtained. By summarizing the configurational factors, a potential reduction of 12 percent in vehicle weight is obtained.

  19. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].

    PubMed

    Yu, Chao; Wang, Shu-xiao; Hao, Ji-ming

    2010-07-01

    A multi-level assessment index system was established to quantitatively and comprehensively evaluate the performance of typical nitrogen oxide control technologies for coal-fired power plants. Comprehensive fuzzy evaluation was conducted to assess six NO, control technologies, including low NO, burner (LNB), over the fire (OFA), flue gas reburning (Reburning), selective catalyst reduction (SCR), selective non-catalyst reduction (SNCR) and hybrid SCR/SNCR. Case studies indicated that combination of SCR and LNB are the optimal choice for wall-fired boilers combusting anthracite coal which requires NO, removal efficiency to be over 70%, however, for W-flame or tangential boilers combusting bituminous and sub-bituminous coal which requires 30% NO, removal, LNB and reburning are better choices. Therefore, we recommend that in the developed and ecological frangible regions, large units burning anthracite or meager coal should install LNB and SCR and other units should install LNB and SNCR. In the regions with environmental capacity, units burning anthracite or meager coal shall install LNB and SNCR, and other units shall apply LNB to reduce NO, emissions.

  20. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.

  1. Fleet Readiness Center - Southeast Technology Development Program (Cadmium & Hexavalent Chromium Reduction)

    DTIC Science & Technology

    2014-11-01

    NAVAIR Technology Implementation Assessment for Reduction of Heavy Metals Usage  Goal: 90% Reduction Within 5 Years  Task 1 – Identify HM...Testing Program Requirements 2 Policy Guidance 3  FRCSEINST 5103.15  FRCSE Responsibilities  “Do not introduce new sources of heavy metals into...FRCSE Cd - NSN Total 70 ---------------------------------- 60 50 40 30 20 10 0 Battery Meta l Metals Solde r Standard Fin ish ing N y HM (Y/N

  2. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    PubMed Central

    Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.

    2014-01-01

    Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191

  3. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  4. Energy technology perspectives: conservation, carbon dioxide reduction and production from alternative sources

    SciTech Connect

    N. Neelameggham; R. Reddy; C. Belt; E. Vidal

    2009-01-15

    The book contains 13 papers from the symposium on carbon dioxide reduction metallurgy 2009 and 14 papers from the symposium TMS 2009 annual and exhibition: Energy conservation in metals extraction and materials processing II. Papers include: Recent developments in carbon dioxide capture materials and process for energy industry; Reduction of CO{sub 2} emissions in steel industry based on LCA methodology; Enhanced energy efficiency and emission reduction through oxy-fuel technology in the metals industry; Mechanism and application of catalytic combustion of pulverized coal; and Oxyfuel-energy efficient melting.

  5. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts

    SciTech Connect

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; Liu, Qingcai; Tumuluri, Uma; Wu, Zili; Wachs, Israel E.

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH3/O2 SCR of V2O5-WO3/TiO2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH)2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO2(anatase) particles and that VOx and WOx do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Low Energy Ion Scattering (HS-LEIS) confirms that the VOx and WOx are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO3 and O = WO4 sites on the TiO2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO4 and WO4 sites that appear to be anchored at surface defects of the TiO2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH3* on Lewis acid sites and surface NH4+* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO4 species and that the surface kinetics was independent of TiO2 synthesis method or presence of surface WO5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR

  6. FITS BMP and SCR image formats and the transformations.

    NASA Astrophysics Data System (ADS)

    Ji, Kaifan; Cao, Wenda; Song, Qian

    The image formats - FITS, BMP and SCR - are introduced in detail. The FITS format has become a universal format in astronomy and can be supported by almost all the software packages in astronomical uses. Meanwhile the BMP format is widely used on personal computers and is supported by a large amount of PC softwares in displaying, progressing and printing. The SCR format is used in the Yunnan Observatory to implement CCD image collection on PCs. Therefore, it is important to realize the transformation among the three formats so that CCD images head and image data, and the critical part is to transform the high and low bits of the data.

  7. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.

    PubMed Central

    Gering, M; Brückner, R

    1996-01-01

    In Staphylococcus xylosus, scrB is one of two genes necessary for sucrose utilization. It encodes a sucrase that hydrolyzes intracellular sucrose-6-phosphate generated by the uptake of sucrose via the sucrose-specific enzyme II of the phosphotransferase system, the gene product of scrA. ScrB sucrase activity is inducible by the presence of sucrose in the culture medium. Primer extension experiments demonstrated that the observed regulation is achieved at the level of scrB transcription initiation. The protein mediating sucrose-specific regulation of scrB was found to be encoded immediately upstream of the sucrase gene. The nucleotide sequence of the regulatory gene scrR comprises an open reading frame that specifies a protein of 35.8 kDa. This protein exhibits similarity to transcriptional regulators of the GalR-LacI family. Inactivation of the scrR reading frame in the genome of S. xylosus led to the constitutive expression of scrB at a high level, identifying ScrR as a repressor of transcription. Sucrose-specific regulation of scrB was also lost upon deletion of 4 bp of a palindromic sequence (OB) covering positions +6 to +21 downstream of the scrB transcriptional start site. These results suggested a direct interaction of the ScrR repressor and the operator OB. Accordingly, a fusion protein consisting of the maltose-binding protein of Escherichia coli and the ScrR protein was able to interact with an scrB promoter fragment in gel mobility shift experiments but failed to bind an scrB fragment carrying the 4-bp deletion derivative of OB. An scrR promoter fragment, which dose not contain a sequence resembling OB, was not shifted by the fusion protein. This result corroborates scrR primer extension analyses showing that transcription of the repressor gene itself is not regulated. Therefore, the sucrase gene operator OB is the target sequence through which the ScrR protein exerts its negative effect on transcription initiation. In the promoter region of scrA, the

  8. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  9. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  10. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  11. Evaluation of a proposed drift reduction technology high-speed wind tunnel testing protocol

    USDA-ARS?s Scientific Manuscript database

    The U.S. Environmental Protection Agency (EPA) has initiated the development of protocols for for measuring spray drift reduction technologies (DRTs) related to the application of agricultural protection chemicals. The DRT Program is an EPA-led initiative program to “achieve improved environmental ...

  12. Evaluation of the EPA Drift Reduction Technology (DRT) low-speed wind tunnel protocol

    USDA-ARS?s Scientific Manuscript database

    The EPA’s proposed Drift Reduction Technology low-speed wind tunnel evaluation protocol was tested across a series of modified ASAE reference nozzles. Both droplet size and deposition and flux volume measurements were made downwind from the nozzles operating in the tunnel at airspeeds of 1 and 2.5 ...

  13. Effect of water vapor on NH3-NO/NO2 SCR performance of fresh and aged MnOx-NbOx-CeO2 catalysts.

    PubMed

    Chen, Lei; Si, Zhichun; Wu, Xiaodong; Weng, Duan; Wu, Zhenwei

    2015-05-01

    A MnOx-NbOx-CeO2 catalyst for low temperature selective catalytic reduction (SCR) of NOx with NH3 was prepared by a sol-gel method, and characterized by NH3-NO/NO2 SCR catalytic activity, NO/NH3 oxidation activity, NOx/NH3 TPD, XRD, BET, H2-TPR and in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The results indicate that the MnOx-NbOx-CeO2 catalyst shows excellent low temperature NH3-SCR activity in the temperature range of 150-300°C. Water vapor inhibits the low temperature activity of the catalyst in standard SCR due to the inhibition of NOx adsorption. As the NO2 content increases in the feed, water vapor does not affect the activity in NO2 SCR. Meanwhile, water vapor significantly enhances the N2 selectivity of the fresh and the aged catalysts due to its inhibition of the decomposition of NH4NO3 into N2O.

  14. Performance and mechanism study for low-temperature SCR of NO with propylene in excess oxygen over Pt/TiO2 catalyst.

    PubMed

    Zhang, Zhixiang; Chen, Mingxia; Jiang, Zhi; Shangguan, Wenfeng

    2010-01-01

    A 0.5 wt.% Pt/TiO2 catalyst was prepared and used for the low-temperature selective catalytic reduction (SCR) of NO with C3H6 in the presence of excess oxygen. The effects of Pt loading and O2 concentration on Pt/TiO2 catalytic performance for low-temperature SCR were investigated. It was found that optimal Pt loading was 0.5 wt.% and excess O2 favored low-temperature SCR of NOx. The mechanism of low-temperature SCR of NO with C3H6 was investigated with respect to the behavior of adsorbed species over Pt/TiO2 at 150 degrees C using in situ DRIFTS. The results indicated that surface nitrosyl species (Ptdelta(+)-NO and Ti3(+)-NO) and Pt2(+)-CO are main reaction intermediates during the interactions of NO, C3H6 and O2. A simplified NO decomposition mechanism for the low-temperature SCR of NO with C3H6 was proposed.

  15. Maturity of the Bosch CO2 reduction technology for Space Station application

    NASA Technical Reports Server (NTRS)

    Wagner, Robert C.; Carrasquillo, Robyn; Edwards, James; Holmes, Roy

    1988-01-01

    The Bosch process, which catalytically reduces CO2 with H2 to solid carbon and water, is a promising technique for the reduction of the CO2 removed from the Space Station atmosphere and the subsequent water formation for O2 recovery. A Bosch engineering subsystem prototype CO2 reduction unit was developed to demonstrate the feasibility of the Bosch process as a viable technology for Space Station application. A man-rated prototype unit is then described as part of the ECLSS Technology Demonstrator Program. The goal was to develop a Bosch subsystem that not only meets the performance requirements of two 60 person-day carbon cartridge capacities, but also satisfies inherent man-rated requirements such as offgassing characteristics, fail-safe operation, and ease of maintainability. It is concluded that the technology is at a state of maturity directly applicable to flight status for the NASA Space Station program.

  16. A Radiation Dose Reduction Technology to Improve Patient Safety During Cardiac Catheterization Interventions.

    PubMed

    Bracken, John A; Mauti, Maria; Kim, Michael S; Messenger, John C; Carroll, John D

    2015-10-01

    A novel radiation dose reduction technology was evaluated in a cardiac catheterization laboratory during routine clinical care to determine if it could reduce radiation dose to patients undergoing coronary angiography and percutaneous coronary intervention. These results were compared to patients undergoing similar procedures in a cardiac catheterization laboratory without this technology. There is a safety priority in clinical care to reduce X-ray radiation dose to patients in order to lower the risk of deterministic and stochastic effects. Dose reduction technologies must be verified in clinical settings to prove if they reduce X-ray radiation dose and to what extent. Radiation dose data and procedure characteristics of 268 consecutive patients were collected and analyzed from a cardiac catheterization laboratory with dose reduction technology installed (referred to as Lab A, n = 135) and from a cardiac catheterization laboratory without this technology (referred as Lab B, n = 133). For diagnostic procedures, the median total dose-area product in Lab A was reduced by 46% (P < 0.0001) compared to Lab B, with no differences in terms of body mass index (P = 0.180), total fluoroscopy times (P = 1), number of acquired images (P = 0.920), and contrast medium (P = 0.660). For interventional procedures, the median total dose-area product in Lab A was reduced by 34% (P = 0.015) compared to Lab B, with no differences in terms of body mass index (P = 0.665), total fluoroscopy times (P = 0.765), number of acquired images (P = 0.923), and contrast medium (P = 0.969). This new dose reduction technology significantly reduces X-ray radiation dose without affecting fluoroscopy time, number of images, and contrast medium used during diagnostic and interventional coronary procedures. © 2015, Wiley Periodicals, Inc.

  17. Regenerative Snubber For GTO-Commutated SCR Inverter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.; Edwards, Dean B.

    1992-01-01

    Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.

  18. Case study of selective catalytic reduction system start-up on digester gas fired combustion turbines

    SciTech Connect

    Conway, V.O.; Min, S.W.; Adams, G.M.

    1997-12-31

    In August 1989, the South Coast Air Quality Management District (SCAQMD) adopted Rule 1134 which imposed strict NO{sub x} emission limits on stationary, non-utility, combustion turbines. The rule was technology-forcing for the owners and operators of digester gas fired combustion turbines since it established a NO{sub x} emission limit of 9 parts per million by volume at 15 percent oxygen. The County Sanitation Districts of Los Angeles County (Districts), operators of three 6.5 MW digester gas fired turbines, elected to retrofit the turbines with selective catalytic reduction (SCR) systems to achieve compliance with the SCAQMD rule. After four years and costs in excess of four million dollars, the Districts continue to work on achieving system performance goals. This case study provides a brief history of the development of Rule 1134 and the motivation behind the strict NO{sub x} limits. The Districts` rationale in choosing SCR systems as a means of attaining compliance is presented along with a discussion of the physical site constraints which resulted in a less than optimum retrofit installation of the SCR systems. SCR system performance problems are examined including what was suspected to be poisoning of the catalyst by potassium in the turbine exhaust gas. The major actions undertaken by the Districts, its contractor and subcontractors to bring the turbines into compliance are also presented including optimizing exhaust flow distribution through the catalyst reactor, optimizing the ammonia mixing in the exhaust duct, optimizing water injection rates, installing intake combustion air evaporative cooling systems, reactivating the catalyst with resistant coatings, and undertaking structural retrofits to prevent distortion of the reactor house caused by thermal expansion. The case study concludes with a brief summary of the SCR systems` final physical configuration and performance and an update on the pending regulation changes.

  19. Radiation dose reduction during transjugular intrahepatic portosystemic shunt implantation using a new imaging technology.

    PubMed

    Spink, C; Avanesov, M; Schmidt, T; Grass, M; Schoen, G; Adam, G; Bannas, P; Koops, A

    2017-01-01

    To compare patient radiation dose in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) implantation before and after an imaging-processing technology upgrade. In our retrospective single-center-study, cumulative air kerma (AK), cumulative dose area product (DAP), total fluoroscopy time and contrast agent were collected from an age- and BMI-matched collective of 108 patients undergoing TIPS implantation. 54 procedures were performed before and 54 after the technology upgrade. Mean values were calculated and compared using two-tailed t-tests. Two blinded, independent readers assessed DSA image quality using a four-rank likert scale and the Wilcoxcon test. The new technology demonstrated a significant reduction of 57% of mean DAP (402.8 vs. 173.3Gycm(2), p<0.001) and a significant reduction of 58% of mean AK (1.7 vs. 0.7Gy, p<0.001) compared to the precursor technology. Time of fluoroscopy (26.4 vs. 27.8min, p=0.45) and amount of contrast agent (109.4 vs. 114.9ml, p=0.62) did not differ significantly between the two groups. The DSA image quality of the new technology was not inferior (2.66 vs. 2.77, p=0.56). In our study the new imaging technology halved radiation dose in patients undergoing TIPS maintaining sufficient image quality without a significant increase in radiation time or contrast consumption. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  1. Challenges in photocatalytic reduction of nitrate as a water treatment technology.

    PubMed

    Tugaoen, Heather O'Neal; Garcia-Segura, Sergi; Hristovski, Kiril; Westerhoff, Paul

    2017-12-01

    Management of ubiquitous nitrate contamination in drinking water sources is a major engineering challenge due to its negative impacts from eutrophication to immediate risk to human health. Several water treatment technologies exist to manage nitrate pollution in water sources. However, the most widely used technologies are phase separation treatments. In this context, nanoscale photocatalysis emerges as a highly promising transformative technology capable of reducing nitrate to innocuous nitrogen with noticeable selectivity. This critical review describes the photocatalytic reduction mechanisms of nitrate towards undesirable products (nitrite, ammonium) and the more desirable product (dinitrogen). The mechanisms are based on the standard reduction potential of each individual species and highlight the contribution of reducing species (e.g. CO2(-)) radicals formed from different hole scavengers. The strategic use of different pure, doped, and composite nanoscale photocatalysts is discussed on the basis of reduction mechanisms' overall conversion, kinetic rates, and selectivity towards N2. The choice of light source affects pathways and influences by-product selectivity because direct photolysis of N-intermediates, which has been overlooked in the literature. In addition, the re-oxidation of nitrite and ammonia as drawback process is explained. Finally, an exhaustive analysis presents the photocatalytic reduction applications for treating real water matrices and the competing effect of other species. Overall, this critical review aims to contribute to the understanding of the potential application/constraints of photocatalysis in inorganic nitrogen management, and guide researchers towards future efforts required for widespread implementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).

  3. Newly-Developed Adaptive Noise Absorption Control Technology for High Speed Fan Noise Reduction

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Koh, Masaharu; Ozaki, Shunichi; Yokochi, Makoto; Sato, Takuo

    The paper describes about a newly-developed adaptive noise absorption control (AAC) technology I for fan noise reduction and about proof test results of the technology. The AAC technology adaptively controls the reactance part of acoustic impedance of duct liners with mobile reflective plates and large acoustic chambers, absorbs fan tones and broadband noise together, and achieves larger overall fan noise reduction over a wide fan speed range. For actual proof of the technology, adaptive duct liner I was made on trial basis and was examined. The test result clarifies that the duct liner I could reduce fan noise larger than O.A. SPL 10dB (A) at max fan speed of 6000rpm, including reduction of low frequency noise and fundamental BPF tone and harmonics of 18dB at maximum. In response to fan speed change, the reflective plate movement control could achieve the large peak frequency shift and peak level increase in the acoustic absorption spectra, and could reduce fan noise larger than O.A. SPL 9dB (A) over the fan speed range from 1000 to 6000rpm.

  4. Selective catalytic reduction of NO over supported silver catalysts--practical and mechanistic aspects.

    PubMed

    Shimizu, Ken-ichi; Satsuma, Atsushi

    2006-06-21

    Selective catalytic reduction of NO by hydrocarbons (HC-SCR) is one of the promising technologies for removal of NO in exhausts containing excess oxygen, such as diesel and lean burn gasoline engines. Supported Ag catalysts, especially Ag/Al2O3, are thought to be the promising candidates for use in diesel exhausts, as confirmed by several reports on engine bench tests. The HC-SCR performance of supported Ag catalysts is very sensitive to the reaction conditions, especially the type of hydrocarbons and the addition of H2. The control of reaction conditions would be key for practical use. The current research of supported Ag catalysts is reviewed from the viewpoints of practical use and the reaction mechanism, i.e., the reaction scheme, the role of surface adsorbed species, and the structure of active Ag species.

  5. [Study on the SCR of NO over automobile exhaust catalyst Ag/SAPO-34].

    PubMed

    Zhang, Ping; Wang, Lefu; Li, Xuehui

    2002-11-01

    The activity of Ag/SAPO-34 molecular sieve catalyst was investigated, and the selective catalytic reduction (SCR) of NO was studied by in-situ diffuse reflectance FTIR spectroscopy(DRIFTS). The results show that the prepared catalyst had high activity at low temperature and the conversion of NO reduction to N2 was about 70% at 3.6% O2 and 573K-673K of temperature. The catalysis activity rised with the concentration of C3H6 but light decrease with GHSV. Based on in-situ DRIFTS, a reaction mechanism was proposed that NO, propene and oxygen react to form organo-nitro and organo-nitro adsorbed species as key intermediates, then these intermediates were decompose to nitrogen. NO and propene were easily activated in oxygen. Furthermore, the presence of oxygen is necessary to form a series of intermediates.

  6. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  7. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  8. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    PubMed

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A review of secondary sludge reduction technologies for the pulp and paper industry.

    PubMed

    Mahmood, Talat; Elliott, Allan

    2006-06-01

    The broader application of the activated sludge process in pulp and paper mills, together with increased production, have amplified sludge management problems. With sludge management costs as high as 60% of the total wastewater treatment plant operating costs, and increasingly stringent environmental regulations, it is economically advantageous for pulp and paper mills to reduce their biosolids production. In order to provide a state-of-the-art review of secondary sludge reduction technologies, we have considered the scenarios of lower sludge production through process modifications, and waste-activated sludge reduction through post-treatment. A critical evaluation of all candidate reduction technologies indicates that sludge reduction through treatment process changes appears more appealing than post-treatment alternatives. The former approach offers a clear advantage over the latter in that the treatment process changes reduce sludge production in the first place, thus decreasing sludge management cost. Although it is technically feasible to eliminate the need for sludge disposal, it is unlikely to be economically feasible at this time.

  10. Recent advances in membrane bio-technologies for sludge reduction and treatment.

    PubMed

    Wang, Zhiwei; Yu, Hongguang; Ma, Jinxing; Zheng, Xiang; Wu, Zhichao

    2013-12-01

    This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment.

  11. Fe/SSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIR/Mössbauer Spectroscopic Study

    SciTech Connect

    Gao, Feng; Kollar, Marton; Kukkadapu, Ravi K.; Washton, Nancy M.; Wang, Yilin; Szanyi, Janos; Peden, Charles H.F.

    2015-03-01

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, an Fe/SSZ-13 catalyst active in NH3-SCR was synthesized. Mössbauer and FTIR spectroscopies were used to probe the nature of the Fe sites. In the fresh sample, the majority of Fe species are extra-framework cations. The likely monomeric and dimeric ferric ions in hydrated form are [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+, based on Mössbauer measurements. During the severe hydrothermal aging (HTA) applied in this study, a majority of cationic Fe species convert to FeAlOx and clustered FeOx species, accompanied by severe dealumination of the SSZ-13 framework. The clustered FeOx species do not give a sextet Mössbauer spectrum, indicating that these are highly disordered. However, some Fe species in cationic positions remain after aging as determined from Mössbauer measurements and CO/NO FTIR titrations. NO/NH3 oxidation reaction tests reveal that dehydrated cationic Fe are substantially more active in catalyzing oxidation reactions than the hydrated ones. For NH3-SCR, enhancement of NO oxidation under ‘dry’ conditions promotes SCR rates below ~300 • C. This is due mainly to contribution from the “fast” SCR channel. Above ~300 • C, enhancement of NH3 oxidation under ‘dry’ conditions, however, becomes detrimental to NOx conversions. The HTA sample loses much of the SCR activity below ~300 • C; however, above ~400 • C much of the activity remains. This may suggest that the FeAlOx and FeOx species become active at such elevated temperatures. Alternatively, the high-temperature activity may be maintained by the remaining extra-framework cationic species. For potential practical applications, Fe/SSZ-13 may be used as a co-catalyst for Cu/CHA as integral aftertreatment SCR catalysts on the basis of the stable high temperature activity after hydrothermal aging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy

  12. Image Sharing Technologies and Reduction of Imaging Utilization: A Systematic Review and Meta-analysis.

    PubMed

    Vest, Joshua R; Jung, Hye-Young; Ostrovsky, Aaron; Das, Lala Tanmoy; McGinty, Geraldine B

    2015-12-01

    Image sharing technologies may reduce unneeded imaging by improving provider access to imaging information. A systematic review and meta-analysis were conducted to summarize the impact of image sharing technologies on patient imaging utilization. Quantitative evaluations of the effects of PACS, regional image exchange networks, interoperable electronic heath records, tools for importing physical media, and health information exchange systems on utilization were identified through a systematic review of the published and gray English-language literature (2004-2014). Outcomes, standard effect sizes (ESs), settings, technology, populations, and risk of bias were abstracted from each study. The impact of image sharing technologies was summarized with random-effects meta-analysis and meta-regression models. A total of 17 articles were included in the review, with a total of 42 different studies. Image sharing technology was associated with a significant decrease in repeat imaging (pooled effect size [ES] = -0.17; 95% confidence interval [CI] = [-0.25, -0.09]; P < .001). However, image sharing technology was associated with a significant increase in any imaging utilization (pooled ES = 0.20; 95% CI = [0.07, 0.32]; P = .002). For all outcomes combined, image sharing technology was not associated with utilization. Most studies were at risk for bias. Image sharing technology was associated with reductions in repeat and unnecessary imaging, in both the overall literature and the most-rigorous studies. Stronger evidence is needed to further explore the role of specific technologies and their potential impact on various modalities, patient populations, and settings. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. Image Sharing Technologies and Reduction of Imaging Utilization: A Systematic Review and Meta-analysis

    PubMed Central

    Vest, Joshua R.; Jung, Hye-Young; Ostrovsky, Aaron; Das, Lala Tanmoy; McGinty, Geraldine B.

    2016-01-01

    Introduction Image sharing technologies may reduce unneeded imaging by improving provider access to imaging information. A systematic review and meta-analysis were conducted to summarize the impact of image sharing technologies on patient imaging utilization. Methods Quantitative evaluations of the effects of PACS, regional image exchange networks, interoperable electronic heath records, tools for importing physical media, and health information exchange systems on utilization were identified through a systematic review of the published and gray English-language literature (2004–2014). Outcomes, standard effect sizes (ESs), settings, technology, populations, and risk of bias were abstracted from each study. The impact of image sharing technologies was summarized with random-effects meta-analysis and meta-regression models. Results A total of 17 articles were included in the review, with a total of 42 different studies. Image sharing technology was associated with a significant decrease in repeat imaging (pooled effect size [ES] = −0.17; 95% confidence interval [CI] = [−0.25, −0.09]; P < .001). However, image sharing technology was associated with a significant increase in any imaging utilization (pooled ES = 0.20; 95% CI = [0.07, 0.32]; P = .002). For all outcomes combined, image sharing technology was not associated with utilization. Most studies were at risk for bias. Conclusions Image sharing technology was associated with reductions in repeat and unnecessary imaging, in both the overall literature and the most-rigorous studies. Stronger evidence is needed to further explore the role of specific technologies and their potential impact on various modalities, patient populations, and settings. PMID:26614882

  14. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships

    NASA Astrophysics Data System (ADS)

    Wang, Haibin; Zhou, Peilin; Wang, Zhongcheng

    2017-06-01

    Concern about global climate change is growing, and many projects and researchers are committed to reducing greenhouse gases from all possible sources. International Maritime (IMO) has set a target of 20% CO2 reduction from shipping by 2020 and also presented a series of carbon emission reduction methods, which are known as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operation Indicator (EEOI). Reviews on carbon emission reduction from all industries indicate that, Carbon Capture and Storage (CCS) is an excellent solution to global warming. In this paper, a comprehensive literature review of EEDI and EEOI and CCS is conducted and involves reviewing current policies, introducing common technologies, and considering their feasibilities for marine activities, mainly shipping. Current projects are also presented in this paper, thereby illustrating that carbon emission reduction has been the subject of attention from all over the world. Two case ship studies indicate the economic feasibility of carbon emission reduction and provide a guide for CCS system application and practical installation on ships.

  15. Operational Characteristics of an SCR-Based Pulse Generating Circuit

    DTIC Science & Technology

    2014-12-01

    of the SCR in such a. circuit was investigated and the values of load resistance and capacitance varied to ascertain their role on the pulse-generat...circuit was investigated and the values of load resistance and capacitance varied to ascertain their role on the pulse-generating capability of the...19 A. REVERSE CURRENT OBSERVATIONS DURING SWITCHING .......19 B. EFFECT OF CAPACITANCE ON PULSING

  16. Research and proposal on SCR reactor optimization for industrial boiler.

    PubMed

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced CFD software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two SCR reactors were developed: reactor #1 was optimized and #2 was developed based on #1. Various indicators including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle and system pressure drop were analyzed. The analysis indicated Reactor #2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of reactor was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG #3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle and temperature distribution are subjected to SCR reactor shape to a great extent and Reactor #2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to Ammonia injection grid (AIG) shape and AIG #3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The development above on the reactor and the AIG are both of great application value and social efficiency.

  17. Reducing Patient Radiation Dose With Image Noise Reduction Technology in Transcatheter Aortic Valve Procedures.

    PubMed

    Lauterbach, Michael; Hauptmann, Karl Eugen

    2016-03-01

    X-ray radiation exposure is of great concern for patients undergoing structural heart interventions. In addition, a larger group of medical staff is required and exposed to radiation compared with percutaneous coronary interventions. This study aimed at quantifying radiation dose reduction with implementation of specific image noise reduction technology (NRT) in transcatheter aortic valve implantation (TAVI) procedures. We retrospectively analyzed 104 consecutive patients with TAVI procedures, 52 patients before and 52 after optimization of x-ray radiation chain, and implementation of NRT. Patients with 1-step TAVI and complex coronary intervention, or complex TAVI procedures, were excluded. Before the procedure, all patients received a multislice computed tomography scan, which was used to size aortic annulus, select the optimal implantation plane, valve type and size, and guide valve implantation using a software tool. Air kerma and kerma-area product were compared in both groups to determine patient radiation dose reduction. Baseline parameters, co-morbidity, or procedural data were comparable between groups. Mean kerma-area product was significantly lower (p <0.001) in the NRT group compared with the standard group (60 ± 39 vs 203 ± 106 Gy × cm(2), p <0.001), which corresponds to a reduction of 70%. Mean air kerma was reduced by 64% (494 ± 360 vs 1,355 ± 657 mGy, p <0.001). In conclusion, using optimized x-ray chain combined with specific image noise reduction technology has the potential to significantly reduce by 2/3 radiation dose in standard TAVI procedures without worsening image quality or prolonging procedure time. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Kong, Tingting; Chen, Li; Ding, Shimin; Yang, Fumo; Dong, Lin

    2017-10-01

    A series of MnOx/CeO2 catalysts were prepared by modulating the solvents (deionized water (DW), anhydrous ethanol (AE), acetic acid (AA), and oxalic acid (OA) solution) with the purpose of improving the low-temperature NH3-SCR performance, broadening the operating temperature window, and enhancing the H2O + SO2 resistance. The synthesized catalysts were characterized by means of N2-physisorption, XRD, EDS mapping, Raman, XPS, H2-TPR, NH3-TPD, and in situ DRIFTS technologies. Furthermore, the catalytic performance and H2O + SO2 resistance were evaluated by NH3-SCR model reaction. The obtained results indicate that MnOx/CeO2 catalyst prepared with oxalic acid solution as a solvent exhibits the best catalytic performance among these catalysts, which shows above 80% NO conversion during a wide operating temperature range of 100-250 °C and good H2O + SO2 resistance for low-temperature NH3-SCR reaction. This is related to that oxalic acid solution can promote the dispersion of MnOx and enhance the electron interaction between MnOx and CeO2, which are beneficial to improving the physicochemical property of MnOx/CeO2 catalyst, and further lead to the enhancement of catalytic performance and good H2O + SO2 resistance.

  19. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  20. A Synergy Framework for the integration of Earth Observation technologies into Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Gaetani, Francesco; Petiteville, Ivan; Pisano, Francesco; Rudari, Roberto; St Pierre, Luc

    2015-04-01

    Earth observations and space-based applications have seen a considerable advance in the last decade, and such advances should find their way in applications related to DRR, climate change and sustainable development, including in the indicators to monitor advances in these areas. The post-2015 framework for disaster risk reduction, as adopted by the 3rd WCDRR is a action-oriented framework for disaster risk reduction that builds on modalities of cooperation linking local, national, regional and global efforts. Earth observations from ground and space platforms and related applications will play a key role in facilitating the implementation of the HFA2 and represent a unique platform to observe and assess how risks have changed in recent years, as well as to track the reduction in the level of exposure of communities. The proposed white paper focuses mainly on Earth Observation from space but it also addresses the use of other sources of data ( airborne, marine, in-situ, socio-economic and model outputs) in combination to remote sensing data. Earth observations (EO) and Space-based technologies can play a crucial role in contributing to the generation of relevant information to support informed decision-making regarding risk and vulnerability reduction and to address the underlying factors of disaster risk. For example, long series of Earth observation data collected over more than 30 years already contribute to track changes in the environment and in particular, environmental degradation around the world. Earth observation data is key to the work of the scientific community. Whether due to inadequate land-use policies, lack of awareness or understanding regarding such degradation, or inadequate use of natural resources including water and the oceans; Earth observation technologies are now routinely employed by many Ministries of Environment and Natural Resources worldwide to monitor the extent of degradation and a basis to design and enact new environmental

  1. Pt-Doped NiFe₂O₄ Spinel as a Highly Efficient Catalyst for H₂ Selective Catalytic Reduction of NO at Room Temperature.

    PubMed

    Sun, Wei; Qiao, Kai; Liu, Ji-Yuan; Cao, Li-Mei; Gong, Xue-Qing; Yang, Ji

    2016-04-11

    H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR.

  2. Study of Electrochemical Reduction of CO2 for Future Use in Secondary Microbial Electrochemical Technologies.

    PubMed

    Gimkiewicz, Carla; Hegner, Richard; Gutensohn, Mareike F; Koch, Christin; Harnisch, Falk

    2017-03-09

    The fluctuation and decentralization of renewable energy have triggered the search for respective energy storage and utilization. At the same time, a sustainable bioeconomy calls for the exploitation of CO2 as feedstock. Secondary microbial electrochemical technologies (METs) allow both challenges to be tackled because the electrochemical reduction of CO2 can be coupled with microbial synthesis. Because this combination creates special challenges, the electrochemical reduction of CO2 was investigated under conditions allowing microbial conversions, that is, for their future use in secondary METs. A reproducible electrodeposition procedure of In on a graphite backbone allowed a systematic study of formate production from CO2 with a high number of replicates. Coulomb efficiencies and formate production rates of up to 64.6±6.8 % and 0.013±0.002 mmolformate  h(-1)  cm(-2) , respectively, were achieved. Electrode redeposition, reusability, and long-term performance were investigated. Furthermore, the effect of components used in microbial media, that is, yeast extract, trace elements, and phosphate salts, on the electrode performance was addressed. The results demonstrate that the integration of electrochemical reduction of CO2 in secondary METs can become technologically relevant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. METHANE de-NOX process as a NO{sub x} reduction technology for stoker boilers

    SciTech Connect

    Rabovitser, I.; Roberts, M.; Chan, I.; Loviska, T.; Morrow, R.; Bonner, T.; Hall, D.

    1996-12-31

    The most common NO{sub x} control technology utilized in stokers is selective noncatalytic reduction (SNCR) systems. The natural gas industry has developed the patented METHANE de-NOX reburning process for stokers to reduce NO{sub x} emissions to the levels set by current EPA regulations without increasing the levels of other undesirable emissions. In contrast to conventional reburning, where the reburn fuel is injected above the combustion zone to create a fuel-rich reburn zone, with METHANE de-NOX, natural gas is injected directly into the combustion zone above the grate; this results in a reduction of NO{sub x} formed in the coal bed and also limits its formation through decomposition of the NO{sub x} precursors to form molecular nitrogen rather than nitrogen oxides. The METHANE de-NOX process was field tested at the Olmsted County waste-to-energy facility in Rochester, Minnesota, and at an incineration plant in Japan. Compared to baseline levels, about 60% NO{sub x} reduction and an increase in boiler efficiency were achieved. IGT, Detroit Stoker Company, and Cogentrix are presently demonstrating the METHANE de-NOX technology on a coal-fired 390 MM Btu/h stoker boiler at a 240 MW cogeneration plant in Richmond, Virginia. Baseline tests were conducted which indicated that 50 to 60% NO{sub x} can be reduced by utilization of METHANE de-NOX.

  4. Pathogen Reduction Technology Treatment of Platelets, Plasma and Whole Blood Using Riboflavin and UV Light

    PubMed Central

    Marschner, Susanne; Goodrich, Raymond

    2011-01-01

    Summary Bacterial contamination and emerging infections combined with increased international travel pose a great risk to the safety of the blood supply. Tests to detect the presence of infection in a donor have a ‘window period’ during which infections cannot be detected but the donor may be infectious. Agents and their transmission routes need to be recognized before specific tests can be developed. Pathogen reduction of blood components represents a means to address these concerns and is a proactive approach for the prevention of transfusion-transmitted diseases. The expectation of a pathogen reduction system is that it achieves high enough levels of pathogen reduction to reduce or prevent the likelihood of disease transmission while preserving adequate cell and protein quality. In addition the system needs to be non-toxic, non-mutagenic and should be simple to use. The Mirasol® Pathogen Reduction Technology (PRT) System for Platelets and Plasma uses riboflavin (vitamin B2) plus UV light to induce damage in nucleic acid-containing agents. The system has been shown to be effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the efficacy of the product or resulting in product loss. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. The same methodology is currently under development for the treatment of whole blood, making pathogen reduction of all blood products using one system achievable. This review gives an overview of the Mirasol PRT System, summarizing the mechanism of action, toxicology profile, pathogen reduction performance and clinical efficacy of the process. PMID:21779202

  5. Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine.

    PubMed

    Hallquist, Åsa M; Fridell, Erik; Westerlund, Jonathan; Hallquist, Mattias

    2013-01-15

    In this study nanoparticle emissions have been characterized onboard a ship with focus on number, size, and volatility. Measurements were conducted on one of the ship's four main 12,600 kW medium-speed diesel engines which use low sulfur marine residual fuel and have a Selective Catalytic Reduction (SCR) system for NO(X) abatement. The particles were measured after the SCR with an engine exhaust particle sizer spectrometer (EEPS), giving particle number and mass distributions in the size range of 5.6-560 nm. The thermal characteristics of the particles were analyzed using a volatility tandem DMA system (VTDMA). A dilution ratio of 450-520 was used which is similar to the initial real-world dilution. At a stable engine load of 75% of the maximum rated power, and after dilution and cooling of the exhaust gas, there was a bimodal number size distribution, with a major peak at ∼10 nm and a smaller peak at around 30-40 nm. The mass distribution peaked around 20 nm and at 50-60 nm. The emission factor for particle number, EF(PN), for an engine load of 75% in the open-sea was found to be 10.4 ± 1.6 × 10(16) (kg fuel)(-1) and about 50% of the particles by number were found to have a nonvolatile core at 250 °C. Additionally, 20 nm particles consist of ∼40% of nonvolatile material by volume (evaporative temperature 250 °C), while the particles with a particle diameter <10 nm evaporate completely at a temperature of 130-150 °C. Emission factors for NO(X), CO, and CO(2) for an engine load of 75% in the open-sea were determined to 4.06 ± 0.3 g (kg fuel)(-1), 2.15 ± 0.06 g (kg fuel)(-1), and 3.23 ± 0.08 kg (kg fuel)(-1), respectively. This work contributes to an improved understanding of particle emissions from shipping using modern pollution reduction measures such as SCR and fuel with low sulfur content.

  6. CFD aided optimization of an innovative SCR catalyst design for heavy-duty marine diesel engines

    NASA Astrophysics Data System (ADS)

    Krastev, V. K.; Russo, S.; Verdemare, D.; Recine, G.; Biferale, L.; Falcucci, G.

    2016-06-01

    In this paper, the design of a new system for reducing NOx from exhaust gases from marine engines is shown. The core of the system is represented by the Selective Catalytic Reduction (SCR) reactor, in which the catalyst is made of titanium dioxide nano-fibers functionalized with metal oxides and deposited by electrospinning on a corrugated metal support. Compared to the current monolithic reactor designs, the high specific surface offered by the fibers allows in principle to satisfy the TIER III emission standards, with a consistent saving in the reactor volume. To optimize the reactor design process, a Computational Fluid Dynamics (CFD) model has been developed, alongside experimental measurements and numerical simulations. Results of different configurations are reported and critically assessed.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  8. A mature Bosch CO2 reduction technology. [for long-duration space missions

    NASA Technical Reports Server (NTRS)

    King, C. D.; Holmes, R. F.

    1976-01-01

    The reduction of CO2 is one of the steps in closing the oxygen loop for long-duration manned space missions. Several units utilizing the Bosch process, which catalytically reduces CO2 with hydrogen, have been built and operated during the past decade. Each contributed substantial information affecting subsequent designs. Early challenges were primarily concerned with carbon control, materials durability, and reliability of reaction initiation. These were followed by concern about power consumption, expendable weight, volume, and process rate control. Suitable materials and techniques for carbon containment and process reliability have been demonstrated. Power requirements have been reduced by almost an order of magnitude. Methods for significant reductions in expendable weight and volume have been developed. The technology is at a state of maturity directly applicable to designs for space missions.

  9. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    SciTech Connect

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  10. Fighting Testing ACAT/FRRP: Automatic Collision Avoidance Technology/Fighter Risk Reduction Project

    NASA Technical Reports Server (NTRS)

    Skoog, Mark A.

    2009-01-01

    This slide presentation reviews the work of the Flight testing Automatic Collision Avoidance Technology/Fighter Risk Reduction Project (ACAT/FRRP). The goal of this project is to develop common modular architecture for all aircraft, and to enable the transition of technology from research to production as soon as possible to begin to reduce the rate of mishaps. The automated Ground Collision Avoidance System (GCAS) system is designed to prevent collision with the ground, by avionics that project the future trajectory over digital terrain, and request an evasion maneuver at the last instance. The flight controls are capable of automatically performing a recovery. The collision avoidance is described in the presentation. Also included in the presentation is a description of the flight test.

  11. Long-term CO2 Reduction Potential by Promoting Electric Technologies

    NASA Astrophysics Data System (ADS)

    Nishio, Ken-Ichiro

    This article reviews past studies on the long-term CO2 abatement strategy dealing with electric technologies and thereby attempts to draw sound understandings of effectiveness of those measures. It is widely known that electrification of final energy uses plays an important role to mitigate CO2 emissions through curbing fossil fuel consumption. Electrification of thermal demand by high-efficient heat-pump technologies is considered as a realistic example, while electric vehicles including plug-in hybrid vehicles are getting higher expectations as an alternative in the transportation sector. It is of crucial importance, therefore, to carefully analyze the potential of CO2 emission reductions by these measures and to establish viable long-term strategies taking them fully into consideration. The author provides a numerical representation of such strategy development up to the year 2050.

  12. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025

    NASA Astrophysics Data System (ADS)

    Dieckmann, Simon; Dersch, Jürgen; Giuliano, Stefano; Puppe, Michael; Lüpfert, Eckhard; Hennecke, Klaus; Pitz-Paal, Robert; Taylor, Michael; Ralon, Pablo

    2017-06-01

    Concentrating Solar Power (CSP), with an installed capacity of 4.9 GW by 2015, is a young technology compared to other renewable power generation technologies. A limited number of plants and installed capacity in a small challenging market environment make reliable and transparent cost data for CSP difficult to obtain. The International Renewable Energy Agency (IRENA) and the DLR German Aerospace Center gathered and evaluated available cost data from various sources for this publication in order to yield transparent, reliable and up-to-date cost data for a set of reference parabolic trough and solar tower plants in the year 2015 [1]. Each component of the power plant is analyzed for future technical innovations and cost reduction potential based on current R&D activities, ongoing commercial developments and growth in market scale. The derived levelized cost of electricity (LCOE) for 2015 and 2025 are finally contrasted with published power purchase agreements (PPA) of the NOOR II+III power plants in Morocco. At 7.5% weighted average cost of capital (WACC) and 25 years economic life time, the levelized costs of electricity for plants with 7.5 (trough) respectively 9 (tower) full-load hours thermal storage capacity decrease from 14-15 -ct/kWh today to 9-10 -ct/kWh by 2025 for both technologies at direct normal irradiation of 2500 kWh/(m².a). The capacity factor increases from 41.1% to 44.6% for troughs and from 45.5% to 49.0% for towers. Financing conditions are a major cost driver and offer potential for further cost reduction with the maturity of the technology and low interest rates (6-7 - ct/kWh for 2% WACC at 2500 kWh/(m2.a) in 2025).

  13. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report

    SciTech Connect

    White, Thornton C

    2014-03-31

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been made possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June

  14. Effects of synthesis methods on catalytic activities of CoOx-TiO2 for low-temperature NH3-SCR of NO.

    PubMed

    Zhu, Li; Zeng, Yiqing; Zhang, Shule; Deng, Jinli; Zhong, Qin

    2017-04-01

    A series of cobalt doped TiO2 (Co-TiO2) and CoOx loaded TiO2 (Co/TiO2) catalysts prepared by sol-gel and impregnation methods respectively were investigated on selective catalytic reduction with NH3 (NH3-SCR) of NO. It was found that Co-TiO2 catalyst showed more preferable catalytic activity at low temperature range. From characterization results of XRD, TEM, Raman and FT-IR, Co species were proved to be doped into TiO2 lattice by replaced Ti atoms. After being characterized and analyzed by NH3-TPD, PL, XPS, EPR and DRIFTS, it was found that the better NH3-SCR activities of Co-TiO2 catalysts, compared with Co/TiO2 catalyst, were ascribed to the formation of more oxygen vacancies which further promoted the production of more superoxide ions (O2(-)). The superoxide ions were crucial for the formation of low temperature SCR reaction intermediates (NO3(-)) by reacting with adsorbed NO molecule. Therefore, these aspects were responsible for the higher low temperature NH3-SCR activity of Co-TiO2 catalysts.

  15. Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts

    SciTech Connect

    Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-10-13

    Using a three-step aqueous solution ion-exchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and 27Al solid-state nuclear magnetic resonance (NMR) and diffuse reflectance Infrared Fourier Transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu-ions and the CHA framework making them more readily reducible. By removing a portion of Brønsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from 27Al NMR. Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts.

  16. A novel reductive photo-dechlorination (RPD) technology for remediation of chlorocarbons

    SciTech Connect

    Lavid, M.; Gulati, S.K.

    1993-12-31

    The Reductive Photo-Dechlorination (RPD) technology uses ultraviolet light in a reducing atmosphere to remove chlorine atoms from organo-chlorine waste streams at low to moderate temperatures. Because chlorinated organics are destroyed in a reducing environment, process products include hydrocarbons and hydrogen chloride. The RPD process is designed specifically to treat volatile chlorinated wastes in the gaseous or liquid phase. Field applications include treatment of organic wastes produced from soil venting operations and those adsorbed on activated carbon. The process can also be used for off-gas treatment and to pretreat gas streams entering catalytic oxidation systems, reducing chlorine content and hereby protecting the catalyst against poisoning. The RPD process was developed under the EPA/Small Business Innovation Research (SBIR) program. A Phase II R&D contract is completed. During last year, the RPD technology was accepted into EPA-SITE Emerging Technology Program, and it has been profiled in VISITT (Vendor Information System for Innovative Treatment Technologies) June 1992.

  17. The potential of crowdsourcing and mobile technology to support flood disaster risk reduction

    NASA Astrophysics Data System (ADS)

    See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian

    2016-04-01

    The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.

  18. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  19. GENERIC VERIFICATION PROTOCOL FOR THE VERIFICATION OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES FOR ROW AND FIELD CROPS

    EPA Science Inventory

    This ETV program generic verification protocol was prepared and reviewed for the Verification of Pesticide Drift Reduction Technologies project. The protocol provides a detailed methodology for conducting and reporting results from a verification test of pesticide drift reductio...

  20. New mechanistic insights in the NH3-SCR reactions at low temperature

    DOE PAGES

    Ruggeri, Maria Pia; Selleri, Tomasso; Nova, Isabella; ...

    2016-05-06

    The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Furthermore, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.

  1. New mechanistic insights in the NH3-SCR reactions at low temperature

    SciTech Connect

    Ruggeri, Maria Pia; Selleri, Tomasso; Nova, Isabella; Tronconi, Enrico; Pihl, Josh A.; Toops, Todd J.; Partridge, Jr., William P.

    2016-05-06

    The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Furthermore, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.

  2. New mechanistic insights in the NH3-SCR reactions at low temperature

    SciTech Connect

    Ruggeri, Maria Pia; Selleri, Tomasso; Nova, Isabella; Tronconi, Enrico; Pihl, Josh A.; Toops, Todd J.; Partridge, Jr., William P.

    2016-05-06

    The present study is focused on the investigation of the low temperature Standard SCR reaction mechanism over Fe- and Cu-promoted zeolites. Different techniques are employed, including in situ DRIFTS, transient reaction analysis and chemical trapping techniques. The results present strong evidence of nitrite formation in the oxidative activation of NO and of their role in SCR reactions. These elements lead to a deeper understanding of the standard SCR chemistry at low temperature and can potentially improve the consistency of mechanistic mathematical models. Furthermore, comprehension of the mechanism on a fundamental level can contribute to the development of improved SCR catalysts.

  3. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  4. Using vehicle-to-grid technology for frequency regulation and peak-load reduction

    NASA Astrophysics Data System (ADS)

    White, Corey D.; Zhang, K. Max

    This paper explores the potential financial return for using plug-in hybrid electric vehicles as a grid resource. While there is little financial incentive for individuals when the vehicle-to-grid (V2G) service is used exclusively for peak reduction, there is a significant potential for financial return when the V2G service is used for frequency regulation. We propose that these two uses for V2G technology are not mutually exclusive, and that there could exist a "dual-use" program that utilizes V2G for multiple uses simultaneously. In our proposition, V2G could be used for regulation on a daily basis to ensure profits, and be used for peak reduction on days with high electricity demand and poor ambient air quality in order to reap the greatest environmental benefits. The profits for the individual in this type of dual-use program are close to or even higher than the profits experienced in either of the single-use programs. More importantly, we argue that the external benefits of this type of program are much greater as well. At higher V2G participation rates, our analysis shows that the market for regulation capacity could become saturated by V2G-based regulation providers. At the same time, there is plenty of potential for widespread use of V2G technology, especially if the demand for regulation, reserves, and storage grows as more intermittent renewable resources are being incorporated into the power systems.

  5. Low-level radioactive waste volume reduction and stabilization technologies resource manual: National Low-Level Radioactive Waste Management Program

    SciTech Connect

    Not Available

    1988-12-01

    This manual on volume reduction and stabilization technologies is intended to serve as a resource document to policy personnel at the state or regional level. The manual provides concise descriptions of currently available and promising methods of volume reduction and stabilization of low-level radioactive waste. Technologies in this manual include cement solidification, bituminization, evaporation, incineration, high-integrity containerization, shredding, and compaction and supercompaction. Each technology is discussed in detail in relation to how the technology works, its suitability for specific waste types, volume reduction factors typically obtainable, costs, its applicability to treatment of mixed waste, its commercial availability and its history of use. An annotated bibliography is included to allow for further independent research on the technologies. 78 refs., 19 figs., 34 tabs.

  6. American Society of Clinical Oncology technology assessment on breast cancer risk reduction strategies: tamoxifen and raloxifene.

    PubMed

    Chlebowski, R T; Collyar, D E; Somerfield, M R; Pfister, D G

    1999-06-01

    To conduct an evidence-based technology assessment to determine whether tamoxifen and raloxifene as breast cancer risk-reduction strategies are appropriate for broad-based conventional use in clinical practice. Tamoxifen and raloxifene. Outcomes of interest include breast cancer incidence, breast cancer-specific survival, overall survival, and net health benefits. A comprehensive, formal literature review was conducted for tamoxifen and raloxifene on the following topics: breast cancer risk reduction; tamoxifen side effects and toxicity, including endometrial cancer risk; tamoxifen influences on nonmalignant diseases, including coronary heart disease and osteoporosis; and decision making by women at risk for breast cancer. Testimony was collected from invited experts and interested parties. More weight was given to publications that described randomized trials. BENEFITS/HARMS/COSTS: The American Society of Clinical Oncology (ASCO) Working Group acknowledges that a woman's decision regarding breast cancer risk-reduction strategies will depend on the importance and weight attributed to the information provided regarding both cancer and non-cancer-related risks. For women with a defined 5-year projected risk of breast cancer of >/= 1.66%, tamoxifen (at 20 mg/d for up to 5 years) may be offered to reduce their risk. It is premature to recommend raloxifene use to lower the risk of developing breast cancer outside of a clinical trial setting. On the basis of available information, use of raloxifene should currently be reserved for its approved indication to prevent bone loss in postmenopausal women. Conclusions are based on single-agent use of the drugs. At the present time, the effect of using tamoxifen or raloxifene with other medications (such as hormone replacement therapy), or using tamoxifen and raloxifene in combination or sequentially, has not been studied adequately. The continuing use of placebo-controlled trials in other risk-reduction trials highlights the

  7. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    SciTech Connect

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents both as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 ºC. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 ºC. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental

  8. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Design Support for Tooling Optimization

    SciTech Connect

    Wang, Dongtao

    2011-09-23

    High pressure die casting is an intrinsically efficient net shape process and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. Computer simulation has become widely used within the industry but use is not universal. Further, many key design decisions must be made before the simulation can be run and expense in terms of money and time often limits the number of decision iterations that can be explored. This work continues several years of work creating simple, very fast, design tools that can assist with the early stage design decisions so that the benefits of simulation can be maximized and, more importantly, so that the chances of first shot success are maximized. First shot success and better running processes contributes to less scrap and significantly better energy utilization by the process. This new technology was predicted to result in an average energy savings of 1.83 trillion BTUs/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2012, a market penetration of 30% by 2015 is 1.89 trillion BTUs/year by 2022. Along with these energy savings, reduction of scrap and improvement in yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2022 is 0.037 Million Metric Tons of Carbon Equivalent (MM TCE).

  9. Pyroprocessing of Light Water Reactor Spent Fuels Based on an Electrochemical Reduction Technology

    SciTech Connect

    Ohta, Hirokazu; Inoue, Tadashi; Sakamura, Yoshiharu; Kinoshita, Kensuke

    2005-05-15

    A concept of pyroprocessing light water reactor (LWR) spent fuels based on an electrochemical reduction technology is proposed, and the material balance of the processing of mixed oxide (MOX) or high-burnup uranium oxide (UO{sub 2}) spent fuel is evaluated. Furthermore, a burnup analysis for metal fuel fast breeder reactors (FBRs) is conducted on low-decontamination materials recovered by pyroprocessing. In the case of processing MOX spent fuel (40 GWd/t), UO{sub 2} is separately collected for {approx}60 wt% of the spent fuel in advance of the electrochemical reduction step, and the product recovered through the rare earth (RE) removal step, which has the composition uranium:plutonium:minor actinides:fission products (FPs) = 76.4:18.4:1.7:3.5, can be applied as an ingredient of FBR metal fuel without a further decontamination process. On the other hand, the electroreduced alloy of high-burnup UO{sub 2} spent fuel (48 GWd/t) requires further decontamination of residual FPs by an additional process such as electrorefining even if RE FPs are removed from the alloy because the recovered plutonium (Pu) is accompanied by almost the same amount of FPs in addition to RE. However, the amount of treated materials in the electrorefining step is reduced to {approx}10 wt% of the total spent fuel owing to the prior UO{sub 2} recovery step. These results reveal that the application of electrochemical reduction technology to LWR spent oxide fuel is a promising concept for providing FBR metal fuel by a rationalized process.

  10. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  11. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    EPA Science Inventory

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  12. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    EPA Science Inventory

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  13. Electric Power Research Institute: Environmental Control Technology Center report to the Steering Committee. Final technical monthly report

    SciTech Connect

    1995-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal test block (TER) as the Pilot was operated under forced oxidation conditions. With this testing, the mercury measurement (Method 29) studies also continued as investigations into various activated carbons, metal amalgams, and impinger capture solutions were conducted. Following these studies, a brief test of the Pilot High Velocity FGD configuration (PHV) was conducted. This test block will be continued at the end of the month after the Fall outage is completed. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. During this month`s outage, the inlet and outlet damper plates were sealed to isolate the SCR system from flue gas. Also, the internals of the heat pipe heat exchanger (HPHE) and catalyst reactor tower were inspected and cleaned so that the system could be available for future test activities. Monthly inspections of all SCR system equipment placed in this cold-standby mode, as well as the fire safety systems in the SCR building, will continue to be conducted by the ECTC maintenance department and will include manual rotation of the booster fan.

  14. Regulatory Risk Reduction for Advanced Reactor Technologies – FY2016 Status and Work Plan Summary

    SciTech Connect

    Moe, Wayne Leland

    2016-08-01

    Millions of public and private sector dollars have been invested over recent decades to realize greater efficiency, reliability, and the inherent and passive safety offered by advanced nuclear reactor technologies. However, a major challenge in experiencing those benefits resides in the existing U.S. regulatory framework. This framework governs all commercial nuclear plant construction, operations, and safety issues and is highly large light water reactor (LWR) technology centric. The framework must be modernized to effectively deal with non-LWR advanced designs if those designs are to become part of the U.S energy supply. The U.S. Department of Energy’s (DOE) Advanced Reactor Technologies (ART) Regulatory Risk Reduction (RRR) initiative, managed by the Regulatory Affairs Department at the Idaho National Laboratory (INL), is establishing a capability that can systematically retire extraneous licensing risks associated with regulatory framework incompatibilities. This capability proposes to rely heavily on the perspectives of the affected regulated community (i.e., commercial advanced reactor designers/vendors and prospective owner/operators) yet remain tuned to assuring public safety and acceptability by regulators responsible for license issuance. The extent to which broad industry perspectives are being incorporated into the proposed framework makes this initiative unique and of potential benefit to all future domestic non-LWR applicants

  15. Report of the Project Research on Disaster Reduction using Disaster Mitigating Information Sharing Technology

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeyasu

    For the purpose of reducing disaster damage by applying information sharing technologies, "the research on disaster reduction using crisis-adaptive information sharing technologies" was carried out from July, 2004 through March 2007, as a three year joint project composed of a government office and agency, national research institutes, universities, lifeline corporations, a NPO and a private company. In this project, the disaster mitigating information sharing platform which is effective to disaster response activities mainly for local governments was developed, as a framework which enables information sharing in disasters. A prototype of the platform was built by integrating an individual system and tool. Then, it was applied to actual local governments and proved to be effective to disaster responses. This paper summarizes the research project. It defines the platform as a framework of both information contents and information systems first and describes information sharing technologies developed for utilization of the platform. It also introduces fields tests in which a prototype of the platform was applied to local governments.

  16. Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops (Version 1.4)

    EPA Science Inventory

    This generic verification protocol provides a detailed method for conducting and reporting results from verification testing of pesticide application technologies. It can be used to evaluate technologies for their potential to reduce spray drift, hence the term “drift reduction t...

  17. Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops (Version 1.4)

    EPA Science Inventory

    This generic verification protocol provides a detailed method for conducting and reporting results from verification testing of pesticide application technologies. It can be used to evaluate technologies for their potential to reduce spray drift, hence the term “drift reduction t...

  18. Adsorption of Vanadium (V) from SCR Catalyst Leaching Solution and Application in Methyl Orange.

    PubMed

    Sha, Xuelong; Ma, Wei; Meng, Fanqing; Wang, Ren; Fuping, Tian; Wei, Linsen

    2016-12-01

      In this study, we explored an effective and low-cost catalyst and its adsorption capacity and catalytic capacity for Methyl Orange Fenton oxidation degradation were investigated. The catalyst was directly prepared by reuse of magnetic iron oxide (Fe3O4) after saturated adsorption of vanadium (V) from waste SCR (Selective Catalytic Reduction) catalyst. The obtained catalyst was characterized by FTIR, XPS and the results showed that vanadium (V) adsorption process of Fe3O4 nanoparticles was non-redox reaction. The effects of pH, adsorption kinetics and equilibrium isotherms of adsorption were assessed. Adsorption of vanadium (V) ions by Fe3O4 nanoparticles could be well described by the Sips isotherm model which controlled by the mixed surface reaction and diffusion (MSRDC) adsorption kinetic model. The results show that vanadium (V) was mainly adsorbed on external surface of the Fe3O4 nanoparticles. The separation-recovering tungsten (VI) and vanadium (V) from waste SCR catalyst alkaline solution through pH adjustment was also investigated in this study. The results obtained from the experiments indicated that tungsten (VI) was selectively adsorbed from vanadium (V)/tungsten (VI) mixed solution in certain acidic condition by Fe3O4 nanoparticle to realize their recovery. Tungsten (V) with some impurity can be obtained by releasing from adsorbent, which can be confirmed by ICP-AES. The Methyl Orange degradation catalytic performance illustrated that the catalyst could improve Fenton reaction effectively at pH = 3.0 compare to Fe3O4 nanoparticles alone. Therefore, Fe3O4 nanoparticle adsorbed vanadium (V) has a potential to be employed as a heterogeneous Fenton-like catalyst in the present contribution, and its catalytic activity was mainly evaluated in terms of the decoloration efficiency of Methyl Orange.

  19. Simultaneous removal of NO and Hg(0) over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts.

    PubMed

    Chi, Guilong; Shen, Boxiong; Yu, Ranran; He, Chuan; Zhang, Xiao

    2017-05-15

    A series of novel Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts were prepared via ultrasonic-assisted impregnation method for simultaneous removal of NO and elemental mercury (Hg(0)). Nitrogen adsorption, X-ray diffraction (XRD), temperature programmed reduction of H2 (H2-TPR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. 7% Ce-1% Cu/SCR catalyst exhibited the highest NO conversion efficiency (>97%) at 200-400°C, as well as the best Hg(0) oxidation activity (>75%) at 150-350°C among all the catalysts. The XPS and H2-TPR results indicated that 7% Ce-1% Cu/SCR possess abundant chemisorbed oxygen and good redox ability, which was due to the strong synergy between Ce and Cu in the catalyst. The existence of the redox cycle of Ce(4+)+Cu(1+)↔Ce(3+)+Cu(2+) could greatly improve the catalytic activity. 7% Ce-1% Cu/SCR showed higher resistance to SO2 and H2O than other catalysts. NO has a promoting effect on Hg(0) oxidation. The Hg(0) oxidation activity was inhibited by the injection of NH3, which was due to the competitive adsorption and oxidized mercury could be reduced by ammonia at temperatures greater than 325°C. Therefore, Hg(0) oxidation could easily occurred at the outlet of SCR catalyst layer due to the consumption of NH3. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Advanced subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Contents of this presentation include: Advanced Subsonic Technology (AST) goals and general information; Nozzle nomenclature; Nozzle schematics; Photograph of all baselines; Configurations tests and types of data acquired; and Engine cycle and plug geometry impact on EPNL.

  1. Aeronautics research and technology. A review of proposed reductions in the FY 1983 NASA program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Reductions in the Fiscal Year 1983 program from the original proposal to the levels of the appropriation request submitted to Congress are reviewed. The request asked for an assessment of the national criticality of the excluded programs and, for each one, the risk (probability of success) associated with achieving the objectives sought and the degree to which it might be assumed by the private sector. Based on this request, a charge comprising an assessment of those aeronautics projects excluded from the FY 1983 budget request to Congress, the likelihood that industry would undertake them, the impact of their not being done, and the more general question of the need for government to bridge the gap between the aeronautics research and technology base and early application was developed. The charge further specifies that the assessment is to encompass considerations of safety, national defense, efficient transport, and the national economy.

  2. Application of computational fluid dynamics and laminar flow technology for improved performance and sonic boom reduction

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.

    1992-01-01

    A discussion is given of the many factors that affect sonic booms with particular emphasis on the application and development of improved computational fluid dynamics (CFD) codes. The benefits that accrue from interference (induced) lift, distributing lift using canard configurations, the use of wings with dihedral or anhedral and hybrid laminar flow control for drag reduction are detailed. The application of the most advanced codes to a wider variety of configurations along with improved ray-tracing codes to arrive at more accurate and, hopefully, lower sonic booms is advocated. Finally, it is speculated that when all of the latest technology is applied to the design of a supersonic transport it will be found environmentally acceptable.

  3. New technology for sulfide reduction and increased oil recovery. Third quarter progress report

    SciTech Connect

    1998-03-20

    Project work was initiated by Geo-Microbial Technologies, Inc. (GMT), Ochelata, Oklahoma for Contract Number DE-FG01-97EE15659 on June 18, 1997. The purpose of this project is to demonstrate reduction of sulfide contamination, as well as possible improvement of production in oil and gas production systems. This will be accomplished by application of the BioCompetitive Exclusion (BCX) process developed by GMT. A broad spectrum of well types and geographical locations is anticipated. The BCX process is designed to manipulate indigenous reservoir bacteria with the addition of synergistic inorganic chemical formulae. These treatments will stimulate growth of beneficial microbes, while suppressing metabolic activity of sulfate reducing bacteria (SRB), the primary source of harmful sulfide production.

  4. An Assessment of carbon reduction technology opportunities in the petroleum refining industry.

    SciTech Connect

    Petrick, M.

    1998-09-14

    The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

  5. STUDY OF SPECIATION OF MERCURY UNDER SIMULATED SCR NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    The paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. It describes the results of bench-scale experiments conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures wit...

  6. STUDY OF SPECIATION OF MERCURY UNDER SIMULATED SCR NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    The paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. It describes the results of bench-scale experiments conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures wit...

  7. Enhanced efficacy of pluronic copolymer micelle encapsulated SCR7 against cancer cell proliferation.

    PubMed

    John, Franklin; George, Jinu; Vartak, Supriya V; Srivastava, Mrinal; Hassan, P A; Aswal, V K; Karki, Subhas S; Raghavan, Sathees C

    2015-04-01

    5,6-Bis(benzylideneamino)-2-mercaptopyrimidin-4-ol (SCR7) is a new anti cancer molecule having capability to selectively inhibit non-homologous end joining (NHEJ), one of the DNA double strand break (DSB) repair pathways inside the cells. In spite of the promising potential as an anticancer agent, hydrophobicity of SCR7 decreases its bioavailability. Herein the entrapment of SCR7 in Pluronic copolymer is reported. The size of the aggregates was determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS) which yields an average diameter of 23 nm. SCR7 encapsulated micelles (ES) were also characterized by small-angle neutron scattering (SANS). Evaluation of its biological properties by using a variety of techniques, including Trypan blue, MTT and Live-dead cell assays, reveal that encapsulated SCR7 can induce cytotoxicity in cancer cell lines, being more effective in breast cancer cell line. Encapsulated SCR7 treatment resulted in accumulation of DNA breaks within the cells, resulting in cell cycle arrest at G1 phase and activation of apoptosis. More importantly, we found ≈ 5 fold increase in cell death, when encapsulated SCR7 was used in comparison with SCR7 alone. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  9. Development of natural gas injection technology for NO sub x reduction from municipal waste combustors

    SciTech Connect

    Abbasi, H.A.; Khinkis, M.J. ); Penterson, C.A.; Zone, F. ); Dunnette, R. ); Nakazato, K. ); Duggan, P.A.; Linz, D.G. )

    1991-01-01

    Natural gas injection (NGI) technology for reducing NO{sub x} emissions from municipal waste combustors (MWCs) is being developed. The approach involves the injection of natural gas, together with recirculated flue gases (for mixing), above the grate to provide reducing combustion conditions that promote the destruction of NO{sub x} precursors, as well as NO{sub x}. Extensive development testing was subsequently carried out in a 2.5 {times} 10{sup 6} Btu/h (0.7 MWth) pilot-scale MWC firing actual MSW. Both tests, using simulated combustion products and actual MSW, showed that 50% to 70% NO{sub x} reduction could be achieved. These results were used to define the key operating parameters. A full-scale system has been designed and retrofitted to a 100-ton/day Riley/Takuma mass burn system at the Olmsted County Waste-to-Energy facility. The system was designed to provide variation in the key parameters to not only optimize the process for the Olmsted unit, but also to acquire design data for MWCs of other sizes and designs. Extensive testing was conducted to December 1990 and January 1991 to evaluate the effectiveness of NGI. This paper concentrates on the METHANE de-NO{sub x} system retrofit and testing. The results show simultaneous reductions of 60% in NO{sub x}, 50% in CO, and 40% in excess air requirement with natural gas injection. 4 refs., 5 figs., 1 tab.

  10. Levels of plasma soluble complement receptor 1 (sCR1) in normal Indian adult population.

    PubMed

    Sivasankar, B; Raju, K R; Anand, V; Malu, S; Padmanabhan, S; Tiwari, S C; Das, N; Srivastava, L M

    1999-07-01

    A decrease in the membrane anchored erythrocyte complement receptor 1 (CR1) is reported as an acquired phenomenon in a number of inflammatory and autoimmune diseases with concomitant rise in soluble CR1 (sCR1) levels in plasma. There is a need to establish the normal range of sCR1 in Indian adults to assess the function and disease association of this protein. The plasma sCR1 levels of 50 healthy individuals have been estimated by an indigenously developed sandwich ELISA. sCR1 levels from 26 patients suffering from nephropathies had also been assayed which was much higher than the normal controls. This observation suggests sCR1 as a potential market for the assessment of disease activity in nephropathies.

  11. The spatial and temporal deployment of Dfd and Scr transcripts throughout development of Drosophila.

    PubMed

    Martinez-Arias, A; Ingham, P W; Scott, M P; Akam, M E

    1987-08-01

    In Drosophila, the Deformed (Dfd) and Sex combs reduced (Scr) genes determined the developmental pathways followed by the most anterior metameric units. Using in situ hybridization, we have monitored the spatial distributions of transcripts from these two genes. Dfd RNA accumulates in parasegments 0 and 1; Scr RNA accumulation shows a dynamic pattern spanning parasegments 2 and 3. The expression of Dfd and Scr seems to change from parasegmental to segmental during formation of the gnathal appendages. Both genes are transcribed during imaginal development: Dfd in a portion of the eye-antennal disc; Scr in the labial and prothoracic discs. In addition, we find Scr RNA in the adepithelial cells of all mesothoracic discs.

  12. Reduction of Driver Stress Using AmI Technology while Driving in Motorway Merging Sections

    NASA Astrophysics Data System (ADS)

    Zia, Kashif; Riener, Andreas; Ferscha, Alois

    High average intensity of traffic and problems like traffic congestions, road safety, etc. are challenging problems striking highway operators in these days. With the broad application of intelligent transport systems (ITS), particularly for the most dense street sections, some of these problems can be minimized or even solved; supplementary great potential is attributed to applications based on state-of-the art technology like car-to-x communication, for instance by extending an individuals "field of vision" by observations taken from all the vehicles in front. In this work we present a simulation based approach for improving driving experience and increasing road safety in merging sections by redirecting vehicles in advance according to a negotiation of requirements and desires of the flowing traffic on the main road and cars merging from the entrance lane. The simulation experiments performed in a cellular automaton based environment were data driven and on real scale, using traffic flow data on a minute-by-minute basis from a large urban motorway in a main city of the European Union. Our results have shown that the application of AmI technology has potential to influence driver's behavior (seamlessly invoking for a lane change well before an abrupt merging point) resulting in a reduction of panic, particularly for sections with limited range of view.

  13. Characterization and performance of Pt/SBA-15 for low-temperature SCR of NO by C3H6.

    PubMed

    Liu, Xinyong; Jiang, Zhi; Chen, Mingxia; Shi, Jianwei; Shangguan, Wenfeng; Teraoka, Yasutake

    2013-05-01

    Pt supported on mesoporous silica SBA-15 was investigated as a catalyst for low temperature selective catalytic reduction (SCR) of NO by C3H6 in the presence of excess oxygen. The prepared catalysts were characterized by means of XRD, BET surface area, TEM, NO-TPD, NO/C3H6-TPO, NH3-TPD, XPS and 27Al MAS NMR. The effects of Pt loading amount, O2/C3H6 concentration, and incorporation of Al into SBA-15 have been studied. It was found that the removal efficiency increased significantly after Pt loading, but an optimal loading amount was observed. In particular, under an atmosphere of 150 ppm NO, 150 ppm C3H6, and 18 vol.% O2, 0.5% Pt/SBA-15 showed remarkably high catalytic performance giving 80.1% NOx reduction and 87.04% C3H6 conversion simultaneously at 140 degrees C. The enhanced SCR activity of Pt/SBA-15 is associated with its outstanding oxidation activities of NO to NO2 and C3H6 to CO2 in low temperature range. The research results also suggested that higher concentration of O2 and higher concentration of C3H6 favored NO removal. The incorporation of Al into SBA-15 improved catalytic performance, which could be ascribed to the enhancement of catalyst surface acidity caused by tetrahedrally coordinated AlO4. Moreover, the catalysts could be easily reused and possessed good stability.

  14. Electric Power Research Institute, Environmental Control Technology Center report to the Steering Committee. Final technical report

    SciTech Connect

    1995-07-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block, and a simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). At the end of the month, a series of Duct Injection tests began in a study to determine the efficiencies of alkaline injection for removing trace elements (mercury). On the Cold-Side Selective Catalytic Reduction (SCR) unit, low temperature performance testing continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the catalysts installed in the SCR reactor. This report describes the status of the facilities and test activities at the pilot and mini-pilot plants.

  15. Electric Power Research Institute: Environmental control technology. Final technical monthly report

    SciTech Connect

    1995-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block. A second phase of the lime Forced Oxidation process with DBA addition (LDG) was also conducted simultaneously on the Pilot System this month. This month the ECTC was off-line from 6/9 through 6/19 to complete a Facility retrofit project. During this brief outage, modifications were made to the ECTC Flue Gas Handling System to enhance the facility capabilities, and to prepare for future High Velocity Wet FGD Testing. On the Cold-Side Selective Catalytic Reduction (SCR) unit, the low temperature performance testing resumed this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the new SCR catalysts.

  16. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.

    PubMed

    Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P

    2013-07-16

    Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A

  17. The regulatory SCR-1/5 and cell surface-binding SCR-16/20 fragments of factor H reveal partially folded-back solution structures and different self-associative properties.

    PubMed

    Okemefuna, Azubuike I; Gilbert, Hannah E; Griggs, Kim M; Ormsby, Rebecca J; Gordon, David L; Perkins, Stephen J

    2008-01-04

    Factor H (FH) is a plasma glycoprotein that plays a central role in regulation of the alternative pathway of complement. It is composed of 20 short complement regulator (SCR) domains. The SCR-1/5 fragment is required for decay acceleration and cofactor activity, while the SCR-16/20 fragment possesses binding sites for complement C3d and heparin. X-ray scattering and analytical ultracentrifugation showed that SCR-1/5 was monomeric, while SCR-16/20 formed dimers. The Guinier radius of gyration R(G) of 4.3 nm for SCR-1/5 and those of 4.7 nm and about 7.8 nm for monomeric and dimeric SCR-16/20, respectively, showed that their structures are partially folded back and bent. The distance distribution function P(r) showed that SCR-1/5 has a maximum dimension of 15 nm while monomeric and dimeric SCR-16/20 are 17 nm and about 27 nm long, respectively. The sedimentation coefficient of 2.4 S for SCR-1/5 showed no concentration-dependence, while that for SCR-16/20 was 2.8 S for the monomer and 3.9 S for the dimer. Sedimentation equilibrium data showed that SCR-1/5 is monomeric while SCR-16/20 exhibited a weak monomer-dimer equilibrium with a dissociation constant of 16 microM. The constrained scattering and sedimentation modelling of SCR-1/5 and SCR-16/20 showed that partially folded-back and bent flexible SCR arrangements fitted both data sets better than extended linear arrangements, and that the dimer was best modelled in the SCR-16/20 model by an end-to-end association of two SCR-20 domains. The SCR-1/5 and SCR-16/20 models were conformationally similar to the previously determined partially folded-back structure for intact wild-type FH, hence suggesting a partial explanation of the intact FH structure. Comparison of the SCR-16/20 model with the crystal structure of C3b clarified reasons for the distribution of mutations leading to atypical haemolytic uraemic syndrome.

  18. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  19. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.

    PubMed

    McNevin, Thomas F

    2016-01-01

    The most effective control technology available for the reduction of oxides of nitrogen (NOx) from coal-fired boilers is selective catalytic reduction (SCR). Installation of SCR on coal-fired electric generating units (EGUs) has grown substantially since the onset of the U.S. Environmental Protection Agency's (EPA) first cap and trade program for oxides of nitrogen in 1999, the Ozone Transport Commission (OTC) NOx Budget Program. Installations have increased from 6 units present in 1998 in the states that encompass the current Cross-State Air Pollution Rule (CSAPR) ozone season program to 250 in 2014. In recent years, however, the degree of usage of installed SCR technology has been dropping significantly at individual plants. Average seasonal NOx emission rates increased substantially during the Clean Air Interstate Rule (CAIR) program. These increases coincided with a collapse in the cost of CAIR allowances, which declined to less than the cost of the reagent required to operate installed SCR equipment, and was accompanied by a 77% decline in delivered natural gas prices from their peak in June of 2008 to April 2012, which in turn coincided with a 390% increase in shale gas production between 2008 and 2012. These years also witnessed a decline in national electric generation which, after peaking in 2007, declined through 2013 at an annualized rate of -0.3%. Scaling back the use of installed SCR on coal-fired plants has resulted in the release of over 290,000 tons of avoidable NOx during the past five ozone seasons in the states that participated in the CAIR program. To function as designed, a cap and trade program must maintain allowance costs that function as a disincentive for the release of the air pollutants that the program seeks to control. If the principle incentive for reducing NOx emissions is the avoidance of allowance costs, emissions may be expected to increase if costs fall below a critical value, in the absence of additional state or federal

  20. Aeronautical fuel conservation possibilities for advanced subsonic transports. [application of aeronautical technology for drag and weight reduction

    NASA Technical Reports Server (NTRS)

    Braslow, A. L.; Whitehead, A. H., Jr.

    1973-01-01

    The anticipated growth of air transportation is in danger of being constrained by increased prices and insecure sources of petroleum-based fuel. Fuel-conservation possibilities attainable through the application of advances in aeronautical technology to aircraft design are identified with the intent of stimulating NASA R and T and systems-study activities in the various disciplinary areas. The material includes drag reduction; weight reduction; increased efficiency of main and auxiliary power systems; unconventional air transport of cargo; and operational changes.

  1. Electrical Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1998-02-18

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI/ADA Technologies dry sorbent sampling unit and the testing of Hg catalysts/sorbents in this low-flow, temperature controlled system. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  2. Experimental study on a low-temperature SCR catalyst based on MnO(x)/TiO(2) prepared by sol-gel method.

    PubMed

    Wu, Zhongbiao; Jiang, Boqiong; Liu, Yue; Zhao, Weirong; Guan, Baohong

    2007-07-16

    A catalyst based on MnO(x)/TiO(2) was prepared by sol-gel method for low-temperature selective catalytic reduction (SCR) of NO with NH(3). Focusing on the effects of the operating parameters, the SCR reaction was investigated at temperatures from 353 to 523K under steady and transient states. Under the optimal conditions, the efficiency of NO removal could exceed 90% at temperature of 423K. Furthermore, within the range investigated, the reaction order of NO, NH(3), O(2) was determined to be 1, 0, and 0.5, respectively. Apparent activation energy was also calculated to be 38kJ/mol, lower than that for most of the catalysts reported by previous investigations.

  3. The black rock series supported SCR catalyst for NO x removal.

    PubMed

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-08-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO2-TiO2 sols and regulating its catalytic active constituents with V2O5 and MoO3. Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and NH3-temperature programmed desorption (NH3-TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen Oα, well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO2-based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO2 and H2O exceeding 85% at temperatures from 300 to 450 °C.

  4. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  5. Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for use on International Space Station

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen; Smith, Fred; Perry, Jay; Green, Steve

    2004-01-01

    When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of Technology Readiness Level (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.

  6. Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for use on International Space Station

    NASA Technical Reports Server (NTRS)

    Murdoch, Karen; Smith, Fred; Perry, Jay; Green, Steve

    2004-01-01

    When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of Technology Readiness Level (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.

  7. Aircraft noise reduction technology. [to show impact on individuals and communities, component noise sources, and operational procedures to reduce impact

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.

  8. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  9. Sodium intake in US ethnic subgroups and potential impact of a new sodium reduction technology: NHANES Dietary Modeling.

    PubMed

    Fulgoni, Victor L; Agarwal, Sanjiv; Spence, Lisa; Samuel, Priscilla

    2014-12-18

    Because excessive dietary sodium intake is a major contributor to hypertension, a reduction in dietary sodium has been recommended for the US population. Using the National Health and Nutrition Examination Survey (NHANES) 2007-2010 data, we estimated current sodium intake in US population ethnic subgroups and modeled the potential impact of a new sodium reduction technology on sodium intake. NHANES 2007-2010 data were analyzed using The National Cancer Institute method to estimate usual intake in population subgroups. Potential impact of SODA-LO® Salt Microspheres sodium reduction technology on sodium intake was modeled using suggested sodium reductions of 20-30% in 953 foods and assuming various market penetrations. SAS 9.2, SUDAAN 11, and NHANES survey weights were used in all calculations with assessment across age, gender and ethnic groups. Current sodium intake across all population subgroups exceeds the Dietary Guidelines 2010 recommendations and has not changed during the last decade. However, sodium intake measured as a function of food intake has decreased significantly during the last decade for all ethnicities. "Grain Products" and "Meat, Poultry, Fish, & Mixtures" contribute about 2/3rd of total sodium intake. Sodium reduction, using SODA-LO® Salt Microspheres sodium reduction technology (with 100% market penetration) was estimated to be 185-323 mg/day or 6.3-8.4% of intake depending upon age, gender and ethnic group. Current sodium intake in US ethnic subgroups exceeds the recommendations and sodium reduction technologies could potentially help reduce dietary sodium intake among those groups.

  10. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA), ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGAM: RESIDENTIAL NUTRIENT REDUCTION

    EPA Science Inventory

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  11. U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA), ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGAM: RESIDENTIAL NUTRIENT REDUCTION

    EPA Science Inventory

    The U.S. Environmental Protection Agency Environmental Technology Verification (ETV) program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This technology ...

  12. Effect of Mirasol pathogen reduction technology system on in vitro quality of MCS+ apheresis platelets.

    PubMed

    Mastroianni, Maria Adele; Llohn, Abid Hussain; Akkök, Çiğdem Akalın; Skogheim, Ruby; Ødegaard, Elna Rathe; Nybruket, Monica Jenssen; Flesland, Annika; Mousavi, Seyed Ali

    2013-10-01

    Reducing the risk of pathogen transmission to transfusion recipients is one of the great concerns in transfusion medicine. Important among the measures suggested to minimise pathogen transmission is pathogen reduction technology (PRT) systems. The present study examined the effects of Mirasol PRT system on MCS+ apheresis platelets in vitro quality measures during a seven-day storage period at 22°C. Statistical analysis indicated no significant difference in platelet concentrations between the control and treated platelet concentrates (PCs) during the storage period. Glucose and lactate levels were measured to determine metabolic activities of control and treated platelets. In both control and treated platelets, the amount of glucose consumed and lactate produced increased significantly with storage time, but glucose consumption and lactate production rates were significantly higher in treated platelets compared with control platelets. The mean pH of treated PCs was decreased at all time points relative to control PCs but remained within acceptable limits. The expression of P-selectin was also higher in Mirasol PRT treated platelets throughout the storage period, but differences were not statistically significant on Days 1 and 4. Finally, visual inspection of swirling indicated that Mirasol PRT treatment of platelets is associated with platelet shape change. Overall, our results show that MCS+ apheresis platelets treated with Mirasol PRT can preserve adequate in vitro properties for at least 5 days of storage.

  13. Offline Interoperability, Cost Reduction and R eliability for Operational Procedures Using Meta-Modeling Technology

    NASA Astrophysics Data System (ADS)

    Poupart, E.; Jolly, G.; Percebois, C.; Bazex, P.; Palanque, P.; Basnyat, S.; Rabault, P.; Sabatier, L.; Walrawens, A.

    2008-08-01

    In this paper, we present a CNES participation through a case study in a research project called DOMINO financed by the French National Research Agency (ANR) RNTL. This project has started in March 2007 and will end in March 2009, it regroups academics (ENSIETA, IRISA, and IRIT), industries and agencies, (AIRBUS, CEA, CNES and SODIFRANCE). This project has two main goals: to develop reliable Model Driven Engineering (MDE) components and to build bridges with Domain Specific Languages (DSL). CNES participates in this project through a case study on the reliable design of operational procedures and associated applications. There are two main objectives for this case study: the first to improve "offline" interoperability with the possibility to build import/export tools for any scripting procedure language by using meta-modeling technology. The second is to improve efficiency for the production, validation, and execution of scripting procedures using operational specifications. It is anticipated that this will result in a reduction of costs and reliability improvement.

  14. Intelligent background noise reduction technology in cable fault locator using the magneto-acoustic synchronous method

    NASA Astrophysics Data System (ADS)

    Mi, JianWei; Huang, JiFa; Fang, XiaoLi; Fan, LiBin

    2017-01-01

    The magneto-acoustic synchronous method has found wide application in accurate positioning of power cable fault due to its advantages of high accuracy and strong ability to reject interference. In the view of principle, the magneto-acoustic synchronous method needs to detect the discharge sound signal and electromagnetic signal emitted from the fault point, but the discharge sound signal is easy to be interfered by the ambient noise around and the magnetic sound synchronization. Therefore, it is challenging to quickly and accurately detect the fault location of cable especially in strong background noise environment. On the other hand, the spectral subtraction is a relatively traditional and effective method in many intelligent background noise reduction technologies, which is characterized by a relatively small computational cost and strong real-time performance. However, its application is limited because the algorithm displays poor performance in low Signal to Noise Ratio (SNR) environment. Aiming at the shortcoming of the spectral subtraction that de-noising effect is weak in low SNR environment, this paper proposes an improved spectral subtraction combining the magnetic sound synchronous principle and analyzing the properties of discharging sound. This method can accurately estimate noise in real time and optimize the performance of the basic spectral subtraction thus solving the problem that the magneto-acoustic synchronous method is unsatisfactory for positioning cable fault in the strong background noise environment.

  15. 2014 U.S. Offshore Wind Market Report: Industry Trends, Technology Advancement, and Cost Reduction

    SciTech Connect

    Smith, Aaron; Stehly, Tyler; Walter Musial

    2015-09-29

    2015 has been an exciting year for the U.S. offshore wind market. After more than 15 years of development work, the U.S. has finally hit a crucial milestone; Deepwater Wind began construction on the 30 MW Block Island Wind Farm (BIWF) in April. A number of other promising projects, however, have run into economic, legal, and political headwinds, generating much speculation about the future of the industry. This slow, and somewhat painful, start to the industry is not without precedent; each country in northern Europe began with pilot-scale, proof-of-concept projects before eventually moving to larger commercial scale installations. Now, after more than a decade of commercial experience, the European industry is set to achieve a new deployment record, with more than 4 GW expected to be commissioned in 2015, with demonstrable progress towards industry-wide cost reduction goals. DWW is leveraging 25 years of European deployment experience; the BIWF combines state-of-the-art technologies such as the Alstom 6 MW turbine with U.S. fabrication and installation competencies. The successful deployment of the BIWF will provide a concrete showcase that will illustrate the potential of offshore wind to contribute to state, regional, and federal goals for clean, reliable power and lasting economic development. It is expected that this initial project will launch the U.S. industry into a phase of commercial development that will position offshore wind to contribute significantly to the electric systems in coastal states by 2030.

  16. Silicon controlled rectifier (SCR) compact modeling based on VBIC and Gummel-Poon models

    NASA Astrophysics Data System (ADS)

    Lou, Lifang; Liou, Juin J.; Dong, Shurong; Han, Yan

    2009-02-01

    Silicon controlled rectifier (SCR) is frequently used for electrostatic discharge (ESD) protection applications. For computer-aided design purposes, a macromodel can be constructed for such a device, but a model for the NPN and PNP bipolar transistors imbedded in the SCR is required in the macromodel development. In the paper, we use both the Vertical Bipolar Inter-Company (VBIC) and SPICE Gummel-Poon (SGP) models for these bipolar transistors and compare the perspective macromodel results. Measurements obtained from the transmission line pulsing (TLP) tester are also included to assess the suitability and pros and cons of the VBIC and SGP models for the SCR ESD modeling.

  17. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc

  18. Novel X-ray image noise reduction technology reduces patient radiation dose while maintaining image quality in coronary angiography.

    PubMed

    Ten Cate, T; van Wely, M; Gehlmann, H; Mauti, M; Camaro, C; Reifart, N; Suryapranata, H; de Boer, M J

    2015-11-01

    The consequences of high radiation dose for patient and staff demand constant improvements in X-ray dose reduction technology. This study assessed non-inferiority of image quality and quantified patient dose reduction in interventional cardiology for an anatomy-specific optimised cine acquisition chain combined with advanced real-time image noise reduction algorithms referred to as 'study cine', compared with conventional angiography. Fifty patients underwent two coronary angiographic acquisitions: one with advanced image processing and optimised exposure system settings to enable dose reduction (study cine) and one with standard image processing and exposure settings (reference cine). The image sets of 39 patients (18 females, 21 males) were rated by six experienced independent reviewers, blinded to the patient and image characteristics. The image pairs were randomly presented. Overall 85 % of the study cine images were rated as better or equal quality compared with the reference cine (95 % CI 0.81-0.90). The median dose area product per frame decreased from 55 to 26 mGy.cm(2)/frame (53 % reduction, p < 0.001). This study demonstrates that the novel X-ray imaging technology provides non-inferior image quality compared with conventional angiographic systems for interventional cardiology with a 53 % patient dose reduction.

  19. Challenges and Recent Developments in Hearing Aids: Part I. Speech Understanding in Noise, Microphone Technologies and Noise Reduction Algorithms

    PubMed Central

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized. PMID:15678225

  20. Challenges and recent developments in hearing aids. Part I. Speech understanding in noise, microphone technologies and noise reduction algorithms.

    PubMed

    Chung, King

    2004-01-01

    This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules, and the time constants involved in the execution of the decision. In addition, mechanisms and the differences in the implementation of various strategies used to reduce the negative effects of noise are discussed. These technologies include the microphone technologies that take advantage of the spatial differences between speech and noise and the noise reduction algorithms that take advantage of the spectral difference and temporal separation between speech and noise. The specific technologies discussed in this paper include first-order directional microphones, adaptive directional microphones, second-order directional microphones, microphone matching algorithms, array microphones, multichannel adaptive noise reduction algorithms, and synchrony detection noise reduction algorithms. Verification data for these technologies, if available, are also summarized.

  1. Superior catalysts for selective catalytic reduction of nitric oxide. Final technical report, October 1, 1993--September 30, 1995

    SciTech Connect

    Yang, R.T.; Li, W.B.; Chen, J.P.; Hausladen, M.C.; Cheng, L.S.; Kikkinides, E.S.

    1995-12-31

    The most advanced and proven technology for NO{sub x} control for stationary sources is Selective Catalytic Reduction (SCR). In SCR, NO{sub x} is reduced by NH{sub 3} to N{sub 2} and H{sub 2}O. The commercial catalysts are based on V{sub 2}O{sub 5}/TiO{sub 2}, and the vanadium-based catalysts are patented by the Japanese (Mitsubishi). However, there are three main advantages for the vanadium-based SCR catalyst: (a) a tendency to be poisoned in the flue gas; (b) oxidation of SO{sub 2} to SO{sub 3} by V{sub 2}O{sub 5}, this is a particularly severe problem due to the higher sulfur content of American coals compared with coals used in Japan (from Australia) and in Europe; (c) environmental problems involved in the disposal of the spent catalyst (due to the toxicity of vanadium). In order to overcome these problems, in addition to the undesirable dominance by the Japanese patent position, the authors have studied in this project a new type of catalyst for the SCR reaction; namely, pillared clays, which have adjustable, unique structures and acidity. Three types of catalysts were developed and tested for this reaction, i.e. Fe{sub 2}O{sub 3}-pillared clays, delaminated Fe{sub 2}O{sub 3}-pillared clays, and ion-exchanged pillared clays. The project was divided into sixteen tasks, and will be reported as such.

  2. DEMONSTRATION OF POTENTIAL FOR SELECTIVE CATALYTIC REDUCTION AND DIESEL PARTICULATE FILTERS

    SciTech Connect

    McGILL,R; KHAIR, M; SHARP, C

    2003-08-24

    This project addresses the potential for Selective Catalytic Reduction (SCR) devices (using urea as reductant) together with Diesel Particulate Filters (DPF) and low-pressure loop exhaust gas recirculation (EGR) to achieve future stringent emissions standards for heavy-duty engines powering Class 8 vehicles. Two emission control systems consisting of the three technologies (EGR, SCR, and DPF) were calibrated on a Caterpillar C-12 heavy-duty diesel engine. Results of these calibrations showed good promise in meeting the 2010 heavy-duty emission standards as set forth by the Environmental Protection Agency (EPA). These two emission control systems were developed to evaluate a series of fuels that have similar formulations except for their sulfur content. Additionally, one fuel, code-named BP15, was also evaluated. This fuel was prepared by processing straight-run distillate stocks through a commercial, single stage hydrotreater employing high activity catalyst at maximum severity. An additional goal of this program is to provide data for an on-going EPA technology review that evaluates progress toward meeting 2007/2010 emission standards. These emissions levels were to be achieved not only on the transient test cycles but in other modes of operation such as the steady-state Euro-III style emission test known as the OICA (Organisation Internationale des Compagnies d'Automobiles) or the ESC (European Stationary Cycle). Additionally, hydrocarbon and carbon monoxide emissions standards are to be met.

  3. Dynamic Control System Mode Performance of the Space Technology-7 Disturbance Reduction System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Hsu, Oscar; Maghami, Peiman

    2017-01-01

    The Space Technology-7 (ST-7) Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft, launched on December 3, 2015. DRS consists of three primary components: Colloidal MicroNewton Thrusters (CMNTs), an Integrated Avionics Unit (IAU), and flight-software implementing the Command and Data Handling (C&DH) and Dynamic Control System (DCS) algorithms. The CMNTs were designed to provide thrust from 5 to 30 micro Newton, with thrust controllability and resolution of 0.1 micro Newton and thrust noise of 0.1 micro Newton/(square root of (Hz)) in the measurement band from 1-30 mHz. The IAU hosts the C&DH and DCS flight software, as well as interfaces with both the CMNT electronics and the LISA Pathfinder spacecraft. When in control, the DCS uses star tracker attitude data and capacitive or optically-measured position and attitude information from LISA Pathfinder and the LISA Technology Package (LTP) to control the attitude and position of the spacecraft and the two test masses inside the LTP. After completion of the nominal ESA LISA Pathfinder mission, the DRS experiment was commissioned followed by its nominal mission. DRS operations extended over the next five months, interspersed with station keeping, anomaly resolution, and periods where control was handed back to LISA Pathfinder for them to conduct further experiments. The primary DRS mission ended on December 6, 2016, with the experiment meeting all of its Level 1 requirements. The DCS, developed at the NASA Goddard Space Flight Center, consists of five spacecraft control modes and six test mass control modes, combined into six 'DRS Mission Modes'. Attitude Control and Zero-G were primarily used to control the spacecraft during initial handover and during many of the CMNT characterization experiments. The other Mission Modes, Drag Free Low Force, 18-DOF Transitional, and 18-DOF, were used to provide drag-free control of the spacecraft about the test

  4. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  5. Practical issues that should be considered when planning the implementation of pathogen reduction technology for plateletpheresis.

    PubMed

    Jimenez-Marco, Teresa; Mercant, Catalina; Lliteras, Esperanza; Cózar, Maite; Girona-Llobera, Enrique

    2015-02-01

    Pathogen reduction technology (PRT) is associated with increased blood safety through the inactivation of virus, bacteria and parasites. Dilution of platelet (PLT) concentrates in platelet additive solution (PAS) is a requirement for applying PRT, and that it is associated with various practical issues: increasing PLT target yields to compensate for loss of PLTs through PRT, extended apheresis donation time due to PAS addition at the end of the procedure, and the appearance of PLT aggregates. We proposed to program higher target PLT yields for plateletpheresis donations to compensate for PLTs lost due to PRT processing. To verify the feasibility of this approach, a paired study of the Amicus 3.11 and Trima 5.22 apheresis separators was performed using 196 procedures carried out on the same 98 donors. The Amicus 3.11 presented a higher collection efficiency (CE: 78.02 vs. 69.63; p < 0.0001) and collection rate (CR: 8.3 vs. 7.00; p < 0.0001); it was also faster (56.92 vs. 62.60; p < 0.0001) than the Trima 5.22 apheresis device. However, analysis of the donor group with higher pre-procedure PLT counts showed similar productivity results for the Amicus and Trima. The percentage of PLT aggregates detected was higher with the TA than the AM (8.62% vs. 3.88%, p = 0.04). Overall, both separators are entirely suitable for collecting hyper-concentrated PLTs that are subsequently diluted in PAS for PRT, without excessively increasing the donation time. PLT aggregation can occur after apheresis collection but most of them disappear by day 1. Further investigation is needed to study the clinical impact of PLT aggregation.

  6. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Development of CCT Diagrams

    SciTech Connect

    Chumbley, L Scott

    2011-08-20

    One of the most energy intensive industries in the U.S. today is in the melting and casting of steel alloys for use in our advanced technological society. While the majority of steel castings involve low or mild carbon steel for common construction materials, highly-alloyed steels constitute a critical component of many industries due to their excellent properties. However, as the amount of alloying additions increases, the problems associated with casting these materials also increases, resulting in a large waste of energy due to inefficiency and a lack of basic information concerning these often complicated alloy systems. Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma (³) and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. Knowledge of the times and temperatures at which these detrimental phases form is imperative if a company is to efficiently produce castings of high quality in the minimum amount of time, using the lowest amount of energy possible, while producing the least amount of material waste. Anecdotal evidence from company representatives revealed that large castings frequently had to be scrapped due to either lower than expected corrosion resistance or extremely low fracture toughness. It was suspected that these poor corrosion and / or mechanical properties were directly related to the type, amount, and location of various intermetallic phases that formed during either the cooling cycle of the castings or subsequent heat treatments. However, no reliable data existed concerning either the time-temperature-transformation (TTT) diagrams or the continuous-cooling-transformation (CCT) diagrams of the super-austenitics. The

  7. Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Location plan for Signal Corps Radar (S.C.R.) 296 Station 5, October 8, 1943 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  8. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Mechanical Performance of Dies

    SciTech Connect

    R. Allen Miller, Principal Investigator; Kabiri-Bamoradian, Contributors: Khalil; Delgado-Garza, Abelardo; Murugesan, Karthik; Ragab, Adham

    2011-09-13

    provided to NADCA for distribution to the industry. Power law based meta-models for predicting machine tie bar loading and for predicting maximum parting surface separation were successfully developed and tested against simulation results for a wide range of machines and experimental data. The models proved to be remarkably accurate, certainly well within the requirements for practical application. In addition to making die structural modeling more accessible, the work advanced the state-of-the-art by developing improved modeling of cavity pressure effects, which is typically modeled as a hydrostatic boundary condition, and performing a systematic analysis of the influence of ejector die design variables on die deflection and parting plane separation. This cavity pressure modeling objective met with less than complete success due to the limits of current finite element based fluid structure interaction analysis methods, but an improved representation of the casting/die interface was accomplished using a combination of solid and shell elements in the finite element model. This approximation enabled good prediction of final part distortion verified with a comprehensive evaluation of the dimensions of test castings produced with a design experiment. An extra deliverable of the experimental work was development of high temperature mechanical properties for the A380 die casting alloy. The ejector side design objective was met and the results were incorporated into the metamodels described above. This new technology was predicted to result in an average energy savings of 2.03 trillion BTU's/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2009, a market penetration of 70% by 2014 is 4.26 trillion BTU's/year by 2019. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring

  9. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Carder, Daniel K; Oshinuga, Adewale; Gautam, Mridul

    2012-02-07

    The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.

  10. Effect of nitrogen doping on oxygen vacancies of titanium dioxide supported vanadium pentoxide for ammonia-SCR reaction at low temperature.

    PubMed

    Li, Hongyu; Zhang, Shule; Zhong, Qin

    2013-07-15

    A V2O5/N-doped TiO2 catalyst has been developed by partly substituting the lattice oxygen of TiO2 support with nitrogen, which showed a remarkable increase in activity for the reduction of NO with NH3 at low temperature. The catalyst was characterized by Brunauer-Emmett-Teller (BET), transmission electron microscope (TEM), photoluminescence (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR). The results demonstrated that N doping cannot noticeably change the microscopic features but dramatically enhanced the formation of surface oxygen vacancies, which can play a vital role in the formation of superoxide ions to improve the SCR activity. The catalyst with [N]/[Ti]=1.0×10(-2) showed the highest NO removal efficiency in the SCR reaction at low temperature. Furthermore, the V1TiN1.0 catalyst showed better resistance to SO2 and H2O during the SCR of NO.

  11. Unregulated emissions from a diesel engine equipped with vanadium-based urea-SCR catalyst.

    PubMed

    Jiang, Lei; Ge, Yunshan; Shah, Asad Naeem; He, Chao; Liu, Zhihua

    2010-01-01

    The present work is aimed at the study of number-size distribution of particles, volatile organic compounds (VOCs), and carbonyl compounds (CC) or carbonyls emitted from a 4-cylinder turbocharged diesel engine equipped with a vanadium-based urea selective catalytic reduction catalyst. The engine was run on an electric dynamometer in accordance with the European steady-state cycle. Pollutants were analyzed using an electric low pressure impactor, a gas chromatograph/mass spectrometer, and a high performance liquid chromatography system for the number-size distribution of particles, VOCs, and CC emissions, respectively. Experimental results revealed that total number of particles were decreased, and their number-size distributions were moved from smaller sizes to larger sizes in the presence of the catalyst. The VOCs were greatly reduced downstream of the catalyst. There was a strong correlation between the conversion of styrene and ethyl benzene. The conversion rate of benzene increased with increase of catalyst temperature. Formaldehyde, acetaldehyde, acrolein and acetone were significantly reduced, resulting in a remarkable abatement in carbonyls with the use of the vanadium-based urea-SCR system.

  12. A Comparative Kinetics Study between Cu/SSZ-13 and Fe/SSZ-13 SCR Catalysts

    SciTech Connect

    Gao, Feng; Wang, Yilin; Kollar, Marton; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-11-09

    Cu- and Fe/SSZ-13 catalysts with the same Cu(Fe)/Al ratios are synthesized using the same parent SSZ-13 starting material. The catalytic performance for both fresh and hydrothermally aged catalysts is tested with NO and NH3 oxidation, and standard SCR reactions under steady-state conditions, and standard and fast SCR under temperature-programmed conditions. For standard SCR, Cu/SSZ-13 shows much better low-temperature performance which can be explained by NH3-inhibition of Fe/SSZ-13. During hydrothermal aging, both catalysts undergo dealumination but Fe/SSZ-13 dealuminates more severely. For aged catalysts, Cu/SSZ-13 gains oxidation activities due to formation of CuOx. However, Fe/SSZ-13 loses oxidation activities although formation of FeOx clusters and FeAlOx species also occur. Because of such physical properties differences, aged Cu/SSZ-13 loses while Fe/SSZ-13 maintains high-temperature SCR selectivities. A physical mixture of aged catalysts provides stable SCR performance in a wide temperature range and is able to decrease N2O formation at high reaction temperatures. This suggests that Fe/SSZ-13 can be used as a cocatalyst for Cu/SSZ-13 for transportation applications. During temperature-programmed SCR reactions, weak hysteresis is found during standard SCR due to NH3 inhibition. For fast SCR, hysteresis caused by NH4NO3 inhibition is much more significant. NH4NO3 deposition is greatly enhanced by Brønsted and Lewis acidity of the catalysts.

  13. Structural snapshots of the SCR reaction mechanism on Cu-SSZ-13.

    PubMed

    Günter, Tobias; Carvalho, Hudson W P; Doronkin, Dmitry E; Sheppard, Thomas; Glatzel, Pieter; Atkins, Andrew J; Rudolph, Julian; Jacob, Christoph R; Casapu, Maria; Grunwaldt, Jan-Dierk

    2015-06-04

    The structure of copper sites in Cu-SSZ-13 during NH3-SCR was unravelled by a combination of novel operando X-ray spectroscopic techniques. Strong adsorption of NH3 on Cu, its reaction with weakly adsorbed NO from the gas phase, and slow re-oxidation of Cu(I) were proven. Thereby the SCR reaction mechanism is significantly different to that observed for Fe-ZSM-5.

  14. Functional analysis of Scr during embryonic and post-embryonic development in the cockroach, Periplaneta americana.

    PubMed

    Hrycaj, Steven; Chesebro, John; Popadić, Aleksandar

    2010-05-01

    The cockroach, Periplaneta americana represents a basal insect lineage that undergoes the ancestral hemimetabolous mode of development. Here, we examine the embryonic and post-embryonic functions of the hox gene Scr in Periplaneta as a way of better understanding the roles of this gene in the evolution of insect body plans. During embryogenesis, Scr function is strictly limited to the head with no role in the prothorax. This indicates that the ancestral embryonic function of Scr was likely restricted to the head, and that the posterior expansion of expression in the T1 legs may have preceded any apparent gain of function during evolution. In addition, Scr plays a pivotal role in the formation of the dorsal ridge, a structure that separates the head and thorax in all insects. This is evidenced by the presence of a supernumerary segment that occurs between the labial and T1 segments of RNAiScr first nymphs and is attributed to an alteration in engrailed (en) expression. The fact that similar Scr phenotypes are observed in Tribolium but not in Drosophila or Oncopeltus reveals the presence of lineage-specific variation in the genetic architecture that controls the formation of the dorsal ridge. In direct contrast to the embryonic roles, Scr has no function in the head region during post-embryogenesis in Periplaneta, and instead, strictly acts to provide identity to the T1 segment. Furthermore, the strongest Periplaneta RNAiScr phenotypes develop ectopic wing-like tissue that originates from the posterior region of the prothoracic segment. This finding provides a novel insight into the current debate on the morphological origin of insect wings.

  15. Impact of inhibition of complement by sCR1 on hepatic microcirculation after warm ischemia.

    PubMed

    Lehmann, T G; Koeppel, T A; Münch, S; Heger, M; Kirschfink, M; Klar, E; Post, S

    2001-11-01

    Recent observations provide evidence that complement is implicated as an important factor in the pathophysiology of ischemia/reperfusion injury (IRI). Here, we assessed the effects of complement inhibition on hepatic microcirculation by in vivo microscopy (IVM) using a rat model of warm hepatic ischemia clamping the left pedicle for 70 min. Ten animals received the physiological complement regulator soluble complement receptor type 1 (sCR1) intravenously 1 min prior to reperfusion. Controls were given an equal amount of Ringer's solution (n = 10). Microvascular perfusion and leukocyte adhesion were studied 30 to 100 min after reperfusion by IVM. Microvascular perfusion in hepatic sinusoids was significantly improved in the sCR1 group (80.6 +/- 0.6% of all observed sinusoids were perfused [sCR1] vs 67.3 +/- 1.2% [controls]). The number of adherent leukocytes was reduced in sinusoids (49.9 +/- 3.4 [sCR1] vs 312.3 +/- 14.2 in controls [adherent leukocytes per square millimeter of liver surface]; P < 0.001) as well as in postsinusoidal venules after sCR1 treatment (230.9 +/- 21.7 [sCR1] vs 1906.5 +/- 93.5 [controls] [adherent leukocytes per square millimeter of endothelial surface]; P < 0.001). Reflecting reduced hepatocyte injury, liver transaminases were decreased significantly upon sCR1 treatment compared to controls. Our results provide further evidence that complement plays a decisive role in warm hepatic IRI. Therefore, we conclude that complement inhibition by sCR1 is effective as a therapeutical approach to reduce microcirculatory disorders after reperfusion following warm organ ischemia.

  16. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  17. Improvement of activity and SO₂ tolerance of Sn-modified MnOx-CeO₂ catalysts for NH₃-SCR at low temperatures.

    PubMed

    Chang, Huazhen; Chen, Xiaoyin; Li, Junhua; Ma, Lei; Wang, Chizhong; Liu, Caixia; Schwank, Johannes W; Hao, Jiming

    2013-05-21

    The performances of fresh and sulfated MnOx-CeO₂ catalysts for selective catalytic reduction of NOx by NH₃ (NH₃-SCR) in a low-temperature range (T < 300 °C) were investigated. Characterization of these catalysts aimed at elucidating the role of additive and the effect of sulfation. The catalyst having a Sn:Mn:Ce = 1:4:5 molar ratio showed the widest SCR activity improvement with near 100% NOx conversion at 110-230 °C. Raman and X-ray photoelectron spectroscopy (XPS) indicated that Sn modification significantly increases the concentration of oxygen vacancies that may facilitate NO oxidation to NO₂. NH₃-TPD characterization showed that the low-temperature NH₃-SCR activity is well correlated with surface acidity for NH3 adsorption, which is also enhanced by Sn modification. Furthermore, as compared to MnOx-CeO₂, Sn-modified MnOx-CeO₂ showed remarkably improved tolerance to SO₂ sulfation and to the combined effect of SO₂ and H₂O. In the presence of SO₂ and H₂O, the Sn-modified MnOx-CeO₂ catalyst gave 62% and 94% NOx conversions as compared to 18% and 56% over MnOx-CeO₂ at temperatures of 110 and 220 °C, respectively. Sulfation of SnO₂-modified MnOx-CeO₂ may form Ce(III) sulfate that could enhance the Lewis acidity and improve NO oxidation to NO₂ during NH₃-SCR at T > 200 °C.

  18. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999

    SciTech Connect

    Bechtel Jacobs Company LLC

    2000-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

  19. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000

    SciTech Connect

    Bechtel Jacobs Company LLC

    2001-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

  20. Catalyst for utilization of methane in selective catalytic reduction of NO{sub x}, Task 2.6

    SciTech Connect

    Olson, E.S.; Sharma, R.K.

    1996-02-01

    Selective catalytic reduction (SCR) of nitrogen oxides(NO{sub x}) in flue gas or engine exhaust gas with hydrocarbons as the reductant has great potential for less expense, less pollution, and easier operation than SCR with ammonia. Methane is the preferred reducing gas because of its low cost and low toxicity. Stable, low-cost catalysts for SCR with methane are required to demonstrate this technology for controlling NO{sub x} emissions. Several cobalt and nickel catalysts on synthetic clay and uranium oxide supports were investigated for their activities in reducing NO{sub x} with methane in the presence of air. The efficiency of the synthetic clay-supported nickel and cobalt catalysts for nitric oxide (NO) reduction with methane as the reducing gas was poor. The nickel oxide-uranium oxide catalyst, which was chosen for its high stability, was also ineffective. Results from the two-step experiments conducted at two-temperatures produced some interesting information on the reactions of methane with the catalysts and the reactivity of the carbonaceous intermediate. The carbonaceous material formed from methane dissociation at 450{degrees}C not only reduces NO to N{sub 2}O at lower temperatures, but also prevents oxidation of NO to NO{sub 2}. Unfortunately, the carbonaceous forms that reduce the NO are not available for reactions at 400{degrees}C in the presence of oxygen. A two-step process employing this chemistry would be difficult because the catalyst would have to be cycled between the two temperatures. Also the desired reduction to nitrogen is not very efficient.

  1. Task 2.6 - Catalyst for Utilization of Methane in Selective Catalytic Reduction of NOx: Topical report, July 1, 1995

    SciTech Connect

    1997-12-31

    Selective catalytic reduction (SCR) of nitrogen oxides (NO{sub x}) in flue gas or engine exhaust gas with hydrocarbons as the reductant has great potential for less expense, less pollution, and easier operation than SCR with ammonia. Methane is the preferred reducing gas because of its low cost and low toxicity. Stable, low-cost catalysts for SCR with methane are required to demonstrate this technology for controlling NO{sub x} emissions. Several cobalt and nickel catalysts on synthetic clay and uranium oxide supports were investigated for their activities in reducing NO{sub x} with methane in the presence of air. The efficiency of the synthetic clay-supported nickel and cobalt catalysts for nitric oxide (NO) reduction with methane as the reducing gas was poor. The nickel oxide-uranium oxide catalyst, which was chosen for its high stability, was also ineffective. Results from the two-step experiments conducted at two temperatures produced some interesting information on the reactions of methane with the catalysts and the reactivity of the carbonaceous intermediate. The carbonaceous material formed from methane dissociation at 450{degrees}C not only reduces NO to N{sub 2}O at lower temperatures, but also prevents oxidation of NO to NO{sub 2}. Unfortunately, the carbonaceous forms that reduce the NO are not available for reactions at 400{degrees}C in the presence of oxygen. A two-step process employing this chemistry would be difficult because the catalyst would have to be cycled between the two temperatures. Also the desired reduction to nitrogen is not very efficient.

  2. Discovery of New NOx Reduction Catalysts for CIDI Engines Using Combinatorial Techniques

    SciTech Connect

    Blint, Richard J

    2005-08-15

    This project for the discovery of new lean reduction NOx catalysts was initiated on August 16th, 2002 and is now into its fourth year. Several materials have already been identified as NOx reduction catalysts for possible future application. NOx reduction catalysts are a critical need in the North American vehicle market since these catalysts are needed to enable both diesels and lean gasoline engines to meet the 2007-2010 emission standards. Hydrocarbon selective catalytic reduction (SCR) is a preferred technology since it requires no infrastructure changes (as may be expected for urea SCR) and most likely has the simplest engine control strategy of the three proposed NOx reduction approaches. The use of fast throughput techniques and informatics greatly enhances the possibility of discovering new NOx reduction catalysts. Using fast throughput techniques this project has already screened over 3000 new materials and evaluates hundreds of new materials a month. Evaluating such a high number of new materials puts this approach into a very different paradigm than previous discovery approaches for new NOx reduction catalysts. With so much data on materials it is necessary to use statistical techniques to identify the potential catalysts and these statistical techniques are needed to optimize compositions of the multi-component materials that are identified under the program as possible new lean NOx catalysts. Several new materials have conversions in excess of 80% at temperatures above 300 C. That is more than twice the activity of previous HC SCR materials. These materials are candidates for emission control on heavy-duty systems (i.e.; over 8500 pounds gross weight). Tests of one of the downselected materials on an engine dynamometer show NOx reductions greater than 80% under some conditions even though the net NOx reductions on the HWFET and the US06 cycles were relatively low. The program is scheduled to continue until the end of the 2006 calendar year. Work in the

  3. Generic Verification Protocol for Testing Pesticide Application Spray Drift Reduction Technologies for Row and Field Crops

    EPA Pesticide Factsheets

    This generic verification protocol provides a detailed method to conduct and report results from a verification test of pesticide application technologies that can be used to evaluate these technologies for their potential to reduce spray drift.

  4. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    NASA Technical Reports Server (NTRS)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  5. Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process

    SciTech Connect

    Not Available

    1992-02-15

    The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

  6. Innovative Clean Coal Technologies (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process

    SciTech Connect

    Not Available

    1992-05-15

    The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

  7. Research requirements for development of advanced-technology helicopter transmissions. [reduction of maintenance costs

    NASA Technical Reports Server (NTRS)

    Lemanski, A. J.

    1976-01-01

    Helicopter drive-system technology which would result in the largest benefit in direct maintenance cost when applied to civil helicopters in the 1980 timeframe was developed. A prototype baseline drive system based on 1975 technology provided the basis for comparison against the proposed advanced technology in order to determine the potential for each area recommended for improvement. A specific design example of an advanced-technology main transmission is presented to define improvements for maintainability, weight, producibility, reliability, noise, vibration, and diagnostics. Projections of the technology achievable in the 1980 timeframe are presented. Based on this data, the technologies with the highest payoff (lowest direct maintenance cost) for civil-helicopter drive systems are identified.

  8. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    NASA Astrophysics Data System (ADS)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  9. The myth and reality of Gray's paradox: implication of dolphin drag reduction for technology.

    PubMed

    Fish, Frank E

    2006-06-01

    The inconsistency for the calculated high drag on an actively swimming dolphin and underestimated muscle power available resulted in what has been termed Gray's paradox. Although Gray's paradox was flawed, it has been the inspiration for a variety of drag reduction mechanisms. This review examines the present state of knowledge of drag reduction specific to dolphins. Streamlining and special behaviors provide the greatest drag reduction for dolphins. Mechanisms to control flow by maintaining a completely laminar boundary layer over the body have not been demonstrated for dolphins.

  10. The impact of low technology lead hazard reduction activities among children with mildly elevated blood lead levels

    SciTech Connect

    Aschengrau, A.; Hardy, S.; Mackey, P.; Pultinas, D.

    1998-10-01

    This prospective environmental intervention study was conducted to determine the impact of low-technology lead hazard reduction activities among children with mildly elevated blood lead levels. Children whose homes had severe lead hazards were automatically assigned to the intervention group. Children whose homes had lesser hazards were randomly assigned to the intervention group or comparison group. The one-time intervention focused mainly on cleaning and repainting window areas and educating caregivers to maintain effective housekeeping techniques. Changes in blood lead and dust lead loading levels were observed following the interventions. Analysis of covariance was used to adjust comparisons of postintervention levels for preintervention levels and other variables. The lead hazard reduction activities were associated with a modest decline in blood lead levels among children with severe hazards. The magnitude of the decline depended on the confounder that was controlled; the majority ranged from {minus}1.1 to {minus}1.6 {micro}g/dL. A moderate reduction in window well dust lead loading levels was also observed. While low-technology lead hazard reduction measures appeared to be an effective secondary prevention strategy among children with severe household lead hazards, larger studies are needed to confirm these results.

  11. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  12. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  13. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect

    None, None

    1997-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  14. Electric power research institute environmental control technology center report to the steering committee

    SciTech Connect

    1998-08-08

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini- Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  15. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  16. Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update

    SciTech Connect

    Benioff, R.

    1999-05-11

    The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

  17. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Arens, Marlene

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  19. Technology Cooperation Agreement Pilot Project: Development-friendly greenhouse gas reduction

    SciTech Connect

    1998-10-26

    This fact sheet describes the Technology Cooperation Agreement Pilot Project (TCAPP) established by U.S. Government agencies USAID, EPA, and DOE and programs USCSP and USIJI in August 1997. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Mexico, and the Philippines, the U.S. and other OECD countries, international donors, and the private sector, on a common set of actions that will advance implementation of clean energy technologies. The five participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the U.S. obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on technology cooperation needs of developing and transition countries. The goals of TCAPP are to: (1) Foster private investment in energy technologies that reduce greenhouse gas emissions and produce economic benefits for the country; (2) Engage in-country and international donor support for actions to build sustainable markets for clean energy technologies; and (3) Establish technology cooperation agreements as an organizing structure for coupling in-country, donor, and private-sector climate change mitigation actions. TCAPP's approach fosters a coordinated response by OECD countries, international donor organizations, and the international business community to the climate change technology cooperation needs of developing and transition countries through two basic steps. First, interagency teams in developing and transition countries establish frameworks that define their technology cooperation needs and the actions their government is ready to undertake in cooperation with donors and the private sector. Second, international donors and businesses support

  20. Pollution reduction technology program for small jet aircraft engines, phase 1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1977-01-01

    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.

  1. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of

  2. ENCOURAGING THE USE OF DRIFT REDUCTION TECHNOLOGIES IN THE UNITED STATES

    EPA Science Inventory

    A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on their effectiveness in reducing spray drift. The United States Environmental Protection Agency (EPA) is taking initiatives ...

  3. ENCOURAGING THE USE OF DRIFT REDUCTION TECHNOLOGIES IN THE UNITED STATES

    EPA Science Inventory

    A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on their effectiveness in reducing spray drift. The United States Environmental Protection Agency (EPA) is taking initiatives ...

  4. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

    PubMed

    Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W

    2008-04-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.

  5. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the “replacement market” that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooper’s CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  6. Reduction of Microbial and Chemical Contaminants in Water Using POU/POE & Mobile Treatment Technologies

    EPA Science Inventory

    POU/POE may be a cost-effective option for reductions of a particular chemical to achieve water quality compliance under certain situations and given restrictions. Proactive consumers seeking to reduce exposure to potential pathogens, trace chemicals, and nanoparticles not curre...

  7. Review of current technologies for reduction of Salmonella populations on almonds

    USDA-ARS?s Scientific Manuscript database

    After the 2001 and 2004 Salmonellosis outbreaks that were associated with raw almonds, ensuring the microbial safety of almonds by treating them to achieve a minimum 4-log reduction of Salmonella population became mandatory in California, the world’s largest almond producer. In this paper, we summa...

  8. Reduction of Microbial and Chemical Contaminants in Water Using POU/POE & Mobile Treatment Technologies

    EPA Science Inventory

    POU/POE may be a cost-effective option for reductions of a particular chemical to achieve water quality compliance under certain situations and given restrictions. Proactive consumers seeking to reduce exposure to potential pathogens, trace chemicals, and nanoparticles not curre...

  9. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    PubMed

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-01-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.

  10. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2008-12-12

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  11. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2009-01-15

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  12. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    SciTech Connect

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; Toops, Todd J.

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, on NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.

  13. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Kong, Tingting; Yu, Shuohan; Li, Lulu; Yang, Fumo; Dong, Lin

    2017-04-01

    The commonly used supports of SiO2, γ-Al2O3, TiO2, and CeO2 were synthesized, and used for preparing MnOx/SiO2, MnOx/γ-Al2O3, MnOx/TiO2, and MnOx/CeO2 catalysts with the purpose of investigating the influence of crystal structure and coordination status on the physicochemical properties and denitration performance of these supported Mn-based catalysts for low-temperature NH3-SCR. The obtained samples were characterized by XRD, Raman, BET, H2-TPR, NH3-TPD, in situ DRIFTS, NO + O2-TPD, XPS, and NH3-SCR model reaction. XRD results indicate that MnOx species can be highly dispersed on the surface of γ-Al2O3, TiO2, and CeO2, which is because that there are some octahedral and tetrahedral vacancy sites, octahedral vacancy site, and cubic vacancy site exist on the surface of defective spinel structure γ-Al2O3, anatase TiO2, and cubic fluorite-type structure CeO2, respectively. However, there is no any vacancy site on the surface of SiO2 due to its unique SiO4 tetrahedral structure, which results in the appearance of crystalline β-MnO2 on the surface of MnOx/SiO2 catalyst. Furthermore, H2-TPR results exhibit obvious different reduction behavior among these supported Mn-based catalysts, which is explained by the coordination status of Mn species. Finally, NH3-SCR model reaction results show that MnOx/γ-Al2O3 catalyst presents the best catalytic performance among these supported Mn-based catalysts due to its high dispersion, suitable reduction behavior, largest amount of acid sites, optimal NOx adsorption capacity, and abundant Mn4+ content.

  14. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation

    DOE PAGES

    Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; ...

    2016-02-18

    Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NOX) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH3 is then used to reduce NOX emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratio and spark timing, onmore » NH3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NOX reduction, NH3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH3 production; however, the rich operation necessary for NH3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NOX emissions and, thereby, NH3 levels. Additionally, higher engine out NOX during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less

  15. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    DOEpatents

    Narula, Chaitanya K.; Yang, Xiaofan

    2016-10-25

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  16. Hydrothermally stable, low-temperature NO.sub.x reduction NH.sub.3-SCR catalyst

    DOEpatents

    Narula, Chaitanya K; Yang, Xiaofan

    2015-03-24

    A catalyst composition includes a heterobimetallic zeolite characterized by a chabazite structure loaded with copper ions and at least one trivalent metal ion other than Al.sup.3+. The catalyst composition decreases NO.sub.x emissions in diesel exhaust and is suitable for operation in a catalytic converter.

  17. Interface Specifications for SCR (Software Cost Reduction) (A-7E) Extended Computer Module. Revised.

    DTIC Science & Technology

    1984-12-31

    DC D L PRRNAS ET AL. |BIIE3E4L-2V62 mhmhhhhhhhhmmu mmhhhhhhhhhhhl EhhlllllllIIhl mIIIIIIIIIIIIII 1 .’ II 111NMI -7 11112. - IIII1.8 IIIII125 11111...CLASiiFIED ’a;E "A7 DN A-Oi 3 DISTRIBUTION AVAiLA8I~lTY OF REPORT ’ D DECASS; CA’ ON DOWNGRADING SC.IEOUIE Approved for public release; distribution...IDENTIFICATION %UMBER ORGANIZATION (if applicable ) Naval Electronic Systems Command Code 613 ______________________ Sc ADORE SS (City. State, and ZIP Code) 10

  18. Combined Catalyzed Soot Filter and SCR Catalyst System for Diesel Engine Emission Reduction

    SciTech Connect

    Kakwani, R.M.

    2000-08-20

    Substantially reduces particulate emission for diesel vehicles Up to 90% effective against carbonaceous particulate matter Significantly reduces CO and HC Filter regenerates at normal diesel operation temperatures Removable design for easy cleaning and maintenance.

  19. 241-SY-101 DACS High hydrogen abort limit reduction (SCR 473) acceptance test report

    SciTech Connect

    ERMI, A.M.

    1999-09-09

    The capability of the 241-SY-101 Data Acquisition and Control System (DACS) computer system to provide proper control and monitoring of the 241-SY-101 underground storage tank hydrogen monitoring system utilizing the reduced hydrogen abort limit of 0.69% was systematically evaluated by the performance of ATP HNF-4927. This document reports the results of the ATP.

  20. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  1. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  2. Exploration on the technology for ozone reduction in urban sewage treatment

    NASA Astrophysics Data System (ADS)

    Yang, Min; Sun, Yi; Han, Zhicheng; Liu, Jun

    2017-05-01

    With the rapid development of China’s economy, urban water consumption is increasing. However, sewage treatment plants will produce large amounts of sludge after treatment of sewage. Generally, and the sludge treatment costs are relatively high. Therefore, the problem about how to deal with the sewage sludge becomes the hot issues. Municipal waste water treatment plant produces a lot of sludge. This paper summarized the abroad study of ozonation minimization technology. Introduction and discussion were made on the principle of ozonated efficiency of sludge minimization, the efficiency of sludge minimization and the relationship between efficiency and ozone dosage, as well the effect of return sludge ozonated on waste water treatment running and the sludge setting and the dewatering characteristic. The economic estimation was also made on this technology. It’s showed that sludge minimization technology exhibits extensive application foreground.

  3. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis.

    PubMed

    Piddlesden, S J; Jiang, S; Levin, J L; Vincent, A; Morgan, B P

    1996-12-01

    The loss of muscle function seen in myasthenia gravis and in the animal model of the disease, experimental autoimmune myasthenia gravis (EAMG) is in part due to the activation of complement by anti-acetylcholine receptor (AChR) antibodies at the motor end-plate. In this study we describe the effects of a soluble recombinant form of human complement receptor 1 (sCR1) on the development of clinical disease and receptor loss in EAMG induced passively by administration of anti-AChR antibodies. Daily intraperitoneal injection of sCR1 significantly reduced the weight loss and severity of clinical symptoms seen and allowed treated animals to recover normal muscle function. These data suggest that sCR1 could provide a useful additional therapeutic agent in myasthenia.

  4. Application of Homotopy analysis method for mechanical model of deepwater SCR installation

    NASA Astrophysics Data System (ADS)

    You, Xiangcheng; Xu, Hang

    2012-09-01

    In this paper, considering the process of deepwater SCR installation with the limitations of small deformation theory of beam and catenary theory, a mechanical model of deepwater SCR installation is given based on large deformation beam model. In the following model, getting the relation of the length of the riser, bending stiffness and the unit weight by dimensional analysis, the simple approximate analytical expressions are obtained by using Homotopy Analysis Method. In the same condition, the calculated results are compared with the proposed approximate analytical expressions, the catenary theory or the commercial software of nonlinear finite element program ORCAFLEX. Hopefully, a convenient and effective method for mechanical model of deepwater SCR installation is provided.

  5. Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process

    SciTech Connect

    Not Available

    1991-02-15

    The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

  6. Demonstration of innovative applicatiions of technology for cost reductions to the CT-121 FGD process

    SciTech Connect

    Not Available

    1991-05-15

    The objective of this project is to demonstrate on a commercial scale several innovative applications of cost-reducing technology to the Chiyoda Thoroughbred-121 (CT-121) process. CT-121 is a second generation flue gas desulfurization (FGD) process which is considered by the Electric Power Research Institute (EPRI) and Southern Company Services (SCS) to be one of the most reliable and lowest cost FGD options for high-sulfur coal-fired utility boiler applications. Demonstrations of the innovative design approaches will further reduce the cost and provide a clear advantage to CT121 relative to competing technology.

  7. The effectiveness of riboflavin and ultraviolet light pathogen reduction technology in eliminating Trypanosoma cruzi from leukoreduced whole blood.

    PubMed

    Jimenez-Marco, Teresa; Cancino-Faure, Beatriz; Girona-Llobera, Enrique; Alcover, M Magdalena; Riera, Cristina; Fisa, Roser

    2017-06-01

    The parasitic Chagas disease is caused by the protozoan Trypanosoma cruzi, which is mainly transmitted by insect vectors. Other infection routes, both in endemic and in nonendemic areas, include organ and marrow transplantation, congenital transmission, and blood transfusion. Asymptomatic chronic chagasic individuals may have a low and transient parasitemia in peripheral blood and, consequently, they can unknowingly transmit the disease via blood transfusion. Riboflavin and ultraviolet (UV) light pathogen reduction is a method to reduce pathogen transfusion transmission risk based on damage to the pathogen nucleic acids. In this study, we tested the effectiveness of this technology for the elimination of T. cruzi parasites in artificially contaminated whole blood units (WBUs) and thus for decreasing the risk of T. cruzi transfusion transmission. The contaminated WBUs were leukoreduced by filtration and treated with riboflavin and UV light. The level of pathogen reduction was quantified by a real-time polymerase chain reaction (qPCR) and a real-time reverse transcription-polymerase chain reaction (RT-qPCR) as a viability assay. The RNA (cDNA) quantification of the parasites showed a more than 99% reduction of viable T. cruzi parasites after leukoreduction and a complete reduction (100%) after the riboflavin and UV light treatment. Riboflavin and UV light treatment and leukoreduction used in conjunction appears to eliminate significant amounts of viable T. cruzi in whole blood. Both strategies could complement other blood bank measures already implemented to prevent the transmission of T. cruzi via blood transfusion. © 2017 AABB.

  8. Using theory and technology to design a practical and generalizable smoking reduction intervention.

    PubMed

    Gaglio, Bridget; Smith, Tammy L; Estabrooks, Paul A; Ritzwoller, Debra P; Ferro, Erica F; Glasgow, Russell E

    2010-09-01

    The aim of this article is to describe the process of using theory to form strategies for a generalizable smoking reduction intervention delivered through multiple intervention modalities. This report describes the process of integrating theory, data from diverse sources, staff from three different organizations, and different intervention modalities into an efficient, large-scale smoking reduction program featuring automated data from electronic medical records, computer-assisted telephone interviews, and tailored newsletters. The authors successfully developed a program that was consistently implemented as planned for 320 smokers in a managed care organization. The mapping of theory to intervention, data transfer and security procedures, and processes and strategies used to overcome challenges to intervention implementation should provide lessons learned for similar health promotion projects. Few intervention studies discuss details of how they translate theory into practice or how they integrate different modalities and collaborating institutions, but such integration is critical for project success.

  9. Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Herling, Darrell R.

    2010-04-14

    Synergies between various catalytic converters such as SCR and DPF are vital to the success of an integrated aftertreatment system for simultaneous NOx and particulate matter control in diesel engines. Several issues such as hydrocarbon poisoning, thermal aging and other coupled aftertreatment dynamics need to be addressed to develop an effective emission control system. This paper reports an experimental and modeling study to understand the effect of hydrocarbons on a Fe-zeolite urea-SCR bench reactor. Several bench-reactor tests to understand the inhibition of NOx oxidation, to characterize hydrocarbon storage and to investigate the impact of hydrocarbons on SCR reactions were conducted. Toluene was chosen as a representative hydrocarbon in diesel exhaust and various tests using toluene reveal its inhibition of NO oxidation at low temperatures and its oxidation to CO and CO2 at high temperatures. Surface isotherm tests were conducted to characterize the adsorption-desorption equilibrium of toluene through Langmuir isotherms. Using the rate parameters, a toluene storage model was developed and validated in simulation. With toluene in the stream, controlled SCR tests were run on the reactor and performance metrics such as NOx conversion and NH3 slip were compared to a set of previously run tests with no toluene in the stream. Tests indicate a significant effect of toluene on NOx and NH3 conversion efficiencies even at temperatures greater than 300oC. A kinetic model to address the toluene inhibition during NO oxidation reaction was developed and is reported in the paper. This work is significant especially in an integrated DPF-SCR aftertreatment scenario where the SCR catalyst on the filter substrate is exposed to un-burnt diesel hydrocarbons during active regeneration of the particulate filter.

  10. SCR-1: Design and Construction of a Small Modular Stellarator for Magnetic Confinement of Plasma

    NASA Astrophysics Data System (ADS)

    Barillas, L.; Vargas, V. I.; Alpizar, A.; Asenjo, J.; Carranza, J. M.; Cerdas, F.; Gutiérrez, R.; Monge, J. I.; Mora, J.; Morera, J.; Peraza, H.; Queral, V.; Rojas, C.; Rozen, D.; Saenz, F.; Sánchez, G.; Sandoval, M.; Trimiño, H.; Umaña, J.; Villegas, L. F.

    2014-05-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST_1, created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m3), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5kW, in the first harmonic at 2.45GHz. The expected electron temperature and density are 15 eV and 1017 m-3 respectively with an estimated confinement time of 7.30 x 10-4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  11. JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal

    SciTech Connect

    Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

    2009-03-29

    The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

  12. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  13. Basic properties of steel plant dust and technological properties of direct reduction

    NASA Astrophysics Data System (ADS)

    She, Xue-Feng; Wang, Jing-Song; Xue, Qing-Guo; Ding, Yin-Gui; Zhang, Sheng-Sheng; Dong, Jie-Ji; Zeng, Hui

    2011-06-01

    Basic physicochemical properties of the dust from Laiwu Iron and Steel Co. Ltd. were studied. It is found that C, Zn, K, Na, etc. exist in the fabric filter dust, off gas (OG) sludge, fine ash in converter, and electrical field dust in sinter. Among these, OG sludge gives the finest particle, more than 90% of which is less than 2.51 μm. The dust can lead to a serious negative influence on the production of sintering and blast furnaces (BF) if it is recycled in sintering. The briquette and reduction experimental results showed that the qualified strength could be obtained in the case of 8wt% molasses or 4wt% QT-10 added as binders. Also, more than 75% of metallization ratio, more than 95% of dezincing ratio, as well as more than 80% of K and Na removal rates were achieved for the briquettes kept at 1250°C for 15 min during the direct reduction process. SEM observation indicated that the rates of indirect reduction and carbonization became dominating when the briquettes were kept at 1250°C for 6 min.

  14. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2012-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes.

  15. The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly

    2011-01-01

    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. The National Aeronautics and Space Administration (NASA) is currently exploring the Sabatier reaction, the Bosch reaction, and co-electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. While all three techniques have demonstrated the capacity to reduce CO2 in the laboratory, there is interest in understanding how all three techniques would perform at a system-level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily re-scaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental e orts. Comparison to experimental data is provided were available for veri cation purposes.

  16. Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2017-07-01

    Nanosizing is frequently used as formulation approach to increase the bioavailability of poorly water-soluble drugs. However, standard size reduction processes can be relatively time-consuming. It was found that the modification of the physical properties of a starting material by means of spray-drying can be used to improve the effectiveness of a subsequently performed high pressure homogenization. Such a process belongs to the combinative particle size reduction methods and is also referred to as H 42 process. Based on previous studies, it was hypothesized that the improved efficiency was a result of reduced crystallinity of the modified drug. The present study was conducted in order to asses this hypothesis in a systematical manner by applying design of experiment (DoE) principles. Resveratrol was selected as model compound for this study. It was processed by both standard high pressure homogenization and by a combinative particle size reduction process (the H42 process). An optimized resveratrol/surfactant ratio for the spray-dried intermediate was identified by using the response-surface methodology. The optimization led to a nanosuspension with a mean particle size of 192 nm, which is much smaller than the mean particle size of 569 nm when standard high pressure homogenization was used. Both predominately crystalline and predominately amorphous solids resulted from the spray-drying process. In contrast to the initial hypothesis, the smallest particle sizes were achieved by processing predominately crystalline intermediate with high pressure homogenization.

  17. The Integration of Technology into Treatment Programs to Aid in the Reduction of Chronic Pain

    PubMed Central

    Eckard, Chad; Asbury, Caitlyn; Bolduc, Brandon; Camerlengo, Chelsea; Gotthardt, Julia; Healy, Lauren; Waialae, Laura; Zeigler, Ceirra; Childers, Jennifer; Horzempa, Joseph

    2017-01-01

    In the United States, roughly $600 billion is spent on pain management – usually in the form of addictive opioid drugs. Due to the dangers associated with long-term opiate-based pain medication, the development of additional strategies for chronic pain management is warranted. The advent of smartphones and associated technology has provided healthcare providers with a unique opportunity to provide pain management support. This review summarizes of the use of technology to supplement chronic pain management regimens. Smartphone and internet-based applications that employ online journals facilitate improved communication between patient and clinician and allow for more personalized care and improved pain management. For instance, the e-Ouch application provides a platform for pain logs as well as feedback and coaching to patients via Twitter postings and blogs. Other applications provide online resources and blogs to improve patient education, which has shown to relieve patient symptoms through lifestyle modification. Internet-delivered cognitive behavioral therapy (CBT) focuses on the psychological coping mechanisms. The application of technology and smartphone apps toward pain management shows promise toward reducing the use of opioids in pain management, but has yet to be incorporated as a standard practice. More robust studies critically evaluating the efficacy of these technology-based therapies need to be conducted before standardization and insurance coverage can become reality. PMID:28149962

  18. Can Information and Communications Technology Application Contribute to Poverty Reduction? Lessons from Nigeria

    ERIC Educational Resources Information Center

    Toluyemi, Samuel Taiwo; Mejabi, Omenogo Veronica

    2011-01-01

    There is a growing optimism among international organizations such as United Nations Development Programme (UNDP) that Information and Communication Technology (ICT) can transform developing countries such as Nigeria to developed ones in a relatively short time. Experiences from Asian and European countries such as India, Bangladesh, Malaysia,…

  19. Can Information and Communications Technology Application Contribute to Poverty Reduction? Lessons from Nigeria

    ERIC Educational Resources Information Center

    Toluyemi, Samuel Taiwo; Mejabi, Omenogo Veronica

    2011-01-01

    There is a growing optimism among international organizations such as United Nations Development Programme (UNDP) that Information and Communication Technology (ICT) can transform developing countries such as Nigeria to developed ones in a relatively short time. Experiences from Asian and European countries such as India, Bangladesh, Malaysia,…

  20. Significant Radiation Dose Reduction in the Hybrid Operating Room Using a Novel X-ray Imaging Technology.

    PubMed

    van den Haak, R F F; Hamans, B C; Zuurmond, K; Verhoeven, B A N; Koning, O H J

    2015-10-01

    To prospectively quantify radiation dose change in aortoiliac endovascular procedures in the hybrid operating room (OR) for patients and medical staff with a novel X-ray imaging technology (ClarityIQ technology), and to assess whether procedure or fluoroscopy time or dose of iodinated contrast was affected. A prospective study including 138 patients was performed to compare radiation dose before and after installation of a novel X-ray imaging technology. Endovascular aneurysm repair (EVAR) was performed in 37 patients and an endovascular procedure for aortoiliac occlusive disease (AIOD) in 101. Patient radiation dose in air kerma (AK) and dose area product (DAP), patient demographics, and procedural data were recorded. Staff radiation dose was measured with real time personal dosimetry measurements. In both the EVAR and AIOD groups the reference system, ALX (AlluraXper FD20; Philips Healthcare, Best, the Netherlands), was compared with the upgraded X-ray system, CIQ (AlluraClarity FD20; Philips Healthcare). Procedure time, fluoroscopy time, and iodinated contrast dose were recorded. Patient radiation dose reduction in the EVAR group, in median AK, was 56% (ALX = 1,262.5 mGy; CIQ = 556.0 mGy [p < .01]); and in median DAP it was 57% (ALX = 224.4 Gycm(2) and CIQ = 95.8 Gycm(2) [p < .01]). Patient radiation dose reduction in the AIOD group, in median AK, was 76% (ALX = 1,011.0 mGy; CIQ = 248.0 mGy [p < .01]); and in median DAP it was 73% (ALX = 138.1 Gycm(2); CIQ = 38.0 Gycm(2) [p < .01]). Staff dose reduction in the EVAR group was 16% (ALX = 70.1 μSv; CIQ = 59.2 μSv [p = .43]) and in the AIOD group it was 69% (ALX = 96.2 μSv; CIQ = 30.1 μSv [p < .01]). There was no statistically significant difference between patient demographics, procedure time, fluoroscopy time, and iodinated contrast medium use in the two treatment groups before and after installation. A novel X-ray imaging technology in the hybrid OR suite resulted in a significant reduction of patient and

  1. Quantitative analysis of plasma proteins in whole blood-derived fresh frozen plasma prepared with three pathogen reduction technologies.

    PubMed

    Larrea, Luis; Ortiz-de-Salazar, María-Isabel; Martínez, Patricia; Roig, Roberto

    2015-06-01

    Several plasma pathogen reduction technologies (PRT) are currently available. We evaluated three plasma PRT processes: Cerus Amotosalen (AM), Terumo BCT riboflavin (RB) and Macopharma methylene blue (MB). RB treatment resulted in the shortest overall processing time and in the smallest volume loss (1%) and MB treatment in the largest volume loss (8%). MB treatment retained the highest concentrations of factors II, VII, X, IX, Protein C, and Antithrombin and the AM products of factor V and XI. Each PRT process evaluated offered distinct advantages such as procedural simplicity and volume retention (RB) and overall plasma protein retention (MB).

  2. Digital Position Control Algorithms For An SCR-DC Motor Drive

    NASA Astrophysics Data System (ADS)

    Farooq, M.; Plant, B. J.; Winfield, D. N.

    1987-10-01

    Two algorithms for the digital control of position of a three phase SCR controlled DC motor are compared. The digital control is novel in that the sampling period is variable and depends on the firing angles of the SCR's. While the algorithms are not new, their use with a variable sampling period in this application is. Performance is assessed through both simulation on a digital computer of the controlled motor and an implementation on a microprocessor based bench model. Both algorithms give equivalent performance in terms of step response to position commands.

  3. Smart command recognizer (SCR) - For development, test, and implementation of speech commands

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.

    1988-01-01

    The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.

  4. Chimeric CD46/DAF molecules reveal a cryptic functional role for SCR1 of DAF in regulating complement activation.

    PubMed

    Christiansen, D; Loveland, B; Kyriakou, P; Lanteri, M; Rubinstein, E; Gerlier, D

    2000-01-01

    Chimeric proteins using membrane cofactor (CD46) and decay accelerating factor (DAF or CD55) were generated to further investigate the functional domains involved in the regulation of human serum complement. Following activation of the classical pathway, the isolated substitution of CD46 SCR III (x3DAF) exhibited a modest regulatory activity comparable to that of CD46. The isolated substitution of CD46 SCR IV (x4DAF), and the combined CD46 SCR III+IV substitutions (x3/4DAF) were essentially as efficient as DAF. No regulation of C3b deposition was observed with the combined CD46 SCR I+II substitutions (x1/2DAF). When tested after activation of the alternative pathway, both the x3DAF and x3/4DAF chimeras failed to regulate C3b deposition, while the x4DAF chimera still displayed some activity. In contrast to that observed following classical pathway activation, the x1/2DAF chimera exhibited a similar efficiency to wild type CD46 and DAF in controlling C3b deposition. Using SCR specific antibodies, the regulatory activity of the x1/2DAF chimera against the alternative pathway was mapped to the first three distal SCR (i.e. DAF 1, DAF 2 and CD46 III). These data demonstrate that several combinations of SCR domains from two related complement regulators can result in functional molecules, and reveal a novel and cryptic functional role for DAF SCR1.

  5. Measles virus recognizes its receptor, CD46, via two distinct binding domains within SCR1-2.

    PubMed

    Manchester, M; Gairin, J E; Patterson, J B; Alvarez, J; Liszewski, M K; Eto, D S; Atkinson, J P; Oldstone, M B

    1997-06-23

    Measles virus (MV) enters cells by attachment of the viral hemagglutinin to the major cell surface receptor CD46 (membrane cofactor protein). CD46 is a transmembrane glycoprotein whose ectodomain is largely composed of four conserved modules called short consensus repeats (SCRs). We have previously shown that MV interacts with SCR1 and SCR2 of CD46. (M. Manchester et al. (1995) Proc. Natl. Acad. Sci. USA 92, 2303-2307) Here we report mapping the MV interaction with SCR1 and SCR2 of CD46 using a combination of peptide inhibition and mutagenesis studies. By testing a series of overlapping peptides corresponding to the 126 amino acid SCR1-2 region for inhibition of MV infection, two domains were identified that interacted with MV. One domain was found within SCR1 (amino acids 37-56) and another within SCR2 (amino acids 85-104). These results were confirmed by constructing chimeras with complementary regions from structurally similar, but non-MV-binding, SCRs of decay accelerating factor (DAF; CD55). These results indicate that MV contacts at least two distinct sites within SCR1-2.

  6. The SCR1 gene from Schwanniomyces occidentalis encodes a highly hydrophobic polypeptide, which confers ribosomal resistance to cycloheximide.

    PubMed

    Hoenicka, Janet; Fernández Lobato, María; Marín, Dolores; Jiménez, Antonio

    2002-06-30

    In Saccharomyces cerevisiae, the SCR1 gene from Schwanniomyces occidentalis is known to induce ribosomal resistance to cycloheximide (cyh). A 2.8 kb DNA fragment encoding this gene was sequenced. Its EMBL Accession No. is AJ419770. It disclosed a putative tRNA(Asn) (GUU) sequence located downstream of an open reading frame (ORF) of 1641 nucleotides. This ORF was shown to correspond to SCR1. It would encode a highly hydrophobic polypeptide (SCR1) with 12 transmembrane domains. SCR1 is highly similar to a variety of yeast proteins of the multidrug-resistance (MDR) family. However, SCR1 only conferred resistance to cyh but not to benomyl or methotrexate. The cyh-resistance phenotype induced by SCR1 was confirmed in several S. cerevisiae strains that expressed this gene to reside at the ribosomal level. In contrast, a beta-galacosidase-tagged SCR1 was found to be integrated in the endoplasmic reticulum (ER). It is proposed that the ribosomes of yeast cells expressing SCR1 undergo a conformational change during their interaction with the ER, which lowers their affinity for cyh-binding. If so, these findings would disclose a novel ribosomal resistance mechanism.

  7. Combined SO{sub 2}/NO{sub x} reduction technology

    SciTech Connect

    Livengood, C.D.; Huang, H.S.; Markussen, J.M.

    1992-09-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  8. New technology for sulfide reduction and increased oil recovery. Second quarter progress report

    SciTech Connect

    1998-12-20

    The purpose of this project is to demonstrate reduction of sulfide contamination, as well as possible improvement of production in oil and gas production systems. This will be accomplished by application of the BioCompetitive Exclusion (BCX) process developed by GMT. A broad spectrum of well types and geographical locations is anticipated. The BCX process is designed to manipulate indigenous reservoir bacteria with the addition of synergistic inorganic chemical formulae. These treatments will stimulate growth of beneficial microbes, while suppressing metabolic activity of sulfate reducing bacteria (SRB), the primary source of harmful sulfide production. Progress in 7 oil and gas fields is summarized.

  9. Treatment of emphysema using bronchoscopic lung volume reduction coil technology: an update on efficacy and safety.

    PubMed

    Hartman, Jorine E; Klooster, Karin; Ten Hacken, Nick H T; Slebos, Dirk-Jan

    2015-10-01

    In the last decade several promising bronchoscopic lung volume reduction (BLVR) treatments were developed and investigated. One of these treatments is BLVR treatment with coils. The advantage of this specific treatment is that it works independently of collateral flow, and also shows promise for patients with a more homogeneous emphysema disease distribution. Seven years ago, the very first patients were treated with BLVR coil treatment and currently large randomized, controlled trials are underway. The aim of this article is to review the available literature and provide an update on the current knowledge on the efficacy and safety of BLVR treatment with coils.

  10. Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels.

    PubMed

    Jayaram, Varalakshmi; Nigam, Abhilash; Welch, William A; Miller, J Wayne; Cocker, David R

    2011-01-01

    Large auxiliary engines operated on ocean-going vessels in transit and at berth impact the air quality of populated areas near ports. This paper presents new information on the comparison of emission ranges from three similar engines and the effectiveness of three control technologies: switching to cleaner burning fuels, operating in the low oxides of nitrogen (NOx) mode, and selective catalytic reduction (SCR). In-use measurements of gaseous (NOx, carbon monoxide [CO], carbon dioxide [CO2]) and fine particulate matter (PM2.5; total and speciated) emissions were made on three auxiliary engines on post-PanaMax class container vessels following the International Organization for Standardization-8178-1 protocol. The in-use NOx emissions for the MAN B&W 7L32/40 engine family vary from 15 to 21.1 g/kW-hr for heavy fuel oil and 8.9 to 19.6 g/kW-hr for marine distillate oil. Use of cleaner burning fuels resulted in NOx reductions ranging from 7 to 41% across different engines and a PM2.5 reduction of up to 83%. The NOx reductions are a consequence of fuel nitrogen content and engine operation; the PM2.5 reduction is attributed to the large reductions in the hydrated sulfate and organic carbon (OC) fractions. As expected, operating in the low-NOx mode reduced NOx emissions by approximately 32% and nearly doubled elemental carbon (EC) emissions. However, PM2.5 emission factors were nearly unchanged because the EC emission factor is only approximately 5% of the total PM2.5 mass. SCR reduced the NOx emission factor to less than 2.4 g/kW-hr, but it increased the PM2.5 emissions by a factor of 1.5-3.8. This increase was a direct consequence of the conversion of sulfur dioxide to sulfate emissions on the SCR catalyst. The EC and OC fractions of PM2.5 reduced across the SCR unit.

  11. Advanced Aerodynamic Technologies for Ground Vehicle Fuel Economy Improvement and Emission Reductions

    SciTech Connect

    Ricahrd Wood

    2007-01-15

    SOLUS-Solutions and Technologies LLC utilized the opportunity presented by the Department of Energy (DOE) Inventions and Innovations grant to successfully develop, market, and license two of the original three fuel and emissions saving aerodynamic trailer attachments for the trucking industry. Working independent of the grant and with SOLUS funding SOLUS also developed, marketed and licensed three additional fuel and emissions saving aerodynamic trailer attachments for the trucking industry. The five inventions include four inventions that are applicable to all heavy truck trailers and one invention specifically designed for van trailers with swing doors. The SOLUS inventions have been developed for use on all trailer types as well as light and medium trucks. SOLUS-Solutions and Technologies LLC has licensed the five inventions to Silver Eagle Manufacturing Company of Portland Oregon. Each trailer outfitted with the SOLUS inventions saves approximately 2,000 gallons of fuel every 100,000 miles, which prevents over 20 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save more than 4.0 billion gallons of diesel fuel, reduce emissions by 40 million tons and save 10.0 billion dollars annually.

  12. Challenge study of the pathogen reduction capacity of the THERAFLEX MB-Plasma technology.

    PubMed

    Reichenberg, S; Gravemann, U; Sumian, C; Seltsam, A

    2015-08-01

    Although most pathogen reduction systems for plasma primarily target viruses, bacterial contamination may also occur. This study aimed to investigate the bacterial reduction capacity of a methylene blue (MB) treatment process and its virus inactivation capacity in lipaemic plasma. Bacterial concentrations in plasma units spiked with different bacterial strains were measured before and after the following steps of the THERAFLEX MB-Plasma procedure: leucocyte filtration, MB/light treatment and MB filtration. Virus inactivation was investigated for three virus types in non-lipaemic, borderline lipaemic and highly lipaemic plasma. Leucocyte filtration alone efficiently eliminated most of the tested bacteria by more than 4 logs (Staphylococcus epidermidis and Staphylococcus aureus) or to the limit of detection (LOD) (≥ 4.8 logs; Escherichia coli, Bacillus cereus and Klebsiella pneumoniae). MB/light and MB filtration further reduced Staphylococcus epidermidis and Staphylococcus aureus to below the LOD. The small bacterium Brevundimonas diminuta was reduced by 1.7 logs by leucocyte filtration alone, and to below the LOD by additional MB/light treatment and MB filtration (≥ 3.7 logs). Suid herpesvirus 1, bovine viral diarrhoea virus and human immunodeficiency virus 1 were efficiently inactivated by THERAFLEX MB-Plasma, independent of the degree of lipaemia. THERAFLEX MB-Plasma efficiently reduces bacteria, mainly via the integrated filtration system. Its virus inactivation capacity is sufficient to compensate for reduced light transparency due to lipaemia. © 2015 International Society of Blood Transfusion.

  13. Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

    SciTech Connect

    Lance, Michael; Wereszczak, Andrew; Toops, Todd J.; Ancimer, Richard; An, Hongmei; Li, Junhui; Rogoski, Leigh; Sindler, Petr; Williams, Aaron; Ragatz, Adam; McCormick, Robert L.

    2016-04-05

    For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1,001 hr using B20 doped with 14 ppm Na. During the study, oxides of nitrogen (NOx) emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement. Replacing aged diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) devices with new degreened parts showed that each device contributed equally to the NOx increase. Following this systems-based evaluation, a detailed investigation of the individual components was completed. Na was determined to have minimal impact on DOC activity. For this system, it is estimated that B20-Na resulted in 50% more ash into the DPF. However, the Na did not diffuse into the cordierite DPF nor degrade its mechanical properties. The SCR degradation was found to be caused by a small amount of precious group metals contamination that increased ammonia oxidation, and lowered NOx reduction. Therefore, it was determined that the primary effect of Na in this study is through increased ash in the DPF rather than deactivation of the catalytic activity.

  14. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  15. PILOT-SCALE EVALUATION OF THE IMPACT OF SELECTIVE CATALYTIC REDUCTION FOR NOx ON MERCURY SPECIATION

    SciTech Connect

    Dennis L. Laudal; John H. Pavlish; Kevin C. Galbreath; Jeffrey S. Thompson; Gregory F. Weber; Everett Sondreal

    2000-12-01

    Full-scale tests in Europe and bench-scale tests in the United States have indicated that the catalyst, normally vanadium/titanium metal oxide, used in the selective catalytic reduction (SCR) of NO{sub x}, may promote the formation of Hg{sup 2+} and/or particulate-bound mercury (Hg{sub p}). To investigate the impact of SCR on mercury speciation, pilot-scale screening tests were conducted at the Energy & Environmental Research Center. The primary research goal was to determine whether the catalyst or the injection of ammonia in a representative SCR system promotes the conversion of Hg{sup 0} to Hg{sup 2+} and/or Hg{sub p} and, if so, which coal types and parameters (e.g., rank and chemical composition) affect the degree of conversion. Four different coals, three eastern bituminous coals and a Powder River Basin (PRB) subbituminous coal, were tested. Three tests were conducted for each coal: (1) baseline, (2) NH{sub 3} injection, and (3) SCR of NO{sub x}. Speciated mercury, ammonia slip, SO{sub 3}, and chloride measurements were made to determine the effect the SCR reactor had on mercury speciation. It appears that the impact of SCR of NO{sub x} on mercury speciation is coal-dependent. Although there were several confounding factors such as temperature and ammonia concentrations in the flue gas, two of the eastern bituminous coals showed substantial increases in Hg{sub p} at the inlet to the ESP after passing through an SCR reactor. The PRB coal showed little if any change due to the presence of the SCR. Apparently, the effects of the SCR reactor are related to the chloride, sulfur and, possibly, the calcium content of the coal. It is clear that additional work needs to be done at the full-scale level.

  16. Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico

    SciTech Connect

    Corbus, D; Martinez, M; Rodriguez, L; Mark, J

    1994-08-01

    Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

  17. Niches, Population Structure and Genome Reduction in Ochrobactrum intermedium: Clues to Technology-Driven Emergence of Pathogens

    PubMed Central

    Aujoulat, Fabien; Romano-Bertrand, Sara; Masnou, Agnès; Marchandin, Hélène; Jumas-Bilak, Estelle

    2014-01-01

    Ochrobactrum intermedium is considered as an emerging human environmental opportunistic pathogen with mild virulence. The distribution of isolates and sequences described in literature and databases showed frequent association with human beings and polluted environments. As population structures are related to bacterial lifestyles, we investigated by multi-locus approach the genetic structure of a population of 65 isolates representative of the known natural distribution of O. intermedium. The population was further surveyed for genome dynamics using pulsed-field gel electrophoresis and genomics. The population displayed a clonal epidemic structure with events of recombination that occurred mainly in clonal complexes. Concerning biogeography, clones were shared by human and environments and were both cosmopolitan and local. The main cosmopolitan clone was genetically and genomically stable, and grouped isolates that all harbored an atypical insertion in the rrs. Ubiquitism and stability of this major clone suggested a clonal succes in a particular niche. Events of genomic reduction were detected in the population and the deleted genomic content was described for one isolate. O. intermedium displayed allopatric characters associated to a tendancy of genome reduction suggesting a specialization process. Considering its relatedness with Brucella, this specialization might be a commitment toward pathogenic life-style that could be driven by technological selective pressure related medical and industrial technologies. PMID:24465379

  18. Niches, population structure and genome reduction in Ochrobactrum intermedium: clues to technology-driven emergence of pathogens.

    PubMed

    Aujoulat, Fabien; Romano-Bertrand, Sara; Masnou, Agnès; Marchandin, Hélène; Jumas-Bilak, Estelle

    2014-01-01

    Ochrobactrum intermedium is considered as an emerging human environmental opportunistic pathogen with mild virulence. The distribution of isolates and sequences described in literature and databases showed frequent association with human beings and polluted environments. As population structures are related to bacterial lifestyles, we investigated by multi-locus approach the genetic structure of a population of 65 isolates representative of the known natural distribution of O. intermedium. The population was further surveyed for genome dynamics using pulsed-field gel electrophoresis and genomics. The population displayed a clonal epidemic structure with events of recombination that occurred mainly in clonal complexes. Concerning biogeography, clones were shared by human and environments and were both cosmopolitan and local. The main cosmopolitan clone was genetically and genomically stable, and grouped isolates that all harbored an atypical insertion in the rrs. Ubiquitism and stability of this major clone suggested a clonal succes in a particular niche. Events of genomic reduction were detected in the population and the deleted genomic content was described for one isolate. O. intermedium displayed allopatric characters associated to a tendancy of genome reduction