Sample records for reductive microorganisms final

  1. Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.

    PubMed

    Carlson, Hans K; Stoeva, Magdalena K; Justice, Nicholas B; Sczesnak, Andrew; Mullan, Mark R; Mosqueda, Lorraine A; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-03-17

    Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.

  2. Gene function analysis in extremophiles: the "nif" regulon of the strict iron oxidizing bacterium "Leptospirillum ferrooxidans"

    NASA Astrophysics Data System (ADS)

    Parro, Victor; Moreno-Paz, Mercedes

    2004-03-01

    In Centro de Astrobiologia it has been considered the Tinto river as a model ecosystem to study life based on iron. The final goal is to study the biological and metabolic diversity in microorganisms living there, following a genomic approach, to get insights to the mechanisms of adaptation to this environment. The Gram-negative bacterium Leptospirillum ferrooxidans is one of the most abundant microorganisms in the river, and it is one of the main responsible in maintenance of pH balance and, as a consequence, the physico-chemical properties of the exosystem. We have constructed a Shotgun DNA microarrays from this bacterium and we have used it to studied its genetic capacity for nitrogen fixation. With this approach we have identified most of the genes necessary for dinitrogen (N2) reduction, confirming the capacity of L. ferrooxidans as a free diazotrophic (nitrogen fixer) microorganism.

  3. The use of ozone, ozone plus UV radiation, and aerobic microorganisms in the purification of some agro-industrial wastewaters.

    PubMed

    Benitez, F Javier; Acero, Juan L; Gonzalez, Teresa; Garcia, Juan

    2002-08-01

    The oxidation of the pollutant organic matter present in wastewaters generated during different stages in the black table-olive industry was investigated by using ozone alone or combined with UV radiation; by using aerobic microorganisms; and finally, by aerobic degradation of the previously ozonated wastewaters. In the ozonation processes, the removal of substrate (COD) and aromatic compounds, the decreases in BOD5 and pH, and the ozone consumed in the reaction were evaluated. A kinetic study was conducted that led to the evaluation of the stoichiometric ratio for the chemical reaction, as well as the rate constants for the substrate reduction and ozone disappearance. In the single aerobic degradation treatment, the evolution of substrate and biomass was monitored during the process, and a kinetic study was performed by applying the Contois model to the experimental data, giving the specific biokinetic constant, the cell yield coefficient, and the rate constant for the microorganism death phase. Finally, a combined process was performed, consisting in the aerobic degradation of pre-ozonated wastewaters, and the effect of such chemical pretreatment on the substrate removal and kinetic parameters of the later biological stage is discussed.

  4. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  5. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    NASA Astrophysics Data System (ADS)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  6. 75 FR 30844 - General Mills, Inc.; Withdrawal of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... for the reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water... reduction of pathogens and other microorganisms in aqueous sugar solutions and potable water intended for...

  7. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  8. Biological Degradation of 2,4,6-Trinitrotoluene

    PubMed Central

    Esteve-Núñez, Abraham; Caballero, Antonio; Ramos, Juan L.

    2001-01-01

    Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve mineralization or reduction of TNT and immobilization of its amino derivatives on humic material. These approaches are highly efficient in removing TNT, and increasing amounts of research into the potential usefulness of phytoremediation, rhizophytoremediation, and transgenic plants with bacterial genes for TNT removal are being done. PMID:11527999

  9. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  10. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  11. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments

    PubMed Central

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W.; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8–98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides. PMID:25999927

  12. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments.

    PubMed

    Hori, Tomoyuki; Aoyagi, Tomo; Itoh, Hideomi; Narihiro, Takashi; Oikawa, Azusa; Suzuki, Kiyofumi; Ogata, Atsushi; Friedrich, Michael W; Conrad, Ralf; Kamagata, Yoichi

    2015-01-01

    Reduction of crystalline Fe(III) oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet the limited number of isolates makes it difficult to understand the physiology and ecological impact of the microorganisms involved. Here, two-stage cultivation was implemented to selectively enrich and isolate crystalline iron(III) oxide reducing microorganisms in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by 2-years successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite) as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing and clone library analysis based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae), followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs) identified. Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae while each type of iron oxides supplemented selectively enriched specific OTUs in the other phylogenetic groups. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III) containing media in order to stimulate the proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. The 16S rRNA genes of these isolates were 94.8-98.1% identical in sequence to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. Thus, the novel strategy allowed to enrich and isolate novel iron(III) reducers that were able to thrive by reducing crystalline ferric iron oxides.

  13. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards.

    PubMed

    Puigserver, Diana; Herrero, Jofre; Torres, Mònica; Cortés, Amparo; Nijenhuis, Ivonne; Kuntze, Kevin; Parker, Beth L; Carmona, José M

    2016-09-01

    In the transition zone between aquifers and basal aquitards, the perchloroethene pools at an early time in their evolution are more recalcitrant than those elsewhere in the aquifer. The aim of this study is to demonstrate that the biodegradation of chloroethenes from aged pools (i.e., pools after decades of continuous groundwater flushing and dissolution) of perchloroethene is favored in the transition zone. A field site was selected where an aged pool exists at the bottom of a transition zone. Two boreholes were drilled to obtain sediment and groundwater samples to perform chemical, isotopic, molecular, and clone library analyses and microcosm experiments. The main results were as follows: (i) the transition zone is characterized by a high microbial richness; (ii) reductively dechlorinating microorganisms are present and partial reductive dechlorination coexists with denitrification, Fe and Mn reduction, and sulfate reduction; (iii) reductively dechlorinating microorganisms were also present in the zone of the aged pool; (v) the high concentrations of perchloroethene in this zone resulted in a decrease in microbial richness; (vi) however, the presence of fermenting microorganisms supplying electrons for the reductively dechlorinating microorganisms prevented the reductive dechlorination to be inhibited. These findings suggest that biostimulation and/or bioaugmentation could be applied to promote complete reductive dechlorination and to enhance the dissolution of more nonaqueous phase liquids (DNAPL).

  14. Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Lonergan, D.J.

    1991-01-01

    The potential for nonenzymatic reduction of Fe(III) either by organic compounds or by the development of a low redox potential during microbial metabolism was compared with direct, enzymatic Fe(III) reduction by Fe(III)-reducing microorganisms. At circumneutral pH, very few organic compounds nonenzymatically reduced Fe(III). In contrast, in the presence of the appropriate Fe(IH)-reducing microorganisms, most of the organic compounds examined could be completely oxidized to carbon dioxide with the reduction of Fe(III). Even for those organic compounds that could nonenzymatically reduce Fe(III), microbial Fe(III) reduction was much more extensive. The development of a low redox potential during microbial fermentation did not result in nonenzymatic Fe(III) reduction. Model organic compounds were readily oxidized in Fe(III)-reducing aquifer sediments, but not in sterilized sediments. These results suggest that microorganisms enzymatically catalyze most of the Fe(III) reduction in the Fe(III) reduction zone of aquatic sediments and aquifers.

  15. Effect of the antimicrobial photodynamic therapy on microorganism reduction in deep caries lesions: a systematic review and meta-analysis.

    PubMed

    Ornellas, Pâmela Oliveira; Antunes, Leonardo Dos Santos; Fontes, Karla Bianca Fernandes da Costa; Póvoa, Helvécio Cardoso Corrêa; Küchler, Erika Calvano; Iorio, Natalia Lopes Pontes; Antunes, Lívia Azeredo Alves

    2016-09-01

    This study aimed to perform a systematic review to assess the effectiveness of antimicrobial photodynamic therapy (aPDT) in the reduction of microorganisms in deep carious lesions. An electronic search was conducted in Pubmed, Web of Science, Scopus, Lilacs, and Cochrane Library, followed by a manual search. The MeSH terms, MeSH synonyms, related terms, and free terms were used in the search. As eligibility criteria, only clinical studies were included. Initially, 227 articles were identified in the electronic search, and 152 studies remained after analysis and exclusion of the duplicated studies; 6 remained after application of the eligibility criteria; and 3 additional studies were found in the manual search. After access to the full articles, three were excluded, leaving six for evaluation by the criteria of the Cochrane Collaboration’s tool for assessing risk of bias. Of these, five had some risk of punctuated bias. All results from the selected studies showed a significant reduction of microorganisms in deep carious lesions for both primary and permanent teeth. The meta-analysis demonstrated a significant reduction in microorganism counts in all analyses (p<0.00001). Based on these findings, there is scientific evidence emphasizing the effectiveness of aPDT in reducing microorganisms in deep carious lesions.

  16. Effect of the antimicrobial photodynamic therapy on microorganism reduction in deep caries lesions: a systematic review and meta-analysis

    NASA Astrophysics Data System (ADS)

    Ornellas, Pâmela Oliveira; Antunes, Leonardo Santos; Fontes, Karla Bianca Fernandes da Costa; Póvoa, Helvécio Cardoso Corrêa; Küchler, Erika Calvano; Iorio, Natalia Lopes Pontes; Antunes, Lívia Azeredo Alves

    2016-09-01

    This study aimed to perform a systematic review to assess the effectiveness of antimicrobial photodynamic therapy (aPDT) in the reduction of microorganisms in deep carious lesions. An electronic search was conducted in Pubmed, Web of Science, Scopus, Lilacs, and Cochrane Library, followed by a manual search. The MeSH terms, MeSH synonyms, related terms, and free terms were used in the search. As eligibility criteria, only clinical studies were included. Initially, 227 articles were identified in the electronic search, and 152 studies remained after analysis and exclusion of the duplicated studies; 6 remained after application of the eligibility criteria; and 3 additional studies were found in the manual search. After access to the full articles, three were excluded, leaving six for evaluation by the criteria of the Cochrane Collaboration's tool for assessing risk of bias. Of these, five had some risk of punctuated bias. All results from the selected studies showed a significant reduction of microorganisms in deep carious lesions for both primary and permanent teeth. The meta-analysis demonstrated a significant reduction in microorganism counts in all analyses (p<0.00001). Based on these findings, there is scientific evidence emphasizing the effectiveness of aPDT in reducing microorganisms in deep carious lesions.

  17. Effects of probiotic fermented milk on biofilms, oral microbiota, and enamel.

    PubMed

    Lodi, Carolina Simonetti; Oliveira, Lidiane Viana; Brighenti, Fernanda Lourenção; Delbem, Alberto Carlos Botazzo; Martinhon, Cleide Cristina Rodrigues

    2015-01-01

    The aim of this study was to evaluate in vitro and in vivo the effects of 2 brands of probiotic fermented milk on biofilms, oral microbiota, and enamel. For the in situ experiment, ten volunteers wore palatine devices containing four blocks of bovine dental enamel over 3 phases, during which 20% sucrose solution, Yakult® (Treatment A), and Batavito® (Treatment B) were dropped on the enamel blocks. Salivary microbial counts were obtained and biofilm samples were analyzed after each phase. For the in vivo experiment, the same ten volunteers drunk Yakult® (Treatment C) and Batavito® (Treatment D) in two phases. Saliva samples were collected for microbial analysis after each phase. The in situ study showed that in comparison with Treatment A, Treatment B resulted in fewer total cultivable anaerobes and facultative microorganisms in biofilms, higher final microhardness, lower percentage change in surface hardness, and smaller integrated subsurface enamel hardness. In the in vivo study, Treatment D resulted in a reduction in the counts of all microorganisms. The results suggested that the probiotic fermented milk Batavito®, but not Yakult®, reduced the amount of oral microorganisms and mineral loss in bovine enamel.

  18. Mechanisms for chelator stimulation of microbial Fe(III) -oxide reduction

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.

    1996-01-01

    The mechanisms by which nitrilotriacetic acid (NTA) stimulated Fe(III) reduction in sediments from a petroleum-contaminated aquifer were investigated in order to gain insight into how added Fe(III) chelators stimulate the activity of hydrocarbon-degrading, Fe(III)-reducing microorganisms in these sediments, and how naturally occurring Fe(III) chelators might promote Fe(III) reduction in aquatic sediments. NTA solubilized Fe(III) from the aquifer sediments. NTA stimulation of microbial Fe(III) reduction did not appear to be the result of making calcium, magnesium, potassium, or trace metals more available to the microorganisms. Stimulation of Fe(III) reduction could not be attributed to NTA serving as a source of carbon or fixed nitrogen for Fe(III)-reducing bacteria as NTA was not degraded in the sediments. Studies with the Fe(III)-reducing microorganism, Geobacter metallireducens, and pure Fe(III)-oxide forms, demonstrated that NTA stimulated the reduction of a variety of Fe(III) forms, including highly crystalline Fe(III)-oxides such as goethite and hematite. The results suggest that NTA solubilization of insoluble Fe(III)-oxide is an important mechanism for the stimulation of Fe(III) reduction by NTA in aquifer sediments.

  19. Evaluation of the microbicidal efficacy of Steris System I for digestive endoscopes using GERMANDE and ASTM validation protocols.

    PubMed

    Duc, D L; Ribiollet, A; Dode, X; Ducel, G; Marchetti, B; Calop, J

    2001-06-01

    In the light of more and more invasive procedures being carried out in digestive endoscopy using sterile devices, it appears necessary to put in place a process of endoscope reprocessing capable of ensuring the complete elimination of micro-organisms contaminating the device. We undertook a study of the microbial efficacy of STERIS SYSTEM 1 (SS1) which purports to achieve this objective. The channels of a gastroscope and a colonoscope were contaminated with suspensions of Pseudomonas aeruginosa, Aspergillus niger and Bacillus subtilis spores. Two procedures were then followed: (1) manual washing only, and (2) treatment in SS1 without prewashing. Recoveries of organisms were made from each channel according to a standard methodology to discover any survivors. Contamination controls we re assessed to measure the logarithmic reduction between the initial contamination and that recovered from the channels. Six cycles per micro-organisms, per type of endoscope, and per type of procedure were carried out. From an initial contamination leve l of 10(6) micro-organisms per endoscope, no micro-organisms were recovered in 35 of the 36 cycles with the SS1. In one cycle with the colonoscope, three B. subtilis organisms were recovered from the channels. Washing only gave microbial reductions which varied according to the micro-organism tested. The maximum reduction with washing alone was by a factor of 10(3 +/- 0.1)for B. subtilis and the minimum reduction factor was 10(3 +/- 0.3)for P. aeruginosa. Considering the results obtained with SS1 without prewashing and the efficacy obtained from washing only, the washing step offers an additional antimicrobial assurance reduction factor of between 10 and 103.1. This study shows that SS1, integrated into an overall reprocessing procedure for digestive endoscopes, is capable of delivering the complete elimination of contaminating micro-organisms in a reduced time and eliminates the toxic risk of reprocessing associated with aldehyde based disinfectants. Copyright 2001 The Hospital Infection Society.

  20. Response of Selected Microorganisms to Experimental Planetary Environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.

    1977-01-01

    Results of studies in anaerobic phosphorus metabolism are presented. Specific topics discussed include: (1) anaerobic utilization of PH3; (2) reduction of phosphate or phosphite; (3) isolation of organisms which utilize phosphite or phosphate anaerobically as a final hydrogen acceptor; and (4) the toxicity of PH3 to the organisms. Techniques of anaerobic microbiology associated with space hardware were also studied. These include: (1) the Brewer anaerobe jar/GasPak system; (2) a new procedure to grow aerobes and anaerobes simultaneously; (3) a culture medium to differentiate oblagate from facultative anaerobes; and (4) a procedure to quantitate O2 sensitivity of anaerobes.

  1. Biochemistry of Catabolic Reductive Dehalogenation.

    PubMed

    Fincker, Maeva; Spormann, Alfred M

    2017-06-20

    A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.

  2. Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter.

    PubMed

    Christoffels, E; Mertens, F M; Kistemann, T; Schreiber, C

    2014-01-01

    A study has been conducted on a retention soil filter (RSF) to test its effectiveness in removing pharmaceutical residues and microorganisms from combined sewer overflows (CSOs). Efficient removal of solids, nutrients and heavy metals has already been proven. The possibility that organic micropollutants and microorganisms are also retained by the use of RSFs has been identified, but data are lacking. Results obtained in this study, in which testing for removal by a RSF of numerous micro-pollutant substances was performed, are most promising. The pharmaceuticals diclofenac and ibuprofen are presented in detail as examples of such micropollutants. Both showed a reduction in positive samples of more than 55% as well as a significant reduction in median and maximum concentrations. For microorganisms such as Escherichia coli, coliphages and Giardia lamblia (cysts), an average reduction in concentrations by three logarithmic steps (99.9%) was achieved. These results add to the evidence that using a RSF in the advanced treatment of wastewater from CSOs reduces the exposure of water-courses to pharmaceutical residues and microbial contamination.

  3. Cr(VI) remediation by enriched sediment with anthraquinone-2,6-disulfonate as electron shuttles

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Li, Xiaojuan; Xu, Zhiwei

    Hexavalent chromium (Cr(VI)) is a priority pollutant in the USA and many other countries. This study investigated the simultaneous remediation of Cr(VI) in sediment enriched with quinone-reducing microorganisms via a closely coupled, biotic-abiotic pathway. The results showed that Cr(VI) remediation was achieved by sediment adsorption and reduction of quinone-reducing microorganism. Moreover, microorganism reduction of Cr(VI) could be continued when sediment adsorption was saturated after long-term Cr(VI) remediation. The acetate and anthraquinone-2,6-disulfonate (AQDS), which acted as exogenous carbon and electron shuttle, respectively, were two crucial factors. The optimum concentrations of acetate and AQDS were 5 mM and 1 mM when the initial Cr(VI) concentration was 10 mg/L. AQDS was recycled, and it acted in a catalytic-type manner for the bacterial reduction of Cr(VI). Thus, biological humus reduction might provide an extensive pathway for the sequestration and detoxification of Cr(VI) in anaerobic soils, water, and industrial effluents.

  4. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.

    PubMed

    Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R

    2016-02-02

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication.

  5. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans

    USGS Publications Warehouse

    Roden, E.E.; Lovley, D.R.

    1993-01-01

    The ability of the marine microorganism Desulfuromonas acetoxidans to reduce Fe(III) was investigated because of its close phylogenetic relationship with the freshwater dissimilatory Fe(III) reducer Geobacter metallireducens. Washed cell suspensions of the type strain of D. acetoxidans reduced soluble Fe(III)-citrate and Fe(III) complexed with nitriloacetic acid. The c-type cytochrome(s) of D. acetoxidans was oxidized by Fe(III)- citrate and Mn(IV)-oxalate, as well as by two electron acceptors known to support growth, colloidal sulfur and malate. D. acetoxidans grew in defined anoxic, bicarbonate-buffered medium with acetate as the sole electron donor and poorly crystalline Fe(III) or Mn(IV) as the sole electron acceptor. Magnetite (Fe3O4) and siderite (FeCO3) were the major end products of Fe(III) reduction, whereas rhodochrosite (MnCO3) was the end product of Mn(IV) reduction. Ethanol, propanol, pyruvate, and butanol also served as electron donors for Fe(III) reduction. In contrast to D. acetoxidans, G. metallireducens could only grow in freshwater medium and it did not conserve energy to support growth from colloidal S0 reduction. D. acetoxidans is the first marine microorganism shown to conserve energy to support growth by coupling the complete oxidation of organic compounds to the reduction of Fe(III) or Mn(IV). Thus, D. acetoxidans provides a model enzymatic mechanism for Fe(III) or Mn(IV) oxidation of organic compounds in marine and estuarine sediments. These findings demonstrate that 16S rRNA phylogenetic analyses can suggest previously unrecognized metabolic capabilities of microorganisms.

  6. Reduction of uranium by Desulfovibrio desulfuricans

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organisms for recovering uranium from contaminated waters and waste streams.

  7. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-01-01

    Impact of gyrotactic microorganisms on two-dimensional (2D) stratified flow of an Oldroyd-B nanomaterial is highlighted. Applied magnetic field along with mixed convection is considered in the formulation. Theory of microorganisms is utilized just to stabilize the suspended nanoparticles through bioconvection induced by combined effects of buoyancy forces and magnetic field. Convergent series solutions for the obtained nonlinear differential systems are derived. Impacts of different emerging parameters on velocity, temperature, concentration, motile microorganisms density, density number of motile microorganisms and local Nusselt and Sherwood numbers are graphically addressed. It is observed that thermal, concentration and motile density stratification parameters result in reduction of temperature, concentration and motile microorganisms density distributions respectively.

  8. Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G

    PubMed Central

    Pereira, R. V.; Bicalho, M. L.; Machado, V. S.; Lima, S.; Teixeira, A. G.; Warnick, L. D.; Bicalho, R. C.

    2015-01-01

    Raw milk and colostrum can harbor dangerous micro-organisms that can pose serious health risks for animals and humans. According to the USDA, more than 58% of calves in the United States are fed unpasteurized milk. The aim of this study was to evaluate the effect of UV light on reduction of bacteria in milk and colostrum, and on colostrum IgG. A pilot-scale UV light continuous (UVC) flow-through unit (45 J/cm2) was used to treat milk and colostrum. Colostrum and sterile whole milk were inoculated with Listeria innocua, Mycobacterium smegmatis, Salmonella serovar Typhimurium, Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Acinetobacter baumannii before being treated with UVC. During UVC treatment, samples were collected at 5 time points and bacteria were enumerated using selective media. The effect of UVC on IgG was evaluated using raw colostrum from a nearby dairy farm without the addition of bacteria. For each colostrum batch, samples were collected at several different time points and IgG was measured using ELISA. The UVC treatment of milk resulted in a significant final count (log cfu/mL) reduction of Listeria monocytogenes (3.2 ± 0.3 log cfu/mL reduction), Salmonella spp. (3.7 ± 0.2 log cfu/mL reduction), Escherichia coli (2.8 ± 0.2 log cfu/mL reduction), Staph. aureus (3.4 ± 0.3 log cfu/mL reduction), Streptococcus spp. (3.4 ± 0.4 log cfu/mL reduction), and A. baumannii (2.8 ± 0.2 log cfu/mL reduction). The UVC treatment of milk did not result in a significant final count (log cfu/mL) reduction for M. smegmatis (1.8 ± 0.5 log cfu/mL reduction). The UVC treatment of colostrum was significantly associated with a final reduction of bacterial count (log cfu/mL) of Listeria spp. (1.4 ± 0.3 log cfu/mL reduction), Salmonella spp. (1.0 ± 0.2 log cfu/mL reduction), and Acinetobacter spp. (1.1 ± 0.3 log cfu/mL reduction), but not of E. coli (0.5 ± 0.3 log cfu/mL reduction), Strep. agalactiae (0.8 ± 0.2 log cfu/mL reduction), and Staph. aureus (0.4 ± 0.2 log cfu/mL reduction). The UVC treatment of colostrum significantly decreased the IgG concentration, with an observed final mean IgG reduction of approximately 50%. Development of new methods to reduce bacterial contaminants in colostrum must take into consideration the barriers imposed by its opacity and organic components, and account for the incidental damage to IgG caused by manipulating colostrum. PMID:24582452

  9. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    PubMed Central

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  10. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study.

    PubMed

    Zubrod, Jochen P; Englert, Dominic; Wolfram, Jakob; Rosenfeldt, Ricki R; Feckler, Alexander; Bundschuh, Rebecca; Seitz, Frank; Konschak, Marco; Baudy, Patrick; Lüderwald, Simon; Fink, Patrick; Lorke, Andreas; Schulz, Ralf; Bundschuh, Mirco

    2017-08-01

    Leaf litter is a major source of carbon and energy for stream food webs, while both leaf-decomposing microorganisms and macroinvertebrate leaf shredders can be affected by fungicides. Despite the potential for season-long fungicide exposure for these organisms, however, such chronic exposures have not yet been considered. Using an artificial stream facility, effects of a chronic (lasting up to 8 wk) exposure to a mixture of 5 fungicides (sum concentration 20 μg/L) on leaf-associated microorganisms and the key leaf shredder Gammarus fossarum were therefore assessed. While bacterial density and microorganism-mediated leaf decomposition remained unaltered, fungicide exposure reduced fungal biomass (≤71%) on leaves from day 28 onward. Gammarids responded to the combined stress from consumption of fungicide-affected leaves and waterborne exposure with a reduced abundance (≤18%), which triggered reductions in final population biomass (18%) and in the number of precopula pairs (≤22%) but could not fully explain the decreased leaf consumption (19%), lipid content (≤43%; going along with an altered composition of fatty acids), and juvenile production (35%). In contrast, fine particulate organic matter production and stream respiration were unaffected. Our results imply that long-term exposure of leaf-associated fungi and shredders toward fungicides may result in detrimental implications in stream food webs and impairments of detrital material fluxes. These findings render it important to understand decomposer communities' long-term adaptational capabilities to ensure that functional integrity is safeguarded. Environ Toxicol Chem 2017;36:2178-2189. © 2017 SETAC. © 2017 SETAC.

  11. [Survival of probiotic microorganisms in the conditions in vitro imitating the process of human digestion].

    PubMed

    Darmov, I V; Chicherin, I Iu; Pogorel'skiĭ, I P; Lundovskikh, I A

    2011-01-01

    Assessment of survival bifidobacteria and lactobacteria under the conditions in vitro, simulating digestion in human stomach and intestine, and study of survival probiotic and indigenous microorganisms in co-cultivation on solid nutrient medium. Probiotic microorganisms from commercial preparations Bifidobacterin and Lactobacterin, clinical isolates lactobacillus (Lactobacillus acidophilus No 1, L. brevis No 2) were used in experiments. Survival study of probiotic microorganisms was performed on a model in vitro, simulating the process of digestion in the human body. Assessment of the relationship of probiotic microorganisms and indigenous microorganisms was carried out in co-cultivation in vitro on solid nutrient medium. A significant reduction in the number of viable probiotic microorganisms during their incubation in model media was set as well as suppression of probiotic microorganisms growth by cultures of a clinical strains of lactobacillus, corresponding to biocompatibility by type "host against probiotic". While choosing probiotics in the treatment of dysbacterioses the character of relationship between probiotic microorganisms and indigenous microorganisms of a patient is recommended to be preliminarily tested. Also microorganisms of own microflora should be stimulated using modern prebiotics.

  12. PHYSICAL AND CHEMICAL CONTROL OF RELEASED MICROORGANISMS AT FIELD SITES

    EPA Science Inventory

    An important consideration in the environmental release of a genetically engineered microorganism (GEM) is the capability for reduction or elimination of GEM populations once their function is completed or if adverse environmental effects are observed. In this study the decontami...

  13. COMPLETE REDUCTION OF TELLURITE TO PURE TELLURIUM METAL BY MICROORGANISMS

    PubMed Central

    Tucker, Fayne L.; Walper, John F.; Appleman, Milo Don; Donohue, Jerry

    1962-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John F. Walper, Milo Don Appleman, and Jerry Donohue. Complete reduction of tellurite to pure tellurium metal by microorganisms. J. Bacteriol. 83:1313–1314. 1962—The black precipitate produced in the presence of potassium tellurite by growing cells of Streptococcus faecalis N83 and Corynebacterium diphtheriae was shown, by X-ray diffraction analysis, to consist of metallic tellurium. The metal was not complexed, to any significant degree, with any organic material. PMID:13922991

  14. Surface Disinfectants for Burn Units Evaluated by a New Double Method, Using Microorganisms Recently Isolated From Patients, on a Surface Germ-Carrier Model.

    PubMed

    Herruzo, Rafael; Vizcaino, Maria Jose; Herruzo, Irene; Sanchez, Manuel

    Assessment methods of surface disinfection based on international standards (Environmental Protection Agency, European Norms, etc) do not correspond to hospital reality. New evaluation methods of surfaces disinfection are proposed to choose the most suitable disinfectant to act against clinically relevant microorganisms detected on the surfaces of burn units. 1) "Immediate effect": 6 products were compared using a glass germ-carrier and 20 recently isolated microorganisms from different patients in the intensive care units. Disinfectants were applied with microfiber cloths. Log10 reductions were calculated for colony forming units produced after 15 minutes of disinfectant application. 2) "Residual effect": the glass germ-carriers were previously impregnated with one of the studied disinfectants. After a 30-minute wait period, they were then contaminated with 1 microorganism (from the 20 above-mentioned). After 15 minutes, the disinfectant was inhibited and the log10 reduction of colony forming units was assessed. The immediate effect (disinfection and microorganism dragging and transferring from the surface to the cloth) produced complete elimination of the inoculums for all products used except one (a diluted quaternary ammonium). The average residual effect found on the 20 microorganisms was moderate: 2 to 3 log10 colony forming unit reduction with chlorine dioxide or 0.5% chlorhexidine (and lower with the other products), obtaining surfaces refractory to recontamination, at least, during 30 minutes. Two tests should be performed before advising surface disinfectant: 1) direct effect and 2) residual efficacy. These characteristics should be considered when a new surface disinfectant is chosen. Chlorine dioxide has a similar or better direct effect than sodium hypochlorite and a similar residual effect than chlorhexidine.

  15. Antimicrobial Photodynamic Therapy as an Adjunct for Clinical Partial Removal of Deciduous Carious Tissue: A Minimally Invasive Approach.

    PubMed

    Ornellas, Pâmela O; Antunes, Leonardo S; Motta, Paula C; Mendonça, Caroline; Póvoa, Helvécio; Fontes, Karla; Iorio, Natalia; Antunes, Lívia A A

    2018-06-20

    This study aimed to evaluate the use of antimicrobial photodynamic therapy (aPDT) as an adjunct for minimally invasive treatment (partial removal of carious tissue - PRCT) of deciduous carious tissue evaluating its efficacy in reducing microorganisms. For that, a clinical study was design including children with deciduous molars with active deep caries lesions (DCL). PRCT was performed and remaining dentin was treated with 100 μg/mL methylene blue solution (5 min) and than irradiated with a low power laser emitting red light (InGaAIP - indium gallium aluminum phosphide; λ = 660nm; 100mW; 300 J/cm²; 90s; 9J). The colony forming units (CFU) count after PRCT and after PRCT + aPDT/mg of dentin were compared for total microorganisms, including Candida spp., the mutans streptococci group, Streptococcus spp. and Lactobacillus spp. The dentin was classified (color, consistency and humidity). The microbial reduction varied from 69.88% to 86.29% and was significantly observed for total microorganisms, mutans streptococci, Streptococcus spp. and Lactobacillus spp (p<0.001). The dentin type did not influence reduction of microorganisms (p>0.05). The aPDT presents a promising future for clinical use as an adjunct for the reduction of microorganisms in PRCT of DCL in all kinds of dentin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Microbial Transformations of Selenium Species of Relevance to Bioremediation

    PubMed Central

    Eswayah, Abdurrahman S.; Smith, Thomas J.

    2016-01-01

    Selenium species, particularly the oxyanions selenite (SeO32−) and selenate (SeO42−), are significant pollutants in the environment that leach from rocks and are released by anthropogenic activities. Selenium is also an essential micronutrient for organisms across the tree of life, including microorganisms and human beings, particularly because of its presence in the 21st genetically encoded amino acid, selenocysteine. Environmental microorganisms are known to be capable of a range of transformations of selenium species, including reduction, methylation, oxidation, and demethylation. Assimilatory reduction of selenium species is necessary for the synthesis of selenoproteins. Dissimilatory reduction of selenate is known to support the anaerobic respiration of a number of microorganisms, and the dissimilatory reduction of soluble selenate and selenite to nanoparticulate elemental selenium greatly reduces the toxicity and bioavailability of selenium and has a major role in bioremediation and potentially in the production of selenium nanospheres for technological applications. Also, microbial methylation after reduction of Se oxyanions is another potentially effective detoxification process if limitations with low reaction rates and capture of the volatile methylated selenium species can be overcome. This review discusses microbial transformations of different forms of Se in an environmental context, with special emphasis on bioremediation of Se pollution. PMID:27260359

  18. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs

    PubMed Central

    Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.

    2014-01-01

    The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493

  19. Biochar amendment to the soil surface reduces fumigant emissions and enhances soil microorganism recovery

    USDA-ARS?s Scientific Manuscript database

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established post-application. However, there is currently no fumigant emission reduction strategy that can meet all the above requirem...

  20. Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions.

    PubMed

    Smith, Stephanie A; Benardini, James N; Anderl, David; Ford, Matt; Wear, Emmaleen; Schrader, Michael; Schubert, Wayne; DeVeaux, Linda; Paszczynski, Andrzej; Childers, Susan E

    2017-03-01

    Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection-Spore-Bioburden-MSL-Curiosity-Contamination-Mars. Astrobiology 17, 253-265.

  1. Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions

    PubMed Central

    Benardini, James N.; Anderl, David; Ford, Matt; Wear, Emmaleen; Schrader, Michael; Schubert, Wayne; DeVeaux, Linda; Paszczynski, Andrzej; Childers, Susan E.

    2017-01-01

    Abstract Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection—Spore—Bioburden—MSL—Curiosity—Contamination—Mars. Astrobiology 17, 253–265. PMID:28282220

  2. Metabolic adaptation and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Bilotta, S.E.; Mann, C.L.; Madsen, E.L.

    1997-01-01

    A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.A combination of hydrogeological, geochemical, and microbiological methods was used to document the biotransformation of trichloroethene (TCE) to ethene, a completely dechlorinated and environmentally benign compound, by naturally occurring microorganisms within a fractured dolomite aquifer. Analyses of groundwater samples showed that three microbially produced TCE breakdown products (cis-1,2-dichloroethene, vinyl chloride, and ethene) were present in the contaminant plume. Hydrogen (H2) concentrations in groundwater indicated that iron reduction was the predominant terminal electron-accepting process in the most contaminated geologic zone of the site. Laboratory microcosms prepared with groundwater demonstrated complete sequential dechlorination of TCE to ethene. Microcosm assays also revealed that reductive dechlorination activity was present in waters from the center but not from the periphery of the contaminant plume. This dechlorination activity indicated that naturally occurring microorganisms have adapted to utilize chlorinated ethenes and suggested that dehalorespiring rather than cometabolic, microbial processes were the cause of the dechlorination. The addition of pulverized dolomite to microcosms enhanced the rate of reductive dechlorination, suggesting that hydrocarbons in the dolomite aquifer may serve as electron donors to drive microbially mediated reductive dechlorination reactions. Biodegradation of the chlorinated ethenes appears to contribute significantly to decontamination of the site.

  3. Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G.

    PubMed

    Pereira, R V; Bicalho, M L; Machado, V S; Lima, S; Teixeira, A G; Warnick, L D; Bicalho, R C

    2014-05-01

    Raw milk and colostrum can harbor dangerous microorganisms that can pose serious health risks for animals and humans. According to the USDA, more than 58% of calves in the United States are fed unpasteurized milk. The aim of this study was to evaluate the effect of UV light on reduction of bacteria in milk and colostrum, and on colostrum IgG. A pilot-scale UV light continuous (UVC) flow-through unit (45 J/cm(2)) was used to treat milk and colostrum. Colostrum and sterile whole milk were inoculated with Listeria innocua, Mycobacterium smegmatis, Salmonella serovar Typhimurium, Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Acinetobacter baumannii before being treated with UVC. During UVC treatment, samples were collected at 5 time points and bacteria were enumerated using selective media. The effect of UVC on IgG was evaluated using raw colostrum from a nearby dairy farm without the addition of bacteria. For each colostrum batch, samples were collected at several different time points and IgG was measured using ELISA. The UVC treatment of milk resulted in a significant final count (log cfu/mL) reduction of Listeria monocytogenes (3.2 ± 0.3 log cfu/mL reduction), Salmonella spp. (3.7 ± 0.2 log cfu/mL reduction), Escherichia coli (2.8 ± 0.2 log cfu/mL reduction), Staph. aureus (3.4 ± 0.3 log cfu/mL reduction), Streptococcus spp. (3.4 ± 0.4 log cfu/mL reduction), and A. baumannii (2.8 ± 0.2 log cfu/mL reduction). The UVC treatment of milk did not result in a significant final count (log cfu/mL) reduction for M. smegmatis (1.8 ± 0.5 log cfu/mL reduction). The UVC treatment of colostrum was significantly associated with a final reduction of bacterial count (log cfu/mL) of Listeria spp. (1.4 ± 0.3 log cfu/mL reduction), Salmonella spp. (1.0 ± 0.2 log cfu/mL reduction), and Acinetobacter spp. (1.1 ± 0.3 log cfu/mL reduction), but not of E. coli (0.5 ± 0.3 log cfu/mL reduction), Strep. agalactiae (0.8 ± 0.2 log cfu/mL reduction), and Staph. aureus (0.4 ± 0.2 log cfu/mL reduction). The UVC treatment of colostrum significantly decreased the IgG concentration, with an observed final mean IgG reduction of approximately 50%. Development of new methods to reduce bacterial contaminants in colostrum must take into consideration the barriers imposed by its opacity and organic components, and account for the incidental damage to IgG caused by manipulating colostrum. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    NASA Astrophysics Data System (ADS)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  5. Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation.

    PubMed

    González-Arenzana, Lucía; López-Alfaro, Isabel; Garde-Cerdán, Teresa; Portu, Javier; López, Rosa; Santamaría, Pilar

    2018-03-23

    This study was performed with the aim of reducing the microbial communities of wines after alcoholic fermentation to improve the establishment of commercial Oenococcus oeni inoculum for developing the malolactic fermentation. Microbial community reduction was accomplished by applying Pulsed Electric Field (PEF) technology to four different wines. Overall, significant reductions in yeast population were observed. To a lesser extent, lactic acid bacteria were reduced while acetic acid bacteria were completely eliminated after the PEF treatment. In three out of the four tested wines, a decrease in the competitive pressure between microorganisms due to the detected reduction led to a general but slight shortening of the malolactic fermentation duration. In the wine with the most adverse conditions to commercial starter establishment, the shortest malolactic fermentation was reached after PEF treatment. Finally, the sensorial quality of three out of the four treated wines was considered better after the PEF treatment. Therefore, PEF technology meant an important tool for improving the malolactic fermentation performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Light based technologies for microbial inactivation of liquids, bead surfaces and powdered infant formula.

    PubMed

    Arroyo, Cristina; Dorozko, Anna; Gaston, Edurne; O'Sullivan, Michael; Whyte, Paul; Lyng, James G

    2017-10-01

    This study evaluates the potential of continuous wave Ultraviolet C light (UV-C) and broad-spectrum intense pulsed light (in this study referred to as High Intensity Light Pulses, HILP) for the inactivation of pathogens of public concern in powdered infant formula (PIF) producers. To achieve this goal a sequential set of experiments were performed, firstly in clear liquid media, secondly on the surface of spherical beads under agitation and, finally in PIF. L. innocua was the most sensitive microorganism to both technologies under all conditions studied with reductions exceeding 4 log 10 cycles in PIF. In the clear liquid medium, the maximum tolerance to light was observed for C. sakazakii against UV-C light and for B. subtilis spores against HILP, with a fluence of approximately 17 mJ/cm 2 required for a 1 log 10 cycle inactivation (D value) of each species. In PIF it was possible to inactivate >99% of the vegetative cell populations by HILP with a fluence of 199 mJ/cm 2 and of B. subtilis spores by doubling the fluence. By contrast, for UV-C treatments a fluence of 2853 mJ/cm 2 was needed for 99.9% reduction of C. sakazakii, which was the most light-resistant microorganism to UV-C. Results here obtained clearly show the potential for light-based interventions to improve PIF microbiological safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reduction of clog matter in constructed wetlands by metabolism of Eisenia foetida: Process and modeling.

    PubMed

    Ye, Jianfeng; Xu, Zuxin; Chen, Hao; Wang, Liang; Benoit, Gaboury

    2018-07-01

    Introducing of earthworms to constructed wetlands (CWs) has been considered as a new approach to solve the clogging problems in the long-established systems. Despite its potential advantage, the correlational researches are still in the stage of preliminary observation and speculation. This paper presents a comprehensive and in-depth research about the positive effects of earthworms (Eisenia foetida) on clog matter (CM) reduction through different pathways, including in vivo metabolism and uptake, conversion, transport, and promotion of microorganism quantities. The results showed that the metabolism and uptake by Eisenia foetida could effectively reduce the CM content at an average removal rate of 0.155 mg g -1  d -1 , which was obviously higher than the rate of CM decomposition by microorganisms alone. Through the metabolism of earthworms, the amounts of proteins and polysaccharides in CM were decreased, while the amounts of humin and nucleic acids were increased. Simultaneously, the viscosity of CM was reduced by 0.0082 mPa s g -1 d -1 , and the quantity of microorganisms was increased by 0.0109 mg g -1  d -1 , which finally made the treated CM can be easily washed away and decomposed. Furthermore, earthworms could reduce the CM content in the clogging layer by transporting the metabolic products out. A regression model was further performed for describing the interaction between earthworm and CM. The simulated value of porosity fitted well with the measured one, suggesting that the earthworms can increase the substrate porosity at a rate of 0.33 mL g -1  d -1 . This study quantitively depicted the mechanisms of earthworms on the decrement of CM content in CWs, which is of great benefit for the engineering management of constructed wetlands in the future. We also proposed that the density of introduced earthworms should exceed a certain threshold for effectively increasing the substrate porosity and solving the clogging problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Antibacterial Efficacy of a New Sonic Irrigation Device for Root Canal Disinfection.

    PubMed

    Neuhaus, Klaus W; Liebi, Melanie; Stauffacher, Simone; Eick, Sigrun; Lussi, Adrian

    2016-12-01

    Passive ultrasonic irrigation (PUI) is the most widespread method used to activate irrigation solutions. Concerns have been raised that PUI is less effective in curved root canals and is not passive at all. Our aim was to compare a novel passive sonic irrigation (PSI) device (6000 Hz) with PUI and manual irrigation (MI) with respect to their efficiency in removing different endodontic microorganisms from curved and straight root canals. We performed 2 experiments as follows. In a 3-day infection model, we included 8 groups of single or dual microbial species that were rinsed with 0.9% sodium chloride using PSI, PUI, or MI. Colony-forming units (CFUs) were counted after incubation, and log 10 transformations were performed for statistical comparisons. In a 21-d infection model, we tested the same irrigation protocols on 4 groups of microorganisms and used 1.5% sodium hypochlorite as an irrigant. Infection control samples were taken at day 0, 3, 5, and 7 after treatment and were subsequently reincubated. Using sodium chloride as an irrigant, the amount of reduction in CFUs compared with the negative control was approximately 3 log 10 units for PSI at 6000 Hz, 2 log 10 units for PUI, and 1 log 10 unit for MI. PSI reduced the microorganism CFUs significantly better than PUI. Using sodium hypochlorite led to a significant reduction in microorganism CFUs even with MI. After 3 days, compared with MI, microorganism regrowth significantly reduced after PSI and PUI treatment, but in these groups, in at least half of the samples, microorganisms were detectable after 7 days. PSI at 6000 Hz might be at least equal to PUI with respect to reduction of the microbial load in curved and straight root canals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. 78 FR 42451 - Animal Feeds Contaminated With Salmonella Microorganisms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 500 [Docket No. FDA-2013-N-0253] Animal Feeds Contaminated With Salmonella Microorganisms AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; removal. SUMMARY: The Food and Drug Administration (FDA or Agency) is...

  10. Use of in-vitro experimental results to model in-situ experiments: bio-denitrification under geological disposal conditions.

    PubMed

    Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira

    2013-01-01

    Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems.

  11. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D.L.

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less

  12. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    PubMed

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins.

    PubMed

    Schlüter, Michael; Hentzel, Thomas; Suarez, Christian; Koch, Mandy; Lorenz, Wilhelm G; Böhm, Leonard; Düring, Rolf-Alexander; Koinig, Karin A; Bunge, Michael

    2014-12-01

    In a search for new aqueous-phase systems for catalyzing reactions of environmental and industrial importance, we prepared novel biogenerated palladium (Pd) nanocatalysts using a "green" approach based on microorganisms isolated from high-alpine sites naturally impacted by heavy metals. Bacteria and fungi were enriched and isolated from serpentinite-influenced ponds (Totalp region, Parsenn, near Davos, Graubünden, Switzerland). Effects on growth dynamics were monitored using an automated assay in 96-well microtiter plates, which allowed for simultaneous cultivation and on-line analysis of Pd(II)- and Ni(II)-mediated growth inhibition. Microorganisms from Totalp ponds tolerated up to 3mM Pd(II) and bacterial isolates were selected for cultivation and reductive synthesis of Pd(0) nanocatalysts at microbial interfaces. During reduction of Pd(II) with formate as the electron donor, Pd(0) nanoparticles were formed and deposited in the cell envelope. The Pd(0) catalysts produced in the presence of Pd(II)-tolerant Alpine Pseudomonas species were catalytically active in the reductive dehalogenation of model polychlorinated dioxin congeners. This is the first report which shows that Pd(0) synthesized in the presence of microorganisms catalyzes the reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs). Because the "bioPd(0)" catalyzed the dechlorination reactions preferably via non-lateral chlorinated intermediates, such a pathway could potentially detoxify PCDDs via a "safe route". It remains to be determined whether the microbial formation of catalytically active metal catalysts (e.g., Zn, Ni, Fe) occurs in situ and whether processes involving such catalysts can alter the fate and transport of persistent organic pollutants (POPs) in Alpine habitats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Devitalization of bacterial and parasitic germs in sewage sludge during aerobic digestion under laboratory conditions.

    PubMed

    Juris, P; Plachý, P; Lauková, A

    1995-05-01

    The survival of 8 bacterial species (Pseudomonas sp., Salmonella sp., Enterobacteriae, Streptococcus sp., Escherichia coli) was detected in municipal sewage sludge up to 37 hours of mesophilic aerobic digestion under laboratory conditions. The model strain Enterococcus faecium CCM 4231 survived almost twice as long as the above-mentioned isolates. Similar findings, regarding the viability of the microorganisms studied, were also determined during thermophilic aerobic digestion of municipal sewage sludges. The final reduction in the total count of bacteria was not directly dependent on the temperature during aerobic digestion. It may be supposed that E. faecium CCM 4231 strain as a bacteriocin-producing strain with a broad antimicrobial spectrum, inoculated into the sludges, could inhibit the growth of microorganisms in the sludges by the way of its bacteriocin activity. Studying the effect of aerobic digestion on the viability of helminth eggs, the observed negative effect of higher temperatures was more expressive in comparison with bacterial strains. During thermophilic digestion process all helminth eggs (Ascaris suum, Toxocara canis) were devitalized. All eggs of T. canis were killed in experiments under mesophilic temperature. However, 32% of nonembryonated A. suum eggs remained viable.

  15. Cellulase recycling in biorefineries--is it possible?

    PubMed

    Gomes, Daniel; Rodrigues, Ana Cristina; Domingues, Lucília; Gama, Miguel

    2015-05-01

    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.

  16. Dissimilatory Fe(III) and Mn(IV) reduction.

    PubMed Central

    Lovley, D R

    1991-01-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process. PMID:1886521

  17. Emulsification of hydrocarbons by subsurface bacteria

    USGS Publications Warehouse

    Francy, D.S.; Thomas, J.M.; Raymond, R.L.; Ward, C.H.

    1991-01-01

    Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions indicating the high probability of biosurfactant production.Biosurfactants have potential for use in enhancement of in situ biorestoration by increasing the bioavailability of contaminants. Microorganisms isolated from biostimulated, contaminated and uncontaminated zones at the site of an aviation fuel spill and hydrocarbon-degrading microorganisms isolated from sites contaminated with unleaded gasoline were examined for their abilities to emulsify petroleum hydrocarbons. Emulsifying ability was quantified by a method involving agitation and visual inspection. Biostimulated-zone microbes and hydrocarbon-degrading microorganisms were the best emulsifiers as compared to contaminated and uncontaminated zone microbes. Biostimulation (nutrient and oxygen addition) may have been the dominant factor which selected for and encouraged growth of emulsifiers; exposure to hydrocarbon was also important. Biostimulated microorganisms were better emulsifiers of aviation fuel (the contaminant hydrocarbon) than of heavier hydrocarbon to which they were not previously exposed. By measuring surface tension changes of culture broths, 11 out of 41 emulsifiers tested were identified as possible biosurfactant producers and two isolates produced large surface tension reductions, indicating a high probability of biosurfactant production.

  18. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement.

    PubMed

    Wang, Yongkui; Liu, Xianli; Huang, Jiexun; Xiao, Wensheng; Zhang, Jiaquan; Yin, Chunqin

    2017-10-01

    The transformation of phosphorus added to the soil environment has been proven to be influenced by the Fe biochemical process, which thereby may affect the transformation of organic chlorinated contaminants. However, the amount of related literatures regarding this topic is limited. This study aimed to determine the effects of phosphorus addition on pentachlorophenol (PCP) anaerobic transformation, iron reduction, and paddy soil microbial community structure. Results showed that the transformation of phosphorus, iron, and PCP were closely related to the microorganisms. Moreover, phosphorus addition significantly influenced PCP transformation and iron reduction, which promoted and inhibited these processes at low and high concentrations, respectively. Both the maximum reaction rate of PCP transformation and the maximum Fe(II) amount produced were obtained at 1 mmol/L phosphorus concentration. Among the various phosphorus species, dissolved P and NaOH-P considerably changed, whereas only slight changes were observed for the remaining phosphorus species. Microbial community structure analysis demonstrated that adding low concentration of phosphorus promoted the growth of Clostridium bowmanii, Clostridium hungatei, and Clostridium intestinale and Pseudomonas veronii. By contrast, high-concentration phosphorus inhibited growth of these microorganisms, similar to the curves of PCP transformation and iron reduction. These observations indicated that Clostridium and P. veronii, especially Clostridium, played a vital role in the transformation of related substances in the system. All these findings may serve as a reference for the complicated reactions among the multiple components of soils.

  19. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Jacqueline; Hetrick, Mary; French, Todd

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased themore » amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.« less

  20. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    NASA Astrophysics Data System (ADS)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  1. Reduction of Methane Emission during Slurry Storage by the Addition of Effective Microorganisms and Excessive Carbon Source from Brewing Sugar.

    PubMed

    Bastami, Mohd Saufi B; Jones, Davey L; Chadwick, David R

    2016-11-01

    Storing livestock manure is the primary stage of manure management where microbial processes and chemical reactions result in the release of methane (CH), nitrous oxide (NO), ammonia (NH), and carbon dioxide (CO). This study examined the reduction of CH emissions from slurry storage under two temperatures (cool [10°C] and warm [30°C]) when a glucose-rich substrate (brewing sugar) and activated effective microorganisms were applied at 10% (w/w) and 5% (v/w), respectively. Brewing sugar addition influenced microbial anaerobic respiration, resulting in a reduction of slurry pH to <5.0, through "self-acidification" caused by lactic acid production. Subsequently, CH emissions were significantly reduced by 87 and 99% in the cool and warm environments, respectively. The effective microorganism treatment did not change the chemical characteristics of the slurry but reduced CH emissions by 17 and 27% ( < 0.05) in the cool and warm environments, respectively. These results suggest that self-acidification after addition of a carbon source may be a promising alternative to slurry acidification using concentrated acids. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Flowpath independent monitoring of reductive dechlorination potential in a fractured rock aquifer

    USGS Publications Warehouse

    Bradley, P.M.; Lacombe, P.J.; Imbrigiotta, T.E.; Chapelle, F.H.; Goode, D.J.

    2009-01-01

    The flowpath dependent approaches that are typically employed to assess biodegradation of chloroethene contaminants in unconsolidated aquifers are problematic in fractured rock settings, due to difficulties defining discrete groundwater flowpaths in such systems. In this study, the variation in the potential for chloroethene biodegradation with depth was evaluated in a fractured rock aquifer using two flowpath independent lines of field evidence: (1) the presence of the three biochemical prerequisites [electron donor(s), chloroethene electron acceptor(s), and chlororespiring microorganism(s)] for efficient chloroethene chlororespiration and (2) the in situ accumulation of chloroethene reductive dechlorination daughter products. The validity of this approach was assessed by comparing field results with the results of [1, 2- 14C] cis-DCE microcosm experiments. Microcosms were prepared with depth-specific core material, which was crushed and emplaced in discrete packer intervals for 1 year to allow colonization by the indigenous microbial community. Packer intervals characterized by significant electron donor concentrations, elevated numbers of chlororespiring microorganisms, and high reductive dechlorination product to parent contaminant ratios correlated well with the production of 14C-labeled reductive dechlorination products in the microcosm experiments. These results indicate that, in the absence of information on discrete groundwater flowpaths, a modified approach emphasizing flowpath independent lines of evidence can provide insight into the temporal and spatial variability of contaminant biodegradation in fractured rock systems. ?? 2009 National Ground Water Association.

  3. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments

    USGS Publications Warehouse

    Lovley, D.R.; Goodwin, S.

    1988-01-01

    Factors controlling the concentration of dissolved hydrogen gas in anaerobic sedimentary environments were investigated. Results, presented here or previously, demonstrated that, in sediments, only microorganisms catalyze the oxidation of H2 coupled to the reduction of nitrate, Mn(IV), Fe(III), sulfate, or carbon dioxide. Theoretical considerations suggested that, at steady-state conditions, H2 concentrations are primarily dependent upon the physiological characteristics of the microorganism(s) consuming the H2 and that organisms catalyzing H2 oxidation, with the reduction of a more electrochemically positive electron acceptor, can maintain lower H2 concentrations than organisms using electron acceptors which yield less energy from H2 oxidation. The H2 concentrations associated with the specified predominant terminal electron-accepting reactions in bottom sediments of a variety of surface water environments were: methanogenesis, 7-10 nM; sulfate reduction, 1-1.5 nM; Fe(III) reduction, 0.2 nM; Mn(IV) or nitrate reduction, less than 0.05 nM. Sediments with the same terminal electron acceptor for organic matter oxidation had comparable H2 concentrations, despite variations in the rate of organic matter decomposition, pH, and salinity. Thus, each terminal electron-accepting reaction had a unique range of steady-state H2 concentrations associated with it. Preliminary studies in a coastal plain aquifer indicated that H2 concentrations also vary in response to changes in the predominant terminal electron-accepting process in deep subsurface environments. These studies suggest that H2 measurements may aid in determining which terminal electron-accepting reactions are taking place in surface and subsurface sedimentary environments. ?? 1988.

  4. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, Paul M.

    2000-01-01

     The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  5. Microbial degradation of chloroethenes in groundwater systems

    USGS Publications Warehouse

    Bradley, P.M.

    2000-01-01

    The chloroethenes, tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common contaminants detected in groundwater systems. As recently as 1980, the consensus was that chloroethene compounds were not significantly biodegradable in groundwater. Consequently, efforts to remediate chloroethene-contaminated groundwater were limited to largely unsuccessful pump-and-treat attempts. Subsequent investigation revealed that under reducing conditions, aquifer microorganisms can reductively dechlorinate PCE and TCE to the less chlorinated daughter products dichloroethene (DCE) and vinyl chloride (VC). Although recent laboratory studies conducted with halorespiring microorganisms suggest that complete reduction to ethene is possible, in the majority of groundwater systems reductive dechlorination apparently stops at DCE or VC. However, recent investigations conducted with aquifer and stream-bed sediments have demonstrated that microbial oxidation of these reduced daughter products can be significant under anaerobic redox conditions. The combination of reductive dechlorination of PCE and TCE under anaerobic conditions followed by anaerobic microbial oxidation of DCE and VC provides a possible microbial pathway for complete degradation of chloroethene contaminants in groundwater systems.

  6. In vitro antimicrobial and anti-endotoxin action of Zingiber Officinale as auxiliary chemical and medicament combined to calcium hydroxide and chlorhexidine.

    PubMed

    Valera, Marcia Carneiro; Cardoso, Flávia Goulart da Rosa; Maekawa, Lilian Eiko; Camargo, Carlos Henrique Ribeiro; de Oliveira, Luciane Dias; Carvalho, Cláudio Antônio Talge

    2015-01-01

    This study was conducted in vitro to compare the effectiveness of Zingiber Officinale as an auxiliary chemical substance followed by placement of different intra-canal medication in removing endotoxins and cultivable micro-organisms from infected root canals. Seventy-two root canals were contaminated with Enterococcus faecalis, Candida albicans and Escherichia coli for 28 days. After, the teeth were instrumented using Zingiber Officinale and divided into six groups according to the intra-canal medication: chlorhexidine gel; calcium hydroxide + chlorhexidine gel; glycolic ginger extract; calcium hydroxide + glycolic ginger extract; calcium hydroxide + saline solution and saline solution (control). Sample collections were performed after root canal contamination (Baseline; S1), after instrumentation (S2), 7 days after instrumentation (S3), after 14 days with intra-canal medication (S4) and 7 days after removal of intra-canal medication (S5). The results were analyzed by the Kruskal-Wallis and Dunn tests. It was observed that in S2 and S3 there was significant reduction of the micro-organisms and the quantity of endotoxins after instrumentation. In samples S4 and S5 there was complete elimination of micro-organisms and significant reduction of endotoxins. It was concluded that Zingiber Officinale as an auxiliary chemical substance was effective on the micro-organisms tested, yet was unable to eliminate the endotoxins. Similarly, the intra-canal medication were effective on micro-organisms, yet did not completely eliminate the endotoxins.

  7. Efficacy of photocatalytic HEPA filter on microorganism removal.

    PubMed

    Chuaybamroong, P; Chotigawin, R; Supothina, S; Sribenjalux, P; Larpkiattaworn, S; Wu, C-Y

    2010-06-01

    This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.

  8. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    PubMed

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on very unusual properties of microbes. For ESA, this collection is an essential resource with which to evaluate the contamination potential of spacecraft-associated biology and validate new biological contamination control and reduction procedures.

  9. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    USGS Publications Warehouse

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  10. Impact of Sodium Tungstate and Tungsten Alloys on the Growth of Selected Microorganisms with Environmental Significance

    DTIC Science & Technology

    2010-07-30

    TUNGSTEN ALLOYS ON THE GROWTH OF SELECTED MICROORGANISMS WITH ENVIROMENTAL SIGNIFICANCE 5a. Contract Number: 5b. Grant Number: 5c. Program Element...lower tolerances. Interestingly, bacteria cultivated from the environment displayed only minor delays and reduction in growth relative to pure...settings where nutrients may be limited. 15. SUBJECT TERMS Tungsten, sodium tungstate, microbial growth , environmental microbiology, bacteria , Shewanella

  11. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    USGS Publications Warehouse

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  12. Combination of Fluorescence In Situ Hybridization with Staining Techniques for Cell Viability and Accumulation of PHA and polyP in Microorganisms in Complex Microbial Systems

    NASA Astrophysics Data System (ADS)

    Nielsen, Jeppe Lund; Kragelund, Caroline; Nielsen, Per Halkjær

    Fluorescence in situ hybridization (FISH) can be combined with a number of staining techniques to reveal the relationships between the microorganisms and their function in complex microbial systems with a single-cell resolution. In this chapter, we have focused on staining methods for intracellular storage compounds (polyhydroxyalkanoates, polyphosphate) and a measure for cell viability, reduction of the tetrazolium-based redox stain CTC. These protocols are optimized for the study of microorganisms in waste-water treatment (activated sludge and biofilms), but they may also be used with minor modifications in many other ecosystems.

  13. Inactivation of Viruses and Bacteriophages as Models for Swine Hepatitis E Virus in Food Matrices.

    PubMed

    Emmoth, Eva; Rovira, Jordi; Rajkovic, Andreja; Corcuera, Elena; Wilches Pérez, Diego; Dergel, Irene; Ottoson, Jakob R; Widén, Frederik

    2017-03-01

    Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log 10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ϕX174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log 10 . LA treatment at 2.2 M gave log 10 reductions in the viral spectrum of 0.29-2.1 for swine liver and 0.87-3.1 for ham, with ϕX174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log 10 reductions of 1.6-2.8 for swine liver, 0.97-2.2 for ham and 1.3-2.3 for sausage, at 15-60 J cm -2 , with MS2 as the most stable microorganism. The HPP treatment gave significantly (p < 0.05) greater virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p < 0.05) greater than on ham for all microorganisms. The results presented here could be used in assessments of different strategies to protect consumers against virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.

  14. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    DOE PAGES

    Berlemont, Renaud; Allison, Steven D.; Weihe, Claudia; ...

    2014-11-25

    We report that in many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of naturalmore » variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.« less

  15. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the pasteurized experiment, suggesting either different populations of NRM or a population of NRM that was not resistant to the 80°C pre-treatment. These results demonstrate that thermophilic NRM exist in cold marine sediments from Aarhus Bay and can be enriched under appropriate conditions. Effective microbial control of SRM activity at high temperature in our Aarhus Bay sediment model system depends on the addition of nitrate to stimulate this group of microorganisms.

  16. Chemical manipulation of soil biota in a fescue meadow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, C. R.; Reichle, D. E.

    Formalin, phorate, and sodium chlorate were used in field enclosures to create artificial habitats in a fescue meadow containing (1) reduced number of earthworms, (2) reduced numbers of earthworms and soil arthropods, and (3) reduction of total soil fauna and rate of microbial decomposition. Under these conditions, confined fescue litter initially decomposed more rapidly where arthropods or earthworms were suppressed than in controls with full complements of soil animals. After one year, reduction in numbers of soil animals had no net effect on litter decomposition, with faunal activity apparently having been compensated for by increased microbial activity. Where animals andmore » microbial activity were reduced, rate of litter loss was depressed initially but recovered after 10 months as the effects of chemical suppression of microbial populations subsided. Contrary to the effects on annual loss of litter, elimination of all or portions of the soil fauna depressed rates of loss of confined and buried roots, reflecting the role of animals in fragmenting roots before their decomposition by microorganisms. Habitat manipulations had pronounced effects on the mobility of 134Cs, and loss of the radionuclide from labelled litter was retarded despite an accelerated rate of decomposition. This effect apparently was associated with proliferation of microorganisms on litter and microbial immobilization of the radionuclide. Immobilization of 134Cs occurred following chemical perturbations, but only after an initial period of rapid loss resulting from increased microbial activity. Distribution of 134Cs in soil beneath tagged litter bags reflected the role of animals in element redistribution within soil. Finally, restricted vertical mobility of the nuclide occurred except where chemical application killed vegetation within the experimental enclosures.« less

  17. Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Baya Khalib, Siti Noor; Ramzi, Norhasykin Mohd

    2018-03-01

    Rice straw is considered as one of the most important agricultural residues and represented as one of the major by-products from rice production process. Normally, rice straw that produced after harvesting season been directly burned on-farm. Conversion of rice straw into value added compost will improve the productivity of plant, reduction of pollution towards environment and reduction of local pollution due to open burning activity. The objective of this study was to evaluate the performance of composting rice straw ash (RSA) with food waste (FW) and effective microorganisms (EM) in term of the compost quality (pH, temperature, moisture content). RSA was prepared by burning the raw rice straw at three different temperature of 300°C, 400°C and 500°C for one hour. EM used during the composting process was prepared by mixing of brown sugar, `tempe' and water that can be used after one week of fermentation process. There are four treatments of RSA-compost; RSA (300°C), RSA (400°C), RSA (500°C) and control (raw rice straw) with the same amount of compost medium; 1kg black soil, 0.5kg RSA, 3L EM and 1kg FW. The composting process happens for 30 days. During the composting process, all the parameters of RSA-compost obtained in a range like; pH value 8-10, temperature 20-50°C and moisture content 40-60%. The result showed that all compost quality of rice straw ash compost obtained in an acceptable range for final compost to establish.

  18. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants.

    PubMed

    Rodrigues, L R; Banat, I M; van der Mei, H C; Teixeira, J A; Oliveira, R

    2006-03-01

    The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonasaeruginosa DS10-129 was studied. The ability of rhamnolipid biosurfactant to inhibit adhesion of micro-organisms to silicone rubber was investigated in a parallel-plate flow chamber. The anti-adhesive activity of the biosurfactant at different concentrations was significant against all the strains and depended on the micro-organism tested. The results showed an effective reduction in the initial deposition rates, and the number of bacterial cells adhering after 4 h, for all micro-organisms tested at the 4 g l(-1) undiluted rhamnolipid solution. Maximum initial reduction of adhesion rate (an average of 66%) occurred for Streptococcus salivarius GB 24/9 and Candida tropicalis GB 9/9. The number of cells adhering after 4 h on silicone rubber conditioned with biosurfactant was reduced to 48% for Staphylococcus epidermidis GB 9/6, Strep. salivarius GB 24/9, Staphylococcus aureus GB 2/1 and C. tropicalis GB 9/9 in comparison to controls. Perfusing the flow chamber with biosurfactant containing solution followed by the passage of a liquid-air interface, to investigate detachment of micro-organisms adhering to silicone rubber, produced high detachment (96%) of adhered cells for all micro-organisms studied, except for Staph. aureus GB 2/1 (67%). It is concluded that biosurfactant represent suitable compounds that should be considered in developing future strategies to prevent the microbial colonization of silicone rubber voice prostheses.

  19. Thioredoxins in evolutionarily primitive organisms

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1986-01-01

    Thioredoxins are low molecular weight redox proteins, alternating between the S-S (oxidized) and SH (reduced) states, that function in a number of biochemical processes, including DNA synthesis, DNA replication, and enzyme regulation. Until recently, reduced ferredoxin was known to serve as the source of reducing power for the reduction of thioredoxins only in oxygenic photosynthetic cells. In all other organisms, the source of hydrogen (electrons) for thioredoxin reduction was considered to be NADPH. It was found that Clostridium pasteurianum, an anaerobic organism normally living in the soil unexposed to light, resembles photosynthetic cells in using ferredoxin for the reduction of thioredoxin. The results reveal the existence of a pathway in which ferredoxin, provides the reducing power for the reduction of thioredoxin via the flavoprotein enzyme, ferredoxinthioredoxin reductase. In related studies, it was found that Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles evolutionarily more advanced micro-organisms in having an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. The adoption of the NADP-thioredoxin system by Chromatium seems appropriate in view of evidence tha the organi sm utilizes ATP-driven reverse electron transport. Finally, results of research directed towards the identification of target enzymes of the ferredoxin/thioredoxin system in a cyanobacterium (Nostoc muscorum), show that thioredoxin-linked photosynthetic enzymes of cyanobateria are similar to those of chloroplasts. It now seems that the ferredoxin/thioredoxin system functions in regulating CO2 assimilation via the reductive pentose phosphate cycle in oxygenic but not anoxygenic photosynthetic cells.

  20. Xylose fermentation to ethanol. A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-hmore » have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.« less

  1. Xylose fermentation to ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-hmore » have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.« less

  2. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfiffner, Susan M.; Löffler, Frank; Ritalahti, Kirsti

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomicsmore » technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic analyses, and gene expression studies to support the metaproteomics characterizations. Growth experiments of target microorganisms (Anaeromyxobacter, Shewanella, Geobacter) revealed tremendous respiratory versatility, as evidenced by the ability to utilize a range of electron donors (e.g. acetate, hydrogen, pyruvate, lactate, succinate, formate) and electron acceptors (e.g. nitrate, fumarate, halogenated phenols, ferric iron, nitrous oxide, etc.). In particular, the dissimilatory metabolic reduction of metals, including radionuclides, by target microorganisms spurred interest for in situ bioremediation of contaminated soils and sediments. Distinct c-type cytochrome expression patterns were observed in target microorganisms grown with the different electron acceptors. For each target microorganism, the core proteome covered almost all metabolic pathways represented by their corresponding pan-proteomes. Unique proteins were detected for each target microorganism, and their expression and possible functionalities were linked to specific growth conditions through proteomics measurements. Optimization of the proteomic tools included in-depth comprehensive metagenomic and metaproteomic analyses on a limited number of samples. The optimized metaproteomic analyses were then applied to Oak Ridge IFRC field samples from the slow-release substrate biostimulation. Metaproteomic analysis and pathway mapping results demonstrated the distinct effects of metal and non-metal growth conditions on the proteome expression. With these metaproteomic tools, we identified which previously hypothetical metabolic pathways were active during the analyzed time points of the slow release substrate biostimulation. Thus, we demonstrated the utility of these tools for site assessment, efficient implementation of bioremediation and long-term monitoring. This research of detailed protein analysis linked with metal reduction activity did (1) show that c-type cytochrome isoforms, previously associated with radionuclide reduction activity, are suitable biomarkers, (2) identify new biomarker targets for site assessment and bioremediation monitoring, and (3) provide new information about specific proteins and mechanisms involved in U(VI) reduction and immobilization. This expanded metagenomic and metaproteomic toolbox contributed to implementing science-driven site management with broad benefits to the DOE mission.« less

  3. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals

    USGS Publications Warehouse

    Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S.

    1993-01-01

    The gram-negative metal-reducing microorganism, previously known as strain GS-15, was further characterized. This strict anaerobe oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. Furthermore, acetate is also oxidized with the reduction of Mn(IV), U(VI), and nitrate. In whole cell suspensions, the c-type cytochrome(s) of this organism was oxidized by physiological electron acceptors and also by gold, silver, mercury, and chromate. Menaquinone was recovered in concentrations comparable to those previously found in gram-negative sulfate reducers. Profiles of the phospholipid ester-linked fatty acids indicated that both the anaerobic desaturase and the branched pathways for fatty acid biosynthesis were operative. The organism contained three lipopolysaccharide hydroxy fatty acids which have not been previously reported in microorganisms, but have been observed in anaerobic freshwater sediments. The 16S rRNA sequence indicated that this organism belongs in the delta proteobacteria. Its closest known relative is Desulfuromonas acetoxidans. The name Geobacter metallireducens is proposed.

  4. Study of utilization liquid smoke and carrageenan as a natural antibacterial in manufacturing beef meatballs

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Arifiani S., N.; Yaqin, N.; Baarri, A. N. Al

    2018-01-01

    This research have observed liquid smoke and carragenan ability to obstruct microbe activity. Phenol and sulfate ester in liquid smoke and carrageenan, give preservation effect by obstruct microorganisms growth on beef meatballs. Liquid smoke and carrageenan was added on a particular variation into meatballs dough. Liquid smoke variation was 0.5%-1%, and carrageenan variation was 0.5%-1.5%. Meatballs then stored up to 36 hours at room temperature and performed TPC test in every 12 hours. The results indicates that in 0-12 hours carragenan has significant effect to obstruct microorganism growth with the percentage reduction in total bacteria was 13.54% and 93.73%. In 24-36 hours liquid smoke effected to the significant effect obstruction of microorganism growth with the percentage reduction in total bacteria was 98.99% and 99.93%. The addition of liquid smoke and carrageenan did not give a significant effect on the lightness of beef meatballs produced, but provided significant effect on the storage time and the lightness of beef meatballs.

  5. Simultaneous removal of organic matter and salt ions from coal gasification wastewater RO concentrate and microorganisms succession in a MBR.

    PubMed

    Jia, Shengyong; Han, Yuxing; Zhuang, Haifeng; Han, Hongjun; Li, Kun

    2017-10-01

    A lab-scale membrane bioreactor (MBR) with intermittent aeration was operated to treat the reverse osmosis concentrate derived from coal gasification wastewater. Results showed intermittent aeration represented slight effect on organic matter reduction but significant effect on nitrite and nitrate reduction, with 6h aeration and 6h non-aeration, removal efficiencies of organic matter, chloride, sulfate, nitrite and nitrate reached 48.35%, 40.91%, 34.28%, -36.05% and 64.34%, respectively. High-throughput sequencing showed a microorganisms succession from inoculated activated sludge (S1) to activated sludge in MBR (S2) with high salinity. Richness and diversity of microorganisms in S2 was lower than S1 and the community structure of S1 exhibited more even than S2. The most relative abundance of genus in S1 and S2 were unclassified_Desulfarculaceae (9.39%) and Roseibaca (62.1%), respectively. High salinity and intermittent aeration represented different influence on the denitrifying genus, and non-aeration phase provided feasible dissolved oxygen condition for denitrifying genera realizing denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biochar for composting improvement and contaminants reduction. A review.

    PubMed

    Godlewska, Paulina; Schmidt, Hans Peter; Ok, Yong Sik; Oleszczuk, Patryk

    2017-12-01

    Biochar is characterised by a large specific surface area, porosity, and a large amount of functional groups. All of those features cause that biochar can be a potentially good material in the optimisation of the process of composting and final compost quality. The objective of this study was to compile the current knowledge on the possibility of biochar application in the process of composting and on the effect of biochar on compost properties and on the content of contaminants in compost. The paper presents the effect of biochar on compost maturity indices, composting temperature and moisture, and also on the content and bioavailability of nutrients and of organic and inorganic contaminants. In the paper note is also taken of the effect of biochar added to composted material on plants, microorganisms and soil invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of mercury from coal via a microbial pretreatment process

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  8. Optimization of microbial detoxification for an aquatic mercury-contaminated environment.

    PubMed

    Figueiredo, Neusa L; Canário, João; Serralheiro, Maria Luísa; Carvalho, Cristina

    2017-01-01

    Mercury (Hg) reduction performed by microorganisms is well recognized as a biological means for remediation of contaminated environment. Recently, studies demonstrated that Hg-resistant microorganisms of Tagus Estuary are involved in metal reduction processes. In the present study, aerobic microbial community isolated from a highly Hg-contaminated area of Tagus Estuary was used to determine the optimization of the reduction process in conditions such as the contaminated ecosystem. Factorial design methodology was employed to examine the influence of glucose, sulfate, iron, and chloride on Hg reduction. In the presence of several concentrations of these elements, microbial community reduced Hg in a range of 37-61% of the initial 0.1 mg/ml Hg 2+ levels. The response prediction through central composite design showed that the increase of sulfate concentration led to an optimal response in Hg reduction by microbial community, while the rise in chloride levels markedly decreased metal reduction. Iron may exert antagonistic effects depending upon the media composition. These results are useful in understanding the persistence of Hg contamination in Tagus Estuary after inactivation of critical industrial units, as well as data might also be beneficial for development of new bioremediation strategies either in Tagus Estuary and/or in other Hg-contaminated aquatic environments.

  9. Reduction and characterization of bioaerosols in a wastewater treatment station via ventilation.

    PubMed

    Guo, Xuesong; Wu, Pianpian; Ding, Wenjie; Zhang, Weiyi; Li, Lin

    2014-08-01

    Bioaerosols from wastewater treatment processes are a significant subgroup of atmospheric aerosols. In the present study, airborne microorganisms generated from a wastewater treatment station (WWTS) that uses an oxidation ditch process were diminished by ventilation. Conventional sampling and detection methods combined with cloning/sequencing techniques were applied to determine the groups, concentrations, size distributions, and species diversity of airborne microorganisms before and after ventilation. There were 3021 ± 537 CFU/m³ of airborne bacteria and 926 ± 132 CFU/m³ of airborne fungi present in the WWTS bioaerosol. Results showed that the ventilation reduced airborne microorganisms significantly compared to the air in the WWTS. Over 60% of airborne bacteria and airborne fungi could be reduced after 4 hr of air exchange. The highest removal (92.1% for airborne bacteria and 89.1% for fungi) was achieved for 0.65-1.1 μm sized particles. The bioaerosol particles over 4.7 μm were also reduced effectively. Large particles tended to be lost by gravitational settling and small particles were generally carried away, which led to the relatively easy reduction of bioaerosol particles 0.65-1.1 μm and over 4.7 μm in size. An obvious variation occurred in the structure of the bacterial communities when ventilation was applied to control the airborne microorganisms in enclosed spaces. Copyright © 2014. Published by Elsevier B.V.

  10. Antimicrobial Properties of Topical Anesthetic Liquids Containing Lidocaine or Benzocaine

    PubMed Central

    Morrow, Mark E.; Berry, Charles W.

    1988-01-01

    Six species of microorganisms commonly found within the oral cavity were exposed for either one minute or two hours to 5% lidocaine liquid topical anesthetic and benzocaine liquid topical anesthetic. Mixtures of microorganisms and anesthetics were diluted and plated onto a brain heart infusion medium. Reduction in cell viability was 73-100% after exposure to the anesthetic agents when compared with the saline/buffer controls. A significant reduction (p < .005) in cell growth by Streptococcus mutans, S. sanguis, S. mitis, S. salivarius, Actinomyces viscosus, and Candida albicans was associated with a one-minute and two-hour exposure to lidocaine, benzocaine, 5% lidocaine, and the benzocaine vehicle control. Five percent lidocaine reduced growth of the test orgainisms more than benzocaine in one-minute exposures to S. mutans, A. viscosus and S. salivarius and with a two-hour exposure to S. salivarius. Five percent lidocaine was bacteriocidal or fungicidal to all microorganisms for both time periods whereas, benzocaine liquid topical anesthetic was predominately bacteriostatic or fungistatic after one-minute exposures and bacteriocidal or fungicidal after two hours. The results indicated that two dental liquid topical anesthetics containing lidocaine or benzocaine possessed considerable antimicrobial activity to selected oral microorganisms. The exclusive use of a topical liquid anesthetic may be an adequate means to render the oral mucosa aseptic before injection of a local anesthetic. PMID:3278655

  11. Local oxygen therapy for treating acute necrotizing periodontal disease in smokers.

    PubMed

    Gaggl, Alexander J; Rainer, Heribert; Grund, Eveline; Chiari, Friedrich M

    2006-01-01

    The main aim of treatment for acute necrotizing periodontal disease is fast and effective reduction of anaerobic destructive microorganisms to avoid periodontal damage. The effect of adjunctive local oxygen therapy in the treatment of necrotizing periodontal disease was examined in this study. Thirty patients with acute necrotizing periodontal disease were treated with the systemic antibiotics amoxicillin, clavulanic acid, and metronidazole. In 15 out of 30 patients, adjunctive local oxygen therapy was administered. The patients were followed from the first to 10th day of treatment with clinical and bacteriological examinations. The clinical examination registered gingival bleeding, periodontal probing depth, and attachment loss; to follow up microbiological colonization of the periodontal sulcus, five representative bacteria were registered by a semiquantitative DNA polymerase chain reaction test. In both groups of patients, colonization with Prevotella intermedia, Tannerella forsythensis, and Treponema denticola was initially positive. None of these three microorganisms were completely eradicated in any of the patients in the group without oxygen therapy within the first 10 days of treatment. In the group with adjunctive oxygen therapy, all patients either showed a reduction in or complete eradication of the microorganisms, resulting in more rapid clinical restitution with less periodontal destruction. Adjunctive oxygen therapy results in early eradication of pathogenic anaerobic microorganisms in cases of acute necrotizing periodontal disease. The damage to periodontal tissue is reduced.

  12. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor.

    PubMed

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell'Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%).

  13. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor

    PubMed Central

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell’Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%). PMID:24294260

  14. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    PubMed

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  15. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  16. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

    PubMed Central

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-01-01

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria. PMID:26555802

  17. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.

    PubMed

    Guerrero-Barajas, Claudia; Ordaz, Alberto; García-Solares, Selene Montserrat; Garibay-Orijel, Claudio; Bastida-González, Fernando; Zárate-Segura, Paola Berenice

    2015-10-15

    The importance of microbial sulfate reduction relies on the various applications that it offers in environmental biotechnology. Engineered sulfate reduction is used in industrial wastewater treatment to remove large concentrations of sulfate along with the chemical oxygen demand (COD) and heavy metals. The most common approach to the process is with anaerobic bioreactors in which sulfidogenic sludge is obtained through adaptation of predominantly methanogenic granular sludge to sulfidogenesis. This process may take a long time and does not always eliminate the competition for substrate due to the presence of methanogens in the sludge. In this work, we propose a novel approach to obtain sulfidogenic sludge in which hydrothermal vents sediments are the original source of microorganisms. The microbial community developed in the presence of sulfate and volatile fatty acids is wide enough to sustain sulfate reduction over a long period of time without exhibiting inhibition due to sulfide. This protocol describes the procedure to generate the sludge from the sediments in an upflow anaerobic sludge blanket (UASB) type of reactor. Furthermore, the protocol presents the procedure to demonstrate the capability of the sludge to remove by reductive dechlorination a model of a highly toxic organic pollutant such as trichloroethylene (TCE). The protocol is divided in three stages: (1) the formation of the sludge and the determination of its sulfate reducing activity in the UASB, (2) the experiment to remove the TCE by the sludge, and (3) the identification of microorganisms in the sludge after the TCE reduction. Although in this case the sediments were taken from a site located in Mexico, the generation of a sulfidogenic sludge by using this procedure may work if a different source of sediments is taken since marine sediments are a natural pool of microorganisms that may be enriched in sulfate reducing bacteria.

  18. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots

    PubMed Central

    Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.

    2018-01-01

    Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529

  19. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    PubMed Central

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.

    2017-01-01

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary. PMID:28685163

  20. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.

    ABSTRACT Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes frommore » metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Towprayoon, S.; Kuntrangwattana, S.

    Cutting oil wastewater from an iron and steel factory was applied to the soil windrow. Self-remediation was then compared with remediation with acclimatized indigenous microbes. The incremental reduction rate of the microorganisms and hydrocarbon-degradable microbes was slower in self-remediation than in the latter treatment. Within 30 days, when the acclimatized indigenous microbes were used, there was a significant reduction of the contaminated hydrocarbons, while self-remediation took longer to reduce to the same concentration. Various nitrogen sources were applied to the soil pile, namely, organic compost, chemical fertilizer, ammonium sulfate, and urea. The organic compost induced a high yield of hydrocarbon-degradablemore » microorganisms, but the rate at which the cutting oil in the soil decreased was slower than when other nitrogen sources were used. The results of cutting oil degradation studied by gas chromatography showed the absence of some important hydrocarbons. The increment of the hydrocarbon-degradable microbes in the land treatment ecosystem does not necessarily correspond to the hydrocarbon reduction efficiency. 3 refs., 3 figs.« less

  2. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials

    PubMed Central

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Chiavari, Cristiana; Benevelli, Marzia; Grazia, Luigi; Lanciotti, Rosalba

    2017-01-01

    The aim of this work was to study the interaction of corrugated and plastic materials with pathogenic and spoiling microorganisms frequently associated to fresh produce. The effect of the two packaging materials on the survival during the storage of microorganisms belonging to the species Escherichia coli, Listeria monocytogenes, Salmonella enteritidis, Saccharomyces cerevisiae, Lactobacillus plantarum, Pseudomonas fluorescens, and Aspergillus flavus was studied through traditional plate counting and scanning electron microscopy (SEM). The results obtained showed that cardboard materials, if correctly stored, reduced the potential of packaging to cross-contaminate food due to a faster viability loss by spoilage and pathogenic microorganisms compared to the plastic ones. In fact, the cell loads of the pathogenic species considered decreased over time independently on the inoculation level and packaging material used. However, the superficial viability losses were significantly faster in cardboard compared to plastic materials. The same behavior was observed for the spoilage microorganisms considered. The SEM microphotographs indicate that the reduction of superficial contamination on cardboard surfaces was due to the entrapping of the microbial cells within the fibers and the pores of this material. In addition, SEM data showed that the entrapped cells were subjected to more or less rapid lyses, depending on the species, due to the absence of water and nutrients, with the exception of molds. The latter spoilers were able to proliferate inside the cardboard fibers only when the absorption of water was not prevented during the storage. In conclusion, the findings of this work showed the reduction of cross-contamination potential of corrugated compared to plastic packaging materials used in fruit and vegetable sector. However, the findings outlined the importance of hygiene and low humidity during cardboard storage to prevent the mold growth on packaging. PMID:29312271

  3. Comparison of Different Irrigants in the Removal of Endotoxins and Cultivable Microorganisms from Infected Root Canals

    PubMed Central

    Valera, Marcia Carneiro; Cardoso, Flávia Goulart da Rosa; Chung, Adriana; Xavier, Ana Cláudia Carvalho; Figueiredo, Mariana Diehl; Martinho, Frederico Canato; Palo, Renato Miotto

    2015-01-01

    This study was conducted to compare the effectiveness of different irrigants used to remove endotoxins and cultivable microorganisms during endodontic therapy. Forty root canals were contaminated and divided into groups according to the irrigant: 2% NaOCl + surfactant, 2% CHX, 2.5% NaOCl, and pyrogen-free saline solution (control). Samples were collected after root canal contamination (S1), after instrumentation (S2), and 7 days after instrumentation (S3). Microorganisms and endotoxins were recovered from 100% of the contaminated root canals (S1). At S2, 2% NaOCl + surfactant, 2% CHX, and 2.5% NaOCl were able to completely eliminate cultivable microorganisms. At S3, both 2% CHX and 2.5% NaOCl were effective in preventing C. albicans and E. coli regrowth, but E. faecalis was still detected. No microorganism species was recovered from root canals instrumented with 2% NaOCl + surfactant. At S2, a higher percentage value of endotoxin reduction was found for 2% NaOCl + surfactant (99.3%) compared to 2% CHX (98.9%) and 2.5% NaOCl (97.18%) (p < 0.05). Moreover, at S3, 2% NaOCl + surfactant (100%) was the most effective irrigant against endotoxins. All irrigants tested were effective in reducing microorganisms and endotoxins from root canals. Moreover, 2% NaOCl + surfactant was the most effective irrigant against endotoxins and regrowth of microorganisms. PMID:26346574

  4. Textiles for protection against microorganism

    NASA Astrophysics Data System (ADS)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  5. Mechanisms of hexavalent chromium resistance and removal by microorganisms.

    PubMed

    Joutey, Nezha Tahri; Sayel, Hanane; Bahafid, Wifak; El Ghachtouli, Naïma

    2015-01-01

    Chromium has been and is extensively used worldwide in multiple industrial processes and is routinely discharged to the environment from such processes. Therefore, this heavy metal is a potential threat to the environment and to public health, primarily because it is non-biodegradable and environmentally persistent. Chromium exists in several oxidation states, the most stable of which are trivalent Cr(Ill) and hexavalent Cr(VI) species. Each species possesses its own individual chemical characteristics and produces its own biological effects. For example, Cr (Ill) is an essential oligoelement for humans, whereas Cr(VI) is carcinogenic and mutagenic. Several chemical methods are used to remove Cr(VI) from contaminated sites. Each of these methods has advantages and disadvantages. Currently, bioremediation is often the preferred method to deal with Cr contaminated sites, because it is eco-friendly, cost-effective and is a "natural" technology. Many yeast, bacterial and fungal species have been assessed for their suitability to reduce or remove Cr(VI) contamination. The mechanisms by which these microorganisms resist and reduce Cr(VI) are variable and are species dependent. There are several Cr-resistance mechanisms that are displayed by microorganisms. These include active efflux of Cr compounds, metabolic reduction of Cr(VI) to Cr (ill), and either intercellular or extracellular prec1p1tation. Microbial Cr (VI) removal typically involves three stages: binding of chromium to the cell surface, translocation of chromium into the cell, and reduction of Cr(VI) to Cr (ill). Cr(VI) reduction by microorganisms may proceed on the cell surface, outside the cell, or intracellularly, either directly via chromate reductase enzymes, or indirectly via metabolite reduction of Cr(VI). The uptake of chromium ions is a biphasic process. The primary step is known as biosorption, a metabolic energyindependent process. Thereafter, bioaccumulation occurs, but is much slower, and is dependent on cell metabolic activity. Choosing an appropriate bioremediation strategy for Cr is extremely important and must involve investigating and understanding the key mechanisms that are involved in microbial resistance to and removal of Cr(VI).

  6. Cleanliness in context: reconciling hygiene with a modern microbial perspective.

    PubMed

    Vandegrift, Roo; Bateman, Ashley C; Siemens, Kyla N; Nguyen, May; Wilson, Hannah E; Green, Jessica L; Van Den Wymelenberg, Kevin G; Hickey, Roxana J

    2017-07-14

    The concept of hygiene is rooted in the relationship between cleanliness and the maintenance of good health. Since the widespread acceptance of the germ theory of disease, hygiene has become increasingly conflated with sterilization. In reviewing studies across the hygiene literature (most often hand hygiene), we found that nearly all studies of hand hygiene utilize bulk reduction in bacterial load as a proxy for reduced transmission of pathogenic organisms. This treatment of hygiene may be insufficient in light of recent microbial ecology research, which has demonstrated that humans have intimate and evolutionarily significant relationships with a diverse assemblage of microorganisms (our microbiota). The human skin is home to a diverse and specific community of microorganisms, which include members that exist across the ecological spectrum from pathogen through commensal to mutualist. Most evidence suggests that the skin microbiota is likely of direct benefit to the host and only rarely exhibits pathogenicity. This complex ecological context suggests that the conception of hygiene as a unilateral reduction or removal of microbes has outlived its usefulness. As such, we suggest the explicit definition of hygiene as "those actions and practices that reduce the spread or transmission of pathogenic microorganisms, and thus reduce the incidence of disease."

  7. Antimicrobial activity, cytotoxicity and inflammatory response of novel plastics embedded with silver nanoparticles.

    PubMed

    Martínez-Gutiérrez, Fidel; Guajardo-Pacheco, Jesús M; Noriega-Trevino, María E; Thi, Emily P; Reiner, Neil; Orrantia, Erasmo; Av-Gay, Yossef; Ruiz, Facundo; Bach, Horacio

    2013-03-01

    Infections associated with medical devices are an important cause of morbidity and mortality. Microorganisms are responsible for catheter infections that may then result in the local or systemic dissemination of the microorganism into the bloodstream. The aim of this study was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) embedded in polyurethane plastics, commonly used for catheter fabrication. AgNPs in the range of 25-30 nm were synthesized and embedded in polyurethane plastics at different concentrations. The antimicrobial activities of these plastics were tested against the three pathogenic microorganisms, Escherichia coli, Staphylococcus epidermidis and Candida albicans, frequently associated with catheter infections. The cytotoxicity of the plastics was evaluated on human-derived macrophages using propidium iodide and the secretion of the pro- and anti-inflammatory cytokines IL-6, IL-10 and TNF-a was measured using ELISA. A significant reduction of 6- to 7-log in the number of bacteria was measured, while a reduction of 90% was measured in the case of C. albicans. Neither cytotoxic effect on macrophages nor immunological response was observed. Plastics embedded with AgNPs have great potential to limit microbial colonization of implanted medical devices.

  8. Cleaning efficacy of hydroxypropyl-beta-cyclodextrin for biofouling reduction on reverse osmosis membranes.

    PubMed

    Alayande, Abayomi Babatunde; Kim, Lan Hee; Kim, In S

    2016-01-01

    In this study, an environmentally friendly compound, hydroxypropyl-beta-cyclodextrin (HP-β-CD) was applied to clean reverse osmosis (RO) membranes fouled by microorganisms. The cleaning with HP-β-CD removed the biofilm and resulted in a flux recovery ratio (FRR) of 102%. As cleaning efficiency is sometimes difficult to determine using flux recovery data alone, attached bacterial cells and extracellular polymeric substances (EPS) were quantified after cleaning the biofouled membrane with HP-β-CD. Membrane surface characterization using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and atomic force microscopy (AFM) confirmed the effectiveness of HP-β-CD in removal of biofilm from the RO membrane surface. Finally, a comparative study was performed to investigate the competitiveness of HP-β-CD with other known cleaning agents such as sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), Tween 20, rhamnolipid, nisin, and surfactin. In all cases, HP-β-CD was superior.

  9. Microbial decontamination of cosmetic raw materials and personal care products by irradiation

    NASA Astrophysics Data System (ADS)

    Katušin-Ražem, Branka; Mihaljević, Branka; Ražem, Dušan

    2003-03-01

    Typical levels of sporadically occurring (dynamic) microbial contamination of cosmetic raw materials: pigments, abrasives and liposomes, as well as of final products for personal care: toothpaste, crayons, shampoos, cleansers and creams, were evaluated. In most cases the contamination was dominated by a single population of microorganisms, either Gram-negative bacteria or molds. The feasibility of microbial decontamination by irradiation was studied by determining the resistance to gamma radiation of contaminating microflora in situ. It was expressed as a dose required for the first 90% reduction, D first 90% red . The values in the range 1-2 kGy for molds and 0.1-0.6 kGy for Gram-negative bacteria were obtained. This relatively high susceptibility to irradiation allowed inactivation factors close to 6 to be achieved with doses generally not exceeding 3 kGy, and yielding endpoint contamination less than 10/g.

  10. Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment.

    PubMed

    Cheng, Guanghuan; Sun, Mingyang; Ge, Xinlei; Xu, Xinhua; Lin, Qi; Lou, Liping

    2017-12-01

    The present study aimed to investigate biodegradation mechanisms of black carbon (BC)-bound contaminants in BC-amended sediment when BC was applied to control organic pollution. The single-point Tenax desorption technique was applied to track the species changes of nonylphenol (NP) during biodegradation process in the rice straw carbon (RC)-amended sediment. And the correlation between the biodegradation and desorption of NP was analyzed. Results showed that microorganisms firstly degraded the rapid-desorbing NP (6 h Tenax desorption) in RC-amended sediment. The biodegradation facilitated the desorption of slow-desorbing NP, which was subsequently degraded as well (192 h Tenax desorption). Notably, the final amount of NP degradation was greater than that of NP desorption, indicating that absorbed NP by RC amendment can be degraded by microorganisms. Finally, the residual NP amount in RC-amended sediment was decided by RC content and its physicochemical property. Moreover, the presence of the biofilm was observed by the confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) so that microorganisms were able to overcome the mass transfer resistance and directly utilized the absorbed NP. Therefore, single-point Tenax desorption alone may not be an adequate basis for the prediction of the bioaccessibility of contaminants to microorganisms or bioremediation potential in BC-amended sediment. Copyright © 2017. Published by Elsevier Ltd.

  11. Virulence and antimicrobial resistance of Salmonella spp. and Escherichia coli in the beef jerky production line.

    PubMed

    Fernandes, Fernanda Pereira; Voloski, Flávia Liége Schütz; Ramires, Tassiana; Haubert, Louise; Reta, Giulia Giugliani; Mondadori, Rafael Gianella; Silva, Wladimir Padilha da; Conceição, Rita de Cássia Dos Santos da; Duval, Eduarda Hallal

    2017-05-01

    Intense manipulation during beef jerky production increases the possibility of contamination with pathogenic microorganisms. This study evaluated the contamination by thermotolerant coliforms, Escherichia coli and Salmonella spp., on processing surfaces and raw materials during beef jerky production, as well as in the final product. Thermotolerant coliforms were found on all surfaces tested and in the raw material. Escherichia coli was identified in 6.7% of the surface samples, while Salmonella spp. was found in 3.3% of the surface samples and 8.6% of raw material samples. Virulence genes were detected in Salmonella spp. isolates. One Salmonella spp. isolate was resistant to sulfonamide, while one E. coli isolate was multiresistant, including the presence of resistance genes sul2, strA, strB, tetA and tetB. The presence of coliforms demonstrates failings in hygienic-sanitary procedures. The presence of pathogenic microorganisms causing foodborne diseases in the production line indicates persistent contamination in the production plant. Although the drying process applied to beef jerky should guarantee the safety of the final product, the presence of multiresistant pathogenic microorganisms, presenting virulence genes, should be a matter of concern. Because beef jerky is a ready-to-eat product, a failure in the production process may cause such microorganisms to pose a public health risk. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Natural inactivation of Escherichia coli in anoxic and reduced groundwater

    USGS Publications Warehouse

    Lisle, John T.

    2016-01-01

    Aquifer recharge zones with geochemical characteristics observed in this study complement above ground engineered processes (e.g., filtration, disinfection), while increasing the overall indicator microorganism log-reduction rate of a facility.

  13. Processes controlling the fate of chloroethenes emanating from DNAPL aged sources in river-aquifer contexts.

    PubMed

    Puigserver, Diana; Cortés, Amparo; Viladevall, Manuel; Nogueras, Xènia; Parker, Beth L; Carmona, José M

    2014-11-01

    This work dealt with the physical and biogeochemical processes that favored the natural attenuation of chloroethene plumes of aged sources located close to influent rivers in the presence of co-contaminants, such as nitrate and sulfate. Two working hypotheses were proposed: i) Reductive dechlorination is increased in areas where the river-aquifer relationship results in the groundwater dilution of electron acceptors, the reduction potential of which exceeds that of specific chloroethenes; ii) zones where silts predominate or where textural changes occur are zones in which biodegradation preferentially takes place. A field site on a Quaternary alluvial aquifer at Torelló, Catalonia (Spain) was selected to validate these hypotheses. This aquifer is adjacent to an influent river, and its redox conditions favor reductive dechlorination. The main findings showed that the low concentrations of nitrate and sulfate due to dilution caused by the input of surface water diminish the competition for electrons between microorganisms that reduce co-contaminants and chloroethenes. Under these conditions, the most bioavailable electron acceptors were PCE and metabolites, which meant that their biodegradation was favored. This led to the possibility of devising remediation strategies based on bioenhancing natural attenuation. The artificial recharge with water that is low in nitrates and sulfates may favor dechlorinating microorganisms if the redox conditions in the mixing water are sufficiently maintained as reducing and if there are nutrients, electron donors and carbon sources necessary for these microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Attempt to simultaneously generate three chiral centers in 4-hydroxyisoleucine with microbial carbonyl reductases.

    PubMed

    Hibi, Makoto; Takahashi, Koji; Kako, Junko; Wakita, Yuuta; Kodera, Tomohiro; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2018-04-01

    A panel of microorganisms was screened for selective reduction ability towards a racemic mixture of prochiral 2-amino-3-methyl-4-ketopentanoate (rac-AMKP). Several of the microorganisms tested produced greater than 0.5mM 4-hydroxyisoleucine (HIL) from rac-AMKP, and the stereoselectivity of HIL formation was found to depend on the taxonomic category to which the microorganism belonged. The enzymes responsible for the AMKP-reducing activity, ApAR and FsAR, were identified from two of these microorganisms, Aureobasidium pullulans NBRC 4466 and Fusarium solani TG-2, respectively. Three AMKP reducing enzymes, ApAR, FsAR, and the previously reported BtHILDH, were reacted with rac-AMKP, and each enzyme selectively produced a specific composition of HIL stereoisomers. The enzymes appeared to have different characteristics in recognition of the stereostructure of the substrate AMKP and in control of the 4-hydroxyl group configuration in the HIL product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.

    PubMed

    Correia, Raquel Rose Silva; Guimarães, Jean Remy Davée

    2017-01-01

    Recent studies have shown Hg methylation in mangrove sediments, however, little is known about the different microorganism consortia involved. We investigated the participation of prokaryotes in general, iron-reducing bacteria-IRB, sulfate-reducing bacteria-SRB, methanogens and fungi in Hg methylation and sulfate reduction rates (SRR) in mangrove sediments using iron amendments for IRB and specific inhibitors for the other microorganisms. Sediment samples were collected from two mangrove zones, tidal flat and mangrove forest (named root sediments). Samples were incubated with 203 Hg or 35 SO 4 2- and Me 203 Hg/ 35 Sulfur were measured by liquid scintillation. Methylmercury (MeHg) formation was significantly reduced when SRB (87.7%), prokaryotes (76%) and methanogens (36.5%) were inhibited in root sediments, but only SRB (51.6%) and prokaryotes (57.3%) in tidal flat. However, in the tidal flat, inhibition of methanogens doubled Hg methylation (104.5%). All inhibitors (except fungicide) significantly reduced SRR in both zones. In iron amended tidal flat samples, Hg methylation increased 56.5% at 100 μg g -1 and decreased at 500 and 1000 μg g -1 (57.8 and 82%). In the roots region, however, MeHg formation gradually decreased in response to Fe amendments from 100 μg g -1 (37.7%) to 1000 μg g -1 (93%). SRR decreased in all iron amendments. This first simultaneous evaluation of Hg methylation and sulfate-reduction and of the effect of iron and inhibitors on both processes suggest that SRB are important Hg methylators in mangrove sediments. However, it also suggests that SRB activity could not explain all MeHg formation. This implies the direct or indirect participation of other microorganisms such as IRB and methanogens and a complex relationship among these groups. Copyright © 2016. Published by Elsevier Ltd.

  16. Cattail-to-alcohol project. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Harvesting, grinding, and fermentation of cattails and/or their rhizomes are described. The use of antibiotics to prevent massive contamination of microorganisms and cessation of fermentation is discussed.

  17. Compendium of Dental Residents’ Research Project and Literature Reviews - 1991.

    DTIC Science & Technology

    1992-04-01

    4-log1 0 (99.99%) reduction of any of the microorgan- isms under the test conditions. Sporicidin and 0.525% sodium hypochlorite were able to effect a...4-log1 0 reduction against S. aureus only. Impresept and 5.25% sodium hypochlorite did achieve a 4-log10 reduction in bacterial counts in all cases...alginate impressions is currently unknown and warrants investigation. Full strength (5.25%) sodium hypochlorite was effective in the shortest contact time (1

  18. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    PubMed

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  19. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovley, Derek R.

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) tomore » insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated that electron conduction along pili is a better strategy for Fe(III) oxide reduction under conditions found in the subsurface than producing an electron shuttle. The role of pili in uranium reduction was also elucidated. Our results are the first example of metallic-like conductivity in a biological protein and represent a paradigm shift in the understanding of long-range biological electron transport. The results are of importance not only for understanding subsurface microbial processes involved in the mobility of metal contaminants and carbon cycling, but also make a basic contribution to microbiology and the emerging field of bioelectronics.« less

  20. Physical and chemical control of released microorganisms at field sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donegan, K.; Seidler, R.; Matyac, C.

    1991-01-01

    An important consideration in the environmental release of a genetically engineered microorganism (GEM) is the capability for reduction or elimination of GEM populations once their function is completed or if adverse environmental effects are observed. The decontamination treatments of burning and biocide application, alone and in combination with tilling, were evaluated for their ability to reduce populations of bacteria released on the phylloplane. Field plots of bush beans sprayed with the bacterium Erwinia herbicola, received the following treatments: (1) control, (2) control + till, (3) burn, (4) burn + till, (5) Kocide (cupric hydroxide), (6) Kocide + till, (7) Agri-strepmore » (streptomycin sulfate), and (8) Agri-strept + till. Leaves and soil from the plots were sampled -1, 1, 5, 8, 12, 15, 19, and 27 days after application of the decontamination treatments. Burning produced a significant and persistent reduction in the number of bacteria whereas tilling, alone or in combination with the biocide treatments, stimulated a significant and persistent reduction in the number of bacteria, whereas tilling, alone or in combination with the biocide treatments, stimulated a significant increase in bacterial populations that persisted for several weeks.« less

  1. Gamma sterilization of pharmaceuticals--a review of the irradiation of excipients, active pharmaceutical ingredients, and final drug product formulations.

    PubMed

    Hasanain, Fatima; Guenther, Katharina; Mullett, Wayne M; Craven, Emily

    2014-01-01

    Sterilization by gamma irradiation has shown a strong applicability for a wide range of pharmaceutical products. Due to the requirement for terminal sterilization where possible in the pharmaceutical industry, gamma sterilization has proven itself to be an effective method as indicated by its acceptance in the European Pharmacopeia and the United States Pharmacopeia ( ). Some of the advantages of gamma over competitive procedures include high penetration power, isothermal character (small temperature rise), and no residues. It also provides a better assurance of product sterility than aseptic processing, as well as lower validation demands. Gamma irradiation is capable of killing microorganisms by breaking their chemical bonds, producing free radicals that attack the nucleic acid of the microorganism. Sterility by gamma irradiation is achieved mainly by the alteration of nucleic acid and preventing the cellular division. This review focuses on the extensive application of gamma sterilization to a wide range of pharmaceutical components including active pharmaceutical ingredients, excipients, final drug products, and combination drug-medical devices. A summary of the published literature for each class of pharmaceutical compound or product is presented. The irradiation conditions and various quality control characterization methodologies that were used to determine final product quality are included, in addition to a summary of the investigational outcomes. Based on this extensive literature review and in combination with regulatory guidelines and other published best practices, a decision tree for implementation of gamma irradiation for pharmaceutical products is established. This flow chart further facilitates the implementation of gamma irradiation in the pharmaceutical development process. The summary therefore provides a useful reference to the application and versatility of gamma irradiation for pharmaceutical sterilization. Many pharmaceutical products require sterilization to ensure their safe and effective use. Sterility is therefore a critical quality attribute and is essential for direct injection products. Due to the requirement for terminal sterilization, where possible in the pharmaceutical industry sterilization by gamma irradiation has been commonly used as an effective method to sterilize pharmaceutical products as indicated by its acceptance in the European Pharmacopeia. Gamma sterilization is a very attractive terminal sterilization method in view of its ability to attain 10(-6) probability of microbial survival without excessive heating of the product or exposure to toxic chemicals. However, radiation compatibility of a product is one of the first aspects to evaluate when considering gamma sterilization. Gamma radiation consists of high-energy photons that result in the generation of free radicals and the subsequent ionization of chemical bonds, leading to cleavage of DNA in microorganisms and their subsequent inactivation. This can result in a loss of active pharmaceutical ingredient potency, the creation of radiolysis by-products, a reduction of the molecular weight of polymer excipients, and influence drug release from the final product. There are several strategies for mitigating degradation effects, including optimization of the irradiation dose and conditions. This review will serve to highlight the extensive application of gamma sterilization to a broad spectrum of pharmaceutical components including active pharmaceutical ingredients, excipients, final drug products, and combination drug-medical devices.

  2. Robust evaluation of performance monitoring options for ozone disinfection in water recycling using Bayesian analysis.

    PubMed

    Carvajal, Guido; Branch, Amos; Michel, Philipp; Sisson, Scott A; Roser, David J; Drewes, Jörg E; Khan, Stuart J

    2017-11-01

    Ozonation of wastewater has gained popularity because of its effectiveness in removing colour, UV absorbance, trace organic chemicals, and pathogens. Due to the rapid reaction of ozone with organic compounds, dissolved ozone is often not measurable and therefore, the common disinfection controlling parameter, concentration integrated over contact time (CT) cannot be obtained. In such cases, alternative parameters have been shown to be useful as surrogate measures for microbial removal including change in UV 254 absorbance (ΔUVA), change in total fluorescence (ΔTF), or O 3 :TOC (or O 3 :DOC). Although these measures have shown promise, a number of caveats remain. These include uncertainties in the associations between these measurements and microbial inactivation. Furthermore, previous use of seeded microorganisms with higher disinfection sensitivity compared to autochthonous microorganisms could lead to overestimation of appropriate log credits. In our study, secondary treated wastewater from a full-scale plant was ozonated in a bench-scale reactor using five increasing ozone doses. During the experiments, removal of four indigenous microbial indicators representing viruses, bacteria and protozoa were monitored concurrent with ΔUVA, ΔTF, O 3 :DOC and PARAFAC derived components. Bayesian methods were used to fit linear regression models, and the uncertainty in the posterior predictive distributions and slopes provided a comparison between previously reported results and those reported here. Combined results indicated that all surrogate parameters were useful in predicting the removal of microorganisms, with a better fit to the models using ΔUVA, ΔTF in most cases. Average adjusted determination coefficients for fitted models were high (R 2 adjusted >0.47). With ΔUVA, one unit decrease in LRV corresponded with a UVA mean reduction of 15-20% for coliforms, 59% for C. perfringens spores, and 11% for somatic coliphages. With ΔTF, a one unit decrease in LRV corresponded with a TF mean reduction of 18-23% for coliforms, 71% for C. perfringens spores, and 14% for somatic coliphages. Compared to previous studies also analysed, our results suggest that microbial reductions were more conservative for autochthonous than for seeded microorganisms. The findings of our study suggested that site-specific analyses should be conducted to generate models with lower uncertainty and that indigenous microorganisms are useful for the measurement of system performance even when censored observations are obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. TAXONOMIC RELATIONSHIPS

    EPA Science Inventory

    The last several years have seen a notable increase in basic and applied research into the dissimilatory reduction of sulfate by microorganisms. The most significant change in our knowledge of this functionally-defined assemblage has been the recognition of far greater evolutiona...

  4. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.

    PubMed

    Bozoglan, Alihan; Ertugrul, Abdullah Seckin; Taspınar, Mehmet; Yuzbasioglu, Betul

    2017-05-01

    The aim of this study is to determine the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients following periodontal treatment. A total of 40 patients were included in the study. 20 of these patients diagnosed with atherosclerosis and chronic periodontitis formed the test group. The remaining 20 patients were systemically healthy patients diagnosed with chronic periodontitis and formed the control group. All patients had nonsurgical periodontal treatment. The periodontopathogenic microorganism levels were determined at baseline and at 6 months in microbial dental plaque samples and WBC, LDL, HDL, PLT, fibrinogen, creatinine and hs-CRP levels were determined by blood samples. Statistically significant reduction has been achieved in clinical periodontal parameters following non-surgical periodontal treatment in test and control groups. Following periodontal treatment, WBC, LDL, PLT, fibrinogen, creatinine and hs-CRP levels significantly decreased and HDL levels significantly increased in both test and control groups. Similarly, the periodontopathogenic microorganism levels significantly decreased following periodontal treatment in the test and control groups. A statistically significant positive correlation has been determined between the periodontopathogenic microorganism levels and WBC, LDL, PLT, fibrinogen, creatinine, and hs-CRP levels in the test group. The association between hs-CRP, WBC, LDL, PLT, fibrinogen, creatinine, and the amount of periodontopathogenic microorganisms indicates the possibility that periodontal treatment could decrease the risk atherosclerosis. More studies must be conducted in order for these results to be supported.

  5. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  6. Reduction of bromate to bromide coupled to acetate oxidation by anaerobic mixed microbial cultures.

    PubMed

    van Ginkel, C G; van Haperen, A M; van der Togt, B

    2005-01-01

    Bromate, a weakly mutagenic oxidizing agent, exists in surface waters. The biodegradation of bromate was investigated by assessing the ability of mixed cultures of micro-organisms for utilization of bromate as electron acceptor and acetate as electron donor. Reduction of bromate was only observed at relatively low concentrations (<3.0 mM) in the absence of molecular oxygen. Under these conditions bromate was reduced stoichiometrically to bromide. Unadapted sludge from an activated sludge treatment plant and a digester reduced bromate without lag period at a constant rate. Using an enrichment culture adapted to bromate, it was demonstrated that bromate was a terminal electron acceptor for anaerobic growth. Approximately 50% of the acetate was utilized for growth with bromate by the enrichment culture. A doubling of 20 h was estimated from a logarithmic growth curve. Other electron acceptors, like perchlorate, chlorate and nitrate, were not reduced or at negligible rates by bromate-utilizing microorganisms.

  7. Evaluation of quality changes of beetroot juice after high hydrostatic pressure processing

    NASA Astrophysics Data System (ADS)

    Sokołowska, Barbara; Woźniak, Łukasz; Skąpska, Sylwia; Porębska, Izabela; Nasiłowska, Justyna; Rzoska, Sylwester J.

    2017-04-01

    Freshly squeezed commercially available beetroot juice, a popular beverage in Poland, is a good source of betalains, but as a root vegetable can contain undesirable microflora from the soil. The objective of this study was to investigate the effect of new preservation technique, high hydrostatic pressure, on the beetroot juice quality. Samples of beetroot juice were treated with pressure 300, 400 and 500 MPa/20°C/up to 10 min. Reduction in the total count of spoilage microorganisms reached 3.8, 4.1 and 4.5 log cfu/mL, depending on the pressure. After this treatment beetroot juice showed a 11.3-12.2% decrease in betacyanins content and 7.7-8.9% in betaxanthins content. A significant reduction of the number of spoilage microorganisms with a slight degradation of pigments indicates the possibility of industrial application of high pressure to the preservation of beetroot juice.

  8. Effects of Low-Temperature Plasma-Sterilization on Mars Analog Soil Samples Mixed with Deinococcus radiodurans.

    PubMed

    Schirmack, Janosch; Fiebrandt, Marcel; Stapelmann, Katharina; Schulze-Makuch, Dirk

    2016-05-26

    We used Ar plasma-sterilization at a temperature below 80 °C to examine its effects on the viability of microorganisms when intermixed with tested soil. Due to a relatively low temperature, this method is not thought to affect the properties of a soil, particularly its organic component, to a significant degree. The method has previously been shown to work well on spacecraft parts. The selected microorganism for this test was Deinococcus radiodurans R1, which is known for its remarkable resistance to radiation effects. Our results showed a reduction in microbial counts after applying a low temperature plasma, but not to a degree suitable for a sterilization of the soil. Even an increase of the treatment duration from 1.5 to 45 min did not achieve satisfying results, but only resulted in in a mean cell reduction rate of 75% compared to the untreated control samples.

  9. [Disinfection with sodium hypochlorite in hospital environmental surfaces in the reduction of contamination and infection prevention: a systematic review].

    PubMed

    Pereira, Samantha Storer Pesani; Oliveira, Hadelândia Milon de; Turrini, Ruth Natalia Teresa; Lacerda, Rúbia Aparecida

    2015-08-01

    To search for evidence of the efficiency of sodium hypochlorite on environmental surfaces in reducing contamination and prevention of healthcare-associated infection HAIs. Systematic review in accordance with the Cochrane Collaboration. We analyzed 14 studies, all controlled trials, published between 1989-2013. Most studies resulted in inhibition of microorganism growth. Some decreased infection, microorganism resistance and colonization, loss of efficiency in the presence of dirty and surface-dried viruses. The hypochlorite is an effective disinfectant, however, the issue of the direct relation with the reduction of HAIs remains. The absence of control for confounding variables in the analyzed studies made the meta-analysis performance inadequate. The evaluation of internal validity using CONSORT and TREND was not possible because its contents were not appropriate to laboratory and microbiological studies. As a result, there is an urgent need for developing specific protocol for evaluating such studies.

  10. The aetiology of obesity beyond eating more and exercising less.

    PubMed

    Dhurandhar, Emily J; Keith, Scott W

    2014-08-01

    Although recent increases in availability of energy dense, processed foods and reductions in institutionally driven physical activity have created an environment that is permissible for obesity to occur, several other factors may contribute to the development of obesity in this context. We review evidence for eleven such factors: endocrine disruptors, intrauterine effects, epigenetics, maternal age, differential fecundity and assortative mating by body mass index, microorganisms, reduction in variability of ambient temperatures, smoking cessation, sleep debt, and pharmaceutical iatrogenesis. Evidence for the role of endocrine disruptors, microorganisms, ambient temperatures, sleep and reproductive factors is accumulating, but additional research is needed to confirm the causative role of these factors in human obesity. However, the role of certain pharmaceuticals and smoking cessation in development of human obesity is clear. Practice points for consideration and future research needed are highlighted for each factor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microbial processes in frozen food

    NASA Astrophysics Data System (ADS)

    Geiges, O.

    Deep freezing of food and storage at -19 degC is a standard conservation procedure in food technology. The lower limit of growth of bacteria in food is from about -5 degC to about -8 degC, whereas the reproduction limit of yeasts is 2 to 3 degC lower. Storage temperatures above -10 degC should therefore not be used. At -18 degC, a commonly used storage temperature, no growth of microorganisms will occur. The microorganisms mainly found at the lower growth limit are Pseudomonas sp. and basidiomycete yeasts. The reduction in the number of microorganisms due to freezing, storage, and thawing is not of practical importance. Microbial enzymes, in particular lipases and proteases, are still active at -18 degC. Therefore, the quality of raw products and good hygiene at the production site are most important.

  12. [Detection of toxic substances in microbial fuel cells].

    PubMed

    Wang, Jiefu; Niu, Hao; Wu, Wenguo

    2017-05-25

    Microbial fuel cells (MFCs) is a highly promising bioelectrochemical technology and uses microorganisms as catalyst to convert chemical energy directly to electrical energy. Microorganisms in the anodic chamber of MFC oxidize the substrate and generate electrons. The electrons are absorbed by the anode and transported through an external circuit to the cathode for corresponding reduction. The flow of electrons is measured as current. This current is a linear measure of the activity of microorganisms. If a toxic event occurs, microbial activity will change, most likely decrease. Hence, fewer electrons are transported and current decreases as well. In this way, a microbial fuel cell-based biosensor provides a direct measure to detect toxicity for samples. This paper introduces the detection of antibiotics, heavy metals, organic pollutants and acid in MFCs. The existing problems and future application of MFCs are also analyzed.

  13. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysacchride branched-long-chain hydroxy fatty acids

    USGS Publications Warehouse

    Ringleberg, D.B.; Townsend, G.T.; DeWeerd, K.A.; Suflita, J.M.; White, D.C.

    1994-01-01

    Desulfomonile tiedjei is a Gram-negative sulfate-reducing bacterium capable of catalyzing aryl reductive dehalogenation reactions. Since many toxic and persistent contaminants in the subsurface are halogenated aromatic compounds, the detection and enumeration of dehalogenating microorganisms in the environment may be a useful tool for planning and evaluating bioremediation efforts. In this study, we show that D. tiedjei contains unique lipopolysaccharide branched 3-hydroxy fatty acids, unknown as yet in other bacteria, and that it is possible to detect the bacterium in inoculated aquifer sediments based on these signature lipid biomarkers. The detection of D. tiedjeiand other dehalogenating microorganisms possessing similar cellular properties in environmental matrices may be possible by this technique. Additionally, the effect of such inoculation on dehalogenation activity is examined.

  14. Effect of incubation time of sago (metroxylon sago) waste by local microorganism ″ginta″ on ph, crude protein, and crude fiber content

    NASA Astrophysics Data System (ADS)

    Ginting, Nurzainah; Pase, E.

    2018-03-01

    This study aims to examine the effect of incubation times of sago waste by local microorganism (MOL) “Ginta” to the crude protein and crude fiber content in relation to finding a cheap and good quality ruminants feed alternative. Incubation times were 0 hours to 144 hours. The data obtained were analyzed using Completely Randomize Design consisting of seven treatments and three replications. The result showed that the duration of incubation of sago waste by local microorganism (MOL) “Ginta” caused pH reduction, improved crude protein and crude fiber content. pH reduction was from 7.03 at 0 hour to 4.05 at 144 hours incubation. The highest increased in crude protein was H6U3 (5.58%) : 144 hours incubation and the lowest was H0U2 (3.22%) : 0 hour incubation while the highest crude fiber was H0U1 (19.99%) : 0 hour incubation and the lowest was H6U3 (18.23%) : 144 hours incubation. It can be concluded that incubation of sago waste triggered lower pH, higher crude protein and lower crude fiber than uninoculated. A recommendation could be given on using MOL ‘Ginta” in order to produce a cheap and good quality ruminans feed alternative.

  15. Spatial Distribution of an Uranium-Respiring Betaproteobacterium at the Rifle, CO Field Research Site

    PubMed Central

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; McGuinness, Lora R.; Häggblom, Max M.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.

    2015-01-01

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site. PMID:25874721

  16. Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

    DOE PAGES

    Koribanics, Nicole M.; Tuorto, Steven J.; Lopez-Chiaffarelli, Nora; ...

    2015-04-13

    The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminalmore » electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.« less

  17. Constraints based analysis of extended cybernetic models.

    PubMed

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Isolation of Geobacter species from diverse sedimentary environments

    USGS Publications Warehouse

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  20. CONTRIBUTIONS OF WATER FILTRATION TO IMPROVING WATER QUALITY

    EPA Science Inventory

    A variety of water quality improvements can be accomplished by properly operated filtration plants. These include reduction of turbidity, micro-organisms, asbestos fibers, color, trihalomethane precursors, and organics adsorbed to particulate matter. The focus of the paper is on ...

  1. H2 CONSUMPTION DURING THE MICROBIAL REDUCTIVE DEHALOGENATION OF CHLORINATED PHENOLS AND TETRACHLOROETHENE

    EPA Science Inventory

    Competition for molecular hydrogen exists among hydrogen-utilizing microorganisms in anoxic environments, and evidence suggests that lower hydrogen concentrations are observed with more energetically favorable electron-accepting processes. The transfer of electrons to organochlor...

  2. Microbial degradation of poly-b-esters: A mechanistic study, cellulose acetate biodegradability. Final report, 1 May 1990-31 July 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, R.A.

    1993-08-30

    In this Final Report, work carried out under ARO grant C-DAAL03-G-0111 is described. The investigations performed include the following: (1) isolation, purification and characterization of a poly(3-hydroxybutyrate) depolymerase enzyme from Penicillium funiculosum, (2) determination that the depolymerase is a serine esterase, (3) study of the effect of polymer stereochemistry and crystalline order in a semi-crystalline polymer film substrate on enzyme specificity and activity, (3) isolation, purification and characterization of cellulose acetate degrading microorganisms and (4) determination of the biodegradability of cellulose acetate with degrees of substitution up to 2.5 under aerobic thermophilic conditions. Poly(3-hydroxybutyrate) biodegradation, Poly(3-hydroxybutyrate) depolymerase enzyme, Depolymerase frommore » Penicillium funiculosum, Cellulose acetate degrading microorganisms, Composting polymer biodegradable.« less

  3. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  4. Biodegradation of commercial gasoline (24% ethanol added) in liquid medium by microorganisms isolated from a landfarming site.

    PubMed

    Oliveira, Núbia M; Bento, Fátima M; Camargo, Flávio A O; Knorst, Aline Jéssica; Dos Santos, Anai Loreiro; Pizzolato, Tania M; Peralba, Maria do Carmo R

    2011-01-01

    Isolation of soil microorganisms from a landfarming site with a 19-year history of petrochemical residues disposal was carried out. After isolation, the bacteria behavior in mineral medium with 1% commercial gasoline (24% ethanol) was evaluated. Parameters employed for microorganism evaluation and selection of those with the greatest degradation potential were: microbial growth; biosurfactant generation and compound reduction in commercial gasoline. Starting from bacteria that presented the best degradation results, consortiums formed by 4 distinct microorganisms were formed. A microbial growth in the presence of commercial gasoline was observed and, for most of the bacteria, degradations of compounds such as benzene, toluene and xylenes (BTX) as well as biosurfactant production was observed. Ethanol was partially degraded by the bacterial isolates although the data does not allow affirming that it was degraded preferentially to the aromatic hydrocarbons investigated. The analyzed consortiums present an efficiency of 95% to 98% for most of the commercial gasoline compounds and a preferential attack to ethanol under the essay condition was not observed within 72 h.

  5. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  6. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less

  7. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms.

    PubMed

    Meyer, Kyle M; Klein, Ann M; Rodrigues, Jorge L M; Nüsslein, Klaus; Tringe, Susannah G; Mirza, Babur S; Tiedje, James M; Bohannan, Brendan J M

    2017-03-01

    Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. © 2017 John Wiley & Sons Ltd.

  8. SEQUENTIAL REDUCTIVE DEHALOGATION OF CHLOROANILINES BY MICROORGANISMS FROM A METHANOGENIC AQUIFER

    EPA Science Inventory

    Chloroaniline-based compounds are widely used chem- icals and important contaminants of aquatic and terrestrial environments. We have found that chloroanilines can be biologically dehalogenated in polluted aquifers when methanogenic, but not sulfate-reducing conditions prevail. T...

  9. TREATMENT OF MUNICIPAL SLUDGE FOR PATHOGEN REDUCTION

    EPA Science Inventory

    This presentation reviews the pathogenic microorganisms that may be found in municipal sewage sludge and the commonly employed Class A and B processes for controlling pathogens. It notes how extensively they are used and discusses issues and concerns with their application. The...

  10. Recent Discoveries and the Ultimate Fate of Organic Contaminants

    EPA Science Inventory

    With very few exceptions, the common organic contaminants in soils, sediments, and ground water can be transformed or entirely degraded by oxidation or reduction reactions that are either carried through direct involvement with microorganisms, or indirectly through abiotic reacti...

  11. Plutonium Interactions with Pseudomonas sp. and its Extracellular Polymeric Substances (Sorption and Reduction of Plutonium by Bacterial Extracellular Polymeric Substances)

    DOE PAGES

    Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong; ...

    2016-09-30

    Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less

  12. Plutonium Interactions with Pseudomonas sp. and its Extracellular Polymeric Substances (Sorption and Reduction of Plutonium by Bacterial Extracellular Polymeric Substances)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, Mark A.; Jiao, Yongqin; Dai, Zurong

    Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) toPseudomonassp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu) contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS), Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the samemore » sorption affinity for Pu(IV).In vitroexperiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission Electron Microscopy indicated that 2-3 nm nanocrystalline Pu(IV)O 2formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. ImportanceOur results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV), and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results along with a growing body of literature highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface.« less

  13. Efficacy of ozone in killing Listeria monocytogenes on alfalfa seeds and sprouts and effects on sensory quality of sprouts.

    PubMed

    Wade, W N; Scouten, A J; McWatters, K H; Wick, R L; Demirci, A; Fett, W F; Beuchat, L R

    2003-01-01

    A study was done to determine the efficacy of aqueous ozone treatment in killing Listeria monocytogenes on inoculated alfalfa seeds and sprouts. Reductions in populations of naturally occurring aerobic microorganisms on sprouts and changes in the sensory quality of sprouts were also determined. The treatment (10 or 20 min) of seeds in water (4 degrees C) containing an initial concentration of 21.8 +/- 0.1 microg/ml of ozone failed to cause a significant (P < or = 0.05) reduction in populations of L. monocytogenes. The continuous sparging of seeds with ozonated water (initial ozone concentration of 21.3 +/- 0.2 microg/ml) for 20 min significantly reduced the population by 1.48 log10 CFU/g. The treatment (2 min) of inoculated alfalfa sprouts with water containing 5.0 +/- 0.5, 9.0 +/- 0.5, or 23.2 +/- 1.6 microg/ml of ozone resulted in significant (P < or = 0.05) reductions of 0.78, 0.81, and 0.91 log10 CFU/g, respectively, compared to populations detected on sprouts treated with water. Treatments (2 min) with up to 23.3 +/- 1.6 microg/ml of ozone did not significantly (P > 0.05) reduce populations of aerobic naturally occurring microorganisms. The continuous sparging of sprouts with ozonated water for 5 to 20 min caused significant reductions in L. monocytogenes and natural microbiota compared to soaking in water (control) but did not enhance the lethality compared to the sprouts not treated with continuous sparging. The treatment of sprouts with ozonated water (20.0 microg/ml) for 5 or 10 min caused a significant deterioration in the sensory quality during subsequent storage at 4 degrees C for 7 to 11 days. Scanning electron microscopy of uninoculated alfalfa seeds and sprouts showed physical damage, fungal and bacterial growth, and biofilm formation that provide evidence of factors contributing to the difficulty of killing microorganisms by treatment with ozone and other sanitizers.

  14. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms.

    PubMed

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-10-09

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms ( Bacillus subtilis , B. cereus , B. pumilus , Escherichia coli , Pseudomonas fluorescens , Aspergillus niger , Eupenicillium cinnamopurpureum ) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O₃/m³ O₂, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  15. Evolution of soil properties and metals in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume

    2015-04-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and organic carbon, total nitrogen, total phosphorus, potassium, total, bioextractable and soluble metals (Pb, Cu, Zn, As and Cd), basal respiration and microbial biomass carbon; and metals (Pb, Cu, Zn, As and Cd) in roots and shoot from Zygophylum fabago were analyzed. The results showed that the lime increased the concentration of inorganic carbon in both ponds and, therefore, increases the pH until neutral/alkaline values, especially in the acid mine pond, reducing the risk of mobility of As, Pb and Zn to the trophic chain and the risk of leaching and runoff. The application of pig manure increased the salinity in the acid mine pond, as well as the content of OC, TN, K and P in both ponds; also it caused a higher concentration of bioavailable and soluble Cu in both ponds due to the high content of Cu in the manure; finally, an higher concentration of bioavailable and soluble As was observed in the alkaline mine pond due to the formation of organic-metal complexes. The application of sewage sludge increased the content of OC and K in both mine ponds; also it caused an increase in the concentration of bioavailable and water soluble As and a slight increase in the water soluble Cu in the alkaline mine pond likely because of the formation of organic-metal complexes. Both organic amendments increased the microbial biomass carbon (MBC), especially pig manure, indicating that this amendment brings more amount of microorganisms than sewage sludge. Similarly, the application of EM increases MBC, especially in doses 2 and 3, improving soil conditions which favour plant colonization. Furthermore, microbial activity is increased after amendments and EM applications, especially when pig manure was used; indicating that organic matter from pig manure is more easily degradable by microorganisms than organic matter from sewage sludge. Finally, the results indicated that the application of EM promotes the absorption and subsequent translocation to leaves of Cu and As, while prevents the absorption of Cd and Zn in Zygophylum fabago.

  16. Quantifying Glosair™ 400 efficacy for surface disinfection of American Type Culture Collection strains and micro-organisms recently isolated from intensive care unit patients.

    PubMed

    Herruzo, R; Vizcaíno, M J; Herruzo, I

    2014-07-01

    Microbial contamination of hospital surfaces may be a source of infection for hospitalized patients. We evaluated the efficacy of Glosair™ 400 against two American Type Culture Collection strains and 18 clinical isolates, placed on glass germ-carriers. Carriers were left to air-dry for 60 min and then exposed to a cycle before detection of any surviving micro-organisms. Antibiotic-susceptible Gram-negative bacilli were less susceptible (although not significantly) to this technique than resistant Gram-negative bacilli or Gram-positive cocci and yeasts (3, 3.4 and 4.6 log10 reduction, respectively). In conclusion, in areas that had not been cleaned, aerosolized hydrogen peroxide obtained >3 log10 mean destruction of patients' micro-organisms. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. The influence of air pollution on the phyllosphere microflora composition of Tillandsia leaves (Bromeliaceae).

    PubMed

    Brighigna, L; Gori, A; Gonnelli, S; Favilli, F

    2000-01-01

    The effect of air pollution on total phyllospheric microflora from two species of the epiphytic neotropical genus Tillandsia (Bromeliaceae) was studied by comparing unpolluted plants living in a forest (Escazú, San José) with polluted ones from an urban site of Costa Rica (San José city). Dilutions of homogenized leaf samples were plated on media suitable for each microbial group. For each microorganism group, total counts were performed and purified strains of randomly chosen colonies were identified. There was a global reduction in the number of living microorganisms due to pollution effects, especially yeasts and bacteria, while nitrogen-fixing microorganisms and fungi were less affected. Our results showed that the phyllosphere microflora of Tillandsia plants living in a tropical urban environment changes in terms of number and species composition of yeasts and bacteria with respect to plants living in unpolluted environment.

  18. Antimicrobial blue light inactivation of biofilms formed by clinical isolates of multidrug-resistant microorganisms

    NASA Astrophysics Data System (ADS)

    Ferrer-Espada, Raquel; Fang, Yanyan; Dai, Tianhong

    2018-02-01

    Antibiotic resistance is one of the most serious threats to public health. It is estimated that at least 23,000 people die each year in the USA as a direct result of antibiotic-resistant infections. In addition, many antibiotic-resistant microorganisms develop biofilms, surface-associated microbial communities that are extremely resistant to antibiotics and the immune system. A light-based approach, antimicrobial blue light (aBL), has attracted increasing attention due to its intrinsic antimicrobial effect without the involvement of exogenous photosensitizers. In this study, we investigated the effectiveness of this non-antibiotic approach against biofilms formed by multidrug-resistant (MDR) microorganisms. MDR Acinetobacter baumannii, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa biofilms were grown either in 96-well microtiter plates for 24 h or in a CDC biofilm reactor for 48 h, and then exposed to aBL at 405 nm emitted from a light-emitting diode (LED). We demonstrated that, for the biofilms grown in the CDC biofilm reactor, approximately 1.88 log10 CFU reduction was achieved in A. baumannii, 2.78 log10 CFU in E. coli and 3.18 log10 CFU in P. aeruginosa after 162 J/cm2 , 576 J/cm2 and 500 J/cm2 aBL were delivered, respectively. For the biofilms formed in the 96-well microtiter plates, 5.67 and 2.46 log10 CFU reduction was observed in P. aeruginosa and C. albicans polymicrobial biofilm after an exposure of 216 J/cm2 . In conclusion, aBL is potentially an alternative non-antibiotic approach against MDR biofilm-related infections. Future studies are warranted to investigate other important MDR microorganisms, the mechanism of action of aBL, and aBL efficacy in vivo.

  19. Sulfur Species as Redox Partners and Electron Shuttles for Ferrihydrite Reduction by Sulfurospirillum deleyianum

    PubMed Central

    Lohmayer, Regina; Kappler, Andreas; Lösekann-Behrens, Tina

    2014-01-01

    Iron(III) (oxyhydr)oxides can represent the dominant microbial electron acceptors under anoxic conditions in many aquatic environments, which makes understanding the mechanisms and processes regulating their dissolution and transformation particularly important. In a previous laboratory-based study, it has been shown that 0.05 mM thiosulfate can reduce 6 mM ferrihydrite indirectly via enzymatic reduction of thiosulfate to sulfide by the sulfur-reducing bacterium Sulfurospirillum deleyianum, followed by abiotic reduction of ferrihydrite coupled to reoxidation of sulfide. Thiosulfate, elemental sulfur, and polysulfides were proposed as reoxidized sulfur species functioning as electron shuttles. However, the exact electron transfer pathway remained unknown. Here, we present a detailed analysis of the sulfur species involved. Apart from thiosulfate, substoichiometric amounts of sulfite, tetrathionate, sulfide, or polysulfides also initiated ferrihydrite reduction. The portion of thiosulfate produced during abiotic ferrihydrite-dependent reoxidation of sulfide was about 10% of the total sulfur at maximum. The main abiotic oxidation product was elemental sulfur attached to the iron mineral surface, which indicates that direct contact between microorganisms and ferrihydrite is necessary to maintain the iron reduction process. Polysulfides were not detected in the liquid phase. Minor amounts were found associated either with microorganisms or the mineral phase. The abiotic oxidation of sulfide in the reaction with ferrihydrite was identified as rate determining. Cysteine, added as a sulfur source and a reducing agent, also led to abiotic ferrihydrite reduction and therefore should be eliminated when sulfur redox reactions are investigated. Overall, we could demonstrate the large impact of intermediate sulfur species on biogeochemical iron transformations. PMID:24632263

  20. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    PubMed

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  1. Interannual Variations in Global Net Carbon Production in the Absence of Fixed Nitrogen: Implication of New Production Supported by Dinitrogen Fixing Microorganisms

    NASA Astrophysics Data System (ADS)

    Lee, K.; Ko, Y. H.

    2016-12-01

    In the ocean without the measurable levels of nitrate, new production, i.e. the amount of carbon transported from the sunlit upper water to deep water, was estimated by summing the seasonal reduction in the total dissolved inorganic carbon (NCT = CT x 35/S) concentration in the surface mixed layer. Total reduction in the mixed layer NCT inventory in each 4o latitude by 5o longitude was calculated using an annual cycle of NCT, which was deduced from global monthly records of partial pressure of CO2 (based on more than 6.5 million data) and total alkalinity fields using thermodynamic models. The estimation of total NCT reduction for each pixel was then corrected for small changes caused by atmospheric nitrogen deposition and net air-sea CO2 exchange. This novel method yields 0.8 ± 0.3 petagrams of global new production per year (Pg C yr, Pg = 1015 grams), which is likely to be mediated exclusively by dinitrogen (N2) fixing microorganisms. These organisms utilize the inexhaustible pool of dissolved N2 and thereby circumvent nitrate limitation, particularly in the oligotrophic tropical and subtropical ocean.

  2. Contribution of selected fungi to the reduction of cyanogen levels during solid substrate fermentation of cassava.

    PubMed

    Essers, A J; Jurgens, C M; Nout, M J

    1995-07-01

    The effect of six individual strains of the dominant microflora in solid substrate fermenting cassava on cyanogen levels was examined. Six out of eight batches of disinfected cassava root pieces were incubated for 72 h after inoculation with either of the fungi Geotrichum candidum, Mucor racemosus, Neurospora sitophila, Rhizopus oryzae and Rhizopus stolonifer, or a Bacillus sp., isolated from on-farm fermented cassava flours from Uganda. One non-inoculated batch was incubated as a reference. Levels of initial and final moisture and cyanogens were assayed. The experiment was done in quadruplicate. Incubation of disinfected root pieces reduced cyanogenic glucoside levels significantly to 62.7% (SD 2.8) of the initial value. Microbial growth resulted in significant additional reduction of the cyanogenic glucoside levels to 29.8% (SD 18.9) of the levels which were obtained after non-inoculated incubation. Among the tested strains, N. sitophila reduced cyanogenic glucoside levels most effectively, followed by R. stolonifer and R. oryzae. Of all fermented samples, both Rhizopus spp. showed highest proportion of residual cyanogens in the cyanohydrin form. Flours showed similar patterns of cyanogens as the batches they were prepared from. Cyanogenic glucoside level reduction was significantly correlated (r = 0.86) with the extent of root softening. It is concluded that both incubation and microbial activity are instrumental in reducing the potential toxicity of cassava during the solid substrate fermentation and that effectiveness varies considerably between the species of microorganisms applied.

  3. Fogger and Mister Final Signed Letter

    EPA Pesticide Factsheets

    EPA has asked pesticide companies to provide data or amend registrations of products claiming to control public health microorganisms when applied by fogging and/or misting methods. The letter further describes the ways in which the company may respond.

  4. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    DOE PAGES

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; ...

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm –3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equalmore » to0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.« less

  5. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    PubMed

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2014-07-01

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

  7. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential

    PubMed Central

    Bonatsou, Stamatoula; Tassou, Chrysoula C.; Panagou, Efstathios Z.; Nychas, George-John E.

    2017-01-01

    Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food. PMID:28555038

  8. Table Olive Fermentation Using Starter Cultures with Multifunctional Potential.

    PubMed

    Bonatsou, Stamatoula; Tassou, Chrysoula C; Panagou, Efstathios Z; Nychas, George-John E

    2017-05-28

    Table olives are one of the most popular plant-derived fermented products. Their enhanced nutritional value due to the presence of phenolic compounds and monounsaturated fatty acids makes olives an important food commodity of the Mediterranean diet. However, despite its economic significance, table olive fermentation is mainly craft-based and empirically driven by the autochthonous microbiota of the olives depending on various intrinsic and extrinsic factors, leading to a spontaneous process and a final product of variable quality. The use of microorganisms previously isolated from olive fermentations and studied for their probiotic potential and technological characteristics as starter cultures may contribute to the reduction of spoilage risk resulting in a controlled fermentation process. This review focuses on the importance of the development and implementation of multifunctional starter cultures related to olives with desirable probiotic and technological characteristics for possible application on table olive fermentation with the main purpose being the production of a health promoting and sensory improved functional food.

  9. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism.

    PubMed Central

    Caccavo, F; Lonergan, D J; Lovley, D R; Davis, M; Stolz, J F; McInerney, M J

    1994-01-01

    A dissimilatory metal- and sulfur-reducing microorganism was isolated from surface sediments of a hydrocarbon-contaminated ditch in Norman, Okla. The isolate, which was designated strain PCA, was an obligately anaerobic, nonfermentative nonmotile, gram-negative rod. PCA grew in a defined medium with acetate as an electron donor and ferric PPi, ferric oxyhydroxide, ferric citrate, elemental sulfur, Co(III)-EDTA, fumarate, or malate as the sole electron acceptor. PCA also coupled the oxidation of hydrogen to the reduction of Fe(III) but did not reduce Fe(III) with sulfur, glucose, lactate, fumarate, propionate, butyrate, isobutyrate, isovalerate, succinate, yeast extract, phenol, benzoate, ethanol, propanol, or butanol as an electron donor. PCA did not reduce oxygen, Mn(IV), U(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PCA exhibited dithionite-reduced minus air-oxidized difference spectra which were characteristic of c-type cytochromes. Phylogenetic analysis of the 16S rRNA sequence placed PCA in the delta subgroup of the proteobacteria. Its closest known relative is Geobacter metallireducens. The ability to utilize either hydrogen or acetate as the sole electron donor for Fe(III) reduction makes strain PCA a unique addition to the relatively small group of respiratory metal-reducing microorganisms available in pure culture. A new species name, Geobacter sulfurreducens, is proposed. Images PMID:7527204

  10. Quaternary ammonium compounds: an alternative disinfection method for fresh produce wash water.

    PubMed

    Chaidez, Cristobal; Lopez, Javier; Castro-del Campo, Nohelia

    2007-06-01

    Irrigation water can serve as a vehicle for transporting pathogenic microorganisms, and numerous cases of bacterial infections from consumption of irrigated fresh produce have been reported in recent years. Chlorine-based disinfectants applied when produce is packed are widely used to control microorganisms. When applied properly, the chlorine products are effective. However, hazardous disinfection breakdown products can be formed, and chlorine disinfectants have high oxidant activity that can affect produce quality and pose a risk to food handlers. Quaternary Ammonium Compounds (QACs) are a disinfectant alternative for the washing of fruits and vegetables. They can control a great number of microorganisms, have low toxicity when used at recommended doses, and are stable in storage. The purpose of this work was to assess the disinfectant activity of QACs against Escherichia coli and Staphylococcus aureus under worst-case and average-case turbidity conditions, (2 and 100 nephelometric units); two disinfectant concentrations (100 and 200 mg/L; and two contact times (30 and 120 seconds). Our research showed that QACs were effective against both bacteria. The percentage reduction of Escherichia coli was significantly higher in the less turbid solution (P = 0.027), while turbidity did not affect the reduction of Staphylococcus aureus (P > 0.05). E. coli was more resistant to QAC treatment than S. aureus. Based on the data obtained we can conclude that QACs could be an alternative in washing processes of fruits and vegetables.

  11. Comparison of contamination rates between preserved and preservative-free fluoroquinolone eyedrops.

    PubMed

    Kim, Mo Sae; Kim, Hong Kyun; Kim, Joon Mo; Choi, Chul Young

    2013-03-01

    To evaluate the antimicrobial effectiveness of preservative-free fluoroquinolone products compared with benzalkonium chloride containing fluoroquinolones using the challenge test provided by the United States Pharmacopeia (USP) and the in-use test. 1. Challenge test: to compare the growth of microorganisms between different fluoroquinolone preparations, four test organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger were chosen among five microorganisms listed by USP 2004. The inoculated products were sampled for microbial survivors at days 7, 14, and 28 following initial inoculation at room temperature. The number of surviving organisms were calculated as a Log10 reduction from the original inocula. 2. In-use test: a total of 100 bottles were collected after instillation of preservative-free fluoroquinolone eyedrops in volunteer patients after 1 week of use. The remaining fluid and tips of the bottles were cultured. Colonies on the plates were counted at the end of the incubation period. All microorganisms were identified by Gram staining and biochemical assays. 1. Challenge test: preservative-free gatifloxacin and levofloxacin demonstrated a lower log reduction against A. niger than preserved fluoroquinolones and preservative-free moxifloxacin at all time points. 2. In-use test: There was no contamination identified on plates inoculated by preservative-free quinolone bottles after 1 week of use in this study. Physicians should be aware of the lower antifungal preservative effectiveness of some preservative-free fluoroquinolone preparations than preserved ones.

  12. Nitric Oxide Production by the Human Intestinal Microbiota by Dissimilatory Nitrate Reduction to Ammonium

    PubMed Central

    Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico

    2009-01-01

    The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. 15N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells. PMID:19888436

  13. Nitric oxide production by the human intestinal microbiota by dissimilatory nitrate reduction to ammonium.

    PubMed

    Vermeiren, Joan; Van de Wiele, Tom; Verstraete, Willy; Boeckx, Pascal; Boon, Nico

    2009-01-01

    The free radical nitric oxide (NO) is an important signaling molecule in the gastrointestinal tract. Besides eukaryotic cells, gut microorganisms are also capable of producing NO. However, the exact mechanism of NO production by the gut microorganisms is unknown. Microbial NO production was examined under in vitro conditions simulating the gastrointestinal ecosystem using L-arginine or nitrate as substrates. L-arginine did not influence the microbial NO production. However, NO concentrations in the order of 90 ng NO-N per L feed medium were produced by the fecal microbiota from nitrate. (15)N tracer experiments showed that nitrate was mainly reduced to ammonium by the dissimilatory nitrate reduction to ammonium (DNRA) pathway. To our knowledge, this is the first study showing that gastrointestinal microbiota can generate substantial amounts of NO by DNRA and not by the generally accepted denitrification or L-arginine pathway. Further work is needed to elucidate the exact role between NO produced by the gastrointestinal microbiota and host cells.

  14. The effect of 1 to 5 keV electrons on the reproductive integrity of microorganisms

    NASA Technical Reports Server (NTRS)

    Barengoltz, J. B.; Brady, J.

    1977-01-01

    Microorganisms were exposed to simulated space environment in order to assess the effect of electrons in the energy range 1 to 5 keV on their colony-forming ability. The test system consisted of an electron gun and power supply, a dosimetry subsystem, and a vacuum subsystem. The system was capable of current densities ranging from 0.1 nA/sq cm to 5 micro A/sq cm on a 25 sq on target and an ultimate vacuum of 0.0006 N/sq m (0.000004 torr). The results of the experimental program show a significant reduction in microbial reproductive integrity.

  15. Analysis of Biogeochemistry of Acid-Mine Drainage at Rowe, Massachusetts

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D. P.; Yuretich, R.; Ergas, S.; Nusslein, K.; Feldman, A.

    2003-12-01

    Acid waters rich in iron and sulfate can support a wide variety of microorganisms that catalyze the oxidation-reduction reactions of these bioactive elements, exemplified by acid-mine drainage (AMD). In order to study the biogeochemistry of natural attenuation a field site has been established at Davis Mine, an abandoned pyrite mine in rural Rowe Massachusetts. This site is of particular interest because of the apparent dynamic equilibrium that has restricted the extent of the AMD in this area since the mine was closed nearly 100 years ago. Initial evidence suggests that sulfate reduction is occurring at the fringes of the site. Multi-level monitoring wells and surface water sampling points have been installed. Soil samples collected from the drilled wells are being used to provide inoculums for cultivating bacteria and identifying DNA. Preliminary data indicate a restricted lens of impacted groundwater that moves rapidly through the mine tailings and shallow bedrock fractures, but is contained by ambient groundwater from uncontaminated recharge areas. Sulfate reduction has been documented at the margins of the acid-generating area, and this has been reproduced in laboratory experiments. Current research is now examining the processes of Fe(III) and SO4 reduction and the roles of acidophilic and acid-tolerant anaerobic microorganisms. K12 teachers are part of the research teams and the effects of research experiences on their higher-level understanding of science are being evaluated.

  16. [Cobalt(III)-EDTA] - Reduction by Thermophilic Methanogen Methanothermobacter Thermautotrophicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng

    2015-06-30

    Cobalt is a metal contaminant at high temperature radioactive waste disposal sites. In previous studies have largely focused on mesophilic microorganisms to remediate cobalt, despite the presence of thermophilic microorganisms at such sites. In this study,Methanothermobacter thermautotrophicus, a thermophilic methanogen, was used to reduce Co(III) in the form of [Co(III)–EDTA] -. Bioreduction experiments were conducted in a growth medium with H 2/CO 2 as a growth substrate at initial Co(III) concentrations of 1, 2, 4, 7, and 10 mM. At low Co(III) concentrations (< 4 mM), a complete reduction was observed within a week. Wet chemistry, X-ray absorption near-edge structuremore » (XANES) and electron paramagnetic resonance (EPR) analyses were all consistent in revealing the reduction kinetics. But, at higher concentrations (7 and 10 mM) the reduction extents only reached 69.8% and 48.5%, respectively, likely due to the toxic effect of Co(III) to the methanogen cells as evidenced by a decrease in total cellular protein at these Co(III) concentrations. Methanogenesis was inhibited by Co(III) bioreduction, possibly due to impaired cell growth and electron diversion from CO 2 to Co(III). Overall, our results demonstrated the ability of M. thermautotrophicus to reduce Co(III) to Co(II) and its potential application for remediating 60Co contaminant at high temperature subsurface radioactive waste disposal sites.« less

  17. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    PubMed Central

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  18. Microorganisms in desert rocks: the edge of life on Earth.

    PubMed

    Wierzchos, Jacek; de los Ríos, Asunción; Ascaso, Carmen

    2012-12-01

    This article reviews current knowledge on microbial communities inhabiting endolithic habitats in the arid and hyper-arid regions of our planet. In these extremely dry environments, the most common survival strategy is to colonize the interiors of rocks. This habitat provides thermal buffering, physical stability, and protection against incident UV radiation, excessive photosynthetically active radiation, and freeze-thaw events. Above all, through water retention in the rocks' network of pores and fissures, moisture is made available. Some authors have argued that dry environments pose the most extreme set of conditions faced by microorganisms. Microbial cells need to withstand the biochemical stresses created by the lack of water, along with temperature fluctuations and/or high salinity. In this review, we also address the variety of ways in which microorganisms deal with the lack of moisture in hyper-arid environments and point out the diversity of microorganisms that are able to cope with only the scarcest presence of water. Finally, we discuss the important clues to the history of life on Earth, and perhaps other places in our solar system, that have emerged from the study of extreme microbial ecosystems.

  19. Report of the Microbial Development Working Group

    NASA Technical Reports Server (NTRS)

    Nelson, G.

    1985-01-01

    In formulating ideas on the relationship of gravity to the development, growth, and reproduction of microorganisms, a rather liberal definition of microorganisms is used which includes bacteria, yeasts, protists, filamentous fungi, and single cells in culture. A principal advantage of microorganisms as experimental subjects is the rigor with which they can be defined and controlled. As single cells, each cell may be regarded as identical to the others in the population. This property applies to the morphology, physiology, and genetic parameters of the cells. The growth and development of the population is subject to precise manipulation as the nutritional requirements are known and minimal media formulations have been developed. Growth and differentiation can be manipulated in a variety of ways, such as alteration of the culture temperature and food supply, or by use of mutants. Finally, the short generation times of microorganisms provide the opportunity to conduct multigenerational studies within practical time limits and, in a similar vein, cellular responses to various stimuli or stresses are conveniently monitored because of the rapid response times of single cells.

  20. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    PubMed Central

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  1. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  2. Selection and evaluation of micro-organisms for biocontrol of Verticillium dahliae in olive.

    PubMed

    Varo, A; Raya-Ortega, M C; Trapero, A

    2016-09-01

    To identify potential biological control agents against Verticillium wilt in olive through a mass screening approach. A total of 47 strains and nine mixtures of micro-organisms were evaluated against Verticillium dahliae in a three stage screening: (i) in vitro, by the effect on the mycelial growth and spore germination of the pathogen; (ii) in natural infested soil, by the effect on the reduction of microsclerotia of the pathogen; (iii) in planta, by the effect on the infection of olive plants under controlled conditions. Various fungal and bacterial strains and mixtures inhibited the pathogen and showed consistent biocontrol activity against Verticillium wilt of olive. The screening has resulted in promising fungi and bacteria strains with antagonistic activity against Verticillium, such as two non-pathogenic Fusarium oxysporum, one Phoma sp., one Pseudomonas fluorescens and two mixtures of micro-organisms that may possess multiple modes of action. This study provides a practical basis for the potential use of selected strains as biocontrol agents for the protection of olive plants against V. dahliae infection. In addition, our study presented an effective method to evaluate antagonistic micro-organisms of V. dahliae in olive. © 2016 The Society for Applied Microbiology.

  3. Environmental microbes can speciate and cycle arsenic.

    PubMed

    Rhine, E Danielle; Garcia-Dominguez, Elizabeth; Phelps, Craig D; Young, L Y

    2005-12-15

    Naturally occurring arsenic is found predominantly as arsenate [As(V)] or arsenite [As(III)], and can be readily oxidized or reduced by microorganisms. Given the health risks associated with arsenic in groundwater and the interest in arsenic-active microorganisms, we hypothesized that environmental microorganisms could mediate a redox cycling of arsenic that is linked to their metabolism. This hypothesis was tested using an As(V) respiring reducer (strain Y5) and an aerobic chemoautotrophic As(II) oxidizer (strain OL1 ) both isolated from a Superfund site, Onondaga Lake, in Syracuse, NY. Strains were grown separately and together in sealed serum bottles, and the oxic/anoxic condition was the only parameter changed. Initially, under anoxic conditions when both isolates were grown together, 2 mM As(V) was stoichiometrically reduced to As(III) within 14 days. Following complete reduction, sterile ambient air was added and within 24 h As(III) was completely oxidized to As(V). The anoxic-oxic cycle was repeated, and sterile controls showed no abiotic transformation within the 28-day incubation period. These results demonstrate that microorganisms can cycle arsenic in response to dynamic environmental conditions, thereby affecting the speciation, and hence mobility and toxicity of arsenic in the environment.

  4. Reduction of substituted p-Benzoquinones by Fe II near neutral pH

    USDA-ARS?s Scientific Manuscript database

    The oxidation of dihydroxyaromatics to benzoquinones by FeIII (hydr)oxides is important in respiratory electron shuttling by microorganisms and has been extensively studied. Prior publications have noted that the Gibbs Free Energy (DG) for the forward reaction is sensitive to dihydroxyaromatic struc...

  5. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    PubMed

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  6. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida.

    PubMed

    Gong, Xiaoqiang; Wei, Le; Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.

  7. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida

    PubMed Central

    Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid. PMID:28122059

  8. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.

    PubMed

    Halder, Partha; Nasabi, Mahyar; Lopez, Francisco Javier Tovar; Jayasuriya, Niranjali; Bhattacharya, Satinath; Deighton, Margaret; Mitchell, Arnan; Bhuiyan, Muhammed Ali

    2013-01-01

    Biofouling, the unwanted growth of sessile microorganisms on submerged surfaces, presents a serious problem for underwater structures. While biofouling can be controlled to various degrees with different microstructure-based patterned surfaces, understanding of the underlying mechanism is still imprecise. Researchers have long speculated that microtopographies might influence near-surface microfluidic conditions, thus microhydrodynamically preventing the settlement of microorganisms. It is therefore very important to identify the microfluidic environment developed on patterned surfaces and its relation with the antifouling behaviour of those surfaces. This study considered the wall shear stress distribution pattern as a significant aspect of this microfluidic environment. In this study, patterned surfaces with microwell arrays were assessed experimentally with a real-time biofilm development monitoring system using a novel microchannel-based flow cell reactor. Finally, computational fluid dynamics simulations were carried out to show how the microfluidic conditions were affecting the initial settlement of microorganisms.

  9. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  10. Evaluation of the Efficacy of Disinfectant Footmats for the Reduction of Bacterial Contamination on Footwear in a Large Animal Veterinary Hospital.

    PubMed

    Hornig, K J; Burgess, B A; Saklou, N T; Johnson, V; Malmlov, A; Van Metre, D C; Morley, P S; Byers, S R

    2016-11-01

    Infection control is critical to providing high-quality patient care. Many veterinary teaching hospitals (VTHs) utilize footbaths or footmats at entrances and key control points throughout the facility to decrease trafficking of pathogenic microorganism on contaminated footwear. To compare efficacy of 4 disinfectants used in footmats for decreasing bacterial contamination of footwear in a large animal hospital. A single adult dairy cow was housed in a stall for 4 days to facilitate stall contamination with fecal material. Overboots were experimentally contaminated with organic material in a standardized manner. Each boot was randomly assigned to 1 of 5 treatments (no treatment, or exposure to 1 of 4 disinfectants: an accelerated peroxygen [AHP], a peroxygen [VIRKON], a quaternary ammonium [QUAT], and a phenolic disinfectant [PHENOLIC]) by stepping on a soaked footmat and collecting samples from boot soles. Generalized linear modeling was used to analyze differences in bacterial counts. Reductions in colony-forming units (CFUs) on treated boots ranged from no detectable reduction to 0.45 log 10 and varied by disinfectant. Percentage reductions in total bacterial counts generally were larger (albeit still modest) for AHP and QUAT disinfectants (range 37-45%) and smallest for the PHENOLIC (no detectable reduction). In general, use of disinfectant footmats was associated with significant reductions in viable bacteria on overboots-albeit with variable efficacy. Footmats may be useful adjuncts to cleaning and disinfection programs for decreasing trafficking of microorganisms throughout VTHs but should not be considered as a sole prevention method. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. [The hypothesis of infectious etiology for idiopathic nervous system diseases: from the postulates of Koch to the criteria of Hill].

    PubMed

    Bélec, L

    1999-01-01

    The evaluation of the hypothesis of an infectious etiology to some neurological diseases comprises four different situations. First, numerous neurological diseases have an obvious infectious etiology (encephilitis, meningoencephilitis). Second, some neurological disorders were primarily suspected to be have an infectious etiology, but the causative microorganism was discovered either longtime after the princeps description of the disease (neurologic Whipple disease, due to Tropheryma whippelii), or at the same time (tropical spastic para-paresis secondary to HTLV-I infection). Third, for other neurological diseases, an infectious etiology that was not suspected at time of their anatomoclinic descriptions, was further demonstrated in the context of a generally complex physiopathology (Guillain-Barré syndrome and infection by Campylobacter jejuni). Finally, some idiopathic neurological diseases could be related to well known or yet unknown microorganisms, in association with some environmental factors, and with a particular genetic or acquired susceptibility of the host. The evaluation of an infectious etiology to these idiopathic neurological disorders must be envisioned according to 3 possibilities: 1) generally, the neurological disease is well defined, but its etiology remains unknown and an infectious hypothesis could be relevant (multiple sclerosis, post-polio syndrome, amyotrophic lateral sclerosis); 2) sometimes, a microorganism that is not associated with a known disease, and then qualified as "orphelin", could be associated with neurological disorders (spumaretrovirus); 3) finally, a new neurological disease could be associated with a known or yet unknown microorganism, directly or indirectly. In conclusion, some idiopathic neurological diseases could have an infectious etiology, with physiopathologic, diagnostic, prophylactic (vaccination) and therapeutic (use of anti-infectious drugs) consequences.

  12. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.)

    PubMed Central

    2011-01-01

    Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs), retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies. PMID:21672186

  13. Land Application of Treated Sewage Sludge in the United States: Regulatory Considerations for Risk Reduction and Determining Treatment Process Equivalency

    EPA Science Inventory

    In the United States, municipal wastewater includes discharges from households, commercial businesses and various industries. Microorganisms associated with these wastes can be concentrated in the solids (sludge) which are removed during treatment operations. Beneficial reuse a...

  14. What Is the True Nitrogenase Reaction? A Guided Approach

    ERIC Educational Resources Information Center

    Ipata, Piero L.; Pesi, Rossana

    2015-01-01

    Only diazotrophic bacteria, called "Rizhobia," living as symbionts in the root nodules of leguminous plants and certain free-living prokaryotic cells can fix atmospheric N[subscript 2]. In these microorganisms, nitrogen fixation is carried out by the nitrogenase protein complex. However, the reduction of nitrogen to ammonia has an…

  15. Microbial Ecology of Stored Swine Manure and Reduction of Emissions Using Condensed Tannins.

    USDA-ARS?s Scientific Manuscript database

    Management practices from large-scale swine production facilities have resulted in the increased collection and storage of manure for off-season fertilization use. Stored swine manure serves as a habitat for billions of microorganisms and is associated with the generation of odorous compounds and g...

  16. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.

    2006-01-01

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took placemore » - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments.« less

  17. [Microbiological characteristics of selected liquid soaps for hands washing].

    PubMed

    Tyski, Stefan; Bocian, Ewa; Zawistowska, Anna; Mrówka, Agnieszka; Kruszewska, Hanna; Grzybowska, Wanda; Zareba, Tomasz

    2013-01-01

    According to common belief, supported by the authority of the World Health Organization - WHO, the common (social) hand washing is the simplest, cheapest and the most effective way of reduction the hospital-acquired infections. For this purpose products of"liquid soaps", present in a large number on the market, are most often applied. Microbiological status (microbiological purity and antimicrobial activity) of"liquid soaps" available on the Polish market is not known, because relevant routinely studies have not been performed. Only the antibacterial and / or antifungal activity of certain formulations is sometimes assessed, especially when the manufacturer suggests the standardized application of the products for surgical or hygienic procedures. The aim of this study was to determine the microbiological quality, especially microbiological purity and antimicrobial activity of the selected hands washing products, presents on the Polish market. The 12 selected commercial products, available on the market in Poland, dedicated for hands washing were included into study. Microbiological purity test was carried out in accordance with the Polish Pharmacopoeia (FP) monograph (FP monograph numbers correspond to numbers of the European Pharmacopoeia monograph- Ph. Eur.) No 2.6.12 "Microbiological examination of non-sterile products: microbial enumaration tests", and the monograph of FP No. 2.6.13 "Microbiological examination of non-sterile products: test for specified microorganisms". The following physico-chemical properties of soaps were examined: the pH of the formulations was measured according to the monograph FP No. 2.2.3. "Potentiometric determination of pH", the density of products was assayed according to the monograph FPNo. 2.2.5. "Relative density" and determination the water activity was performed by monograph FP No 2.9.39 "Water-solid interactions: determination of sorption-desorption isotherms and of water activity". Next, antibacterial and antifungal protection was determined in accordance with the monograph FP No 5.1.3. "Efficacy of antimicrobial preservation". The study of antimicrobial activity was carried out in accordance with PN-EN 1040 "Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of basic bactericidal activity of chemical disinfectants and antiseptics - Test method and requirements (phase 1)". Finally, using the "time-kill" method the survival of microorganisms after different contact times of the products with bacteria and fungi were determined. All the examined products showed a very high microbiological purity. None of the formulations was characterized by a high acidity or alkalinity. All the analyzed products were slightly thicker than water, but such density of the preparation does not seem to be important parameter in the growth of microorganisms. The results of water activity estimation - the parameter indicating the presence of free, not chemically bound water stimulating microbes growth - do not show that low water content in the preparation may inhibit bacteria and fungi growth. Taking into consideration the antimicrobial protection of the products demonstrated in the tests carried out in accordance within FP monograph No 5.1.3. and PN-EN 1040, and analysing curves indicating killing rate of bacteria and fungi obtained by "time-kill" method, the microorganisms contaminating the products generally should not multiply in their environment, and gradually they die - what can take many hours or even days. The cases of bacterial infections connected with the usage of non-medical liguid soaps, applied in the health care units and described in the literature, should be considered as related rather to contamination of plastic packaging and dosage system, then to contamination of preparation itself inside the package. It was proved, that in all tested products amount of contaminating microbes diminishes in time. The dynamics of this process depends on the microorganisms character - bacteria dies quicker then fungi. The special attention should be given to washing, cleaning and disinfection of preparation dispensing systems, to avoid microbial contamination of product doses applied directly on the hands. It should be emphasized that only formulations containing antimicrobial agents in an appropriate amount, eliminate microorganisms from the skin surface fast and effectively. In case of hygienic and surgical procedures following the standardized manner in order to obtain required reduction rate of microorganisms in a short time - only products complying with appropriate EN standards are suitable. For these puroposes, the popular "liquid soaps" should not be used.

  18. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome

    PubMed Central

    Pozuelo, Marta; Panda, Suchita; Santiago, Alba; Mendez, Sara; Accarino, Anna; Santos, Javier; Guarner, Francisco; Azpiroz, Fernando; Manichanh, Chaysavanh

    2015-01-01

    The pathophysiology of irritable bowel syndrome (IBS) remains unclear. Here we investigated the microbiome of a large cohort of patients to identify specific signatures for IBS subtypes. We examined the microbiome of 113 patients with IBS and 66 healthy controls. A subset of these participants provided two samples one month apart. We analyzed a total of 273 fecal samples, generating more than 20 million 16S rRNA sequences. In patients with IBS, a significantly lower microbial diversity was associated with a lower relative abundance of butyrate-producing bacteria (P = 0.002; q < 0.06), in particular in patients with IBS-D and IBS-M. IBS patients who did not receive any treatment harboured a lower abundance of Methanobacteria compared to healthy controls (P = 0.005; q = 0.05). Furthermore, significant correlations were observed between several bacterial taxa and sensation of flatulence and abdominal pain (P < 0.05). Altogether, our findings showed that IBS-M and IBS-D patients are characterized by a reduction of butyrate producing bacteria, known to improve intestinal barrier function, and a reduction of methane producing microorganisms a major mechanism of hydrogen disposal in the human colon, which could explain excess of abdominal gas in IBS. PMID:26239401

  19. The application of Biological-Hydraulic coupled model for Tubificidae-microorganism interaction system

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo

    2010-11-01

    Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.

  20. Proposed modification to the specification for dry heat microbial reduction of spacecraft hardware for future US missions

    NASA Astrophysics Data System (ADS)

    James; Spry, A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts to comply with planetary protection requirements. Often, manufacturing processes involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the existing specification in NASA document NPR8020.12C, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. However, recent studies (Schubert et al., COSPAR 2008) from a comprehensive multi-year laboratory research effort have generated enhanced data sets on four aspects of the current specification: time and temperature combination effects, the effect that humidity has on spore lethality, the lethality for spores with exceptionally high thermal resistance (so called "hardies"), and the extended exposure requirement for encapsulated microorganisms. This paper describes proposed modifications to the specification, based on the data set generated in the referenced study. The proposed modifications are intended to broaden the scope of the current specification while still maintaining a confident conservative interpretation of the lethality of the DHMR process on microorganisms. Potential cost and schedule benefits to future missions utilizing the revised specification will be highlighted.

  1. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  2. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weimin; Carley, Jack M; Watson, David B

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uraniummore » was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.« less

  3. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    PubMed Central

    Lim, K. T.; Shukor, M. Y.; Wasoh, H.

    2014-01-01

    Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment. PMID:24696853

  4. Biological approaches to tackle heavy metal pollution: A survey of literature.

    PubMed

    Jacob, Jaya Mary; Karthik, Chinnannan; Saratale, Rijuta Ganesh; Kumar, Smita S; Prabakar, Desika; Kadirvelu, K; Pugazhendhi, Arivalagan

    2018-07-01

    Pollution by heavy metals has been identified as a global threat since the inception of industrial revolution. Heavy metal contamination induces serious health and environmental hazards due to its toxic nature. Remediation of heavy metals by conventional methods is uneconomical and generates a large quantity of secondary wastes. On the other hand, biological agents such as plants, microorganisms etc. offer easy and eco-friendly ways for metal removal; hence, considered as efficient and alternative tools for metal removal. Bioremediation involves adsorption, reduction or removal of contaminants from the environment through biological resources (both microorganisms and plants). The heavy metal remediation properties of microorganisms stem from their self defense mechanisms such as enzyme secretion, cellular morphological changes etc. These defence mechanisms comprise the active involvement of microbial enzymes such as oxidoreductases, oxygenases etc, which influence the rates of bioremediation. Further, immobilization techniques are improving the practice at industrial scales. This article summarizes the various strategies inherent in the biological sorption and remediation of heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Extremophiles as sources of inorganic bio-nanoparticles.

    PubMed

    Beeler, Erik; Singh, Om V

    2016-09-01

    Industrial use of nanotechnology in daily life has produced an emphasis on the safe and efficient production of nanoparticles (NPs). Traditional chemical oxidation and reduction methods are seen as inefficient, environmentally unsound, and often dangerous to those exposed and involved in NP manufacturing. However, utilizing microorganisms for biosynthesis of NPs allows efficient green production of a range of inorganic NPs, while maintaining specific size, shape, stability, and dispersity. Microorganisms living under harsh environmental conditions, called "Extremophiles," are one group of microorganisms being utilized for this biosynthesis. Extremophiles' unique living conditions have endowed them with various processes that enable NP biosynthesis. This includes a range of extremophiles: thermophiles, acidophilus, halophiles, psychrophiles, anaerobes, and some others. Fungi, bacteria, yeasts, and archaea, i.e. Ureibacillus thermosphaericus, and Geobacillus stearothermophilus, among others, have been established for NP biosynthesis. This article highlights the extremophiles and methods found to be viable candidates for the production of varying types of NPs, as well as interpreting selective methods used by the organisms to synthesize NPs.

  6. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines.

    PubMed

    Fredericks, Ilse N; du Toit, Maret; Krügel, Maricel

    2011-05-01

    Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p < 0.05) germicidal effect against wine-specific microorganisms; hence, UV-C radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica

    PubMed Central

    2013-01-01

    Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572

  8. Disinfection efficiency of peracetic acid (PAA): inactivation of coliphages and bacterial indicators in a municipal wastewater plant.

    PubMed

    Zanetti, F; De Luca, G; Sacchetti, R; Stampi, S

    2007-11-01

    The aim of the study was to assess the efficiency of low doses of peracetic acid against viral and bacterial indicators in wastewater and to evaluate if the treatment allows regulatory requirements to be satisfied. A total of 31 samplings were carried out, each involving the collection of secondary effluent and of effluent disinfected with 1.2 or 1.5 mg l(-1) of peracetic acid (contact time 20 minutes). In each sample were measured: somatic coliphages, F-specific RNA bacteriophages, Escherichia coli, total and faecal coliforms, enterococci. Peracetic acid disinfection showed significant differences between the reductions of the microorganisms tested: E. coli showed the highest reduction (1.78 and 2.43 Log respectively with 1.2 and 1.5 mg l(-1) of peracetic acid) and phages the lowest (ranging between 0.52 and 0.60 Log). Only a concentration of 1.5 mg l(-1) of peracetic acid would enable the effluent to be discharged into surface waters in compliance with Italian regulations. The variability of microbial resistance against the peracetic acid disinfection treatment, underlines the importance of assessing disinfection efficiency by using more than one indicator microorganism. The detection of E. coli could be usefully accompanied by tests for more resistant microorganisms such as enterococci or coliphages. In conclusion, peracetic acid can be used for the disinfection of effluents even at low doses, with the advantage of reducing costs and preventing the formation of significant amounts of genotoxic by-products.

  9. Intake of sweet foods and counts of cariogenic microorganisms in obese and normal-weight women.

    PubMed

    Barkeling, B; Andersson, I; Lindroos, A K; Birkhed, D; Rössner, S

    2001-10-01

    To study the intake of sweet foods in obese and normal-weight women, while also taking menstrual cycle effects on eating behaviour into consideration. An objective test of the intake of sugar-containing foods was introduced by measuring salivary counts of mutans streptococci and lactobacilli. A cross-sectional comparison of the intake of sweet foods in obese and normal-weight women. The obese women were also studied longitudinally after 10 weeks in a weight reduction programme. Obese (n=72, body mass index (BMI) 42.0+/-5.2 kg/m2) and normal-weight women (n=67, BMI 22.2+/-1.6 kg/m2) participated. Mutans streptococci in saliva were higher in obese than in normal-weight women (P<0.0001), although the reported habitual daily intake of sweet foods did not differ. Of the menstruating women, 80% of the obese subjects and 62% of the normal-weight ones (P<0.05) reported periods during the menstrual cycle with an 'extra large' intake of sweet foods; these intakes were higher in obese than in normal-weight women (P<0.01). The obese women reduced their intake of sweet foods after 10 weeks of weight reduction, although these changes were not pronounced enough to significantly affect the counts of cariogenic microorganisms. In contrast to most previous cross-sectional studies, this study shows that obese women have a higher intake of sweet foods, especially pre-menstrually. This was indicated by higher salivary counts of cariogenic microorganisms. Karolinska Institute Research Funds.

  10. Interactions between the intestinal microbiota and innate lymphoid cells

    PubMed Central

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  11. Do microbial exudates control EH electrode measurements?

    NASA Astrophysics Data System (ADS)

    Markelova, E.; Parsons, C. T.; Smeaton, C. M.; Van Cappellen, P.

    2017-12-01

    Redox electrodes are widely used as simple, inexpensive monitoring devices to rapidly measure redox potentials (EH) of waterlogged soils, sediments, and aquifers. While a variety of physicochemical and biogeochemical factors have been involved to explain measured EH values, the role of microorganisms remains comparatively understudied and uncertain. Besides catalyzing many inorganic redox reactions (e.g., nitrate reduction), microorganisms produce a variety of redox-active organic compounds (e.g., NAD+/NADH, GSSG/2GSH, FAD/FADH2), which can be released into the surrounding environment via active secretion, passive diffusion, or cell lysis. To isolate different microbial effects on EH measurements, we performed batch experiments using S. oneidensis MR-I as a model heterotrophic microorganism and flavins as example microbial exudates [1]. We monitored EH and pH along with flavin production (fluorescence measurements) during dissimilatory nitrate reduction to ammonium (DNRA). Dissolved flavins increased to 0.2 mM (riboflavin equivalent) under anoxic conditions during complete consumption of 1 mM nitrate by DNRA at pH 7.4 and 30 °C over 80 hours. The observed redox cascade from +255 to -250 mV did not follow the EH predicted for the reduction of NO3- to NO2- and NO2- to NH4+ by the Nernst equation. However, a set of separate abiotic experiments on the photoreduction of synthetic flavins (LMC, RF, FMN, and FAD, Sigma Aldrich) under the same conditions indicated that measured EH values are buffered at +270 ± 20 mV and -230 ± 50 mV when oxidized and reduced flavin species dominate, respectively. Moreover, based on the temporal changes in EH, we speculate that NO3- reduction by S. oneidensis consumes reduced flavins (i.e., NO3- accepts electrons from reduced flavins) and generates oxidized flavins, thus buffering EH at +255 mV. By contrast, NO2- reduction to NH4+ is independent of flavin speciation, which leads to the accumulation of reduced flavins in the solution and lowering of EH to -250 mV. Overall, the experiments demonstrate that microbial exudates do affect EH measurements, however, their importance in natural water-saturated systems has to be further evaluated. [1] Von Canstein, H., et al., 2008. Appl. Environ. Microbiol. 74, 615-623.

  12. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REGUERA, GEMMA

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilmsmore » than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.« less

  13. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

    PubMed Central

    Townsend, G T; Suflita, J M

    1997-01-01

    The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. Dehalogenation activity was greatly reduced in extracts of cells grown in the presence of both 3-chlorobenzoate, the substrate or inducer for the aryl dehalogenation activity, and either sulfate, sulfite, or thiosulfate, indicating that sulfur oxyanions repress the requisite enzymes. In extracts of fully induced cells, thiosulfate and sulfite, but not sulfate, were potent inhibitors of aryl dehalogenation activity even in membrane fractions lacking the cytoplasmically located sulfur oxyanion reductase. These results suggest that under growth conditions, sulfur oxyanions serve as preferred electron acceptors and negatively influence dehalogenation activity in D. tiedjei by regulating the amount of active aryl dehalogenase in cells. Additionally, in vitro inhibition by sulfur oxyanions is due to the interaction of the reactive species with enzymes involved in dehalogenation and need not involve competition between two respiratory processes for reducing equivalents. Sulfur oxyanions also inhibited tetrachloroethylene dehalogenation by the same mechanisms, further indicating that chloroethylenes are fortuitously dehalogenated by the aryl dehalogenase. The commonly observed inhibition of reductive dehalogenation reactions under sulfate-reducing conditions may be due to similar regulation mechanisms in other dehalogenating microorganisms that contain multiple respiratory activities. PMID:9293011

  14. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    PubMed Central

    Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  15. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study.

    PubMed

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (p<0.05). These results indicate that a relatively low electric-field strength of 10 kV/cm can be used to pasteurize low-fat milk.

  16. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes.

    PubMed

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-09-21

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO 2 ) using micro-organisms as biocatalysts. MES from CO 2 comprises bioelectrochemical reduction of CO 2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO 2 as a feedstock for chemicals is gaining much attention, since CO 2 is abundantly available and its use is independent of the food supply chain. MES based on CO 2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO 2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO 2  : N 2 gas. The highest acetate production rate of 149 mg L -1 d -1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L -1 d -1 . In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO 2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO 2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO 2 as a next generation feedstock.

  17. Do substantial BMI reduction episodes among Swedish schoolchildren have any impact on their final height?

    PubMed

    Nilsen, Bente B; Yngve, Agneta; Werner, Bo

    2018-07-01

    This study investigated whether substantial body mass index (BMI) reductions in Swedish schoolchildren aged seven years to 19 years, caused by disease, healthy or unhealthy behaviour, had any impact on their final height. We used height and weight data on 6572 subjects from two nationally representative longitudinal samples of Swedish children born in 1973 and 1981. These provided information on their final height and any BMI reduction episodes. Of the 6572 subjects (50.9% boys), among individuals with information on final height, 1118 had a BMI reduction of 5% and <10%, and 346 had at least one substantial BMI reduction of 10% or more. On a group level, there was no statistically significant difference in the final height of individuals with BMI reductions of 10% or more and those without. The findings were independent of age and the subject's BMI at the start of the reduction episode. However, there were a number of cases where a substantial BMI reduction probably had an impact on the subject's final height. Our study found no evidence that a substantial BMI reduction had any impact on final height on a group level, but further analyses of specific case studies are necessary to determine whether substantial BMI reduction might have an impact on final height. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. Accelerated biodegradation of a herbicide applied to the roadside environment using adapted soil microorganisms : final report.

    DOT National Transportation Integrated Search

    1994-06-01

    The extent and duration of pollution from herbicide spills and deliberate applications is related to properties of the herbicide and soil. Objectives of this study included the development of experimental procedures and mathematical models to determi...

  19. Limnological Projects.

    ERIC Educational Resources Information Center

    Hambler, David J.; Dixon, Jean M.

    1982-01-01

    Describes collection of quantitative samples of microorganisms and accumulation of physical data from a pond over a year. Provides examples of how final-year degree students have used materials and data for ecological projects (involving mainly algae), including their results/conclusions. Also describes apparatus and reagents used in the student…

  20. THE ROLE OF MICROORGANISMS IN ELEMENTAL MERCURY FORMATION IN NATURAL WATERS. (R824778)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. KINETICS OF PCB DECHLORINATION BY HUDSON RIVER, NEW YORK, USA, SEDIMENT MICROORGANISMS. (R825449)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. RAPID DETECTION OF MICROORGANISMS USING 5S RRNA SPECIFIC MOLECULAR BEACONS. (R825354)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Characterization of Vibrio fluvialis-Like Strains Implicated in Limp Lobster Disease

    PubMed Central

    Tall, B. D.; Fall, S.; Pereira, M. R.; Ramos-Valle, M.; Curtis, S. K.; Kothary, M. H.; Chu, D. M. T.; Monday, S. R.; Kornegay, L.; Donkar, T.; Prince, D.; Thunberg, R. L.; Shangraw, K. A.; Hanes, D. E.; Khambaty, F. M.; Lampel, K. A.; Bier, J. W.; Bayer, R. C.

    2003-01-01

    Studies were undertaken to characterize and determine the pathogenic mechanisms involved in a newly described systemic disease in Homarus americanus (American lobster) caused by a Vibrio fluvialis-like microorganism. Nineteen isolates were obtained from eight of nine lobsters sampled. Biochemically, the isolates resembled V. fluvialis, and the isolates grew optimally at 20°C; none could grow at temperatures above 23°C. The type strain (1AMA) displayed a thermal reduction time (D value) of 5.77 min at 37°C. All of the isolates required at least 1% NaCl for growth. Collectively, the data suggest that these isolates may embody a new biotype. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed five closely related subgroups. Some isolates produced a sheep hemagglutinin that was neither an outer membrane protein nor a metalloprotease. Several isolates possessed capsules. The isolates were highly susceptible to a variety of antibiotics tested. However, six isolates were resistant to erythromycin. Seventeen isolates harbored plasmids. Lobster challenge studies revealed that the 50% lethal dose of a plasmid-positive strain was 100-fold lower than that of a plasmid-negative strain, suggesting that the plasmid may enhance the pathogenicity of these microorganisms in lobsters. Microorganisms that were recovered from experimentally infected lobsters exhibited biochemical and PFGE profiles that were indistinguishable from those of the challenge strain. Tissue affinity studies demonstrated that the challenge microorganisms accumulated in heart and midgut tissues as well as in the hemolymph. Culture supernatants and polymyxin B lysates of the strains caused elongation of CHO cells in tissue culture, suggesting the presence of a hitherto unknown enterotoxin. Both plasmid-positive and plasmid-negative strains caused significant dose-related intestinal fluid accumulations in suckling mice. Absence of viable organisms in the intestinal contents of mice suggests that these microorganisms cause diarrhea in mice by intoxication rather than by an infectious process. Further, these results support the thermal reduction data at 37°C and suggest that the mechanism(s) that led to fluid accumulation in mice differs from the disease process observed in lobsters by requiring neither the persistence of viable microorganisms nor the presence of plasmids. In summary, results of lobster studies satisfy Koch's postulates at the organismal and molecular levels; the findings support the hypothesis that these V. fluvialis-like organisms were responsible for the originally described systemic disease, which is now called limp lobster disease. PMID:14660396

  4. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins.

    PubMed

    Figueroa, Maximiliano; Fernandez, Valentina; Arenas-Salinas, Mauricio; Ahumada, Diego; Muñoz-Villagrán, Claudia; Cornejo, Fabián; Vargas, Esteban; Latorre, Mauricio; Morales, Eduardo; Vásquez, Claudio; Arenas, Felipe

    2018-01-01

    Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro . All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter , and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO 3 2 - ) and tetrachloro aurate ( AuCl 4 - ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO 3 2 - ) and silver (Ag + ) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- μg/ml for E. coli and L. monocytogenes , respectively. Similar MIC values (40 and 82 μg/ml, respectively) were observed for TeNS generated using crude extracts from gorA -overexpressing E. coli . In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- μg/ml, respectively.

  5. Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins

    PubMed Central

    Figueroa, Maximiliano; Fernandez, Valentina; Arenas-Salinas, Mauricio; Ahumada, Diego; Muñoz-Villagrán, Claudia; Cornejo, Fabián; Vargas, Esteban; Latorre, Mauricio; Morales, Eduardo; Vásquez, Claudio; Arenas, Felipe

    2018-01-01

    Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite (TeO32-) and tetrachloro aurate (AuCl4-) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite (SeO32-) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- μg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 μg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- μg/ml, respectively. PMID:29869640

  6. Comprehensive transcriptome analysis provides new insights into nutritional strategies and phylogenetic relationships of chrysophytes

    PubMed Central

    Graupner, Nadine; Bock, Christina; Wodniok, Sabina; Grossmann, Lars; Vos, Matthijs; Sures, Bernd

    2017-01-01

    Background Chrysophytes are protist model species in ecology and ecophysiology and important grazers of bacteria-sized microorganisms and primary producers. However, they have not yet been investigated in detail at the molecular level, and no genomic and only little transcriptomic information is available. Chrysophytes exhibit different trophic modes: while phototrophic chrysophytes perform only photosynthesis, mixotrophs can gain carbon from bacterial food as well as from photosynthesis, and heterotrophs solely feed on bacteria-sized microorganisms. Recent phylogenies and megasystematics demonstrate an immense complexity of eukaryotic diversity with numerous transitions between phototrophic and heterotrophic organisms. The question we aim to answer is how the diverse nutritional strategies, accompanied or brought about by a reduction of the plasmid and size reduction in heterotrophic strains, affect physiology and molecular processes. Results We sequenced the mRNA of 18 chrysophyte strains on the Illumina HiSeq platform and analysed the transcriptomes to determine relations between the trophic mode (mixotrophic vs. heterotrophic) and gene expression. We observed an enrichment of genes for photosynthesis, porphyrin and chlorophyll metabolism for phototrophic and mixotrophic strains that can perform photosynthesis. Genes involved in nutrient absorption, environmental information processing and various transporters (e.g., monosaccharide, peptide, lipid transporters) were present or highly expressed only in heterotrophic strains that have to sense, digest and absorb bacterial food. We furthermore present a transcriptome-based alignment-free phylogeny construction approach using transcripts assembled from short reads to determine the evolutionary relationships between the strains and the possible influence of nutritional strategies on the reconstructed phylogeny. We discuss the resulting phylogenies in comparison to those from established approaches based on ribosomal RNA and orthologous genes. Finally, we make functionally annotated reference transcriptomes of each strain available to the community, significantly enhancing publicly available data on Chrysophyceae. Conclusions Our study is the first comprehensive transcriptomic characterisation of a diverse set of Chrysophyceaen strains. In addition, we showcase the possibility of inferring phylogenies from assembled transcriptomes using an alignment-free approach. The raw and functionally annotated data we provide will prove beneficial for further examination of the diversity within this taxon. Our molecular characterisation of different trophic modes presents a first such example. PMID:28097055

  7. Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site

    NASA Astrophysics Data System (ADS)

    Chen, K. F.; Kao, C. M.; Chen, T. Y.; Weng, C. H.; Tsai, C. T.

    2006-06-01

    An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would be a feasible technology to clean up this MTBE-contaminated site.

  8. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.

    PubMed

    Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab

    2013-05-01

    Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Rhizobium selenitireducens proteins involved in the reduction of selenite to elemental selenium

    USDA-ARS?s Scientific Manuscript database

    Microbial based bioremediation barriers can remove the metalloid selenite (SeO3–2) from flowing groundwater. The organisms associated with the process include microorganisms from within the bacterial and archaeal domains that can reduce soluble SeO3–2 to the insoluble and reddish-colored elemental ...

  10. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    PubMed

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Degradation of azo dyes by environmental microorganisms and helminths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingthom Chung; Stevens, S.E. Jr.

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number ofmore » anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.« less

  12. Diversity of culturable nocardioform actinomycetes from wastewater treatment plants in Spain and their role in the biodegradability of aromatic compounds.

    PubMed

    Soler, Albert; García-Hernández, Jorge; Zornoza, Andrés; Alonso, José Luis

    2018-01-01

    Currently, municipal and industrial wastewater treatment plants (WWTPs) are mainly focusing on reduction of biological oxygen demand and on the removal of nutrients. However, there are microorganisms that interfere with the process. In this environment, there is a large diversity of microorganisms that have not been studied in detail and that could provide real and practical solutions to the foaming problems. Among such microorganisms, Gram-positive actinomycete bacteria are of special interest because they are known for producing secondary metabolites as well as chemically diverse compounds and for their capacity to degrade recalcitrant pollutants. Three different media were chosen to isolate actinomycetes from 28 WWTPs in Spain. A total of 189 activated sludge samples were collected; 126 strains were isolated and identified to belong to 1 suborder, i.e. Corynebacterineae, and 7 genera, i.e. Corynebacterium, Dietzia, Gordonia, Mycobacterium, Rhodococcus, Tsukamurella and Williamsia. Furthermore, 71 strains were capable of biodegrading at least 1 aromatic product, and that 27 of them amplified for catA gene. The results of this research help us understand the complexity of the foam-forming microbial populations in Spain and it shows that WWTPs can be a good source of microorganisms that can degrade phenol or naphthalene.

  13. Light-dependent processes on the cathode enhance the electrical outputs of sediment microbial fuel cells.

    PubMed

    Bardarov, Ivo; Mitov, Mario; Ivanova, Desislava; Hubenova, Yolina

    2018-02-27

    In this study, we explored in details the influence of the light irradiation on the SMFCs electrical outputs. The experiments at both natural and artificial illumination firmly show that during the photoperiods the current grows up. The intensity of the current increase depends on the duration of the photoperiod as well as on the wavelength of the monochromatic light source applied. The highest influence of the light irradiation has been obtained at wavelengths, corresponding to the absorption peaks of essential pigments in the light-harvesting system of oxygenic photosynthesizing microorganisms. The decreased values as well as the discontinued fluctuations of the current as a result of suppressed illumination or substitution of the biocathode with a new one suggest that photosynthesizing microorganisms, co-existing in the cathodic biofilm consortium, contribute to the overall SMFC performance. The microscopic observations confirm the existence of chlorophyll-containing microorganisms on the cathode surface. Though the performed metagenomics DNA analysis has not certified a dominance of photosynthesizing microorganisms, all other results support the hypothesis that the current enhance during the photoperiods is due to the in situ bio-oxygen production on the cathode surface, thus lowering the mass transport limitations for the oxygen reduction reaction. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  15. The hunt for the most-wanted chemolithoautotrophic spookmicrobes

    PubMed Central

    2018-01-01

    ABSTRACT Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic ‘Candidatus Methanothrix paradoxum’, which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, ‘Candidatus Methanoperedens nitroreducens’ ANME-2d archaea and ‘Candidatus Methylomirabilis oxyfera’ bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although ‘Candidatus Methanoperedens nitroreducens’ and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery. PMID:29873717

  16. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE PAGES

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne; ...

    2015-07-21

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  17. Comparative reduction of Giardia cysts, F+ coliphages, sulphite reducing clostridia and fecal coliforms by wastewater treatment processes.

    PubMed

    Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu

    2017-01-28

    Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log 10 ) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log 10 ) whereas the least reduction was observed for F+ coliphages (2.1 log 10 ) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log 10 ) or chlorine (3.3 log 10 ). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.

  18. Evaluation of low-dose irradiation on microbiological quality of white carrots and string beans

    NASA Astrophysics Data System (ADS)

    Koike, Amanda C. R.; Santillo, Amanda G.; Rodrigues, Flávio T.; Duarte, Renato C.; Villavicencio, Anna Lucia C. H.

    2012-08-01

    The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.

  19. Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants

    PubMed Central

    Almeida, Adelaide; Cunha, Ângela; Gomes, Newton C.M.; Alves, Eliana; Costa, Liliana; Faustino, Maria A.F.

    2009-01-01

    Owing to the increasing importance of aquaculture to compensate for the progressive worldwide reduction of natural fish and to the fact that several fish farming plants often suffer from heavy financial losses due to the development of infections caused by microbial pathogens, including multidrug resistant bacteria, more environmentally-friendly strategies to control fish infections are urgently needed to make the aquaculture industry more sustainable. The aim of this review is to briefly present the typical fish farming diseases and their threats and discuss the present state of chemotherapy to inactivate microorganisms in fish farming plants as well as to examine the new environmentally friendly approaches to control fish infection namely phage therapy and photodynamic antimicrobial therapy. PMID:19841715

  20. Probiotic fermented sausage: viability of probiotic microorganisms and sensory characteristics.

    PubMed

    Rouhi, M; Sohrabvandi, S; Mortazavian, A M

    2013-01-01

    Probiotics are from functional foods that bring health benefits for humans. Nowadays, a major development in functional foods is related to food containing probiotic cultures, mainly lactic acid bacteria or bifidobacteria. Probiotics must be alive and ingested in sufficient amounts to exert the positive effects on the health and the well-being of the host. Therefore, viability of probiotic products (the minimum viable probiotic cells in each gram or milliliter of product till the time of consumption) is their most important characteristic. However, these organisms often show poor viability in fermented products due to their detrimental conditions. Today, the variety of fermented meat products available around the world is nearly equal to that of cheese. With meat products, raw fermented sausages could constitute an appropriate vehicle for such microorganisms into the human gastrointestinal tract. In present article, the viability of probiotic microorganisms in fermented sausage, the main factors affect their viability, and the sensorial characteristics of final product are discussed.

  1. Electroactive Biofilms: Current Status and Future Research Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P; Reguera, Gemma; Ringeisen, Bradley

    2011-01-01

    Electroactive biofilms generated by electrochemically active microorganisms have many potential applications in bioenergy and chemicals production. This review assesses the effects of microbiological and process parameters on enrichment of such biofilms as well as critically evaluates the current knowledge of the mechanisms of extracellular electron transfer in BES systems. First we discuss the role of biofilm forming microorganisms vs. planktonic microorganisms. Physical, chemical and electrochemical parameters which dictate the enrichment and subsequent performance of the biofilms are discussed. Potential dependent biological parameters including biofilm growth rate, specific electron transfer rate and others and their relationship to BES system performance ismore » assessed. A review of the mechanisms of electron transfer in BES systems is included followed by a discussion of biofilm and its exopolymeric components and their electrical conductivity. A discussion of the electroactive biofilms in biocathodes is also included. Finally, we identify the research needs for further development of the electroactive biofilms to enable commercial applications.« less

  2. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening.

    PubMed

    Zhao, Ben; Li, Yafei; Li, Changling; Yang, Hailin; Wang, Wu

    2018-03-01

    Schizochytrium sp. accumulates valuable polyunsaturated fatty acid (PUFA), such as docosahexaenoic acid (DHA). In order to increase DHA synthesis in this microorganism, physical or chemical mutagenesis aided with powerful screening methods are still preferable, as its DHA synthetic pathway has not yet been clearly defined for gene manipulation. To breed this agglomerate microorganism of thick cell wall and rather large genome for increasing lipid content and DHA percentage, a novel strategy of atmospheric and room temperature plasma (ARTP) mutagenesis coupled with stepped malonic acid (MA) and zeocin resistance screening was developed. The final resulted mutant strain mz-17 was selected with 1.8-fold increased DHA production. Accompanied with supplementation of Fe 2+ in shake flask cultivation, DHA production of 14.0 g/L on average was achieved. This work suggests that ARTP mutation combined with stepped MA and zeocin resistance screening is an efficient method of breeding Schizochytrium sp. of high DHA production, and might be applied on other microorganisms for obtaining higher desired PUFA products.

  3. Experimental methods for studying microbial survival in extraterrestrial environments.

    PubMed

    Olsson-Francis, Karen; Cockell, Charles S

    2010-01-01

    Microorganisms can be used as model systems for studying biological responses to extraterrestrial conditions; however, the methods for studying their response are extremely challenging. Since the first high altitude microbiological experiment in 1935 a large number of facilities have been developed for short- and long-term microbial exposure experiments. Examples are the BIOPAN facility, used for short-term exposure, and the EXPOSE facility aboard the International Space Station, used for long-term exposure. Furthermore, simulation facilities have been developed to conduct microbiological experiments in the laboratory environment. A large number of microorganisms have been used for exposure experiments; these include pure cultures and microbial communities. Analyses of these experiments have involved both culture-dependent and independent methods. This review highlights and discusses the facilities available for microbiology experiments, both in space and in simulation environments. A description of the microorganisms and the techniques used to analyse survival is included. Finally we discuss the implications of microbiological studies for future missions and for space applications. Copyright 2009 Elsevier B.V. All rights reserved.

  4. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    PubMed

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  5. Electron beam irradiation of Matricaria chamomilla L. for microbial decontamination

    NASA Astrophysics Data System (ADS)

    Nemţanu, Monica R.; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Mazilu, Elena; Setnic, Silvia; Bucur, Marcela; Duliu, Octavian G.; Meltzer, Viorica; Pincu, Elena

    2008-05-01

    Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam irradiation.

  6. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane.

    PubMed

    Shi, Chao; Sun, Yi; Zheng, Zhiwei; Zhang, Xiaorong; Song, Kaikuo; Jia, Zhenyu; Chen, Yifei; Yang, Miaochun; Liu, Xin; Dong, Rui; Xia, Xiaodong

    2016-04-15

    Syringic acid (SA) has been reported to exhibit antibacterial ability against various microorganisms, but little work has been done on its effect on Cronobacter sakazakii. In this study, minimum inhibitory concentrations (MICs) of SA against various C. sakazakii strains were determined. Moreover, changes in intracellular ATP concentration, intracellular pH (pHin), membrane potential and membrane integrity were measured to evaluate the influence of SA on cell membrane. Finally, field emission scanning electron microscope (FESEM) was used to assess the morphological changes of bacterial cells caused by SA. It was shown that the MICs of SA against all tested C. sakazakii strains were 5mg/mL. SA retarded bacterial growth, and caused cell membrane dysfunction, which was evidenced by intracellular ATP concentration decrease, pHin reduction, cell membrane hyperpolarization and changes in cellular morphology. These findings indicated that SA has potential to be developed as a natural preservative to control C. sakazakii in foods associated with this pathogen and prevent related infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enhancement of bactericidal effects of sodium hypochlorite in chiller water with food additive grade calcium hydroxide.

    PubMed

    Toyofuku, Chiharu; Alam, Md Shahin; Yamada, Masashi; Komura, Miyuki; Suzuki, Mayuko; Hakim, Hakimullah; Sangsriratanakul, Natthanan; Shoham, Dany; Takehara, Kazuaki

    2017-06-16

    An alkaline agent, namely food additive grade calcium hydroxide (FdCa(OH) 2 ) in solution at 0.17%, was evaluated for its bactericidal efficacies in chiller water with sodium hypochlorite (NaOCl) at a concentration of 200 ppm total residual chlorine. Without organic material presence, NaOCl could inactivate Salmonella Infantis and Escherichia coli within 5 sec, but in the presence of fetal bovine serum (FBS) at 0.5%, the bactericidal effects of NaOCl were diminished completely. FdCa(OH) 2 solution required 3 min to inactivate bacteria with or without 5% FBS. When NaOCl and FdCa(OH) 2 were mixed at the final concentration of 200 ppm and 0.17%, respectively, the mixed solution could inactivate bacteria at acceptable level (10 3 reduction of bacterial titer) within 30 sec in the presence of 0.5% FBS. The mixed solution also inhibited cross-contamination with S. Infantis or E. coli on chicken meats. It was confirmed and elucidated that FdCa(OH) 2 has a synergistic effect together with NaOCl for inactivating microorganisms.

  8. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity.

    PubMed

    Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P

    2014-07-15

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The effect of reduced sodium chloride content on the microbiological and biochemical properties of a soft surface-ripened cheese.

    PubMed

    Dugat-Bony, E; Sarthou, A-S; Perello, M-C; de Revel, G; Bonnarme, P; Helinck, S

    2016-04-01

    Many health authorities have targeted salt reduction in food products as a means to reduce dietary sodium intake due to the harmful effects associated with its excessive consumption. In the present work, we evaluated the effect of reducing sodium chloride (NaCl) content on the microbiological and biochemical characteristics of an experimental surface-ripened cheese. A control cheese (1.8% NaCl) and a cheese with a reduced NaCl content (1.3% NaCl) were sampled weekly over a period of 27d. Reducing NaCl content induced microbial perturbations such as the lesser development of the yeast Debaryomyces hansenii and the greater development of the gram-negative bacterium Hafnia alvei. This was accompanied by changes in proteolytic kinetics and in profiles of volatile aroma compounds and biogenic amine production. Finally, the development of the spoilage microorganism Pseudomonas fragi was significantly higher in the cheese with a reduced salt content. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms.

    PubMed

    Reeve, Peter J; Fallowfield, Howard J

    2018-01-01

    The objective of this review is to highlight the need for further investigation of microbial toxicity caused by desorption of surfactant from Surfactant Modified Zeolite (SMZ). SMZ is a low cost, versatile permeable reactive media which has the potential to treat multiple classes of contaminants. With this combination of characteristics, SMZ has significant potential to enhance water and wastewater treatment processes. Surfactant desorption has been identified as a potential issue for the ongoing usability of SMZ. Few studies have investigated the toxicity of surfactants used in zeolite modification towards microorganisms and fewer have drawn linkages between surfactant desorption and surfactant toxicity. This review provides an overview of natural zeolite chemistry, characteristics and practical applications. The chemistry of commonly used surfactants is outlined, along with the kinetics that drive their adsorption to the zeolite surface. Methodologies to characterise this surfactant loading are also described. Applications of SMZ in water remediation are highlighted, giving focus to applications which deal with biological pollutants and where microorganisms play a role in the remediation process. Studies that have identified surfactant desorption from SMZ are outlined. Finally, the toxicity of a commonly used cationic surfactant towards microorganisms is discussed. This review highlights the potential for surfactant to desorb from the zeolite surface and the need for further research into the toxicity of this desorbed surfactant towards microorganisms, including pathogens and environmental microbes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    PubMed Central

    Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O.

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide. PMID:28626450

  12. Membrane Bioreactor/Ultra Low Energy Reverse Osmosis Membrane Process for Forward Operating Base Wastewater Reuse

    DTIC Science & Technology

    2014-08-01

    of the GEGR pilot membrane coater; b) configuration of the coating station; and c) web path of the dip-knife coating process for RO membrane...Energy-dispersive X-ray spectroscopy EPA Environmental Protection Agency F:M Food-To-Microorganism Ratio FOB Forward Operating Base FT- IR Fourier...report 03/2014 3.3 Submit draft Interim report/Go No-Go decision point white paper 05/2013 3.4 Submit final report 05/2014 3.5 Final debrief

  13. Reductive dehalogenation activity of indigenous microorganism in sediments of the Hackensack River, New Jersey.

    PubMed

    Sohn, Seo Yean; Häggblom, Max M

    2016-07-01

    Organohalogen pollutants are of concern in many river and estuarine environments, such as the New York-New Jersey Harbor estuary and its tributaries. The Hackensack River is contaminated with various metals, hydrocarbons and halogenated organics, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins. In order to examine the potential for microbial reductive dechlorination by indigenous microorganisms, sediment samples were collected from five different estuarine locations along the Hackensack River. Hexachlorobenzene (HCB), hexabromobenzene (HBB), and pentachloroaniline (PCA) were selected as model organohalogen pollutants to assess anaerobic dehalogenating potential. Dechlorinating activity of HCB and PCA was observed in sediment microcosms for all sampling sites. HCB was dechlorinated via pentachlorobenzene (PeCB) and trichlorobenzene (TriCB) to dichlorobenzene (DCB). PCA was dechlorinated via tetrachloroaniline (TeCA), trichloroanilines (TriCA), and dichloroanilines (DCA) to monochloroaniline (MCA). No HBB debromination was observed over 12 months of incubation. However, with HCB as a co-substrate slow HBB debromination was observed with production of tetrabromobenzene (TeBB) and tribromobenzene (TriBB). Chloroflexi specific 16S rRNA gene PCR-DGGE followed by sequence analysis detected Dehalococcoides species in sediments of the freshwater location, but not in the estuarine site. Analysis targeting 12 putative reductive dehalogenase (rdh) genes showed that these were enriched concomitant with HCB or PCA dechlorination in freshwater sediment microcosms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes.

    PubMed

    Lacombe, Alison; Niemira, Brendan A; Gurtler, Joshua B; Fan, Xuetong; Sites, Joseph; Boyd, Glenn; Chen, Haiqiang

    2015-04-01

    Cold plasma (CP) is a novel nonthermal technology, potentially useful in food processing settings. Berries were treated with atmospheric CP for 0, 15, 30, 45, 60, 90, or 120 s at a working distance of 7.5 cm with a mixture of 4 cubic feet/minute (cfm) of CP jet and 7 cfm of ambient air. Blueberries were sampled for total aerobic plate count (APC) and yeast/molds immediately after treatment and at 1, 2, and 7 days. Blueberries were also analyzed for compression firmness, surface color, and total anthocyanins immediately after each treatment. All treatments with CP significantly (P < 0.05) reduced APC after exposure, with reductions ranging from 0.8 to 1.6 log CFU/g and 1.5 to 2.0 log CFU/g compared to the control after 1 and 7 days, respectively. Treatments longer than 60s resulted in significant reductions in firmness, although it was demonstrated that collisions between the berries and the container contributed significantly to softening. A significant reduction in anthocyanins was observed after 90 s. The surface color measurements were significantly impacted after 120 s for the L* and a* values and 45 s for the b* values. CP can inactivate microorganisms on blueberries and could be optimized to improve the safety and quality of produce. Published by Elsevier Ltd.

  15. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts.

    PubMed

    Cervero-Aragó, Sílvia; Sommer, Regina; Araujo, Rosa M

    2014-12-15

    Water systems are the primary reservoir for Legionella spp., where the bacteria live in association with other microorganisms, such as free-living amoebae. A wide range of disinfection treatments have been studied to control and prevent Legionella colonization but few of them were performed considering its relation with protozoa. In this study, the effectiveness of UV irradiation (253.7 nm) using low-pressure lamps was investigated as a disinfection method for Legionella and amoebae under controlled laboratory conditions. UV treatments were applied to 5 strains of Legionella spp., 4 strains of free-living amoeba of the genera Acanthamoeba and Vermamoeba, treating separately trophozoites and cysts, and to two different co-cultures of Legionella pneumophila with the Acanthamoeba strains. No significant differences in the UV inactivation behavior were observed among Legionella strains tested which were 3 logs reduced for fluences around 45 J/m(2). UV irradiation was less effective against free-living amoebae; which in some cases required up to 990 J/m(2) to obtain the same population reduction. UV treatment was more effective against trophozoites compared to cysts; moreover, inactivation patterns were clearly different between the genus Acanthamoeba and Vermamoeba. For the first time data about Vermamoeba vermiformis UV inactivation has been reported in a study. Finally, the results showed that the association of L. pneumophila with free-living amoebae decreases the effectiveness of UV irradiation against the bacteria in a range of 1.5-2 fold. That fact demonstrates that the relations established between different microorganisms in the water systems can modify the effectiveness of the UV treatments applied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Global biogeography of microbial nitrogen-cycling traits in soil

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Martiny, A.; Martiny, J. B. H.

    2016-12-01

    Microorganisms drive much of the Earth's nitrogen (N) cycle. However, despite their importance, many ecosystem models do not explicitly consider microbial communities and their functions. One obstacle in doing this is that we lack a complete understanding of the role that microbes play in biogeochemical processes. To address this challenge we used metagenomics to assess various N cycling traits of soil microorganisms in samples from around the globe. As measurable characteristics of an organism, traits can be used to quantify the role of microbes in ecosystem processes. Using 365 publically available soil metagenomes, we characterized the biogeography of microbial N cycling traits, defined as the abundance and composition of eight N pathways. We found strong biogeographic patterns in the frequency of N pathway traits; however, our models explained much less variation in taxonomic composition across sites. Focusing on individual N pathways, we identified the prominent taxa harboring these pathways. In addition, we found an unexpectedly high frequency of Bacteria encoding the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a little studied N cycle process in soils. Finally, across all N pathways, phylogenetic analysis revealed that some phyla seem to be N cycle generalists (i.e delta-Proteobacteria), with the potential to carry out many N transformations, whereas others seem to be specialists (i.e. Cyanobacteria). As the most comprehensive map to date of the global distribution of microbial N traits, this study provides a springboard for further investigation of the prominent players in N cycling in soils. Overall, biogeographic patterns of traits can provide a foundation for understanding how microbial diversity impacts ecosystem processes and ultimately predicting how this diversity may shift in the face of global change.

  17. Artemisia spp. essential oils against the disease-carrying blowfly Calliphora vomitoria.

    PubMed

    Bedini, Stefano; Flamini, Guido; Cosci, Francesca; Ascrizzi, Roberta; Echeverria, Maria Cristina; Guidi, Lucia; Landi, Marco; Lucchi, Andrea; Conti, Barbara

    2017-02-13

    Synanthropic flies play a considerable role in the transmission of pathogenic and non-pathogenic microorganisms. In this work, the essential oil (EO) of two aromatic plants, Artemisia annua and Artemisia dracunculus, were evaluated for their abilities to control the blowfly Calliphora vomitoria. Artemisia annua and A. dracunculus EOs were extracted, analysed and tested in laboratory bioassays. Besides, the physiology of EOs toxicity and the EOs antibacterial and antifungal properties were evaluated. Both Artemisia EOs deterred C. vomitoria oviposition on fresh beef meat. At 0.05 μl cm -2 A. dracunculus EO completely inhibited C. vomitoria oviposition. Toxicity tests, by contact, showed LD 50 of 0.49 and 0.79 μl EO per fly for A. dracunculus and A. annua, respectively. By fumigation, LC 50 values were 49.55 and 88.09 μl l -1 air for A. dracunculus and A. annua, respectively. EOs AChE inhibition in C. vomitoria (IC 50  = 202.6 and 472.4 mg l -1 , respectively, for A. dracunculus and A. annua) indicated that insect neural sites are targeted by the EOs toxicity. Finally, the antibacterial and antifungal activities of the two Artemisia EOs may assist in the reduction of transmission of microbial infections/contaminations. Results suggest that Artemisia EOs could be of use in the control of C. vomitoria, a common vector of pathogenic microorganisms and agent of human and animal cutaneous myiasis. The prevention of pathogenic and parasitic infections is a priority for human and animal health. The Artemisia EOs could represent an eco-friendly, low-cost alternative to synthetic repellents and insecticides to fight synanthropic disease-carrying blowflies.

  18. Reductions in bacterial microorganisms by filtration and ozonation of the surface water supply at the USFWS Northeast Fishery Center

    USDA-ARS?s Scientific Manuscript database

    A water filtration and ozonation system was recently installed to treat creek water used to culture species of concern at the U.S. Fish and Wildlife Service's Northeast Fishery Center, Lamar National Fish Hatchery (NFH). Past experience with fish culture indicates that the following bacterial pathog...

  19. 21 CFR 529.1044b - Gentamicin solution for dipping eggs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....600(c) of this chapter. (c) Conditions of use in turkeys—(1) Amount. The drug is added to clean water...) Indications for use. As an aid in the reduction or elimination of the following microorganisms from turkey...) Limitations. For use in the dipping treatment of turkey-hatching eggs only. Eggs which have been dipped in the...

  20. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  1. Photodynamic therapy on bacterial reduction in dental caries: in vivo study

    NASA Astrophysics Data System (ADS)

    Baptista, Alessandra; Araujo Prates, Renato; Kato, Ilka Tiemy; Amaral, Marcello Magri; Zanardi de Freitas, Anderson; Simões Ribeiro, Martha

    2010-04-01

    The reduction of pathogenic microorganisms in supragingival plaque is one of the principal factors in caries prevention and control. A large number of microorganisms have been reported to be inactivated in vitro by photodynamic therapy (PDT). The purpose of this study was to develop a rat model to investigate the effects of PDT on bacterial reduction in induced dental caries. Twenty four rats were orally inoculated with Streptococcus mutans cells (ATCC 25175) for three consecutive days. The animals were fed with a cariogenic diet and water with 10% of sucrose ad libitum, during all experimental period. Caries lesion formation was confirmed by Optical Coherence Tomography (OCT) 5 days after the beginning of the experiment. Then, the animals were randomly divided into two groups: Control Group: twelve animals were untreated by either light or photosensitizer; and PDT Group: twelve animals were treated with 100μM of methylene blue for 5min and irradiated by a Light Emitting Diode (LED) at λ = 640+/-30nm, fluence of 172J/cm2, output power of 240mW, and exposure time of 3min. Microbiological samples were collected before, immediately after, 3, 7 and 10 days after treatment and the number of total microaerophiles was counted. OCT images showed areas of enamel demineralization on rat molars. Microbiological analysis showed a significant bacterial reduction after PDT. Furthermore, the number of total microaerophiles in PDT group remained lower than control group until 10 days posttreatment. These findings suggest that PDT could be an alternative approach to reduce bacteria in dental caries.

  2. Hazard analysis and critical control point systems in the United States Department of Agriculture regulatory policy.

    PubMed

    Billy, T J; Wachsmuth, I K

    1997-08-01

    Recent outbreaks of foodborne illness and studies by expert groups have established the need for fundamental change in the United States meat and poultry inspection programme to reduce the risk of foodborne illness. The Food Safety and Inspection Service (FSIS) of the United States Department of Agriculture (USDA) has embarked on a broad effort to bring about such change, with particular emphasis on the reduction of pathogenic micro-organisms in raw meat and poultry products. The publication on 25 July 1996 of the Final Rule on pathogen reduction and hazard analysis and critical control point (HACCP) systems was a major milestone in the FSIS strategy for change. The Final Rule provides a framework for change and clarifies the respective roles of industry and government in ensuring the safety of meat and poultry products. With the implementation of this Final Rule underway, the FSIS has been exploring ways in which slaughter inspection carried out under an HACCP-based system can be changed so that food safety risks are addressed more adequately and the allocation of inspection resources is improved further. In addition, the FSIS is broadening the focus of food safety activities to extend beyond slaughter and processing plants by working with industry, academia and other government agencies. Such co-operation should lead to the development of measures to improve food safety before animals reach the slaughter plant and after products leave the inspected establishment for distribution to the retail level. For the future, the FSIS believes that quantitative risk assessments will be at the core of food safety activities. Risk assessments provide the most effective means of identifying how specific pathogens and other hazards may be encountered throughout the farm-to-table chain and of measuring the potential impact of various interventions. In addition, these assessments will be used in the development and evaluation of HACCP systems. The FSIS is currently conducting a quantitative risk assessment for eggs, and several surveys and studies are being performed to supply data needed to conduct other risk assessments. The FSIS has established a food safety research agenda which will fill data gaps.

  3. Biogenesis of Selenium Nanoparticles Using Green Chemistry.

    PubMed

    Shoeibi, Sara; Mozdziak, Paul; Golkar-Narenji, Afsaneh

    2017-11-09

    Selenium binds some enzymes such as glutathione peroxidase and thioredoxin reductase, which may be activated in biological infections and oxidative stress. Chemical and physical methods for synthesizing nanoparticles, apart from being expensive, have their own particular risks. However, nanoparticle synthesis through green chemistry is a safe procedure that different biological sources such as bacteria, fungi, yeasts, algae and plants can be the catalyst bed for processing. Synthesis of selenium nanoparticles (SeNPs) by macro/microorganisms causes variation in morphology and shape of the particles is due to diversity of reduction enzymes in organisms. Reducing enzymes of microorganisms by changing the status of redox convert metal ions (Se 2- ) to SeNPs without charge (Se 0 ). Biological activity of SeNPs includes their protective role against DNA oxidation. Because of the biological and industrial properties, SeNPs have wide applications in the fields of medicine, microelectronic, agriculture and animal husbandry. SeNPs can show strong antimicrobial effects on the growth and proliferation of microorganisms in a dose-dependent manner. The objective of this review is to consider SeNPs applications to various organisms.

  4. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables.

    PubMed

    Ali, Asgar; Yeoh, Wei Keat; Forney, Charles; Siddiqui, Mohammed Wasim

    2017-10-26

    Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.

  5. [Interaction of a causative agent with associative bacteria during salmonellosis].

    PubMed

    Bukharin, O V; Valyshev, A V; Ivanova, E V; Chaĭnikova, I N; Perunova, N B

    2008-01-01

    To determine a composition of gut microflora during salmonellosis and to study the modification of persistent characteristics (antilysozyme activity, ALA) of symbiotic microorganisms in associations. Bacteriologic study of feces was performed in 90 patients aged 18-39 years, which were divided to three groups: patients with salmonellosis in acute phase, reconvalescent patients, and conditionally healthy persons. Condition of gut microflorawas determined; microorganisms associated with Salmonella infection were isolated, and their influence on ALA of Salmonella was studied. Gut microbiocenosis was more diverse in patients compared with healthy persons. Significant reduction of bifidobacteria quantity (to 10(7) CFU/g of feces and less), especially in reconvalescent period, was noted. Association between bifidoflora deficiency and excessive increase of quantity of yeast fungi was revealed. It was determined that exometabolites of indigenous anaerobic microflora (bifidobacteria) promoted decrease of ALA of Salmonella, whereas opportunistic facultatively anaerobic microorganisms (enterobacteria, staphylococci) rendered mainly stimulating effect on the ALA of Salmonella. Obtained data reveal characteristics of bacterial interactions in associative symbiosis and provide insights about mechanisms of formation of pathobiocenosis and state of bacterial carriage.

  6. Microbial ecology of anaerobic digesters: the key players of anaerobiosis.

    PubMed

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed.

  7. Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis

    PubMed Central

    Ali Shah, Fayyaz; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Ahmad Asad, Saeed

    2014-01-01

    Anaerobic digestion is the method of wastes treatment aimed at a reduction of their hazardous effects on the biosphere. The mutualistic behavior of various anaerobic microorganisms results in the decomposition of complex organic substances into simple, chemically stabilized compounds, mainly methane and CO2. The conversions of complex organic compounds to CH4 and CO2 are possible due to the cooperation of four different groups of microorganisms, that is, fermentative, syntrophic, acetogenic, and methanogenic bacteria. Microbes adopt various pathways to evade from the unfavorable conditions in the anaerobic digester like competition between sulfate reducing bacteria (SRB) and methane forming bacteria for the same substrate. Methanosarcina are able to use both acetoclastic and hydrogenotrophic pathways for methane production. This review highlights the cellulosic microorganisms, structure of cellulose, inoculum to substrate ratio, and source of inoculum and its effect on methanogenesis. The molecular techniques such as DGGE (denaturing gradient gel electrophoresis) utilized for dynamic changes in microbial communities and FISH (fluorescent in situ hybridization) that deal with taxonomy and interaction and distribution of tropic groups used are also discussed. PMID:24701142

  8. Microorganisms in periradicular tissues: Do they exist? A perennial controversy

    PubMed Central

    Dudeja, Pooja Gupta; Dudeja, Krishan Kumar; Srivastava, Dhirendra; Grover, Shibani

    2015-01-01

    There is no greater association between the basic science and the practice of endodontics than that of microbiology. One of the strongest factors contributing to the controversies often encountered in the endodontic field is the lack of understanding that the disease processes of the pulp and periradicular tissues generally have a microbiological etiology. The vast majority of diseases of dental pulp and periradicular tissues are associated with microorganisms. After the microbial invasion of these tissues, the host responds with both nonspecific inflammatory responses and with specific immunologic responses to encounter such infections. The aim of this study is to fill the gaps in our knowledge regarding the role of microorganisms in endodontics and to discuss in depth whether their presence in periradicular lesions is a myth or a reality. An electronic search was carried out on PubMed database (custom range of almost 50 years) and Google using specific keywords and phrases. Inclusion and exclusion criteria were specified and around 50 articles were found suitable for inclusion. Full text of all the articles was retrieved and studied. Appropriate data were extracted and pooled and finally synthesized. It is important to understand the close relationship between the presence of microorganisms and endodontic disease process to develop an effective rationale for treatment. PMID:26980965

  9. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable tomore » metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.« less

  10. The water kefir grain inoculum determines the characteristics of the resulting water kefir fermentation process.

    PubMed

    Laureys, D; De Vuyst, L

    2017-03-01

    To investigate the influence of the water kefir grain inoculum on the characteristics of the water kefir fermentation process. Three water kefir fermentation processes were started with different water kefir grain inocula and followed as a function of time regarding microbial species diversity, community dynamics, substrate consumption profile and metabolite production course. The inoculum determined the water kefir grain growth, the viable counts on the grains, the time until total carbohydrate exhaustion, the final metabolite concentrations and the microbial species diversity. There were always 2-10 lactic acid bacterial cells for every yeast cell and the majority of these micro-organisms was always present on the grains. Lactobacillus paracasei, Lactobacillus hilgardii, Lactobacillus nagelii and Saccharomyces cerevisiae were always present and may be the key micro-organisms during water kefir fermentation. Low water kefir grain growth was associated with small grains with high viable counts of micro-organisms, fast fermentation and low pH values, and was not caused by the absence of exopolysaccharide-producing lactic acid bacteria. The water kefir grain inoculum influences the microbial species diversity and characteristics of the fermentation process. A select group of key micro-organisms was always present during fermentation. This study allows a rational selection of a water kefir grain inoculum. © 2016 The Society for Applied Microbiology.

  11. Biological treatment of TNT-contaminated soil. 1: Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daun, G.; Lenke, H.; Knackmuss, H.J.

    1998-07-01

    The explosive 2,4,6-trinitrotoluene (TNT), found as a major contaminant at armament plants from the two world wars, is reduced by a variety of microorganisms when electron donors such as glucose are added. This study shows that the cometabolic reduction of TNT to 2,4,6-triaminotoluene by an undefined anaerobic consortium increased considerably with increasing TNT concentrations and decreased with decreasing concentrations and feeding rates of glucose. The interactions of TNT and its reduction products with montmorillonitic clay and humic acids were investigated in abiotic adsorption experiments and during the microbial reduction of TNT. The results indicate that reduction products of TNT particularlymore » hydroxylaminodinitrotoluenes and 2,4,6-triaminotoluene bind irreversibly to soil components, which would prevent or prolong mineralization of the contaminants. Irreversible binding also hinders a further spread of the contaminants through soil or leaching into the groundwater.« less

  12. Biosolids impact soil phosphorus accountability, fractionation, and potential environmental risk.

    PubMed

    Ippolito, J A; Barbarick, K A; Norvell, K L

    2007-01-01

    Biosolids land application rates are typically based on crop N requirements but can lead to soil P accumulation. The Littleton/Englewood, Colorado, wastewater treatment facility has supported biosolids beneficial-use on a dryland wheat-fallow agroecosystem site since 1982, with observable soil P concentration increases as biyearly repeated biosolids applications increased from 0, 6.7, 13, 27, to 40 Mg ha(-1). The final study year was 2003, after which P accountability, fractionation, and potential environmental risk were assessed. Between 93 and 128% of biosolids-P added was accounted for when considering conventional tillage soil displacement, grain removal, and soil adsorption. The Fe-P fraction dominated all soil surface P fractions, likely due to an increase in amorphous Fe-oxide because Fe2(SO4)3 was added at the wastewater treatment facility inflow for digester H2S reduction. The Ca-P phase dominated all soil subsurface P fractions due to calcareous soil conditions. A combination of conventional tillage, drought from 1999 to 2003, and repeated and increasing biosolids application rates may have forced soil surface microorganism dormancy, reduction, or mortality; thus, biomass P reduction was evident. Subsurface biomass P was greater than surface biomass, possibly due to protection against environmental and anthropogenic variables or to increased dissolved organic carbon inputs. Even given years of biosolids application, the soil surface had the ability to sorb additional P as determined by shaking the soil in an excessive P solution. Biosolids-application regulations based on the Colorado Phosphorus Index would not impede current site practices. Proper monitoring, management, and addition of other best management practices are needed for continued assurance that P movement off-site does not become a major issue.

  13. GROWTH OF A DEHALOCOCCOIDES-LIKE MICROORGANISM ON VINYL CHLORIDE AND CIS-DICHLOROETHENE AS ELECTRON ACCEPTORS AS DETERMINED BY COMPETITIVE PCR. (R828772)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Aerobic microbial mineralization of dichloroethene as sole carbon substrate

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2000-01-01

    Microorganisms indigenous to the bed sediments of a black- water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.Microorganisms indigenous to the bed sediments of a black-water stream utilized 1,2-dichloroethene (1,2-DCE) as a sole carbon substrate for aerobic metabolism. Although no evidence of growth was observed in the minimal salts culture media used in this study, efficient aerobic microbial mineralization of 1,2-DCE as sole carbon substrate was maintained through three sequential transfers (107 final dilution) of the original environmental innoculum. These results indicate that 1,2-DCE can be utilized as a primary substrate to support microbial metabolism under aerobic conditions.

  15. Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds

    PubMed Central

    Nevin, Kelly P.; Woodard, Trevor L.; Franks, Ashley E.; Summers, Zarath M.; Lovley, Derek R.

    2010-01-01

    The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. PMID:20714445

  16. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  17. Preliminary Efficacy Testing of the Disinfectant MicrobeCare XLP for Potential Use in Military Operational Environments.

    PubMed

    Madden, Jonathan F; Henrichs, Lori; Ervin, Mark D; Lospinoso, Joshua; Beachkofsky, Thomas M; Hardin, Carolyn A

    2018-04-04

    A safe, easy-to-use, permanently bonded antiseptic that does not require post-exposure bioload reduction but maintains effectiveness over time would have far-reaching implications across multiple industries. Health care is one such arena, particularly in austere military settings where resources are at a premium. MicrobeCare XLP (MicrobeCare, Buffalo Grove, IL, USA) is a commercially available spray-on agent that is advertised to covalently bond to surfaces and provide a long-lasting antimicrobial coating inhospitable to >99.99% of surface microorganisms. A pilot study was devised to gather baseline data regarding product efficacy and laboratory parameters before consideration of extended investigations and military utilization. The product manufacturer recommends bioload reductions before product application, following product application, and after each pathogenic exposure. To investigate the product's efficacy in circumstances more closely simulating a military operational setting in which post-pathogenic exposure bioload reduction would not be possible, this step was deliberately excluded from the test sequences. Using autoclaved surgical forceps, growth of Staphylococcus aureus and Acinetobacter baumannii was evaluated in a controlled manner under multiple conditions. Test variations included duration of submersion in the MicrobeCare XLP solution and air-drying and a second autoclave sterilization. Control and treated forceps were exposed to a bacterial suspension and air-dried before being submerged in sterile saline and vortex mixed. The saline solution was serially diluted and plated on tryptic soy agar (TSA) II plates. Plates were incubated for 24 h and bacterial colony-forming units (CFU)/mL were counted. Statistical significance was defined according to the American Society for Testing and Materials (ASTM) International passing criteria of 3 Log10 or 99.9% reduction of microorganisms. Additionally, p-values were calculated using two-tailed unpaired two-sample t-tests with unequal variance with a threshold of 0.05. In the S. aureus tests, none of the reduction calculations met the ASTM International passing criteria. In addition, the difference between the means of the colony counts in the MicrobeCare XLP-treated forceps and untreated control forceps was not statistically significant (p-value 0.109). Conversely, in the A. baumannii tests, each of the percent reduction calculations met the ASTM International passing criteria; the difference between the means of the colony counts in the treatment and control groups was statistically significant (p-value 0.008). In these independent tests, MicrobeCare XLP effectively prevented growth of A. baumannii but had unpredictable results suppressing S. aureus. These results may relate to inherent properties of the bacteria or autoclave exposure, although the manufacturer asserts that the coating withstands such degradation. Additional testing could be performed using a broader range of microorganisms and exposure to varying conditions including other sterilization methods.

  18. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    PubMed

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms.

    PubMed

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R; Bebout, Brad M; Habicht, Kirsten S; Webb, Samuel M; Stahl, David A

    2007-08-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation.

  20. Impact of space flight on bacterial virulence and antibiotic susceptibility

    PubMed Central

    Taylor, Peter William

    2015-01-01

    Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit. PMID:26251622

  1. Inactivation of Staphylococcus aureus and Salmonella enteritidis in tryptic soy broth and caviar samples by high pressure processing.

    PubMed

    Fioretto, F; Cruz, C; Largeteau, A; Sarli, T A; Demazeau, G; El Moueffak, A

    2005-08-01

    We studied the action of high pressure processing on the inactivation of two foodborne pathogens, Staphylococcus aureus ATCC 6538 and Salmonella enteritidis ATCC 13076, suspended in a culture medium and inoculated into caviar samples. The baroresistance of the two pathogens in a tryptic soy broth suspension at a concentration of 10(8)-10(9) colony-forming units/ml was tested for continuous and cycled pressurization in the 150- to 550-MPa range and for 15-min treatments at room temperature. The increase of cycle number permitted the reduction of the pressure level able to totally inactivate both microorganisms in the tryptic soy broth suspension, whereas the effect of different procedure times on complete inactivation of the microorganisms inoculated into caviar was similar.

  2. Perspectives in production of functional meat products

    NASA Astrophysics Data System (ADS)

    Vasilev, D.; Glišić, M.; Janković, V.; Dimitrijević, M.; Karabasil, N.; Suvajdžić, B.; Teodorović, V.

    2017-09-01

    The meat industry has met new challenges since the World Health Organization classified processed meat in carcinogenic Group 1. In relation to this, the functional food concept in meat processing has gained importance, especially in reducing carcinogenic N-nitroso compounds and polycyclic aromatic hydrocarbons (PAHs) as an additional imperative, apart from the usual fat and salt reduction and product enrichment with functional ingredients. PAH reduction relies on control of the smoking process, but there is also a possibility they could be degraded by means of probiotic microorganisms or spices. The reduction of N-nitroso compounds could be provided by lowering the amount of added nitrite/nitrate, using substitutes for these chemicals, and/or by preventing conditions for the creation of N-nitroso compounds. Nevertheless, fat and salt reductions still remain topical, and rely mostly on the use of functional ingredients as their substitutes.

  3. Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands

    Treesearch

    John R. Butnor; Kurt H. Johnsen; Ram Oren; Gabriel G. Katul

    2003-01-01

    Elevated atmospheric carbon dioxide (CO2e) increases soil respiration rates in forest, grassland, agricultural and wetland systems as a result of increased growth, root biomass and enhanced biological activity of soil microorganisms. Less is known about how forest floor fluxes respond to the combined effects of elevated CO...

  4. Do You See What I See? Examining the Epistemic Barriers to Sustainable Agriculture

    ERIC Educational Resources Information Center

    Carolan, Michael S.

    2006-01-01

    This paper examines the epistemic barriers to sustainable agriculture, which are those aspects of food production that are not readily revealed by direct perception: such as decreases in rates of soil and nutrient loss, increases in levels of beneficial soil micro-organisms, and reductions in the amount of chemicals leaching into the water table.…

  5. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that controlmore » these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.« less

  6. Use of Probiotics to Control Aflatoxin Production in Peanut Grains.

    PubMed

    da Silva, Juliana Fonseca Moreira; Peluzio, Joenes Mucci; Prado, Guilherme; Madeira, Jovita Eugênia Gazzinelli Cruz; Silva, Marize Oliveira; de Morais, Paula Benevides; Rosa, Carlos Augusto; Pimenta, Raphael Sanzio; Nicoli, Jacques Robert

    2015-01-01

    Probiotic microorganisms (Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and Lactobacillus delbrueckii UFV H2b20) were evaluated as biological control agents to reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in peanut. Suspensions containing the probiotics alone or in combinations were tested by sprinkling on the grains followed by incubation for seven days at 25°C. All probiotic microorganisms, in live and inactivated forms, significantly reduced A. parasiticus sporulation, but the best results were obtained with live cells. The presence of probiotics also altered the color of A. parasiticus colonies but not the spore morphology. Reduction in aflatoxin production of 72.8 and 65.8% was observed for S. boulardii and S. cerevisiae, respectively, when inoculated alone. When inoculated in pairs, all probiotic combinations reduced significantly aflatoxin production, and the best reduction was obtained with S. boulardii plus L. delbrueckii (96.1%) followed by S. boulardii plus S. cerevisiae and L. delbrueckii plus S. cerevisiae (71.1 and 66.7%, resp.). All probiotics remained viable in high numbers on the grains even after 300 days. The results of the present study suggest a different use of probiotics as an alternative treatment to prevent aflatoxin production in peanut grains.

  7. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  8. Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture.

    PubMed

    Zhang, Baogang; Hao, Liting; Tian, Caixing; Yuan, Songhu; Feng, Chuanping; Ni, Jinren; Borthwick, Alistair G L

    2015-09-01

    Vanadium is an important contaminant impacted by natural and industrial activities. Vanadium (V) reduction efficiency as high as 87.0% was achieved by employing immobilized mixed anaerobic sludge as inoculated seed within 12h operation, while V(IV) was the main reduction product which precipitated instantly. Increasing initial V(V) concentration resulted in the decrease of V(V) removal efficiency, while this index increased first and then decreased with the increase of initial COD concentration, pH and conductivity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the decreased microbial diversity. V(V) reduction was realized through dissimilatory reduction process by significantly enhanced Lactococcus and Enterobacter with oxidation of lactic and acetic acids from fermentative microorganisms such as the enriched Paludibacter and the newly appeared Acetobacterium, Oscillibacter. This study is helpful to detect new functional species for V(V) reduction and constitutes a step ahead in developing in situ bioremediations of vanadium contamination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    PubMed

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  10. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  11. Shell-vial culture and real-time PCR applied to Rickettsia typhi and Rickettsia felis detection.

    PubMed

    Segura, Ferran; Pons, Immaculada; Pla, Júlia; Nogueras, María-Mercedes

    2015-11-01

    Murine typhus is a zoonosis transmitted by fleas, whose etiological agent is Rickettsia typhi. Rickettsia felis infection can produces similar symptoms. Both are intracellular microorganisms. Therefore, their diagnosis is difficult and their infections can be misdiagnosed. Early diagnosis prevents severity and inappropriate treatment regimens. Serology can't be applied during the early stages of infection because it requires seroconversion. Shell-vial (SV) culture assay is a powerful tool to detect Rickettsia. The aim of the study was to optimize SV using a real-time PCR as monitoring method. Moreover, the study analyzes which antibiotics are useful to isolate these microorganisms from fleas avoiding contamination by other bacteria. For the first purpose, SVs were inoculated with each microorganism. They were incubated at different temperatures and monitored by real-time PCR and classical methods (Gimenez staining and indirect immunofluorescence assay). R. typhi grew at all temperatures. R. felis grew at 28 and 32 °C. Real-time PCR was more sensitive than classical methods and it detected microorganisms much earlier. Besides, the assay sensitivity was improved by increasing the number of SV. For the second purpose, microorganisms and fleas were incubated and monitored in different concentrations of antibiotics. Gentamicin, sufamethoxazole, trimethoprim were useful for R. typhi isolation. Gentamicin, streptomycin, penicillin, and amphotericin B were useful for R. felis isolation. Finally, the optimized conditions were used to isolate R. felis from fleas collected at a veterinary clinic. R. felis was isolated at 28 and 32 °C. However, successful establishment of cultures were not possible probably due to sub-optimal conditions of samples.

  12. Porous media augmented with biochar for the retention of E. coli

    NASA Astrophysics Data System (ADS)

    Kolotouros, Christos A.; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2016-04-01

    A significant number of epidemic outbreaks has been attributed to waterborne fecal-borne pathogenic microorganisms from contaminated ground water. The transport of pathogenic microorganisms in groundwater is controlled by physical and chemical soil properties like soil structure, texture, percent water saturation, soil ionic strength, pore-size distribution, soil and solution pH, soil surface charge, and concentration of organic carbon in solution. Biochar can increase soil productivity by improving both chemical and physical soil properties. The mixing of biochar into soils may stimulate microbial population and activate dormant soil microorganisms. Furthermore, the application of biochar into soil affects the mobility of microorganisms by altering the physical and chemical properties of the soil, and by retaining the microorganisms on the biochar surface. The aim of this study was to investigate the effect of biochar mixing into soil on the transport of Escherichia coli in saturated porous media. Initially, batch experiments were conducted at two different ionic strengths (1 and 150 mM KCl) and at varying E. coli concentrations in order to evaluate the retention of E. coli on biochar in aqueous solutions. Kinetic analysis was conducted, and three isotherm models were employed to analyze the experimental data. Column experiments were also conducted in saturated sand columns augmented with different biochar contents, in order to examine the effect of biochar on the retention of E. coli. The Langmuir model fitted better the retention experimental data, compared to Freundlich and Tempkin models. The retention of E. coli was enhanced at lower ionic strength. Finally, biochar-augmented sand columns were more capable in retaining E. coli than pure sand columns.

  13. The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates▿ †

    PubMed Central

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A.

    2008-01-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (Pi), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is Pi, some bacteria are also able to metabolize Pi esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of Pi. By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under Pi limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  14. Effects of Combined Shear and Thermal Forces on Destruction of Microbacterium lacticum

    PubMed Central

    Bulut, S.; Waites, W. M.; Mitchell, J. R.

    1999-01-01

    A twin-screw extruder and a rotational rheometer were used to generate shear forces in concentrated gelatin inoculated with a heat-resistant isolate of a vegetative bacterial species, Microbacterium lacticum. Shear forces in the extruder were mainly controlled by varying the water feed rate. The water content of the extrudates changed between 19 and 45% (wet weight basis). Higher shear forces generated at low water contents and the calculated die wall shear stress correlated strongly with bacterial destruction. No surviving microorganisms could be detected at the highest wall shear stress of 409 kPa, giving log reduction of 5.3 (minimum detection level, 2 × 104 CFU/sample). The mean residence time of the microorganism in the extruder was 49 to 58 s, and the maximum temperature measured in the end of the die was 73°C. The D75°C of the microorganism in gelatin at 65% water content was 20 min. It is concluded that the physical forces generated in the reverse screw element and the extruder die rather than heat played a major part in cell destruction. In a rotational rheometer, after shearing of a mix of microorganisms with gelatin at 65% (wt/wt) moisture content for 4 min at a shear stress of 2.8 kPa and a temperature of 75°C, the number of surviving microorganisms in the sheared sample was 5.2 × 106 CFU/g of sample compared with 1.4 × 108 CFU/g of sample in the nonsheared control. The relative effectiveness of physical forces in the killing of bacteria and destruction of starch granules is discussed. PMID:10508076

  15. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    PubMed

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  16. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobecky, Patricia A; Taillefert, Martial

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  17. Biosurfactant production by Mucor circinelloides on waste frying oil and possible uses in crude oil remediation.

    PubMed

    Hasanizadeh, Parvin; Moghimi, Hamid; Hamedi, Javad

    2017-10-01

    Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO 4 . M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.

  18. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells.

    PubMed

    Rago, Laura; Cristiani, Pierangela; Villa, Federica; Zecchin, Sarah; Colombo, Alessandra; Cavalca, Lucia; Schievano, Andrea

    2017-08-01

    Dissolved oxygen (DO) at cathodic interface is a critical factor influencing microbial fuel cells (MFC) performance. In this work, three MFCs were operated with cathode under different DO conditions: i) air-breathing (A-MFC); ii) water-submerged (W-MFC) and iii) assisted by photosynthetic microorganisms (P-MFC). A plateau of maximum current was reached at 1.06±0.03mA, 1.48±0.06mA and 1.66±0.04mA, increasing respectively for W-MFC, P-MFC and A-MFC. Electrochemical and microbiological tools (Illumina sequencing, confocal microscopy and biofilm cryosectioning) were used to explore anodic and cathodic biofilm in each MFC type. In all cases, biocathodes improved oxygen reduction reaction (ORR) as compared to abiotic condition and A-MFC was the best performing system. Photosynthetic cultures in the cathodic chamber supplied high DO level, up to 16mg O2 L -1 , which sustained aerobic microbial community in P-MFC biocathode. Halomonas, Pseudomonas and other microaerophilic genera reached >50% of the total OTUs. The presence of sulfur reducing bacteria (Desulfuromonas) and purple non-sulfur bacteria in A-MFC biocathode suggested that the recirculation of sulfur compounds could shuttle electrons to sustain the reduction of oxygen as final electron acceptor. The low DO concentration limited the cathode in W-MFC. A model of two different possible microbial mechanisms is proposed which can drive predominantly cathodic ORR. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of Thermomechanical Processing on Microstructure, Texture Evolution, and Mechanical Properties of Al-Mg-Si-Cu Alloys with Different Zn Contents

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Guo, M. X.; Chen, Y.; Zhu, J.; Zhang, J. S.; Zhuang, L. Z.

    2017-07-01

    The effect of thermomechanical processing on microstructure, texture evolution, and mechanical properties of Al-Mg-Si-Cu alloys with different Zn contents was studied by mechanical properties, microstructure, and texture characterization in the present study. The results show that thermomechanical processing has a significant influence on the evolution of microstructure and texture and on the final mechanical properties, independently of Zn contents. Compared with the T4P-treated (first preaged at 353 K (80 °C) for 12 hours and then naturally aged for 14 days) sheets with high final cold rolling reduction, the T4P-treated sheets with low final cold rolling reduction possess almost identical strength and elongation and higher average r values. Compared with the intermediate annealed sheets with high final cold rolling reduction, the intermediate annealed sheets with low final cold rolling reduction contain a higher number of particles with a smaller size. After solution treatment, in contrast to the sheets with high final cold rolling reduction, the sheets with low final cold rolling reduction possess finer grain structure and tend to form a weaker recrystallization texture. The recrystallization texture may be affected by particle distribution, grain size, and final cold rolling texture. Finally, the visco-plastic self-consistent (VPSC) model was used to predict r values.

  20. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary to have information on the concentrations of electron-shuttling compounds and possibly Fe(III) ligands. Furthermore, as it is now apparent that different genera of Fe(III)-reducing microorganisms may reduce Fe(III) via different mechanisms, knowledge of which Fe(III)-reducing microorganisms predominate in the environment of interest is essential in order to model this process appropriately.

  1. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge.

    PubMed

    Butscher, Denis; Van Loon, Hanne; Waskow, Alexandra; Rudolf von Rohr, Philipp; Schuppler, Markus

    2016-12-05

    Fresh produce is frequently contaminated by microorganisms, which may lead to spoilage or even pose a threat to human health. In particular sprouts are considered to be among the most risky foods sold at retail since they are grown in an environment practically ideal for growth of bacteria and usually consumed raw. Because heat treatment has a detrimental effect on the germination abilities of sprout seeds, alternative treatment technologies need to be developed for microbial inactivation purposes. In this study, non-thermal plasma decontamination of sprout seeds is evaluated as a promising option to enhance food safety while maintaining the seed germination capabilities. In detail, investigations focus on understanding the efficiency of non-thermal plasma inactivation of microorganisms as influenced by the type of microbial contamination, substrate surface properties and moisture content, as well as variations in the power input to the plasma device. To evaluate the impact of these parameters, we studied the reduction of native microbiota or artificially applied E. coli on alfalfa, onion, radish and cress seeds exposed to non-thermal plasma in an atmospheric pressure pulsed dielectric barrier discharge streamed with argon. Plasma treatment resulted in a maximum reduction of 3.4 logarithmic units for E. coli on cress seeds. A major challenge in plasma decontamination of granular food products turned out to be the complex surface topology, where the rough surface with cracks and crevices can shield microorganisms from plasma-generated reactive species, thus reducing the treatment efficiency. However, improvement of the inactivation efficiency was possible by optimizing substrate characteristics such as the moisture level and by tuning the power supply settings (voltage, frequency) to increase the production of reactive species. While the germination ability of alfalfa seeds was considerably decreased by harsh plasma treatment, enhanced germination was observed under mild conditions. In conclusion, the results from this study indicate that cold plasma treatment represents a promising technology for inactivation of bacteria on seeds used for sprout production while preserving their germination properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nature's Helpers: Using Microorganisms to Remove Trichloroethene (TCE) from Groundwater

    NASA Astrophysics Data System (ADS)

    Delgado, A. G.; Krajmlanik-Brown, R.; Fajardo-Williams, D.; Halloum, I.

    2015-12-01

    Organic chlorinated solvents, such as perchloroethene (PCE) and trichloroethene (TCE), are toxic pollutants threatening ground water quality worldwide and present at many superfund sites. Bioremediation using microorganisms is a promising, green, efficient, and sustainable approach to remove PCE and TCE contamination from soil and groundwater. Under anaerobic conditions, specialized microorganisms (dechlorinators) can reduce these chlorinated ethenes to ethene, an innocuous product, and gain energy for growth by a process known as reductive dechlorination. Dechlorinators are most often present in the environment and in dechlorinating cultures alongside other microbes such as fermenters, methanogens, and acetogens. Fermenters, methanogens, and acetogens syntrophically provide essential nutrients and growth factors to dechlorinators, most specifically to the only members able to reduce TCE all the way to ethene: Dehalococcoides; unfortunately, they also compete with dechlorinators for electron donors. My laboratory devises reductive chlorination platforms to study competition and syntrophy among Dehalococcoides, and other microbes to optimize remediation reactions and transport in the subsurface. We look at competing processes present as part of the natural soil chemistry and microbiology and address these challenges through a combination of enrichment techniques, molecular microbial ecology (deep sequencing), water chemistry, and electron balances. We have applied knowledge gathered in my laboratory to: 1) enrich microbial dechlorinating cultures capable of some of the fastest rates of TCE to ethene dechlorination ever reported, and 2) successfully design and operate three different continuous dechlorinating reactor types. We attribute our successful reactor operations to our multidisciplinary approach which links microbiology and engineering. Our reactors produce robust dechlorinating cultures used for in-situ bioaugmentation of PCE and TCE at contaminated sites. The results gathered to date provide a fundamental understanding of the role of homoacetogens and methanogens in electron and carbon flow in dechlorinating consortia.

  3. Reversible reduction of estrone to 17β-estradiol by Rhizobium, Sphingopyxis, and Pseudomonas isolates from the Las Vegas Wash

    USGS Publications Warehouse

    Blunt, Susanna M.; Benotti, Mark J.; Rosen, Michael R.; Hedlund, Brian; Moser, Duane

    2017-01-01

    Environmental endocrine-disrupting compounds (EDCs) are a growing concern as studies reveal their persistence and detrimental effects on wildlife. Microorganisms are known to affect the transformation of steroid EDCs; however, the diversity of estrogen-degrading microorganisms and the range of transformations they mediate remain relatively little studied. In mesocosms, low concentrations of added estrone (E1) and 17β-estradiol (E2) were removed by indigenous microorganisms from Las Vegas Wash water within 2 wk. Three bacterial isolates, Rhizobium sp. strain LVW-9, Sphingopyxis sp. strain LVW-12, and Pseudomonas sp. strain LVW-PC, were enriched from Las Vegas Wash water on E1 and E2 and used for EDC transformation studies. In the presence of alternative carbon sources, LVW-9 and LVW-12 catalyzed near-stoichiometric reduction of E1 to E2 but subsequently reoxidized E2 back to E1; whereas LVW-PC minimally reduced E1 to E2 but effectively oxidized E2 to E1 after a 20-d lag. In the absence of alternative carbon sources, LVW-12 and LVW-PC oxidized E2 to E1. This report documents the rapid and sometimes reversible microbial transformation of E1 and E2 and the slow degradation of 17α-ethinylestradiol in urban stream water and extends the list of known estrogen-transforming bacteria to the genera Rhizobium and Sphingopyxis. These results suggest that discharge of steroid estrogens via wastewater could be reduced through tighter control of redox conditions and may assist in future risk assessments detailing the environmental fate of estrogens through evidence that microbial estrogen transformations may be affected by environmental conditions or growth status.

  4. Efficient reduction of pathogenic and spoilage microorganisms from apple cider by combining microfiltration with UV treatment.

    PubMed

    Zhao, Dongjun; Barrientos, Jessie Usaga; Wang, Qing; Markland, Sarah M; Churey, John J; Padilla-Zakour, Olga I; Worobo, Randy W; Kniel, Kalmia E; Moraru, Carmen I

    2015-04-01

    Thermal pasteurization can achieve the U. S. Food and Drug Administration-required 5-log reduction of pathogenic Escherichia coli O157:H7 and Cryptosporidium parvum in apple juice and cider, but it can also negatively affect the nutritional and organoleptic properties of the treated products. In addition, thermal pasteurization is only marginally effective against the acidophilic, thermophilic, and spore-forming bacteria Alicyclobacillus spp., which is known to cause off-flavors in juice products. In this study, the efficiency of a combined microfiltration (MF) and UV process as a nonthermal treatment for the reduction of pathogenic and nonpathogenic E. coli, C. parvum, and Alicyclobacillus acidoterrestris from apple cider was investigated. MF was used to physically remove suspended solids and microorganisms from apple cider, thus enhancing the effectiveness of UV and allowing a lower UV dose to be used. MF, with ceramic membranes (pore sizes, 0.8 and 1.4 μm), was performed at a temperature of 10 °C and a transmembrane pressure of 155 kPa. The subsequent UV treatment was conducted using at a low UV dose of 1.75 mJ/cm(2). The combined MF and UV achieved more than a 5-log reduction of E. coli, C. parvum, and A. acidoterrestris. MF with the 0.8-μm pore size performed better than the 1.4-μm pore size on removal of E. coli and A. acidoterrestris. The developed nonthermal hurdle treatment has the potential to significantly reduce pathogens, as well as spores, yeasts, molds, and protozoa in apple cider, and thus help juice processors improve the safety and quality of their products.

  5. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study.

    PubMed

    Vilela, Simone Furgeri Godinho; Junqueira, Juliana Campos; Barbosa, Junia Oliveira; Majewski, Marta; Munin, Egberto; Jorge, Antonio Olavo Cardoso

    2012-06-01

    The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms. The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 μM. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis. The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 μM methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 μM toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 μM malachite green, with microbial reductions of 1.6-4.0 log(10). Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere.

    PubMed

    Tarayre, Cédric; Brognaux, Alison; Bauwens, Julien; Brasseur, Catherine; Mattéotti, Christel; Millet, Catherine; Destain, Jacqueline; Vandenbol, Micheline; Portetelle, Daniel; De Pauw, Edwin; Eric, Haubruge; Francis, Frédéric; Thonart, Philippe

    2014-05-01

    The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO₂ or CO₂/H₂) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.

  7. Epidemiological Survey of Listeria monocytogenes in a gravlax salmon processing line

    PubMed Central

    Cruz, C.D.; Silvestre, F.A.; Kinoshita, E.M.; Landgraf, M.; Franco, B.D.G.M.; Destro, M.T.

    2008-01-01

    Listeria monocytogenes is a cause of concern to food industries, mainly for those producing ready-to-eat (RTE) products. This microorganism can survive processing steps such as curing and cold smoking and is capable of growing under refrigeration temperatures. Its presence in RTE fish products with extended shelf life may be a risk to the susceptible population. One example of such a product is gravlax salmon; a refrigerated fish product not exposed to listericidal processes and was the subject of this study. In order to evaluate the incidence and dissemination of L. monocytogenes 415 samples were collected at different steps of a gravlax salmon processing line in São Paulo state, Brazil. L. monocytogenes was confirmed in salmon samples (41%), food contact surfaces (32%), non-food contact surfaces (43%) and of food handlers’ samples (34%), but could not be detected in any ingredient. 179 L. monocytogenes isolates randomly selected were serogrouped and typed by PFGE. Most of L. monocytogenes strains belonged to serogroup 1 (73%). 61 combined pulsotypes were found and a dendrogram identified six clusters: most of the strains (120) belonged to cluster A. It was suggested that strains arriving into the plant via raw material could establish themselves in the processing environment contaminating the final product. The wide dissemination of L. monocytogenes in this plant indicates that a great effort has to be taken to eliminate the microorganism from these premises, even though it was not observed multiplication of the microorganism in the final product stored at 4°C up to 90 days. PMID:24031233

  8. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles).

  9. A novel aerobic sulfate reduction process in landfill mineralized refuse.

    PubMed

    Liu, Weijia; Long, Yuyang; Fang, Yuan; Ying, Luyao; Shen, Dongsheng

    2018-05-08

    It is thought that mineralized refuse could be excavated from almost-full landfill sites to provide space for the increasing burden of municipal solid waste. When excavating, however, the H 2 S emissions from the mineralized waste need to be considered carefully. In an attempt to understand how H 2 S emissions might change during this excavation process, we carried out a series of tests, including exposing anaerobic mineralized refuse to oxygen, isolating and determining possible functional bacteria, and characterizing the electron donors and/or acceptors. The results showed that H 2 S would be released when landfill mineralized refuse was exposed to oxygen (O 2 ), and could reach concentrations of 6 mg m -3 , which was 3 times the concentrations of H 2 S released from anaerobic mineralized refuse. Sulfur-metabolized microorganisms accounted for only 0.5% of the microbial functional bacteria (MFB) derived from the mineralized refuse when exposed to O 2 for 60 days, and SRB were not present. The MFB maintained H 2 S production by aerobic sulfate reduction using SO 4 2- and S 2 O 3 2- as electron acceptors, and sulfate-reducing rates of 16% and 55%, respectively, were achieved. Lactate and S 2 O 3 2- were the preferred electron donor and acceptor, respectively. By enhancing the carbon source and electron transfer, MFB may undergo strong aerobic sulfate reduction even at low abundances of sulfur-metabolized microorganisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. 78 FR 57293 - Medicaid Program; State Disproportionate Share Hospital Allotment Reductions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... reductions are prospective, not retrospective. Comment: One commenter requested clarification on how the... establish prospective DSH allotment reductions adjustments that rely on final or completed data from previous years. Response: The final rule establishes prospective DSH allotment reductions based on the most...

  11. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenchly, Jean E.

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolationmore » of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.« less

  12. Calculation of the radiative properties of photosynthetic microorganisms

    NASA Astrophysics Data System (ADS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively photosynthetic bacteria, cyanobacteria and eukaryotic microalgae. The obtained results are in very good agreement with the experimental measurements when the shape of the microorganisms is well described (in comparison to the standard volume-equivalent sphere approximation). As a main perspective, the consideration of the helical shape of Arthrospira platensis appears to be a key to an accurate estimation of its radiative properties. On the whole, the presented methodological chain also appears of great interest for other scientific communities such as atmospheric science, oceanography, astrophysics and engineering.

  13. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.

    PubMed

    Kashefi, Kazem; Holmes, Dawn E; Reysenbach, Anna-Louise; Lovley, Derek R

    2002-04-01

    It has recently been recognized that the ability to use Fe(III) as a terminal electron acceptor is a highly conserved characteristic in hyperthermophilic microorganisms. This suggests that it may be possible to recover as-yet-uncultured hyperthermophiles in pure culture if Fe(III) is used as an electron acceptor. As part of a study of the microbial diversity of the Obsidian Pool area in Yellowstone National Park, Wyo., hot sediment samples were used as the inoculum for enrichment cultures in media containing hydrogen as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. A pure culture was recovered on solidified, Fe(III) oxide medium. The isolate, designated FW-1a, is a hyperthermophilic anaerobe that grows exclusively by coupling hydrogen oxidation to the reduction of poorly crystalline Fe(III) oxide. Organic carbon is not required for growth. Magnetite is the end product of Fe(III) oxide reduction under the culture conditions evaluated. The cells are rod shaped, about 0.5 microm by 1.0 to 1.2 microm, and motile and have a single flagellum. Strain FW-1a grows at circumneutral pH, at freshwater salinities, and at temperatures of between 65 and 100 degrees C with an optimum of 85 to 90 degrees C. To our knowledge this is the highest temperature optimum of any organism in the Bacteria. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain FW-1a places it within the Bacteria, most closely related to abundant but uncultured microorganisms whose 16S rDNA sequences have been previously recovered from Obsidian Pool and a terrestrial hot spring in Iceland. While previous studies inferred that the uncultured microorganisms with these 16S rDNA sequences were sulfate-reducing organisms, the physiology of the strain FW-1a, which does not reduce sulfate, indicates that these organisms are just as likely to be Fe(III) reducers. These results further demonstrate that Fe(III) may be helpful for recovering as-yet-uncultured microorganisms from hydrothermal environments and illustrate that caution must be used in inferring the physiological characteristics of at least some thermophilic microorganisms solely from 16S rDNA sequences. Based on both its 16S rDNA sequence and physiological characteristics, strain FW-1a represents a new genus among the Bacteria. The name Geothermobacterium ferrireducens gen. nov., sp. nov., is proposed (ATCC BAA-426).

  14. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, Charles E.

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  15. Decontamination of an Extracorporeal Membrane Oxygenator Contaminated With Mycobacterium chimaera.

    PubMed

    Garvey, Mark I; Phillips, Natalie; Bradley, Craig W; Holden, Elisabeth

    2017-10-01

    Water samples taken from extracorporeal membrane oxygenator (ECMO) devices used at University Hospitals Birmingham yielded high total viable counts (TVCs) containing a variety of microorganisms, including M. chimaera. Disinfection resulted in the reduction of TVCs and eradication of Mycobacterium chimaera. Weekly disinfection and water sampling are required to manage the water quality in these devices. Infect Control Hosp Epidemiol 2017;38:1244-1246.

  16. Use of the Blom Tracheotomy Tube with Suction Inner Cannula to Decontaminate Microorganisms from the Subglottic Space. A Proof of Concept.

    PubMed

    Rabach, Lesley; Siegel, Mark D; Puchalski, Jonathan T; Towle, Dana; Follert, Michelle; Johnson, Kelsey M; Rademaker, Alfred W; Leder, Steven B

    2015-06-01

    Preventing pulmonary complications during mechanical ventilation via tracheotomy is a high priority. To investigate if the Blom tracheotomy tube with suction-above-the-cuff inner cannula reduced the quantity of normal flora and pathogens in supra- versus subglottic spaces. We enrolled 20 consecutive medical ICU adults requiring tracheostomy for mechanical ventilation in this proof-of-concept, prospective, single-center study. All participants received a Blom tracheotomy tube with suction-above-the-cuff inner cannula to decontaminate microorganisms from the supra- and subglottic spaces. Supra- and subglottic sputum samples were obtained for microbiologic analysis while an endotracheal tube was in place before tracheotomy and once per week for up to 4 weeks of mechanical ventilation after tracheotomy. Demographics, duration of endotracheal tube intubation, and duration of mechanical ventilation post-tracheotomy were recorded. There was a significant reduction for supraglottic (2.86 ± 1.11 [mean ± SD]) versus subglottic suction samples (2.48 ± 1.07) (paired t test, P = 0.048; Wilcoxon test, P = 0.045) when all data pairs for normal flora and pathogens were combined across times. There was a significant reduction of normal flora pooled across times in 19 data pairs for supraglottic (3.00 ± 1.05) versus subglottic suction samples (2.00 ± 0.94) (paired t test, P = 0.0004; Wilcoxon test, P = 0.0007). There was no significant reduction of pathogens pooled across times in 25 data pairs for supraglottic (2.76 ± 1.16) versus subglottic suction samples (2.84 ± 1.03) (paired t test, P = 0.75; Wilcoxon test, P = 0.83). Proof-of-concept was confirmed. The Blom tracheotomy tube with disposable suction-above-the-cuff inner cannula decontaminated microorganisms from the subglottic space when normal flora and pathogens were combined. Future research should investigate if decreased quantity of normal flora and pathogens in the subglottic space reduces the incidence of ventilator-associated pulmonary complications in critically ill patients requiring ongoing mechanical ventilation via tracheotomy.

  17. Biological Activities of Heteropyxis natalensis Against Micro-Organisms Involved in Oral Infections

    PubMed Central

    Henley-Smith, Cynthia J.; Botha, Francien S.; Hussein, Ahmed A.; Nkomo, Mpumelelo; Meyer, Debra; Lall, Namrita

    2018-01-01

    The use of complementary and alternative medicine from plants in South Africa, as in the rest of the world, continues to increase. Heteropyxis natalensis, known as the Lavender tree, is indigenous to South Africa and is traditionally used for oral care. The ethanolic extract, of the leaves and twigs, of H. natalensis was investigated for antimicrobial activity against selected oral microorganisms. Actinomyces israelii was found to be the most sensitive oral microorganism to the extract, with a minimum inhibitory concentration (MIC) of 0.88 mg/ml and an MIC of 2.6 mg/ml against Streptococcus mutans. Five known compounds were identified from the ethanolic extract of H. natalensis. The compounds were identified as aurentiacin A (1), cardamomin (2), 5-hydroxy-7-methoxy-6-methylflavanone (3), quercetin (4) and 3,5,7-trihydroxyflavan (5). The MICs of the compounds 1 and 4 were found to be 0.06 mg/ml and 1 mg/ml, respectively, against A. israelii. The cytotoxicity, acute and sub-acute toxicity in pre-clinical studies were also determined for H. natalensis. The extract showed moderate cytotoxicity (35.56 ± 0.16 μg/ml) on human monocyte cells. The acute and sub-acute toxicity analysis of H. natalensis indicated the NOEL (no-observed-effect level) at 200 mg/kg. Interleukin-8 (IL-8) is a chemokine that stimulates the recruitment of leukocytes. A significant reduction of IL-8 production by macrophage cells was observed when exposed to the extract of H. natalensis. It is possible that H. natalensis can prevent excessive tissue damage in periodontal diseases through its reduction of inflammation. Enzymatic bioanalysis of lactic and acetic acid production from Streptococcus mutans and Lactobacillus paracasei was done. A reduction in the acid production from each bacterium was observed on exposure to the extract of H. natalensis. Consequently, this increased the pH, which could possibly reduce the demineralization of enamel which may help prevent the formation of dental caries. In addition the extract may be considered for preventing periodontal diseases. PMID:29692723

  18. Microbial oxidation and reduction of manganese: consequences in groundwater and applications.

    PubMed

    Gounot, A M

    1994-08-01

    In the natural environment, manganese is found as reduced soluble or adsorbed Mn(II) and insoluble Mn(III) and Mn(IV) oxides. Mn oxidation has been reported in various microorganisms. Several possible pathways, indirect or direct, have been proposed. A wider variety of Mn-reducing microorganisms, from highly aerobic to strictly anaerobic, has been described. The mechanisms of Mn reduction can be either an indirect process resulting from interactions with organic or inorganic compounds, or a direct enzymatic (electron-transfer) reaction. The role of microorganisms in Mn cycle is now well demonstrated by various methods in superficial natural environments, and research has been initiated on subsurface sediments. Observations in vivo (Rhône valley) and under in vitro suggested that bacterial activities are the main processes that promote manganese evolution and migration in shallow aquifers. After the building of hydroelectric dams, the stream of the Rhône was modified, giving rise to mud deposition on the bank. In the mud, bacteria are stimulated by the high organic content and consume oxygen. The redox potential drops. The manganese oxides previously formed under aerobic conditions are reduced and soluble manganese (Mn(II)) migrates into the aquifer. If the subsurface sediments are coarse-grained, the aquifer is well aerated, allowing the re-oxidation of Mn(II) by the oligotrophic attached bacteria in aquifer sediments. If the aquifer is confined, aeration is not sufficient for Mn-reoxidation. Mn(II) remains in a reduced state and migrates to the wells. Furthermore, the presence of organic matter in subsurface sediments results in the reduction of previously formed Mn oxides. Pseudo-amorphous manganese oxides, which were probably recently formed by bacteria, are more readily reduced than old crystalline manganese oxides. Although the concentrations of soluble manganese found in groundwaters are not toxic, it still is a problem since its oxidation results in darkening of water and plugging of pipes in drinking or industrial water systems. Soluble manganese can be removed from water by biological processes involving manganese-oxidizing bacteria, either in situ, or in sand filters after pumping. Various procedures are mentioned.

  19. Microbial mineralization of ethene under sulfate-reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2002-01-01

    A limited investigation of the potential for anaerobic ethylene biodegradation under SO4-reducing conditions was performed. Microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethylene to 14CO2 when incubated under SO4-reducing conditions. Reliance on ethylene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chloroethylene contaminants may not be warranted. SO4 addition stimulated SO4 reduction as indicated by decreasing SO4 concentrations (> 40% decrease) and production of dissolved sulfide (880 ??M). SO4 amendment completely suppressed the production of ethane and methane. The concomitant absence of ethane and methane production under SO4-amended conditions was consistent with previous conclusions that reduction of ethylene to ethane occurred under methanogenic conditions. A lack of ethylene accumulation under SO4-reducing conditions may reflect insignificant reductive dechlorination of vinyl chloride or efficient anaerobic mineralization of ethylene to CO2.

  20. The BioHome: A spinoff of space technology

    NASA Technical Reports Server (NTRS)

    Johnson, Anne

    1990-01-01

    The discussion of the BioHome is prefaced with some information about the work done at the environmental lab over the past 15 years concerning environmental issues related to biological life support such as the use of water hyacinths for wastewater purification, artificial marshes, indoor polluted air revitalization, and the reduction of organic contaminants using a biological system comprised of plants and microorganisms. One of the main concerns, especially with respect to a closed environment, is whether or not these systems are expelling microorganisms into the air. Analyses are being conducted to determine the numbers and types of microbes that are emitted. The BioHome is a 650 sq ft habitat that will enable the evaluation of the efficiency of bioregenerative technology in a closed system. This BioHome system is described and its functions discussed.

  1. Detection of irradiated chicken by ESR spectroscopy of bone

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Villavicencio, A. L. C. H.; Del Mastro, N. L.; Wiendl, F. M.

    1995-02-01

    Ionizing radiation has been used to treat poultry to remove harmful microorganisms, mainly Salmonella, which contaminates chicken, goose and other fresh and frozen poultry. This microorganism is sensitive to low dose radiation. Thus, irradiating these foods with doses between 1 to 7 kGy results in a large reduction of bacteria. Since it is necessary to determine whether irradiation has occurred and to what extend, this work studied the signal produced by ionizing radiation within the hard crystalline matrix of chicken's bone to establish a control method. Chicken's drumsticks were irradiated and bones separated from flesh were lyophilized and milled. ESR spectrum was then obtained. The ESR signal increased linearly with dose over the range 0.25 to 8.0 kGy. Free radicals evaluated during 30 days after irradiation showed stable in this period.

  2. Moist heat intraluminal disinfection of CAPD connectors.

    PubMed

    Fessia, S L; Grabowy, R S; Bousquet, G G

    1990-01-01

    A moist heat technique for disinfecting the inner lumen of commercially available connectology used in the exchange process for Continuous Ambulatory Peritoneal Dialysis (CAPD) was evaluated. Moist heat was generated by a device (PDM-1) that directed microwave energy to heat a sample solution containing a concentration of 10(6) microorganisms inside a pair of mated plastic CAPD connectors. Microorganisms tested included those most prevalent and most problematic in causing peritonitis. Testing, performed according to F.D.A. approved standards, involved heating a sample solution and then placing the sample solution into vials which were then sealed and incubated. Absolute determination of growth versus no growth was measured by macroscopic observation. Positive control samples were performed in the same manner but were not exposed to heat. Negative controls were performed in the same manner in the absence of test organisms. At temperatures of approximately 100 degrees C a D-value of 6.6 seconds was determined using the organism found the most thermoresistant. A cycle time of 54 seconds appeared sufficient to achieve a 10(6) population reduction of all microorganisms tested. The moist heat technique offers a safe, effective method for disinfection of the inner lumen of CAPD connectors.

  3. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals

    NASA Astrophysics Data System (ADS)

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  4. Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device.

    PubMed

    Lu, Gang; Li, Chaolin; Liu, Peng; Cui, Haibo; Xia, Yong; Wang, Jianfeng

    2010-09-02

    Most juices are opaque to ultraviolet (UV) due to the high-suspended solids in them and therefore the conventional UV treatment, generally used for water treatment, cannot be used for treating juices. In order to achieve a high germicidal efficiency of UV processing, an optical device with silica optical fibers for UV light delivery was designed. Its suitability for application could be shown in experiments with Escherichia coli, Lactobacillus brevis, Saccharomyces cerevisiae and naturally contaminating microorganisms as test microorganisms. The thin-film thickness for treating apple juice was optimized. At 2.0-mm film thickness, E. coli and L. brevis were reduced by up to 6 log orders with the UV dose of 23.7 m J/cm(2) and the optical-fiber distribution density of 15 fibers/cm(2), while only about 4-log reduction of S. cerevisiae was achieved under the same condition. Naturally contaminating lactic acid bacteria, Enterobacteriaceae and yeasts and moulds in freshly extracted apple juice were reduced to below 10 CFU/ml. These results indicate that this optical device could be used to improve microbial safety and extend shelf-life of apple juice. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Protection of Nitrate-Reducing Fe(II)-Oxidizing Bacteria from UV Radiation by Biogenic Fe(III) Minerals.

    PubMed

    Gauger, Tina; Konhauser, Kurt; Kappler, Andreas

    2016-04-01

    Due to the lack of an ozone layer in the Archean, ultraviolet radiation (UVR) reached early Earth's surface almost unattenuated; as a consequence, a terrestrial biosphere in the form of biological soil crusts would have been highly susceptible to lethal doses of irradiation. However, a self-produced external screen in the form of nanoparticular Fe(III) minerals could have effectively protected those early microorganisms. In this study, we use viability studies by quantifying colony-forming units (CFUs), as well as Fe(II) oxidation and nitrate reduction rates, to show that encrustation in biogenic and abiogenic Fe(III) minerals can protect a common soil bacteria such as the nitrate-reducing Fe(II)-oxidizing microorganisms Acidovorax sp. strain BoFeN1 and strain 2AN from harmful UVC radiation. Analysis of DNA damage by quantifying cyclobutane pyrimidine dimers (CPD) confirmed the protecting effect by Fe(III) minerals. This study suggests that Fe(II)-oxidizing microorganisms, as would have grown in association with mafic and ultramafic soils/outcrops, would have been able to produce their own UV screen, enabling them to live in terrestrial habitats on early Earth.

  6. Effects of Fungicides on Aquatic Fungi and Bacteria

    NASA Astrophysics Data System (ADS)

    Conners, D. E.; Rosemond, A. D.; Black, M. C.

    2005-05-01

    Aquatic microorganisms play an important role in conditioning leaf litter that enters streams and serves as an important base of production for consumers. Contamination of streams by fungicides may adversely affect microorganisms and alter leaf litter processing rates. Unfortunately, microorganisms are rarely used in acute toxicity tests for fungicide evaluation and registration. We adapted the resazurin reduction assay, which is used in medical microbiology, to assess the acute toxicity of four fungicides (azoxystrobin, trifloxystrobin, kresoxim-methyl and chlorothalonil) to aquatic fungi (Articulospora tetracladia) and bacteria (Cytophaga spp.), and investigated the ability of the toxicants to inhibit leaf breakdown in microcosms. Fungi were more sensitive to fungicides than many standard test organisms (cladocerans, green algae, trout), while bacteria were often the least sensitive. All of the fungicides except kresoxim-methyl, when added to microcosms at concentrations that inhibited the fungi by 90 percent in acute tests, reduced leaf breakdown rates by an average of 14.7 percent. Thus, aquatic fungi and their associated functions in streams may be relatively sensitive to fungicides applied terrestrially that enter streams through non-point sources. These data highlight the importance of including aquatic fungi in safety assessments of pesticides for protection of microbial function.

  7. Microbial interactions with chromium: basic biological processes and applications in environmental biotechnology.

    PubMed

    Gutiérrez-Corona, J F; Romo-Rodríguez, P; Santos-Escobar, F; Espino-Saldaña, A E; Hernández-Escoto, H

    2016-12-01

    Chromium (Cr) is a highly toxic metal for microorganisms as well as plants and animal cells. Due to its widespread industrial use, Cr has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The study of the interactions between microorganisms and Cr has been helpful to unravel the mechanisms allowing organisms to survive in the presence of high concentrations of Cr(VI) and to detoxify and remove the oxyanion. Various mechanisms of interactions with Cr have been identified in diverse species of bacteria and fungi, including biosorption, bioaccumulation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution using bioreactors or by in situ treatments. In this review, the interactions of microorganisms with Cr are summarised, emphasising the importance of new research avenues using advanced methodologies, including proteomic, transcriptomic, and metabolomic analyses, as well as the use of techniques based on X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy.

  8. Effect of Agitation on Acidogenesis Stage of Two-Stage Anaerobic Digestion of Palm Oil Mill Effluent (POME) into Biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Irvan; Adipasah, H.; Taslim; Turmuzi, M.

    2017-03-01

    The acidogenesis stage in two-stage anaerobic digestion of palm oil mill effluent (POME) was studied in a continuous stirred tank reactor (CSTR). This research investigated the effect of agitation rate on the growth of microorganisms, the degradation of organic substances, and volatile fatty acids (VFA) production and composition. Initially, the suitable loading up was determined by varying the HRT 6.7, 5.0, and 4.0 days in a 2 L CSTR with agitation rate 50 rpm, pH 6.0 ± 0.2, at room temperature. Next, effect of agitation on the process was determined by varying agitation rate at 25, 50, 100, and 200 rpm. Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), chemical oxygen demand (COD), and volatile fatty acids (VFA) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce VFA. The highest growth of microorganisms was achieved at HRT 4.0 day with microorganism concentration was 20.62 mg VSS/L and COD reduction was 15.7%. The highest production of total VFA achieved was 5,766.61 mg/L mg/L at agitation rate 200 rpm, with concentration of acetic acid, propionic acid and butyric acid were 1,889.23; 1,161.43; and 2,725.95 mg/L, respectively. While degradation VS and COD were 16.61 and 38.79%.

  9. A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production.

    PubMed

    Mohammadi, Reza; Fallah-Mehrabadi, Jalil; Bidkhori, Gholamreza; Zahiri, Javad; Javad Niroomand, Mohammad; Masoudi-Nejad, Ali

    2016-07-19

    Production of biofuels has been one of the promising efforts in biotechnology in the past few decades. The perspective of these efforts can be reduction of increasing demands for fossil fuels and consequently reducing environmental pollution. Nonetheless, most previous approaches did not succeed in obviating many big challenges in this way. In recent years systems biology with the help of microorganisms has been trying to overcome these challenges. Unicellular cyanobacteria are widespread phototrophic microorganisms that have capabilities such as consuming solar energy and atmospheric carbon dioxide for growth and thus can be a suitable chassis for the production of valuable organic materials such as biofuels. For the ultimate use of metabolic potential of cyanobacteria, it is necessary to understand the reactions that are taking place inside the metabolic network of these microorganisms. In this study, we developed a Java tool to reconstruct an integrated metabolic network of a cyanobacterium (Synechocystis sp. PCC 6803). We merged three existing reconstructed metabolic networks of this microorganism. Then, after modeling for biofuel production, the results from flux balance analysis (FBA) disclosed an increased yield in biofuel production for ethanol, isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and propanol. The numbers of blocked reactions were also decreased for 2-methyl-1-butanol production. In addition, coverage of the metabolic network in terms of the number of metabolites and reactions was increased in the new obtained model.

  10. Suitability of electrolyzed oxidizing water for the disinfection of hard surfaces and equipment in radiology.

    PubMed

    Pintaric, Robert; Matela, Joze; Pintaric, Stefan

    2015-01-01

    Hospitals are faced with increasingly resistant strains of micro-organisms. When it comes to disinfection, individual parts of electronic equipment of angiology diagnostics such as patient couches of computer tomography (CT) and magnetic resonance imaging (MRI) scanners prove to be very hard to disinfect. Disinfectants of choice are therefore expected to possess properties such as rapid, residue-free action without any damaging effect on the sensitive electronic equipment. This paper discusses the use of the neutral electrolyzed oxidizing water (EOW) as a biocide for the disinfection of diagnostic rooms and equipment. The CT and MRI rooms were aerosolized with EOW using aerosolization device. The presence of micro-organisms before and after the aerosolization was recorded with the help of sedimentation and cyclone air sampling. Total body count (TBC) was evaluated in absolute and log values. The number of micro-organisms in hospital rooms was low as expected. Nevertheless, a possible TBC reduction between 78.99-92.50% or 50.50-70.60% in log values was recorded. The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of micro-organisms and consequently the possibility of hospital infections. It has also demonstrated that the sedimentation procedure is insufficient for the TBC determination. The use of Biocide aerosolization proved to be efficient and safe in all applied ways. Also, no eventual damage to exposed devices or staff was recorded.

  11. Kit for providing a technetium medical radioimaging agent

    DOEpatents

    Wildung, Raymond E.; Garland, Thomas R.; Li, Shu-Mei W.

    2000-01-01

    The present invention is directed toward a kit for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanella putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  12. Microbial methods of reducing technetium

    DOEpatents

    Wildung, Raymond E [Richland, WA; Garland, Thomas R [Greybull, WY; Gorby, Yuri A [Richland, WA; Hess, Nancy J [Benton City, WA; Li, Shu-Mei W [Richland, WA; Plymale, Andrew E [Richland, WA

    2001-01-01

    The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

  13. Evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil.

    PubMed

    Li, Hongna; Li, Binxu; Zhang, Zhiguo; Zhu, Changxiong; Tian, Yunlong; Ye, Jing

    2018-02-01

    The evolution of microbial communities during the electrokinetic treatment of antibiotic-polluted soil (EKA) was investigated with chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC) as template antibiotics. The total population of soil microorganisms was less affected during the electrokinetic process, while living anti-CTC, anti-OTC, anti-TC and anti-MIX bacteria were inactivated by 10.48%, 31.37%, 34.76%, and 22.08%, respectively, during the 7-day treatment compared with antibiotic-polluted soil without an electric field (NOE). Accordingly, samples with NOE treatment showed a higher Shannon index than those with EKA treatment, indicating a reduction of the microbial community diversity after electrokinetic processes. The major taxonomic phyla found in the samples of EKA and NOE treatment were Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. And the distribution of Actinobacteria, Cyanobacteria, and Chloroflexi was greatly decreased compared with blank soil. In the phylum Proteobacteria, the abundance of Alphaproteobacteria was greatly reduced in the soils supplemented with antibiotics (from 13.40% in blank soil to 6.43-10.16% after treatment); while Betaproteobacteria and Deltaproteobacteria showed a different trend with their abundance increased compared to blank soil, and Gammaproteobacteria remained unchanged for all treatments (2.36-2.78%). The varied trends for different classes indicated that the major bacterial groups changed with the treatments due to their different adaptability to the antibiotics as well as to the electric field. SulI being an exception, the reduction ratio of the observed antibiotic resistance genes (ARGs) including tetC, tetG, tetW, tetM, intI1, and sulII in the 0-2cm soil sampled with EKA versus NOE treatment reached 55.17%, 3.59%, 99.26%, 89.51%, 30.40%, and 27.92%, respectively. Finally, correlation analysis was conducted between antibiotic-resistant bacteria, ARGs and taxonomic bacterial classes. It was found that sulII was the most representative of many different bacteria among the seven ARGs studied. This is the first report on the changes in microbial communities before and after EKA, and the present results demonstrated that the application of EKA is a useful and effective approach to suppressing both antibiotic resistant microorganisms and ARGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.

    PubMed

    Wang, Gang; Huang, Liping; Zhang, Yifeng

    2008-11-01

    A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m(2) (0.04 mA/cm(2)) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.

  15. Improvement of Saccharomyces yeast strains used in brewing, wine making and baking.

    PubMed

    Donalies, Ute E B; Nguyen, Huyen T T; Stahl, Ulf; Nevoigt, Elke

    2008-01-01

    Yeast was the first microorganism domesticated by mankind. Indeed, the production of bread and alcoholic beverages such as beer and wine dates from antiquity, even though the fact that the origin of alcoholic fermentation is a microorganism was not known until the nineteenth century. The use of starter cultures in yeast industries became a common practice after methods for the isolation of pure yeast strains were developed. Moreover, effort has been undertaken to improve these strains, first by classical genetic methods and later by genetic engineering. In general, yeast strain development has aimed at improving the velocity and efficiency of the respective production process and the quality of the final products. This review highlights the achievements in genetic engineering of Saccharomyces yeast strains applied in food and beverage industry.

  16. Advancing metabolic engineering through systems biology of industrial microorganisms.

    PubMed

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches

    PubMed Central

    Papadimitriou, Konstantinos; Zoumpopoulou, Georgia; Foligné, Benoit; Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms. PMID:25741323

  18. Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments.

    PubMed

    Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M

    2017-12-01

    This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effects of competition from non-pathogenic foodborne bacteria during the selective enrichment of Listeria monocytogenes using buffered Listeria enrichment broth☆

    PubMed Central

    Dailey, Rachel C.; Martin, Keely G.; Smiley, R. Derike

    2016-01-01

    The growth of Listeria monocytogenes during the pathogen specific enrichment of food samples can be limited by the presence of additional microorganisms that are resistant to the selective conditions being applied. If growth is severely limited and minimum post-enrichment threshold levels are not met then the presence of L. monocytogenes may go undetected. Several food products were screened for non-pathogenic commensal or spoilage microorganisms that are capable of growth under the conditions commonly used by regulatory testing laboratories to select for Listeria species. The effect of these potential competitor microorganisms on the ability to detect L. monocytogenes by several common molecular screening assays was then determined. Eight species of bacteria were isolated from foods that demonstrated the ability to grow in buffered Listeria enrichment broth under selective conditions. Growth of these competitor microorganisms during the enrichment incubation resulted in a decrease ranging from 1 to 4 logs in the 48 h population of L. monocytogenes. Three strains of L. monocytogenes representing serotypes 1/2a, 1/2b, and 4b were included in this study but no one serotype appeared to be most or least sensitive to the presence of competitor microorganisms. One additional strain of L. monocytogenes was identified as displaying minimal growth during the enrichment period in the presence of the Citrobacter braakii with the final population only reaching approximately 2.6 log CFU/ml after 48 h which was a 2 log increase over the initial population. This particular strain was subsequently shown to be difficult to detect following enrichment by an automated immunofluorescence assay and an antibody-based lateral flow device assay. In some enrichments, this strain was also difficult to detect by real-time PCR. PMID:25084660

  20. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    NASA Astrophysics Data System (ADS)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  1. The Impact of the Major Baltic Inflow of December 2014 on the Mercury Species Distribution in the Baltic Sea.

    PubMed

    Kuss, Joachim; Cordes, Florian; Mohrholz, Volker; Nausch, Günther; Naumann, Michael; Krüger, Siegfried; Schulz-Bull, Detlef E

    2017-10-17

    The Baltic Sea is a marginal sea characterized by stagnation periods of several years. Oxygen consumption in its deep waters leads to the buildup of sulfide from sulfate reduction. Some of the microorganisms responsible for these processes also transform reactive ionic mercury to neurotoxic methylmercury. Episodic inflows of oxygenated saline water from the North Sea temporally re-establish oxic life in deep waters of the Baltic Sea. Thus, this sea is an especially important region to better understand mercury species distributions in connection with variable redox conditions. Mercury species were measured on three Baltic Sea campaigns, during the preinflow, ongoing inflow, and subsiding inflow of water, respectively, to the central basin. The inflowing water caused the removal of total mercury by 600 nmol m -2 and of methylmercury by 214 nmol m -2 in the Gotland Deep, probably via attachment of the mercury compounds to sinking particles. It appears likely that the consequences of the oxygenation of Baltic Sea deep waters, which are the coprecipitation of mercury species and the resettlement of the oxic deep waters, could lead to the enhanced transfer of accumulated mercury and methylmercury to the planktonic food chain and finally to fish.

  2. Recalcitrant Carbonaceous Material: A Source of Electron Donors for Anaerobic Microbial Metabolisms in the Subsurface?

    NASA Astrophysics Data System (ADS)

    Nixon, S. L.; Montgomery, W.; Sephton, M. A.; Cockell, C. S.

    2014-12-01

    More than 90% of organic material on Earth resides in sedimentary rocks in the form of kerogens; fossilized organic matter formed through selective preservation of high molecular weight biopolymers under anoxic conditions. Despite its prevalence in the subsurface, the extent to which this material supports microbial metabolisms is unknown. Whilst aerobic microorganisms are known to derive energy from kerogens within shales, utilization in anaerobic microbial metabolisms that proliferate in the terrestrial subsurface, such as microbial iron reduction, has yet to be demonstrated. Data are presented from microbial growth experiments in which kerogens and shales were supplied as the sole electron donor source for microbial iron reduction by an enrichment culture. Four well-characterized kerogens samples (representative of Types I-IV, classified by starting material), and two shale samples, were assessed. Organic analysis was carried out to investigate major compound classes present in each starting material. Parallel experiments were conducted to test inhibition of microbial iron reduction in the presence of each material when the culture was supplied with a full redox couple. The results demonstrate that iron-reducing microorganisms in this culture were unable to use kerogens and shales as a source of electron donors for energy acquisition, despite the presence of compound classes known to support this metabolism. Furthermore, the presence of these materials was found to inhibit microbial iron reduction to varying degrees, with some samples leading to complete inhibition. These results suggest that recalcitrant carbonaceous material in the terrestrial subsurface is not available for microbial iron reduction and similar metabolisms, such as sulphate-reduction. Further research is needed to investigate the inhibition exerted by these materials, and to assess whether these findings apply to other microbial consortia. These results may have significant implications for the role of anaerobic microbial metabolisms in the subsurface terrestrial carbon cycle. Kerogens are chemically similar to organic material in carbonaceous chondrites. As such, further study may provide insight into the potential availability of organic compounds for microbial metabolisms operating in the subsurface of Mars.

  3. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOEpatents

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  4. Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: physicochemical, microbiological, nutritional and toxicological characteristics.

    PubMed

    Ferragut, Victoria; Hernández-Herrero, Manuela; Veciana-Nogués, María Teresa; Borras-Suarez, Miquel; González-Linares, Javier; Vidal-Carou, María Carmen; Guamis, Buenaventura

    2015-03-30

    A relatively new technology based on a continuous system of ultra-high-pressure homogenization (UHPH) was used for producing high-quality soy and almond beverages as an alternative to conventional heat treatments (pasteurization and UHT). The aim of this study was to compare those treatments by analyzing the most relevant quality parameters with a broad vision from the production to the potential toxicological changes, passing through the main nutritional characteristics. UHPH treatment at 200 MPa, 55 °C T(in) produced a higher reduction of microorganisms than pasteurization. UHPH treatment at 300 MPa, 75 °C T(in) led to complete inactivation of microorganisms, similar to UHT treatment. A much better colloidal stability was observed in both UHPH-treated almond and soy beverages compared with those processed by conventional heat treatments. UHPH treatments led to the same increase in digestibility as heat treatments and did not produce a reduction in the availability of lysine. In addition, UHPH samples of soy beverage seem to be less allergenic based on their lower gut immune response in comparison with heat-treated samples. UHPH treatments could be used to produce high-quality commercial vegetable beverages with different quality standards (fresh or long-life storage) according to consumer preference. © 2014 Society of Chemical Industry.

  5. [Vaginitis and vaginosis. Comparison of two periods].

    PubMed

    Ceruti, M; Canestrelli, M; Piantelli, G; Amone, F; Condemi, V; De Paolis, P; Ludovici, G; Somenzi, P

    1993-10-01

    Vaginitis is the most frequent gynecological disease. It is characterized by objective and subjective signs of inflammation and differs from bacterial vaginosis (BV) which is an abnormal condition of the vaginal ecosystem caused by the excessive growth of aerobic and anaerobic flora normally present in the vagina with an increased risk of pelvic inflammatory disease (PID). The authors report the results of a study carried out at the Centre for Gynecological Infections at the Clinic of Obstetrics and Gynecology of the University of Parma. 828 patients were enrolled in the study during the period 1985-86 and 1559 patients during the two-year period 1991-92. The aim of the study was to evaluate variations in epidemiological data for vaginitis and bacterial vaginosis in the two periods examined. No significant changes were observed (p > 0.05) with regard to the prevalence of Ca, Tv and BV forms. On the other hand, there was a significant reduction (p < 0.001) in the forms sustained by other microorganisms (above all, streptococcus and enterobacteria) between the first and second periods with a parallel increase in the number of negative cases. The analysis of the age distribution of vaginitis and BV showed a reduction of other microorganisms and an increase in negative vaginal swabs in adults (> 20 years old).

  6. Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile.

    PubMed

    Lara, José; Escudero González, Lorena; Ferrero, Marcela; Chong Díaz, Guillermo; Pedrós-Alió, Carlos; Demergasso, Cecilia

    2012-05-01

    Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.

  7. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest.

    PubMed

    Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich

    2012-08-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma.

  8. Use of Probiotics to Control Aflatoxin Production in Peanut Grains

    PubMed Central

    da Silva, Juliana Fonseca Moreira; Peluzio, Joenes Mucci; Madeira, Jovita Eugênia Gazzinelli Cruz; Silva, Marize Oliveira; de Morais, Paula Benevides; Rosa, Carlos Augusto; Pimenta, Raphael Sanzio; Nicoli, Jacques Robert

    2015-01-01

    Probiotic microorganisms (Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and Lactobacillus delbrueckii UFV H2b20) were evaluated as biological control agents to reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in peanut. Suspensions containing the probiotics alone or in combinations were tested by sprinkling on the grains followed by incubation for seven days at 25°C. All probiotic microorganisms, in live and inactivated forms, significantly reduced A. parasiticus sporulation, but the best results were obtained with live cells. The presence of probiotics also altered the color of A. parasiticus colonies but not the spore morphology. Reduction in aflatoxin production of 72.8 and 65.8% was observed for S. boulardii and S. cerevisiae, respectively, when inoculated alone. When inoculated in pairs, all probiotic combinations reduced significantly aflatoxin production, and the best reduction was obtained with S. boulardii plus L. delbrueckii (96.1%) followed by S. boulardii plus S. cerevisiae and L. delbrueckii plus S. cerevisiae (71.1 and 66.7%, resp.). All probiotics remained viable in high numbers on the grains even after 300 days. The results of the present study suggest a different use of probiotics as an alternative treatment to prevent aflatoxin production in peanut grains. PMID:26221629

  9. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest

    PubMed Central

    Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

    2012-01-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  10. Implications of salt and sodium reduction on microbial food safety.

    PubMed

    Taormina, Peter J

    2010-03-01

    Excess sodium consumption has been cited as a primary cause of hypertension and cardiovascular diseases. Salt (sodium chloride) is considered the main source of sodium in the human diet, and it is estimated that processed foods and restaurant foods contribute 80% of the daily intake of sodium in most of the Western world. However, ample research demonstrates the efficacy of sodium chloride against pathogenic and spoilage microorganisms in a variety of food systems. Notable examples of the utility and necessity of sodium chloride include the inhibition of growth and toxin production by Clostridium botulinum in processed meats and cheeses. Other sodium salts contributing to the overall sodium consumption are also very important in the prevention of spoilage and/or growth of microorganisms in foods. For example, sodium lactate and sodium diacetate are widely used in conjunction with sodium chloride to prevent the growth of Listeria monocytogenes and lactic acid bacteria in ready-to-eat meats. These and other examples underscore the necessity of sodium salts, particularly sodium chloride, for the production of safe, wholesome foods. Key literature on the antimicrobial properties of sodium chloride in foods is reviewed here to address the impact of salt and sodium reduction or replacement on microbiological food safety and quality.

  11. Tracing Surrogates for Enteric Pathogens Inoculated on Hide through the Beef Harvesting Process.

    PubMed

    Villarreal-Silva, Mariana; Genho, Daniel P; Ilhak, Irfan; Lucia, Lisa M; Dickson, James S; Gehring, Kerri B; Savell, Jeffrey W; Castillo, Alejandro

    2016-11-01

    Multiple antimicrobial interventions have been validated for use during the beef postharvesting process. However, little has been done to determine the impact of the postharvest environment on pathogen contamination. In this study, surrogate microorganisms were used to simulate pathogen cross-contamination through the postharvest environment at three different abattoirs. At each abattoir, the brisket areas of 13 hide-on carcasses were inoculated after stunning, with a gelatin slurry containing a cocktail (~7 log CFU/ml) of fluorescent Escherichia coli biotype I. These microorganisms are approved as surrogates for E. coli O157:H7 and Salmonella . From these carcasses, samples (300 cm 2 ) were taken at different stages during the harvesting process: after hide opening, prior to evisceration, after evisceration, after splitting, and after final intervention. The carcass (noninoculated) immediately following (adjacent to) each hide-inoculated carcass was also tested to determine cross-contamination. Environmental (floor, walls, air) and personal garment (gloves, boots, aprons) samples were collected. Other sampled equipment included knives, meat hooks, hide pullers, and splitting saws. Results demonstrated that cross-contamination occurred between the inoculated hide and the carcass and also by transfer of microorganisms to the adjacent, noninoculated carcasses. Microbial transfer also occurred from hides or carcasses to the environment, personal garments, and equipment. Counts of the surrogate bacteria used were higher in equipment samples (15%) than in environment samples (10%). Personal garments had the lowest occurrence of cross-contamination (7%). For all abattoirs, surrogates were undetected on the carcass (<1.4 log CFU/300cm 2 ) after the final intervention stage. This study confirms the importance of following adequate procedures for carcass dressing and highlights an adequate hide opening procedure as a crucial step to prevent carcass contamination.

  12. Selection of an Alternate Biocide for the ISS Internal Thermal Control System Coolant, Phase 2

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.; Cole, Harold; Weir, Natalee; Oehler, Bill; Steele, John; Varsik, Jerry; Lukens, Clark

    2004-01-01

    The ISS (International Space Station) ITCS (Internal Thermal Control System) includes two internal coolant loops that utilize an aqueous based coolant for heat transfer. A silver salt biocide had previously been utilized as an additive in the coolant formulation to control the growth and proliferation of microorganisms within the coolant loops. Ground-based and in-flight testing demonstrated that the silver salt was rapidly depleted, and did not act as an effective long-term biocide. Efforts to select an optimal alternate biocide for the ITCS coolant application have been underway and are now in the final stages. An extensive evaluation of biocides was conducted to down-select to several candidates for test trials and was reported on previously. Criteria for that down-select included: the need for safe, non-intrusive implementation and operation in a functioning system; the ability to control existing planktonic and biofilm residing microorganisms; a negligible impact on system-wetted materials of construction; and a negligible reactivity with existing coolant additives. Candidate testing to provide data for the selection of an optimal alternate biocide is now in the final stages. That testing has included rapid biocide effectiveness screening using Biolog MT2 plates to determine minimum inhibitory concentration (amount that will inhibit visible growth of microorganisms), time kill studies to determine the exposure time required to completely eliminate organism growth, materials compatibility exposure evaluations, coolant compatibility studies, and bench-top simulated coolant testing. This paper reports the current status of the effort to select an alternate biocide for the ISS ITCS coolant. The results of various test results to select the optimal candidate are presented.

  13. Characterization of Penicillium oxalicum SL2 isolated from indoor air and its application to the removal of hexavalent chromium

    PubMed Central

    Long, Bibo; Ye, Binhui; Liu, Qinglin; Zhang, Shu; Ye, Jien; Zou, Lina

    2018-01-01

    Removal of toxic Cr(VI) by microbial reduction is a promising approach to reducing its ecotoxicological impact. To develop bioremediation technologies, many studies have evaluated the application of microorganisms isolated from Cr(VI)-contaminated sites. Nonetheless, little attention has been given to microbes from the environments without a history of Cr(VI) contamination. In this study, we aimed to characterize the Cr(VI) tolerance and removal abilities of a filamentous fungus strain, SL2, isolated from indoor air. Based on phenotypic characterization and rDNA sequence analysis, SL2 was identified as Penicillium oxalicum, a species that has not been extensively studied regarding Cr(VI) tolerance and reduction abilities. SL2 showed high tolerance to Cr(VI) on solid and in liquid media, facilitating its application to Cr(VI)-contaminated environments. Growth curves of SL2 in the presence of 0, 100, 400, or 1000 mg/L Cr(VI) were well simulated by the modified Gompertz model. The relative maximal colony diameter and maximal growth rate decreased as Cr(VI) concentration increased, while the lag time increased. SL2 manifested remarkable efficacy of removing Cr(VI). Mass balance analysis indicated that SL2 removed Cr(VI) by reduction, and incorporated 0.79 mg of Cr per gram of dry biomass. In electroplating wastewater, the initial rate of Cr(VI) removal was affected by the initial contaminant concentration. In conclusion, P. oxalicum SL2 represents a promising new candidate for Cr(VI) removal. Our results significantly expand the knowledge on potential application of this microorganism. PMID:29381723

  14. Microbial iron redox cycling in a circumneutral-pH groundwater seep.

    PubMed

    Blöthe, Marco; Roden, Eric E

    2009-01-01

    The potential for microbially mediated redox cycling of iron (Fe) in a circumneutral-pH groundwater seep in north central Alabama was studied. Incubation of freshly collected seep material under anoxic conditions with acetate-lactate or H(2) as an electron donor revealed the potential for rapid Fe(III) oxide reduction (ca. 700 to 2,000 micromol liter(-1) day(-1)). Fe(III) reduction at lower but significant rates took place in unamended controls (ca. 300 micromol liter(-1) day(-1)). Culture-based enumerations (most probable numbers [MPNs]) revealed significant numbers (10(2) to 10(6) cells ml(-1)) of organic carbon- and H(2)-oxidizing dissimilatory Fe(III)-reducing microorganisms. Three isolates with the ability to reduce Fe(III) oxides by dissimilatory or fermentative metabolism were obtained (Geobacter sp. strain IST-3, Shewanella sp. strain IST-21, and Bacillus sp. strain IST-38). MPN analysis also revealed the presence of microaerophilic Fe(II)-oxidizing microorganisms (10(3) to 10(5) cells ml(-1)). A 16S rRNA gene library from the iron seep was dominated by representatives of the Betaproteobacteria including Gallionella, Leptothrix, and Comamonas species. Aerobic Fe(II)-oxidizing Comamonas sp. strain IST-3 was isolated. The 16S rRNA gene sequence of this organism is 100% similar to the type strain of the betaproteobacterium Comamonas testosteroni (M11224). Testing of the type strain showed no Fe(II) oxidation. Collectively our results suggest that active microbial Fe redox cycling occurred within this habitat and support previous conceptual models for how microbial Fe oxidation and reduction can be coupled in surface and subsurface sedimentary environments.

  15. White and blue light induce reduction in susceptibility to minocycline and tigecycline in Acinetobacter spp. and other bacteria of clinical importance.

    PubMed

    Ramírez, María Soledad; Traglia, German Matías; Pérez, Jorgelina Fernanda; Müller, Gabriela Leticia; Martínez, María Florencia; Golic, Adrián Ezequiel; Mussi, María Alejandra

    2015-05-01

    Minocycline (MIN) and tigecycline (TIG) are antibiotics currently used for treatment of multidrug-resistant nosocomial pathogens. In this work, we show that blue light, as well as white light, modulates susceptibility to these antibiotics in a temperature-dependent manner. The modulation of susceptibility by light depends on the content of iron; an increase in iron results in a reduction in antibiotic susceptibility both under light and in the dark, though the effect is more pronounced in the latter condition. We further provide insights into the mechanism by showing that reduction in susceptibility to MIN and TIG induced by light is likely triggered by the generation of (1)O2, which, by a yet unknown mechanism, would ultimately lead to the activation of resistance genes such as those coding for the efflux pump AdeABC. The clinical relevance of these results may lie in surface-exposed wound infections, given the exposure to light in addition to the relatively low temperatures recorded in this type of lesion. We further show that the modulation of antibiotic susceptibility occurs not only in Acinetobacter baumannii but also in other micro-organisms of clinical relevance such as Escherichia coli and Staphylococcus aureus. Overall, our findings allow us to suggest that MIN and TIG antibiotic treatments may be improved by the inclusion of an iron chelator, in addition to keeping the wounds in the dark, a condition that would increase the effectiveness in the control of infections involving these micro-organisms. © 2015 The Authors.

  16. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays.

    PubMed

    Tourlousse, Dieter M; Kurisu, Futoshi; Tobino, Tomohiro; Furumai, Hiroaki

    2013-05-01

    The goal of this study was to develop and validate a novel fosmid-clone-based metagenome isotope array approach - termed the community isotope array (CIArray) - for sensitive detection and identification of microorganisms assimilating a radiolabeled substrate within complex microbial communities. More specifically, a sample-specific CIArray was used to identify anoxic phenol-degrading microorganisms in activated sludge treating synthetic coke-oven wastewater in a single-sludge predenitrification-nitrification process. Hybridization of the CIArray with DNA from the (14) C-phenol-amended sample indicated that bacteria assimilating (14) C-atoms, presumably directly from phenol, under nitrate-reducing conditions were abundant in the reactor, and taxonomic assignment of the fosmid clone end sequences suggested that they belonged to the Gammaproteobacteria. The specificity of the CIArray was validated by quantification of fosmid-clone-specific DNA in density-resolved DNA fractions from samples incubated with (13) C-phenol, which verified that all CIArray-positive probes stemmed from microorganisms that assimilated isotopically labeled carbon. This also demonstrated that the CIArray was more sensitive than DNA-SIP, as the former enabled positive detection at a phenol concentration that failed to yield a 'heavy' DNA fraction. Finally, two operational taxonomic units distantly related to marine Gammaproteobacteria were identified to account for more than half of 16S rRNA gene clones in the 'heavy' DNA library, corroborating the CIArray-based identification. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Hydrodynamic interaction of two swimming model micro-organisms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Simmonds, M. P.; Pedley, T. J.

    2006-12-01

    In order to understand the rheological and transport properties of a suspension of swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). The effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The interaction of two squirmers is calculated analytically for the limits of small and large separations and is also calculated numerically using a boundary-element method. The analytical and the numerical results for the translational rotational velocities and for the stresslet of two squirmers correspond very well. We sought to generate a database for an interacting pair of squirmers from which one can easily predict the motion of a collection of squirmers. The behaviour of two interacting squirmers is discussed phenomenologically, too. The results for the trajectories of two squirmers show that first the squirmers attract each other, then they change their orientation dramatically when they are in near contact and finally they separate from each other. The effect of bottom-heaviness is considerable. Restricting the trajectories to two dimensions is shown to give misleading results. Some movies of interacting squirmers are available with the online version of the paper.

  18. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  19. Uranium removal from a contaminated effluent using a combined microbial and nanoparticle system.

    PubMed

    Baiget, Mar; Constantí, Magda; López, M Teresa; Medina, Francesc

    2013-09-25

    Reduction of soluble uranium(VI) to insoluble uranium(IV) for remediating a uranium-contaminated effluent (EF-03) was examined using a biotic and abiotic integrated system. Shewanella putrefaciens was first used and reduced U(VI) in a synthetic medium but not in the EF-03 effluent sample. Subsequently the growth of autochthonous microorganisms was stimulated with lactate. When lactate was supported on active carbon 77% U(VI) was removed in 4 days. Separately, iron nanoparticles that were 50 nm in diameter reduced U(VI) by 60% in 4 hours. The efficiency of uranium(VI) removal was improved to 96% in 30 min by using a system consisting of lactate and iron nanoparticles immobilized on active carbon. Lactate also stimulated the growth of potential uranium-reducing microorganisms in the EF-03 sample. This system can be efficiently used for the bioremediation of uranium-contaminated effluents. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  1. Microalgal symbiosis in biotechnology.

    PubMed

    Santos, Carla A; Reis, Alberto

    2014-07-01

    This review provides an analysis of recent published work on interactions between microorganisms, especially the ones involving mainly nutrient exchanges and at least with one microalga species. Examples of microbial partners are given, with a remark to the potential application of cultures of an autotroph and a heterotroph, which grow simultaneously, taking advantage of the complementary metabolisms. These are particularly interesting, either due to economic or sustainable aspects, and some applications have already reached the commercial stage of development. The added advantages of these symbiotic cultures are biomass, lipid, and other products productivity enhancement a better utilization of resources and the reduction or even elimination of process residues (including carbon dioxide and other greenhouse gases) to conduct an increasingly greener biotechnology. Among the several symbiotic partners referred, the microalgae and yeast cultures are the most used. The interaction between these two microorganisms shows how to enhance the lipid production for biodiesel purposes compared with separated (stand-alone) cultures.

  2. Problems of microbial ecology in man space mission

    NASA Astrophysics Data System (ADS)

    Lizko, N. N.

    The state of microflora should be considered as one of the important links in chain of the specific functional disorders involving the spaceflight factors effects. At the same time, there occurs an astablishment of nonspecific disbiotic response of the human microflora in the space flights of various duration characterized by a decrease up to a reduction of the "defence" group of microorganisms; by an appearence of unusual microorganisms in various biotypes, by accummulatoin of the potential of pathogenic species of automicroflora with their succeeding colonization and longterm persistence. In experimental animal models to simulate dysbacteriosis and with the use of SPF-rats and primates flow aboard Cosmos biosatellites, the significance of indigenous microflora for preserving microecological homeostasis. Theoretically based and experimentally proven need for increasing the colonization resistence is cofirmed dy the practical use of the measures to stabilize microflora of the cosmonauts during space flights.

  3. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE PAGES

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.; ...

    2017-11-30

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  4. Surface reflectance degradation by microbial communities

    DOE PAGES

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; ...

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  5. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    DOE PAGES

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; ...

    2015-08-07

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less

  6. Lipids from yeasts and fungi: physiology, production and analytical considerations.

    PubMed

    Athenaki, M; Gardeli, C; Diamantopoulou, P; Tchakouteu, S S; Sarris, D; Philippoussis, A; Papanikolaou, S

    2018-02-01

    The last years there has been a significant rise in the number of publications in the international literature that deal with the production of lipids by microbial sources (the 'single cell oils; SCOs' that are produced by the so-called 'oleaginous' micro-organisms). In the first part of the present review article, a general overview of the oleaginous micro-organisms (mostly yeasts, algae and fungi) and their potential upon the production of SCOs is presented. Thereafter, physiological and kinetic events related with the production of, mostly, yeast and fungal lipids when sugars and related substrates like polysaccharides, glycerol, etc. (the de novo lipid accumulation process) or hydrophobic substrates like oils and fats (the ex novo lipid accumulation process) were employed as microbial carbon sources, are presented and critically discussed. Considerations related with the degradation of storage lipid that had been previously accumulated inside the cells, are also presented. The interplay of the synthesis of yeast and fungal lipids with other intracellular (i.e. endopolysaccharides) or extracellular (i.e. citric acid) secondary metabolites synthesized is also presented. Finally, aspects related with the lipid extraction and lipidome analysis of the oleaginous micro-organisms are presented and critically discussed. © 2017 The Society for Applied Microbiology.

  7. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance

    PubMed Central

    Yonezawa, Hideo; Osaki, Takako

    2015-01-01

    Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism. PMID:26078970

  8. Isotope fractionation during the anaerobic consumption of acetate by methanogenic and sulfate-reducing microorganisms

    NASA Astrophysics Data System (ADS)

    Gövert, D.; Conrad, R.

    2009-04-01

    During the anaerobic degradation of organic matter in anoxic sediments and soils acetate is the most important substrate for the final step in production of CO2 and/or CH4. Sulfate-reducing bacteria (SRB) and methane-producing archaea both compete for the available acetate. Knowledge about the fractionation of 13C/12C of acetate carbon by these microbial groups is still limited. Therefore, we determined carbon isotope fractionation in different cultures of acetate-utilizing SRB (Desulfobacter postgatei, D. hydrogenophilus, Desulfobacca acetoxidans) and methanogens (Methanosarcina barkeri, M. acetivorans). Including literature values (e.g., Methanosaeta concilii), isotopic enrichment factors (epsilon) ranged between -35 and +2 permil, possibly involving equilibrium isotope effects besides kinetic isotope effects. The values of epsilon were dependent on the acetate-catabolic pathway of the particular microorganism, the methyl or carboxyl position of acetate, and the relative availability or limitation of the substrate acetate. Patterns of isotope fractionation in anoxic lake sediments and rice field soil seem to reflect the characteristics of the microorganisms actively involved in acetate catabolism. Hence, it might be possible using environmental isotopic information to determine the type of microbial metabolism converting acetate to CO2 and/or CH4.

  9. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less

  10. Kocuria rosea, kocuria kristinae, leuconostoc mesenteroides as caries-causing representatives of oral microflora.

    PubMed

    Ananieva, Maiia M; Faustova, Mariia O; Basarab, Iaroslav O; Loban', Galina A

    2017-01-01

    Recently, opportunistic microflora are increasingly known to be involved in the development of pathological processes in various systems and organs. This situation promotes interest in their detailed study as causative agents of bacterial infections. To study the microbial species residing in carious cavities in acute profound caries. The study involved 14 people with a diagnosis of acute profound caries. Microbiological methods included determining species of microorganisms' cultures from carious cavities in acute profound caries. Final identification was carried out by automatic bacteriological analyzer Vitec-2compact bioMérieux. Among the bacteria isolated, Kocuria rosae, Kocuria kristinae, and Leuconostoc mesenteroides are the focus of the authors' attention due to their identification rate in the patients. These microbial species are little studied due to the lack of data on their cariogenic associations.The meticulous study of the microorganisms, isolated from carious cavities in patients with acute profound caries by automatic bacteriological analyzer Vitec-2 Systems bioMérieux, and findings on their biochemical properties allow us to conclude that Kocuria rosae, Kocuria kristinae, and Leuconostoc mesenteroides are among the microorganisms making up the microflora of carious cavities under acute profound caries and are involved in the development of the caries process.

  11. Bacterial diversity of East Calcutta Wet land area: possible identification of potential bacterial population for different biotechnological uses.

    PubMed

    Ghosh, Abhrajyoti; Maity, Bhaswar; Chakrabarti, Krishanu; Chattopadhyay, Dhrubajyoti

    2007-10-01

    The extent of microbial diversity in nature is still largely unknown, suggesting that there might be many more useful products yet to be identified from soil microorganisms. This insight provides the scientific foundation for a renewed interest in examining soil microorganisms for novel commercially important products. This has led us to access the metabolic potential of soil microorganisms via cultivation strategy. Keeping this in mind, we have performed a culture-dependent survey of important soil bacterial community diversity in East Calcutta Wetland area (Dhapa Landfill Area). We describe isolation of 38 strains, their phenotypic and biochemical characterization, and finally molecular identification by direct sequencing of polymerase chain reaction (PCR)-amplified 16S rRNA gene products. We have isolated and identified strains able to fix nitrogen, produce extracellular enzymes like protease, cellulase, xylanase, and amylase, and solubilize inorganic phosphates. Some isolates can synthesize extracellular insecticidal toxins. We find a good correlation between biochemical and phenotypic behavior and the molecular study using 16S rRNA gene of the isolates. Furthermore, our findings clearly indicate the composition of cultivable soil bacteria in East Calcutta Wetland Area.

  12. Diet rapidly and reproducibly alters the human gut microbiome

    PubMed Central

    David, Lawrence A.; Maurice, Corinne F.; Carmody, Rachel N.; Gootenberg, David B.; Button, Julie E.; Wolfe, Benjamin E.; Ling, Alisha V.; Devlin, A. Sloan; Varma, Yug; Fischbach, Michael A.; Biddinger, Sudha B.; Dutton, Rachel J.; Turnbaugh, Peter J.

    2013-01-01

    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. PMID:24336217

  13. Analysis of methane biodegradation by Methylosinus trichosporium OB3b

    PubMed Central

    Rodrigues, Andréa dos Santos; Salgado, Belkis Valdman e Andréa Medeiros

    2009-01-01

    The microbial oxidation of methane in the atmosphere is performed by methanotrophic bacteria that use methane as a unique source of carbon and energy. The objective of this work consisted of the investigation of the best conditions of methane biodegradation by methanotrophic bacteria Methylosinus trichosporium OB3b that oxidize it to carbon dioxide, and the use of these microorganisms in monitoring methods for methane. The results showed that M. trichosporium OB3b was capable to degrade methane in a more effective way with an initial microorganism concentration of 0.0700 g.L-1, temperature of 30ºC, pH 6.5 and using 1.79 mmol of methane. In these same conditions, there was no bacterial growth when 2.69 mmol of methane was used. The specific rate of microorganism growth, the conversion factor, the efficiency and the volumetric productivity, for the optimized conditions of biodegradation were, respectively, 0.0324 h-1, 0.6830 gcells/gCH4, 73.73% and 2.7732.10-3 gcells/L.h. The final product of methane microbiological degradation, carbon dioxide, was quantified through the use of a commercial electrode, and, through this, the grade of methane conversion in carbon dioxide was calculated. PMID:24031362

  14. In situ Bioreduction of Uranium (VI) in Groundwater and Sediments with Edible Oil as the Electron Donor

    NASA Astrophysics Data System (ADS)

    Wu, W.; Watson, D. B.; Mehlhorn, T.; Zhang, G.; Earles, J.; Lowe, K.; Phillips, J.; Boyanov, M.; Kemner, K. M.; Schadt, C. W.; Brooks, S. C.; Criddle, C.; Jardine, P.

    2009-12-01

    In situ bioremediation of a uranium-contaminated aquifer was conducted at the US DOE Environmental Remediation Sciences Program (ERSP) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. Edible oil was tested as a slow-release electron donor for microbially mediated U (VI) reduction. Uranium contaminated sediments from the site were used in laboratory microcosm tests to study the feasibility of using this electron donor under anaerobic, ambient temperature conditions. Parallel microcosms were established using ethanol as electron donor for comparison. The tests also examined the impact of sulfate concentrations on U (VI) reduction. The oil was degraded by indigenous microorganisms with acetate as a major product but at a much slower rate than ethanol. The rapid removal of U (VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 vs. 5 mM), likely due to U(VI) desorption from the solid phase, but more U(VI) was reduced with higher initial sulfate level. Finally, the bioreaction in microcosms progressed to methanogenesis. Subsequently, a field test with the edible oil was conducted in a highly permeable gravelly layer (hydraulic conductivity 0.076 cm/sec). Groundwater at the site contained 5-6 μM U; 1.0-1.2 mM sulfate; 3-4 mM Ca; pH 6.8. Diluted emulsified oil (20% solution) was injected into three injection wells within 2 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of uranium from groundwater was observed in all wells connected to the injection wells after 2-4 weeks. Uranium concentrations in groundwater were reduced to below 0.126 μM (EPA drinking water standard), at some well locations. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the oil was consumed. Uranium (VI) reduction to U (IV) in the microcosm and in situ field tests was confirmed by X-ray near-edge absorption spectroscopy analysis. Bacterial populations in microcosms and field samples were analyzed using 16S rRNA gene libraries and Geochip analysis.

  15. The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field.

    PubMed

    Sobrino-Lopez, A; Viedma-Martínez, P; Abriouel, H; Valdivia, E; Gálvez, A; Martin-Belloso, O

    2009-06-01

    The use of high-intensity pulsed-electric field (HIPEF) and antimicrobial substances of natural origin, such as enterocin AS-48 (AS-48), nisin, and lysozyme, are among the most important nonthermal preservation methods. Thus, the purpose of this study was to evaluate the combined effect on milk inoculated with Staphylococcus aureus of the addition of AS-48 with nisin or lysozyme, or both, together with the use of HIPEF. Synergy was observed in the reduction of Staph. aureus counts with the following combination methods: i) addition of AS-48 and nisin, ii) addition of AS-48 plus use of HIPEF, and iii) addition of AS-48 and nisin plus use of HIPEF. Specifically, when 28 arbitrary units/mL of AS-48 and 20 IU/mL of nisin were added to the milk, and it was treated with HIPEF for 800 mus, over 6 log reductions were observed in the microorganism. In general, Staph. aureus inactivation was dependent on HIPEF treatment time, antimicrobial doses, and medium pH. During storage of the treated milk, survivor population was related to peptide concentration and temperature. Final cell viability was influenced by the sequence in which the treatments were applied: the addition of AS-48 or AS-48 and nisin was more effective before than after HIPEF treatment. The results obtained indicate that the combination of HIPEF and antimicrobials could be of great interest to the dairy industry, although it is necessary to study further the way in which the combined treatments act.

  16. Desiccation of sediments affects assimilate transport within aquatic plants and carbon transfer to microorganisms.

    PubMed

    von Rein, I; Kayler, Z E; Premke, K; Gessler, A

    2016-11-01

    With the projected increase in drought duration and intensity in future, small water bodies, and especially the terrestrial-aquatic interfaces, will be subjected to longer dry periods with desiccation of the sediment. Drought effects on the plant-sediment microorganism carbon continuum may disrupt the tight linkage between plants and microbes which governs sediment carbon and nutrient cycling, thus having a potential negative impact on carbon sequestration of small freshwater ecosystems. However, research on drought effects on the plant-sediment carbon transfer in aquatic ecosystems is scarce. We therefore exposed two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, to a month-long summer drought in a mesocosm experiment. We followed the fate of carbon from leaves to sediment microbial communities with 13 CO 2 pulse labelling and microbial phospholipid-derived fatty acid (PLFA) analysis. We found that drought reduced the total amount of carbon allocated to stem tissues but did not delay the transport. We also observed an increase in accumulation of 13 C-labelled sugars in roots and found a reduced incorporation of 13 C into the PLFAs of sediment microorganisms. Drought induced a switch in plant carbon allocation priorities, where stems received less new assimilates leading to reduced starch reserves whilst roots were prioritised with new assimilates, suggesting their use for osmoregulation. There were indications that the reduced carbon transfer from roots to microorganisms was due to the reduction of microbial activity via direct drought effects rather than to a decrease in root exudation or exudate availability. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Influence of electron donors and copper concentration on geochemical and mineralogical processes under conditions of biological sulphate reduction

    NASA Astrophysics Data System (ADS)

    Wolicka, Dorota; Borkowski, Andrzej

    2014-03-01

    Sulphidogenous microorganism communities were isolated from soil polluted by crude oil. The study was focused on determining the influence of 1) copper (II) concentration on the activity of selected microorganism communities and 2) the applied electron donor on the course and evolution of mineral-forming processes under conditions favouring growth of sulphate-reducing bacteria (SRB). The influence of copper concentration on the activity of selected microorganism communities and the type of mineral phases formed was determined during experiments in which copper (II) chloride at concentrations of 0.1, 0.2, 0.5 and 0.7 g/L was added to SRB cultures. The experiments were performed in two variants: with ethanol (4 g/L) or lactate (4 g/L) as the sole carbon source. In order to determine the taxonomic composition of the selected microorganism communities, the 16S rRNA method was used. Results of this analysis confirmed the presence of Desulfovibrio, Desulfohalobium, Desulfotalea, Thermotoga, Solibacter, Gramella, Anaeromyxobacter and Myxococcus sp. in the stationary cultures. The post-culture sediments contained covelline (CuS) and digenite (Cu9S5 ). Based on the results, it can be stated that the type of carbon source applied during incubation plays a crucial role in determining the mineral composition of the post-culture sediments. Thus, regardless of the amount of copper ion introduced to a culture with lactate as the sole carbon source, no copper sulphide was observed in the post-culture sediments. Cultures with ethanol as the sole carbon source, on the other hand, yielded covelline or digenite in all post-culture sediments.

  18. Evaluation of a Disinfectant Wipe Intervention on Fomite-to-Finger Microbial Transfer

    PubMed Central

    Lopez, Gerardo U.; Kitajima, Masaaki; Havas, Aaron; Gerba, Charles P.

    2014-01-01

    Inanimate surfaces, or fomites, can serve as routes of transmission of enteric and respiratory pathogens. No previous studies have evaluated the impact of surface disinfection on the level of pathogen transfer from fomites to fingers. Thus, the present study investigated the change in microbial transfer from contaminated fomites to fingers following disinfecting wipe use. Escherichia coli (108 to 109 CFU/ml), Staphylococcus aureus (109 CFU/ml), Bacillus thuringiensis spores (107 to 108 CFU/ml), and poliovirus 1 (108 PFU/ml) were seeded on ceramic tile, laminate, and granite in 10-μl drops and allowed to dry for 30 min at a relative humidity of 15 to 32%. The seeded fomites were treated with a disinfectant wipe and allowed to dry for an additional 10 min. Fomite-to-finger transfer trials were conducted to measure concentrations of transferred microorganisms on the fingers after the disinfectant wipe intervention. The mean log10 reduction of the test microorganisms on fomites by the disinfectant wipe treatment varied from 1.9 to 5.0, depending on the microorganism and the fomite. Microbial transfer from disinfectant-wipe-treated fomites was lower (up to <0.1% on average) than from nontreated surfaces (up to 36.3% on average, reported in our previous study) for all types of microorganisms and fomites. This is the first study quantifying microbial transfer from contaminated fomites to fingers after the use of disinfectant wipe intervention. The data generated in the present study can be used in quantitative microbial risk assessment models to predict the effect of disinfectant wipes in reducing microbial exposure. PMID:24610856

  19. Increasing Patient Safety by Closing the Sterile Production Gap-Part 3-Moist Heat Resistance of Bioburden.

    PubMed

    Agalloco, James P

    2017-01-01

    Terminal sterilization is considered the preferred means for the production of sterile drug products, as it affords enhanced safety for the patient because the formulation is sterilized in its sealed, final container. Despite the obvious patient benefits, the use of terminal sterilization is artificially constrained by unreasonable expectations for the minimum time-temperature process to be used. The core misunderstanding with terminal sterilization is the notion that destruction of a high population of a resistant biological indicator microorganism is required. More contemporary thinking on sterilization acknowledges that the bioburden is the actual target in sterilization and its destruction must be assured. In the application of low-temperature moist heat for terminal sterilization, especially subsequent to aseptic processing, establishing the pre-sterilization bioburden to consider has proven challenging. Environmental monitoring survey data has determined the identity of potential microorganisms but not their resistance to sterilization. This review article provides information on the moist heat resistance of vegetative and sporeforming microorganisms that might be present. The first paper in this series provided the overall background and described the benefits to patient, producer, and regulator of low-temperature moist heat for terminal sterilization. The second paper outlined validation and operational advice that can be used in the implementation. This final effort concludes the series and provides insight into potential bioburden and its resistance. LAY ABSTRACT: Terminal sterilization is considered the preferred means for the production of sterile drug products as it affords enhanced safety for the patient as the formulation is filled into its final container, sealed and sterilized. Despite the obvious patient benefits, the use of terminal sterilization is artificially constrained by unreasonable expectations for the minimum time-temperature process to be used. The primary consideration in terminal sterilization is the reliable destruction of the bioburden. The earlier manuscripts in this series described the principles and implementation of low temperature terminal sterilization processes where the sterilization conditions would destroy the expected bioburden present. To accomplish that reliably knowledge of the bioburden expected resistance to moist heat is necessary. This review article will identify publications where that data can be found. © PDA, Inc. 2017.

  20. Final thickness reduction and development of Goss texture in C- and Al-free Fe-3%Si-0.1%Mn-0.012%S electrical steel

    NASA Astrophysics Data System (ADS)

    Oh, Eun Jee; Heo, Nam Hoe; Koo, Yang Mo

    2017-11-01

    The correlation between final thickness reduction and development of Goss texture has been investigated in a C- and Al-free Fe-3%Si electrical steel. During final annealing, the annealing texture is transited from {110}⊥ND to {100}⊥ND texture with increasing final thickness reduction. This is due to the decrease in primary grain size after pre-annealing with increasing final thickness reduction which accelerates the selective growth rate of the {100} grains at the expense of the other {hkl} grains. At an optimal final thickness reduction of 75.8%, the high magnetic induction of 1.95 Tesla, which arises from the sharp {110}<001> Goss texture and is comparable to that of conventional grain-oriented electrical steels, is obtained from the C- and Al-free Fe-3%Si-0.1%Mn electrical steel. Such a high magnetic property is produced through the surface-energy-induced selective grain growth of the Goss grains under the lower surface-segregated condition of sulfur which makes the surface energy of the {110} plane lowest among the {hkl} planes.

  1. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species

    PubMed Central

    Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate metabolisms (e.g., nitrate reduction) by these organisms were previously known, our observations suggest that additional ‘hidden’ interactions with external electron acceptors are also possible. Electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface. PMID:27242768

  2. Removal of microorganisms by deep well injection

    NASA Astrophysics Data System (ADS)

    Schijven, Jack F.; Medema, Gertjan; Vogelaar, Ad J.; Hassanizadeh, S. Majid

    2000-08-01

    The removal of bacteriophages MS2 and PRD1, spores of Clostridium bifermentans (R5) and Escherichia coli (WR1) by deep well injection into a sandy aquifer, was studied at a pilot field site in the southeast of the Netherlands. Injection water was seeded with the microorganisms for 5 days. Breakthrough was monitored for 93 days at 4 monitoring wells with their screens at a depth of about 310 m below surface. Within the first 8 m of soil passage, concentrations of MS2 and PRD1 were reduced by 6 log 10, that of R5 spores by 5 log 10 and that of WR1 by 7.5 log 10. Breakthrough of MS2 and R5 could also be followed at greater distances from the injection well. Concentrations of MS2 were reduced only by about 2 log 10 in the following 30 m, and reduction of concentrations of R5 was negligible. Apparently, attachment was greater during the first 8 m of aquifer passage. At the point of injection, the inactivation rate coefficient of free MS2 was found to be 0.081 day -1, that of free PRD1 0.060 day -1, and that of E. coli strain WR1 0.063 day -1. In injection water that had passed 8 m of soil, inactivation of MS2 phages was found to be less than in water from the injection well: 0.039 day -1. Probably, the higher inactivation rate of MS2 in water from the injection well may be ascribed to the activity of aerobic bacteria. Inactivation of the R5 spores was not significant. From geochemical mass balances, it could be deduced that within the first 8 m distance from the injection well, ferric oxyhydroxides precipitated as a consequence of pyrite oxidation, but not at larger distances. Ferric oxyhydroxides provide positively charged patches onto which fast attachment of the negatively charged microorganisms may take place. The non-linear logarithmic reduction of concentrations with distance may therefore be ascribed to preferable attachment of microorganisms to patches of ferric oxyhydroxides that are present within 8 m distance from the injection point, but not thereafter. Declogging of the injection well introduced hydrodynamic shear that remobilized MS2, which was then transported farther downstream.

  3. Prevention and treatment of urinary tract infection with probiotics: Review and research perspective.

    PubMed

    Borchert, D; Sheridan, L; Papatsoris, A; Faruquz, Z; Barua, J M; Junaid, I; Pati, Y; Chinegwundoh, F; Buchholz, N

    2008-04-01

    The spiralling costs of antibiotic therapy, the appearance of multiresistant bacteria and more importantly for patients and clinicians, unsatisfactory therapeutic options in recurrent urinary tract infection (RUTI) calls for alternative and advanced medical solutions. So far no sufficient means to successfully prevent painful and disabling RUTI has been found. Even though long-term oral antibiotic treatment has been used with some success as a therapeutic option, this is no longer secure due to the development of bacterial resistance. One promising alternative is the use of live microorganisms (probiotics) to prevent and treat recurrent complicated and uncomplicated urinary tract infection (UTI).The human normal bacterial flora is increasingly recognised as an important defence to infection. Since the advent of antibiotic treatment five decades ago, a linear relation between antibiotic use and reduction in pathogenic bacteria has become established as medical conventional wisdom. But with the use of antibiotics the beneficial bacterial flora hosted by the human body is destroyed and pathogenic bacteria are selectively enabled to overgrow internal and external surfaces. The benign bacterial flora is crucial for body function and oervgrowth with pathogenic microorganisms leads to illness. Thus the concept of supporting the human body's normal flora with live microorganisms conferring a beneficial health effect is an important medical strategy.

  4. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors.

    PubMed

    Correia, Raquel R S; Miranda, Marcio R; Guimarães, Jean R D

    2012-01-01

    Macrophyte-associated periphyton is known as a site of Hg accumulation and methylation in tropical environments. Sulfate-reducing bacteria (SRB) is found in periphyton and its role in Hg methylation is acknowledged. However, the contribution of other microorganisms to this process is largely unknown. We tested the effect of inhibitors for different microorganisms on methylmercury (MMHg) formation on distinct macrophyte species from lakes of the Bolivian Amazon basin and in Brazil. We also tested the effect of inhibitors on bacterial secondary activity at two lakes in Brazil. Samples were incubated on-site with (203)Hg and Me(203)Hg was extracted and measured by liquid scintillation. MMHg formation on macrophytes varied among species ranging from 0.2% to 36%. Treatments with specific inhibitors resulted in reduction of MMHg production on most sites and inhibitors. The most successful treatment was the co-inhibition of SRB and methanogens. The inhibitions of algae and fungi activity showed fewer effects on methylation rates at all sites analyzed. Bacterial secondary activity was slightly affected by algae and fungi inhibition, and largely influenced by prokaryotic, SRB and methanogens inhibition. The data suggest that MMHg formation may not be directly performed by all microorganisms in periphyton but depends on complex interactions among them. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.

    PubMed

    Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark

    2016-01-01

    Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.

  6. Inactivation of Staphylococcus aureus and native microflora in human milk by high pressure processing

    NASA Astrophysics Data System (ADS)

    Windyga, Bożena; Rutkowska, Małgorzata; Sokołowska, Barbara; Skąpska, Sylwia; Wesołowska, Aleksandra; Wilińska, Maria; Fonberg-Broczek, Monika; Rzoska, Sylwester J.

    2015-04-01

    The storage of unpreserved food, including breast milk, is associated with the growth of microorganisms, including pathogenic bacteria. It is therefore necessary to use suitable processes to eliminate pathogenic microorganisms and reduce the total microbial count in order to ensure product safety for consumers. In the present study, samples of milk obtained from volunteers donating to the human milk bank were artificially contaminated with Staphylococcus aureus ATCC 6538. This bacteria was the model microorganism of choice, being relatively resistant to high pressure as well as posing the most serious risk to infant health. The results obtained show that high pressure processing can reduce the count of S. aureus by about 5 log units at 4°C and about 8 log units at 50°C, and totally eliminate Enterobacteriaceae after 5 min of treatment, and result in a total microbial count reduction after 10 min treatment at 500 MPa at 20°C and 50°C. This suggests the possibility of this technology being applied to ensure the adequate safety and quality of human breast milk in human milk banks. This paper was presented at the LIIth European High Pressure Research Group (EHPRG 52) Meeting in Lyon (France), 7-12 September 2014.

  7. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  8. Modeling of inactivation of surface borne microorganisms occurring on seeds by cold atmospheric plasma (CAP)

    NASA Astrophysics Data System (ADS)

    Mitra, Anindita; Li, Y.-F.; Shimizu, T.; Klämpfl, Tobias; Zimmermann, J. L.; Morfill, G. E.

    2012-10-01

    Cold Atmospheric Plasma (CAP) is a fast, low cost, simple, easy to handle technology for biological application. Our group has developed a number of different CAP devices using the microwave technology and the surface micro discharge (SMD) technology. In this study, FlatPlaSter2.0 at different time intervals (0.5 to 5 min) is used for microbial inactivation. There is a continuous demand for deactivation of microorganisms associated with raw foods/seeds without loosing their properties. This research focuses on the kinetics of CAP induced microbial inactivation of naturally growing surface microorganisms on seeds. The data were assessed for log- linear and non-log-linear models for survivor curves as a function of time. The Weibull model showed the best fitting performance of the data. No shoulder and tail was observed. The models are focused in terms of the number of log cycles reduction rather than on classical D-values with statistical measurements. The viability of seeds was not affected for CAP treatment times up to 3 min with our device. The optimum result was observed at 1 min with increased percentage of germination from 60.83% to 89.16% compared to the control. This result suggests the advantage and promising role of CAP in food industry.

  9. Monitoring of Microbial Loads During Long Duration Missions as a Risk Reduction Tool

    NASA Astrophysics Data System (ADS)

    Roman, M. C.; Mena, K. D.

    2012-01-01

    Humans have been exploring space for more than 40 years. For all those years, microorganisms have accompanied both un-manned spacecraft/cargo and manned vessels. Microorganisms are everywhere on Earth, could easily adapt to new environments, and/or can rapidly mutate to survive in very harsh conditions. Their presence in spacecraft and cargo have caused a few inconveniences over the years of human spaceflight, ranging from crew health, life support systems challenges, and material degradation. The sterilization of spacecraft that will host humans in long duration mission would be a costly operation that will not provide a long-term solution to the microbial colonization of the vessels. As soon as a human is exposed to the spacecraft, microorganisms start populating the new environment during the mission. As the human presence in space increases in length, the risk from the microbial load to hardware and crew will also increase. Mitigation of this risk involves several different strategies that will include minimizing the microbial load (in numbers and diversity) and monitoring. This paper will provide a list of the risk mitigation strategies that should be implemented during ground processing, and during the mission. It will also discuss the areas that should be reviewed before an effective in-flight microbial monitoring regimen is implemented.

  10. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of irradiance and CO2 concentration. Kinetic models were successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale. Finally, the growth and hydrogen production of Anabaena variabilis have been compared in a flat panel photobioreactor using three different nutrient media under otherwise similar conditions. Light to hydrogen energy conversion efficiency for Allen-Arnon medium was superior by a factor of 5.5 to both BG-11 and BG-11o media. This was attributed to the presence of vanadium and larger heterocyst frequency observed in the Allen-Arnon medium.

  11. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to be applied as organic fertilizer for crops.

  12. Enhancement options for the utilisation of nitrogen rich animal by-products in anaerobic digestion.

    PubMed

    Resch, Christoph; Wörl, Alexander; Waltenberger, Reinhold; Braun, Rudolf; Kirchmayr, Roland

    2011-02-01

    This study focuses on the enhancement of an Austrian anaerobic digestion plant at a slaughterhouse site which exclusively uses animal by-products as substrate. High ammonia concentrations from protein degradation cause severe inhibitions of anaerobic microorganisms. For improving the current situation the COD:TKN ratio is widened by (a) ammonia stripping directly out of the process and (b) addition of a C source to the substrate. Different OLR and HRT were tested in continuous experiments to simulate new operating conditions. The results show that the addition of carbon cannot improve fermentation capacity. The reduction of ammonia boosts the degradation: After reduction of TKN from 7.5 to 4.0 g kg(-1) the initially high VFA concentration decreased and the COD degradation was improved by 55.5%. Hence, the implementation of the new N reduction process facilitates either the increase of the OLR by 61% or the reduction of the HRT by 25%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Kinetic comparison of microbial assemblages for the anaerobic treatment of wastewater with high sulfate and heavy metal contents.

    PubMed

    Sinbuathong, Nusara; Sirirote, Pramote; Liengcharernsit, Winai; Khaodhiar, Sutha; Watts, Daniel J

    2009-01-01

    Mixed-microbial assemblages enriched from a septic tank, coastal sediment samples, the digester sludge of a brewery wastewater treatment plant and acidic sulfate soil samples were compared on the basis of growth rate, waste and sulfate reduction rate under sulfate reducing conditions at 30 degrees C. The specific growth rate of various cultures was in the range 0.0013-0.0022 hr(-1). Estimates of waste and sulfate reduction rate were obtained by fitting substrate depletion and sulfate reduction data with the Michaelis-Menten equation. The waste reduction rates were in the range 4x10(-8)-1x10(-7) I mg(-1) hr(-1) and generally increased in the presence of copper, likely by copper sulfide precipitation that reduced sulfide and copper toxicity and thus protected the anaerobic microbes. Anaerobic microorganisms from a brewery digester sludge were found to be the most appropriate culture for the treatment of wastewater with high sulfate and heavy metal content due to their growth rate, and waste and sulfate reduction rate.

  14. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.

    PubMed

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C

    2016-04-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Microbes in mercury-enriched geothermal springs in western North America.

    PubMed

    Geesey, Gill G; Barkay, Tamar; King, Sue

    2016-11-01

    Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction in these geothermal systems, particularly the low pH springs that are dominated by Archaea. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell

    PubMed Central

    Huang, Xiao; Qu, Yan; Cid, Clément A.; Finke, Cody; Hoffmann, Michael R.; Lim, Keahying; Jiang, Sunny C.

    2016-01-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [•OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  17. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons

    PubMed Central

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-. PMID:27175907

  18. Controls of Sediment Nitrogen Dynamics in Tropical Coastal Lagoons.

    PubMed

    Enrich-Prast, Alex; Figueiredo, Viviane; Esteves, Francisco de Assis; Nielsen, Lars Peter

    2016-01-01

    Sediment denitrification rates seem to be lower in tropical environments than in temperate environments. Using the isotope pairing technique, we measured actual denitrification rates in the sediment of tropical coastal lagoons. To explain the low denitrification rates observed at all study sites (<5 μmol N2 m-2 h-1), we also evaluated potential oxygen (O2) consumption, potential nitrification, potential denitrification, potential anammox, and estimated dissimilatory nitrate (NO3-) reduction to ammonium (NH4+; DNRA) in the sediment. 15NO3- and 15NH4+ conversion was measured in oxic and anoxic slurries from the sediment surface. Sediment potential O2 consumption was used as a proxy for overall mineralization activity. Actual denitrification rates and different potential nitrogen (N) oxidation and reduction processes were significantly correlated with potential O2 consumption. The contribution of potential nitrification to total O2 consumption decreased from contributing 9% at sites with the lowest sediment mineralization rates to less than 0.1% at sites with the highest rates. NO3- reduction switched completely from potential denitrification to estimated DNRA. Ammonium oxidation and nitrite (NO2-) reduction by potential anammox contributed up to 3% in sediments with the lowest sediment mineralization rates. The majority of these patterns could be explained by variations in the microbial environments from stable and largely oxic conditions at low sediment mineralization sites to more variable conditions and the prevalences of anaerobic microorganisms at high sediment mineralization sites. Furthermore, the presence of algal and microbial mats on the sediment had a significant effect on all studied processes. We propose a theoretical model based on low and high sediment mineralization rates to explain the growth, activity, and distribution of microorganisms carrying out denitrification and DNRA in sediments that can explain the dominance or coexistence of DNRA and denitrification processes. The results presented here show that the potential activity of anaerobic nitrate-reducing organisms is not dependent on the availability of environmental NO3-.

  19. New connection method for isolating and disinfecting intraluminal path during peritoneal dialysis solution-exchange procedures.

    PubMed

    Grabowy, R S; Kelley, R; Richter, S G; Bousquet, G G; Carr, K L

    1998-01-01

    Microbiological data have been collected on the performance of a new method of isolating and disinfecting the intraluminal path at the connect/disconnect site of a peritoneal dialysis (PD)-exchange pathway. High-temperature moist-heat (HTMH) disinfection is accomplished by a new device that uses microwave energy to heat the solution contained in the pressure-tight inner lumen of PD connector pairs between the transfer-set connector-clamp and the bag-connector break-away seal. An 85 degrees C (S.D. = 2.4 degrees C, n = 10) rise in solution temperature is seen in 12 seconds, thus yielding temperatures under pressure well over 100 degrees C with starting temperatures of 25 degrees C. Connector pairs were prepared by inoculation of a solution suspension containing at least 10(6) colony-forming units (CFU) of a test micro-organism. Approximately 0.4 mL of solution was contained within the mated connector pair. Using standard D-value determination methods, data were obtained for surviving organisms versus five exposure times and a positive control to obtain a population reduction curve. Four micro-organisms (S. epidermidis, P. aeruginosa, C. albicans, and A. niger) recognized to be among the most prevalent or problematic in causing peritonitis were tested. After microwave heating, the treated solution was aseptically withdrawn from the connector pair using a needle and syringe, plated in growth media, and incubated. Population counts of CFUs after incubation were used to establish survival curves. Results showed a tenfold population reduction in less than 3 seconds for all organisms tested. A 30-second cycle time safely achieves a > 10(8) population-reduction for bacteria and yeast organisms, and a > 10(7) population reduction for fungi. One potential benefit of using this new intraluminal disinfection method is that it may help reduce peritonitis resulting from the even more problematic pathogens such as the gram-negative bacteria and fungal organisms.

  20. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158.

    PubMed

    Du, Peng-Xuan; Wei, Ping; Lou, Wen-Yong; Zong, Min-Hua

    2014-06-10

    Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog's rule, and thus the (S)-alcohols are usually obtained when the smaller substituent of the ketone has the lower CIP priority. Only a few anti-Prelog (R)-specific whole cell biocatalysts have been reported. In this paper, the biocatalytic anti-Prelog reduction of 2-octanone to (R)-2-octanol was successfully conducted with high enantioselectivity using whole cells of Acetobacter pasteurianus GIM1.158. Compared with other microorganisms investigated, Acetobacter pasteurianus GIM1.158 was shown to be more effective for the reduction reaction, affording much higher yield, product enantiomeric excess (e.e.) and initial reaction rate. The optimal temperature, buffer pH, co-substrate and its concentration, substrate concentration, cell concentration and shaking rate were 35°C, 5.0, 500 mmol/L isopropanol, 40 mmol/L, 25 mg/mL and 120 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 89.5% and >99.9%, respectively, in 70 minutes. Compared with the best available data in aqueous system (yield of 55%), the yield of (R)-2-octanol was greatly increased. Additionally, the efficient whole-cell biocatalytic process was feasible on a 200-mL preparative scale and the chemical yield increased to 95.0% with the product e.e. being >99.9%. Moreover, Acetobacter pasteurianus GIM1.158 cells were proved to be capable of catalyzing the anti-Prelog bioreduction of other prochiral carbonyl compounds with high efficiency. Via an effective increase in the maximum yield and the product e.e. with Acetobacter pasteurianus GIM1.158 cells, these results open the way to use of whole cells of this microorganism for challenging enantioselective reduction reactions on laboratory and commercial scales.

  1. Disinfection efficacy of contact lens care solutions against ocular pathogens.

    PubMed

    Miller, M J; Callahan, D E; McGrath, D; Manchester, R; Norton, S E

    2001-01-01

    Three commercially available products labeled as multi-purpose contact lens solutions, one multi-purpose disinfecting solution, and a hydrogen peroxide system were evaluated for antimicrobial activity according to the current International Organization for Standardization (ISO) and the U.S. Food and Drug Administration (FDA) stand-alone procedure for disinfecting products. One multi-purpose solution was selected to assess its antimicrobial activity against two human corneal isolates of Pseudomonas aeruginosa. Products were challenged with bacteria and fungi, and following a specified period, aliquots of inoculated test solution were neutralized and plated on validated recovery media. After incubation the number of viable microorganisms was enumerated and mean log reductions determined. ReNu MultiPlus (Bausch & Lomb, Rochester, NY), AOSEPT (CIBA Vision Corporation, Duluth, GA), and Opti-Free Express with Aldox (Alcon Laboratories, Ft. Worth, TX) were the only lens care products that met the stand-alone criteria for all required microorganisms within their minimum recommended disinfection time. Of these, ReNu MultiPlus provided the greatest overall antimicrobial activity. ReNu MultiPlus demonstrated a significantly higher mean log reduction of Staphylococcus aureus and Serratia marcescens than Opti-Free Express. ReNu MultiPlus also gave a higher mean log reduction of S. aureus and S. marcescens than AOSEPT, and a higher mean log reduction of Candida albicans and Fusarium solani than AOSEPT, Complete Comfort Plus (Allergan, Irivine, CA), and Solo-Care (CIBA Vision Corp.) (at 4 hours). Both Complete Comfort Plus and Solo-Care (at 4 hours) met the primary acceptance criteria for bacteria; however, neither product possessed enough antimicrobial activity to meet the minimum criteria for yeast or mold. ReNu Multiplus was effective against corneal isolates of P. aeruginosa. ReNu MultiPlus, AOSEPT, and Opti-Free Express met the requirements of the stand-alone primary criteria for disinfecting solutions. ReNu MultiPlus demonstrated the greatest overall disinfection efficacy, as well as excellent activity against clinical strains of P. aeruginosa.

  2. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    PubMed

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel E. Kostka

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbialmore » community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.« less

  4. Glucono-delta-lactone and citric acid as acidulants for lowering the heat resistance of Clostridium sporogenes PA 3679 in HTST working conditions.

    PubMed

    Silla Santos, M H; Torres Zarzo, J

    1995-04-01

    The heat resistance of Clostridium sporogenes PA 3679 spores has been studied to establish the influence of acidification with glucono-delta-lactone (GDL) and citric acid on the thermal resistance parameters (DT and z) of this microorganism and to compare their effect with phosphate buffer and natural asparagus as reference substrates. A reduction in DT values was observed in asparagus purée as the acidification level increased with both acidulants although this effect was more evident at the lower treatment temperatures studied (121-127 degrees C). Citric acid was more effective for reducing the heat resistance of spores than GDL at all of the temperatures. The reduction in pH diminished the value of the z parameter, although it was necessary to lower the pH to 4.5 to obtain a significant reduction.

  5. Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the oceanic crust deep biosphere

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Jungbluth, S.; Rappe, M. S.; Orcutt, B.

    2017-12-01

    The marine sedimentary and crustal subsurface biospheres harbor many uncultured microorganisms, including those belonging to Hydrothermarchaeota, formerly known as Marine Benthic Group E. SSU rRNA sequences of Hydrothermarchaeota have been identified in marine sediments across the globe, often in low abundance. Recently, crustal fluids from two subseafloor borehole observatories located on the eastern flank of the Juan de Fuca Ridge (i.e., CORKs at IODP Holes U1362A and U1362B), were collected for single-cell and metagenomic analyses. Both techniques revealed Hydrothermarchaeota to be prevalent in this system. Collectively, single-cell amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) depict Hydrothermarchaeota as opportunists, potentially capable of dissimilative and assimilative carboxydotrophy, sulfate reduction, thiosulfate reduction, nitrate reduction, chemotaxis, and motility. We propose that this diverse suit of metabolic potential may be advantageous for the hydrologically and geochemically dynamic subsurface crustal aquifer, an environment thought to be energy and nutrient limited.

  6. High cell density cultivation of probiotics and lactic acid production.

    PubMed

    Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario

    2003-04-20

    The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.

  7. Kinetics of abiotic nitrous oxide production via oxidation of hydroxylamine by particulate metals in seawater

    NASA Astrophysics Data System (ADS)

    Cavazos, A. R.; Taillefert, M.; Glass, J. B.

    2016-12-01

    The oceans are a significant of nitrous oxide (N2O) to the atmosphere. Current models of global oceanic N2­O flux focus on microbial N2O cycling and often ignore abiotic reactions, such as the thermodynamically favorable oxidation of the nitrification intermediate hydroxylamine (NH2OH) by Mn(IV) or Fe(III). At circumneutral pH, NH2OH oxidation is more thermodynamically favorable via Mn(IV) than Fe(III) reduction. We characterized the kinetics of NH2OH oxidation in synthetic ocean water at pH 5.1-8.8 using microsensor electrodes to measure real-time N2O production. N2O production rates and yield were greater when NH2OH was oxidized by Mn(IV) than Fe(III). Accordingly, the reduction of Mn(IV) was first order with respect to NH2OH whereas the reduction of Fe(III) was zero order with respect to NH2OH. Interestingly, the order of the reaction with respect to Mn(IV) appears to be negative whereas the reaction is second order with respect to Fe(III). The inverse order with respect to Mn(IV) may be due to the aggregation of particles in seawater, which decreases their surface area and changes their reactivity. Finally, the reaction is first order with respect to protons with Fe(III) as the oxidant but zero order with Mn(IV). The stronger effect of the pH on the reaction with Fe(III) as the oxidant compared to Mn(IV) reflects the stoichiometry of these two reactions, as each mole of N2O produced by Fe(III) reduction consumes eight protons while each mole of N2O produced with Mn(IV) as the oxidant requires only four protons. Our data show that abiotic NH2OH oxidation by Mn(IV) or Fe(III) particles may represent a significant source of N2O in seawater. These findings suggest that abiotic N2O production in marine waters may be significant in areas of the oceans where particulate metals originating from aerosols, dust, or rivers may react with NH2OH released from ammonia-oxidizing microorganisms.

  8. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge.

    PubMed

    Ruiz-Espinoza, Juan E; Méndez-Contreras, Juan M; Alvarado-Lassman, Alejandro; Martínez-Delgadillo, Sergio A

    2012-01-01

    Treatment of poultry industry effluents produces wastewater sludge with high levels of organic compounds and pathogenic microorganisms. In this research, the thermal pre-treatment of poultry slaughterhouse sludge (PSS) was evaluated for low temperatures in combination with different exposure times as a pre-hydrolysis strategy to improve the anaerobic digestion process. Organic compounds solubilization and inactivation of pathogenic microorganisms were evaluated after treatment at 70, 80 or 90°C for 30, 60 or 90 min. The results showed that 90°C and 90 min were the most efficient conditions for solubilization of the organic compounds (10%). In addition, the bacteria populations and the more resistant structures, such as helminth eggs (HE), were completely inactivated. Finally, the thermal pre-treatment applied to the sludge increased methane yield by 52% and reduced hydraulic retention time (HRT) by 52%.

  9. Microbial mito-pathogens: fact or fiction?

    PubMed

    Bongaerts, Ger P A; van den Heuvel, Lambert P

    2008-01-01

    Mitochondria are bacteria-like semi-autonomous intracellular organelles that function as the powerhouses of eukaryotic cells. Inactivation or destruction of these organelles may have far-reaching consequences regarding the viability of the cells and thus of tissues, organs and finally even the body. Since mitochondria resemble (degenerated) bacteria, we have extrapolated from both cytological and microbiological facts the existence of various (kinds of) mitochondrion-specific microbial pathogens, i.e., pathogenic micro-organisms that may damage or destroy the mitochondria from within. These mito-pathogens may include mitoviruses, mitoviroids and mitobacteria. Although these mito-pathogens have not yet been demonstrated in humans, their theoretical degenerative effect regarding energy production from energy-rich substrates, such as carbohydrates and fats, might explain diseases that have not yet been understood, such as prion diseases and post-traumatic muscle dystrophy. Therefore, these kinds of micro-organisms should be kept in mind.

  10. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions.

    PubMed

    Liu, Jiaheng; Li, Huiling; Zhao, Guangrong; Caiyin, Qinggele; Qiao, Jianjun

    2018-05-01

    NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

  11. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  12. Biodegradation of MTBE by indigenous aquifer microorganisms under artificial oxic conditions

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.

    2001-01-01

    Oxygen in the form of a metal peroxide slurry (MgO2 and water) was added to an anoxic part of a gasoline-contaminated aquifer in South Carolina to test the hypothesis that artificial oxic conditions will lead to MTBE biodegradation by indigenous microorganisms in anoxic, gasoline-contaminated aquifers. The slurry slowly released dissolved oxygen upon hydrolysis with groundwater, and was a proprietary mixture consisting of ??? 25-35 wt % MgO2. Significant natural attenuation of MTBE could occur if the oxygen limitations naturally associated with gasoline releases could be removed, either under natural conditions where discharging anoxic groundwater comes into contact with oxygen, or artificial conditions where oxygen could be added to aquifers containing milligram per liter concentrations of MTBE. This final solution might be an effective strategy for intercepting characteristically long MTBE plumes, particularly at those sites not characterized by groundwater discharge to land surface.

  13. Blood Groups in Infection and Host Susceptibility

    PubMed Central

    2015-01-01

    SUMMARY Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome. PMID:26085552

  14. Enzymatic degradation of cell wall and related plant polysaccharides.

    PubMed

    Ward, O P; Moo-Young, M

    1989-01-01

    Polysaccharides such as starch, cellulose and other glucans, pectins, xylans, mannans, and fructans are present as major structural and storage materials in plants. These constituents may be degraded and modified by endogenous enzymes during plant growth and development. In plant pathogenesis by microorganisms, extracellular enzymes secreted by infected strains play a major role in plant tissue degradation and invasion of the host. Many of these polysaccharide-degrading enzymes are also produced by microorganisms widely used in industrial enzyme production. Most commerical enzyme preparations contain an array of secondary activities in addition to the one or two principal components which have standardized activities. In the processing of unpurified carbohydrate materials such as cereals, fruits, and tubers, these secondary enzyme activities offer major potential for improving process efficiency. Use of more defined combinations of industrial polysaccharases should allow final control of existing enzyme processes and should also lead to the development of novel enzymatic applications.

  15. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  16. Fresh insight to functioning of selected enzymes of the nitrogen cycle.

    PubMed

    Eady, Robert R; Antonyuk, Svetlana V; Hasnain, S Samar

    2016-04-01

    The global nitrogen cycle is the process in which different forms of environmental N are interconverted by microorganisms either for assimilation into biomass or in respiratory energy-generating pathways. This short review highlights developments over the last 5 years in our understanding of functionality of nitrogenase, Cu-nitrite reductase, NO reductase and N2O reductase, complex metalloenzymes that catalyze electron/proton-coupled substrate reduction reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Antibacterial activity of Baccharis dracunculifolia in planktonic cultures and biofilms of Streptococcus mutans.

    PubMed

    Pereira, Cristiane A; Costa, Anna Carolina B Pereira; Liporoni, Priscila Christiane S; Rego, Marcos A; Jorge, Antonio Olavo C

    2016-01-01

    Streptococcus mutans is an important cariogenic microorganism, and alternative methods for its elimination are required. Different concentrations of Baccharis dracunculifolia essential oil (EO) were tested to determine its minimal inhibitory concentration (MIC) in planktonic cultures, and this concentration was used in S. mutans biofilms. Additionally, we assessed the effect of a 0.12% chlorhexidine (CHX) and saline solution in S. mutans biofilms. The biofilms were grown in discs of composite resin for 48h and exposed to B. dracunculifolia, CHX or saline solution for 5min. The viability of the biofilms was determined by counting the colony-forming units per milliliter (CFU/ml) in agar, which was statistically significant (P<0.05). The MIC of the B. dracunculifolia EO to planktonic growth of S. mutans was 6%. In biofilms of S. mutans clinical isolates, B. dracunculifolia EO (6%) and CHX resulted in reductions of 53.3-91.1% and 79.1-96.6%, respectively. For the biofilm formed by the S. mutans reference strain, the reductions achieved with B. dracunculifolia EO and CHX were, respectively, 39.3% and 88.1%. It was concluded that B. dracunculifolia EO showed antibacterial activity and was able to control this oral microorganism, which otherwise causes dental caries. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  18. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire

    USGS Publications Warehouse

    Caccavo, F.; Blakemore, R.P.; Lovley, D.R.

    1992-01-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.

  19. Sphaerotilus natans encrusted with nanoball-shaped Fe(III) oxide minerals formed by nitrate-reducing mixotrophic Fe(II) oxidation

    PubMed Central

    Park, Sunhwa; Kim, Dong-Hun; Lee, Ji-Hoon; Hur, Hor-Gil

    2014-01-01

    Ferrous iron has been known to function as an electron source for iron-oxidizing microorganisms in both anoxic and oxic environments. A diversity of bacteria has been known to oxidize both soluble and solid-phase Fe(II) forms coupled to the reduction of nitrate. Here, we show for the first time Fe(II) oxidation by Sphaerotilus natans strain DSM 6575T under mixotrophic condition. Sphaerotilus natans has been known to form a sheath structure enclosing long chains of rod-shaped cells, resulting in a thick biofilm formation under oxic conditions. Here, we also demonstrate that strain DSM 6575T grows mixotrophically with pyruvate, Fe(II) as electron donors and nitrate as an electron acceptor and single cells of strain DSM 6575T are dominant under anoxic conditions. Furthermore, strain DSM 6575T forms nanoball-shaped amorphous Fe(III) oxide minerals encrusting on the cell surfaces through the mixotrophic iron oxidation reaction under anoxic conditions. We propose that cell encrustation results from the indirect Fe(II) oxidation by biogenic nitrite during nitrate reduction and that causes the bacterial morphological change to individual rod-shaped single cells from filamentous sheath structures. This study extends the group of existing microorganisms capable of mixotrophic Fe(II) oxidation by a new strain, S. natans strain DSM 6575T, and could contribute to biogeochemical cycles of Fe and N in the environment. PMID:24965827

  20. Efficacy of antimicrobial photodynamic therapy in the disinfection of acrylic denture surfaces: A systematic review.

    PubMed

    Varela Kellesarian, Sergio; Abduljabbar, Tariq; Vohra, Fahim; Malmstrom, Hans; Yunker, Michael; Varela Kellesarian, Tammy; Romanos, Georgios E; Javed, Fawad

    2017-03-01

    The aim of the present systematic review was to assess the efficacy of antimicrobial photodynamic therapy (aPDT) in the disinfection of acrylic denture surfaces. IN order to address the focused question: "Is aPDT more effective in decontaminating denture surfaces compared with traditional denture-disinfection techniques?" an electronic search without time or language restrictions was conducted up to November 2016 in indexed databases using different key words. The exclusion criteria included qualitative and/or quantitative reviews, case reports, case series, commentaries, letters to the editor, interviews, and updates. A total of 14 studies were included and processed for data extraction, out of which 1 study was a randomized clinical trial and 13 studies were performed in vitro. Results from 12 experimental studies reported that aPDT was effective in reducing bacteria and/or yeast cultured in single or multispecies biofilm growth on acrylic resin specimens. One experimental study reported selective microorganism reduction on acrylic resin after aPDT. One clinical randomized control trial reported that aPDT presented similar microorganism reduction compared with oral antifungal medication for the disinfection of denture surfaces. The role of aPDT in the disinfection of acrylic resin surfaces is unclear. From a clinical perspective further randomized control trials are needed to assess the efficacy of aPDT in the disinfection of acrylic resin surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antimicrobial food packaging: potential and pitfalls

    PubMed Central

    Malhotra, Bhanu; Keshwani, Anu; Kharkwal, Harsha

    2015-01-01

    Nowadays food preservation, quality maintenance, and safety are major growing concerns of the food industry. It is evident that over time consumers’ demand for natural and safe food products with stringent regulations to prevent food-borne infectious diseases. Antimicrobial packaging which is thought to be a subset of active packaging and controlled release packaging is one such promising technology which effectively impregnates the antimicrobial into the food packaging film material and subsequently delivers it over the stipulated period of time to kill the pathogenic microorganisms affecting food products thereby increasing the shelf life to severe folds. This paper presents a picture of the recent research on antimicrobial agents that are aimed at enhancing and improving food quality and safety by reduction of pathogen growth and extension of shelf life, in a form of a comprehensive review. Examination of the available antimicrobial packaging technologies is also presented along with their significant impact on food safety. This article entails various antimicrobial agents for commercial applications, as well as the difference between the use of antimicrobials under laboratory scale and real time applications. Development of resistance amongst microorganisms is considered as a future implication of antimicrobials with an aim to come up with actual efficacies in extension of shelf life as well as reduction in bacterial growth through the upcoming and promising use of antimicrobials in food packaging for the forthcoming research down the line. PMID:26136740

  2. Characterization and antimicrobial performance of nano silver coatings on leather materials

    PubMed Central

    Lkhagvajav, N.; Koizhaiganova, M.; Yasa, I.; Çelik, E.; Sari, Ö.

    2015-01-01

    In this study, the characterization and the antimicrobial properties of nano silver (nAg) coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG) equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM). The antimicrobial performance of nAg coatings on leather materials to the test microorganisms as Escherichia coli , Staphylococcus aureus , Candida albicans and Aspergillius niger was evaluated by the application of qualitative (Agar overlay method) and quantitative (percentage of microbial reduction) tests. According to qualitative test results it was found that 20 μg/cm 2 and higher concentrations of nAg on the leather samples were effective against all microorganisms tested. Moreover, quantitative test results showed that leather samples treated with 20 μg/cm 2 of nAg demonstrated the highest antibacterial activity against E. coli with 99.25% bacterium removal, whereas a 10 μg/cm 2 concentration of nAg on leather was enough to exhibit the excellent percentage reduction against S. aureus of 99.91%. The results are promising for the use of colloidal nano silver solution on lining leather as antimicrobial coating. PMID:26221087

  3. Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadanier, C. J.; Roller, J.; Schreiber, M. E.

    2004-12-01

    Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure worldwide, improved understanding of the biologically-mediated mechanisms that partition arsenic between solid and solution phases is required for development of effective treatment and remediation strategies.

  4. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE.

    PubMed

    Aulenta, Federico; Catervi, Alessandro; Majone, Mauro; Panero, Stefania; Reale, Priscilla; Rossetti, Simona

    2007-04-01

    The ability to transfer electrons, via an extracellular path, to solid surfaces is typically exploited by microorganisms which use insoluble electron acceptors, such as iron-or manganese-oxides or inert electrodes in microbial fuel cells. The reverse process, i.e., the use of solid surfaces or electrodes as electron donors in microbial respirations, although largely unexplored, could potentially have important environmental applications, particularly for the removal of oxidized pollutants from contaminated groundwater or waste streams. Here we show, for the first time, that an electrochemical cell with a solid-state electrode polarized at -500 mV (vs standard hydrogen electrode), in combination with a low-potential redox mediator (methyl viologen), can efficiently transfer electrochemical reducing equivalents to microorganisms which respire using chlorinated solvents. By this approach, the reductive transformation of trichloroethene, a toxic yet common groundwater contaminant, to harmless end-products such as ethene and ethane could be performed. Furthermore, using a methyl-viologen-modified electrode we could even demonstrate that dechlorinating bacteria were able to accept reducing equivalents directly from the modified electrode surface. The innovative concept, based on the stimulation of dechlorination reactions through the use of solid-state electrodes (we propose for this process the acronym BEARD: Bio-Electrochemically Assisted Reductive Dechlorination), holds promise for in situ bioremediation of chlorinated-solvent-contaminated groundwater, and has several potential advantages over traditional approaches based on the subsurface injection of organic compounds. The results of this study raise the possibility that immobilization of selected redox mediators may be a general strategy for stimulating and controlling a range of microbial reactions using insoluble electrodes as electron donors.

  5. Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake, California

    USGS Publications Warehouse

    Hoeft, S.E.; Lucas, F.; Hollibaugh, J.T.; Oremland, R.S.

    2002-01-01

    Dissimilatory reduction of arsenate (DAsR) occurs in the arsenic-rich, anoxic water column of Mono Lake, California, yet the microorganisms responsible for this observed in situ activity have not been identified. To gain insight as to which microorganisms mediate this phenomenon, as well as to some of the biogeochemical constraints on this activity, we conducted incubations of arsenate-enriched bottom water coupled with inhibition/amendment studies and Denaturing Gradient Gel Electrophoresis (DGGE) characterization techniques. DAsR was totally inhibited by filter-sterilization and by nitrate, partially inhibited (~50%) by selenate, but only slightly (~25%) inhibited by oxyanions that block sulfate-reduction (molybdate and tungstate). The apparent inhibition by nitrate, however, was not due to action as a preferred electron acceptor to arsenate. Rather, nitrate addition caused a rapid, microbial re-oxidation of arsenite to arsenate, which gave the overall appearance of no arsenate loss. A similar microbial oxidation of As(III) was also found with Fe(III), a fact that has implications for the recycling of As(V) in Mono Lake's anoxic bottom waters. DAsR could be slightly (10%) stimulated by substrate amendments of lactate, succinate, malate, or glucose, but not by acetate, suggesting that the DAsR microflora is not electron donor limited. DGGE analysis of amplified 16S rDNA gene fragments from incubated arsenate-enriched bottom waters revealed the presence of two bands that were not present in controls without added arsenate. The resolved sequences of these excised bands indicated the presence of members of the epsilon (Sulfurospirillum) and delta (Desulfovibrio) subgroups of the Proteobacteria, both of which have representative species that are capable of anaerobic growth using arsenate as their electron acceptor.

  6. Optimization of hot water treatment for removing microbial colonies on fresh blueberry surface.

    PubMed

    Kim, Tae Jo; Corbitt, Melody P; Silva, Juan L; Wang, Dja Shin; Jung, Yean-Sung; Spencer, Barbara

    2011-08-01

    Blueberries for the frozen market are washed but this process sometimes is not effective or further contaminates the berries. This study was designed to optimize conditions for hot water treatment (temperature, time, and antimicrobial concentration) to remove biofilm and decrease microbial load on blueberries. Scanning electron microscopy (SEM) image showed a well-developed microbial biofilm on blueberries dipped in room temperature water. The biofilm consisted of yeast and bacterial cells attached to the berry surface in the form of microcolonies, which produced exopolymer substances between or upon the cells. Berry exposure to 75 and 90 °C showed little to no microorganisms on the blueberry surface; however, the sensory quality (wax/bloom) of berries at those temperatures was unacceptable. Response surface plots showed that increasing temperature was a significant factor on reduction of aerobic plate counts (APCs) and yeast/mold counts (YMCs) while adding Boxyl® did not have significant effect on APC. Overlaid contour plots showed that treatments of 65 to 70 °C for 10 to 15 s showed maximum reductions of 1.5 and 2.0 log CFU/g on APCs and YMCs, respectively; with acceptable level of bloom/wax score on fresh blueberries. This study showed that SEM, response surface, and overlaid contour plots proved successful in arriving at optima to reduce microbial counts while maintaining bloom/wax on the surface of the blueberries. Since chemical sanitizing treatments such as chlorine showed ineffectiveness to reduce microorganisms loaded on berry surface (Beuchat and others 2001, Sapers 2001), hot water treatment on fresh blueberries could maximize microbial reduction with acceptable quality of fresh blueberries. © 2011 Institute of Food Technologists®

  7. Direct Determination of Activities for Microorganisms of Chesapeake Bay Populations

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1984-01-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay. PMID:16346659

  8. Complete Reductive Dehalogenation of Brominated Biphenyls by Anaerobic Microorganisms in Sediment

    PubMed Central

    Bedard, Donna L.; Van Dort, Heidi M.

    1998-01-01

    We sought to determine whether microorganisms from the polychlorinated biphenyl (PCB)-contaminated sediment in Woods Pond (Lenox, Mass.) could dehalogenate brominated biphenyls. The PCB dechlorination specificities for the microorganisms in this sediment have been well characterized. This allowed us to compare the dehalogenation specificities for brominated biphenyls and chlorinated biphenyls within a single sediment. Anaerobic sediment microcosms were incubated separately at 25°C with 16 different mono- to tetrabrominated biphenyls (350 μM) and disodium malate (10 mM). Samples were extracted and analyzed by gas chromatography with an electron capture detector and a mass spectrometer detector at various times for up to 54 weeks. All of the tested brominated biphenyls were dehalogenated. For most congeners, including 2,6-dibromobiphenyl (26-BB) and 24-25-BB, the dehalogenation began within 1 to 2 weeks. However, for 246-BB and 2-2-BB, debromination was first observed at 7 and 14 weeks, respectively. Most intermediate products did not persist, but when 2-2-BB was produced as a dehalogenation product, it persisted for at least 15 weeks before it was dehalogenated to 2-BB and then to biphenyl. The dehalogenation specificities for brominated and chlorinated biphenyls were similar: meta and para substituents were generally removed first, and ortho substituents were more recalcitrant. However, the brominated biphenyls were better dehalogenation substrates than the chlorinated biphenyls. All of the tested bromobiphenyls, including those with ortho and unflanked meta and para substituents, were ultimately dehalogenated to biphenyl, whereas their chlorinated counterparts either were not dehalogenation substrates or were only partially dehalogenated. Our data suggest that PCB-dechlorinating microorganisms may be able to dehalogenate brominated biphenyls and may exhibit a relaxed specificity for these substrates. PMID:16349530

  9. Direct determination of activities for microorganisms of chesapeake bay populations.

    PubMed

    Tabor, P S; Neihof, R A

    1984-11-01

    We used three methods in determination of the metabolically active individual microorganisms for Chesapeake Bay surface and near-bottom populations over a period of a year. Synthetically active bacteria were recognized as enlarged cells in samples amended with nalidixic acid and yeast extract and incubated for 6 h. Microorganisms with active electron transport systems were identified by the reduction of a tetrazolium salt electron acceptor. Microorganisms active in uptake of amino acids, thymidine, and acetate were determined by microautoradiography. In conjunction with enumeration of active organisms, a total direct count was made for each sample preparation by epifluorescence microscopy. For the majority of samples, numbers of amino acid uptake-active organisms were greater than numbers of organisms determined to be active by other direct measurements. Within a sample, the numbers of uptake-active organisms (amino acids or thymidine) and electron transport system-active organisms were significantly different for 68% of the samples. Numbers of synthetically active bacteria were generally less than numbers determined by the other direct activity measurements. The distribution of total counts in the 11 samplings showed a seasonal pattern, with significant dependence on in situ water temperature, increasing from March to September and then decreasing through February. Synthetically active bacteria and amino acid uptake-active organisms showed a significant dependence on in situ temperature, independent of the function of temperature on total counts. Numbers of active organisms determined by at least one of the methods used exceeded 25% of the total population of all samplings, and from June through September, >85% of the total population was found to be active by at least one direct activity measurement. Thus, active rather than dormant organisms compose a major portion of the microbial population in this region of Chesapeake Bay.

  10. Design features of offshore oil production platforms influence their susceptibility to biocorrosion.

    PubMed

    Duncan, Kathleen E; Davidova, Irene A; Nunn, Heather S; Stamps, Blake W; Stevenson, Bradley S; Souquet, Pierre J; Suflita, Joseph M

    2017-08-01

    Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35 S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L -1 ) levels of hydrogen sulfide and high numbers (10 7  mL -1 ) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.

  11. FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding

    PubMed Central

    Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2011-01-01

    Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357

  12. Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes.

    PubMed

    Neves, Marcelo S; da Silva, Marlei Gomes; Ventura, Grasiella M; Côrtes, Patrícia Barbur; Duarte, Rafael Silva; de Souza, Heitor S

    2016-05-01

    Attention to patient safety has increased recently due to outbreaks of nosocomial infections associated with GI endoscopy. The aim of this study was to evaluate current cleaning and disinfection procedures of endoscope channels with high bioburden and biofilm analysis, including the use of resistant mycobacteria associated with postsurgical infections in Brazil. Twenty-seven original endoscope channels were contaminated with organic soil containing 10(8) colony-forming units/mL of Pseudomonas aeruginosa, Staphylococcus aureus, or Mycobacterium abscessus subsp bolletii. Biofilms with the same microorganisms were developed on the inner surface of channels with the initial inoculum of 10(5) colony-forming units/mL. Channels were reprocessed following current protocol, and samples from cleaning and disinfection steps were analyzed by bioluminescence for adenosine triphosphate, cultures for viable microorganisms, and confocal microscopy. After contamination, adenosine triphosphate levels increased dramatically, and high bacterial growth was observed in all cultures. After cleaning, adenosine triphosphate levels decreased to values comparable to precontamination levels, and bacterial growth was demonstrated in 5 of 27 catheters, 2 with P aeruginosa and 3 with M abscessus. With regard to induced biofilm, a remarkable reduction occurred after cleaning, but significant microbial growth inhibition occurred only after disinfection. Nevertheless, viable microorganisms within the biofilm were still detected by confocal microscopy, more so with glutaraldehyde than with peracetic acid or O-phataladehyde. After the complete disinfection procedure, viable microorganisms could still be detected within the biofilm on endoscope channels. Prevention of biofilm development within endoscope channels should be a priority in disinfection procedures, particularly for ERCP and EUS. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  13. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    PubMed

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  14. Novel denture-cleaning system based on hydroxyl radical disinfection.

    PubMed

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  15. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks.

    PubMed

    Liu, Jie; Zhang, Xiaoying; Yang, Mengran; Hu, Meiying; Zhong, Guohua

    2018-02-01

    Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.

  16. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concept).

    PubMed

    Taverniti, Valentina; Guglielmetti, Simone

    2011-08-01

    The probiotic approach represents a potentially effective and mild alternative strategy for the prevention and treatment of either inflammatory or allergic diseases. Several studies have shown that different bacterial strains can exert their probiotic abilities by influencing the host's immune system, thereby modulating immune responses. However, the emerging concern regarding safety problems arising from the extensive use of live microbial cells is enhancing the interest in non-viable microorganisms or microbial cell extracts, as they could eliminate shelf-life problems and reduce the risks of microbial translocation and infection. The purpose of this review is to provide an overview of the scientific literature concerning studies in which dead microbial cells or crude microbial cell fractions have been used as health-promoting agents. Particular attention will be given to the modulation of host immune responses. Possible mechanisms determining the effect on the immune system will also be discussed. Finally, in the light of the FAO/WHO definition of probiotics, indicating that the word 'probiotic' should be restricted to products that contain live microorganisms, and considering the scientific evidence indicating that inactivated microbes can positively affect human health, we propose the new term 'paraprobiotic' to indicate the use of inactivated microbial cells or cell fractions to confer a health benefit to the consumer.

  17. Wound Healing Finally Enters the Age of Molecular Diagnostic Medicine

    PubMed Central

    Tatum, Owatha L.; Dowd, Scot E.

    2012-01-01

    Background Many wounds are difficult to heal because of the large, complex community of microbes present within the wound. The Problem Classical laboratory culture methods do not provide an accurate picture of the microbial interactions or representation of microorganisms within a wound. There is an inherent bias in diagnosis based upon classical culture stemming from the ability of certain organisms to thrive in culture while others are underrepresented or fail to be identified in culture altogether. Chronic wounds also contain polymicrobial infections existing as a cooperative community that is resistant to antibiotic therapy. Basic/Clinical Science Advances New methods in molecular diagnostic medicine allow the identification of nearly all organisms present in a wound irrespective of the ability of these organisms to be grown in culture. Advances in DNA analyses allow absolute identification of microorganisms from very small clinical specimens. These new methods also provide a quantitative representation of all microorganisms contributing to these polymicrobial infections. Clinical Care Relevance Technological advances in laboratory diagnostics can significantly shorten the time required to heal chronic wounds. Identification of the genetic signatures of organisms present within a wound allows clinicians to identify and treat the primary organisms responsible for nonhealing wounds. Conclusion Advanced genetic technologies targeting the specific needs of wound care patients are now accessible to all wound care clinicians. PMID:24527290

  18. Sequence-based analysis of the microbial composition of water kefir from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-11-01

    Water kefir is a water-sucrose-based beverage, fermented by a symbiosis of bacteria and yeast to produce a final product that is lightly carbonated, acidic and that has a low alcohol percentage. The microorganisms present in water kefir are introduced via water kefir grains, which consist of a polysaccharide matrix in which the microorganisms are embedded. We aimed to provide a comprehensive sequencing-based analysis of the bacterial population of water kefir beverages and grains, while providing an initial insight into the corresponding fungal population. To facilitate this objective, four water kefirs were sourced from the UK, Canada and the United States. Culture-independent, high-throughput, sequencing-based analyses revealed that the bacterial fraction of each water kefir and grain was dominated by Zymomonas, an ethanol-producing bacterium, which has not previously been detected at such a scale. The other genera detected were representatives of the lactic acid bacteria and acetic acid bacteria. Our analysis of the fungal component established that it was comprised of the genera Dekkera, Hanseniaspora, Saccharomyces, Zygosaccharomyces, Torulaspora and Lachancea. This information will assist in the ultimate identification of the microorganisms responsible for the potentially health-promoting attributes of these beverages. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii.

    PubMed

    Williams-Rhaesa, Amanda M; Awuku, Nanaakua K; Lipscomb, Gina L; Poole, Farris L; Rubinstein, Gabriel M; Conway, Jonathan M; Kelly, Robert M; Adams, Michael W W

    2018-07-01

    Regulated control of both homologous and heterologous gene expression is essential for precise genetic manipulation and metabolic engineering of target microorganisms. However, there are often no options available for inducible promoters when working with non-model microorganisms. These include extremely thermophilic, cellulolytic bacteria that are of interest for renewable lignocellulosic conversion to biofuels and chemicals. In fact, improvements to the genetic systems in these organisms often cease once transformation is achieved. This present study expands the tools available for genetically engineering Caldicellulosiruptor bescii, the most thermophilic cellulose-degrader known growing up to 90 °C on unpretreated plant biomass. A native xylose-inducible (P xi ) promoter was utilized to control the expression of the reporter gene (ldh) encoding lactate dehydrogenase. The P xi -ldh construct resulted in a both increased ldh expression (20-fold higher) and lactate dehydrogenase activity (32-fold higher) in the presence of xylose compared to when glucose was used as a substrate. Finally, lactate production during growth of the recombinant C. bescii strain was proportional to the initial xylose concentration, showing that tunable expression of genes is now possible using this xylose-inducible system. This study represents a major step in the use of C. bescii as a potential platform microorganism for biotechnological applications using renewable biomass.

  20. Microbial reductive dehalogenation.

    PubMed Central

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  1. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron.

    PubMed

    Yu, Xueyuan; Amrhein, Christopher; Deshusses, Marc A; Matsumoto, Mark R

    2006-02-15

    A series of batch experiments were performed to study the combination of zero-valent iron (ZVI) with perchlorate-reducing microorganisms (PRMs) to remove perchlorate from groundwater. In this method, H2 produced during the process of iron corrosion by water is used by PRMs as an electron donor to reduce perchlorate to chloride. Perchlorate degradation rates followed Monod kinetics, with a normalized maximum utilization rate (rmax) of 9200 microg g(-1) (dry wt) h(-1) and a half-velocity constant (Ks) of 8900 microg L(-1). The overall rate of perchlorate reduction was affected by the biomass density within the system. An increase in the OD600 from 0.025 to 0.08 led to a corresponding 4-fold increase of perchlorate reduction rate. PRM adaptation to the local environment and initiation of perchlorate reduction was rapid under neutral pH conditions. At the initial OD600 of 0.015, perchlorate reduction followed pseudo-first-order reaction rates with constants of 0.059 and 0.033 h(-1) at initial pH 7 and 8, respectively. Once perchlorate reduction was established, the bioreductive process was insensitive to the increases of pH from near neutral to 9.0. In the presence of nitrate, perchlorate reduction rate was reduced, but not inhibited completely.

  2. Production of selenium nanoparticles in Pseudomonas putida KT2440.

    PubMed

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I; Chavarría, Max

    2016-11-15

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L -1 h -1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles.

  3. Production of selenium nanoparticles in Pseudomonas putida KT2440

    PubMed Central

    Avendaño, Roberto; Chaves, Nefertiti; Fuentes, Paola; Sánchez, Ethel; Jiménez, Jose I.; Chavarría, Max

    2016-01-01

    Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0.444 mmol L−1 h−1 beginning in the middle-exponential phase and with a final conversion yield of 89%. Measurements with a transmission electron microscope (TEM) show that nano-Se particles synthesized by P. putida have a size range of 100 to 500 nm and that they are located in the surrounding medium or bound to the cell membrane. Experiments involving dynamic light scattering (DLS) show that, in aqueous solution, recovered nano-Se particles have a size range of 70 to 360 nm. The rapid kinetics of conversion, easy retrieval of nano-Se and the metabolic versatility of P. putida offer the opportunity to use this model organism as a microbial factory for production of selenium nanoparticles. PMID:27845437

  4. Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes.

    PubMed

    Khoufi, Sonia; Feki, Firas; Sayadi, Sami

    2007-04-02

    Olive mill wastewater (OMW) is characterised by its high suspended solids content (SS), high turbidity (NTU), chemical oxygen demand (COD) concentration up to 100 gl(-1) and toxic phenolic compounds concentration up to 10 gl(-1). This study examined the effect of a physico-electrochemical method to detoxify olive mill wastewater prior an anaerobic biotreatment process. The proposed pre-treatment process consisted in a preliminary electrocoagulation step in which most phenolic compounds were polymerised, followed by a sedimentation step. The BOD(5)/COD ratio of the electrocoagulated OMW increased from 0.33, initial value, to 0.58. Furthermore, the sedimentation step yielded the removal of 76.2%, 75% and 71% of phenolic compounds, turbidity and suspended solid, respectively, after 3 days of plain settling. The combination of electrocoagulation and sedimentation allowed a COD reduction and decoloration of about 43% and 90%, respectively. This pre-treatment decreases the inhibition of Vibrio fisheri luminescence by 66.4%. Continuous anaerobic biomethanization experiments conducted in parallel with raw OMW and electrocoagulated OMW before and after sedimentation at a loading rate of 6g COD l(-1)day(-1), proved that the final pre-treated OMW was bioconverted into methane at high yield while raw OMW was very toxic to anaerobic microorganisms.

  5. Effect of Iranian Ziziphus honey on growth of some foodborne pathogens.

    PubMed

    Ekhtelat, Maryam; Ravaji, Karim; Parvari, Masood

    2016-01-01

    Honey has previously been shown to have wound healing and antimicrobial properties, but this is dependent on the type of honey, geographical location, and flower from which the final product is derived. We tested the antimicrobial activity of a natural honey originating from the Ziziphus spina-christi tree, against selected strains of bacteria. Ziziphus honey among more than a 100 verities of honey is known to have the greatest value of energy and minerals in it. The aim of this study was to determine the antibacterial activity of Ziziphus honey in 10%, 20%, 30%, and 40% dilutions (v/v) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus. Viable count enumeration of the sample was investigated after 0, 24, 72, and 120 h postinoculation with any of the bacteria using pour-plate method. The findings indicate that Ziziphus honey was effective against these pathogenic bacteria. In a comparative trial, antibacterial activity of Ziziphus honey was higher after 120 h incubation for each four bacteria in most dilutions. The microbial count showed 3-7.5 log reduction comparing with control after 120 h. Therefore, it is recommended using Ziziphus honey as a natural preservative and antibacterial agent. Also, it could potentially be used as therapeutic agents against bacterial infection particularly to the tested microorganisms.

  6. Fermentation of cacao (Theobroma cacao L.) seeds with a hybrid Kluyveromyces marxianus strain improved product quality attributes.

    PubMed

    Leal, Gildemberg Amorim; Gomes, Luiz Humberto; Efraim, Priscilla; de Almeida Tavares, Flavio Cesar; Figueira, Antonio

    2008-08-01

    Fermentation of Theobroma cacao (cacao) seeds is an absolute requirement for the full development of chocolate flavor precursors. An adequate aeration of the fermenting cacao seed mass is a fundamental prerequisite for a satisfactory fermentation. Here, we evaluated whether a controlled inoculation of cacao seed fermentation using a Kluyveromyces marxianus hybrid yeast strain, with an increased pectinolytic activity, would improve an earlier liquid drainage ('sweatings') from the fermentation mass, developing a superior final product quality. Inoculation with K. marxianus increased by one third the volume of drained liquid and affected the microorganism population structure during fermentation, which was detectable up to the end of the process. Introduction of the hybrid yeast affected the profile of total seed protein degradation evaluated by polyacrylamide gel electrophoresis, with improved seed protein degradation, and reduction of titrable acidity. Sensorial evaluation of the chocolate obtained from beans fermented with the K. marxianus inoculation was more accepted by analysts in comparison with the one from cocoa obtained through natural fermentation. The increase in mass aeration during the first 24 h seemed to be fundamental for the improvement of fermentation quality, demonstrating the potential application of this improved hybrid yeast strain with superior exogenous pectinolytic activity.

  7. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis

    PubMed Central

    Freires, Irlan Almeida; Bueno-Silva, Bruno; Galvão, Lívia Câmara de Carvalho; Duarte, Marta Cristina Teixeira; Sartoratto, Adilson; Figueira, Glyn Mara; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2015-01-01

    The essential oils (EO) and bioactive fractions (BF) from Aloysia gratissima, Baccharis dracunculifolia, Coriandrum sativum, Cyperus articulatus, and Lippia sidoides were proven to have strong antimicrobial activity on planktonic microorganisms; however, little is known about their effects on the morphology or viability of oral biofilms. Previously, we determined the EO/fractions with the best antimicrobial activity against Streptococcus mutans and Candida spp. In this report, we used a confocal analysis to investigate the effect of these EO and BF on the morphology of S. mutans biofilms (thickness, biovolume, and architecture) and on the metabolic viability of C. albicans biofilms. The analysis of intact treated S. mutans biofilms showed no statistical difference for thickness in all groups compared to the control. However, a significant reduction in the biovolume of extracellular polysaccharides and bacteria was observed for A. gratissima and L. sidoides groups, indicating that these BF disrupt biofilm integrity and may have created porosity in the biofilm. This phenomenon could potentially result in a weakened structure and affect biofilm dynamics. Finally, C. sativum EO drastically affected C. albicans viability when compared to the control. These results highlight the promising antimicrobial activity of these plant species and support future translational research on the treatment of dental caries and oral candidiasis. PMID:25821503

  8. Influence of Al(III) on biofilm and its extracellular polymeric substances in sequencing batch biofilm reactors.

    PubMed

    Hu, Xuewei; Yang, Lei; Lai, Xinke; Yao, Qi; Chen, Kai

    2017-10-03

    This paper presented the influence of Al(III) on biodegradability, micromorphology, composition and functional groups characteristics of the biofilm extracellular polymeric substances (EPS) during different growth phases. The sequencing batch biofilm reactors were developed to cultivate biofilms under different Al(III) dosages. The results elucidated that Al(III) affected biofilm development adversely at the beginning of biofilm growth, but promoted the biofilm mass and improved the biofilm activity with the growth of the biofilm. The micromorphological observation indicated that Al(III) led to a reduction of the filaments and promotion of the EPS secretion in growth phases of the biofilm, also Al(III) could promote microorganisms to form larger colonies for mature biofilm. Then, the analysis of EPS contents and components suggested that Al(III) could increase the protein (PN) of tightly bound EPS (TB-EPS) which alleviated the metal toxicity inhibition on the biofilm during the initial phases of biofilm growth. The biofilm could gradually adapt to the inhibition caused by Al(III) at the biofilm maturation moment. Finally, through the Fourier transform infrared spectroscopy, it was found that Al(III) was beneficial for the proliferation and secretion of TB-EPS functional groups, especially the functional groups of protein and polysaccharides.

  9. RADIATION STERILIZATION OF COCOA POWDERS. Report No. 5 (Final), February 17, 1959-February 16, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBenedictis, M.E.

    1962-10-31

    Results of studies on the effects of various dosages of gamma radiation upon the blooming characteristics and flavor of chocolate coatings, cocoa, and chocolate syrup showed that dosage levels that produce satisfactory results for controlling microorganisms in cocoas, cocoa butters, and chocolate coatings result in the development of off-flavors. No off-flavors were detected in chocolate syrups with a low fat content. (C.H.)

  10. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives.

    PubMed

    Fernández, Pablo M; Viñarta, Silvana C; Bernal, Anahí R; Cruz, Elías L; Figueroa, Lucía I C

    2018-05-28

    Industrial applications and commercial processes release a lot of chromium into the environment (soil, surface water or atmosphere) and resulting in serious human diseases because of their toxicity. Biological Cr-removal offers an alternative to traditional physic-chemical methods. This is considered as a sustainable technology of lower impact on the environment. Resistant microorganisms (e.g. bacteria, fungi, and algae) have been most extensively studied from this characteristic. Several mechanisms were developed by microorganisms to deal with chromium toxicity. These tools include biotransformation (reduction or oxidation), bioaccumulation and/or biosorption, and are considered as an alternative to remove the heavy metal. The aim of this review is summarizes Cr(VI)-bioremediation technologies oriented on practical applications at larger scale technologies. In the same way, the most relevant results of several investigations focused on process feasibility and the robustness of different systems (reactors and pilot scale) designed for chromium-removal capacity are highlighted. Copyright © 2018. Published by Elsevier Ltd.

  11. Role of indigenous arsenate and iron(III) respiring microorganisms in controlling the mobilization of arsenic in a contaminated soil sample.

    PubMed

    Vaxevanidou, K; Christou, C; Kremmydas, G F; Georgakopoulos, D G; Papassiopi, N

    2015-03-01

    In this study two different treatment options were investigated for the release of arsenic from a contaminated soil sample. The first option was based on the "bioaugmentation" principle and involved addition of a pure Fe(III)-reducing culture, i.e. Desulfuromonas palmitatis. The second option consisted in the "biostimulation" of indigenous bacteria and involved simple addition of nutrients. Due to the strong association of As with soil ferric oxides, the reductive dissolution of soil oxides by D. palmitatis lead to 45 % arsenic release in solution (2.15 mM). When only nutrients were supplied to the soil, the same amounts of Fe and As were dissolved with slower rates and most aqueous As was found to be in the trivalent state, indicating the presence of arsenate reducing species. The arsenate reducing microorganisms were enriched with successive cultures, using Na2HAsO4 as electron acceptor. The phylogenetic analysis revealed that the enriched microbial consortium contained Desulfosporosinus species, which are known arsenate reducers.

  12. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    PubMed

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants.

  13. Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation

    NASA Astrophysics Data System (ADS)

    Schmidt, Susanne I.; Kreft, Jan-Ulrich; Mackay, Rae; Picioreanu, Cristian; Thullner, Martin

    2018-06-01

    Groundwater microorganisms hardly ever cover the solid matrix uniformly-instead they form micro-scale colonies. To which extent such colony formation limits the bioavailability and biodegradation of a substrate is poorly understood. We used a high-resolution numerical model of a single pore channel inhabited by bacterial colonies to simulate the transport and biodegradation of organic substrates. These high-resolution 2D simulation results were compared to 1D simulations that were based on effective rate laws for bioavailability-limited biodegradation. We (i) quantified the observed bioavailability limitations and (ii) evaluated the applicability of previously established effective rate concepts if microorganisms are heterogeneously distributed. Effective bioavailability reductions of up to more than one order of magnitude were observed, showing that the micro-scale aggregation of bacterial cells into colonies can severely restrict the bioavailability of a substrate and reduce in situ degradation rates. Effective rate laws proved applicable for upscaling when using the introduced effective colony sizes.

  14. The immediate and long-term effects of invasive and noninvasive pit and fissure sealing techniques on the microflora in occlusal fissures of human teeth.

    PubMed

    Kramer, P F; Zelante, F; Simionato, M R

    1993-01-01

    The purpose of this study was to evaluate the effect of acid conditioning and occlusal sealant on microbial colonization of pit and fissures submitted to ameloplasty or left intact. Human enamel blocks containing fissures prepared from the occlusal surfaces of unerupted third molars were implanted in occlusal fillings in molars of 12 patients for seven, 30, 60, and 120 days. After seven days of exposure to the oral environment, the pit and fissure blocks were removed and found to be colonized, mainly with gram-positive coccal flora. The acid-etching procedure itself reduced the number of cultivable microorganisms by about 95%. Subsequent application of occlusal sealant caused a gradual decrease of the remaining viable microorganism throughout the experiment. Despite the decrease of 100% after acid etching in most of the fissures submitted to ameloplasty, the occlusal sealant did not lead to a subsequent significant reduction.

  15. Evaluation of actinide biosorption by microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happel, A.M.

    1996-06-01

    Conventional methods for removing metals from aqueous solutions include chemical precipitation, chemical oxidation or reduction, ion exchange, reverse osmosis, electrochemical treatment and evaporation. The removal of radionuclides from aqueous waste streams has largely relied on ion exchange methods which can be prohibitively costly given increasingly stringent regulatory effluent limits. The use of microbial cells as biosorbants for heavy metals offers a potential alternative to existing methods for decontamination or recovery of heavy metals from a variety of industrial waste streams and contaminated ground waters. The toxicity and the extreme and variable conditions present in many radionuclide containing waste streams maymore » preclude the use of living microorganisms and favor the use of non-living biomass for the removal of actinides from these waste streams. In the work presented here, we have examined the biosorption of uranium by non-living, non-metabolizing microbial biomass thus avoiding the problems associated with living systems. We are investigating biosorption with the long term goal of developing microbial technologies for the remediation of actinides.« less

  16. Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates.

    PubMed

    Mauclaire, Laurie; Egli, Marcel

    2010-08-01

    Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.

  17. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    NASA Astrophysics Data System (ADS)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu souterrain. Des études d'aquifères pollués par du pétrole ont montré que des micro-organismes réducteurs de fer peuvent être des agents efficaces pour éliminer les hydrocarbures aromatiques des eaux souterraines dans des conditions anérobies. Des études en laboratoire ont montré que des micro-organismes réducteurs de fer avaient la capacité d'éliminer l'uranium d'eaux souterraines polluées. L'activité de micro-organismes réducteurs de fer peut être stimulée de différentes manières pour augmenter l'oxydation de polluants organiques et la réduction de métaux. Des analyses moléculaires concernant des études de terrain et de laboratoire ont montré que des micro-organismes du genre Geobacter deviennent les membres dominants de la communauté microbienne quand les conditions de réduction en Fe(III) sont réalisées à la suite d'une pollution organique, ou lorsque la réduction en Fe(III) est stimulée artificiellement. Ces résultats laissent penser que des connaissances supplémentaires sur l'écophysiologie des espèces Geobacter devraient aider à une meilleure prédiction de la diminution naturelle des teneurs en polluants organiques dans des conditions anérobies, ainsi qu'à la définition de stratégies de dépollution biologique de pollutions souterraines par les métaux. Algunos microorganismos Fe(III)-reductores son capaces de destruir selectivamente determinados contaminantes orgánicos en condiciones anaerobias, oxidándolos a dióxido de carbono. Otros de estos microorganismos Fe(III)-reductores pueden reducir, bien compuestos clorados, bien una gran variedad de metales, que dejan de ser solubles y se inmovilizan en el subsuelo. Estudios realizados en acuéferos contaminados por petróleo muestran que los microorganismos Fe(III)-reductores pueden ser unos agentes muy eficientes para eliminar los hidrocarburos aromáticos de las aguas subterráneas en condiciones anaerobias, mientras que estudios de laboratorio muestran el potencial de estos microorganismos para eliminar uranio. La actividad de los microorganismos Fe(III)-reductores se puede estimular para conseguir una mayor eficiencia en la oxidación de contaminantes orgánicos y en la reducción de metales. Diversos análisis moleculares en estudios de campo y de laboratorio muestran que los microorganismos del género Geobacter se convierten en los miembros dominantes de la comunidad microbiana cuando se desarrollan condiciones Fe(III)-reductoras, bien como resultado de la contaminación orgánica, bien por estimulación artificial. En consecuencia, se hace necesario un mayor entendimiento de la ecofisiologéa de los microorganismos del género Geobacter para mejorar las predicciones sobre atenuación natural de los contaminantes orgánicos bajo condiciones anaerobias y para el diseño de estrategias de biorremediación del subsuelo en los casos de contaminación por metales.

  18. Fungal Spoilage in Food Processing.

    PubMed

    Snyder, Abigail B; Worobo, Randy W

    2018-06-01

    Food processing, packaging, and formulation strategies are often specifically designed to inhibit or control microbial growth to prevent spoilage. Some of the most restrictive strategies rely solely or on combinations of pH reduction, preservatives, water activity limitation, control of oxygen tension, thermal processing, and hermetic packaging. In concert, these strategies are used to inactivate potential spoilage microorganisms or inhibit their growth. However, for select microbes that can overcome these controls, the lack of competition from additional background microbiota helps facilitate their propagation.

  19. Electronic Tongue Containing Redox and Conductivity Sensors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2007-01-01

    The Electronic Tongue (E-tongue 2) is an assembly of sensors for measuring concentrations of metal ions and possibly other contaminants in water. Potential uses for electronic tongues include monitoring the chemical quality of water in a variety of natural, industrial, and laboratory settings, and detecting micro-organisms indirectly by measuring microbially influenced corrosion. The device includes a heater, a temperature sensor, an oxidation/reduction (redox) sensor pair, an electrical sensor, an array of eight galvanic cells, and eight ion-specific electrodes.

  20. The use and control of nitrate and nitrite for the processing of meat products.

    PubMed

    Honikel, Karl-Otto

    2008-01-01

    Nitrate and nitrite are used for the purpose of curing meat products. In most countries the use of both substances, usually added as potassium or sodium salts, is limited. Either the ingoing or the residual amounts are regulated by laws. The effective substance is nitrite acting primarily as an inhibitor for some microorganisms. Nitrite added to a batter of meat is partially oxidized to nitrate by sequestering oxygen - thus it acts as an antioxidant - a part of nitrite is bound to myoglobin, forming the heat stable NO-myoglobin, a part is bound to proteins or other substances in meat. Nitrate may be reduced to nitrite in raw meat products by microorganisms. As oxidation and reduction may occur the concentrations of nitrite plus nitrate in a product has to be controlled and measured especially if the residual amounts are regulated. This sum of both compounds is important for the human body. Intake of nitrate with food leads to its absorption over the digestive tract into the blood. In the oral cavity nitrate appears again where it is reduced to nitrite. With the saliva the nitrite is mixed with food, having the same effect as nitrite in a batter (inhibiting growth of some pathogenic microorganisms) and swallowed. In the stomach nitrite can eventually form carcinogenic nitrosamines in the acidic environment.

  1. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    PubMed

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  2. Monitoring of Microbial Loads During Long Duration Missions as a Risk Reduction Tool

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.

    2011-01-01

    Humans have been exploring space for more than 40 years. For all those years microorganisms have accompanied, first un-manned spacecraft/cargo and later manned vessels. Microorganisms are everywhere on Earth, could easily adapt to new environments and/or can rapidly mutate to survive in very harsh conditions. Their presence in spacecraft and cargo have caused a few inconveniences over the years of humans spaceflight, ranging from crew health, life support systems challenges and material degradation. The sterilization of spacecraft that will host humans in long duration mission would be a costly operation that will not provide a long-term solution to the microbial colonization of the vessels. As soon as a human is exposed to the spacecraft, during the mission, microorganisms will start to populate the new environment. As the hum an presence in space increases in length, the risk from the microbial load, to hardware and crew will also increase. Mitigation of this risk includes several different strategies that will include minimizing the microbial load (in numbers and diversity) and monitoring. This presentation will provide a list of the risk mitigation strategies that should be implemented during ground processing, and during the mission. It will also discuss the areas that should be discussed before an effective in-flight microbial monitoring regimen is implemented. Microbial monitoring technologies will also be presented.

  3. Ruminal bioremediation of the high energy melting explosive (HMX) by sheep microorganisms.

    PubMed

    Eaton, Hillary L; Murty, Lia D; Duringer, Jennifer M; Craig, A Morrie

    2014-01-01

    The ability of ruminal microorganisms to degrade octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (high melting explosive, HMX) as consortia from whole rumen fluid (WRF), and individually as 23 commercially available ruminal strains, was compared under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for delineation of the metabolic pathway. In WRF, 30 μM HMX was degraded to 5 μM HMX within 24 h. Metabolites consistent with m/z 149, 193 and 229 were present throughout the incubation period. We propose that peaks with an m/z of 149 and 193 are arrived at through reduction of HMX to nitroso or hydroxylamino intermediates, then direct enzymatic ring cleavage to produce these HMX derivatives. Possible structures of m/z 229 are still being investigated and require further LC-MS/MS analysis. None of the 23 ruminal strains tested were able to degrade HMX as a pure culture when grown in either a low carbon or low nitrogen basal medium over 120 h. We conclude that microorganisms from the rumen, while sometimes capable as individuals in the bioremediation of other explosives, excel as a community in the case of HMX breakdown. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. The antimicrobial effectiveness of photodynamic therapy used as an addition to the conventional endodontic re-treatment: a clinical study.

    PubMed

    Jurič, Ivona Bago; Plečko, Vanda; Pandurić, Dragana Gabrić; Anić, Ivica

    2014-12-01

    The purpose of the study was to evaluate the efficacy of antimicrobial photodynamic therapy (aPDT) used as an adjunct to the endodontic re-treatment in the eradication of microorganisms from previously filled root canals. The study sample consisted of 21 randomly selected patients with root filled and infected root canal system with chronic apical periodontitis on incisors or canines, who have had previously endodontic treatment. Microbiological samples from the root canals were collected after accessing the canal, following the endodontic re-treatment and after the aPDT procedure. During instrumentation, the root canals were irrigated with 2.5% sodium hypochlorite (NaOCl), and the final irrigation protocol included 17% ethylenediaminetetraacetic acid followed by NaOCl. Root canals were filled with a phenothiazinium chloride and irradiated with a diode laser (λ=660 nm, 100 mW) for 1 min. Microbiological samples from the root canals were cultivated on selective plates, and the identification was done by micromorphology, macromorphology and different API strips as well as bacterial counts (colony forming units). Fourteen bacteria species were isolated from the root canals initially, with a mean value of 4.57 species per canal. Although endodontic re-treatment alone produced a significant reduction in the number of bacteria species (p<0.001), the combination of endodontic treatment and aPDT was statistically more effective (p<0.001). No bacteria were cultivated from the main root canals of 11 teeth. The results indicated that the aPDT used as an adjunct to the conventional endodontic therapy achieved a significant further reduction of intracanal microbial load. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cr isotope fractionation factors for Cr(VI) reduction by a metabolically diverse group of bacteria

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Johnson, Thomas M.; Sanford, Robert A.

    2014-10-01

    Reduction of Cr(VI) is an important process that determines the geochemical behavior, mobility and bioavailability of Cr in both terrestrial and marine environments. Many metabolically diverse microorganisms possess Cr(VI) reduction capacity. Cr(VI) reduction fractionates Cr isotopes and thus 53Cr/52Cr ratios can be used to monitor Cr(VI) reduction and redox conditions. The magnitude of isotopic fractionation (ε) for a variety of microbial reduction mechanisms must be known for accurate interpretation of observed shifts in 53Cr/52Cr ratios. We determined isotopic fractionation factors for Cr(VI) reduction by metal reducers Geobacter sulfurreducens and Shewanella sp. strain NR, a denitrifying soil bacterium Pseudomonas stutzeri DCP-Ps1, and a sulfate reducer Desulfovibrio vulgaris. All bacteria investigated in this study produced significant Cr isotope fractionation. The fractionation (ε) for G. sulfurreducens, Shewanella sp. (NR), P. stutzeri DCP-Ps1, and D. vulgaris were -3.03‰ ± 0.12‰, -2.17‰ ± 0.22‰, -3.14‰ ± 0.13‰, and -3.01‰ ± 0.11‰, respectively. Despite differences in microbial strains in this study, the ε did not vary significantly except for Shewanella sp. (NR). Our results suggest that strong isotopic fractionation is induced during Cr(VI) reduction under electron donor poor (∼300 μM) conditions.

  6. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David E. Cummings; Scott Fendorf; Rajesh K. Sani

    2007-01-01

    The potential for biological reduction of Cr(VI) under acidic conditions was evaluated with the acidophilic, facultatively metal-reducing bacterium Acidiphilium cryptum strain JF-5 to explore the role of acidophilic microorganisms in the Cr cycle in low-pH environments. An anaerobic suspension of washed A. cryptum cells rapidly reduced 50 M Cr(VI) at pH 3.2; biological reduction was detected from pH 1.7-4.7. The reduction product, confirmed by XANES analysis, was entirely Cr(III) that was associated predominantly with the cell biomass (70-80%) with the residual residing in the aqueous phase. Reduction of Cr(VI) showed a pH optimum similar to that for growth and wasmore » inhibited by 5 mM HgCl2, suggesting that the reaction was enzyme-mediated. Introduction of O2 into the reaction medium slowed the reduction rate only slightly, whereas soluble Fe(III) (as ferric sulfate) increased the rate dramatically, presumably by the shuttling of electrons from bioreduced Fe(II) to Cr(VI) in a coupled biotic-abiotic cycle. Starved cells could not reduce Cr(VI) when provided as sole electron acceptor, indicating that Cr(VI) reduction is not an energy-conserving process in A. cryptum. We speculate, rather, that Cr(VI) reduction is used here as a detoxification mechanism.« less

  7. Gram staining of protected pulmonary specimens in the early diagnosis of ventilator-associated pneumonia.

    PubMed

    Mimoz, O; Karim, A; Mazoit, J X; Edouard, A; Leprince, S; Nordmann, P

    2000-11-01

    We evaluated prospectively the use of Gram staining of protected pulmonary specimens to allow the early diagnosis of ventilator-associated pneumonia (VAP), compared with the use of 60 bronchoscopic protected specimen brushes (PSB) and 126 blinded plugged telescopic catheters (PTC) obtained from 134 patients. Gram stains were from Cytospin slides; they were studied for the presence of microorganisms in 10 and 50 fields by two independent observers and classified according to their Gram stain morphology. Quantitative cultures were performed after serial dilution and plating on appropriate culture medium. A final diagnosis of VAP, based on a culture of > or = 10(3) c.f.u. ml-1, was established after 81 (44%) samplings. When 10 fields were analysed, a strong relationship was found between the presence of bacteria on Gram staining and the final diagnosis of VAP (for PSB and PTC respectively: sensitivity 74 and 81%, specificity 94 and 100%, positive predictive value 91 and 100%, negative predictive value 82 and 88%). The correlation was less when we compared the morphology of microorganisms observed on Gram staining with those of bacteria obtained from quantitative cultures (for PSB and PTC respectively: sensitivity 54 and 69%, specificity 86 and 89%, positive predictive value 72 and 78%, negative predictive value 74 and 84%). Increasing the number of fields read to 50 was associated with a slight decrease in specificity and positive predictive value of Gram staining, but with a small increase in its sensitivity and negative predictive value. The results obtained by the two observers were similar to each other for both numbers of fields analysed. Gram staining of protected pulmonary specimens performed on 10 fields predicted the presence of VAP and partially identified (using Gram stain morphology) the microorganisms growing at significant concentrations, and could help in the early choice of the treatment of VAP. Increasing the number of fields read or having the Gram stain analysed by two independent individuals did not improve the results.

  8. Occurence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazina, T.N.; Ivanova, A.E.; Goulbeva, O.V.

    1995-03-01

    The occurrence of microorganisms and the rates of terminal biogenic processes-sulfate reduction and methane synthesis-were studied in stratial waters in bed 302 of the Bashkir Carboniferous deposit at the Romashkinskoe oil field. It was shown that bed 302 was a dynamic, highly reduced ecosystem containing sulfates and hydrogen sulfide in considerable concentrations, in which active biogenic processes occurred. Sulfate reduction was a dominating anaerobic process by which the transformation of organic matter occurred. The sulfate-reducing microflora was diverse and characterized by a wide range of metabolic potentials. Enrichment cultures capable of oxidizing many organic substances, such as benzoate, acetate, ethanol,more » or lactate, at the expense of reduction of sulfates and ferric ion were isolated from 302. It was suggested that the sulfate-reducing microflora might be responsible not only for sulfate reduction in the stratum but also for mobilization of some insoluble iron oxides in the oil-bearing rock. These findings indicate that bacteria carrying out dissimilatory reduction of sulfate and iron can contribute to the geochemistry of organic and mineral compounds in subsurface ecosystems. 24 refs., 2 figs., 6 tabs.« less

  9. Nitrogen Fixation (Acetylene Reduction) Associated with Duckweed (Lemnaceae) Mats

    PubMed Central

    Zuberer, D. A.

    1982-01-01

    Duckweed (Lemnaceae) mats in Texas and Florida were investigated, using the acetylene reduction assay, to determine whether nitrogen fixation occurred in these floating aquatic macrophyte communities. N2-fixing microorganisms were enumerated by plating or most-probable-number techniques, using appropriate N-free media. Results of the investigations indicated that substantial N2-fixation (C2H2) was associated with duckweed mats in Texas and Florida. Acetylene reduction values ranged from 1 to 18 μmol of C2H4 g (dry weight)−1 day−1 for samples incubated aerobically in light. Dark N2 fixation was always two- to fivefold lower. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (7 to 10 μM) reduced acetylene reduction to levels intermediate between light and dark incubation. Acetylene reduction was generally greatest for samples incubated anaerobically in the light. It was estimated that 15 to 20% of the N requirement of the duckweed could be supplied through biological nitrogen fixation. N2-fixing heterotrophic bacteria (105 cells g [wet weight]−1 and cyanobacteria (105 propagules g [wet weight]−1 were associated with the duckweed mats. Azotobacter sp. was not detected in these investigations. One diazotrophic isolate was classified as Klebsiella. PMID:16345992

  10. Radiation sterilization of aseptically manufactured products.

    PubMed

    Fairand, Barry P; Fidopiastis, Niki

    2010-01-01

    This paper discusses an approach for establishing a sterilization dose for an aseptically processed product after the product is in its final packaged state, in other words, terminal sterilization. It applies to aseptic processes where the fill/finish operation is conducted in a closed system using isolator or restricted access barrier technology, that is, no human intervention. The example that is given in this paper uses gamma radiation as the sterilizing agent. Other forms of radiation such as high-energy electrons or X-rays also could serve as the sterilizing agent. The proposed approach involves irradiation of the aseptically processed product at very low doses of radiation, which is possible due to the extremely low levels of bioburden that may be present on the product following a fill/finish operation. Rather than sacrificing a large number of product units that may be required to obtain a statistically significant sampling of the product for bioburden analysis and other test purposes, the test unit is a surrogate consisting of actual pharmaceutical product that was inoculated with a highly radiation-resistant micro-organism. Selection of the microorganism was based on analysis of a library of environmental monitoring data taken from the aseptic area. Because of microbial diversity between different aseptic processing facilities, selection of the test microorganism would depend on the aseptic area under study. The approach that is discussed in this paper addresses selection and preparation of the surrogate, test of sterility of the surrogate following irradiation, determination of the radiation resistance of the test microorganism, and application of the approach to calculate a sterilization dose that is less than 10 kGy. At this low dose, it may be possible to terminally sterilize radiation-sensitive pharmaceutical products, for example, those in liquid form. Additional studies are warranted to determine the general applicability of the proposed approach.

  11. Sulfate Reduction and Sulfide Biomineralization By Deep-Sea Hydrothermal Vent Microorganisms

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.

    2014-12-01

    Deep-sea hydrothermal vents are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea vent chimney at the Grandbonum vent site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea hydrothermal environments, to characterize the steps in sulfide mineral nucleation and growth, and identify the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.

  12. Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece.

    PubMed

    Vaxevanidou, K; Giannikou, S; Papassiopi, N

    2012-11-30

    Indigenous soil microorganisms often affect the mobility of heavy metals and metalloids by altering their oxidation state. Under anaerobic conditions, the microbial transformation is usually reduction and may cause the mobilization of contaminants, as happens in the case of arsenic, which is much more stable in the pentavalent state compared to the reduced trivalent form. The aim of this work was to investigate the occurrence of such a microbial activity in representative Greek soils. Five soil samples, with As levels varying between 14 and 259 mg/kg, were examined. The samples were artificially contaminated, by adding 750 mg of As(V) per kg of soil. Initial sorption of As(V) ranged between 70 and 85%. Microbial reduction of arsenic was observed in three of the examined soils, without any obvious correlation with pre-existing levels of contamination. Reduction reached high percentages, i.e. up to 99%, and was accompanied by the corresponding release of reduced As in the aqueous solution. A simultaneous iron reducing activity was also observed in four of the five soil samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. New insight into sludge reduction induced by different substrate allocation strategy between oxygen and nitrate/nitrite as terminal electron acceptor.

    PubMed

    Yan, Peng; Guo, Jin-Song; Xu, Yu-Feng; Chen, You-Peng; Wang, Jing; Liu, Zhi-Ping; Fang, Fang

    2018-06-01

    Sludge reduction based on regulating substrate allocation between catabolism and anabolism as a strategy is proposed to reduce energy and chemicals consumption during wastewater treatment. The results indicated that a sludge reduction of 14.8% and excellent nutrient removal were simultaneously achieved in the low dissolved oxygen (LDO) activated sludge system with a hydraulic retention time of 24 h at 25 °C. Denitrifiers comprised nearly 1/4 of all microorganisms in the system. These denitrifiers converted NO x - to N 2 obtaining a lower biomass yield. The oxidoreductase activity proteins in the LDO sample was more than twice that of the normal DO sample, indicating that catabolism was stimulated by NO x - when replacing O 2 as electron acceptor. Less substrate was used for cell synthesis in the LDO system. Stable sludge reduction without extra energy and chemicals inputs was achieved by regulating the substrate allocation by inducing the bacteria to utilize NO x - instead of O 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effects of Pumping and Well Disinfection on Arsenic Release to Well Water

    NASA Astrophysics Data System (ADS)

    Gotkowitz, M.; Shelobolina, E.; Roden, E. E.

    2007-12-01

    In areas of northeastern Wisconsin, arsenic-bearing sulfides and iron oxides are distributed throughout a sandstone aquifer used for domestic water supplies. Aqueous arsenic concentrations exceed 10 μg/L in approximately 20% of wells in this region. These wells are often subjected to in situ chlorine disinfection to control nuisance or pathogenic bacteria. Field-based experiments investigating the effects of pumping and well disinfection showed that under non-pumping conditions, the geochemical environment in a domestic well is strongly reducing. Aqueous arsenic ranged from 10 to 18 μg/L, and the number of all tested groups of microorganisms (As(III)-reducing, Fe(III)-reducing, sulfate-reducing, As(V)-oxidizing, and aerobic microorganisms) increased 0.3 to 2.4 orders of magnitude in the well water under non-pumping conditions. The diverse populations of anaerobic and aerobic microorganisms reflect the complexity of the borehole environment. The number of Fe(III)-reducing bacteria correlates with As(III) concentrations, suggesting that microbially- facilitated reduction of iron (hydr)oxides contributes to the relatively rapid rise in aqueous arsenic observed under non-pumping conditions. Pumping the well introduces up to 1 mg/L of oxygen into the well water. The change in redox imposed by pumping decreased the number of anaerobic As(III)-reducing, Fe(III)-reducing, and sulfate-reducing microorganisms by 1 to 1.7 orders of magnitude. Aqueous arsenic also decreased during pumping (<7 μg/L), indicating that low-arsenic groundwater recharges the well. Chlorine disinfection produced strongly oxidizing conditions in the well for one hour. Treatment reduced the numbers of all microorganisms tested, but the populations recovered within three weeks. This suggests that either fresh formation water re-inoculated the well or that biofilm and scale in the well harbored some microbes from the disinfectant. Post-disinfection arsenic concentrations were similar to those measured prior to treatment. Although arsenic release under non-pumping conditions appears to be microbially mediated, well disinfection did not provide a sustained improvement in well- water quality.

  15. The in vitro effect of Antimicrobial Photodynamic Therapy on dental microcosm biofilms from partially erupted permanent molars: A pilot study.

    PubMed

    de Oliveira, Fabiana Sodré; Cruvinel, Thiago; Cusicanqui Méndez, Daniela Alejandra; Dionísio, Evandro José; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira

    2018-03-01

    Antimicrobial Photodynamic Therapy (aPDT) could enhance the prevention of dental caries lesions in pits and fissures of partially erupted molars, by killing microorganisms from complex dental biofilms. This pilot study aimed to evaluate the effect of Antimicrobial Photodynamic Therapy (aPDT) on the viability of specific microorganism groups of dental microcosm biofilms from occlusal surfaces of first permanent molars in eruption. Dental microcosm biofilms grown on bovine enamel blocks, from dental plaque collected on occlusal surfaces of a partially erupted lower right first permanent molar, with McBain medium plus 1% sucrose in anaerobic condition at 37 °C for 72 h. The experiments were performed in eight groups: L-P- = no treatment (control), L18.75P- = 18.75 J/cm 2 LED, L37.5P- = 37.5 J/cm 2 LED, L75P- = 75 J/cm 2 LED, L-P+ = 200 mM TBO, L18.75P+ = 200 mM TBO + 18.75 J/cm 2 LED, L37.5P+ = 200 mM TBO + 37.5 J/cm 2 LED, and L75P+ = 200 mM TBO + 75 J/cm 2 LED. The counts of total microorganisms, total streptococci and mutans streptococci were determined on selective media agar plates by colony-forming units per mL. The log-transformed counts were analyzed by Kruskal-Wallis and post-hoc Dunn's test (P < 0.05). The counts of all microorganisms treated in the group L75P+ were statistically lower than those treated in L-P-. The aPDT promoted a significant reduction of microorganisms, with a trend of dose-dependent effect. TBO-mediated aPDT was effective in reducing the viability of specific microbial groups in dental microcosm biofilms originated from occlusal of permanent molars in eruption. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evaluation of Effective Microorganisms on home scale organic waste composting.

    PubMed

    Fan, Yee Van; Lee, Chew Tin; Klemeš, Jiří Jaromír; Chua, Lee Suan; Sarmidi, Mohamad Roji; Leow, Chee Woh

    2018-06-15

    Home composting can be an effective way to reduce the volume of municipal solid waste. The aim of this study is to evaluate the effect of Effective Microorganism™ (EM) for the home scale co-composting of food waste, rice bran and dried leaves. A general consensus is lacking regarding the efficiency of inoculation composting. Home scale composting was carried out with and without EM (control) to identify the roles of EM. The composting parameters for both trials showed a similar trend of changes during the decomposition. As assayed by Fourier Transform Infrared Spectroscopy (FTIR), the functional group of humic acid was initially dominated by aliphatic structure but was dominated by the aromatic in the final compost. The EM compost has a sharper peak of aromatic CC bond presenting a better degree of humification. Compost with EM achieved a slightly higher temperature at the early stage, with foul odour suppressed, enhanced humification process and a greater fat reduction (73%). No significant difference was found for the final composts inoculated with and without EM. The properties included pH (∼7), electric conductivity (∼2), carbon-to-nitrogen ratio (C: N < 14), colour (dark brown), odour (earthy smell), germination index (>100%), humic acid content (4.5-4.8%) and pathogen content (no Salmonella, <1000 Most Probable Number/g E. coli). All samples were well matured within 2 months. The potassium and phosphate contents in both cases were similar however the EM compost has a higher nitrogen content (+1.5%). The overall results suggested the positive effect provided by EM notably in odour control and humification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Medicare program; FY 2014 hospice wage index and payment rate update; hospice quality reporting requirements; and updates on payment reform. final rule.

    PubMed

    2013-08-07

    This final rule updates the hospice payment rates and the wage index for fiscal year (FY) 2014, and continues the phase out of the wage index budget neutrality adjustment factor (BNAF). Including the FY 2014 15 percent BNAF reduction, the total 5 year cumulative BNAF reduction in FY 2014 will be 70 percent. The BNAF phase-out will continue with successive 15 percent reductions in FY 2015 and FY 2016. This final rule also clarifies how hospices are to report diagnoses on hospice claims, and provides updates to the public on hospice payment reform. Additionally, this final rule changes the requirements for the hospice quality reporting program by discontinuing currently reported measures and implementing a Hospice Item Set with seven National Quality Forum (NFQ) endorsed measures beginning July 1, 2014, as proposed. Finally, this final rule will implement the hospice Experience of Care Survey on January 1, 2015, as proposed.

  18. Novel Phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697

    PubMed Central

    Tamayo-Ramos, Juan Antonio; Sanz-Penella, Juan Mario; Yebra, María J.

    2012-01-01

    Two novel phytases have been characterized from Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis. The enzymes belong to a new subclass within the histidine acid phytases, are highly specific for the hydrolysis of phytate, and render myo-inositol triphosphate as the final hydrolysis product. They represent the first phytases characterized from this group of probiotic microorganisms, opening the possibilities for their use in the processing of high-phytate-content foods. PMID:22582052

  19. Copper, gold, and silver decorated magnetic core-polymeric shell nanostructures for destruction of pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Padervand, Mohsen; Karanji, Ahmad Kiani; Elahifard, Mohammad Reza

    2017-05-01

    Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.

  20. Inactivation kinetics of spores of Bacillus cereus strains treated by a peracetic acid-based disinfectant at different concentrations and temperatures.

    PubMed

    Sudhaus, Nadine; Pina-Pérez, Maria Consuelo; Martínez, Antonio; Klein, Günter

    2012-05-01

    The purpose of this study was to assess the effect of a commercial peracetic acid-based disinfectant against spores of Bacillus cereus, to identify the most influential factor for the final number of microorganisms after different disinfection procedures, and to evaluate the nature of the inactivation kinetics. The spores of four different strains of B. cereus (DSM 318, 4312, 4313, and 4384) were treated with five different disinfectant concentrations (0.25%, 0.5%, 1.0%, 1.5%, and 2.0% [w/v]) at three different temperatures (10°C, 15°C, and 20°C) with or without protein load. A higher temperature and PES 15/23 concentration resulted in a higher inactivation. Inactivation of B. cereus strain 4312 was around 2 log₁₀ cycles at 10°C and around 7 log₁₀ at 20°C (conc=1% [w/v] PAA; t=60 min; without protein). The protein load at higher concentrations did not significantly reduce the efficacy of the disinfectant (p>0.05). This article indicates the applicability of the Weibull model to fit the B. cereus disinfectant survival curves. A Monte Carlo simulation was used to carry out a sensitivity analysis, which revealed the most influential factors affecting the final number of microorganisms after the disinfection process.

  1. Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation.

    PubMed

    Płaza, Grazyna A; Jangid, Kamlesh; Lukasik, Krystyna; Nałecz-Jawecki, Grzegorz; Berry, Christopher J; Brigmon, Robin L

    2008-10-01

    The aim of the study was to investigate petroleum waste remediation and toxicity reduction by five bacterial strains: Ralstonia picketti SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (I'-1a), Bacillus sp. (T-1), and Bacillus sp. (T'-1), previously isolated from petroleum-contaminated soils. Petroleum hydrocarbons were significantly degraded (91%) by the mixed bacterial cultures in 30 days (reaching up to 29% in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3-fold after 30 days. This work shows the influence of bacteria on hydrocarbon degradation and associated toxicity, and its dependence on the specific microorganisms present. The ability of these mixed cultures to degrade hydrocarbons and reduce toxicity makes them candidates for environmental restoration applications at other hydrocarbon-contaminated environments.

  2. Dehalogenation Activities and Distribution of Reductive Dehalogenase Homologous Genes in Marine Subsurface Sediments▿ †

    PubMed Central

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H.; Inagaki, Fumio

    2009-01-01

    Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem. PMID:19749069

  3. Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments.

    PubMed

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H; Inagaki, Fumio

    2009-11-01

    Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem.

  4. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  5. Microbiological Load of Edible Insects Found in Belgium.

    PubMed

    Caparros Megido, Rudy; Desmedt, Sandrine; Blecker, Christophe; Béra, François; Haubruge, Éric; Alabi, Taofic; Francis, Frédéric

    2017-01-13

    Edible insects are gaining more and more attention as a sustainable source of animal protein for food and feed in the future. In Belgium, some insect products can be found on the market, and consumers are sourcing fresh insects from fishing stores or towards traditional markets to find exotic insects that are illegal and not sanitarily controlled. From this perspective, this study aims to characterize the microbial load of edible insects found in Belgium (i.e., fresh mealworms and house crickets from European farms and smoked termites and caterpillars from a traditional Congolese market) and to evaluate the efficiency of different processing methods (blanching for all species and freeze-drying and sterilization for European species) in reducing microorganism counts. All untreated insect samples had a total aerobic count higher than the limit for fresh minced meat (6.7 log cfu/g). Nevertheless, a species-dependent blanching step has led to a reduction of the total aerobic count under this limit, except for one caterpillar species. Freeze-drying and sterilization treatments on European species were also effective in reducing the total aerobic count. Yeast and mold counts for untreated insects were above the Good Manufacturing Practice limits for raw meat, but all treatments attained a reduction of these microorganisms under this limit. These results confirmed that fresh insects, but also smoked insects from non-European trades, need a cooking step (at least composed of a first blanching step) before consumption. Therefore, blanching timing for each studied insect species is proposed and discussed.

  6. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    PubMed

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  7. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger.

    PubMed

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima; de Oliveira, Kelly Mari Pires

    2017-01-01

    The roots of Cochlospermum regium , popularly known as "algodãozinho-do-cerrado," are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation.

  8. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger

    PubMed Central

    Leme, Danny Ellen Meireles; Rodrigues, Allan Belarmino; de Almeida-Apolonio, Adriana Araújo; Dantas, Fabiana Gomes da Silva; Svidzinski, Terezinha Inez Estivalet; Mota, Jonas da Silva; Cardoso, Claudia Andrea Lima

    2017-01-01

    The roots of Cochlospermum regium, popularly known as “algodãozinho-do-cerrado,” are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf's ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation. PMID:29375642

  9. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    PubMed

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  11. Microbiological profile of selected mucks

    NASA Astrophysics Data System (ADS)

    Dąbek-Szreniawska, M.; Wyczółkowski, A. I.

    2009-04-01

    INTRODUCTION Matyka-Sarzynska and Sokolowska (2000) emphasize that peats and peat soils comprise large areas of Poland. The creation of soil begins when the formation of swamp has ended. Gawlik (2000) states that the degree of influence of the mucky process of organic soils on the differentiations of the conditions of growth and development of plants is mainly connected with the changes of moisture-retentive properties of mucks which constitute the material for these soils, and the loss of their wetting capacities. The above-mentioned changes, which usually occur gradually and show a clear connection with the extent of dehydration and, at times, with its duration, intensify significantly when the soils are under cultivation. The mucky process of peat soils leads to transformations of their physical, chemical and biological properties. The main ingredient of peat soils is organic substance. The substance is maintained inside them by the protective activity of water. The process of land improvement reduces the humidity of the environment, and that Intensifies the pace of the activity of soil microorganisms which cause the decay of organic substance. The decay takes place in the direction of two parallel processes: mineralization and humification. All groups of chemical substances constituting peat undergo mineralization. Special attention should be called to the mineralization of carbon and nitrogen compounds, which constitute a large percentage of theorganic substance of the peat organic mass. Okruszko (1976) has examined scientificbases of the classification of peat soils depending on the intensity of the muck process. The aim of this publication was to conduct a microbiological characteristic of selected mucky material. METHODS AND MATERIALS Soil samples used in the experiments were acquired from the Leczynsko-Wlodawski Lake Region, a large area of which constitutes a part of the Poleski National Park, which is covered to a large extent with high peat bogs. It was a mucky-peat soil with different degrees of muck process, described by Gawlik (2000) as MtI - first step of muck process, and MtII - second step of muck process. The numbers of selected groups of microorganisms were established using the cultivation method. The total number of microorganisms, zymogenic, aerobic and anaerobic microorganisms (Fred, Waksman 1928), oligotrophic microorganisms, the number of fungi (Parkinson 1982), ammonifiers (Parkinson et al 1971), nitrogen reducers and amolytic microorganisms (Pochon and Tardieux 1962), were determined. RESULTS The interpretation of the obtained results should take into consideration not only the characteristics of the studied objects, but also the characteristics of the methods used and of the examined microorganisms. As a result of the experiments that were carried out, significant differences of the numbers of the examined groups of microorganisms, depending on the degree of the muck process, have been observed. The number of the examined groups was significantly higher in the soil at the first step muck process than the second step of muck process. Amylolytic bacteria were an exception. Probably, during the muck process, ammonification, nitrification and nitrogen reduction process take place at the same time, which is indicated by the number of individual groups of examined microorganisms. CONCLUSIONS During the muck process, the number of microorganisms in the soil decreases. It can be presupposed that during the muck process, the basic process realized by microorganisms is the degradation of organic substance, using nitrates as oxidizers. Dąbek-Szreniawska M.: 1992 Results of microbiological analysis related to soil physical properties. Zesz. Probl. Post. Nauk Roln., 398, 1-6. Fred E.B., Waksman S.A.: 1928 Laboratory manual of general microbiology. Mc Graw-Hill Book Company, New York - London pp. 145. Gawlik J.: 2000 Division of differently silted peat formations into classes according to their state of secondary transformations. Acta Agrophysica, 26, 17-24. Maciak F.: 1985 MateriaŁ y do ćwiczeń z rekultywacji teren

  12. Agenda and Meeting Summary from Final Workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.

  13. Evaluation of growth based rapid microbiological methods for sterility testing of vaccines and other biological products.

    PubMed

    Parveen, Seema; Kaur, Simleen; David, Selwyn A Wilson; Kenney, James L; McCormick, William M; Gupta, Rajesh K

    2011-10-19

    Most biological products, including vaccines, administered by the parenteral route are required to be tested for sterility at the final container and also at various stages during manufacture. The sterility testing method described in the Code of Federal Regulations (21 CFR 610.12) and the United States Pharmacopoeia (USP, Chapter <71>) is based on the observation of turbidity in liquid culture media due to growth of potential contaminants. We evaluated rapid microbiological methods (RMM) based on detection of growth 1) by adenosine triphosphate (ATP) bioluminescence technology (Rapid Milliflex(®) Detection System [RMDS]), and 2) by CO(2) monitoring technologies (BacT/Alert and the BACTEC systems), as alternate sterility methods. Microorganisms representing Gram negative, Gram positive, aerobic, anaerobic, spore forming, slow growing bacteria, yeast, and fungi were prepared in aliquots of Fluid A or a biological matrix (including inactivated influenza vaccines) to contain approximately 0.1, 1, 10 and 100 colony forming units (CFU) in an inoculum of 10 ml. These preparations were inoculated to the specific media required for the various methods: 1) fluid thioglycollate medium (FTM) and tryptic soy broth (TSB) of the compendial sterility method (both membrane filtration and direct inoculation); 2) tryptic soy agar (TSA), Sabouraud dextrose agar (SDA) and Schaedler blood agar (SBA) of the RMDS; 3) iAST and iNST media of the BacT/Alert system and 4) Standard 10 Aerobic/F and Standard Anaerobic/F media of the BACTEC system. RMDS was significantly more sensitive in detecting various microorganisms at 0.1CFU than the compendial methods (p<0.05), whereas the compendial membrane filtration method was significantly more sensitive than the BACTEC and BacT/Alert methods (p<0.05). RMDS detected all microorganisms significantly faster than the compendial method (p<0.05). BacT/Alert and BACTEC methods detected most microorganisms significantly faster than the compendial method (p<0.05), but took almost the same time to detect the slow growing microorganism P. acnes, compared to the compendial method. RMDS using SBA detected all test microorganisms in the presence of a matrix containing preservative 0.01% thimerosal, whereas the BacT/Alert and BACTEC systems did not consistently detect all the test microorganisms in the presence of 0.01% thimerosal. RMDS was compatible with inactivated influenza vaccines and aluminum phosphate or aluminum hydroxide adjuvants at up to 8 mg/ml without any interference in bioluminescence. RMDS was shown to be acceptable as an alternate sterility method taking 5 days as compared to the 14 days required of the compendial method. Isolation of microorganisms from the RMDS was accomplished by re-incubation of membranes with fresh SBA medium and microbial identification was confirmed using the MicroSEQ Identification System. BacT/Alert and BACTEC systems may be applicable as alternate methods to the compendial direct inoculation sterility method for products that do not contain preservatives or anti-microbial agents. Published by Elsevier Ltd.

  14. Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor.

    PubMed

    Ontiveros-Valencia, Aura; Zhou, Chen; Ilhan, Zehra Esra; de Saint Cyr, Louis Cornette; Krajmalnik-Brown, Rosa; Rittmann, Bruce E

    2017-11-15

    Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H 2 -based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c 3 , such as SRB and ferric-iron-reducers, were inhibited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples

    PubMed Central

    Sorensen, Darwin L.; Dupont, R. Ryan

    2016-01-01

    ABSTRACT The extent of arsenic contamination in drinking water and its potential threat to human health have resulted in considerable research interest in the microbial species responsible for arsenic reduction. The arsenate reductase gene (arrA), an important component of the microbial arsenate reduction system, has been widely used as a biomarker to study arsenate-reducing microorganisms. A new primer pair was designed and evaluated for quantitative PCR (qPCR) and high-throughput sequencing of the arrA gene, because currently available PCR primers are not suitable for these applications. The primers were evaluated in silico and empirically tested for amplification of arrA genes in clones and for amplification and high-throughput sequencing of arrA genes from soil and groundwater samples. In silico, this primer pair matched (≥90% DNA identity) 86% of arrA gene sequences from GenBank. Empirical evaluation showed successful amplification of arrA gene clones of diverse phylogenetic groups, as well as amplification and high-throughput sequencing of independent soil and groundwater samples without preenrichment, suggesting that these primers are highly specific and can amplify a broad diversity of arrA genes. The arrA gene diversity from soil and groundwater samples from the Cache Valley Basin (CVB) in Utah was greater than anticipated. We observed a significant correlation between arrA gene abundance, quantified through qPCR, and reduced arsenic (AsIII) concentrations in the groundwater samples. Furthermore, we demonstrated that these primers can be useful for studying the diversity of arsenate-reducing microbial communities and the ways in which their relative abundance in groundwater may be associated with different groundwater quality parameters. IMPORTANCE Arsenic is a major drinking water contaminant that threatens the health of millions of people worldwide. The extent of arsenic contamination and its potential threat to human health have resulted in considerable interest in the study of microbial species responsible for the reduction of arsenic, i.e., the conversion of AsV to AsIII. In this study, we developed a new primer pair to evaluate the diversity and abundance of arsenate-reducing microorganisms in soil and groundwater samples from the CVB in Utah. We observed significant arrA gene diversity in the CVB soil and groundwater samples, and arrA gene abundance was significantly correlated with the reduced arsenic (AsIII) concentrations in the groundwater samples. We think that these primers are useful for studying the ecology of arsenate-reducing microorganisms in different environments. PMID:27913413

  16. [Fertility and Environmental Impacts of Urban Scattered Human Feces Used as Organic Granular Fertilizer for Leaf Vegetables].

    PubMed

    Lü, Wen-zhou; Qiao, Yu-xiang; Yu, Ning; Shi, Rong-hua; Wang, Guang-ming

    2015-09-01

    The disposal of urban scattered human feces has become a difficult problem for the management of modern city. In present study, the scattered human feces underwent the collection, scum removal, flocculation and dehydration, finally became the granular fertilizer; the effects of the ratio of fertilizer to soil on the growth of the pakchoi and the quality of soil and leaching water were evaluated, and the feasibility of granular fertilizer manuring the pakchoi was discussed by pot experiments. The results showed that the granular fertilizer significantly enhanced the production of the pakchoi which were not polluted by the intestinal microorganisms under the experiment conditions; meanwhile, at the proper ratio of fertilizer to soil, the concentration of these microorganisms in the leaching water was lower than that in the control check. Chemical analyses of soil revealed that the nutrient content of nitrogen, phosphorus, potassium and organic matters in soil became much richer in all treatments. In addition, the granular fertilizer improved the physical- chemical properties of soil, including raising the level of soil porosity and reducing the volume weight of soil. Application of granular fertilizer won't pollute the soil or leaching water; instead, it can also prevent nitrogen, potassium and intestinal microorganisms from leaching inio ground water at the proper ratio of granular fertilizer to soil.

  17. White biotechnology: State of the art strategies for the development of biocatalysts for biorefining.

    PubMed

    Heux, S; Meynial-Salles, I; O'Donohue, M J; Dumon, C

    2015-12-01

    White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the 'omic' technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems

    PubMed Central

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-01-01

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314

  19. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  20. Bioremediation of Crude Oil Contaminated Desert Soil: Effect of Biostimulation, Bioaugmentation and Bioavailability in Biopile Treatment Systems.

    PubMed

    Benyahia, Farid; Embaby, Ahmed Shams

    2016-02-15

    This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.

Top