NASA Technical Reports Server (NTRS)
Bien, D. D.
1973-01-01
This analysis considers the optimum allocation of redundancy in a system of serially connected subsystems in which each subsystem is of the k-out-of-n type. Redundancy is optimally allocated when: (1) reliability is maximized for given costs; or (2) costs are minimized for given reliability. Several techniques are presented for achieving optimum allocation and their relative merits are discussed. Approximate solutions in closed form were attainable only for the special case of series-parallel systems and the efficacy of these approximations is discussed.
Redundancy allocation problem for k-out-of- n systems with a choice of redundancy strategies
NASA Astrophysics Data System (ADS)
Aghaei, Mahsa; Zeinal Hamadani, Ali; Abouei Ardakan, Mostafa
2017-03-01
To increase the reliability of a specific system, using redundant components is a common method which is called redundancy allocation problem (RAP). Some of the RAP studies have focused on k-out-of- n systems. However, all of these studies assumed predetermined active or standby strategies for each subsystem. In this paper, for the first time, we propose a k-out-of- n system with a choice of redundancy strategies. Therefore, a k-out-of- n series-parallel system is considered when the redundancy strategy can be chosen for each subsystem. In other words, in the proposed model, the redundancy strategy is considered as an additional decision variable and an exact method based on integer programming is used to obtain the optimal solution of the problem. As the optimization of RAP belongs to the NP-hard class of problems, a modified version of genetic algorithm (GA) is also developed. The exact method and the proposed GA are implemented on a well-known test problem and the results demonstrate the efficiency of the new approach compared with the previous studies.
Study of Fuze Structure and Reliability Design Based on the Direct Search Method
NASA Astrophysics Data System (ADS)
Lin, Zhang; Ning, Wang
2017-03-01
Redundant design is one of the important methods to improve the reliability of the system, but mutual coupling of multiple factors is often involved in the design. In my study, Direct Search Method is introduced into the optimum redundancy configuration for design optimization, in which, the reliability, cost, structural weight and other factors can be taken into account simultaneously, and the redundant allocation and reliability design of aircraft critical system are computed. The results show that this method is convenient and workable, and applicable to the redundancy configurations and optimization of various designs upon appropriate modifications. And this method has a good practical value.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
A Framework for Optimal Control Allocation with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc
2010-01-01
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.
Quadratic Programming for Allocating Control Effort
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2005-01-01
A computer program calculates an optimal allocation of control effort in a system that includes redundant control actuators. The program implements an iterative (but otherwise single-stage) algorithm of the quadratic-programming type. In general, in the quadratic-programming problem, one seeks the values of a set of variables that minimize a quadratic cost function, subject to a set of linear equality and inequality constraints. In this program, the cost function combines control effort (typically quantified in terms of energy or fuel consumed) and control residuals (differences between commanded and sensed values of variables to be controlled). In comparison with prior control-allocation software, this program offers approximately equal accuracy but much greater computational efficiency. In addition, this program offers flexibility, robustness to actuation failures, and a capability for selective enforcement of control requirements. The computational efficiency of this program makes it suitable for such complex, real-time applications as controlling redundant aircraft actuators or redundant spacecraft thrusters. The program is written in the C language for execution in a UNIX operating system.
NASA Astrophysics Data System (ADS)
Jubran, Mohammad K.; Bansal, Manu; Kondi, Lisimachos P.
2006-01-01
In this paper, we consider the problem of optimal bit allocation for wireless video transmission over fading channels. We use a newly developed hybrid scalable/multiple-description codec that combines the functionality of both scalable and multiple-description codecs. It produces a base layer and multiple-description enhancement layers. Any of the enhancement layers can be decoded (in a non-hierarchical manner) with the base layer to improve the reconstructed video quality. Two different channel coding schemes (Rate-Compatible Punctured Convolutional (RCPC)/Cyclic Redundancy Check (CRC) coding and, product code Reed Solomon (RS)+RCPC/CRC coding) are used for unequal error protection of the layered bitstream. Optimal allocation of the bitrate between source and channel coding is performed for discrete sets of source coding rates and channel coding rates. Experimental results are presented for a wide range of channel conditions. Also, comparisons with classical scalable coding show the effectiveness of using hybrid scalable/multiple-description coding for wireless transmission.
A new way to improve the robustness of complex communication networks by allocating redundancy links
NASA Astrophysics Data System (ADS)
Shi, Chunhui; Peng, Yunfeng; Zhuo, Yue; Tang, Jieying; Long, Keping
2012-03-01
We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks.
Control allocation for gimballed/fixed thrusters
NASA Astrophysics Data System (ADS)
Servidia, Pablo A.
2010-02-01
Some overactuated control systems use a control distribution law between the controller and the set of actuators, usually called control allocator. Beyond the control allocator, the configuration of actuators may be designed to be able to operate after a single point of failure, for system optimization and/or decentralization objectives. For some type of actuators, a control allocation is used even without redundancy, being a good example the design and operation of thruster configurations. In fact, as the thruster mass flow direction and magnitude only can be changed under certain limits, this must be considered in the feedback implementation. In this work, the thruster configuration design is considered in the fixed (F), single-gimbal (SG) and double-gimbal (DG) thruster cases. The minimum number of thrusters for each case is obtained and for the resulting configurations a specific control allocation is proposed using a nonlinear programming algorithm, under nominal and single-point of failure conditions.
Contrarian behavior in a complex adaptive system
NASA Astrophysics Data System (ADS)
Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.
2013-01-01
Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.
A PC program to optimize system configuration for desired reliability at minimum cost
NASA Technical Reports Server (NTRS)
Hills, Steven W.; Siahpush, Ali S.
1994-01-01
High reliability is desired in all engineered systems. One way to improve system reliability is to use redundant components. When redundant components are used, the problem becomes one of allocating them to achieve the best reliability without exceeding other design constraints such as cost, weight, or volume. Systems with few components can be optimized by simply examining every possible combination but the number of combinations for most systems is prohibitive. A computerized iteration of the process is possible but anything short of a super computer requires too much time to be practical. Many researchers have derived mathematical formulations for calculating the optimum configuration directly. However, most of the derivations are based on continuous functions whereas the real system is composed of discrete entities. Therefore, these techniques are approximations of the true optimum solution. This paper describes a computer program that will determine the optimum configuration of a system of multiple redundancy of both standard and optional components. The algorithm is a pair-wise comparative progression technique which can derive the true optimum by calculating only a small fraction of the total number of combinations. A designer can quickly analyze a system with this program on a personal computer.
Consideration of plant behaviour in optimal servo-compensator design
NASA Astrophysics Data System (ADS)
Moase, W. H.; Manzie, C.
2016-07-01
Where the most prevalent optimal servo-compensator formulations penalise the behaviour of an error system, this paper considers the problem of additionally penalising the actual states and inputs of the plant. Doing so has the advantage of enabling the penalty function to better resemble an economic cost. This is especially true of problems where control effort needs to be sensibly allocated across weakly redundant inputs or where one wishes to use penalties to soft-constrain certain states or inputs. It is shown that, although the resulting cost function grows unbounded as its horizon approaches infinity, it is possible to formulate an equivalent optimisation problem with a bounded cost. The resulting optimisation problem is similar to those in earlier studies but has an additional 'correction term' in the cost function, and a set of equality constraints that arise when there are redundant inputs. A numerical approach to solve the resulting optimisation problem is presented, followed by simulations on a micro-macro positioner that illustrate the benefits of the proposed servo-compensator design approach.
Computationally efficient control allocation
NASA Technical Reports Server (NTRS)
Durham, Wayne (Inventor)
2001-01-01
A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.
NASA Astrophysics Data System (ADS)
Gupta, R. K.; Bhunia, A. K.; Roy, D.
2009-10-01
In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.
NASA Technical Reports Server (NTRS)
Bradley, D. B.; Irwin, J. D.
1974-01-01
A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.
Redundant interferometric calibration as a complex optimization problem
NASA Astrophysics Data System (ADS)
Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.
2018-05-01
Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.
NASA Astrophysics Data System (ADS)
Chembuly, V. V. M. J. Satish; Voruganti, Hari Kumar
2018-04-01
Hyper redundant manipulators have a large number of degrees of freedom (DOF) than the required to perform a given task. Additional DOF of manipulators provide the flexibility to work in highly cluttered environment and in constrained workspaces. Inverse kinematics (IK) of hyper-redundant manipulators is complicated due to large number of DOF and these manipulators have multiple IK solutions. The redundancy gives a choice of selecting best solution out of multiple solutions based on certain criteria such as obstacle avoidance, singularity avoidance, joint limit avoidance and joint torque minimization. This paper focuses on IK solution and redundancy resolution of hyper-redundant manipulator using classical optimization approach. Joint positions are computed by optimizing various criteria for a serial hyper redundant manipulators while traversing different paths in the workspace. Several cases are addressed using this scheme to obtain the inverse kinematic solution while optimizing the criteria like obstacle avoidance, joint limit avoidance.
Linear Quadratic Tracking Design for a Generic Transport Aircraft with Structural Load Constraints
NASA Technical Reports Server (NTRS)
Burken, John J.; Frost, Susan A.; Taylor, Brian R.
2011-01-01
When designing control laws for systems with constraints added to the tracking performance, control allocation methods can be utilized. Control allocations methods are used when there are more command inputs than controlled variables. Constraints that require allocators are such task as; surface saturation limits, structural load limits, drag reduction constraints or actuator failures. Most transport aircraft have many actuated surfaces compared to the three controlled variables (such as angle of attack, roll rate & angle of side slip). To distribute the control effort among the redundant set of actuators a fixed mixer approach can be utilized or online control allocation techniques. The benefit of an online allocator is that constraints can be considered in the design whereas the fixed mixer cannot. However, an online control allocator mixer has a disadvantage of not guaranteeing a surface schedule, which can then produce ill defined loads on the aircraft. The load uncertainty and complexity has prevented some controller designs from using advanced allocation techniques. This paper considers actuator redundancy management for a class of over actuated systems with real-time structural load limits using linear quadratic tracking applied to the generic transport model. A roll maneuver example of an artificial load limit constraint is shown and compared to the same no load limitation maneuver.
Guidance, Navigation, and Control System Design in a Mass Reduction Exercise
NASA Technical Reports Server (NTRS)
Crain, Timothy; Begly, Michael; Jackson, Mark; Broome, Joel
2008-01-01
Early Orion GN&C system designs optimized for robustness, simplicity, and utilization of commercially available components. During the System Definition Review (SDR), all subsystems on Orion were asked to re-optimize with component mass and steady state power as primary design metrics. The objective was to create a mass reserve in the Orion point of departure vehicle design prior to beginning the PDR analysis cycle. The Orion GN&C subsystem team transitioned from a philosophy of absolute 2 fault tolerance for crew safety and 1 fault tolerance for mission success to an approach of 1 fault tolerance for crew safety and risk based redundancy to meet probability allocations of loss of mission and loss of crew. This paper will discuss the analyses, rationale, and end results of this activity regarding Orion navigation sensor hardware, control effectors, and trajectory design.
An Efficient, Lossless Database for Storing and Transmitting Medical Images
NASA Technical Reports Server (NTRS)
Fenstermacher, Marc J.
1998-01-01
This research aimed in creating new compression methods based on the central idea of Set Redundancy Compression (SRC). Set Redundancy refers to the common information that exists in a set of similar images. SRC compression methods take advantage of this common information and can achieve improved compression of similar images by reducing their Set Redundancy. The current research resulted in the development of three new lossless SRC compression methods: MARS (Median-Aided Region Sorting), MAZE (Max-Aided Zero Elimination) and MaxGBA (Max-Guided Bit Allocation).
Cartesian control of redundant robots
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.
1989-01-01
A Cartesian-space position/force controller is presented for redundant robots. The proposed control structure partitions the control problem into a nonredundant position/force trajectory tracking problem and a redundant mapping problem between Cartesian control input F is a set member of the set R(sup m) and robot actuator torque T is a set member of the set R(sup n) (for redundant robots, m is less than n). The underdetermined nature of the F yields T map is exploited so that the robot redundancy is utilized to improve the dynamic response of the robot. This dynamically optimal F yields T map is implemented locally (in time) so that it is computationally efficient for on-line control; however, it is shown that the map possesses globally optimal characteristics. Additionally, it is demonstrated that the dynamically optimal F yields T map can be modified so that the robot redundancy is used to simultaneously improve the dynamic response and realize any specified kinematic performance objective (e.g., manipulability maximization or obstacle avoidance). Computer simulation results are given for a four degree of freedom planar redundant robot under Cartesian control, and demonstrate that position/force trajectory tracking and effective redundancy utilization can be achieved simultaneously with the proposed controller.
An optimal resolved rate law for kindematically redundant manipulators
NASA Technical Reports Server (NTRS)
Bourgeois, B. J.
1987-01-01
The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution was found to cause large joint rates in some case. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to nonplanar manipulators.
In-flight performance optimization for rotorcraft with redundant controls
NASA Astrophysics Data System (ADS)
Ozdemir, Gurbuz Taha
A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to establish a schedule. The method has been expanded to search a two-dimensional control space. Simulation results demonstrate the ability to maximize range by optimizing stabilator deflection and an airspeed set point. Another set of results minimize power required in high speed flight by optimizing collective pitch and stabilator deflection. Results show that the control laws effectively hold the flight condition while the FTO method is effective at improving performance. Optimizations show there can be issues when the control laws regulating altitude push the collective control towards it limits. So a modification was made to the control law to regulate airspeed and altitude using propeller pitch and angle of attack while the collective is held fixed or used as an optimization variable. A dynamic trim limit avoidance algorithm is applied to avoid control saturation in other axes during optimization maneuvers. Range and power optimization FTO simulations are compared with comprehensive sweeps of trim solutions and FTO optimization shown to be effective and reliable in reaching an optimal when optimizing up to two redundant controls. Use of redundant controls is shown to be beneficial for improving performance. The search method takes almost 25 minutes of simulated flight for optimization to be complete. The optimization maneuver itself can sometimes drive the power required to high values, so a power limit is imposed to restrict the search to avoid conditions where power is more than5% higher than that of the initial trim state. With this modification, the time the optimization maneuver takes to complete is reduced down to 21 minutes without any significant change in the optimal power value.
An optimal resolved rate law for kinematically redundant manipulators
NASA Technical Reports Server (NTRS)
Bourgeois, B. J.
1987-01-01
The resolved rate law for a manipulator provides the instantaneous joint rates required to satisfy a given instantaneous hand motion. When the joint space has more degrees of freedom than the task space, the manipulator is kinematically redundant and the kinematic rate equations are underdetermined. These equations can be locally optimized, but the resulting pseudo-inverse solution has been found to cause large joint rates in some cases. A weighting matrix in the locally optimized (pseudo-inverse) solution is dynamically adjusted to control the joint motion as desired. Joint reach limit avoidance is demonstrated in a kinematically redundant planar arm model. The treatment is applicable to redundant manipulators with any number of revolute joints and to non-planar manipulators.
Management of redundancy in flight control systems using optimal decision theory
NASA Technical Reports Server (NTRS)
1981-01-01
The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.
Error-Resilient Unequal Error Protection of Fine Granularity Scalable Video Bitstreams
NASA Astrophysics Data System (ADS)
Cai, Hua; Zeng, Bing; Shen, Guobin; Xiong, Zixiang; Li, Shipeng
2006-12-01
This paper deals with the optimal packet loss protection issue for streaming the fine granularity scalable (FGS) video bitstreams over IP networks. Unlike many other existing protection schemes, we develop an error-resilient unequal error protection (ER-UEP) method that adds redundant information optimally for loss protection and, at the same time, cancels completely the dependency among bitstream after loss recovery. In our ER-UEP method, the FGS enhancement-layer bitstream is first packetized into a group of independent and scalable data packets. Parity packets, which are also scalable, are then generated. Unequal protection is finally achieved by properly shaping the data packets and the parity packets. We present an algorithm that can optimally allocate the rate budget between data packets and parity packets, together with several simplified versions that have lower complexity. Compared with conventional UEP schemes that suffer from bit contamination (caused by the bit dependency within a bitstream), our method guarantees successful decoding of all received bits, thus leading to strong error-resilience (at any fixed channel bandwidth) and high robustness (under varying and/or unclean channel conditions).
Kinematically redundant robot manipulators
NASA Technical Reports Server (NTRS)
Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.
1987-01-01
Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.
Optimally robust redundancy relations for failure detection in uncertain systems
NASA Technical Reports Server (NTRS)
Lou, X.-C.; Willsky, A. S.; Verghese, G. C.
1986-01-01
All failure detection methods are based, either explicitly or implicitly, on the use of redundancy, i.e. on (possibly dynamic) relations among the measured variables. The robustness of the failure detection process consequently depends to a great degree on the reliability of the redundancy relations, which in turn is affected by the inevitable presence of model uncertainties. In this paper the problem of determining redundancy relations that are optimally robust is addressed in a sense that includes several major issues of importance in practical failure detection and that provides a significant amount of intuition concerning the geometry of robust failure detection. A procedure is given involving the construction of a single matrix and its singular value decomposition for the determination of a complete sequence of redundancy relations, ordered in terms of their level of robustness. This procedure also provides the basis for comparing levels of robustness in redundancy provided by different sets of sensors.
Optimal Bi-Objective Redundancy Allocation for Systems Reliability and Risk Management.
Govindan, Kannan; Jafarian, Ahmad; Azbari, Mostafa E; Choi, Tsan-Ming
2016-08-01
In the big data era, systems reliability is critical to effective systems risk management. In this paper, a novel multiobjective approach, with hybridization of a known algorithm called NSGA-II and an adaptive population-based simulated annealing (APBSA) method is developed to solve the systems reliability optimization problems. In the first step, to create a good algorithm, we use a coevolutionary strategy. Since the proposed algorithm is very sensitive to parameter values, the response surface method is employed to estimate the appropriate parameters of the algorithm. Moreover, to examine the performance of our proposed approach, several test problems are generated, and the proposed hybrid algorithm and other commonly known approaches (i.e., MOGA, NRGA, and NSGA-II) are compared with respect to four performance measures: 1) mean ideal distance; 2) diversification metric; 3) percentage of domination; and 4) data envelopment analysis. The computational studies have shown that the proposed algorithm is an effective approach for systems reliability and risk management.
Boeing flight deck design philosophy
NASA Technical Reports Server (NTRS)
Stoll, Harty
1990-01-01
Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.
A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints
NASA Astrophysics Data System (ADS)
Estiningsih, Y.; Farikhin; Tjahjana, R. H.
2018-03-01
Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.
Local performance optimization for a class of redundant eight-degree-of-freedom manipulators
NASA Technical Reports Server (NTRS)
Williams, Robert L., II
1994-01-01
Local performance optimization for joint limit avoidance and manipulability maximization (singularity avoidance) is obtained by using the Jacobian matrix pseudoinverse and by projecting the gradient of an objective function into the Jacobian null space. Real-time redundancy optimization control is achieved for an eight-joint redundant manipulator having a three-axis spherical shoulder, a single elbow joint, and a four-axis spherical wrist. Symbolic solutions are used for both full-Jacobian and wrist-partitioned pseudoinverses, partitioned null-space projection matrices, and all objective function gradients. A kinematic limitation of this class of manipulators and the limitation's effect on redundancy resolution are discussed. Results obtained with graphical simulation are presented to demonstrate the effectiveness of local redundant manipulator performance optimization. Actual hardware experiments performed to verify the simulated results are also discussed. A major result is that the partitioned solution is desirable because of low computation requirements. The partitioned solution is suboptimal compared with the full solution because translational and rotational terms are optimized separately; however, the results show that the difference is not significant. Singularity analysis reveals that no algorithmic singularities exist for the partitioned solution. The partitioned and full solutions share the same physical manipulator singular conditions. When compared with the full solution, the partitioned solution is shown to be ill-conditioned in smaller neighborhoods of the shared singularities.
Harmony search algorithm: application to the redundancy optimization problem
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Thien-My, Dao
2010-09-01
The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.
Optimization of robustness of interdependent network controllability by redundant design
2018-01-01
Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426
Entropy-Based Bounds On Redundancies Of Huffman Codes
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J.
1992-01-01
Report presents extension of theory of redundancy of binary prefix code of Huffman type which includes derivation of variety of bounds expressed in terms of entropy of source and size of alphabet. Recent developments yielded bounds on redundancy of Huffman code in terms of probabilities of various components in source alphabet. In practice, redundancies of optimal prefix codes often closer to 0 than to 1.
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin
2017-06-01
Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.
Redundancy-Aware Topic Modeling for Patient Record Notes
Cohen, Raphael; Aviram, Iddo; Elhadad, Michael; Elhadad, Noémie
2014-01-01
The clinical notes in a given patient record contain much redundancy, in large part due to clinicians’ documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessement of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community. PMID:24551060
Redundancy-aware topic modeling for patient record notes.
Cohen, Raphael; Aviram, Iddo; Elhadad, Michael; Elhadad, Noémie
2014-01-01
The clinical notes in a given patient record contain much redundancy, in large part due to clinicians' documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes. To assess the value of Red-LDA, we experiment with three baselines and our novel redundancy-aware topic modeling method: given a large collection of patient records, (i) apply vanilla LDA to all documents in all input records; (ii) identify and remove all redundancy by chosing a single representative document for each record as input to LDA; (iii) identify and remove all redundant paragraphs in each record, leaving partial, non-redundant documents as input to LDA; and (iv) apply Red-LDA to all documents in all input records. Both quantitative evaluation carried out through log-likelihood on held-out data and topic coherence of produced topics and qualitative assessment of topics carried out by physicians show that Red-LDA produces superior models to all three baseline strategies. This research contributes to the emerging field of understanding the characteristics of the electronic health record and how to account for them in the framework of data mining. The code for the two redundancy-elimination baselines and Red-LDA is made publicly available to the community.
A unique role of endogenous visual-spatial attention in rapid processing of multiple targets
Guzman, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru
2012-01-01
Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions). We report that endogenous attention uniquely contributes to processing of multiple targets. For speeded visual discrimination, response times are faster for multiple redundant targets than for single targets due to probability summation and/or signal integration. This redundancy gain was unaffected when attention was exogenously diverted from the targets, but was completely eliminated when attention was endogenously diverted. This was not due to weaker manipulation of exogenous attention because our exogenous and endogenous cues similarly affected overall response times. Thus, whereas exogenous attention is superior for processing single targets, endogenous attention plays a unique role in allocating resources crucial for rapid concurrent processing of multiple targets. PMID:21517209
Mines Systems Safety Improvement Using an Integrated Event Tree and Fault Tree Analysis
NASA Astrophysics Data System (ADS)
Kumar, Ranjan; Ghosh, Achyuta Krishna
2017-04-01
Mines systems such as ventilation system, strata support system, flame proof safety equipment, are exposed to dynamic operational conditions such as stress, humidity, dust, temperature, etc., and safety improvement of such systems can be done preferably during planning and design stage. However, the existing safety analysis methods do not handle the accident initiation and progression of mine systems explicitly. To bridge this gap, this paper presents an integrated Event Tree (ET) and Fault Tree (FT) approach for safety analysis and improvement of mine systems design. This approach includes ET and FT modeling coupled with redundancy allocation technique. In this method, a concept of top hazard probability is introduced for identifying system failure probability and redundancy is allocated to the system either at component or system level. A case study on mine methane explosion safety with two initiating events is performed. The results demonstrate that the presented method can reveal the accident scenarios and improve the safety of complex mine systems simultaneously.
Analysis and Research on the Optimal Allocation of Regional Water Resources
NASA Astrophysics Data System (ADS)
rui-chao, Xi; yu-jie, Gu
2018-06-01
Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.
Optimal inventories for overhaul of repairable redundant systems - A Markov decision model
NASA Technical Reports Server (NTRS)
Schaefer, M. K.
1984-01-01
A Markovian decision model was developed to calculate the optimal inventory of repairable spare parts for an avionics control system for commercial aircraft. Total expected shortage costs, repair costs, and holding costs are minimized for a machine containing a single system of redundant parts. Transition probabilities are calculated for each repair state and repair rate, and optimal spare parts inventory and repair strategies are determined through linear programming. The linear programming solutions are given in a table.
Constrained trajectory optimization for kinematically redundant arms
NASA Technical Reports Server (NTRS)
Carignan, Craig R.; Tarrant, Janice M.
1990-01-01
Two velocity optimization schemes for resolving redundant joint configurations are compared. The Extended Moore-Penrose Technique minimizes the joint velocities and avoids obstacles indirectly by adjoining a cost gradient to the solution. A new method can incorporate inequality constraints directly to avoid obstacles and singularities in the workspace. A four-link arm example is used to illustrate singularity avoidance while tracking desired end-effector paths.
Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro
2015-01-01
Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. PMID:26558436
Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro
2015-11-12
Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.
Introduction of Service Systems Implementation
NASA Astrophysics Data System (ADS)
Demirkan, Haluk; Spohrer, James C.; Krishna, Vikas
Services systems can range from an individual to a firm to an entire nation. They can also be nested and composed of other service systems. They are configurations of people, information, technology and organizations to co-create value between a service customer and a provider (Maglio et al. 2006; Spohrer et al. 2007). While these configurations can take many, potentially infinite, forms, they can be optimized for the subject service to eliminate unnecessary costs in the forms of redundancies, over allocation, etc. So what is an ideal configuration that a provider and a customer might strive to achieve? As much as it would be nice to have a formula for such configurations, experiences that are result of engagement, are very different for each value co-creation configurations. The variances and dynamism of customer provider engagements result in potentially infinite types and numbers of configurations in today's global economy.
Redundancy relations and robust failure detection
NASA Technical Reports Server (NTRS)
Chow, E. Y.; Lou, X. C.; Verghese, G. C.; Willsky, A. S.
1984-01-01
All failure detection methods are based on the use of redundancy, that is on (possible dynamic) relations among the measured variables. Consequently the robustness of the failure detection process depends to a great degree on the reliability of the redundancy relations given the inevitable presence of model uncertainties. The problem of determining redundancy relations which are optimally robust in a sense which includes the major issues of importance in practical failure detection is addressed. A significant amount of intuition concerning the geometry of robust failure detection is provided.
Research on the optimal structure configuration of dither RLG used in skewed redundant INS
NASA Astrophysics Data System (ADS)
Gao, Chunfeng; Wang, Qi; Wei, Guo; Long, Xingwu
2016-05-01
The actual combat effectiveness of weapon equipment is restricted by the performance of Inertial Navigation System (INS), especially in high reliability required situations such as fighter, satellite and submarine. Through the use of skewed sensor geometries, redundant technique has been applied to reduce the cost and improve the reliability of the INS. In this paper, the structure configuration and the inertial sensor characteristics of Skewed Redundant Strapdown Inertial Navigation System (SRSINS) using dithered Ring Laser Gyroscope (RLG) are analyzed. For the dither coupling effects of the dither gyro, the system measurement errors can be amplified either the individual gyro dither frequency is near one another or the structure of the SRSINS is unreasonable. Based on the characteristics of RLG, the research on coupled vibration of dithered RLG in SRSINS is carried out. On the principle of optimal navigation performance, optimal reliability and optimal cost-effectiveness, the comprehensive evaluation scheme of the inertial sensor configuration of SRINS is given.
Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza
2018-02-27
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.
Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza
2018-01-01
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434
Maximization of Learning Speed Due to Neuronal Redundancy in Reinforcement Learning
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2016-11-01
Adaptable neural activity contributes to the flexibility of human behavior, which is optimized in situations such as motor learning and decision making. Although learning signals in motor learning and decision making are low-dimensional, neural activity, which is very high dimensional, must be modified to achieve optimal performance based on the low-dimensional signal, resulting in a severe credit-assignment problem. Despite this problem, the human brain contains a vast number of neurons, leaving an open question: what is the functional significance of the huge number of neurons? Here, I address this question by analyzing a redundant neural network with a reinforcement-learning algorithm in which the numbers of neurons and output units are N and M, respectively. Because many combinations of neural activity can generate the same output under the condition of N ≫ M, I refer to the index N - M as neuronal redundancy. Although greater neuronal redundancy makes the credit-assignment problem more severe, I demonstrate that a greater degree of neuronal redundancy facilitates learning speed. Thus, in an apparent contradiction of the credit-assignment problem, I propose the hypothesis that a functional role of a huge number of neurons or a huge degree of neuronal redundancy is to facilitate learning speed.
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
Characterization and control of self-motions in redundant manipulators
NASA Technical Reports Server (NTRS)
Burdick, J.; Seraji, Homayoun
1989-01-01
The presence of redundant degrees of freedom in a manipulator structure leads to a physical phenomenon known as a self-motion, which is a continuous motion of the manipulator joints that leaves the end-effector motionless. In the first part of the paper, a global manifold mapping reformulation of manipulator kinematics is reviewed, and the inverse kinematic solution for redundant manipulators is developed in terms of self-motion manifolds. Global characterizations of the self-motion manifolds in terms of their number, geometry, homotopy class, and null space are reviewed using examples. Much previous work in redundant manipulator control has been concerned with the redundancy resolution problem, in which methods are developed to determine, or resolve, the motion of the joints in order to achieve end-effector trajectory control while optimizing additional objective functions. Redundancy resolution problems can be equivalently posed as the control of self-motions. Alternatives for redundancy resolution are briefly discussed.
Libbrecht, Maxwell W; Bilmes, Jeffrey A; Noble, William Stafford
2018-04-01
Selecting a non-redundant representative subset of sequences is a common step in many bioinformatics workflows, such as the creation of non-redundant training sets for sequence and structural models or selection of "operational taxonomic units" from metagenomics data. Previous methods for this task, such as CD-HIT, PISCES, and UCLUST, apply a heuristic threshold-based algorithm that has no theoretical guarantees. We propose a new approach based on submodular optimization. Submodular optimization, a discrete analogue to continuous convex optimization, has been used with great success for other representative set selection problems. We demonstrate that the submodular optimization approach results in representative protein sequence subsets with greater structural diversity than sets chosen by existing methods, using as a gold standard the SCOPe library of protein domain structures. In this setting, submodular optimization consistently yields protein sequence subsets that include more SCOPe domain families than sets of the same size selected by competing approaches. We also show how the optimization framework allows us to design a mixture objective function that performs well for both large and small representative sets. The framework we describe is the best possible in polynomial time (under some assumptions), and it is flexible and intuitive because it applies a suite of generic methods to optimize one of a variety of objective functions. © 2018 Wiley Periodicals, Inc.
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-12-13
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.
Exploration of joint redundancy but not task space variability facilitates supervised motor learning
Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya
2016-01-01
The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise. PMID:27911808
Optimal resource allocation for defense of targets based on differing measures of attractiveness.
Bier, Vicki M; Haphuriwat, Naraphorn; Menoyo, Jaime; Zimmerman, Rae; Culpen, Alison M
2008-06-01
This article describes the results of applying a rigorous computational model to the problem of the optimal defensive resource allocation among potential terrorist targets. In particular, our study explores how the optimal budget allocation depends on the cost effectiveness of security investments, the defender's valuations of the various targets, and the extent of the defender's uncertainty about the attacker's target valuations. We use expected property damage, expected fatalities, and two metrics of critical infrastructure (airports and bridges) as our measures of target attractiveness. Our results show that the cost effectiveness of security investment has a large impact on the optimal budget allocation. Also, different measures of target attractiveness yield different optimal budget allocations, emphasizing the importance of developing more realistic terrorist objective functions for use in budget allocation decisions for homeland security.
Harris, Don; Stanton, Neville A; Starr, Alison
2015-01-01
Function Allocation methods are important for the appropriate allocation of tasks between humans and automated systems. It is proposed that Operational Event Sequence Diagrams (OESDs) provide a simple yet rigorous basis upon which allocation of work can be assessed. This is illustrated with respect to a design concept for a passenger aircraft flown by just a single pilot where the objective is to replace or supplement functions normally undertaken by the second pilot with advanced automation. A scenario-based analysis (take off) was used in which there would normally be considerable demands and interactions with the second pilot. The OESD analyses indicate those tasks that would be suitable for allocation to automated assistance on the flight deck and those tasks that are now redundant in this new configuration (something that other formal Function Allocation approaches cannot identify). Furthermore, OESDs are demonstrated to be an easy to apply and flexible approach to the allocation of function in prospective systems. OESDs provide a simple yet rigorous basis upon which allocation of work can be assessed. The technique can deal with the flexible, dynamic allocation of work and the deletion of functions no longer required. This is illustrated using a novel design concept for a single-crew commercial aircraft.
Kinematic control of redundant robots and the motion optimizability measure.
Li, L; Gruver, W A; Zhang, Q; Yang, Z
2001-01-01
This paper treats the kinematic control of manipulators with redundant degrees of freedom. We derive an analytical solution for the inverse kinematics that provides a means for accommodating joint velocity constraints in real time. We define the motion optimizability measure and use it to develop an efficient method for the optimization of joint trajectories subject to multiple criteria. An implementation of the method for a 7-dof experimental redundant robot is present.
Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection
Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi
2011-01-01
The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich
2017-12-01
The objective of this paper is to establish a detumbling strategy and a coordination control scheme for a kinematically redundant space manipulator post-grasping a rotational satellite. First, the dynamics of the kinematically redundant space robot after grasping the target is presented, which lays the foundation for the coordination controller design. Subsequently, optimal detumbling and motion planning strategy for the post-capture phase is proposed based on the quartic Bézier curves and adaptive differential evolution (DE) algorithm subject to the specific constraints. Both detumbling time and control torques are taken into account for the generation of the optimal detumbling strategy. Furthermore, a coordination control scheme is presented to track the designed reference path while regulating the attitude of the chaser to a desired value, which successfully dumps the initial angular velocity of the rotational satellite and controls the base attitude synchronously. Simulation results are presented for detumbling a target with rotational motion using a 7 degree-of-freedom (DOF) redundant space manipulator, which demonstrates the effectiveness of the proposed method.
Tuning the Tin Ear: In Search of Fiscal Congruency
ERIC Educational Resources Information Center
Dragona, Anthony N.
2011-01-01
For 70 years, the Union City School District used a line-item budget system, a top down approach that was regarded by many as "deaf, dumb, and blind." This antiquated central administration process gave school leaders and staff little, if any, input into the distribution of resources for their schools, resulting in a redundancy of allocations,…
NASA Astrophysics Data System (ADS)
Ouyang, Bo; Shang, Weiwei
2016-03-01
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.
Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei
2017-09-01
Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.
Base reaction optimization of redundant manipulators for space applications
NASA Technical Reports Server (NTRS)
Chung, C. L.; Desa, S.; Desilva, C. W.
1988-01-01
One of the problems associated with redundant manipulators which were proposed for space applications is that the reactions transmitted to the base of the manipulator as a result of the motion of the manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is therefore necessary to minimize the magnitudes of the forces and moments transmitted to the base. It is shown that kinematic redundancy can be used to solve the dynamic problem of minimizing the magnitude of the base reactions. The methodology described is applied to a four degree-of-freedom spatial manipulator with one redundant degree-of-freedom.
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat
NASA Technical Reports Server (NTRS)
Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas
2016-01-01
This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
A stereo remote sensing feature selection method based on artificial bee colony algorithm
NASA Astrophysics Data System (ADS)
Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi
2014-05-01
To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.
NASA Astrophysics Data System (ADS)
Yu, Sen; Lu, Hongwei
2018-04-01
Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.
Incentives for Optimal Multi-level Allocation of HIV Prevention Resources
Malvankar, Monali M.; Zaric, Gregory S.
2013-01-01
HIV/AIDS prevention funds are often allocated at multiple levels of decision-making. Optimal allocation of HIV prevention funds maximizes the number of HIV infections averted. However, decision makers often allocate using simple heuristics such as proportional allocation. We evaluate the impact of using incentives to encourage optimal allocation in a two-level decision-making process. We model an incentive based decision-making process consisting of an upper-level decision maker allocating funds to a single lower-level decision maker who then distributes funds to local programs. We assume that the lower-level utility function is linear in the amount of the budget received from the upper-level, the fraction of funds reserved for proportional allocation, and the number of infections averted. We assume that the upper level objective is to maximize the number of infections averted. We illustrate with an example using data from California, U.S. PMID:23766551
Stochastic Optimization For Water Resources Allocation
NASA Astrophysics Data System (ADS)
Yamout, G.; Hatfield, K.
2003-12-01
For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.
Optimal resource allocation strategy for two-layer complex networks
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu
2018-02-01
We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.
Kinematically Optimal Robust Control of Redundant Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Twelve fundamental life histories evolving through allocation-dependent fecundity and survival.
Johansson, Jacob; Brännström, Åke; Metz, Johan A J; Dieckmann, Ulf
2018-03-01
An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity.
Optimal investment in a portfolio of HIV prevention programs.
Zaric, G S; Brandeau, M L
2001-01-01
In this article, the authors determine the optimal allocation of HIV prevention funds and investigate the impact of different allocation methods on health outcomes. The authors present a resource allocation model that can be used to determine the allocation of HIV prevention funds that maximizes quality-adjusted life years (or life years) gained or HIV infections averted in a population over a specified time horizon. They apply the model to determine the allocation of a limited budget among 3 types of HIV prevention programs in a population of injection drug users and nonusers: needle exchange programs, methadone maintenance treatment, and condom availability programs. For each prevention program, the authors estimate a production function that relates the amount invested to the associated change in risky behavior. The authors determine the optimal allocation of funds for both objective functions for a high-prevalence population and a low-prevalence population. They also consider the allocation of funds under several common rules of thumb that are used to allocate HIV prevention resources. It is shown that simpler allocation methods (e.g., allocation based on HIV incidence or notions of equity among population groups) may lead to alloctions that do not yield the maximum health benefit. The optimal allocation of HIV prevention funds in a population depends on HIV prevalence and incidence, the objective function, the production functions for the prevention programs, and other factors. Consideration of cost, equity, and social and political norms may be important when allocating HIV prevention funds. The model presented in this article can help decision makers determine the health consequences of different allocations of funds.
ERIC Educational Resources Information Center
Liu, Xiaofeng
2003-01-01
This article considers optimal sample allocation between the treatment and control condition in multilevel designs when the costs per sampling unit vary due to treatment assignment. Optimal unequal allocation may reduce the cost from that of a balanced design without sacrificing any power. The optimum sample allocation ratio depends only on the…
Rate Adaptive Based Resource Allocation with Proportional Fairness Constraints in OFDMA Systems
Yin, Zhendong; Zhuang, Shufeng; Wu, Zhilu; Ma, Bo
2015-01-01
Orthogonal frequency division multiple access (OFDMA), which is widely used in the wireless sensor networks, allows different users to obtain different subcarriers according to their subchannel gains. Therefore, how to assign subcarriers and power to different users to achieve a high system sum rate is an important research area in OFDMA systems. In this paper, the focus of study is on the rate adaptive (RA) based resource allocation with proportional fairness constraints. Since the resource allocation is a NP-hard and non-convex optimization problem, a new efficient resource allocation algorithm ACO-SPA is proposed, which combines ant colony optimization (ACO) and suboptimal power allocation (SPA). To reduce the computational complexity, the optimization problem of resource allocation in OFDMA systems is separated into two steps. For the first one, the ant colony optimization algorithm is performed to solve the subcarrier allocation. Then, the suboptimal power allocation algorithm is developed with strict proportional fairness, and the algorithm is based on the principle that the sums of power and the reciprocal of channel-to-noise ratio for each user in different subchannels are equal. To support it, plenty of simulation results are presented. In contrast with root-finding and linear methods, the proposed method provides better performance in solving the proportional resource allocation problem in OFDMA systems. PMID:26426016
He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi
2015-11-01
A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.
2018-06-01
A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.
Optimality versus stability in water resource allocation.
Read, Laura; Madani, Kaveh; Inanloo, Bahareh
2014-01-15
Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Applicability and Limitations of Reliability Allocation Methods
NASA Technical Reports Server (NTRS)
Cruz, Jose A.
2016-01-01
Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.
Optimal allocation of HIV prevention funds for state health departments.
Yaylali, Emine; Farnham, Paul G; Cohen, Stacy; Purcell, David W; Hauck, Heather; Sansom, Stephanie L
2018-01-01
To estimate the optimal allocation of Centers for Disease Control and Prevention (CDC) HIV prevention funds for health departments in 52 jurisdictions, incorporating Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program funds, to improve outcomes along the HIV care continuum and prevent infections. Using surveillance data from 2010 to 2012 and budgetary data from 2012, we divided the 52 health departments into 5 groups varying by number of persons living with diagnosed HIV (PLWDH), median annual CDC HIV prevention budget, and median annual HRSA expenditures supporting linkage to care, retention in care, and adherence to antiretroviral therapy. Using an optimization and a Bernoulli process model, we solved for the optimal CDC prevention budget allocation for each health department group. The optimal allocation distributed the funds across prevention interventions and populations at risk for HIV to prevent the greatest number of new HIV cases annually. Both the HIV prevention interventions funded by the optimal allocation of CDC HIV prevention funds and the proportions of the budget allocated were similar across health department groups, particularly those representing the large majority of PLWDH. Consistently funded interventions included testing, partner services and linkage to care and interventions for men who have sex with men (MSM). Sensitivity analyses showed that the optimal allocation shifted when there were differences in transmission category proportions and progress along the HIV care continuum. The robustness of the results suggests that most health departments can use these analyses to guide the investment of CDC HIV prevention funds into strategies to prevent the most new cases of HIV.
Optimal allocation of HIV prevention funds for state health departments
Farnham, Paul G.; Cohen, Stacy; Purcell, David W.; Hauck, Heather; Sansom, Stephanie L.
2018-01-01
Objective To estimate the optimal allocation of Centers for Disease Control and Prevention (CDC) HIV prevention funds for health departments in 52 jurisdictions, incorporating Health Resources and Services Administration (HRSA) Ryan White HIV/AIDS Program funds, to improve outcomes along the HIV care continuum and prevent infections. Methods Using surveillance data from 2010 to 2012 and budgetary data from 2012, we divided the 52 health departments into 5 groups varying by number of persons living with diagnosed HIV (PLWDH), median annual CDC HIV prevention budget, and median annual HRSA expenditures supporting linkage to care, retention in care, and adherence to antiretroviral therapy. Using an optimization and a Bernoulli process model, we solved for the optimal CDC prevention budget allocation for each health department group. The optimal allocation distributed the funds across prevention interventions and populations at risk for HIV to prevent the greatest number of new HIV cases annually. Results Both the HIV prevention interventions funded by the optimal allocation of CDC HIV prevention funds and the proportions of the budget allocated were similar across health department groups, particularly those representing the large majority of PLWDH. Consistently funded interventions included testing, partner services and linkage to care and interventions for men who have sex with men (MSM). Sensitivity analyses showed that the optimal allocation shifted when there were differences in transmission category proportions and progress along the HIV care continuum. Conclusion The robustness of the results suggests that most health departments can use these analyses to guide the investment of CDC HIV prevention funds into strategies to prevent the most new cases of HIV. PMID:29768489
Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-01-01
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505
Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.
Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong
2014-10-27
In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.
Optimal manpower allocation in aircraft line maintenance (Case in GMF AeroAsia)
NASA Astrophysics Data System (ADS)
Puteri, V. E.; Yuniaristanto, Hisjam, M.
2017-11-01
This paper presents a mathematical modeling to find the optimal manpower allocation in an aircraft line maintenance. This research focuses on assigning the number and type of manpower that allocated to each service. This study considers the licenced worker or Aircraft Maintenance Engineer Licence (AMEL) and non licenced worker or Aircraft Maintenance Technician (AMT). In this paper, we also consider the relationship of each station in terms of the possibility to transfer the manpower among them. The optimization model considers the number of manpowers needed for each service and the requirement of AMEL worker. This paper aims to determine the optimal manpower allocation using the mathematical modeling. The objective function of the model is to find the minimum employee expenses. The model was solved using the ILOG CPLEX software. The results show that the manpower allocation can meet the manpower need and the all load can be served.
Optimal allocation model of construction land based on two-level system optimization theory
NASA Astrophysics Data System (ADS)
Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong
2007-06-01
The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.
Design of a developmental dual fail operational redundant strapped down inertial measurement unit
NASA Technical Reports Server (NTRS)
Morrell, F. R.; Russell, J. G.
1980-01-01
An experimental redundant strap-down inertial measurement unit (RSDIMU) is being developed at NASA-Langley as a link to satisfy safety and reliability considerations in the integrated avionics concept. The unit consists of four two-degrees-of-freedom (TDOF) tuned-rotor gyros, and four TDOF pendulous accelerometers in a skewed and separable semi-octahedron array. The system will be used to examine failure detection and isolation techniques, redundancy management rules, and optimal threshold levels for various flight configurations. The major characteristics of the RSDIMU hardware and software design, and its use as a research tool are described.
SIRU development. Volume 3: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.
1973-01-01
The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B. (Inventor)
1999-01-01
Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.
Attending Globally or Locally: Incidental Learning of Optimal Visual Attention Allocation
ERIC Educational Resources Information Center
Beck, Melissa R.; Goldstein, Rebecca R.; van Lamsweerde, Amanda E.; Ericson, Justin M.
2018-01-01
Attention allocation determines the information that is encoded into memory. Can participants learn to optimally allocate attention based on what types of information are most likely to change? The current study examined whether participants could incidentally learn that changes to either high spatial frequency (HSF) or low spatial frequency (LSF)…
A Goal Programming Optimization Model for The Allocation of Liquid Steel Production
NASA Astrophysics Data System (ADS)
Hapsari, S. N.; Rosyidi, C. N.
2018-03-01
This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques
2014-01-01
Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles.
NASA Astrophysics Data System (ADS)
Eyono Obono, S. D.; Basak, Sujit Kumar
2011-12-01
The general formulation of the assignment problem consists in the optimal allocation of a given set of tasks to a workforce. This problem is covered by existing literature for different domains such as distributed databases, distributed systems, transportation, packets radio networks, IT outsourcing, and teaching allocation. This paper presents a new version of the assignment problem for the allocation of academic tasks to staff members in departments with long leave opportunities. It presents the description of a workload allocation scheme and its algorithm, for the allocation of an equitable number of tasks in academic departments where long leaves are necessary.
Proteus: a reconfigurable computational network for computer vision
NASA Astrophysics Data System (ADS)
Haralick, Robert M.; Somani, Arun K.; Wittenbrink, Craig M.; Johnson, Robert; Cooper, Kenneth; Shapiro, Linda G.; Phillips, Ihsin T.; Hwang, Jenq N.; Cheung, William; Yao, Yung H.; Chen, Chung-Ho; Yang, Larry; Daugherty, Brian; Lorbeski, Bob; Loving, Kent; Miller, Tom; Parkins, Larye; Soos, Steven L.
1992-04-01
The Proteus architecture is a highly parallel MIMD, multiple instruction, multiple-data machine, optimized for large granularity tasks such as machine vision and image processing The system can achieve 20 Giga-flops (80 Giga-flops peak). It accepts data via multiple serial links at a rate of up to 640 megabytes/second. The system employs a hierarchical reconfigurable interconnection network with the highest level being a circuit switched Enhanced Hypercube serial interconnection network for internal data transfers. The system is designed to use 256 to 1,024 RISC processors. The processors use one megabyte external Read/Write Allocating Caches for reduced multiprocessor contention. The system detects, locates, and replaces faulty subsystems using redundant hardware to facilitate fault tolerance. The parallelism is directly controllable through an advanced software system for partitioning, scheduling, and development. System software includes a translator for the INSIGHT language, a parallel debugger, low and high level simulators, and a message passing system for all control needs. Image processing application software includes a variety of point operators neighborhood, operators, convolution, and the mathematical morphology operations of binary and gray scale dilation, erosion, opening, and closing.
Characterizing metabolic pathway diversification in the context of perturbation size.
Yang, Laurence; Srinivasan, Shyamsundhar; Mahadevan, Radhakrishnan; Cluett, William R
2015-03-01
Cell metabolism is an important platform for sustainable biofuel, chemical and pharmaceutical production but its complexity presents a major challenge for scientists and engineers. Although in silico strains have been designed in the past with predicted performances near the theoretical maximum, real-world performance is often sub-optimal. Here, we simulate how strain performance is impacted when subjected to many randomly varying perturbations, including discrepancies between gene expression and in vivo flux, osmotic stress, and substrate uptake perturbations due to concentration gradients in bioreactors. This computational study asks whether robust performance can be achieved by adopting robustness-enhancing mechanisms from naturally evolved organisms-in particular, redundancy. Our study shows that redundancy, typically perceived as a ubiquitous robustness-enhancing strategy in nature, can either improve or undermine robustness depending on the magnitude of the perturbations. We also show that the optimal number of redundant pathways used can be predicted for a given perturbation size. Copyright © 2015. Published by Elsevier Inc.
An overview of the artificial intelligence and expert systems component of RICIS
NASA Technical Reports Server (NTRS)
Feagin, Terry
1987-01-01
Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.
Solving the optimal attention allocation problem in manual control
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1976-01-01
Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.
Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.
2017-06-01
Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.
Redundant Disk Arrays in Transaction Processing Systems. Ph.D. Thesis, 1993
NASA Technical Reports Server (NTRS)
Mourad, Antoine Nagib
1994-01-01
We address various issues dealing with the use of disk arrays in transaction processing environments. We look at the problem of transaction undo recovery and propose a scheme for using the redundancy in disk arrays to support undo recovery. The scheme uses twin page storage for the parity information in the array. It speeds up transaction processing by eliminating the need for undo logging for most transactions. The use of redundant arrays of distributed disks to provide recovery from disasters as well as temporary site failures and disk crashes is also studied. We investigate the problem of assigning the sites of a distributed storage system to redundant arrays in such a way that a cost of maintaining the redundant parity information is minimized. Heuristic algorithms for solving the site partitioning problem are proposed and their performance is evaluated using simulation. We also develop a heuristic for which an upper bound on the deviation from the optimal solution can be established.
Reliability of Fault Tolerant Control Systems. Part 2
NASA Technical Reports Server (NTRS)
Wu, N. Eva
2000-01-01
This paper reports Part II of a two part effort that is intended to delineate the relationship between reliability and fault tolerant control in a quantitative manner. Reliability properties peculiar to fault-tolerant control systems are emphasized, such as the presence of analytic redundancy in high proportion, the dependence of failures on control performance, and high risks associated with decisions in redundancy management due to multiple sources of uncertainties and sometimes large processing requirements. As a consequence, coverage of failures through redundancy management can be severely limited. The paper proposes to formulate the fault tolerant control problem as an optimization problem that maximizes coverage of failures through redundancy management. Coverage modeling is attempted in a way that captures its dependence on the control performance and on the diagnostic resolution. Under the proposed redundancy management policy, it is shown that an enhanced overall system reliability can be achieved with a control law of a superior robustness, with an estimator of a higher resolution, and with a control performance requirement of a lesser stringency.
Mismatch and resolution in compressive imaging
NASA Astrophysics Data System (ADS)
Fannjiang, Albert; Liao, Wenjing
2011-09-01
Highly coherent sensing matrices arise in discretization of continuum problems such as radar and medical imaging when the grid spacing is below the Rayleigh threshold as well as in using highly coherent, redundant dictionaries as sparsifying operators. Algorithms (BOMP, BLOOMP) based on techniques of band exclusion and local optimization are proposed to enhance Orthogonal Matching Pursuit (OMP) and deal with such coherent sensing matrices. BOMP and BLOOMP have provably performance guarantee of reconstructing sparse, widely separated objects independent of the redundancy and have a sparsity constraint and computational cost similar to OMP's. Numerical study demonstrates the effectiveness of BLOOMP for compressed sensing with highly coherent, redundant sensing matrices.
Site Partitioning for Redundant Arrays of Distributed Disks
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.
1996-01-01
Redundant arrays of distributed disks (RADD) can be used in a distributed computing system or database system to provide recovery in the presence of disk crashes and temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites of a distributed storage system into redundant arrays in such a way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-hard. We then propose and evaluate several heuristic algorithms for finding approximate solutions. Simulation results show that significant reduction in remote parity update costs can be achieved by optimizing the site partitioning scheme.
Optimizing Utilization of Detectors
2016-03-01
provide a quantifiable process to determine how much time should be allocated to each task sharing the same asset . This optimized expected time... allocation is calculated by numerical analysis and Monte Carlo simulation. Numerical analysis determines the expectation by involving an integral and...determines the optimum time allocation of the asset by repeatedly running experiments to approximate the expectation of the random variables. This
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Taylor, Brian R.; Bodson, Marc
2012-01-01
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads.
Distortion outage minimization in Nakagami fading using limited feedback
NASA Astrophysics Data System (ADS)
Wang, Chih-Hong; Dey, Subhrakanti
2011-12-01
We focus on a decentralized estimation problem via a clustered wireless sensor network measuring a random Gaussian source where the clusterheads amplify and forward their received signals (from the intra-cluster sensors) over orthogonal independent stationary Nakagami fading channels to a remote fusion center that reconstructs an estimate of the original source. The objective of this paper is to design clusterhead transmit power allocation policies to minimize the distortion outage probability at the fusion center, subject to an expected sum transmit power constraint. In the case when full channel state information (CSI) is available at the clusterhead transmitters, the optimization problem can be shown to be convex and is solved exactly. When only rate-limited channel feedback is available, we design a number of computationally efficient sub-optimal power allocation algorithms to solve the associated non-convex optimization problem. We also derive an approximation for the diversity order of the distortion outage probability in the limit when the average transmission power goes to infinity. Numerical results illustrate that the sub-optimal power allocation algorithms perform very well and can close the outage probability gap between the constant power allocation (no CSI) and full CSI-based optimal power allocation with only 3-4 bits of channel feedback.
Planning Framework for Mesolevel Optimization of Urban Runoff Control Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Qianqian; Blohm, Andrew; Liu, Bo
A planning framework is developed to optimize runoff control schemes at scales relevant for regional planning at an early stage. The framework employs less sophisticated modeling approaches to allow a practical application in developing regions with limited data sources and computing capability. The methodology contains three interrelated modules: (1)the geographic information system (GIS)-based hydrological module, which aims at assessing local hydrological constraints and potential for runoff control according to regional land-use descriptions; (2)the grading module, which is built upon the method of fuzzy comprehensive evaluation. It is used to establish a priority ranking system to assist the allocation of runoffmore » control targets at the subdivision level; and (3)the genetic algorithm-based optimization module, which is included to derive Pareto-based optimal solutions for mesolevel allocation with multiple competing objectives. The optimization approach describes the trade-off between different allocation plans and simultaneously ensures that all allocation schemes satisfy the minimum requirement on runoff control. Our results highlight the importance of considering the mesolevel allocation strategy in addition to measures at macrolevels and microlevels in urban runoff management. (C) 2016 American Society of Civil Engineers.« less
NASA Astrophysics Data System (ADS)
Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom
2011-12-01
A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.
Optimal Resource Allocation in Library Systems
ERIC Educational Resources Information Center
Rouse, William B.
1975-01-01
Queueing theory is used to model processes as either waiting or balking processes. The optimal allocation of resources to these processes is defined as that which maximizes the expected value of the decision-maker's utility function. (Author)
Ecological network analysis for a virtual water network.
Fang, Delin; Chen, Bin
2015-06-02
The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.
Optimizing 4DCBCT projection allocation to respiratory bins.
O'Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J
2014-10-07
4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm significantly improves image quality in 4DCBCT images and provides, for the first time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung
2017-04-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung
2017-01-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617
Design method of redundancy of brace-anchor sharing supporting based on cooperative deformation
NASA Astrophysics Data System (ADS)
Liu, Jun-yan; Li, Bing; Liu, Yan; Cai, Shan-bing
2017-11-01
Because of the complicated environment requirement, the support form of foundation pit is diversified, and the brace-anchor sharing support is widely used. However, the research on the force deformation characteristics and the related aspects of the cooperative response of the brace-anchor sharing support is insufficient. The application of redundancy theory in structural engineering has been more mature, but there is little theoretical research on redundancy theory in underground engineering. Based on the idea of collaborative deformation, the paper calculates the ratio of the redundancy degree of the cooperative deformation by using the local reinforcement design method and the structural component redundancy parameter calculation formula based on Frangopol. Combined with the engineering case, through the calculation of the ratio of cooperative deformation redundancy in the joint of brace-anchor sharing support. This paper explores the optimal anchor distribution form under the condition of cooperative deformation, and through the analysis and research of displacement field and stress field, the results of the collaborative deformation are validated by comparing the field monitoring data. It provides theoretical basis for the design of this kind of foundation pit in the future.
USDA-ARS?s Scientific Manuscript database
An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...
NASA Astrophysics Data System (ADS)
Allam, M.; Eltahir, E. A. B.
2017-12-01
Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower generation are analysed in an attempt to define cooperation scenarios that would achieve win-win outcomes for all riparian countries.
Hu, Peter F; Yang, Shiming; Li, Hsiao-Chi; Stansbury, Lynn G; Yang, Fan; Hagegeorge, George; Miller, Catriona; Rock, Peter; Stein, Deborah M; Mackenzie, Colin F
2017-01-01
Research and practice based on automated electronic patient monitoring and data collection systems is significantly limited by system down time. We asked whether a triple-redundant Monitor of Monitors System (MoMs) to collect and summarize key information from system-wide data sources could achieve high fault tolerance, early diagnosis of system failure, and improve data collection rates. In our Level I trauma center, patient vital signs(VS) monitors were networked to collect real time patient physiologic data streams from 94 bed units in our various resuscitation, operating, and critical care units. To minimize the impact of server collection failure, three BedMaster® VS servers were used in parallel to collect data from all bed units. To locate and diagnose system failures, we summarized critical information from high throughput datastreams in real-time in a dashboard viewer and compared the before and post MoMs phases to evaluate data collection performance as availability time, active collection rates, and gap duration, occurrence, and categories. Single-server collection rates in the 3-month period before MoMs deployment ranged from 27.8 % to 40.5 % with combined 79.1 % collection rate. Reasons for gaps included collection server failure, software instability, individual bed setting inconsistency, and monitor servicing. In the 6-month post MoMs deployment period, average collection rates were 99.9 %. A triple redundant patient data collection system with real-time diagnostic information summarization and representation improved the reliability of massive clinical data collection to nearly 100 % in a Level I trauma center. Such data collection framework may also increase the automation level of hospital-wise information aggregation for optimal allocation of health care resources.
Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System
NASA Astrophysics Data System (ADS)
Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju
2018-03-01
A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.
Robust allocation of a defensive budget considering an attacker's private information.
Nikoofal, Mohammad E; Zhuang, Jun
2012-05-01
Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.
Availability Improvement of Layer 2 Seamless Networks Using OpenFlow
Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando
2015-01-01
The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861
Availability improvement of layer 2 seamless networks using OpenFlow.
Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando
2015-01-01
The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path.
Failure detection system design methodology. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chow, E. Y.
1980-01-01
The design of a failure detection and identification system consists of designing a robust residual generation process and a high performance decision making process. The design of these two processes are examined separately. Residual generation is based on analytical redundancy. Redundancy relations that are insensitive to modelling errors and noise effects are important for designing robust residual generation processes. The characterization of the concept of analytical redundancy in terms of a generalized parity space provides a framework in which a systematic approach to the determination of robust redundancy relations are developed. The Bayesian approach is adopted for the design of high performance decision processes. The FDI decision problem is formulated as a Bayes sequential decision problem. Since the optimal decision rule is incomputable, a methodology for designing suboptimal rules is proposed. A numerical algorithm is developed to facilitate the design and performance evaluation of suboptimal rules.
Efficient image data distribution and management with application to web caching architectures
NASA Astrophysics Data System (ADS)
Han, Keesook J.; Suter, Bruce W.
2003-03-01
We present compact image data structures and associated packet delivery techniques for effective Web caching architectures. Presently, images on a web page are inefficiently stored, using a single image per file. Our approach is to use clustering to merge similar images into a single file in order to exploit the redundancy between images. Our studies indicate that a 30-50% image data size reduction can be achieved by eliminating the redundancies of color indexes. Attached to this file is new metadata to permit an easy extraction of images. This approach will permit a more efficient use of the cache, since a shorter list of cache references will be required. Packet and transmission delays can be reduced by 50% eliminating redundant TCP/IP headers and connection time. Thus, this innovative paradigm for the elimination of redundancy may provide valuable benefits for optimizing packet delivery in IP networks by reducing latency and minimizing the bandwidth requirements.
Kinematically redundant arm formulations for coordinated multiple arm implementations
NASA Technical Reports Server (NTRS)
Bailey, Robert W.; Quiocho, Leslie J.; Cleghorn, Timothy F.
1990-01-01
Although control laws for kinematically redundant robotic arms were presented as early as 1969, redundant arms have only recently become recognized as viable solutions to limitations inherent to kinematically sufficient arms. The advantages of run-time control optimization and arm reconfiguration are becoming increasingly attractive as the complexity and criticality of robotic systems continues to progress. A generalized control law for a spatial arm with 7 or more degrees of freedom (DOF) based on Whitney's resolved rate formulation is given. Results from a simulation implementation utilizing this control law are presented. Furthermore, results from a two arm simulation are presented to demonstrate the coordinated control of multiple arms using this formulation.
Adaptive torque estimation of robot joint with harmonic drive transmission
NASA Astrophysics Data System (ADS)
Shi, Zhiguo; Li, Yuankai; Liu, Guangjun
2017-11-01
Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.
Conditional Optimal Design in Three- and Four-Level Experiments
ERIC Educational Resources Information Center
Hedges, Larry V.; Borenstein, Michael
2014-01-01
The precision of estimates of treatment effects in multilevel experiments depends on the sample sizes chosen at each level. It is often desirable to choose sample sizes at each level to obtain the smallest variance for a fixed total cost, that is, to obtain optimal sample allocation. This article extends previous results on optimal allocation to…
Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems
Bol, Kieran; Maler, Leonard; Longtin, André
2013-01-01
Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown. In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting fish. PMID:24068898
Optimal Management of Redundant Control Authority for Fault Tolerance
NASA Technical Reports Server (NTRS)
Wu, N. Eva; Ju, Jianhong
2000-01-01
This paper is intended to demonstrate the feasibility of a solution to a fault tolerant control problem. It explains, through a numerical example, the design and the operation of a novel scheme for fault tolerant control. The fundamental principle of the scheme was formalized in [5] based on the notion of normalized nonspecificity. The novelty lies with the use of a reliability criterion for redundancy management, and therefore leads to a high overall system reliability.
Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method
NASA Astrophysics Data System (ADS)
Chen, Xiaomin; Wang, Gang
2017-05-01
The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.
Tommasino, Paolo; Campolo, Domenico
2017-02-03
In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.
NASA Astrophysics Data System (ADS)
Keum, Jongho; Coulibaly, Paulin
2017-07-01
Adequate and accurate hydrologic information from optimal hydrometric networks is an essential part of effective water resources management. Although the key hydrologic processes in the water cycle are interconnected, hydrometric networks (e.g., streamflow, precipitation, groundwater level) have been routinely designed individually. A decision support framework is proposed for integrated design of multivariable hydrometric networks. The proposed method is applied to design optimal precipitation and streamflow networks simultaneously. The epsilon-dominance hierarchical Bayesian optimization algorithm was combined with Shannon entropy of information theory to design and evaluate hydrometric networks. Specifically, the joint entropy from the combined networks was maximized to provide the most information, and the total correlation was minimized to reduce redundant information. To further optimize the efficiency between the networks, they were designed by maximizing the conditional entropy of the streamflow network given the information of the precipitation network. Compared to the traditional individual variable design approach, the integrated multivariable design method was able to determine more efficient optimal networks by avoiding the redundant stations. Additionally, four quantization cases were compared to evaluate their effects on the entropy calculations and the determination of the optimal networks. The evaluation results indicate that the quantization methods should be selected after careful consideration for each design problem since the station rankings and the optimal networks can change accordingly.
Improved configuration control for redundant robots
NASA Technical Reports Server (NTRS)
Seraji, H.; Colbaugh, R.
1990-01-01
This article presents a singularity-robust task-prioritized reformulation of the configuration control scheme for redundant robot manipulators. This reformulation suppresses large joint velocities near singularities, at the expense of small task trajectory errors. This is achieved by optimally reducing the joint velocities to induce minimal errors in the task performance by modifying the task trajectories. Furthermore, the same framework provides a means for assignment of priorities between the basic task of end-effector motion and the user-defined additional task for utilizing redundancy. This allows automatic relaxation of the additional task constraints in favor of the desired end-effector motion, when both cannot be achieved exactly. The improved configuration control scheme is illustrated for a variety of additional tasks, and extensive simulation results are presented.
Motion control of 7-DOF arms - The configuration control approach
NASA Technical Reports Server (NTRS)
Seraji, Homayoun; Long, Mark K.; Lee, Thomas S.
1993-01-01
Graphics simulation and real-time implementation of configuration control schemes for a redundant 7-DOF Robotics Research arm are described. The arm kinematics and motion control schemes are described briefly. This is followed by a description of a graphics simulation environment for 7-DOF arm control on the Silicon Graphics IRIS Workstation. Computer simulation results are presented to demonstrate elbow control, collision avoidance, and optimal joint movement as redundancy resolution goals. The laboratory setup for experimental validation of motion control of the 7-DOF Robotics Research arm is then described. The configuration control approach is implemented on a Motorola-68020/VME-bus-based real-time controller, with elbow positioning for redundancy resolution. Experimental results demonstrate the efficacy of configuration control for real-time control.
Redundancy management for efficient fault recovery in NASA's distributed computing system
NASA Technical Reports Server (NTRS)
Malek, Miroslaw; Pandya, Mihir; Yau, Kitty
1991-01-01
The management of redundancy in computer systems was studied and guidelines were provided for the development of NASA's fault-tolerant distributed systems. Fault recovery and reconfiguration mechanisms were examined. A theoretical foundation was laid for redundancy management by efficient reconfiguration methods and algorithmic diversity. Algorithms were developed to optimize the resources for embedding of computational graphs of tasks in the system architecture and reconfiguration of these tasks after a failure has occurred. The computational structure represented by a path and the complete binary tree was considered and the mesh and hypercube architectures were targeted for their embeddings. The innovative concept of Hybrid Algorithm Technique was introduced. This new technique provides a mechanism for obtaining fault tolerance while exhibiting improved performance.
Optimal Redundancy Management in Reconfigurable Control Systems Based on Normalized Nonspecificity
NASA Technical Reports Server (NTRS)
Wu, N.Eva; Klir, George J.
1998-01-01
In this paper the notion of normalized nonspecificity is introduced. The nonspecifity measures the uncertainty of the estimated parameters that reflect impairment in a controlled system. Based on this notion, a quantity called a reconfiguration coverage is calculated. It represents the likelihood of success of a control reconfiguration action. This coverage links the overall system reliability to the achievable and required control, as well as diagnostic performance. The coverage, when calculated on-line, is used for managing the redundancy in the system.
Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li
2017-03-01
The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.
Optimal co-allocation of carbon and nitrogen in a forest stand at steady state
Annikki Makela; Harry T. Valentine; Helja-Sisko Helmisaari
2008-01-01
Nitrogen (N) is essential for plant production, but N uptake imposes carbon (C) costs through maintenance respiration and fine-root construction, suggesting that an optimal C:N balance can be found. Previous studies have elaborated this optimum under exponential growth; work on closed canopies has focused on foliage only. Here, the optimal co-allocation of C and N to...
Initial Effects of Heavy Vehicle Trafficking on Vegetated Soils
2012-08-01
ER D C/ CR R EL T R -1 2 -6 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) Initial Effects of Heavy Vehicle...the outdoor loam test section. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CRREL TR-12-6 August 2012 Initial...mal Allocation of Land for Training and Non-Training Uses ( OPAL ) Pro- gram. The work was conducted by Nicole Buck and Sally Shoop of the Force
Aghamohammadi, Hossein; Saadi Mesgari, Mohammad; Molaei, Damoon; Aghamohammadi, Hasan
2013-01-01
Location-allocation is a combinatorial optimization problem, and is defined as Non deterministic Polynomial Hard (NP) hard optimization. Therefore, solution of such a problem should be shifted from exact to heuristic or Meta heuristic due to the complexity of the problem. Locating medical centers and allocating injuries of an earthquake to them has high importance in earthquake disaster management so that developing a proper method will reduce the time of relief operation and will consequently decrease the number of fatalities. This paper presents the development of a heuristic method based on two nested genetic algorithms to optimize this location allocation problem by using the abilities of Geographic Information System (GIS). In the proposed method, outer genetic algorithm is applied to the location part of the problem and inner genetic algorithm is used to optimize the resource allocation. The final outcome of implemented method includes the spatial location of new required medical centers. The method also calculates that how many of the injuries at each demanding point should be taken to any of the existing and new medical centers as well. The results of proposed method showed high performance of designed structure to solve a capacitated location-allocation problem that may arise in a disaster situation when injured people has to be taken to medical centers in a reasonable time.
Shuttle cryogenic supply system optimization study. Volume 6: Appendixes
NASA Technical Reports Server (NTRS)
1973-01-01
The optimization of the cryogenic supply system for space shuttles is discussed. The subjects considered are: (1) auxiliary power unit parametric data, (2) propellant acquisition, (3) thermal protection and thermodynamic properties, (4) instrumentation and controls, and (5) initial component redundancy evaluations. Diagrams of the systems are provided. Graphs of the performance capabilities are included.
On the optimal use of fictitious time in variation of parameters methods with application to BG14
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1991-01-01
The optimal way to use fictitious time in variation of parameter methods is presented. Setting fictitious time to zero at the end of each step is shown to cure the instability associated with some types of problems. Only some parameters are reinitialized, thereby retaining redundant information.
Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin
NASA Astrophysics Data System (ADS)
Wei, Y.; Tang, D.; Gao, H.; Ding, Y.
2015-12-01
Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).
Real-time information management environment (RIME)
NASA Astrophysics Data System (ADS)
DeCleene, Brian T.; Griffin, Sean; Matchett, Garry; Niejadlik, Richard
2000-08-01
Whereas data mining and exploitation improve the quality and quantity of information available to the user, there remains a mission requirement to assist the end-user in managing the access to this information and ensuring that the appropriate information is delivered to the right user in time to make decisions and take action. This paper discusses TASC's federated architecture to next- generation information management, contrasts the approach against emerging technologies, and quantifies the performance gains. This architecture and implementation, known as Real-time Information Management Environment (RIME), is based on two key concepts: information utility and content-based channelization. The introduction of utility allows users to express the importance and delivery requirements of their information needs in the context of their mission. Rather than competing for resources on a first-come/first-served basis, the infrastructure employs these utility functions to dynamically react to unanticipated loading by optimizing the delivered information utility. Furthermore, commander's resource policies shape these functions to ensure that resources are allocated according to military doctrine. Using information about the desired content, channelization identifies opportunities to aggregate users onto shared channels reducing redundant transmissions. Hence, channelization increases the information throughput of the system and balances sender/receiver processing load.
Coordinated garbage collection for raid array of solid state disks
Dillow, David A; Ki, Youngjae; Oral, Hakki S; Shipman, Galen M; Wang, Feiyi
2014-04-29
An optimized redundant array of solid state devices may include an array of one or more optimized solid-state devices and a controller coupled to the solid-state devices for managing the solid-state devices. The controller may be configured to globally coordinate the garbage collection activities of each of said optimized solid-state devices, for instance, to minimize the degraded performance time and increase the optimal performance time of the entire array of devices.
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Ammoser, Hendrik; Kühnert, Christian
2006-04-01
In this paper we discuss the problem of information losses in organizations and how they depend on the organization network structure. Hierarchical networks are an optimal organization structure only when the failure rate of nodes or links is negligible. Otherwise, redundant information links are important to reduce the risk of information losses and the related costs. However, as redundant information links are expensive, the optimal organization structure is not a fully connected one. It rather depends on the failure rate. We suggest that sidelinks and temporary, adaptive shortcuts can improve the information flows considerably by generating small-world effects. This calls for modified organization structures to cope with today's challenges of businesses and administrations, in particular, to successfully respond to crises or disasters.
An intelligent allocation algorithm for parallel processing
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.
1988-01-01
The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.
Optimal allocation of industrial PV-storage micro-grid considering important load
NASA Astrophysics Data System (ADS)
He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei
2018-03-01
At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.
A Simplified GCS-DCSK Modulation and Its Performance Optimization
NASA Astrophysics Data System (ADS)
Xu, Weikai; Wang, Lin; Chi, Chong-Yung
2016-12-01
In this paper, a simplified Generalized Code-Shifted Differential Chaos Shift Keying (GCS-DCSK) whose transmitter never needs any delay circuits, is proposed. However, its performance is deteriorated because the orthogonality between substreams cannot be guaranteed. In order to optimize its performance, the system model of the proposed GCS-DCSK with power allocations on substreams is presented. An approximate bit error rate (BER) expression of the proposed model, which is a function of substreams’ power, is derived using Gaussian Approximation. Based on the BER expression, an optimal power allocation strategy between information substreams and reference substream is obtained. Simulation results show that the BER performance of the proposed GCS-DCSK with the optimal power allocation can be significantly improved when the number of substreams M is large.
Power Allocation and Outage Probability Analysis for SDN-based Radio Access Networks
NASA Astrophysics Data System (ADS)
Zhao, Yongxu; Chen, Yueyun; Mai, Zhiyuan
2018-01-01
In this paper, performance of Access network Architecture based SDN (Software Defined Network) is analyzed with respect to the power allocation issue. A power allocation scheme PSO-PA (Particle Swarm Optimization-power allocation) algorithm is proposed, the proposed scheme is subjected to constant total power with the objective of minimizing system outage probability. The entire access network resource configuration is controlled by the SDN controller, then it sends the optimized power distribution factor to the base station source node (SN) and the relay node (RN). Simulation results show that the proposed scheme reduces the system outage probability at a low complexity.
Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions
2017-01-01
Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time. PMID:28118384
Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions.
Guerrero, Jose; Oliver, Gabriel; Valero, Oscar
2017-01-01
Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time.
Playing Games with Optimal Competitive Scheduling
NASA Technical Reports Server (NTRS)
Frank, Jeremy; Crawford, James; Khatib, Lina; Brafman, Ronen
2005-01-01
This paper is concerned with the problem of allocating a unit capacity resource to multiple users within a pre-defined time period. The resource is indivisible, so that at most one user can use it at each time instance. However, different users may use it at different times. The users have independent, selfish preferences for when and for how long they are allocated this resource. Thus, they value different resource access durations differently, and they value different time slots differently. We seek an optimal allocation schedule for this resource.
NASA Astrophysics Data System (ADS)
Divakar, L.; Babel, M. S.; Perret, S. R.; Gupta, A. Das
2011-04-01
SummaryThe study develops a model for optimal bulk allocations of limited available water based on an economic criterion to competing use sectors such as agriculture, domestic, industry and hydropower. The model comprises a reservoir operation module (ROM) and a water allocation module (WAM). ROM determines the amount of water available for allocation, which is used as an input to WAM with an objective function to maximize the net economic benefits of bulk allocations to different use sectors. The total net benefit functions for agriculture and hydropower sectors and the marginal net benefit from domestic and industrial sectors are established and are categorically taken as fixed in the present study. The developed model is applied to the Chao Phraya basin in Thailand. The case study results indicate that the WAM can improve net economic returns compared to the current water allocation practices.
Optimized maritime emergency resource allocation under dynamic demand.
Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.
Optimized maritime emergency resource allocation under dynamic demand
Yan, Xinping; Yang, Jiaqi
2017-01-01
Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792
Advances in liver transplantation allocation systems.
Schilsky, Michael L; Moini, Maryam
2016-03-14
With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies.
Joint optimization of regional water-power systems
NASA Astrophysics Data System (ADS)
Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter
2016-06-01
Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Optimizations of missile allocation based on linearized exchange equations produce accurate allocations, but the limits of validity of the linearization are not known. These limits are explored in the context of the upload of weapons by one side to initially small, equal forces of vulnerable and survivable weapons. The analysis compares analytic and numerical optimizations and stability induces based on aggregated interactions of the two missile forces, the first and second strikes they could deliver, and they resulting costs. This note discusses the costs and stability indices induced by unilateral uploading of weapons to an initially symmetrical low force configuration.more » These limits are quantified for forces with a few hundred missiles by comparing analytic and numerical optimizations of first strike costs. For forces of 100 vulnerable and 100 survivable missiles on each side, the analytic optimization agrees closely with the numerical solution. For 200 vulnerable and 200 survivable missiles on each side, the analytic optimization agrees with the induces to within about 10%, but disagrees with the allocation of the side with more weapons by about 50%. The disagreement comes from the interaction of the possession of more weapons with the shift of allocation from missiles to value that they induce.« less
Design of safety-oriented control allocation strategies for overactuated electric vehicles
NASA Astrophysics Data System (ADS)
de Castro, Ricardo; Tanelli, Mara; Esteves Araújo, Rui; Savaresi, Sergio M.
2014-08-01
The new vehicle platforms for electric vehicles (EVs) that are becoming available are characterised by actuator redundancy, which makes it possible to jointly optimise different aspects of the vehicle motion. To do this, high-level control objectives are first specified and solved with appropriate control strategies. Then, the resulting virtual control action must be translated into actual actuator commands by a control allocation layer that takes care of computing the forces to be applied at the wheels. This step, in general, is quite demanding as far as computational complexity is considered. In this work, a safety-oriented approach to this problem is proposed. Specifically, a four-wheel steer EV with four in-wheel motors is considered, and the high-level motion controller is designed within a sliding mode framework with conditional integrators. For distributing the forces among the tyres, two control allocation approaches are investigated. The first, based on the extension of the cascading generalised inverse method, is computationally efficient but shows some limitations in dealing with unfeasible force values. To solve the problem, a second allocation algorithm is proposed, which relies on the linearisation of the tyre-road friction constraints. Extensive tests, carried out in the CarSim simulation environment, demonstrate the effectiveness of the proposed approach.
Zhang, Ke; Su, YongZhong; Yang, Rong
2017-07-01
The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.
Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO)
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2015-07-01
This paper investigates the application of Particle Swarm Optimization (PSO) strategy to trajectory planning of the kinematically redundant space robot in free-floating mode. Due to the path dependent dynamic singularities, the volume of available workspace of the space robot is limited and enormous joint velocities are required when such singularities are met. In order to overcome this effect, the direct kinematics equations in conjunction with PSO are employed for trajectory planning of free-floating space robot. The joint trajectories are parametrized with the Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) redundant manipulator mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.
Ramsey waits: allocating public health service resources when there is rationing by waiting.
Gravelle, Hugh; Siciliani, Luigi
2008-09-01
The optimal allocation of a public health care budget across treatments must take account of the way in which care is rationed within treatments since this will affect their marginal value. We investigate the optimal allocation rules for public health care systems where user charges are fixed and care is rationed by waiting. The optimal waiting time is higher for treatments with demands more elastic to waiting time, higher costs, lower charges, smaller marginal welfare loss from waiting by treated patients, and smaller marginal welfare losses from under-consumption of care. The results hold for a wide range of welfarist and non-welfarist objective functions and for systems in which there is also a private health care sector. They imply that allocation rules based purely on cost effectiveness ratios are suboptimal because they assume that there is no rationing within treatments.
NASA Astrophysics Data System (ADS)
Menshikh, V.; Samorokovskiy, A.; Avsentev, O.
2018-03-01
The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.
Sharing the Wealth: Factors Influencing Resource Allocation in the Sharing Game
ERIC Educational Resources Information Center
Fantino, Edmund; Kennelly, Arthur
2009-01-01
Students chose between two allocation options, one that gave the allocator more and another participant still more (the "optimal" choice) and one which gave the allocator less and the other participant still less (the "competitive" choice). In a within-subjects design, students' behavior patterns were significantly correlated across the two rounds…
NASA Astrophysics Data System (ADS)
Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu
2017-09-01
In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.
Optimal allocation of resources for suppressing epidemic spreading on networks
NASA Astrophysics Data System (ADS)
Chen, Hanshuang; Li, Guofeng; Zhang, Haifeng; Hou, Zhonghuai
2017-07-01
Efficient allocation of limited medical resources is crucial for controlling epidemic spreading on networks. Based on the susceptible-infected-susceptible model, we solve the optimization problem of how best to allocate the limited resources so as to minimize prevalence, providing that the curing rate of each node is positively correlated to its medical resource. By quenched mean-field theory and heterogeneous mean-field (HMF) theory, we prove that an epidemic outbreak will be suppressed to the greatest extent if the curing rate of each node is directly proportional to its degree, under which the effective infection rate λ has a maximal threshold λcopt=1 /
Longin, C Friedrich H; Utz, H Friedrich; Reif, Jochen C; Schipprack, Wolfgang; Melchinger, Albrecht E
2006-03-01
Optimum allocation of resources is of fundamental importance for the efficiency of breeding programs. The objectives of our study were to (1) determine the optimum allocation for the number of lines and test locations in hybrid maize breeding with doubled haploids (DHs) regarding two optimization criteria, the selection gain deltaG(k) and the probability P(k) of identifying superior genotypes, (2) compare both optimization criteria including their standard deviations (SDs), and (3) investigate the influence of production costs of DHs on the optimum allocation. For different budgets, number of finally selected lines, ratios of variance components, and production costs of DHs, the optimum allocation of test resources under one- and two-stage selection for testcross performance with a given tester was determined by using Monte Carlo simulations. In one-stage selection, lines are tested in field trials in a single year. In two-stage selection, optimum allocation of resources involves evaluation of (1) a large number of lines in a small number of test locations in the first year and (2) a small number of the selected superior lines in a large number of test locations in the second year, thereby maximizing both optimization criteria. Furthermore, to have a realistic chance of identifying a superior genotype, the probability P(k) of identifying superior genotypes should be greater than 75%. For budgets between 200 and 5,000 field plot equivalents, P(k) > 75% was reached only for genotypes belonging to the best 5% of the population. As the optimum allocation for P(k)(5%) was similar to that for deltaG(k), the choice of the optimization criterion was not crucial. The production costs of DHs had only a minor effect on the optimum number of locations and on values of the optimization criteria.
Optimal allocation in annual plants and its implications for drought response
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Smith, Matthew; Purves, Drew
2015-04-01
The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.
Chauvenet, Aliénor L M; Baxter, Peter W J; McDonald-Madden, Eve; Possingham, Hugh P
2010-04-01
Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations of a threatened species, the combined effects of differences in habitat quality, cost of action, and current subpopulation probability of extinction need to be integrated. We provide a useful guideline for allocating resources among isolated subpopulations of any threatened species.
Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang
2016-01-01
Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders' preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning.
Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang
2016-01-01
Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders’ preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning. PMID:27322619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macevicz, S.C.
1979-05-09
This thesis attempts to explain the evolution of certain features of social insect colony population structure by the use of optimization models. Two areas are examined in detail. First, the optimal reproductive strategies of annual eusocial insects are considered. A model is constructed for the growth of workers and reproductives as a function of the resources allocated to each. Next the allocation schedule is computed which yields the maximum number of reproductives by season's end. The results indicate that if there is constant return to scale for allocated resources the optimal strategy is to invest in colony growth until approximatelymore » one generation before season's end, whereupon worker production ceases and reproductive effort is switched entirely to producing queens and males. Furthermore, the results indicate that if there is decreasing return to scale for allocated resources then simultaneous production of workers and reproductives is possible. The model is used to explain the colony demography of two species of wasp, Polistes fuscatus and Vespa orientalis. Colonies of these insects undergo a sudden switch from the production of workers to the production of reproductives. The second area examined concerns optimal forager size distributions for monomorphic ant colonies. A model is constructed that describes the colony's energetic profit as a function which depends on the size distribution of food resources as well as forager efficiency, metabolic costs, and manufacturing costs.« less
Flexible operation strategy for environment control system in abnormal supply power condition
NASA Astrophysics Data System (ADS)
Liping, Pang; Guoxiang, Li; Hongquan, Qu; Yufeng, Fang
2017-04-01
This paper establishes an optimization method that can be applied to the flexible operation of the environment control system in an abnormal supply power condition. A proposed conception of lifespan is used to evaluate the depletion time of the non-regenerative substance. The optimization objective function is to maximize the lifespans. The optimization variables are the allocated powers of subsystems. The improved Non-dominated Sorting Genetic Algorithm is adopted to obtain the pareto optimization frontier with the constraints of the cabin environmental parameters and the adjustable operating parameters of the subsystems. Based on the same importance of objective functions, the preferred power allocation of subsystems can be optimized. Then the corresponding running parameters of subsystems can be determined to ensure the maximum lifespans. A long-duration space station with three astronauts is used to show the implementation of the proposed optimization method. Three different CO2 partial pressure levels are taken into consideration in this study. The optimization results show that the proposed optimization method can obtain the preferred power allocation for the subsystems when the supply power is at a less-than-nominal value. The method can be applied to the autonomous control for the emergency response of the environment control system.
Determining Optimal Allocation of Naval Obstetric Resources with Linear Programming
2013-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT DETERMINING OPTIMAL ALLOCATION OF NAVAL OBSTETRIC RESOURCES...Davis Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved...OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Xu, Lingwei; Zhang, Hao; Gulliver, T. Aaron
2016-01-01
The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance. PMID:26907282
Optimality Based Dynamic Plant Allocation Model: Predicting Acclimation Response to Climate Change
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Drewry, D.; Kumar, P.; Sivapalan, M.
2009-12-01
Allocation of assimilated carbon to different plant parts determines the future plant status and is important to predict long term (months to years) vegetated land surface fluxes. Plants have the ability to modify their allometry and exhibit plasticity by varying the relative proportions of the structural biomass contained in each of its tissue. The ability of plants to be plastic provides them with the potential to acclimate to changing environmental conditions in order to enhance their probability of survival. Allometry based allocation models and other empirical allocation models do not account for plant plasticity cause by acclimation due to environmental changes. In the absence of a detailed understanding of the various biophysical processes involved in plant growth and development an optimality approach is adopted here to predict carbon allocation in plants. Existing optimality based models of plant growth are either static or involve considerable empiricism. In this work, we adopt an optimality based approach (coupled with limitations on plant plasticity) to predict the dynamic allocation of assimilated carbon to different plant parts. We explore the applicability of this approach using several optimization variables such as net primary productivity, net transpiration, realized growth rate, total end of growing season reproductive biomass etc. We use this approach to predict the dynamic nature of plant acclimation in its allocation of carbon to different plant parts under current and future climate scenarios. This approach is designed as a growth sub-model in the multi-layer canopy plant model (MLCPM) and is used to obtain land surface fluxes and plant properties over the growing season. The framework of this model is such that it retains the generality and can be applied to different types of ecosystems. We test this approach using the data from free air carbon dioxide enrichment (FACE) experiments using soybean crop at the Soy-FACE research site. Our results show that there are significant changes in the allocation patterns of vegetation when subjected to elevated CO2 indicating that our model is able to account for plant plasticity arising from acclimation. Soybeans when grown under elevated CO2, increased their allocation to structural components such as leaves and decreased their allocation to reproductive biomass. This demonstrates that plant acclimation causes lower than expected crop yields when grown under elevated CO2. Our findings can have serious implications in estimating future crop yields under climate change scenarios where it is widely expected that rising CO2 will fully offset losses due to climate change.
Risk-Based Sampling: I Don't Want to Weight in Vain.
Powell, Mark R
2015-12-01
Recently, there has been considerable interest in developing risk-based sampling for food safety and animal and plant health for efficient allocation of inspection and surveillance resources. The problem of risk-based sampling allocation presents a challenge similar to financial portfolio analysis. Markowitz (1952) laid the foundation for modern portfolio theory based on mean-variance optimization. However, a persistent challenge in implementing portfolio optimization is the problem of estimation error, leading to false "optimal" portfolios and unstable asset weights. In some cases, portfolio diversification based on simple heuristics (e.g., equal allocation) has better out-of-sample performance than complex portfolio optimization methods due to estimation uncertainty. Even for portfolios with a modest number of assets, the estimation window required for true optimization may imply an implausibly long stationary period. The implications for risk-based sampling are illustrated by a simple simulation model of lot inspection for a small, heterogeneous group of producers. © 2015 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Zhang, Chenglong; Guo, Ping
2017-10-01
The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.
Optimizing prescribed fire allocation for managing fire risk in central Catalonia.
Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina
2018-04-15
We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.
Dimensions of design space: a decision-theoretic approach to optimal research design.
Conti, Stefano; Claxton, Karl
2009-01-01
Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.
Task allocation among multiple intelligent robots
NASA Technical Reports Server (NTRS)
Gasser, L.; Bekey, G.
1987-01-01
Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.
Cheng, Jianhua; Dong, Jinlu; Landry, Rene; Chen, Daidai
2014-07-29
In order to improve the accuracy and reliability of micro-electro mechanical systems (MEMS) navigation systems, an orthogonal rotation method-based nine-gyro redundant MEMS configuration is presented. By analyzing the accuracy and reliability characteristics of an inertial navigation system (INS), criteria for redundant configuration design are introduced. Then the orthogonal rotation configuration is formed through a two-rotation of a set of orthogonal inertial sensors around a space vector. A feasible installation method is given for the real engineering realization of this proposed configuration. The performances of the novel configuration and another six configurations are comprehensively compared and analyzed. Simulation and experimentation are also conducted, and the results show that the orthogonal rotation configuration has the best reliability, accuracy and fault detection and isolation (FDI) performance when the number of gyros is nine.
Efficient Simulation Budget Allocation for Selecting an Optimal Subset
NASA Technical Reports Server (NTRS)
Chen, Chun-Hung; He, Donghai; Fu, Michael; Lee, Loo Hay
2008-01-01
We consider a class of the subset selection problem in ranking and selection. The objective is to identify the top m out of k designs based on simulated output. Traditional procedures are conservative and inefficient. Using the optimal computing budget allocation framework, we formulate the problem as that of maximizing the probability of correc tly selecting all of the top-m designs subject to a constraint on the total number of samples available. For an approximation of this corre ct selection probability, we derive an asymptotically optimal allocat ion and propose an easy-to-implement heuristic sequential allocation procedure. Numerical experiments indicate that the resulting allocatio ns are superior to other methods in the literature that we tested, and the relative efficiency increases for larger problems. In addition, preliminary numerical results indicate that the proposed new procedur e has the potential to enhance computational efficiency for simulation optimization.
Ooi, Chia Huey; Chetty, Madhu; Teng, Shyh Wei
2006-06-23
Due to the large number of genes in a typical microarray dataset, feature selection looks set to play an important role in reducing noise and computational cost in gene expression-based tissue classification while improving accuracy at the same time. Surprisingly, this does not appear to be the case for all multiclass microarray datasets. The reason is that many feature selection techniques applied on microarray datasets are either rank-based and hence do not take into account correlations between genes, or are wrapper-based, which require high computational cost, and often yield difficult-to-reproduce results. In studies where correlations between genes are considered, attempts to establish the merit of the proposed techniques are hampered by evaluation procedures which are less than meticulous, resulting in overly optimistic estimates of accuracy. We present two realistically evaluated correlation-based feature selection techniques which incorporate, in addition to the two existing criteria involved in forming a predictor set (relevance and redundancy), a third criterion called the degree of differential prioritization (DDP). DDP functions as a parameter to strike the balance between relevance and redundancy, providing our techniques with the novel ability to differentially prioritize the optimization of relevance against redundancy (and vice versa). This ability proves useful in producing optimal classification accuracy while using reasonably small predictor set sizes for nine well-known multiclass microarray datasets. For multiclass microarray datasets, especially the GCM and NCI60 datasets, DDP enables our filter-based techniques to produce accuracies better than those reported in previous studies which employed similarly realistic evaluation procedures.
Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.
Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward
2006-08-01
Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.
NASA Astrophysics Data System (ADS)
Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi
2005-10-01
MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.
NASA Astrophysics Data System (ADS)
Khannan, M. S. A.; Nafisah, L.; Palupi, D. L.
2018-03-01
Sari Warna Co. Ltd, a company engaged in the textile industry, is experiencing problems in the allocation and placement of goods in the warehouse. During this time the company has not implemented the product flow type allocation and product placement to the respective products resulting in a high total material handling cost. Therefore, this study aimed to determine the allocation and placement of goods in the warehouse corresponding to product flow type with minimal total material handling cost. This research is a quantitative research based on the theory of storage and warehouse that uses a mathematical model of optimization problem solving using mathematical optimization model approach belongs to Heragu (2005), aided by software LINGO 11.0 in the calculation of the optimization model. Results obtained from this study is the proportion of the distribution for each functional area is the area of cross-docking at 0.0734, the reserve area at 0.1894, and the forward area at 0.7372. The allocation of product flow type 1 is 5 products, the product flow type 2 is 9 products, the product flow type 3 is 2 products, and the product flow type 4 is 6 products. The optimal total material handling cost by using this mathematical model equal to Rp43.079.510 while it is equal to Rp 49.869.728 by using the company’s existing method. It saves Rp6.790.218 for the total material handling cost. Thus, all of the products can be allocated in accordance with the product flow type with minimal total material handling cost.
REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less
Redundant Array Configurations for 21 cm Cosmology
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Parsons, Aaron R.
2016-08-01
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.
NASA Astrophysics Data System (ADS)
Xia, Quan; Wang, Zili; Ren, Yi; Sun, Bo; Yang, Dezhen; Feng, Qiang
2018-05-01
With the rapid development of lithium-ion battery technology in the electric vehicle (EV) industry, the lifetime of the battery cell increases substantially; however, the reliability of the battery pack is still inadequate. Because of the complexity of the battery pack, a reliability design method for a lithium-ion battery pack considering the thermal disequilibrium is proposed in this paper based on cell redundancy. Based on this method, a three-dimensional electric-thermal-flow-coupled model, a stochastic degradation model of cells under field dynamic conditions and a multi-state system reliability model of a battery pack are established. The relationships between the multi-physics coupling model, the degradation model and the system reliability model are first constructed to analyze the reliability of the battery pack and followed by analysis examples with different redundancy strategies. By comparing the reliability of battery packs of different redundant cell numbers and configurations, several conclusions for the redundancy strategy are obtained. More notably, the reliability does not monotonically increase with the number of redundant cells for the thermal disequilibrium effects. In this work, the reliability of a 6 × 5 parallel-series configuration is the optimal system structure. In addition, the effect of the cell arrangement and cooling conditions are investigated.
HIV epidemic control-a model for optimal allocation of prevention and treatment resources.
Alistar, Sabina S; Long, Elisa F; Brandeau, Margaret L; Beck, Eduard J
2014-06-01
With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country's optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.
NASA Astrophysics Data System (ADS)
Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.
2017-09-01
In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.
Exact consideration of data redundancies for spiral cone-beam CT
NASA Astrophysics Data System (ADS)
Lauritsch, Guenter; Katsevich, Alexander; Hirsch, Michael
2004-05-01
In multi-slice spiral computed tomography (CT) there is an obvious trend in adding more and more detector rows. The goals are numerous: volume coverage, isotropic spatial resolution, and speed. Consequently, there will be a variety of scan protocols optimizing clinical applications. Flexibility in table feed requires consideration of data redundancies to ensure efficient detector usage. Until recently this was achieved by approximate reconstruction algorithms only. However, due to the increasing cone angles there is a need of exact treatment of the cone beam geometry. A new, exact and efficient 3-PI algorithm for considering three-fold data redundancies was derived from a general, theoretical framework based on 3D Radon inversion using Grangeat's formula. The 3-PI algorithm possesses a simple and efficient structure as the 1-PI method for non-redundant data previously proposed. Filtering is one-dimensional, performed along lines with variable tilt on the detector. This talk deals with a thorough evaluation of the performance of the 3-PI algorithm in comparison to the 1-PI method. Image quality of the 3-PI algorithm is superior. The prominent spiral artifacts and other discretization artifacts are significantly reduced due to averaging effects when taking into account redundant data. Certainly signal-to-noise ratio is increased. The computational expense is comparable even to that of approximate algorithms. The 3-PI algorithm proves its practicability for applications in medical imaging. Other exact n-PI methods for n-fold data redundancies (n odd) can be deduced from the general, theoretical framework.
Kassa, Semu Mitiku
2018-02-01
Funds from various global organizations, such as, The Global Fund, The World Bank, etc. are not directly distributed to the targeted risk groups. Especially in the so-called third-world-countries, the major part of the fund in HIV prevention programs comes from these global funding organizations. The allocations of these funds usually pass through several levels of decision making bodies that have their own specific parameters to control and specific objectives to achieve. However, these decisions are made mostly in a heuristic manner and this may lead to a non-optimal allocation of the scarce resources. In this paper, a hierarchical mathematical optimization model is proposed to solve such a problem. Combining existing epidemiological models with the kind of interventions being on practice, a 3-level hierarchical decision making model in optimally allocating such resources has been developed and analyzed. When the impact of antiretroviral therapy (ART) is included in the model, it has been shown that the objective function of the lower level decision making structure is a non-convex minimization problem in the allocation variables even if all the production functions for the intervention programs are assumed to be linear.
The use of an integrated variable fuzzy sets in water resources management
NASA Astrophysics Data System (ADS)
Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang
2018-06-01
Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.
Performance analysis of optimal power allocation in wireless cooperative communication systems
NASA Astrophysics Data System (ADS)
Babikir Adam, Edriss E.; Samb, Doudou; Yu, Li
2013-03-01
Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels.The Amplify-and-Forward (AF) cooperation protocols with multiple relays have not been sufficiently investigated even if it has a low complexity in term of implementation. We consider in this work a cooperative diversity system in which a source transmits some information to a destination with the help of multiple relay nodes with AF protocols and investigate the optimality of allocating powers both at the source and the relays system by optimizing the symbol error rate (SER) performance in an efficient way. Firstly we derive a closedform SER formulation for MPSK signal using the concept of moment generating function and some statistical approximations in high signal to noise ratio (SNR) for the system under studied. We then find a tight corresponding lower bound which converges to the same limit as the theoretical upper bound and develop an optimal power allocation (OPA) technique with mean channel gains to minimize the SER. Simulation results show that our scheme outperforms the equal power allocation (EPA) scheme and is tight to the theoretical approximation based on the SER upper bound in high SNR for different number of relays.
Nash Social Welfare in Multiagent Resource Allocation
NASA Astrophysics Data System (ADS)
Ramezani, Sara; Endriss, Ulle
We study different aspects of the multiagent resource allocation problem when the objective is to find an allocation that maximizes Nash social welfare, the product of the utilities of the individual agents. The Nash solution is an important welfare criterion that combines efficiency and fairness considerations. We show that the problem of finding an optimal outcome is NP-hard for a number of different languages for representing agent preferences; we establish new results regarding convergence to Nash-optimal outcomes in a distributed negotiation framework; and we design and test algorithms similar to those applied in combinatorial auctions for computing such an outcome directly.
On the Allocation of Resources for Secondary Schools
ERIC Educational Resources Information Center
Haelermans, Carla; De Witte, Kristof; Blank, Jos L. T.
2012-01-01
This paper studies the optimal allocation of resources--in terms of school management, teachers, supporting employees and materials--in secondary schools. We use a flexible budget constrained output distance function model to estimate both technical and allocative efficiency scores for 448 Dutch secondary schools between 2002 and 2007. The results…
Benedikt, Clemens; Kelly, Sherrie L; Wilson, David; Wilson, David P
2016-12-01
Estimated global new HIV infections among people who inject drugs (PWID) remained stable over the 2010-2015 period and the target of a 50% reduction over this period was missed. To achieve the 2020 UNAIDS target of reducing adult HIV infections by 75% compared to 2010, accelerated action in scaling up HIV programs for PWID is required. In a context of diminishing external support to HIV programs in countries where most HIV-affected PWID live, it is essential that available resources are allocated and used as efficiently as possible. Allocative and implementation efficiency analysis methods were applied. Optima, a dynamic, population-based HIV model with an integrated program and economic analysis framework was applied in eight countries in Eastern Europe and Central Asia (EECA). Mathematical analyses established optimized allocations of resources. An implementation efficiency analysis focused on examining technical efficiency, unit costs, and heterogeneity of service delivery models and practices. Findings from the latest reported data revealed that countries allocated between 4% (Bulgaria) and 40% (Georgia) of total HIV resources to programs targeting PWID - with a median of 13% for the eight countries. When distributing the same amount of HIV funding optimally, between 9% and 25% of available HIV resources would be allocated to PWID programs with a median allocation of 16% and, in addition, antiretroviral therapy would be scaled up including for PWID. As a result of optimized allocations, new HIV infections are projected to decline by 3-28% and AIDS-related deaths by 7-53% in the eight countries. Implementation efficiencies identified involve potential reductions in drug procurement costs, service delivery models, and practices and scale of service delivery influencing cost and outcome. A high level of implementation efficiency was associated with high volumes of PWID clients accessing a drug harm reduction facility. A combination of optimized allocation of resources, improved implementation efficiency and increased investment of non-HIV resources is required to enhance coverage and improve outcomes of programs for PWID. Increasing efficiency of HIV programs for PWID is a key step towards avoiding implicit rationing and ensuring transparent allocation of resources where and how they would have the largest impact on the health of PWID, and thereby ensuring that funding spent on PWID becomes a global best buy in public health. Copyright © 2016. Published by Elsevier B.V.
Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming
2016-01-01
Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
Telerobotic control of the seven-degree-of-freedom CESAR manipulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babcock, S.M.; Dubey, R.V.; Euler, J.A.
1988-01-01
The application of a computationally efficient kinematic control scheme for manipulators with redundant degrees of freedom to the unilateral telerobotic control of seven-degree-of-freedom manipulator (CESARM) at the Oak Ridge National Laboratory Center for Engineering Systems Advanced Research is presented. The kinematic control scheme uses a gradient projection optimization method, which eliminates that need to determine the generalized inverse of the Jacobian when solving for joint velocities, given Cartesian end-effector velocities. A six-degree-of-freedom (nonreplica) master controller is used. Performance indices for redundancy resolution are discussed. 5 ref., 6 figs.
Analytical redundancy and the design of robust failure detection systems
NASA Technical Reports Server (NTRS)
Chow, E. Y.; Willsky, A. S.
1984-01-01
The Failure Detection and Identification (FDI) process is viewed as consisting of two stages: residual generation and decision making. It is argued that a robust FDI system can be achieved by designing a robust residual generation process. Analytical redundancy, the basis for residual generation, is characterized in terms of a parity space. Using the concept of parity relations, residuals can be generated in a number of ways and the design of a robust residual generation process can be formulated as a minimax optimization problem. An example is included to illustrate this design methodology. Previously announcedd in STAR as N83-20653
She, Ji; Wang, Fei; Zhou, Jianjiang
2016-01-01
Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819
NASA Technical Reports Server (NTRS)
Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.
2014-01-01
Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.
NASA Astrophysics Data System (ADS)
Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao
2017-12-01
Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.
Optimal plant nitrogen use improves model representation of vegetation response to elevated CO2
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Kern, Melanie; Engel, Jan; Zaehle, Sönke
2017-04-01
Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.Existing global vegetation models often cannot accurately represent observed ecosystem behaviour under transient conditions such as elevated atmospheric CO2, a problem that can be attributed to an inflexibility in model representation of plant responses. Plant optimality concepts have been proposed as a solution to this problem as they offer a way to represent plastic plant responses in complex models. Here we present a novel, next generation vegetation model which includes optimal nitrogen allocation to and within the canopy as well as optimal biomass allocation between above- and belowground components in response to nutrient and water availability. The underlying hypothesis is that plants adjust their use of nitrogen in response to environmental conditions and nutrient availability in order to maximise biomass growth. We show that for two FACE (Free Air CO2 enrichment) experiments, the Duke forest and Oak Ridge forest sites, the model can better predict vegetation responses over the duration of the experiment when optimal processes are included. Specifically, under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration as well as increased biomass allocation to fine roots, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry predict a quick onset of N limitation.
SIRU utilization. Volume 2: Software description and program documentation
NASA Technical Reports Server (NTRS)
Oehrle, J.; Whittredge, R.
1973-01-01
A complete description of the additional analysis, development and evaluation provided for the SIRU system as identified in the requirements for the SIRU utilization program is presented. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The modules are mounted in this package so that their measurement input axes form a unique symmetrical pattern that corresponds to the array of perpendiculars to the faces of a regular dodecahedron. This six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. Documentation of the additional software and software modifications required to implement the utilization capabilities includes assembly listings and flow charts
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
Optimal Resource Allocation under Fair QoS in Multi-tier Server Systems
NASA Astrophysics Data System (ADS)
Akai, Hirokazu; Ushio, Toshimitsu; Hayashi, Naoki
Recent development of network technology realizes multi-tier server systems, where several tiers perform functionally different processing requested by clients. It is an important issue to allocate resources of the systems to clients dynamically based on their current requests. On the other hand, Q-RAM has been proposed for resource allocation in real-time systems. In the server systems, it is important that execution results of all applications requested by clients are the same QoS(quality of service) level. In this paper, we extend Q-RAM to multi-tier server systems and propose a method for optimal resource allocation with fairness of the QoS levels of clients’ requests. We also consider an assignment problem of physical machines to be sleep in each tier sothat the energy consumption is minimized.
Rethinking Traffic Management: Design of Optimizable Networks
2008-06-01
Though this paper used optimization theory to design and analyze DaVinci , op- timization theory is one of many possible tools to enable a grounded...dynamically allocate bandwidth shares. The distributed protocols can be implemented using DaVinci : Dynamically Adaptive VIrtual Networks for a Customized...Internet. In DaVinci , each virtual network runs traffic-management protocols optimized for a traffic class, and link bandwidth is dynamically allocated
Multi-Objective Optimization for Trustworthy Tactical Networks: A Survey and Insights
2013-06-01
existing data sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding...problems: using repeated cooperative games [12], hedonic games [25], and nontransferable utility cooperative games [27]. It should be noted that trust...examined an optimal task allocation problem in a distributed computing system where program modules need to be allocated to different processors to
Land use allocation model considering climate change impact
NASA Astrophysics Data System (ADS)
Lee, D. K.; Yoon, E. J.; Song, Y. I.
2017-12-01
In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"
Optimization of rainfall networks using information entropy and temporal variability analysis
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-04-01
Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.
Maier, Allison; Krolik, Julia; Majury, Anna
2014-01-01
OBJECTIVES: A study was performed using a subset of Ontario laboratory parasitology data, with three objectives: to describe parasitic infections in Ontario; to identify risk factors for acquiring a parasitic infection using routinely collected information; and to use this information to assess current protocols for parasite testing in laboratories and, in turn, to propose alternatives to optimize the allocation of laboratory resources. METHODS: All parasitology records from January 4, 2010 to September 14, 2010 were reviewed descriptively and risk factor analyses were performed using information collected from requisitions. These results were used to develop preliminary alternative protocols, which considered high-throughput screening tests and inclusion/exclusion criteria for ova and parasite testing; these were then retrospectively analyzed with the dataset to determine appropriateness. RESULTS: Of the 29,260 records analyzed, 10% were multiple samples from single patients submitted on the same day, of which 98% had the same result. Three percent of all parasite tests were positive, with the most prevalent parasites being (in ascending order) Dientamoeba fragilis, Giardia lamblia, Cryptosporidium species and Entamoeba histolytica/dispar. Age and sex were found to be weak risk factors, while rural living was found to be a moderate risk factor for D fragilis, G lamblia and Cryptosporidium infections. The strongest risk factor was travel history, especially for nonendemic parasites. The retrospective analysis of six alternative protocols identified four that may be more efficient than current procedures. CONCLUSIONS: The present study demonstrated that current protocols may be redundant and can be optimized to target prevalent parasites and populations with high risk factors. PMID:25587292
Reconfigurable tree architectures using subtree oriented fault tolerance
NASA Technical Reports Server (NTRS)
Lowrie, Matthew B.
1987-01-01
An approach to the design of reconfigurable tree architecture is presented in which spare processors are allocated at the leaves. The approach is unique in that spares are associated with subtrees and sharing of spares between these subtrees can occur. The Subtree Oriented Fault Tolerance (SOFT) approach is more reliable than previous approaches capable of tolerating link and switch failures for both single chip and multichip tree implementations while reducing redundancy in terms of both spare processors and links. VLSI layout is 0(n) for binary trees and is directly extensible to N-ary trees and fault tolerance through performance degradation.
Reist-Marti, Sabine B; Abdulai, Awudu; Simianer, Henner
2006-01-01
Although funds for livestock conservation are limited there is little known about the optimal allocation of conservation funds. A new algorithm was used to allocate Mio US$ 1, 2, 3, 5 or unlimited funds, discounted over 50 years, on 23 African cattle breeds conserved with four different possible conservation programs. Additionally, Mio US$ 1 was preferably allocated to breeds with special traits. The conceptional in situ conservation programs strongly involve breeders and give them part of the responsibility for the conservation of the breed. Therefore, the pure in situ conservation was more efficient than cryoconservation or combined in situ and cryoconservation. The average annual discounted conservation cost for a breed can be as low as US$ 1000 to US$ 4400 depending on the design of the conservation program and the economic situation of the country of conservation. The choice of the breeds and the optimal conservation program and the amount of money allocated to each breed depend on many factors such as the amount of funds available, the conservation potential of each breed, the effects of the conservation program as well as its cost. With Mio US$ 1, 64% of the present diversity could be maintained over 50 years, which is 13% more than would be maintained if no conservation measures were implemented. Special traits could be conserved with a rather small amount of the total funds. Diversity can not be conserved completely, not even with unlimited funds. A maximum of 92% of the present diversity could be conserved with Mio US$ 10, leaving 8% of the diversity to unpredictable happenings. The suggested algorithm proved to be useful for optimal allocation of conservation funds. It allocated the funds optimally among breeds by identifying the most suited conservation program for each breed, also accounting for differences in currency exchange rates between the different countries. PMID:16451794
Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things.
Ding, Kaiqi; Zhao, Haitao; Hu, Xiping; Wei, Jibo
2017-10-28
In sustainable smart cities, power saving is a severe challenge in the energy-constrained Internet of Things (IoT). Efficient utilization of limited multiple non-overlap channels and time resources is a promising solution to reduce the network interference and save energy consumption. In this paper, we propose a joint channel allocation and time slot optimization solution for IoT. First, we propose a channel ranking algorithm which enables each node to rank its available channels based on the channel properties. Then, we propose a distributed channel allocation algorithm so that each node can choose a proper channel based on the channel ranking and its own residual energy. Finally, the sleeping duration and spectrum sensing duration are jointly optimized to maximize the normalized throughput and satisfy energy consumption constraints simultaneously. Different from the former approaches, our proposed solution requires no central coordination or any global information that each node can operate based on its own local information in a total distributed manner. Also, theoretical analysis and extensive simulations have validated that when applying our solution in the network of IoT: (i) each node can be allocated to a proper channel based on the residual energy to balance the lifetime; (ii) the network can rapidly converge to a collision-free transmission through each node's learning ability in the process of the distributed channel allocation; and (iii) the network throughput is further improved via the dynamic time slot optimization.
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
A market-based optimization approach to sensor and resource management
NASA Astrophysics Data System (ADS)
Schrage, Dan; Farnham, Christopher; Gonsalves, Paul G.
2006-05-01
Dynamic resource allocation for sensor management is a problem that demands solutions beyond traditional approaches to optimization. Market-based optimization applies solutions from economic theory, particularly game theory, to the resource allocation problem by creating an artificial market for sensor information and computational resources. Intelligent agents are the buyers and sellers in this market, and they represent all the elements of the sensor network, from sensors to sensor platforms to computational resources. These agents interact based on a negotiation mechanism that determines their bidding strategies. This negotiation mechanism and the agents' bidding strategies are based on game theory, and they are designed so that the aggregate result of the multi-agent negotiation process is a market in competitive equilibrium, which guarantees an optimal allocation of resources throughout the sensor network. This paper makes two contributions to the field of market-based optimization: First, we develop a market protocol to handle heterogeneous goods in a dynamic setting. Second, we develop arbitrage agents to improve the efficiency in the market in light of its dynamic nature.
Optimizing Medical Kits for Spaceflight
NASA Technical Reports Server (NTRS)
Keenan, A. B,; Foy, Millennia; Myers, G.
2014-01-01
The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulation outcomes describing the impact of medical events on the mission may be used to optimize the allocation of resources in medical kits. Efficient allocation of medical resources, subject to certain mass and volume constraints, is crucial to ensuring the best outcomes of in-flight medical events. We implement a new approach to this medical kit optimization problem. METHODS We frame medical kit optimization as a modified knapsack problem and implement an algorithm utilizing a dynamic programming technique. Using this algorithm, optimized medical kits were generated for 3 different mission scenarios with the goal of minimizing the probability of evacuation and maximizing the Crew Health Index (CHI) for each mission subject to mass and volume constraints. Simulation outcomes using these kits were also compared to outcomes using kits optimized..RESULTS The optimized medical kits generated by the algorithm described here resulted in predicted mission outcomes more closely approached the unlimited-resource scenario for Crew Health Index (CHI) than the implementation in under all optimization priorities. Furthermore, the approach described here improves upon in reducing evacuation when the optimization priority is minimizing the probability of evacuation. CONCLUSIONS This algorithm provides an efficient, effective means to objectively allocate medical resources for spaceflight missions using the Integrated Medical Model.
NASA Astrophysics Data System (ADS)
Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.
2016-12-01
Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.
NASA Astrophysics Data System (ADS)
Mansor, S. B.; Pormanafi, S.; Mahmud, A. R. B.; Pirasteh, S.
2012-08-01
In this study, a geospatial model for land use allocation was developed from the view of simulating the biological autonomous adaptability to environment and the infrastructural preference. The model was developed based on multi-agent genetic algorithm. The model was customized to accommodate the constraint set for the study area, namely the resource saving and environmental-friendly. The model was then applied to solve the practical multi-objective spatial optimization allocation problems of land use in the core region of Menderjan Basin in Iran. The first task was to study the dominant crops and economic suitability evaluation of land. Second task was to determine the fitness function for the genetic algorithms. The third objective was to optimize the land use map using economical benefits. The results has indicated that the proposed model has much better performance for solving complex multi-objective spatial optimization allocation problems and it is a promising method for generating land use alternatives for further consideration in spatial decision-making.
NASA Astrophysics Data System (ADS)
Thorsen, Adam
This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized enough to be able to be applied to any rotorcraft with redundant controls. Minimum power propeller thrust shares ranged from 50% - 90% in high speed flight, while lift shares at high speeds tended towards 60% wing and 40% main rotor.
The bliss (not the problem) of motor abundance (not redundancy).
Latash, Mark L
2012-03-01
Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control-the problem of motor redundancy-was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of "good variance"-variance in the space of elements that has no effect on the overall performance-have been documented across a variety of natural actions. "Good variance" helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.
NASA Astrophysics Data System (ADS)
Xu, Ding; Li, Qun
2017-01-01
This paper addresses the power allocation problem for cognitive radio (CR) based on hybrid-automatic-repeat-request (HARQ) with chase combining (CC) in Nakagamimslow fading channels. We assume that, instead of the perfect instantaneous channel state information (CSI), only the statistical CSI is available at the secondary user (SU) transmitter. The aim is to minimize the SU outage probability under the primary user (PU) interference outage constraint. Using the Lagrange multiplier method, an iterative and recursive algorithm is derived to obtain the optimal power allocation for each transmission round. Extensive numerical results are presented to illustrate the performance of the proposed algorithm.
Liver Sharing and Organ Procurement Organization Performance under Redistricted Allocation
Gentry, Sommer E.; Chow, Eric KH.; Massie, Allan; Luo, Xun; Shteyn, Eugene; Pyke, Joshua; Zaun, David; Snyder, Jon J.; Israni, Ajay K.; Kasiske, Bert; Segev, Dorry L.
2015-01-01
Concerns have been raised that optimized redistricting of liver allocation areas might have the unintended result of shifting livers from better-performing to poorer-performing OPOs. We used the Liver Simulated Allocation Model to simulate a 5-year period of liver sharing within either 4 or 8 optimized districts. We investigated whether each OPO’s net liver import under redistricting would be correlated with two OPO performance metrics (observed to expected liver yield and liver donor conversion ratio), along with two other potential correlates (eligible deaths and incident listings above MELD 15). We found no evidence that livers would flow from better-performing OPOs to poorer-performing OPOs in either redistricting scenario. Instead, under these optimized redistricting plans, our simulations suggest that livers would flow from OPOs with more-than-expected eligible deaths toward those with fewer-than-expected eligible deaths, and that livers would flow from OPOs with fewer-than-expected incident listings to those with more-than-expected incident listings, the latter a pattern already established in the current allocation system. Redistricting liver distribution to reduce geographic inequity is expected to align liver allocation across the country with the distribution of supply and demand, rather than transferring livers from better-performing OPOs to poorer-performing OPOs. PMID:25990089
Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte
2016-09-15
Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel
2017-01-01
Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.
Optimal allocation of leaf epidermal area for gas exchange.
de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J
2016-06-01
A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.
Protecting Against Faults in JPL Spacecraft
NASA Technical Reports Server (NTRS)
Morgan, Paula
2007-01-01
A paper discusses techniques for protecting against faults in spacecraft designed and operated by NASA s Jet Propulsion Laboratory (JPL). The paper addresses, more specifically, fault-protection requirements and techniques common to most JPL spacecraft (in contradistinction to unique, mission specific techniques), standard practices in the implementation of these techniques, and fault-protection software architectures. Common requirements include those to protect onboard command, data-processing, and control computers; protect against loss of Earth/spacecraft radio communication; maintain safe temperatures; and recover from power overloads. The paper describes fault-protection techniques as part of a fault-management strategy that also includes functional redundancy, redundant hardware, and autonomous monitoring of (1) the operational and health statuses of spacecraft components, (2) temperatures inside and outside the spacecraft, and (3) allocation of power. The strategy also provides for preprogrammed automated responses to anomalous conditions. In addition, the software running in almost every JPL spacecraft incorporates a general-purpose "Safe Mode" response algorithm that configures the spacecraft in a lower-power state that is safe and predictable, thereby facilitating diagnosis of more complex faults by a team of human experts on Earth.
Vector quantization for efficient coding of upper subbands
NASA Technical Reports Server (NTRS)
Zeng, W. J.; Huang, Y. F.
1994-01-01
This paper examines the application of vector quantization (VQ) to exploit both intra-band and inter-band redundancy in subband coding. The focus here is on the exploitation of inter-band dependency. It is shown that VQ is particularly suitable and effective for coding the upper subbands. Three subband decomposition-based VQ coding schemes are proposed here to exploit the inter-band dependency by making full use of the extra flexibility of VQ approach over scalar quantization. A quadtree-based variable rate VQ (VRVQ) scheme which takes full advantage of the intra-band and inter-band redundancy is first proposed. Then, a more easily implementable alternative based on an efficient block-based edge estimation technique is employed to overcome the implementational barriers of the first scheme. Finally, a predictive VQ scheme formulated in the context of finite state VQ is proposed to further exploit the dependency among different subbands. A VRVQ scheme proposed elsewhere is extended to provide an efficient bit allocation procedure. Simulation results show that these three hybrid techniques have advantages, in terms of peak signal-to-noise ratio (PSNR) and complexity, over other existing subband-VQ approaches.
On-The-Fly Data Processing with Scanamorphos: Application To ArTéMiS
NASA Astrophysics Data System (ADS)
Roussel, Hélène
2018-03-01
Scanamorphos is a suite of IDL based routines to optimally subtract low-frequency noise making maximal use of the redundancy in the data. The procedures were adapted to be applicable to ArTéMiS data.
Design of a modular digital computer system
NASA Technical Reports Server (NTRS)
1973-01-01
A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.
OPAL Netlogo Land Condition Model
2014-08-15
ER D C/ CE RL T R- 14 -1 2 Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) OPAL Netlogo Land Condition Model...Fulton, Natalie Myers, Scott Tweddale, Dick Gebhart, Ryan Busby, Anne Dain-Owens, and Heidi Howard August 2014 OPAL team measuring above and...online library at http://acwc.sdp.sirsi.net/client/default. Optimal Allocation of Land for Training and Non-training Uses ( OPAL ) ERDC/CERL TR-14-12
Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth
Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf
2017-01-01
Cyanobacteria are an integral part of Earth’s biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2. Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions. PMID:28720699
NASA Astrophysics Data System (ADS)
Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.
2016-02-01
In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.
Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang
2016-01-01
For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system. PMID:27835638
Ling, Qing-Hua; Song, Yu-Qing; Han, Fei; Yang, Dan; Huang, De-Shuang
2016-01-01
For ensemble learning, how to select and combine the candidate classifiers are two key issues which influence the performance of the ensemble system dramatically. Random vector functional link networks (RVFL) without direct input-to-output links is one of suitable base-classifiers for ensemble systems because of its fast learning speed, simple structure and good generalization performance. In this paper, to obtain a more compact ensemble system with improved convergence performance, an improved ensemble of RVFL based on attractive and repulsive particle swarm optimization (ARPSO) with double optimization strategy is proposed. In the proposed method, ARPSO is applied to select and combine the candidate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both the convergence accuracy on the validation data and the diversity of the candidate ensemble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble weights corresponding to the base RVFL are initialized by the minimum norm least-square method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned, and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoretical analysis and justification on how to prune the base classifiers on classification problem is presented, and a simple and practically feasible strategy for pruning redundant base classifiers on both classification and regression problems is proposed. Since the double optimization is performed on the basis of the single optimization, the ensemble of RVFL built by the proposed method outperforms that built by some single optimization methods. Experiment results on function approximation and classification problems verify that the proposed method could improve its convergence accuracy as well as reduce the complexity of the ensemble system.
Li, Xiang; Yang, Zhibo; Chen, Xuefeng
2014-01-01
The active structural health monitoring (SHM) approach for the complex composite laminate structures of wind turbine blades (WTBs), addresses the important and complicated problem of signal noise. After illustrating the wind energy industry's development perspectives and its crucial requirement for SHM, an improved redundant second generation wavelet transform (IRSGWT) pre-processing algorithm based on neighboring coefficients is introduced for feeble signal denoising. The method can avoid the drawbacks of conventional wavelet methods that lose information in transforms and the shortcomings of redundant second generation wavelet (RSGWT) denoising that can lead to error propagation. For large scale WTB composites, how to minimize the number of sensors while ensuring accuracy is also a key issue. A sparse sensor array optimization of composites for WTB applications is proposed that can reduce the number of transducers that must be used. Compared to a full sixteen transducer array, the optimized eight transducer configuration displays better accuracy in identifying the correct position of simulated damage (mass of load) on composite laminates with anisotropic characteristics than a non-optimized array. It can help to guarantee more flexible and qualified monitoring of the areas that more frequently suffer damage. The proposed methods are verified experimentally on specimens of carbon fiber reinforced resin composite laminates. PMID:24763210
NASA Technical Reports Server (NTRS)
Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray
2013-01-01
This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.
Optimal water resource allocation modelling in the Lowveld of Zimbabwe
NASA Astrophysics Data System (ADS)
Mhiribidi, Delight; Nobert, Joel; Gumindoga, Webster; Rwasoka, Donald T.
2018-05-01
The management and allocation of water from multi-reservoir systems is complex and thus requires dynamic modelling systems to achieve optimality. A multi-reservoir system in the Southern Lowveld of Zimbabwe is used for irrigation of sugarcane estates that produce sugar for both local and export consumption. The system is burdened with water allocation problems, made worse by decommissioning of dams. Thus the aim of this research was to develop an operating policy model for the Lowveld multi-reservoir system.The Mann Kendall Trend and Wilcoxon Signed-Rank tests were used to assess the variability of historic monthly rainfall and dam inflows for the period 1899-2015. The WEAP model was set up to evaluate the water allocation system of the catchment and come-up with a reference scenario for the 2015/2016 hydrologic year. Stochastic Dynamic Programming approach was used for optimisation of the multi-reservoirs releases.Results showed no significant trend in the rainfall but a significantly decreasing trend in inflows (p < 0.05). The water allocation model (WEAP) showed significant deficits ( ˜ 40 %) in irrigation water allocation in the reference scenario. The optimal rule curves for all the twelve months for each reservoir were obtained and considered to be a proper guideline for solving multi- reservoir management problems within the catchment. The rule curves are effective tools in guiding decision makers in the release of water without emptying the reservoirs but at the same time satisfying the demands based on the inflow, initial storage and end of month storage.
Dual redundant display in bubble canopy applications
NASA Astrophysics Data System (ADS)
Mahdi, Ken; Niemczyk, James
2010-04-01
Today's cockpit integrator, whether for state of the art military fast jet, or piston powered general aviation, is striving to utilize all available panel space for AMLCD based displays to enhance situational awareness and increase safety. The benefits of a glass cockpit have been well studied and documented. The technology used to create these glass cockpits, however, is driven by commercial AMLCD demand which far outstrips the combined worldwide avionics requirements. In order to satisfy the wide variety of human factors and environmental requirements, large area displays have been developed to maximize the usable display area while also providing necessary redundancy in case of failure. The AMLCD has been optimized for extremely wide viewing angles driven by the flat panel TV market. In some cockpit applications, wide viewing cones are desired. In bubble canopy cockpits, however, narrow viewing cones are desired to reduce canopy reflections. American Panel Corporation has developed AMLCD displays that maximize viewing area, provide redundancy, while also providing a very narrow viewing cone even though commercial AMLCD technology is employed suitable for high performance AMLCD Displays. This paper investigates both the large area display architecture with several available options to solve redundancy as well as beam steering techniques to also limit canopy reflections.
Life-history strategies of North American elk: trade-offs associated with reproduction and survival
Sabrina Morano; Kelley M. Stewart; James S. Sedinger; Christopher A. Nicolai; Marty Vavra
2013-01-01
The principle of energy allocation states that individuals should attempt to maximize fitness by allocating resources optimally among growth, maintenance, and reproduction. Such allocation may result in trade-offs between survival and reproduction, or between current and future reproduction. We used a marked population of North American elk (Cervus elaphus...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Optimal offensive missile allocations for moderate offensive and defensive forces are derived and used to study their sensitivity to force structure parameters levels. It is shown that the first strike cost is a product of the number of missiles and a function of the optimum allocation. Thus, the conditions under which the number of missiles should increase or decrease in time is also determined by this allocation.
A game-theoretical pricing mechanism for multiuser rate allocation for video over WiMAX
NASA Astrophysics Data System (ADS)
Chen, Chao-An; Lo, Chi-Wen; Lin, Chia-Wen; Chen, Yung-Chang
2010-07-01
In multiuser rate allocation in a wireless network, strategic users can bias the rate allocation by misrepresenting their bandwidth demands to a base station, leading to an unfair allocation. Game-theoretical approaches have been proposed to address the unfair allocation problems caused by the strategic users. However, existing approaches rely on a timeconsuming iterative negotiation process. Besides, they cannot completely prevent unfair allocations caused by inconsistent strategic behaviors. To address these problems, we propose a Search Based Pricing Mechanism to reduce the communication time and to capture a user's strategic behavior. Our simulation results show that the proposed method significantly reduce the communication time as well as converges stably to an optimal allocation.
Optimisation in the Design of Environmental Sensor Networks with Robustness Consideration
Budi, Setia; de Souza, Paulo; Timms, Greg; Malhotra, Vishv; Turner, Paul
2015-01-01
This work proposes the design of Environmental Sensor Networks (ESN) through balancing robustness and redundancy. An Evolutionary Algorithm (EA) is employed to find the optimal placement of sensor nodes in the Region of Interest (RoI). Data quality issues are introduced to simulate their impact on the performance of the ESN. Spatial Regression Test (SRT) is also utilised to promote robustness in data quality of the designed ESN. The proposed method provides high network representativeness (fit for purpose) with minimum sensor redundancy (cost), and ensures robustness by enabling the network to continue to achieve its objectives when some sensors fail. PMID:26633392
Multiple sensitive estimation and optimal sample size allocation in the item sum technique.
Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz
2018-01-01
For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SYSTEMS ANALYSIS, * WATER SUPPLIES, MATHEMATICAL MODELS, OPTIMIZATION, ECONOMICS, LINEAR PROGRAMMING, HYDROLOGY, REGIONS, ALLOCATIONS, RESTRAINT, RIVERS, EVAPORATION, LAKES, UTAH, SALVAGE, MINES(EXCAVATIONS).
Granmo, Ole-Christoffer; Oommen, B John; Myrer, Svein Arild; Olsen, Morten Goodwin
2007-02-01
This paper considers the nonlinear fractional knapsack problem and demonstrates how its solution can be effectively applied to two resource allocation problems dealing with the World Wide Web. The novel solution involves a "team" of deterministic learning automata (LA). The first real-life problem relates to resource allocation in web monitoring so as to "optimize" information discovery when the polling capacity is constrained. The disadvantages of the currently reported solutions are explained in this paper. The second problem concerns allocating limited sampling resources in a "real-time" manner with the purpose of estimating multiple binomial proportions. This is the scenario encountered when the user has to evaluate multiple web sites by accessing a limited number of web pages, and the proportions of interest are the fraction of each web site that is successfully validated by an HTML validator. Using the general LA paradigm to tackle both of the real-life problems, the proposed scheme improves a current solution in an online manner through a series of informed guesses that move toward the optimal solution. At the heart of the scheme, a team of deterministic LA performs a controlled random walk on a discretized solution space. Comprehensive experimental results demonstrate that the discretization resolution determines the precision of the scheme, and that for a given precision, the current solution (to both problems) is consistently improved until a nearly optimal solution is found--even for switching environments. Thus, the scheme, while being novel to the entire field of LA, also efficiently handles a class of resource allocation problems previously not addressed in the literature.
Using Simple Environmental Variables to Estimate Biomass Disturbance
2014-08-01
ER D C/ CE RL T R- 14 -1 3 Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Using Simple Environmental Variables to...Uses ( OPAL ) ERDC/CERL TR-14-13 August 2014 Using Simple Environmental Variables to Estimate Biomass Disturbance Natalie Myers, Daniel Koch...Development of the Optimal Allocation of Land for Training and Non-Training Uses ( OPAL ) Program was undertak- en to meet this need. This phase of work
2014-08-01
ER D C/ CE RL S R- 14 -7 Optimal Allocation of Land for Training and Non-training Uses OPAL Land Condition Model Co ns tr uc tio n En...Optimal Allocation of Land for Training and Non-training Uses ERDC/CERL SR-14-7 August 2014 OPAL Land Condition Model Daniel Koch, Scott Tweddale...programmer information supporting the Op- timal Programming of Army Lands ( OPAL ) model, which was designed for use by trainers, Integrated Training
NASA Astrophysics Data System (ADS)
Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli
2017-11-01
Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.
Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo
2018-06-01
The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.
Landscape Encodings Enhance Optimization
Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.
2012-01-01
Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860
Converse, Sarah J.; Shelley, Kevin J.; Morey, Steve; Chan, Jeffrey; LaTier, Andrea; Scafidi, Carolyn; Crouse, Deborah T.; Runge, Michael C.
2011-01-01
The resources available to support conservation work, whether time or money, are limited. Decision makers need methods to help them identify the optimal allocation of limited resources to meet conservation goals, and decision analysis is uniquely suited to assist with the development of such methods. In recent years, a number of case studies have been described that examine optimal conservation decisions under fiscal constraints; here we develop methods to look at other types of constraints, including limited staff and regulatory deadlines. In the US, Section Seven consultation, an important component of protection under the federal Endangered Species Act, requires that federal agencies overseeing projects consult with federal biologists to avoid jeopardizing species. A benefit of consultation is negotiation of project modifications that lessen impacts on species, so staff time allocated to consultation supports conservation. However, some offices have experienced declining staff, potentially reducing the efficacy of consultation. This is true of the US Fish and Wildlife Service's Washington Fish and Wildlife Office (WFWO) and its consultation work on federally-threatened bull trout (Salvelinus confluentus). To improve effectiveness, WFWO managers needed a tool to help allocate this work to maximize conservation benefits. We used a decision-analytic approach to score projects based on the value of staff time investment, and then identified an optimal decision rule for how scored projects would be allocated across bins, where projects in different bins received different time investments. We found that, given current staff, the optimal decision rule placed 80% of informal consultations (those where expected effects are beneficial, insignificant, or discountable) in a short bin where they would be completed without negotiating changes. The remaining 20% would be placed in a long bin, warranting an investment of seven days, including time for negotiation. For formal consultations (those where expected effects are significant), 82% of projects would be placed in a long bin, with an average time investment of 15. days. The WFWO is using this decision-support tool to help allocate staff time. Because workload allocation decisions are iterative, we describe a monitoring plan designed to increase the tool's efficacy over time. This work has general application beyond Section Seven consultation, in that it provides a framework for efficient investment of staff time in conservation when such time is limited and when regulatory deadlines prevent an unconstrained approach. ?? 2010.
Optimal resource allocation for novelty detection in a human auditory memory.
Sinkkonen, J; Kaski, S; Huotilainen, M; Ilmoniemi, R J; Näätänen, R; Kaila, K
1996-11-04
A theory of resource allocation for neuronal low-level filtering is presented, based on an analysis of optimal resource allocation in simple environments. A quantitative prediction of the theory was verified in measurements of the magnetic mismatch response (MMR), an auditory event-related magnetic response of the human brain. The amplitude of the MMR was found to be directly proportional to the information conveyed by the stimulus. To the extent that the amplitude of the MMR can be used to measure resource usage by the auditory cortex, this finding supports our theory that, at least for early auditory processing, energy resources are used in proportion to the information content of incoming stimulus flow.
Performance Evaluation Model for Application Layer Firewalls.
Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan
2016-01-01
Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.
Supply chain carbon footprinting and responsibility allocation under emission regulations.
Chen, Jin-Xiao; Chen, Jian
2017-03-01
Reduction of greenhouse gas emissions has become an enormous challenge for any single enterprise and its supply chain because of the increasing concern on global warming. This paper investigates carbon footprinting and responsibility allocation for supply chains involved in joint production. Our study is conducted from the perspective of a social planner who aims to achieve social value optimization. The carbon footprinting model is based on operational activities rather than on firms because joint production blurs the organizational boundaries of footprints. A general model is proposed for responsibility allocation among firms who seek to maximize individual profits. This study looks into ways for the decentralized supply chain to achieve centralized optimality of social value under two emission regulations. Given a balanced allocation for the entire supply chain, we examine the necessity of over-allocation to certain firms under specific situations and find opportunities for the firms to avoid over-allocation. The comparison of the two regulations reveals that setting an emission standard per unit of product will motivate firms to follow the standard and improve their emission efficiencies. Hence, a more efficient and promising policy is needed in contrast to existing regulations on total production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimal allocation of the limited oral cholera vaccine supply between endemic and epidemic settings.
Moore, Sean M; Lessler, Justin
2015-10-06
The World Health Organization (WHO) recently established a global stockpile of oral cholera vaccine (OCV) to be preferentially used in epidemic response (reactive campaigns) with any vaccine remaining after 1 year allocated to endemic settings. Hence, the number of cholera cases or deaths prevented in an endemic setting represents the minimum utility of these doses, and the optimal risk-averse response to any reactive vaccination request (i.e. the minimax strategy) is one that allocates the remaining doses between the requested epidemic response and endemic use in order to ensure that at least this minimum utility is achieved. Using mathematical models, we find that the best minimax strategy is to allocate the majority of doses to reactive campaigns, unless the request came late in the targeted epidemic. As vaccine supplies dwindle, the case for reactive use of the remaining doses grows stronger. Our analysis provides a lower bound for the amount of OCV to keep in reserve when responding to any request. These results provide a strategic context for the fulfilment of requests to the stockpile, and define allocation strategies that minimize the number of OCV doses that are allocated to suboptimal situations. © 2015 The Authors.
Motion-related resource allocation in dynamic wireless visual sensor network environments.
Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E
2014-01-01
This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.
Schaafsma, Murk; van der Deijl, Wilfred; Smits, Jacqueline M; Rahmel, Axel O; de Vries Robbé, Pieter F; Hoitsma, Andries J
2011-05-01
Organ allocation systems have become complex and difficult to comprehend. We introduced decision tables to specify the rules of allocation systems for different organs. A rule engine with decision tables as input was tested for the Kidney Allocation System (ETKAS). We compared this rule engine with the currently used ETKAS by running 11,000 historical match runs and by running the rule engine in parallel with the ETKAS on our allocation system. Decision tables were easy to implement and successful in verifying correctness, completeness, and consistency. The outcomes of the 11,000 historical matches in the rule engine and the ETKAS were exactly the same. Running the rule engine simultaneously in parallel and in real time with the ETKAS also produced no differences. Specifying organ allocation rules in decision tables is already a great step forward in enhancing the clarity of the systems. Yet, using these tables as rule engine input for matches optimizes the flexibility, simplicity and clarity of the whole process, from specification to the performed matches, and in addition this new method allows well controlled simulations. © 2011 The Authors. Transplant International © 2011 European Society for Organ Transplantation.
NASA Astrophysics Data System (ADS)
Salido, Miguel A.; Rodriguez-Molins, Mario; Barber, Federico
The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal's management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel's arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Decision-theoretic methodology for reliability and risk allocation in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.
1985-01-01
This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less
Research on Multirobot Pursuit Task Allocation Algorithm Based on Emotional Cooperation Factor
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm. PMID:25152925
Research on multirobot pursuit task allocation algorithm based on emotional cooperation factor.
Fang, Baofu; Chen, Lu; Wang, Hao; Dai, Shuanglu; Zhong, Qiubo
2014-01-01
Multirobot task allocation is a hot issue in the field of robot research. A new emotional model is used with the self-interested robot, which gives a new way to measure self-interested robots' individual cooperative willingness in the problem of multirobot task allocation. Emotional cooperation factor is introduced into self-interested robot; it is updated based on emotional attenuation and external stimuli. Then a multirobot pursuit task allocation algorithm is proposed, which is based on emotional cooperation factor. Combined with the two-step auction algorithm recruiting team leaders and team collaborators, set up pursuit teams, and finally use certain strategies to complete the pursuit task. In order to verify the effectiveness of this algorithm, some comparing experiments have been done with the instantaneous greedy optimal auction algorithm; the results of experiments show that the total pursuit time and total team revenue can be optimized by using this algorithm.
Nakrani, Sunil; Tovey, Craig
2007-12-01
An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.
NASA Astrophysics Data System (ADS)
Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun
2009-02-01
Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel
Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.
2017-01-01
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.
Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo
2017-12-07
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.
NASA Astrophysics Data System (ADS)
Lu, Mengqian; Lall, Upmanu; Robertson, Andrew W.; Cook, Edward
2017-03-01
Streamflow forecasts at multiple time scales provide a new opportunity for reservoir management to address competing objectives. Market instruments such as forward contracts with specified reliability are considered as a tool that may help address the perceived risk associated with the use of such forecasts in lieu of traditional operation and allocation strategies. A water allocation process that enables multiple contracts for water supply and hydropower production with different durations, while maintaining a prescribed level of flood risk reduction, is presented. The allocation process is supported by an optimization model that considers multitime scale ensemble forecasts of monthly streamflow and flood volume over the upcoming season and year, the desired reliability and pricing of proposed contracts for hydropower and water supply. It solves for the size of contracts at each reliability level that can be allocated for each future period, while meeting target end of period reservoir storage with a prescribed reliability. The contracts may be insurable, given that their reliability is verified through retrospective modeling. The process can allow reservoir operators to overcome their concerns as to the appropriate skill of probabilistic forecasts, while providing water users with short-term and long-term guarantees as to how much water or energy they may be allocated. An application of the optimization model to the Bhakra Dam, India, provides an illustration of the process. The issues of forecast skill and contract performance are examined. A field engagement of the idea is useful to develop a real-world perspective and needs a suitable institutional environment.
Jevtić, Aleksandar; Gutiérrez, Álvaro
2011-01-01
Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677
NASA Astrophysics Data System (ADS)
Razurel, Pierre; Niayifar, Amin; Perona, Paolo
2017-04-01
Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by direct simulation for small hydropower ones (Razurel et al., 2016). Compared to proportional and constant minimal flows, economic and ecological efficiencies are found to be substantially improved in the case of using non-proportional water allocation rules for both SHP and traditional systems.
Titan probe technology assessment and technology development plan study
NASA Technical Reports Server (NTRS)
Castro, A. J.
1980-01-01
The need for technology advances to accomplish the Titan probe mission was determined by defining mission conditions and requirements and evaluating the technology impact on the baseline probe configuration. Mission characteristics found to be technology drivers include (1) ten years dormant life in space vacuum; (2) unknown surface conditions, various sample materials, and a surface temperature; and (3) mission constraints of the Saturn Orbiter Dual Probe mission regarding weight allocation. The following areas were identified for further development: surface sample acquisition system; battery powered system; nonmetallic materials; magnetic bubble memory devices, and the landing system. Preentry science, reliability, and weight reduction and redundancy must also be considered.
Space Tug avionics definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.
Optimal Allocation of Restoration Practices Using Indexes for Stream Health
Methodologies that allocate the placement of agricultural and urban green infrastructure management practices with the intent to achieve both economic and environmental objectives typically use objectives related to individual intermediary environmental outputs, yet guidance is n...
Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2011-01-01
In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.
Resource allocation for error resilient video coding over AWGN using optimization approach.
An, Cheolhong; Nguyen, Truong Q
2008-12-01
The number of slices for error resilient video coding is jointly optimized with 802.11a-like media access control and the physical layers with automatic repeat request and rate compatible punctured convolutional code over additive white gaussian noise channel as well as channel times allocation for time division multiple access. For error resilient video coding, the relation between the number of slices and coding efficiency is analyzed and formulated as a mathematical model. It is applied for the joint optimization problem, and the problem is solved by a convex optimization method such as the primal-dual decomposition method. We compare the performance of a video communication system which uses the optimal number of slices with one that codes a picture as one slice. From numerical examples, end-to-end distortion of utility functions can be significantly reduced with the optimal slices of a picture especially at low signal-to-noise ratio.
Location-allocation models and new solution methodologies in telecommunication networks
NASA Astrophysics Data System (ADS)
Dinu, S.; Ciucur, V.
2016-08-01
When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect to the quality of solutions, significant size test problems were considered: up to 100 terminal nodes and 50 concentrators on a 100 × 100 square grid. The performance of this hybrid intelligent algorithm was evaluated by measuring the quality of its solutions with respect to the following statistics: the standard deviation and the ratio of the best solution obtained.
NASA Astrophysics Data System (ADS)
Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit
2008-12-01
Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.
Júnez-Ferreira, H E; Herrera, G S
2013-04-01
This paper presents a new methodology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Querétaro aquifer in Mexico. The selection of the space-time monitoring points is done using a static Kalman filter combined with a sequential optimization method. The Kalman filter requires as input a space-time covariance matrix, which is derived from a geostatistical analysis. A sequential optimization method that selects the space-time point that minimizes a function of the variance, in each step, is used. We demonstrate the methodology applying it to the redesign of the hydraulic head monitoring network of the Valle de Querétaro aquifer with the objective of selecting from a set of monitoring positions and times, those that minimize the spatiotemporal redundancy. The database for the geostatistical space-time analysis corresponds to information of 273 wells located within the aquifer for the period 1970-2007. A total of 1,435 hydraulic head data were used to construct the experimental space-time variogram. The results show that from the existing monitoring program that consists of 418 space-time monitoring points, only 178 are not redundant. The implied reduction of monitoring costs was possible because the proposed method is successful in propagating information in space and time.
A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.
Terrier, Alexandre; Aeberhard, Martin; Michellod, Yvan; Mullhaupt, Philippe; Gillet, Denis; Farron, Alain; Pioletti, Dominique P
2010-11-01
The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.
2001-12-01
Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
NASA Astrophysics Data System (ADS)
Chen, Dechao; Zhang, Yunong
2017-10-01
Dual-arm redundant robot systems are usually required to handle primary tasks, repetitively and synchronously in practical applications. In this paper, a jerk-level synchronous repetitive motion scheme is proposed to remedy the joint-angle drift phenomenon and achieve the synchronous control of a dual-arm redundant robot system. The proposed scheme is novelly resolved at jerk level, which makes the joint variables, i.e. joint angles, joint velocities and joint accelerations, smooth and bounded. In addition, two types of dynamics algorithms, i.e. gradient-type (G-type) and zeroing-type (Z-type) dynamics algorithms, for the design of repetitive motion variable vectors, are presented in detail with the corresponding circuit schematics. Subsequently, the proposed scheme is reformulated as two dynamical quadratic programs (DQPs) and further integrated into a unified DQP (UDQP) for the synchronous control of a dual-arm robot system. The optimal solution of the UDQP is found by the piecewise-linear projection equation neural network. Moreover, simulations and comparisons based on a six-degrees-of-freedom planar dual-arm redundant robot system substantiate the operation effectiveness and tracking accuracy of the robot system with the proposed scheme for repetitive motion and synchronous control.
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
Dodson, Zan M.; Agadjanian, Victor; Driessen, Julia
2016-01-01
Proper allocation of limited healthcare resources is a challenging task for policymakers in developing countries. Allocation of and access to these resources typically varies based on how need is defined, thus determining how individuals access and acquire healthcare. Using the introduction of antiretroviral therapy in southern Mozambique as an example, we examine alternative definitions of need for rural populations and how they might impact the allocation of this vital health service. Our results show that how need is defined matters when allocating limited healthcare resources and the use of need-based metrics can help ensure more optimal distribution of services. PMID:28596630
NASA Astrophysics Data System (ADS)
Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli
2018-01-01
Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were assessed and implemented to alleviate water shortages. The negative impacts from the South-to-North Water Transfer Project (Middle Route) in the mid-lower reaches of the Hanjiang River Basin can be avoided through the dynamic control of FLWLs in Danjiangkou Reservoir, under the historical and future RCP2.6 and RCP4.5 scenarios. However, the effects of adaptation measures are limited due to their own constraints, such as the characteristics of the reservoirs influencing the FLWLs. The utilization of storm water appears necessary to meet future water demand. Overall, the results indicate that the framework for assessing the effects of adaptation measures on water resources allocation might aid water resources management, not only in the study area but also in other places where water availability conditions vary due to climate change and human activities.
Particulate Meso-scale Mechanics Diagnostics: Magnetic Sensors for Dynamic State Orientation
2013-12-01
Research Laboratory for giving this opportunity to work at the Eglin AFB, FL. REFERENCES 1. Brian D. Reding , “Development of Particulate Materials...Measurements," Sandia Report, 1984. 15. I.N. Tansel, B. Reding , W. L. Cooper, “Lagrangian Point State Estimation with Optimized, Redundant Induction Coil
Adaptive Wing Camber Optimization: A Periodic Perturbation Approach
NASA Technical Reports Server (NTRS)
Espana, Martin; Gilyard, Glenn
1994-01-01
Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.
Optimization Case Study: ISR Allocation in the Global Force Management Process
2016-09-01
Communications Intelligence (COMINT), and other intelligence collection capabilities. The complexity of FMV force allocation makes FMV the ideal...Joint Staff (2014). 5 This chapter will step through the GFM allocation process and develop an understanding of the GFM process depicted in Figure 1...contentious. The contentious issue will go through a resolution process consisting of action officer and General Officer/Flag Officer (GOFO) level forums
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
Optimising the location of antenatal classes.
Tomintz, Melanie N; Clarke, Graham P; Rigby, Janette E; Green, Josephine M
2013-01-01
To combine microsimulation and location-allocation techniques to determine antenatal class locations which minimise the distance travelled from home by potential users. Microsimulation modeling and location-allocation modeling. City of Leeds, UK. Potential users of antenatal classes. An individual-level microsimulation model was built to estimate the number of births for small areas by combining data from the UK Census 2001 and the Health Survey for England 2006. Using this model as a proxy for service demand, we then used a location-allocation model to optimize locations. Different scenarios show the advantage of combining these methods to optimize (re)locating antenatal classes and therefore reduce inequalities in accessing services for pregnant women. Use of these techniques should lead to better use of resources by allowing planners to identify optimal locations of antenatal classes which minimise women's travel. These results are especially important for health-care planners tasked with the difficult issue of targeting scarce resources in a cost-efficient, but also effective or accessible, manner. (169 words). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1971-01-01
The optimal allocation of resources to the national space program over an extended time period requires the solution of a large combinatorial problem in which the program elements are interdependent. The computer model uses an accelerated search technique to solve this problem. The model contains a large number of options selectable by the user to provide flexible input and a broad range of output for use in sensitivity analyses of all entering elements. Examples of these options are budget smoothing under varied appropriation levels, entry of inflation and discount effects, and probabilistic output which provides quantified degrees of certainty that program costs will remain within planned budget. Criteria and related analytic procedures were established for identifying potential new space program directions. Used in combination with the optimal resource allocation model, new space applications can be analyzed in realistic perspective, including the advantage gain from existing space program plant and on-going programs such as the space transportation system.
Studies in integrated line-and packet-switched computer communication systems
NASA Astrophysics Data System (ADS)
Maglaris, B. S.
1980-06-01
The problem of efficiently allocating the bandwidth of a trunk to both types of traffic is handled for various system and traffic models. A performance analysis is carried out both for variable and fixed frame schemes. It is shown that variable frame schemes, adjusting the frame length according to the traffic variations, offer better trunk utilization at the cost of the additional hardware and software complexity needed because of the lack of synchronization. An optimization study on the fixed frame schemes follows. The problem of dynamically allocating the fixed frame to both types of traffic is formulated as a Markovian Decision process. It is shown that the movable boundary scheme, suggested for commercial implementations of integrated multiplexors, offers optimal or near optimal performance and simplicity of implementation. Finally, the behavior of the movable boundary integrated scheme is studied for tandem link connections. Under the assumptions made for the line-switched traffic, the forward allocation technique is found to offer the best alternative among different path set-up strategies.
A supplier selection and order allocation problem with stochastic demands
NASA Astrophysics Data System (ADS)
Zhou, Yun; Zhao, Lei; Zhao, Xiaobo; Jiang, Jianhua
2011-08-01
We consider a system comprising a retailer and a set of candidate suppliers that operates within a finite planning horizon of multiple periods. The retailer replenishes its inventory from the suppliers and satisfies stochastic customer demands. At the beginning of each period, the retailer makes decisions on the replenishment quantity, supplier selection and order allocation among the selected suppliers. An optimisation problem is formulated to minimise the total expected system cost, which includes an outer level stochastic dynamic program for the optimal replenishment quantity and an inner level integer program for supplier selection and order allocation with a given replenishment quantity. For the inner level subproblem, we develop a polynomial algorithm to obtain optimal decisions. For the outer level subproblem, we propose an efficient heuristic for the system with integer-valued inventory, based on the structural properties of the system with real-valued inventory. We investigate the efficiency of the proposed solution approach, as well as the impact of parameters on the optimal replenishment decision with numerical experiments.
Using game theory for perceptual tuned rate control algorithm in video coding
NASA Astrophysics Data System (ADS)
Luo, Jiancong; Ahmad, Ishfaq
2005-03-01
This paper proposes a game theoretical rate control technique for video compression. Using a cooperative gaming approach, which has been utilized in several branches of natural and social sciences because of its enormous potential for solving constrained optimization problems, we propose a dual-level scheme to optimize the perceptual quality while guaranteeing "fairness" in bit allocation among macroblocks. At the frame level, the algorithm allocates target bits to frames based on their coding complexity. At the macroblock level, the algorithm distributes bits to macroblocks by defining a bargaining game. Macroblocks play cooperatively to compete for shares of resources (bits) to optimize their quantization scales while considering the Human Visual System"s perceptual property. Since the whole frame is an entity perceived by viewers, macroblocks compete cooperatively under a global objective of achieving the best quality with the given bit constraint. The major advantage of the proposed approach is that the cooperative game leads to an optimal and fair bit allocation strategy based on the Nash Bargaining Solution. Another advantage is that it allows multi-objective optimization with multiple decision makers (macroblocks). The simulation results testify the algorithm"s ability to achieve accurate bit rate with good perceptual quality, and to maintain a stable buffer level.
A review of distributed parameter groundwater management modeling methods
Gorelick, Steven M.
1983-01-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
A Review of Distributed Parameter Groundwater Management Modeling Methods
NASA Astrophysics Data System (ADS)
Gorelick, Steven M.
1983-04-01
Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.
Hamdan, Sadeque; Cheaitou, Ali
2017-08-01
This data article provides detailed optimization input and output datasets and optimization code for the published research work titled "Dynamic green supplier selection and order allocation with quantity discounts and varying supplier availability" (Hamdan and Cheaitou, 2017, In press) [1]. Researchers may use these datasets as a baseline for future comparison and extensive analysis of the green supplier selection and order allocation problem with all-unit quantity discount and varying number of suppliers. More particularly, the datasets presented in this article allow researchers to generate the exact optimization outputs obtained by the authors of Hamdan and Cheaitou (2017, In press) [1] using the provided optimization code and then to use them for comparison with the outputs of other techniques or methodologies such as heuristic approaches. Moreover, this article includes the randomly generated optimization input data and the related outputs that are used as input data for the statistical analysis presented in Hamdan and Cheaitou (2017 In press) [1] in which two different approaches for ranking potential suppliers are compared. This article also provides the time analysis data used in (Hamdan and Cheaitou (2017, In press) [1] to study the effect of the problem size on the computation time as well as an additional time analysis dataset. The input data for the time study are generated randomly, in which the problem size is changed, and then are used by the optimization problem to obtain the corresponding optimal outputs as well as the corresponding computation time.
Schweigkofler, U; Reimertz, C; Auhuber, T C; Jung, H G; Gottschalk, R; Hoffmann, R
2011-10-01
The outcome of injured patients depends on intrastractural circumstances as well as on the time until clinical treatment begins. A rapid patient allocation can only be achieved occur if informations about the care capacity status of the medical centers are available. Considering this an improvement at the interface prehospital/clinical care seems possible. In 2010 in Frankfurt am Main the announcement of free capacity (positive proof) was converted to a web-based negative proof of interdisciplinary care capacities. So-called closings are indicated in a web portal, recorded centrally and registered at the local health authority and the management of participating hospitals. Analyses of the allocations to hospitals of all professional disciplines from the years 2009 and 2010 showed an optimized use of the resources. A decline of the allocations by the order from 261 to 0 could be reached by the introduction of the clear care capacity proof system. The health authorities as the regulating body rarely had to intervene (decline from 400 to 7 cases). Surgical care in Frankfurt was guaranteed at any time by one of the large medical centers. The web-based care capacity proof system introduced in 2010 does justice to the demand for optimum resource use on-line. Integration of this allocation system into the developing trauma networks can optimize the process for a quick and high quality care of severely injured patients. It opens new approaches to improve allocation of high numbers of casualties in disaster medicine.
Design of fuel cell powered data centers for sufficient reliability and availability
NASA Astrophysics Data System (ADS)
Ritchie, Alexa J.; Brouwer, Jacob
2018-04-01
It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.
Salimi-Badr, Armin; Ebadzadeh, Mohammad Mehdi; Darlot, Christian
2018-01-01
In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte
2017-04-01
Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.
Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-01-01
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850
Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang
2017-11-25
In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.
Abouleish, Amr E; Dexter, Franklin; Epstein, Richard H; Lubarsky, David A; Whitten, Charles W; Prough, Donald S
2003-04-01
Determination of operating room (OR) block allocation and case scheduling is often not based on maximizing OR efficiency, but rather on tradition and surgeon convenience. As a result, anesthesiology groups often incur additional labor costs. When negotiating financial support, heads of anesthesiology departments are often challenged to justify the subsidy necessary to offset these additional labor costs. In this study, we describe a method for calculating a statistically sound estimate of the excess labor costs incurred by an anesthesiology group because of inefficient OR allocation and case scheduling. OR information system and anesthesia staffing data for 1 yr were obtained from two university hospitals. Optimal OR allocation for each surgical service was determined by maximizing the efficiency of use of the OR staff. Hourly costs were converted to dollar amounts by using the nationwide median compensation for academic and private-practice anesthesia providers. Differences between actual costs and the optimal OR allocation were determined. For Hospital A, estimated annual excess labor costs were $1.6 million (95% confidence interval, $1.5-$1.7 million) and $2.0 million ($1.89-$2.05 million) when academic and private-practice compensation, respectively, was calculated. For Hospital B, excess labor costs were $1.0 million ($1.08-$1.17 million) and $1.4 million ($1.32-1.43 million) for academic and private-practice compensation, respectively. This study demonstrates a methodology for an anesthesiology group to estimate its excess labor costs. The group can then use these estimates when negotiating for subsidies with its hospital, medical school, or multispecialty medical group. We describe a new application for a previously reported statistical method to calculate operating room (OR) allocations to maximize OR efficiency. When optimal OR allocations and case scheduling are not implemented, the resulting increase in labor costs can be used in negotiations as a statistically sound estimate for the increased labor cost to the anesthesiology department.
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng
2015-01-01
Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264
Optimal actuator placement in adaptive precision trusses
NASA Technical Reports Server (NTRS)
Baycan, C. M.; Utku, S.; Das, S. K.; Wada, B. K.
1992-01-01
Actuator placement in adaptive truss structures is to cater to two needs: displacement control of precision points and preloading the elements to overcome joint slackness. Due to technological and financial considerations, the number of actuators available is much less than the degrees of freedom of precision points to be controlled and the degree of redundancy of the structure. An approach for optimal actuator location is outlined. Test cases to demonstrate the effectiveness of the scheme are applied to the Precision Segmented Reflector Truss.
An improved robust buffer allocation method for the project scheduling problem
NASA Astrophysics Data System (ADS)
Ghoddousi, Parviz; Ansari, Ramin; Makui, Ahmad
2017-04-01
Unpredictable uncertainties cause delays and additional costs for projects. Often, when using traditional approaches, the optimizing procedure of the baseline project plan fails and leads to delays. In this study, a two-stage multi-objective buffer allocation approach is applied for robust project scheduling. In the first stage, some decisions are made on buffer sizes and allocation to the project activities. A set of Pareto-optimal robust schedules is designed using the meta-heuristic non-dominated sorting genetic algorithm (NSGA-II) based on the decisions made in the buffer allocation step. In the second stage, the Pareto solutions are evaluated in terms of the deviation from the initial start time and due dates. The proposed approach was implemented on a real dam construction project. The outcomes indicated that the obtained buffered schedule reduces the cost of disruptions by 17.7% compared with the baseline plan, with an increase of about 0.3% in the project completion time.
Short-term storage allocation in a filmless hospital
NASA Astrophysics Data System (ADS)
Strickland, Nicola H.; Deshaies, Marc J.; Reynolds, R. Anthony; Turner, Jonathan E.; Allison, David J.
1997-05-01
Optimizing limited short term storage (STS) resources requires gradual, systematic changes, monitored and modified within an operational PACS environment. Optimization of the centralized storage requires a balance of exam numbers and types in STS to minimize lengthy retrievals from long term archive. Changes to STS parameters and work procedures were made while monitoring the effects on resource allocation by analyzing disk space temporally. Proportions of disk space allocated to each patient category on STS were measured to approach the desired proportions in a controlled manner. Key factors for STS management were: (1) sophisticated exam prefetching algorithms: HIS/RIS-triggered, body part-related and historically-selected, and (2) a 'storage onion' design allocating various exam categories to layers with differential deletion protection. Hospitals planning for STS space should consider the needs of radiology, wards, outpatient clinics and clinicoradiological conferences for new and historical exams; desired on-line time; and potential increase in image throughput and changing resources, such as an increase in short term storage disk space.
Mitigating energy loss on distribution lines through the allocation of reactors
NASA Astrophysics Data System (ADS)
Miranda, T. M.; Romero, F.; Meffe, A.; Castilho Neto, J.; Abe, L. F. T.; Corradi, F. E.
2018-03-01
This paper presents a methodology for automatic reactors allocation on medium voltage distribution lines to reduce energy loss. In Brazil, some feeders are distinguished by their long lengths and very low load, which results in a high influence of the capacitance of the line on the circuit’s performance, requiring compensation through the installation of reactors. The automatic allocation is accomplished using an optimization meta-heuristic called Global Neighbourhood Algorithm. Given a set of reactor models and a circuit, it outputs an optimal solution in terms of reduction of energy loss. The algorithm is also able to verify if the voltage limits determined by the user are not being violated, besides checking for energy quality. The methodology was implemented in a software tool, which can also show the allocation graphically. A simulation with four real feeders is presented in the paper. The obtained results were able to reduce the energy loss significantly, from 50.56%, in the worst case, to 93.10%, in the best case.
On the optimal use of a slow server in two-stage queueing systems
NASA Astrophysics Data System (ADS)
Papachristos, Ioannis; Pandelis, Dimitrios G.
2017-07-01
We consider two-stage tandem queueing systems with a dedicated server in each queue and a slower flexible server that can attend both queues. We assume Poisson arrivals and exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming that two servers cannot collaborate to work on the same job and preemptions are not allowed. We formulate the problem as a Markov decision process and derive properties of the optimal allocation for the dedicated (fast) servers. Specifically, we show that the one downstream should not idle, and the same is true for the one upstream when holding costs are larger there. The optimal allocation of the slow server is investigated through extensive numerical experiments that lead to conjectures on the structure of the optimal policy.
System, apparatus and methods to implement high-speed network analyzers
Ezick, James; Lethin, Richard; Ros-Giralt, Jordi; Szilagyi, Peter; Wohlford, David E
2015-11-10
Systems, apparatus and methods for the implementation of high-speed network analyzers are provided. A set of high-level specifications is used to define the behavior of the network analyzer emitted by a compiler. An optimized inline workflow to process regular expressions is presented without sacrificing the semantic capabilities of the processing engine. An optimized packet dispatcher implements a subset of the functions implemented by the network analyzer, providing a fast and slow path workflow used to accelerate specific processing units. Such dispatcher facility can also be used as a cache of policies, wherein if a policy is found, then packet manipulations associated with the policy can be quickly performed. An optimized method of generating DFA specifications for network signatures is also presented. The method accepts several optimization criteria, such as min-max allocations or optimal allocations based on the probability of occurrence of each signature input bit.
Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability
DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.
2012-01-01
We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.
NASA Astrophysics Data System (ADS)
Pournazeri, S.
2011-12-01
A comprehensive optimization model named Cooperative Water Allocation Model (CWAM) is developed for equitable and efficient water allocation and valuation of Zab river basin in order to solve the draught problems of Orumieh Lake in North West of Iran. The model's methodology consists of three phases. The first represents an initial water rights allocation among competing users. The second comprises the water reallocation process for complete usage by consumers. The third phase performs an allocation of the net benefit of the stakeholders participating in a coalition by applying cooperative game theory. The environmental constraints are accounted for in the water allocation model by entering probable environmental damage in a target function, and inputting the minimum water requirement of users. The potential of underground water usage is evaluated in order to compensate for the variation in the amount of surface water. This is conducted by applying an integrated economic- hydrologic river basin model. A node-link river basin network is utilized in CWAM which consists of two major blocks. The first indicates the internal water rights allocation and the second is associated to water and net benefit reallocation. System control, loss in links by evaporation or seepage, modification of inflow into the node, loss in nodes and loss in outflow are considered in this model. Water valuation is calculated for environmental, industrial, municipal and agricultural usage by net benefit function. It can be seen that the water rights are allocated efficiently and incomes are distributed appropriately based on quality and quantity limitations.
Sensitivity analysis of key components in large-scale hydroeconomic models
NASA Astrophysics Data System (ADS)
Medellin-Azuara, J.; Connell, C. R.; Lund, J. R.; Howitt, R. E.
2008-12-01
This paper explores the likely impact of different estimation methods in key components of hydro-economic models such as hydrology and economic costs or benefits, using the CALVIN hydro-economic optimization for water supply in California. In perform our analysis using two climate scenarios: historical and warm-dry. The components compared were perturbed hydrology using six versus eighteen basins, highly-elastic urban water demands, and different valuation of agricultural water scarcity. Results indicate that large scale hydroeconomic hydro-economic models are often rather robust to a variety of estimation methods of ancillary models and components. Increasing the level of detail in the hydrologic representation of this system might not greatly affect overall estimates of climate and its effects and adaptations for California's water supply. More price responsive urban water demands will have a limited role in allocating water optimally among competing uses. Different estimation methods for the economic value of water and scarcity in agriculture may influence economically optimal water allocation; however land conversion patterns may have a stronger influence in this allocation. Overall optimization results of large-scale hydro-economic models remain useful for a wide range of assumptions in eliciting promising water management alternatives.
NASA Astrophysics Data System (ADS)
Lima, José; Pereira, Ana I.; Costa, Paulo; Pinto, Andry; Costa, Pedro
2017-07-01
This paper describes an optimization procedure for a robot with 12 degrees of freedom avoiding the inverse kinematics problem, which is a hard task for this type of robot manipulator. This robot can be used to pick and place tasks in complex designs. Combining an accurate and fast direct kinematics model with optimization strategies, it is possible to achieve the joints angles for a desired end-effector position and orientation. The optimization methods stretched simulated annealing algorithm and genetic algorithm were used. The solutions found were validated using data originated by a real and by a simulated robot formed by 12 servomotors with a gripper.
Algorithms for synthesizing management solutions based on OLAP-technologies
NASA Astrophysics Data System (ADS)
Pishchukhin, A. M.; Akhmedyanova, G. F.
2018-05-01
OLAP technologies are a convenient means of analyzing large amounts of information. An attempt was made in their work to improve the synthesis of optimal management decisions. The developed algorithms allow forecasting the needs and accepted management decisions on the main types of the enterprise resources. Their advantage is the efficiency, based on the simplicity of quadratic functions and differential equations of only the first order. At the same time, the optimal redistribution of resources between different types of products from the assortment of the enterprise is carried out, and the optimal allocation of allocated resources in time. The proposed solutions can be placed on additional specially entered coordinates of the hypercube representing the data warehouse.
NASA Astrophysics Data System (ADS)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah@Rozita
2016-11-01
Two new methods adopted from methods commonly used in the field of transportation and logistics are proposed to solve a specific issue of investment allocation problem. Vehicle routing problem and capacitated vehicle routing methods are applied to optimize the fund allocation of a portfolio of investment assets. This is done by determining the sequence of the assets. As a result, total investment risk is minimized by this sequence.
A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality
NASA Astrophysics Data System (ADS)
Liu, Li; Zhuang, Xinhua
2009-01-01
It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.
NASA Astrophysics Data System (ADS)
Kim, Y.; Hwang, T.; Vose, J. M.; Martin, K. L.; Band, L. E.
2016-12-01
Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.
NASA Astrophysics Data System (ADS)
Keum, J.; Coulibaly, P. D.
2017-12-01
Obtaining quality hydrologic observations is the first step towards a successful water resources management. While remote sensing techniques have enabled to convert satellite images of the Earth's surface to hydrologic data, the importance of ground-based observations has never been diminished because in-situ data are often highly accurate and can be used to validate remote measurements. The existence of efficient hydrometric networks is becoming more important to obtain as much as information with minimum redundancy. The World Meteorological Organization (WMO) has recommended a guideline for the minimum hydrometric network density based on physiography; however, this guideline is not for the optimum network design but for avoiding serious deficiency from a network. Moreover, all hydrologic variables are interconnected within the hydrologic cycle, while monitoring networks have been designed individually. This study proposes an integrated network design method using entropy theory with a multiobjective optimization approach. In specific, a precipitation and a streamflow networks in a semi-urban watershed in Ontario, Canada were designed simultaneously by maximizing joint entropy, minimizing total correlation, and maximizing conditional entropy of streamflow network given precipitation network. After comparing with the typical individual network designs, the proposed design method would be able to determine more efficient optimal networks by avoiding the redundant stations, in which hydrologic information is transferable. Additionally, four quantization cases were applied in entropy calculations to assess their implications on the station rankings and the optimal networks. The results showed that the selection of quantization method should be considered carefully because the rankings and optimal networks are subject to change accordingly.
50 CFR 600.325 - National Standard 4-Allocations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... promote conservation (in the sense of wise use) by optimizing the yield in terms of size, value, market... Section 600.325 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND....325 National Standard 4—Allocations. (a) Standard 4. Conservation and management measures shall not...
Asset Allocation to Cover a Region of Piracy
2011-09-01
1087-1092. 8. Kirkpatrick, S., Optimization by Simulated Annealing. Science, 1983. 220(4598): p. 671-680. 9. Daskin , M. S., A bibliography for some...... a uniform piracy risk and where some areas are more vulnerable than others. Simulated annealing was used to allocate the patrolling naval assets
Priority setting in health care: disentangling risk aversion from inequality aversion.
Echazu, Luciana; Nocetti, Diego
2013-06-01
In this paper, we introduce a tractable social welfare function that is rich enough to disentangle attitudes towards risk in health outcomes from attitudes towards health inequalities across individuals. Given this preference specification, we evaluate how the introduction of uncertainty over the severity of illness and over the effectiveness of treatments affects the optimal allocation of healthcare resources. We show that the way in which uncertainty affects the optimal allocation within our proposed specification may differ sharply from that in the standard expected utility framework. Copyright © 2012 John Wiley & Sons, Ltd.
A model for dynamic allocation of human attention among multiple tasks
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Tulga, M. K.
1978-01-01
The problem of multi-task attention allocation with special reference to aircraft piloting is discussed with the experimental paradigm used to characterize this situation and the experimental results obtained in the first phase of the research. A qualitative description of an approach to mathematical modeling, and some results obtained with it are also presented to indicate what aspects of the model are most promising. Two appendices are given which (1) discuss the model in relation to graph theory and optimization and (2) specify the optimization algorithm of the model.
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.
NASA Astrophysics Data System (ADS)
Tran, T.
With the onset of the SmallSat era, the RSO catalog is expected to see continuing growth in the near future. This presents a significant challenge to the current sensor tasking of the SSN. The Air Force is in need of a sensor tasking system that is robust, efficient, scalable, and able to respond in real-time to interruptive events that can change the tracking requirements of the RSOs. Furthermore, the system must be capable of using processed data from heterogeneous sensors to improve tasking efficiency. The SSN sensor tasking can be regarded as an economic problem of supply and demand: the amount of tracking data needed by each RSO represents the demand side while the SSN sensor tasking represents the supply side. As the number of RSOs to be tracked grows, demand exceeds supply. The decision-maker is faced with the problem of how to allocate resources in the most efficient manner. Braxton recently developed a framework called Multi-Objective Resource Optimization using Genetic Algorithm (MOROUGA) as one of its modern COTS software products. This optimization framework took advantage of the maturing technology of evolutionary computation in the last 15 years. This framework was applied successfully to address the resource allocation of an AFSCN-like problem. In any resource allocation problem, there are five key elements: (1) the resource pool, (2) the tasks using the resources, (3) a set of constraints on the tasks and the resources, (4) the objective functions to be optimized, and (5) the demand levied on the resources. In this paper we explain in detail how the design features of this optimization framework are directly applicable to address the SSN sensor tasking domain. We also discuss our validation effort as well as present the result of the AFSCN resource allocation domain using a prototype based on this optimization framework.
Improved l1-SPIRiT using 3D walsh transform-based sparsity basis.
Feng, Zhen; Liu, Feng; Jiang, Mingfeng; Crozier, Stuart; Guo, He; Wang, Yuxin
2014-09-01
l1-SPIRiT is a fast magnetic resonance imaging (MRI) method which combines parallel imaging (PI) with compressed sensing (CS) by performing a joint l1-norm and l2-norm optimization procedure. The original l1-SPIRiT method uses two-dimensional (2D) Wavelet transform to exploit the intra-coil data redundancies and a joint sparsity model to exploit the inter-coil data redundancies. In this work, we propose to stack all the coil images into a three-dimensional (3D) matrix, and then a novel 3D Walsh transform-based sparsity basis is applied to simultaneously reduce the intra-coil and inter-coil data redundancies. Both the 2D Wavelet transform-based and the proposed 3D Walsh transform-based sparsity bases were investigated in the l1-SPIRiT method. The experimental results show that the proposed 3D Walsh transform-based l1-SPIRiT method outperformed the original l1-SPIRiT in terms of image quality and computational efficiency. Copyright © 2014 Elsevier Inc. All rights reserved.
Dounskaia, Natalia; Shimansky, Yury
2016-06-01
Optimality criteria underlying organization of arm movements are often validated by testing their ability to adequately predict hand trajectories. However, kinematic redundancy of the arm allows production of the same hand trajectory through different joint coordination patterns. We therefore consider movement optimality at the level of joint coordination patterns. A review of studies of multi-joint movement control suggests that a 'trailing' pattern of joint control is consistently observed during which a single ('leading') joint is rotated actively and interaction torque produced by this joint is the primary contributor to the motion of the other ('trailing') joints. A tendency to use the trailing pattern whenever the kinematic redundancy is sufficient and increased utilization of this pattern during skillful movements suggests optimality of the trailing pattern. The goal of this study is to determine the cost function minimization of which predicts the trailing pattern. We show that extensive experimental testing of many known cost functions cannot successfully explain optimality of the trailing pattern. We therefore propose a novel cost function that represents neural effort for joint coordination. That effort is quantified as the cost of neural information processing required for joint coordination. We show that a tendency to reduce this 'neurocomputational' cost predicts the trailing pattern and that the theoretically developed predictions fully agree with the experimental findings on control of multi-joint movements. Implications for future research of the suggested interpretation of the trailing joint control pattern and the theory of joint coordination underlying it are discussed.
Liang, Jie; Zhong, Minzhou; Zeng, Guangming; Chen, Gaojie; Hua, Shanshan; Li, Xiaodong; Yuan, Yujie; Wu, Haipeng; Gao, Xiang
2017-02-01
Land-use change has direct impact on ecosystem services and alters ecosystem services values (ESVs). Ecosystem services analysis is beneficial for land management and decisions. However, the application of ESVs for decision-making in land use decisions is scarce. In this paper, a method, integrating ESVs to balance future ecosystem-service benefit and risk, is developed to optimize investment in land for ecological conservation in land use planning. Using ecological conservation in land use planning in Changsha as an example, ESVs is regarded as the expected ecosystem-service benefit. And uncertainty of land use change is regarded as risk. This method can optimize allocation of investment in land to improve ecological benefit. The result shows that investment should be partial to Liuyang City to get higher benefit. The investment should also be shifted from Liuyang City to other regions to reduce risk. In practice, lower limit and upper limit for weight distribution, which affects optimal outcome and selection of investment allocation, should be set in investment. This method can reveal the optimal spatial allocation of investment to maximize the expected ecosystem-service benefit at a given level of risk or minimize risk at a given level of expected ecosystem-service benefit. Our results of optimal analyses highlight tradeoffs between future ecosystem-service benefit and uncertainty of land use change in land use decisions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lei; Hu, Jianhao
2010-12-01
Notice of Violation of IEEE Publication Principles"Joint Redundant Residue Number Systems and Module Isolation for Mitigating Single Event Multiple Bit Upsets in Datapath"by Lei Li and Jianhao Hu,in the IEEE Transactions on Nuclear Science, vol.57, no.6, Dec. 2010, pp. 3779-3786After careful and considered review of the content and authorship of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE's Publication Principles.This paper contains substantial duplication of original text from the paper cited below. The original text was copied without attribution (including appropriate references to the original author(s) and/or paper title) and without permission.Due to the nature of this violation, reasonable effort should be made to remove all past references to this paper, and future references should be made to the following articles:"Multiple Error Detection and Correction Based on Redundant Residue Number Systems"by Vik Tor Goh and M.U. Siddiqi,in the IEEE Transactions on Communications, vol.56, no.3, March 2008, pp.325-330"A Coding Theory Approach to Error Control in Redundant Residue Number Systems. I: Theory and Single Error Correction"by H. Krishna, K-Y. Lin, and J-D. Sun, in the IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol.39, no.1, Jan 1992, pp.8-17In this paper, we propose a joint scheme which combines redundant residue number systems (RRNS) with module isolation (MI) for mitigating single event multiple bit upsets (SEMBUs) in datapath. The proposed hardening scheme employs redundant residues to improve the fault tolerance for datapath and module spacings to guarantee that SEMBUs caused by charge sharing do not propagate among the operation channels of different moduli. The features of RRNS, such as independence, parallel and error correction, are exploited to establish the radiation hardening architecture for the datapath in radiation environments. In the proposed scheme, all of the residues can be processed independently, and most of the soft errors in datapath can be corrected with the redundant relationship of the residues at correction module, which is allocated at the end of the datapath. In the back-end implementation, module isolation technique is used to improve the soft error rate performance for RRNS by physically separating the operation channels of different moduli. The case studies show at least an order of magnitude decrease on the soft error rate (SER) as compared to the NonRHBD designs, and demonstrate that RRNS+MI can reduce the SER from 10-12 to 10-17 when the processing steps of datapath are 106. The proposed scheme can even achieve less area and latency overheads than that without radiation hardening, since RRNS can reduce the operational complexity in datapath.
Mathematical programming for the efficient allocation of health care resources.
Stinnett, A A; Paltiel, A D
1996-10-01
Previous discussions of methods for the efficient allocation of health care resources subject to a budget constraint have relied on unnecessarily restrictive assumptions. This paper makes use of established optimization techniques to demonstrate that a general mathematical programming framework can accommodate much more complex information regarding returns to scale, partial and complete indivisibility and program interdependence. Methods are also presented for incorporating ethical constraints into the resource allocation process, including explicit identification of the cost of equity.
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
NASA Astrophysics Data System (ADS)
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2008-01-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426
Noninferiority trial designs for odds ratios and risk differences.
Hilton, Joan F
2010-04-30
This study presents constrained maximum likelihood derivations of the design parameters of noninferiority trials for binary outcomes with the margin defined on the odds ratio (ψ) or risk-difference (δ) scale. The derivations show that, for trials in which the group-specific response rates are equal under the point-alternative hypothesis, the common response rate, π(N), is a fixed design parameter whose value lies between the control and experimental rates hypothesized at the point-null, {π(C), π(E)}. We show that setting π(N) equal to the value of π(C) that holds under H(0) underestimates the overall sample size requirement. Given {π(C), ψ} or {π(C), δ} and the type I and II error rates, or algorithm finds clinically meaningful design values of π(N), and the corresponding minimum asymptotic sample size, N=n(E)+n(C), and optimal allocation ratio, γ=n(E)/n(C). We find that optimal allocations are increasingly imbalanced as ψ increases, with γ(ψ)<1 and γ(δ)≈1/γ(ψ), and that ranges of allocation ratios map to the minimum sample size. The latter characteristic allows trialists to consider trade-offs between optimal allocation at a smaller N and a preferred allocation at a larger N. For designs with relatively large margins (e.g. ψ>2.5), trial results that are presented on both scales will differ in power, with more power lost if the study is designed on the risk-difference scale and reported on the odds ratio scale than vice versa. 2010 John Wiley & Sons, Ltd.
Scott, Nick; Hussain, S Azfar; Martin-Hughes, Rowan; Fowkes, Freya J I; Kerr, Cliff C; Pearson, Ruth; Kedziora, David J; Killedar, Madhura; Stuart, Robyn M; Wilson, David P
2017-09-12
The high burden of malaria and limited funding means there is a necessity to maximize the allocative efficiency of malaria control programmes. Quantitative tools are urgently needed to guide budget allocation decisions. A geospatial epidemic model was coupled with costing data and an optimization algorithm to estimate the optimal allocation of budgeted and projected funds across all malaria intervention approaches. Interventions included long-lasting insecticide-treated nets (LLINs), indoor residual spraying (IRS), intermittent presumptive treatment during pregnancy (IPTp), seasonal mass chemoprevention in children (SMC), larval source management (LSM), mass drug administration (MDA), and behavioural change communication (BCC). The model was applied to six geopolitical regions of Nigeria in isolation and also the nation as a whole to minimize incidence and malaria-attributable mortality. Allocative efficiency gains could avert approximately 84,000 deaths or 15.7 million cases of malaria in Nigeria over 5 years. With an additional US$300 million available, approximately 134,000 deaths or 37.3 million cases of malaria could be prevented over 5 years. Priority funding should go to LLINs, IPTp and BCC programmes, and SMC should be expanded in seasonal areas. To minimize mortality, treatment expansion is critical and prioritized over some LLIN funding, while to minimize incidence, LLIN funding remained a priority. For areas with lower rainfall, LSM is prioritized over IRS but MDA is not recommended unless all other programmes are established. Substantial reductions in malaria morbidity and mortality can be made by optimal targeting of investments to the right malaria interventions in the right areas.
Buehler, James W; Holtgrave, David R
2007-03-29
Controversy and debate can arise whenever public health agencies determine how program funds should be allocated among constituent jurisdictions. Two common strategies for making such allocations are expert review of competitive applications and the use of funding formulas. Despite widespread use of funding formulas by public health agencies in the United States, formula allocation strategies in public health have been subject to relatively little formal scrutiny, with the notable exception of the attention focused on formula funding of HIV care programs. To inform debates and deliberations in the selection of a formula-based approach, we summarize key challenges to formula-based funding, based on prior reviews of federal programs in the United States. The primary challenge lies in identifying data sources and formula calculation methods that both reflect and serve program objectives, with or without adjustments for variations in the cost of delivering services, the availability of local resources, capacity, or performance. Simplicity and transparency are major advantages of formula-based allocations, but these advantages can be offset if formula-based allocations are perceived to under- or over-fund some jurisdictions, which may result from how guaranteed minimum funding levels are set or from "hold-harmless" provisions intended to blunt the effects of changes in formula design or random variations in source data. While fairness is considered an advantage of formula-based allocations, the design of a formula may implicitly reflect unquestioned values concerning equity versus equivalence in setting funding policies. Whether or how past or projected trends are taken into account can also have substantial impacts on allocations. Insufficient attention has been focused on how the approach to designing funding formulas in public health should differ for treatment or service versus prevention programs. Further evaluations of formula-based versus competitive allocation methods are needed to promote the optimal use of public health funds. In the meantime, those who use formula-based strategies to allocate funds should be familiar with the nuances of this approach.
Meinzer, Caitlyn; Martin, Renee; Suarez, Jose I
2017-09-08
In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total amount of information available across the dose range as a function of imbalanced sample size. To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug, defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented in the context of a phase II trial for subarachnoid hemorrhage. For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial is used to illustrate how this design can be customized for specific objectives and available data. Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the optimal dose for treatment efficacy within the context of limited resources. While the design is general enough to apply to many situations, future work is needed to address interim analyses and the incorporation of models for dose response.
Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.
Markowitz, Jared; Herr, Hugh
2016-05-01
Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.
Using genetic algorithm to solve a new multi-period stochastic optimization model
NASA Astrophysics Data System (ADS)
Zhang, Xin-Li; Zhang, Ke-Cun
2009-09-01
This paper presents a new asset allocation model based on the CVaR risk measure and transaction costs. Institutional investors manage their strategic asset mix over time to achieve favorable returns subject to various uncertainties, policy and legal constraints, and other requirements. One may use a multi-period portfolio optimization model in order to determine an optimal asset mix. Recently, an alternative stochastic programming model with simulated paths was proposed by Hibiki [N. Hibiki, A hybrid simulation/tree multi-period stochastic programming model for optimal asset allocation, in: H. Takahashi, (Ed.) The Japanese Association of Financial Econometrics and Engineering, JAFFE Journal (2001) 89-119 (in Japanese); N. Hibiki A hybrid simulation/tree stochastic optimization model for dynamic asset allocation, in: B. Scherer (Ed.), Asset and Liability Management Tools: A Handbook for Best Practice, Risk Books, 2003, pp. 269-294], which was called a hybrid model. However, the transaction costs weren't considered in that paper. In this paper, we improve Hibiki's model in the following aspects: (1) The risk measure CVaR is introduced to control the wealth loss risk while maximizing the expected utility; (2) Typical market imperfections such as short sale constraints, proportional transaction costs are considered simultaneously. (3) Applying a genetic algorithm to solve the resulting model is discussed in detail. Numerical results show the suitability and feasibility of our methodology.
Tracking historical increases in nitrogen-driven crop production possibilities
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.
2015-12-01
The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.
NASA Astrophysics Data System (ADS)
Xiang, Yu; Tao, Cheng
2018-05-01
During the operation of the personal rapid transit system(PRT), the empty vehicle resources is distributed unevenly because of different passenger demand. In order to maintain the balance between supply and demand, and to meet the passenger needs of the ride, PRT empty vehicle resource allocation model is constructed based on the future demand forecasted by historical demand in this paper. The improved genetic algorithm is implied in distribution of the empty vehicle which can reduce the customers waiting time and improve the operation efficiency of the PRT system so that all passengers can take the PRT vehicles in the shortest time. The experimental result shows that the improved genetic algorithm can allocate the empty vehicle from the system level optimally, and realize the distribution of the empty vehicle resources reasonably in the system.
NASA Astrophysics Data System (ADS)
Zhu, Wenlong; Ma, Shoufeng; Tian, Junfang
2017-01-01
This paper investigates the revenue-neutral tradable credit charge and reward scheme without initial credit allocations that can reassign network traffic flow patterns to optimize congestion and emissions. First, we prove the existence of the proposed schemes and further decentralize the minimum emission flow pattern to user equilibrium. Moreover, we design the solving method of the proposed credit scheme for minimum emission problem. Second, we investigate the revenue-neutral tradable credit charge and reward scheme without initial credit allocations for bi-objectives to obtain the Pareto system optimum flow patterns of congestion and emissions; and present the corresponding solutions are located in the polyhedron constituted by some inequalities and equalities system. Last, numerical example based on a simple traffic network is adopted to obtain the proposed credit schemes and verify they are revenue-neutral.
Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan
2016-01-01
Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical modeling. PMID:27044039
Optimal assignment of workers to supporting services in a hospital
NASA Astrophysics Data System (ADS)
Sawik, Bartosz; Mikulik, Jerzy
2008-01-01
Supporting services play an important role in health care institutions such as hospitals. This paper presents an application of operations research model for optimal allocation of workers among supporting services in a public hospital. The services include logistics, inventory management, financial management, operations management, medical analysis, etc. The optimality criterion of the problem is to minimize operations costs of supporting services subject to some specific constraints. The constraints represent specific conditions for resource allocation in a hospital. The overall problem is formulated as an integer program in the literature known as the assignment problem, where the decision variables represent the assignment of people to various jobs. The results of some computational experiments modeled on a real data from a selected Polish hospital are reported.
Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo
2018-05-03
Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang
2014-04-01
This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less
NASA Astrophysics Data System (ADS)
Wei, J.; Wang, G.; Liu, R.
2008-12-01
The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.
Optimal Budget Allocation for Sample Average Approximation
2011-06-01
an optimization algorithm applied to the sample average problem. We examine the convergence rate of the estimator as the computing budget tends to...regime for the optimization algorithm . 1 Introduction Sample average approximation (SAA) is a frequently used approach to solving stochastic programs...appealing due to its simplicity and the fact that a large number of standard optimization algorithms are often available to optimize the resulting sample
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
Higginson, Andrew D; Fawcett, Tim W; Trimmer, Pete C; McNamara, John M; Houston, Alasdair I
2012-11-01
Animals live in complex environments in which predation risk and food availability change over time. To deal with this variability and maximize their survival, animals should take into account how long current conditions may persist and the possible future conditions they may encounter. This should affect their foraging activity, and with it their vulnerability to predation across periods of good and bad conditions. Here we develop a comprehensive theory of optimal risk allocation that allows for environmental persistence and for fluctuations in food availability as well as predation risk. We show that it is the duration of good and bad periods, independent of each other, rather than the overall proportion of time exposed to each that is the most important factor affecting behavior. Risk allocation is most pronounced when conditions change frequently, and optimal foraging activity can either increase or decrease with increasing exposure to bad conditions. When food availability fluctuates rapidly, animals should forage more when food is abundant, whereas when food availability fluctuates slowly, they should forage more when food is scarce. We also show that survival can increase as variability in predation risk increases. Our work reveals that environmental persistence should profoundly influence behavior. Empirical studies of risk allocation should therefore carefully control the duration of both good and bad periods and consider manipulating food availability as well as predation risk.
Peden, Al; Baker, Judith J
2002-01-01
Using the optimizing properties of econometric analysis, this study analyzes how physician overhead costs (OC) can be allocated to multiple activities to maximize precision in reimbursing the costs of services. Drawing on work by Leibenstein and Friedman, the analysis also shows that allocating OC to multiple activities unbiased by revenue requires controlling for revenue when making the estimates. Further econometric analysis shows that it is possible to save about 10 percent of OC by paying only for those that are necessary.
An Optimization Model for the Allocation of University Based Merit Aid
ERIC Educational Resources Information Center
Sugrue, Paul K.
2010-01-01
The allocation of merit-based financial aid during the college admissions process presents postsecondary institutions with complex and financially expensive decisions. This article describes the application of linear programming as a decision tool in merit based financial aid decisions at a medium size private university. The objective defined for…
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Ma, Ning; Lv, Chengwei
2016-08-01
Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.
Gravelle, Hugh; Siciliani, Luigi
2009-08-01
In many public healthcare systems treatments are rationed by waiting time. We examine the optimal allocation of a fixed supply of a given treatment between different groups of patients. Even in the absence of any distributional aims, welfare is increased by third degree waiting time discrimination: setting different waiting times for different groups waiting for the same treatment. Because waiting time imposes dead weight losses on patients, lower waiting times should be offered to groups with higher marginal waiting time costs and with less elastic demand for the treatment.
S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation
2014-01-01
Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620
NASA Astrophysics Data System (ADS)
Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang
2017-08-01
Distributed radar network systems have been shown to have many unique features. Due to their advantage of signal and spatial diversities, radar networks are attractive for target detection. In practice, the netted radars in radar networks are supposed to maximize their transmit power to achieve better detection performance, which may be in contradiction with low probability of intercept (LPI). Therefore, this paper investigates the problem of adaptive power allocation for radar networks in a cooperative game-theoretic framework such that the LPI performance can be improved. Taking into consideration both the transmit power constraints and the minimum signal to interference plus noise ratio (SINR) requirement of each radar, a cooperative Nash bargaining power allocation game based on LPI is formulated, whose objective is to minimize the total transmit power by optimizing the power allocation in radar networks. First, a novel SINR-based network utility function is defined and utilized as a metric to evaluate power allocation. Then, with the well-designed network utility function, the existence and uniqueness of the Nash bargaining solution are proved analytically. Finally, an iterative Nash bargaining algorithm is developed that converges quickly to a Pareto optimal equilibrium for the cooperative game. Numerical simulations and theoretic analysis are provided to evaluate the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz
2015-02-01
In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.
Decomposition method for zonal resource allocation problems in telecommunication networks
NASA Astrophysics Data System (ADS)
Konnov, I. V.; Kashuba, A. Yu
2016-11-01
We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.
NASA Technical Reports Server (NTRS)
Leonard, Michael W.
2013-01-01
Integration of the Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) System into the control system of a Short Takeoff and Landing Mobility Concept Vehicle simulation presents a challenge because the CAPIO formulation requires that constrained optimization problems be solved at the controller operating frequency. We present a solution that utilizes a modified version of the well-known L-BFGS-B solver. Despite the iterative nature of the solver, the method is seen to converge in real time with sufficient reliability to support three weeks of piloted runs at the NASA Ames Vertical Motion Simulator (VMS) facility. The results of the optimization are seen to be excellent in the vast majority of real-time frames. Deficiencies in the quality of the results in some frames are shown to be improvable with simple termination criteria adjustments, though more real-time optimization iterations would be required.
Pricing Resources in LTE Networks through Multiobjective Optimization
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889
Pricing resources in LTE networks through multiobjective optimization.
Lai, Yung-Liang; Jiang, Jehn-Ruey
2014-01-01
The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.
Optimal allocation of testing resources for statistical simulations
NASA Astrophysics Data System (ADS)
Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick
2015-07-01
Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.
Optimal Resource Allocation for NOMA-TDMA Scheme with α-Fairness in Industrial Internet of Things.
Sun, Yanjing; Guo, Yiyu; Li, Song; Wu, Dapeng; Wang, Bin
2018-05-15
In this paper, a joint non-orthogonal multiple access and time division multiple access (NOMA-TDMA) scheme is proposed in Industrial Internet of Things (IIoT), which allowed multiple sensors to transmit in the same time-frequency resource block using NOMA. The user scheduling, time slot allocation, and power control are jointly optimized in order to maximize the system α -fair utility under transmit power constraint and minimum rate constraint. The optimization problem is nonconvex because of the fractional objective function and the nonconvex constraints. To deal with the original problem, we firstly convert the objective function in the optimization problem into a difference of two convex functions (D.C.) form, and then propose a NOMA-TDMA-DC algorithm to exploit the global optimum. Numerical results show that the NOMA-TDMA scheme significantly outperforms the traditional orthogonal multiple access scheme in terms of both spectral efficiency and user fairness.
New algorithms for optimal reduction of technical risks
NASA Astrophysics Data System (ADS)
Todinov, M. T.
2013-06-01
The article features exact algorithms for reduction of technical risk by (1) optimal allocation of resources in the case where the total potential loss from several sources of risk is a sum of the potential losses from the individual sources; (2) optimal allocation of resources to achieve a maximum reduction of system failure; and (3) making an optimal choice among competing risky prospects. The article demonstrates that the number of activities in a risky prospect is a key consideration in selecting the risky prospect. As a result, the maximum expected profit criterion, widely used for making risk decisions, is fundamentally flawed, because it does not consider the impact of the number of risk-reward activities in the risky prospects. A popular view, that if a single risk-reward bet with positive expected profit is unacceptable then a sequence of such identical risk-reward bets is also unacceptable, has been analysed and proved incorrect.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
GOMA: functional enrichment analysis tool based on GO modules
Huang, Qiang; Wu, Ling-Yun; Wang, Yong; Zhang, Xiang-Sun
2013-01-01
Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but most output a long list of significantly enriched terms that are often redundant, making it difficult to extract the most meaningful functions. In this paper, we present GOMA, a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules. With this method, we systematically revealed functional GO modules, i.e., groups of functionally similar GO terms, via an optimization model and then ranked them by enrichment scores. Our new method simplifies enrichment analysis results by reducing redundancy, thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results. PMID:23237213
Robust information propagation through noisy neural circuits
Pouget, Alexandre
2017-01-01
Sensory neurons give highly variable responses to stimulation, which can limit the amount of stimulus information available to downstream circuits. Much work has investigated the factors that affect the amount of information encoded in these population responses, leading to insights about the role of covariability among neurons, tuning curve shape, etc. However, the informativeness of neural responses is not the only relevant feature of population codes; of potentially equal importance is how robustly that information propagates to downstream structures. For instance, to quantify the retina’s performance, one must consider not only the informativeness of the optic nerve responses, but also the amount of information that survives the spike-generating nonlinearity and noise corruption in the next stage of processing, the lateral geniculate nucleus. Our study identifies the set of covariance structures for the upstream cells that optimize the ability of information to propagate through noisy, nonlinear circuits. Within this optimal family are covariances with “differential correlations”, which are known to reduce the information encoded in neural population activities. Thus, covariance structures that maximize information in neural population codes, and those that maximize the ability of this information to propagate, can be very different. Moreover, redundancy is neither necessary nor sufficient to make population codes robust against corruption by noise: redundant codes can be very fragile, and synergistic codes can—in some cases—optimize robustness against noise. PMID:28419098
Munguía-Rosas, Miguel A; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J Carlos
2012-02-01
Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
Attack allocation optimizations produce stability indices for unsymmetrical forces that indicate significant regions of both stability and instability and that have their minimum values roughly when the two sides have equal forces. This note derives combined stability indices for unsymmetrical offensive force configurations. The indices are based on optimal allocations of offensive missiles between vulnerable missiles and value based on the minimization of first strike cost, which is done analytically. Exchanges are modeled probabalistically and their results are converted into first and second strike costs through approximations to the damage to the value target sets held at risk. The stabilitymore » index is the product of the ratio of first to second strike costs seen by the two sides. Optimal allocations scale directly on the opponent`s vulnerable missiles, inversely on one`s own total weapons, and only logarithmically on the attacker`s damage preference, kill probability, and relative target set. The defender`s allocation scales in a similar manner on the attacker`s parameters. First and second strike magnitudes increase roughly linearly for the side with greater forces and decrease linearly for the side with fewer. Conversely, the first and second strike magnitudes decrease for the side with greater forces and increase for the side with fewer. These trends are derived and discussed analytically. The resulting stability indices exhibit a minimum where the two sides have roughly equal forces. If one side has much larger forces than the other, his costs drop to levels low enough that he is relatively insensitive to whether he strikes first or second. These calculations are performed with the analytic attack allocation appropriate for moderate forces, so some differences could be expected for the largest of the forces considered.« less
Fraser, Nicole; Kerr, Cliff C; Harouna, Zakou; Alhousseini, Zeinabou; Cheikh, Nejma; Gray, Richard; Shattock, Andrew; Wilson, David P; Haacker, Markus; Shubber, Zara; Masaki, Emiko; Karamoko, Djibrilla; Görgens, Marelize
2015-03-01
Niger's low-burden, sex-work-driven HIV epidemic is situated in a context of high economic and demographic growth. Resource availability of HIV/AIDS has been decreasing recently. In 2007-2012, only 1% of HIV expenditure was for sex work interventions, but an estimated 37% of HIV incidence was directly linked to sex work in 2012. The Government of Niger requested assistance to determine an efficient allocation of its HIV resources and to strengthen HIV programming for sex workers. Optima, an integrated epidemiologic and optimization tool, was applied using local HIV epidemic, demographic, programmatic, expenditure, and cost data. A mathematical optimization algorithm was used to determine the best resource allocation for minimizing HIV incidence and disability-adjusted life years (DALYs) over 10 years. Efficient allocation of the available HIV resources, to minimize incidence and DALYs, would increase expenditure for sex work interventions from 1% to 4%-5%, almost double expenditure for antiretroviral treatment and for the prevention of mother-to-child transmission, and reduce expenditure for HIV programs focusing on the general population. Such an investment could prevent an additional 12% of new infections despite a budget of less than half of the 2012 reference year. Most averted infections would arise from increased funding for sex work interventions. This allocative efficiency analysis makes the case for increased investment in sex work interventions to minimize future HIV incidence and DALYs. Optimal HIV resource allocation combined with improved program implementation could have even greater HIV impact. Technical assistance is being provided to make the money invested in sex work programs work better and help Niger to achieve a cost-effective and sustainable HIV response.
Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon
2015-01-01
This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956
Shaver, Aaron C; Greig, Bruce W; Mosse, Claudio A; Seegmiller, Adam C
2015-05-01
Optimizing a clinical flow cytometry panel can be a subjective process dependent on experience. We develop a quantitative method to make this process more rigorous and apply it to B lymphoblastic leukemia/lymphoma (B-ALL) minimal residual disease (MRD) testing. We retrospectively analyzed our existing three-tube, seven-color B-ALL MRD panel and used our novel method to develop an optimized one-tube, eight-color panel, which was tested prospectively. The optimized one-tube, eight-color panel resulted in greater efficiency of time and resources with no loss in diagnostic power. Constructing a flow cytometry panel using a rigorous, objective, quantitative method permits optimization and avoids problems of interdependence and redundancy in a large, multiantigen panel. Copyright© by the American Society for Clinical Pathology.
Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation
NASA Astrophysics Data System (ADS)
Satoh, Hideki
An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.
[Equity of Health Resources Allocation in Minority Regions of Sichuan Province].
Chen, Nan; Tang, Wen; Liang, Zhi; Zou, Bo; Li, Xiao-song
2016-03-01
To determine equity of health resources allocation in minority regions of Sichuan province from 2009 to 2013. Health resources distribution equity among populations and across geographic catchments were measured using coefficients of Inter-Individual differences and Individual-Mean differences. Health resources, especially human resources, in minority regions increased slowly over the years. Poorer allocation equity was found in nursing resources compared with doctors and hospital beds. Better distribution equity was found among populations than across geographic catchments. High levels of equity in resource distributions among populations and across geographic catchments were found in Aba. In Liangshan, more equitable distributions were found in doctors and hospital beds compared with nurses. The rest of minority regions had poor absolute allocation equity in doctors and hospital beds among populations. Appropriate allocation of health resources can promote health development. Health resources allocation in minority regions of Sichuan province is unreasonable. The government and relevant departments should take actions to optimize health resources allocations.
Washburn, Kenneth
2012-11-01
1. Comprehend the basis for liver allocation and distribution in the United States. 2. Understand potential solutions to organ inequalities in the United States. 3. Understand the metrics used to assess the performance of organ procurement organizations. Copyright © 2012 American Association for the Study of Liver Diseases.
There is no silver bullet: the value of diversification in planning invasive species surveillance
Denys Yemshanov; Frank H. Koch; Bo Lu; D. Barry Lyons; Jeffrey P. Prestemon; Taylor Scarr; Klaus Koehler
2014-01-01
In this study we demonstrate how the notion of diversification can be used in broad-scale resource allocation for surveillance of invasive species. We consider the problem of short-term surveillance for an invasive species in a geographical environment.Wefind the optimal allocation of surveillance resourcesamongmultiple geographical subdivisions via application of a...
Optimal allocation of invasive species surveillance with the maximum expected coverage concept
Denys Yemshanov; Robert G. Haight; Frank H. Koch; Bo Lu; Robert Venette; D. Barry Lyons; Taylor Scarr; Krista Ryall; Brian. Leung
2015-01-01
We address the problem of geographically allocating scarce survey resources to detect pests in their pathways of introduction given information about their likelihood of movement between origins and destinations. We introduce a model for selecting destination sites for survey that departs from the aim of reducing propagule pressure (PP) in pest destinations and instead...
Allocation of R&D Equipment Expenditure Based on Organisation Discipline Profiles
ERIC Educational Resources Information Center
Wells, Xanthe E.; Foster, Nigel; Finch, Adam; Elsum, Ian
2017-01-01
Sufficient and state-of-the-art research equipment is one component required to maintain the research competitiveness of a R&D organisation. This paper describes an approach to inform more optimal allocation of equipment expenditure levels in a large and diverse R&D organisation, such as CSIRO. CSIRO is Australia's national science agency,…
COOPERATIVE ROUTING FOR DYNAMIC AERIAL LAYER NETWORKS
2018-03-01
Advisor, Computing & Communications Division Information Directorate This report is published in the interest of scientific and technical...information accumulation at the physical layer, and study the cooperative routing and resource allocation problems associated with such SU networks...interference power constraint is studied . In [Shi2012Joint], an optimal power and sub-carrier allocation strategy to maximize SUs’ throughput subject to
Status of the ITER Cryodistribution
NASA Astrophysics Data System (ADS)
Chang, H.-S.; Vaghela, H.; Patel, P.; Rizzato, A.; Cursan, M.; Henry, D.; Forgeas, A.; Grillot, D.; Sarkar, B.; Muralidhara, S.; Das, J.; Shukla, V.; Adler, E.
2017-12-01
Since the conceptual design of the ITER Cryodistribution many modifications have been applied due to both system optimization and improved knowledge of the clients’ requirements. Process optimizations in the Cryoplant resulted in component simplifications whereas increased heat load in some of the superconducting magnet systems required more complicated process configuration but also the removal of a cold box was possible due to component arrangement standardization. Another cold box, planned for redundancy, has been removed due to the Tokamak in-Cryostat piping layout modification. In this proceeding we will summarize the present design status and component configuration of the ITER Cryodistribution with all changes implemented which aim at process optimization and simplification as well as operational reliability, stability and flexibility.
NASA Astrophysics Data System (ADS)
Hassan, Rania A.
In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives under consideration simultaneously. Incorporating uncertainties avoids large safety margins and unnecessary high redundancy levels. The focus on low computational cost for the optimization tools stems from the objective that improving the design of complex systems should not be achieved at the expense of a costly design methodology.
Implicit multisensory associations influence voice recognition.
von Kriegstein, Katharina; Giraud, Anne-Lise
2006-10-01
Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules.
Asset Allocation and Optimal Contract for Delegated Portfolio Management
NASA Astrophysics Data System (ADS)
Liu, Jingjun; Liang, Jianfeng
This article studies the portfolio selection and the contracting problems between an individual investor and a professional portfolio manager in a discrete-time principal-agent framework. Portfolio selection and optimal contracts are obtained in closed form. The optimal contract was composed with the fixed fee, the cost, and the fraction of excess expected return. The optimal portfolio is similar to the classical two-fund separation theorem.
ERIC Educational Resources Information Center
Cody, Martin L.
1974-01-01
Discusses the optimality of natural selection, ways of testing for optimum solutions to problems of time - or energy-allocation in nature, optimum patterns in spatial distribution and diet breadth, and how best to travel over a feeding area so that food intake is maximized. (JR)
2017-03-01
RECRUITING WITH THE NEW PLANNED RESOURCE OPTIMIZATION MODEL WITH EXPERIMENTAL DESIGN (PROM-WED) by Allison R. Hogarth March 2017 Thesis...with the New Planned Resource Optimization Model With Experimental Design (PROM-WED) 5. FUNDING NUMBERS 6. AUTHOR(S) Allison R. Hogarth 7. PERFORMING...has historically used a non -linear optimization model, the Planned Resource Optimization (PRO) model, to help inform decisions on the allocation of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, Abhijit A.; Alexoff, David; Kim, Dohyun
Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. In conclusion, quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.« less
Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; ...
2015-11-09
Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. In conclusion, quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.« less
Allocating HIV prevention funds in the United States: recommendations from an optimization model.
Lasry, Arielle; Sansom, Stephanie L; Hicks, Katherine A; Uzunangelov, Vladislav
2012-01-01
The Centers for Disease Control and Prevention (CDC) had an annual budget of approximately $327 million to fund health departments and community-based organizations for core HIV testing and prevention programs domestically between 2001 and 2006. Annual HIV incidence has been relatively stable since the year 2000 and was estimated at 48,600 cases in 2006 and 48,100 in 2009. Using estimates on HIV incidence, prevalence, prevention program costs and benefits, and current spending, we created an HIV resource allocation model that can generate a mathematically optimal allocation of the Division of HIV/AIDS Prevention's extramural budget for HIV testing, and counseling and education programs. The model's data inputs and methods were reviewed by subject matter experts internal and external to the CDC via an extensive validation process. The model projects the HIV epidemic for the United States under different allocation strategies under a fixed budget. Our objective is to support national HIV prevention planning efforts and inform the decision-making process for HIV resource allocation. Model results can be summarized into three main recommendations. First, more funds should be allocated to testing and these should further target men who have sex with men and injecting drug users. Second, counseling and education interventions ought to provide a greater focus on HIV positive persons who are aware of their status. And lastly, interventions should target those at high risk for transmitting or acquiring HIV, rather than lower-risk members of the general population. The main conclusions of the HIV resource allocation model have played a role in the introduction of new programs and provide valuable guidance to target resources and improve the impact of HIV prevention efforts in the United States.
[Optimal solution and analysis of muscular force during standing balance].
Wang, Hongrui; Zheng, Hui; Liu, Kun
2015-02-01
The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.
Signature-based store checking buffer
Sridharan, Vilas; Gurumurthi, Sudhanva
2015-06-02
A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.
Lean and Efficient Software: Whole-Program Optimization of Executables
2015-06-30
Approved for public release; distribution is unlimited. Financial Data Contact: Krisztina Nagy T: (607) 273-7340 x.117 F : (607) 273-8752 knagy...grammatech.com Administrative Contact: Derek Burrows T: (607) 273-7340 x.113 F : (607) 273-8752 dburrows@grammatech.com Report Documentation Page...library subroutines, removing redundant argument checking and interface layers, eliminating dead code, and improving computational efficiency. In
ERIC Educational Resources Information Center
Wolford, George
Seven experiments were run to determine the precise nature of some of the variables which affect the processing of short-term visual information. In particular, retinal location, report order, processing order, lateral masking, and redundancy were studied along with the nature of the confusion errors which are made in the full report procedure.…
Optimal Scheduling for Underwater Communications in Multiple-user Scenarios
2014-09-30
underwater acoustic sensor networks . These techniques aim at consuming as less energy as... underwater acoustic networks disrupt the behavior of surrounding species of marine mammals. As a consequence of these two studies, we aim at developing...Markov models of incremental redundancy hybrid ARQ over underwater acoustic channels. Elsevier Journal on Ad-hoc Networks (Special Issue on Underwater Communications and Networks ), 2014. 4
Soil quality assessment using weighted fuzzy association rules
Xue, Yue-Ju; Liu, Shu-Guang; Hu, Yue-Ming; Yang, Jing-Feng
2010-01-01
Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the importance variability of the rules, can be redundant and far from optimal. In this study, we developed a method applying different weights to traditional FARs to improve accuracy of soil quality assessment. After the FARs for soil quality assessment were mined, redundant rules were eliminated according to whether the rules were significant or not in reducing the complexity of the soil quality assessment models and in improving the comprehensibility of FARs. The global weights, each representing the importance of a FAR in soil quality assessment, were then introduced and refined using a gradient descent optimization method. This method was applied to the assessment of soil resources conditions in Guangdong Province, China. The new approach had an accuracy of 87%, when 15 rules were mined, as compared with 76% from the traditional approach. The accuracy increased to 96% when 32 rules were mined, in contrast to 88% from the traditional approach. These results demonstrated an improved comprehensibility of FARs and a high accuracy of the proposed method.
Optimizing height presentation for aircraft cockpit displays
NASA Astrophysics Data System (ADS)
Jordan, Chris S.; Croft, D.; Selcon, Stephen J.; Markin, H.; Jackson, M.
1997-02-01
This paper describes an experiment conducted to investigate the type of display symbology that most effectively conveys height information to users of head-down plan-view radar displays. The experiment also investigated the use of multiple information sources (redundancy) in the design of such displays. Subjects were presented with eight different height display formats. These formats were constructed from a control, and/or one, two, or three sources of redundant information. The three formats were letter coding, analogue scaling, and toggling (spatially switching the position of the height information from above to below the aircraft symbol). Subjects were required to indicate altitude awareness via a four-key, forced-choice keyboard response. Error scores and response times were taken as performance measures. There were three main findings. First, there was a significant performance advantage when the altitude information was presented above and below the symbol to aid the representation of height information. Second, the analogue scale, a line whose length indicated altitude, proved significantly detrimental to performance. Finally, no relationship was found between the number of redundant information sources employed and performance. The implications for future aircraft and displays are discussed in relation to current aircraft tactical displays and in the context of perceptual psychological theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
The optimal allocation of space-based interceptors (SBIs) between fixed, heavy missiles and mobile singlets can be derived from approximate expressions for the boost-phase penetration of each. Singlets can cluster before launch and have shorter burn times, which reduce their availability to SBIs by an order of magnitude. Singlet penetration decreased slowly with the number of SBIs allocated to them; heavy missile penetration falls rapidly. The allocation to the heavy missiles falls linearly with their number. The penetration of heavy and singlet missiles is proportional to their numbers and inversely proportional to their availability. 8 refs., 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, He; Sun, Yannan; Carroll, Thomas E.
We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designedmore » using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method« less
Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan
2017-01-01
This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint. PMID:28869546
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter
2014-05-01
Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained. The optimization framework based on the GA is still computationally feasible and represents a clean and customizable method. The method has been applied to the Ziya River basin, China. The basin is located on the North China Plain and is subject to severe water scarcity, which includes surface water droughts and groundwater over-pumping. The head-dependent groundwater pumping costs will enable assessment of the long-term effects of increased electricity prices on the groundwater pumping. The coupled optimization framework is used to assess realistic alternative development scenarios for the basin. In particular the potential for using electricity pricing policies to reach sustainable groundwater pumping is investigated.
Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines
Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing
2014-01-01
m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933
Ryeznik, Yevgen; Sverdlov, Oleksandr; Wong, Weng Kee
2015-08-01
Response-adaptive randomization designs are becoming increasingly popular in clinical trial practice. In this paper, we present RARtool , a user interface software developed in MATLAB for designing response-adaptive randomized comparative clinical trials with censored time-to-event outcomes. The RARtool software can compute different types of optimal treatment allocation designs, and it can simulate response-adaptive randomization procedures targeting selected optimal allocations. Through simulations, an investigator can assess design characteristics under a variety of experimental scenarios and select the best procedure for practical implementation. We illustrate the utility of our RARtool software by redesigning a survival trial from the literature.
Controlling herding in minority game systems
NASA Astrophysics Data System (ADS)
Zhang, Ji-Qiang; Huang, Zi-Gang; Wu, Zhi-Xi; Su, Riqi; Lai, Ying-Cheng
2016-02-01
Resource allocation takes place in various types of real-world complex systems such as urban traffic, social services institutions, economical and ecosystems. Mathematically, the dynamical process of resource allocation can be modeled as minority games. Spontaneous evolution of the resource allocation dynamics, however, often leads to a harmful herding behavior accompanied by strong fluctuations in which a large majority of agents crowd temporarily for a few resources, leaving many others unused. Developing effective control methods to suppress and eliminate herding is an important but open problem. Here we develop a pinning control method, that the fluctuations of the system consist of intrinsic and systematic components allows us to design a control scheme with separated control variables. A striking finding is the universal existence of an optimal pinning fraction to minimize the variance of the system, regardless of the pinning patterns and the network topology. We carry out a generally applicable theory to explain the emergence of optimal pinning and to predict the dependence of the optimal pinning fraction on the network topology. Our work represents a general framework to deal with the broader problem of controlling collective dynamics in complex systems with potential applications in social, economical and political systems.
Two additional principles for determining which species to monitor.
Wilson, Howard B; Rhodes, Jonathan R; Possingham, Hugh P
2015-11-01
Monitoring to detect population declines is widespread, but also costly. There is, consequently, a need to optimize monitoring to maximize cost-effectiveness. Here we develop a quantitative decision analysis framework for how to optimally allocate resources for monitoring among species. By keeping the framework simple, we analytically establish two new principles about which species are optimal to monitor for detecting declines: (1) those that lie on the boundary between species being allocated resources for conservation action and species that are not and (2) those with the greatest uncertainty in whether they are declining. These two principles are in addition to other factors that are also important in monitoring decisions, such as complementarity. We demonstrate the efficacy of these principles when other factors are not present, and show how the two principles can be combined. This analysis demonstrates that the most cost-effective species to monitor are ones where the information gained from monitoring is most likely to change the allocation of funds for action, not necessarily the most vulnerable or endangered. We suggest these results are general and apply to all ecological monitoring, not just of biological species: monitoring and information are only valuable when they are likely to change how people act.
Luo, He; Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided.
Liang, Zhengzheng; Zhu, Moning; Hu, Xiaoxuan; Wang, Guoqiang
2018-01-01
Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs), resulting in changes in their ground speed and direction, which has an important influence on the results of integrated optimization of UAV task allocation and path planning. The objective of this integrated optimization problem changes from minimizing flight distance to minimizing flight time. In this study, the Euclidean distance between any two targets is expanded to the Dubins path length, considering the minimum turning radius of fixed-wing UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV ground speed, a method is proposed to calculate the flight time of UAV between targets. On this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is established with the purpose of minimizing the time required for UAVs to visit all the targets and return to the starting point. By designing a crossover operator and mutation operator, the genetic algorithm is used to solve the model, the results of which show that an effective UAV task allocation and path planning solution under steady wind can be provided. PMID:29561888
Impact of Co-Site Interference on L/C-Band Spectrum for UAS Control and Non-Payload Communications
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Bishop, William D.; Hoder, Douglas J.; Shalkhauser, Kurt A.; Wilson, Jeffrey D.
2015-01-01
In order to provide for the safe integration of unmanned aircraft systems into the National Airspace System, the control and non-payload communications (CNPC) link connecting the ground-based pilot with the unmanned aircraft must be highly reliable. A specific requirement is that it must operate using aviation safety radiofrequency spectrum. The 2012 World Radiocommunication Conference (WRC-12) provided a potentially suitable allocation for LOS CNPC spectrum in C-Band at 5030-5091 MHz band which, when combined with a previous allocation in L-Band (960-1164 MHz) may satisfy the LOS spectrum requirement and provide for high reliability through dual-band redundancy. However, the LBand spectrum hosts a number of aeronautical navigation systems which require high-power transmitters on-board the aircraft. These high-power transmitters co-located with sensitive CNPC receivers operating in the same frequency band have the potential to create co-site interference, reducing the performance of the CNPC receivers and ultimately reducing the usability of the L-Band for CNPC. This paper examines the potential for co-site interference, as highlighted in recent flight tests, and discusses the impact on the UAS CNPC spectrum availability and requirements for further testing and analysis.
Power Allocation Based on Data Classification in Wireless Sensor Networks
Wang, Houlian; Zhou, Gongbo
2017-01-01
Limited node energy in wireless sensor networks is a crucial factor which affects the monitoring of equipment operation and working conditions in coal mines. In addition, due to heterogeneous nodes and different data acquisition rates, the number of arriving packets in a queue network can differ, which may lead to some queue lengths reaching the maximum value earlier compared with others. In order to tackle these two problems, an optimal power allocation strategy based on classified data is proposed in this paper. Arriving data is classified into dissimilar classes depending on the number of arriving packets. The problem is formulated as a Lyapunov drift optimization with the objective of minimizing the weight sum of average power consumption and average data class. As a result, a suboptimal distributed algorithm without any knowledge of system statistics is presented. The simulations, conducted in the perfect channel state information (CSI) case and the imperfect CSI case, reveal that the utility can be pushed arbitrarily close to optimal by increasing the parameter V, but with a corresponding growth in the average delay, and that other tunable parameters W and the classification method in the interior of utility function can trade power optimality for increased average data class. The above results show that data in a high class has priorities to be processed than data in a low class, and energy consumption can be minimized in this resource allocation strategy. PMID:28498346
Allocation of Rehabilitation Services for Older Adults in the Ontario Home Care System.
Armstrong, Joshua J; Sims-Gould, Joanie; Stolee, Paul
Background: Physiotherapy and occupational therapy services can play a critical role in maintaining or improving the physical functioning, quality of life, and overall independence of older home care clients. Despite their importance, however, there is limited understanding of the factors that influence how rehabilitation services are allocated to older home care clients. The aim of this pilot study was to develop a preliminary understanding of the factors that influence decisions to allocate rehabilitation therapy services to older clients in the Ontario home care system, as perceived by three stakeholder groups. Methods: Semi-structured interviews were conducted with 10 key informants from three stakeholder groups: case managers, service providers, and health system policymakers. Results: Drivers of the allocation of occupational therapy and physiotherapy for older adults included functional needs and postoperative care. Participants identified challenges in providing home care rehabilitation to older adults, including impaired cognition and limited capacity in the home care system. Conclusions: Considering the changing demands for home care services, knowledge of current practices across the home care system can inform efforts to optimize rehabilitation services for the growing number of older adults. Further research is needed to advance the understanding of, and optimize rehabilitation service allocation to, older frail clients with multiple morbidities. Developing novel decision-support mechanisms and standardized clinical care pathways for older client populations may be beneficial.
Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields
NASA Astrophysics Data System (ADS)
Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian
2016-07-01
Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.
On reliable control system designs. Ph.D. Thesis; [actuators
NASA Technical Reports Server (NTRS)
Birdwell, J. D.
1978-01-01
A mathematical model for use in the design of reliable multivariable control systems is discussed with special emphasis on actuator failures and necessary actuator redundancy levels. The model consists of a linear time invariant discrete time dynamical system. Configuration changes in the system dynamics are governed by a Markov chain that includes transition probabilities from one configuration state to another. The performance index is a standard quadratic cost functional, over an infinite time interval. The actual system configuration can be deduced with a one step delay. The calculation of the optimal control law requires the solution of a set of highly coupled Riccati-like matrix difference equations. Results can be used for off-line studies relating the open loop dynamics, required performance, actuator mean time to failure, and functional or identical actuator redundancy, with and without feedback gain reconfiguration strategies.
Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann
2013-06-01
Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.
GIS and Game Theory for Water Resource Management
NASA Astrophysics Data System (ADS)
Ganjali, N.; Guney, C.
2017-11-01
In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Su; Kim, Dong-Hoi
The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.
Optimal allocation of trend following strategies
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.; Serror, Jeremy
2015-09-01
We consider a portfolio allocation problem for trend following (TF) strategies on multiple correlated assets. Under simplifying assumptions of a Gaussian market and linear TF strategies, we derive analytical formulas for the mean and variance of the portfolio return. We construct then the optimal portfolio that maximizes risk-adjusted return by accounting for inter-asset correlations. The dynamic allocation problem for n assets is shown to be equivalent to the classical static allocation problem for n2 virtual assets that include lead-lag corrections in positions of TF strategies. The respective roles of asset auto-correlations and inter-asset correlations are investigated in depth for the two-asset case and a sector model. In contrast to the principle of diversification suggesting to treat uncorrelated assets, we show that inter-asset correlations allow one to estimate apparent trends more reliably and to adjust the TF positions more efficiently. If properly accounted for, inter-asset correlations are not deteriorative but beneficial for portfolio management that can open new profit opportunities for trend followers. These concepts are illustrated using daily returns of three highly correlated futures markets: the E-mini S&P 500, Euro Stoxx 50 index, and the US 10-year T-note futures.
Sperm competition games: optimal sperm allocation in response to the size of competing ejaculates.
Engqvist, Leif; Reinhold, Klaus
2007-01-22
Sperm competition theory predicts that when males are certain of sperm competition, they should decrease sperm investment in matings with an increasing number of competing ejaculates. How males should allocate sperm when competing with differently sized ejaculates, however, has not yet been examined. Here, we report the outcomes of two models assuming variation in males' sperm reserves and males being faced with different amounts of competing sperm. In the first 'spawning model', two males compete instantaneously and both are able to assess the sperm competitive ability of each other. In the second 'sperm storage model', males are sequentially confronted with situations involving different levels of sperm competition, for instance different amounts of sperm already stored by the female mating partner. In both of the models, we found that optimal sperm allocation will strongly depend on the size of the male's sperm reserve. Males should always invest maximally in competition with other males that are equally strong competitors. That is, for males with small sperm reserves, our model predicts a negative correlation between sperm allocation and sperm competition intensity, whereas for males with large sperm reserves, this correlation is predicted to be positive.
Predicting optimal transmission investment in malaria parasites
Greischar, Megan A.; Mideo, Nicole; Read, Andrew F.; Bjørnstad, Ottar N.
2016-01-01
In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth-reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable. PMID:27271841
Adjacency Matrix-Based Transmit Power Allocation Strategies in Wireless Sensor Networks
Consolini, Luca; Medagliani, Paolo; Ferrari, Gianluigi
2009-01-01
In this paper, we present an innovative transmit power control scheme, based on optimization theory, for wireless sensor networks (WSNs) which use carrier sense multiple access (CSMA) with collision avoidance (CA) as medium access control (MAC) protocol. In particular, we focus on schemes where several remote nodes send data directly to a common access point (AP). Under the assumption of finite overall network transmit power and low traffic load, we derive the optimal transmit power allocation strategy that minimizes the packet error rate (PER) at the AP. This approach is based on modeling the CSMA/CA MAC protocol through a finite state machine and takes into account the network adjacency matrix, depending on the transmit power distribution and determining the network connectivity. It will be then shown that the transmit power allocation problem reduces to a convex constrained minimization problem. Our results show that, under the assumption of low traffic load, the power allocation strategy, which guarantees minimal delay, requires the maximization of network connectivity, which can be equivalently interpreted as the maximization of the number of non-zero entries of the adjacency matrix. The obtained theoretical results are confirmed by simulations for unslotted Zigbee WSNs. PMID:22346705
Simic, Vladimir; Dimitrijevic, Branka
2015-02-01
An interval linear programming approach is used to formulate and comprehensively test a model for optimal long-term planning of vehicle recycling in the Republic of Serbia. The proposed model is applied to a numerical case study: a 4-year planning horizon (2013-2016) is considered, three legislative cases and three scrap metal price trends are analysed, availability of final destinations for sorted waste flows is explored. Potential and applicability of the developed model are fully illustrated. Detailed insights on profitability and eco-efficiency of the projected contemporary equipped vehicle recycling factory are presented. The influences of the ordinance on the management of end-of-life vehicles in the Republic of Serbia on the vehicle hulks procuring, sorting generated material fractions, sorted waste allocation and sorted metals allocation decisions are thoroughly examined. The validity of the waste management strategy for the period 2010-2019 is tested. The formulated model can create optimal plans for procuring vehicle hulks, sorting generated material fractions, allocating sorted waste flows and allocating sorted metals. Obtained results are valuable for supporting the construction and/or modernisation process of a vehicle recycling system in the Republic of Serbia. © The Author(s) 2015.
Fund allocation using capacitated vehicle routing problem
NASA Astrophysics Data System (ADS)
Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina
2014-09-01
In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.
Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong
2013-09-01
Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 10(9) $ was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.
NASA Astrophysics Data System (ADS)
Han, Jing-Cheng; Huang, Guo-He; Zhang, Hua; Li, Zhong
2013-09-01
Soil erosion is one of the most serious environmental and public health problems, and such land degradation can be effectively mitigated through performing land use transitions across a watershed. Optimal land use management can thus provide a way to reduce soil erosion while achieving the maximum net benefit. However, optimized land use allocation schemes are not always successful since uncertainties pertaining to soil erosion control are not well presented. This study applied an interval-parameter fuzzy two-stage stochastic programming approach to generate optimal land use planning strategies for soil erosion control based on an inexact optimization framework, in which various uncertainties were reflected. The modeling approach can incorporate predefined soil erosion control policies, and address inherent system uncertainties expressed as discrete intervals, fuzzy sets, and probability distributions. The developed model was demonstrated through a case study in the Xiangxi River watershed, China's Three Gorges Reservoir region. Land use transformations were employed as decision variables, and based on these, the land use change dynamics were yielded for a 15-year planning horizon. Finally, the maximum net economic benefit with an interval value of [1.197, 6.311] × 109 was obtained as well as corresponding land use allocations in the three planning periods. Also, the resulting soil erosion amount was found to be decreased and controlled at a tolerable level over the watershed. Thus, results confirm that the developed model is a useful tool for implementing land use management as not only does it allow local decision makers to optimize land use allocation, but can also help to answer how to accomplish land use changes.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Adam, J. C.; Tague, C.
2016-12-01
Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.
Optimizing searches for electromagnetic counterparts of gravitational wave triggers
NASA Astrophysics Data System (ADS)
Coughlin, Michael W.; Tao, Duo; Chan, Man Leong; Chatterjee, Deep; Christensen, Nelson; Ghosh, Shaon; Greco, Giuseppe; Hu, Yiming; Kapadia, Shasvath; Rana, Javed; Salafia, Om Sharan; Stubbs11, Christopher
2018-04-01
With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.
Optimizing searches for electromagnetic counterparts of gravitational wave triggers
NASA Astrophysics Data System (ADS)
Coughlin, Michael W.; Tao, Duo; Chan, Man Leong; Chatterjee, Deep; Christensen, Nelson; Ghosh, Shaon; Greco, Giuseppe; Hu, Yiming; Kapadia, Shasvath; Rana, Javed; Salafia, Om Sharan; Stubbs, Christopher W.
2018-07-01
With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Govindaraj, T.
1980-01-01
The influence of different types of predictor displays in a longitudinal vertical takeoff and landing (VTOL) hover task is analyzed in a theoretical study. Several cases with differing amounts of predictive and rate information are compared. The optimal control model of the human operator is used to estimate human and system performance in terms of root-mean-square (rms) values and to compute optimized attention allocation. The only part of the model which is varied to predict these data is the observation matrix. Typical cases are selected for a subsequent experimental validation. The rms values as well as eye-movement data are recorded. The results agree favorably with those of the theoretical study in terms of relative differences. Better matching is achieved by revised model input data.
Site Selection and Resource Allocation of Oil Spill Emergency Base for Offshore Oil Facilities
NASA Astrophysics Data System (ADS)
Li, Yunbin; Liu, Jingxian; Wei, Lei; Wu, Weihuang
2018-02-01
Based on the analysis of the historical data about oil spill accidents in the Bohai Sea, this paper discretizes oil spilled source into a limited number of spill points. According to the probability of oil spill risk, the demand for salvage forces at each oil spill point is evaluated. Aiming at the specific location of the rescue base around the Bohai Sea, a cost-benefit analysis is conducted to determine the total cost of disasters for each rescue base. Based on the relationship between the oil spill point and the rescue site, a multi-objective optimization location model for the oil spill rescue base in the Bohai Sea region is established. And the genetic algorithm is used to solve the optimization problem, and determine the emergency rescue base optimization program and emergency resources allocation ratio.
NASA Astrophysics Data System (ADS)
Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John
2017-10-01
China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.
Ye, Bixiong; E, Xueli; Zhang, Lan
2015-01-01
To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.
Leveraging human decision making through the optimal management of centralized resources
NASA Astrophysics Data System (ADS)
Hyden, Paul; McGrath, Richard G.
2016-05-01
Combining results from mixed integer optimization, stochastic modeling and queuing theory, we will advance the interdisciplinary problem of efficiently and effectively allocating centrally managed resources. Academia currently fails to address this, as the esoteric demands of each of these large research areas limits work across traditional boundaries. The commercial space does not currently address these challenges due to the absence of a profit metric. By constructing algorithms that explicitly use inputs across boundaries, we are able to incorporate the advantages of using human decision makers. Key improvements in the underlying algorithms are made possible by aligning decision maker goals with the feedback loops introduced between the core optimization step and the modeling of the overall stochastic process of supply and demand. A key observation is that human decision-makers must be explicitly included in the analysis for these approaches to be ultimately successful. Transformative access gives warfighters and mission owners greater understanding of global needs and allows for relationships to guide optimal resource allocation decisions. Mastery of demand processes and optimization bottlenecks reveals long term maximum marginal utility gaps in capabilities.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-11-16
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.
Duan, Litian; Wang, Zizhong John; Duan, Fu
2016-01-01
In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342
Fog computing job scheduling optimization based on bees swarm
NASA Astrophysics Data System (ADS)
Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid
2018-04-01
Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.
Brock, M T; Winkelman, R L; Rubin, M J; Edwards, C E; Ewers, B E; Weinig, C
2017-11-01
Allocation of finite resources to separate reproductive functions is predicted to vary across environments and affect fitness. Biomass is the most commonly measured allocation currency; however, in comparison with nutrients it may be less limited and express different environmental and evolutionary responses. Here, we measured carbon, nitrogen, phosphorus, and biomass allocation among floral whorls in recombinant inbred lines of Brassica rapa in multiple environments to characterize the genetic architecture of floral allocation, including its sensitivity to environmental heterogeneity and to choice of currency. Mass, carbon, and nitrogen allocation to female whorls (pistils and sepals) decreased under high density, whereas nitrogen allocation to male organs (stamens) decreased under drought. Phosphorus allocation decreased by half in pistils under drought, while stamen phosphorus was unaffected by environment. While the contents of each currency were positively correlated among whorls, selection to improve fitness through female (or male) function typically favored increased allocation to pistils (or stamens) but decreased allocation to other whorls. Finally, genomic regions underlying correlations among allocation metrics were mapped, and loci related to nitrogen uptake and floral organ development were located within mapped quantitative trait loci. Our candidate gene identification suggests that nutrient uptake may be a limiting step in maintaining male allocation. Taken together, allocation to male vs female function is sensitive to distinct environmental stresses, and the choice of currency affects the interpretation of floral allocation responses to the environment. Further, genetic correlations may counter the evolution of allocation patterns that optimize fitness through female or male function.
Sensory Optimization by Stochastic Tuning
Jurica, Peter; Gepshtein, Sergei; Tyukin, Ivan; van Leeuwen, Cees
2013-01-01
Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system’s preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit, and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: the higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics, and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation. PMID:24219849
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin
2013-04-01
Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
Schärer, Lukas; Pen, Ido
2013-03-05
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.
Schärer, Lukas; Pen, Ido
2013-01-01
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis. PMID:23339243
De Lara, Michel
2006-05-01
In their 1990 paper Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments, Amir and Cohen considered stochastic environments consisting of i.i.d. sequences in an optimal allocation discrete-time model. We suppose here that the sequence of environmental factors is more generally described by a Markov chain. Moreover, we discuss the connection between the time interval of the discrete-time dynamic model and the ability of the plant to rebuild completely its vegetative body (from reserves). We formulate a stochastic optimization problem covering the so-called linear and logarithmic fitness (corresponding to variation within and between years), which yields optimal strategies. For "linear maximizers'', we analyse how optimal strategies depend upon the environmental variability type: constant, random stationary, random i.i.d., random monotonous. We provide general patterns in terms of targets and thresholds, including both determinate and indeterminate growth. We also provide a partial result on the comparison between ;"linear maximizers'' and "log maximizers''. Numerical simulations are provided, allowing to give a hint at the effect of different mathematical assumptions.
Research on Evaluation of resource allocation efficiency of transportation system based on DEA
NASA Astrophysics Data System (ADS)
Zhang, Zhehui; Du, Linan
2017-06-01
In this paper, we select the time series data onto 1985-2015 years, construct the land (shoreline) resources, capital and labor as inputs. The index system of the output is freight volume and passenger volume, we use Quantitative analysis based on DEA method evaluated the resource allocation efficiency of railway, highway, water transport and civil aviation in China. Research shows that the resource allocation efficiency of various modes of transport has obvious difference, and the impact on scale efficiency is more significant. The most important two ways to optimize the allocation of resources to improve the efficiency of the combination of various modes of transport is promoting the co-ordination of various modes of transport and constructing integrated transportation system.
Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment
NASA Astrophysics Data System (ADS)
Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.
2013-12-01
Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a quadratic programming based modeling method is proposed. This algorithm performs well with small amount of computing tasks. However, its efficiency decreases significantly as the subdomain number and computing node number increase. 2) To compensate performance decreasing for large scale tasks, a K-Means clustering based algorithm is introduced. Instead of dedicating to get optimized solutions, this method can get relatively good feasible solutions within acceptable time. However, it may introduce imbalance communication for nodes or node-isolated subdomains. This research shows both two algorithms have their own strength and weakness for task allocation. A combination of the two algorithms is under study to obtain a better performance. Keywords: Scheduling; Parallel Computing; Load Balance; Optimization; Cost Model
Stine-Morrow, Elizabeth A. L.; Noh, Soo Rim; Shake, Matthew C.
2009-01-01
This research examined age differences in the accommodation of reading strategies as a consequence of explicit instruction in conceptual integration. In Experiment 1, young, middle-aged, and older adults read sentences for delayed recall using a moving window method. Readers in an experimental group received instruction in making conceptual links during reading while readers in a control group were simply encouraged to allocate effort. Regression analysis to decompose word-by-word reading times in each condition isolated the time allocated to conceptual processing at the point in the text at which new concepts were introduced, as well as at clause and sentence boundaries. While younger adults responded to instructions by differentially allocating effort to sentence wrap-up, older adults allocated effort to intrasentence wrap-up and on new concepts as they were introduced, suggesting that older readers optimized their allocation of effort to linguistic computations for textbase construction within their processing capacity. Experiment 2 verified that conceptual integration training improved immediate recall among older readers as a consequence of engendering allocation to conceptual processing. PMID:19941199
Frequency allocations for a new satellite service - Digital audio broadcasting
NASA Technical Reports Server (NTRS)
Reinhart, Edward E.
1992-01-01
The allocation in the range 500-3000 MHz for digital audio broadcasting (DAB) is described in terms of key issues such as the transmission-system architectures. Attention is given to the optimal amount of spectrum for allocation and the technological considerations relevant to downlink bands for satellite and terrestrial transmissions. Proposals for DAB allocations are compared, and reference is made to factors impinging on the provision of ground/satellite feeder links. The allocation proposals describe the implementation of 50-60-MHz bandwidths for broadcasting in the ranges near 800 MHz, below 1525 MHz, near 2350 MHz, and near 2600 MHz. Three specific proposals are examined in terms of characteristics such as service areas, coverage/beam, channels/satellite beam, and FCC license status. Several existing problems are identified including existing services crowded with systems, the need for new bands in the 1000-3000-MHz range, and variations in the nature and intensity of implementations of existing allocations that vary from country to country.
Multi-robot task allocation based on two dimensional artificial fish swarm algorithm
NASA Astrophysics Data System (ADS)
Zheng, Taixiong; Li, Xueqin; Yang, Liangyi
2007-12-01
The problem of task allocation for multiple robots is to allocate more relative-tasks to less relative-robots so as to minimize the processing time of these tasks. In order to get optimal multi-robot task allocation scheme, a twodimensional artificial swarm algorithm based approach is proposed in this paper. In this approach, the normal artificial fish is extended to be two dimension artificial fish. In the two dimension artificial fish, each vector of primary artificial fish is extended to be an m-dimensional vector. Thus, each vector can express a group of tasks. By redefining the distance between artificial fish and the center of artificial fish, the behavior of two dimension fish is designed and the task allocation algorithm based on two dimension artificial swarm algorithm is put forward. At last, the proposed algorithm is applied to the problem of multi-robot task allocation and comparer with GA and SA based algorithm is done. Simulation and compare result shows the proposed algorithm is effective.
NASA Astrophysics Data System (ADS)
Kim, Gi Young
The problem we investigate deals with an Image Intelligence (IMINT) sensor allocation schedule for High Altitude Long Endurance UAVs in a dynamic and Anti-Access Area Denial (A2AD) environment. The objective is to maximize the Situational Awareness (SA) of decision makers. The value of SA can be improved in two different ways. First, if a sensor allocated to an Areas of Interest (AOI) detects target activity, then the SA value will be increased. Second, the SA value increases if an AOI is monitored for a certain period of time, regardless of target detections. These values are functions of the sensor allocation time, sensor type and mode. Relatively few studies in the archival literature have been devoted to an analytic, detailed explanation of the target detection process, and AOI monitoring value dynamics. These two values are the fundamental criteria used to choose the most judicious sensor allocation schedule. This research presents mathematical expressions for target detection processes, and shows the monitoring value dynamics. Furthermore, the dynamics of target detection is the result of combined processes between belligerent behavior (target activity) and friendly behavior (sensor allocation). We investigate these combined processes and derive mathematical expressions for simplified cases. These closed form mathematical models can be used for Measures of Effectiveness (MOEs), i.e., target activity detection to evaluate sensor allocation schedules. We also verify these models with discrete event simulations which can also be used to describe more complex systems. We introduce several methodologies to achieve a judicious sensor allocation schedule focusing on the AOI monitoring value. The first methodology is a discrete time integer programming model which provides an optimal solution but is impractical for real world scenarios due to its computation time. Thus, it is necessary to trade off the quality of solution with computation time. The Myopic Greedy Procedure (MGP) is a heuristic which chooses the largest immediate unit time return at each decision epoch. This reduces computation time significantly, but the quality of the solution may be only 95% of optimal (for small size problems). Another alternative is a multi-start random constructive Hybrid Myopic Greedy Procedure (H-MGP), which incorporates stochastic variation in choosing an action at each stage, and repeats it a predetermined number of times (roughly 99.3% of optimal with 1000 repetitions). Finally, the One Stage Look Ahead (OSLA) procedure considers all the 'top choices' at each stage for a temporary time horizon and chooses the best action (roughly 98.8% of optimal with no repetition). Using OSLA procedure, we can have ameliorated solutions within a reasonable computation time. Other important issues discussed in this research are methodologies for the development of input parameters for real world applications.
Information efficiency in visual communication
NASA Astrophysics Data System (ADS)
Alter-Gartenberg, Rachel; Rahman, Zia-ur
1993-08-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Information efficiency in visual communication
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1993-01-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Congestion Pricing for Aircraft Pushback Slot Allocation.
Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei
2017-01-01
In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.
Game theoretic power allocation and waveform selection for satellite communications
NASA Astrophysics Data System (ADS)
Shu, Zhihui; Wang, Gang; Tian, Xin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe
2015-05-01
Game theory is a useful method to model interactions between agents with conflicting interests. In this paper, we set up a Game Theoretic Model for Satellite Communications (SATCOM) to solve the interaction between the transmission pair (blue side) and the jammer (red side) to reach a Nash Equilibrium (NE). First, the IFT Game Application Model (iGAM) for SATCOM is formulated to improve the utility of the transmission pair while considering the interference from a jammer. Specifically, in our framework, the frame error rate performance of different modulation and coding schemes is used in the game theoretic solution. Next, the game theoretic analysis shows that the transmission pair can choose the optimal waveform and power given the received power from the jammer. We also describe how the jammer chooses the optimal power given the waveform and power allocation from the transmission pair. Finally, simulations are implemented for the iGAM and the simulation results show the effectiveness of the SATCOM power allocation, waveform selection scheme, and jamming mitigation.
Congestion Pricing for Aircraft Pushback Slot Allocation
Zhang, Yaping
2017-01-01
In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429
Pearson, Ruth; Killedar, Madhura; Petravic, Janka; Kakietek, Jakub J; Scott, Nick; Grantham, Kelsey L; Stuart, Robyn M; Kedziora, David J; Kerr, Cliff C; Skordis-Worrall, Jolene; Shekar, Meera; Wilson, David P
2018-03-20
Child stunting due to chronic malnutrition is a major problem in low- and middle-income countries due, in part, to inadequate nutrition-related practices and insufficient access to services. Limited budgets for nutritional interventions mean that available resources must be targeted in the most cost-effective manner to have the greatest impact. Quantitative tools can help guide budget allocation decisions. The Optima approach is an established framework to conduct resource allocation optimization analyses. We applied this approach to develop a new tool, 'Optima Nutrition', for conducting allocative efficiency analyses that address childhood stunting. At the core of the Optima approach is an epidemiological model for assessing the burden of disease; we use an adapted version of the Lives Saved Tool (LiST). Six nutritional interventions have been included in the first release of the tool: antenatal micronutrient supplementation, balanced energy-protein supplementation, exclusive breastfeeding promotion, promotion of improved infant and young child feeding (IYCF) practices, public provision of complementary foods, and vitamin A supplementation. To demonstrate the use of this tool, we applied it to evaluate the optimal allocation of resources in 7 districts in Bangladesh, using both publicly available data (such as through DHS) and data from a complementary costing study. Optima Nutrition can be used to estimate how to target resources to improve nutrition outcomes. Specifically, for the Bangladesh example, despite only limited nutrition-related funding available (an estimated $0.75 per person in need per year), even without any extra resources, better targeting of investments in nutrition programming could increase the cumulative number of children living without stunting by 1.3 million (an extra 5%) by 2030 compared to the current resource allocation. To minimize stunting, priority interventions should include promotion of improved IYCF practices as well as vitamin A supplementation. Once these programs are adequately funded, the public provision of complementary foods should be funded as the next priority. Programmatic efforts should give greatest emphasis to the regions of Dhaka and Chittagong, which have the greatest number of stunted children. A resource optimization tool can provide important guidance for targeting nutrition investments to achieve greater impact.
Multiple Interacting Risk Factors: On Methods for Allocating Risk Factor Interactions.
Price, Bertram; MacNicoll, Michael
2015-05-01
A persistent problem in health risk analysis where it is known that a disease may occur as a consequence of multiple risk factors with interactions is allocating the total risk of the disease among the individual risk factors. This problem, referred to here as risk apportionment, arises in various venues, including: (i) public health management, (ii) government programs for compensating injured individuals, and (iii) litigation. Two methods have been described in the risk analysis and epidemiology literature for allocating total risk among individual risk factors. One method uses weights to allocate interactions among the individual risk factors. The other method is based on risk accounting axioms and finding an optimal and unique allocation that satisfies the axioms using a procedure borrowed from game theory. Where relative risk or attributable risk is the risk measure, we find that the game-theory-determined allocation is the same as the allocation where risk factor interactions are apportioned to individual risk factors using equal weights. Therefore, the apportionment problem becomes one of selecting a meaningful set of weights for allocating interactions among the individual risk factors. Equal weights and weights proportional to the risks of the individual risk factors are discussed. © 2015 Society for Risk Analysis.
Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Wang, Peng
2018-04-13
Aiming to minimize the damage caused by river chemical spills, efficient emergency material allocation is critical for an actual emergency rescue decision-making in a quick response. In this study, an emergency material allocation framework based on time-varying supply-demand constraint is developed to allocate emergency material, minimize the emergency response time, and satisfy the dynamic emergency material requirements in post-accident phases dealing with river chemical spills. In this study, the theoretically critical emergency response time is firstly obtained for the emergency material allocation system to select a series of appropriate emergency material warehouses as potential supportive centers. Then, an enumeration method is applied to identify the practically critical emergency response time, the optimum emergency material allocation and replenishment scheme. Finally, the developed framework is applied to a computational experiment based on south-to-north water transfer project in China. The results illustrate that the proposed methodology is a simple and flexible tool for appropriately allocating emergency material to satisfy time-dynamic demands during emergency decision-making. Therefore, the decision-makers can identify an appropriate emergency material allocation scheme in a balance between time-effective and cost-effective objectives under the different emergency pollution conditions.
Implicit Multisensory Associations Influence Voice Recognition
von Kriegstein, Katharina; Giraud, Anne-Lise
2006-01-01
Natural objects provide partially redundant information to the brain through different sensory modalities. For example, voices and faces both give information about the speech content, age, and gender of a person. Thanks to this redundancy, multimodal recognition is fast, robust, and automatic. In unimodal perception, however, only part of the information about an object is available. Here, we addressed whether, even under conditions of unimodal sensory input, crossmodal neural circuits that have been shaped by previous associative learning become activated and underpin a performance benefit. We measured brain activity with functional magnetic resonance imaging before, while, and after participants learned to associate either sensory redundant stimuli, i.e. voices and faces, or arbitrary multimodal combinations, i.e. voices and written names, ring tones, and cell phones or brand names of these cell phones. After learning, participants were better at recognizing unimodal auditory voices that had been paired with faces than those paired with written names, and association of voices with faces resulted in an increased functional coupling between voice and face areas. No such effects were observed for ring tones that had been paired with cell phones or names. These findings demonstrate that brief exposure to ecologically valid and sensory redundant stimulus pairs, such as voices and faces, induces specific multisensory associations. Consistent with predictive coding theories, associative representations become thereafter available for unimodal perception and facilitate object recognition. These data suggest that for natural objects effective predictive signals can be generated across sensory systems and proceed by optimization of functional connectivity between specialized cortical sensory modules. PMID:17002519
Design of clinical trials involving multiple hypothesis tests with a common control.
Schou, I Manjula; Marschner, Ian C
2017-07-01
Randomized clinical trials comparing several treatments to a common control are often reported in the medical literature. For example, multiple experimental treatments may be compared with placebo, or in combination therapy trials, a combination therapy may be compared with each of its constituent monotherapies. Such trials are typically designed using a balanced approach in which equal numbers of individuals are randomized to each arm, however, this can result in an inefficient use of resources. We provide a unified framework and new theoretical results for optimal design of such single-control multiple-comparator studies. We consider variance optimal designs based on D-, A-, and E-optimality criteria, using a general model that allows for heteroscedasticity and a range of effect measures that include both continuous and binary outcomes. We demonstrate the sensitivity of these designs to the type of optimality criterion by showing that the optimal allocation ratios are systematically ordered according to the optimality criterion. Given this sensitivity to the optimality criterion, we argue that power optimality is a more suitable approach when designing clinical trials where testing is the objective. Weighted variance optimal designs are also discussed, which, like power optimal designs, allow the treatment difference to play a major role in determining allocation ratios. We illustrate our methods using two real clinical trial examples taken from the medical literature. Some recommendations on the use of optimal designs in single-control multiple-comparator trials are also provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust Transmission of H.264/AVC Streams Using Adaptive Group Slicing and Unequal Error Protection
NASA Astrophysics Data System (ADS)
Thomos, Nikolaos; Argyropoulos, Savvas; Boulgouris, Nikolaos V.; Strintzis, Michael G.
2006-12-01
We present a novel scheme for the transmission of H.264/AVC video streams over lossy packet networks. The proposed scheme exploits the error-resilient features of H.264/AVC codec and employs Reed-Solomon codes to protect effectively the streams. A novel technique for adaptive classification of macroblocks into three slice groups is also proposed. The optimal classification of macroblocks and the optimal channel rate allocation are achieved by iterating two interdependent steps. Dynamic programming techniques are used for the channel rate allocation process in order to reduce complexity. Simulations clearly demonstrate the superiority of the proposed method over other recent algorithms for transmission of H.264/AVC streams.
Phylogeny determines flower size-dependent sex allocation at flowering in a hermaphroditic family.
Teixido, A L; Guzmán, B; Staggemeier, V G; Valladares, F
2017-11-01
In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
A conceptual framework for economic optimization of an animal health surveillance portfolio.
Guo, X; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W
2016-04-01
Decision making on hazard surveillance in livestock product chains is a multi-hazard, multi-stakeholder, and multi-criteria process that includes a variety of decision alternatives. The multi-hazard aspect means that the allocation of the scarce resource for surveillance should be optimized from the point of view of a surveillance portfolio (SP) rather than a single hazard. In this paper, we present a novel conceptual approach for economic optimization of a SP to address the resource allocation problem for a surveillance organization from a theoretical perspective. This approach uses multi-criteria techniques to evaluate the performances of different settings of a SP, taking cost-benefit aspects of surveillance and stakeholders' preferences into account. The credibility of the approach has also been checked for conceptual validity, data needs and operational validity; the application potentials of the approach are also discussed.
Optimizing oil spill cleanup efforts: A tactical approach and evaluation framework.
Grubesic, Tony H; Wei, Ran; Nelson, Jake
2017-12-15
Although anthropogenic oil spills vary in size, duration and severity, their broad impacts on complex social, economic and ecological systems can be significant. Questions pertaining to the operational challenges associated with the tactical allocation of human resources, cleanup equipment and supplies to areas impacted by a large spill are particularly salient when developing mitigation strategies for extreme oiling events. The purpose of this paper is to illustrate the application of advanced oil spill modeling techniques in combination with a developed mathematical model to spatially optimize the allocation of response crews and equipment for cleaning up an offshore oil spill. The results suggest that the detailed simulations and optimization model are a good first step in allowing both communities and emergency responders to proactively plan for extreme oiling events and develop response strategies that minimize the impacts of spills. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimizing Real-Time Vaccine Allocation in a Stochastic SIR Model
Nguyen, Chantal; Carlson, Jean M.
2016-01-01
Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs. PMID:27043931
NASA Astrophysics Data System (ADS)
Fragkoulis, Alexandros; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2015-03-01
We propose a method for the fair and efficient allocation of wireless resources over a cognitive radio system network to transmit multiple scalable video streams to multiple users. The method exploits the dynamic architecture of the Scalable Video Coding extension of the H.264 standard, along with the diversity that OFDMA networks provide. We use a game-theoretic Nash Bargaining Solution (NBS) framework to ensure that each user receives the minimum video quality requirements, while maintaining fairness over the cognitive radio system. An optimization problem is formulated, where the objective is the maximization of the Nash product while minimizing the waste of resources. The problem is solved by using a Swarm Intelligence optimizer, namely Particle Swarm Optimization. Due to the high dimensionality of the problem, we also introduce a dimension-reduction technique. Our experimental results demonstrate the fairness imposed by the employed NBS framework.
Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi
2011-12-01
Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.
Hybrid-optimization strategy for the communication of large-scale Kinetic Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Wu, Baodong; Li, Shigang; Zhang, Yunquan; Nie, Ningming
2017-02-01
The parallel Kinetic Monte Carlo (KMC) algorithm based on domain decomposition has been widely used in large-scale physical simulations. However, the communication overhead of the parallel KMC algorithm is critical, and severely degrades the overall performance and scalability. In this paper, we present a hybrid optimization strategy to reduce the communication overhead for the parallel KMC simulations. We first propose a communication aggregation algorithm to reduce the total number of messages and eliminate the communication redundancy. Then, we utilize the shared memory to reduce the memory copy overhead of the intra-node communication. Finally, we optimize the communication scheduling using the neighborhood collective operations. We demonstrate the scalability and high performance of our hybrid optimization strategy by both theoretical and experimental analysis. Results show that the optimized KMC algorithm exhibits better performance and scalability than the well-known open-source library-SPPARKS. On 32-node Xeon E5-2680 cluster (total 640 cores), the optimized algorithm reduces the communication time by 24.8% compared with SPPARKS.
Differences in attentional strategies by novice and experienced operating theatre scrub nurses.
Koh, Ranieri Y I; Park, Taezoon; Wickens, Christopher D; Ong, Lay Teng; Chia, Soon Noi
2011-09-01
This study investigated the effect of nursing experience on attention allocation and task performance during surgery. The prevention of cases of retained foreign bodies after surgery typically depends on scrub nurses, who are responsible for performing multiple tasks that impose heavy demands on the nurses' cognitive resources. However, the relationship between the level of experiences and attention allocation strategies has not been extensively studied. Eye movement data were collected from 10 novice and 10 experienced scrub nurses in the operating theater for caesarean section surgeries. Visual scanning data, analyzed by dividing the workstation into four main areas and the surgery into four stages, were compared to the optimum expected value estimated by SEEV (Salience, Effort, Expectancy, and Value) model. Both experienced and novice nurses showed significant correlations to the optimal percentage dwell time values, and significant differences were found in attention allocation optimality between experienced and novice nurses, with experienced nurses adhering significantly more to the optimal in the stages of high workload. Experienced nurses spent less time on the final count and encountered fewer interruptions during the count than novices indicating better performance in task management, whereas novice nurses switched attention between areas of interest more than experienced nurses. The results provide empirical evidence of a relationship between the application of optimal visual attention management strategies and performance, opening up possibilities to the development of visual attention and interruption training for better performance. (c) 2011 APA, all rights reserved.
Use of scan overlap redundancy to enhance multispectral aircraft scanner data
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Keat, J.
1973-01-01
Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.
Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization
NASA Astrophysics Data System (ADS)
Liu, Zexi
2018-01-01
Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.
Two-phase simulation-based location-allocation optimization of biomass storage distribution
USDA-ARS?s Scientific Manuscript database
This study presents a two-phase simulation-based framework for finding the optimal locations of biomass storage facilities that is a very critical link on the biomass supply chain, which can help to solve biorefinery concerns (e.g. steady supply, uniform feedstock properties, stable feedstock costs,...
Munguía-Rosas, Miguel A.; Parra-Tabla, Victor; Ollerton, Jeff; Cervera, J. Carlos
2012-01-01
• Background and Aims Mixed reproductive strategies may have evolved as a response of plants to cope with environmental variation. One example of a mixed reproductive strategy is dimorphic cleistogamy, where a single plant produces closed, obligately self-pollinated (CL) flowers and open, potentially outcrossed (CH) flowers. Frequently, optimal environmental conditions favour production of more costly CH structures whilst economical and reliable CL structures are produced under less favourable conditions. In this study we explore (1) the effect of light and water on the reproductive phenology and (2) the effect of pollen supplementation on resource allocation to seeds in the cleistogamous weed Ruellia nudiflora. • Methods Split-plot field experiments were carried out to assess the effect of shade (two levels: ambient light vs. a reduction of 50 %) and watering (two levels: non-watered vs. watered) on the onset, end and duration of the production of three reproductive structures: CH flowers, CH fruit and CL fruit. We also looked at the effect of these environmental factors on biomass allocation to seeds (seed weight) from obligately self-pollinated flowers (CL), open-pollinated CH flowers and pollen-supplemented CH flowers. • Key Results CH structures were produced for a briefer period and ended earlier under shaded conditions. These conditions also resulted in an earlier production of CL fruit. Shaded conditions also produced greater biomass allocation to CH seeds receiving extra pollen. • Conclusions Sub-optimal (shaded) conditions resulted in a briefer production period of CH structures whilst these same conditions resulted in an earlier production of CL structures. However, under sub-optimal conditions, plants also allocated more resources to seeds sired from CH flowers receiving large pollen loads. Earlier production of reproductive structures and relatively larger seed might improve subsequent success of CL and pollen-supplemented CH seeds, respectively. PMID:22095920
Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang
2018-02-01
This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption of urban and environment, and the unbalance between water supply and demand could be filled by virtual water import in water scarce regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Payments for Ecosystem Services for watershed water resource allocations
NASA Astrophysics Data System (ADS)
Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian
2018-01-01
Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES amounts among different regions under social and environmental constraints by considering the characteristics of social equity and CGs.
Modeling forest stand dynamics from optimal balances of carbon and nitrogen
Harry T. Valentine; Annikki Makela
2012-01-01
We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...
Joint Optimal Placement and Energy Allocation of Underwater Sensors in a Tree Topology
2014-03-10
underwater acoustic sensor nodes with respect to the capacity of the wireless links between the... underwater acoustic sensor nodes with respect to the capacity of the wireless links between the nodes. We assumed that the energy consumption of...nodes’ optimal placements. We achieve the optimal placement of the underwater acoustic sensor nodes with respect to the capacity of the wireless
Accurate and diverse recommendations via eliminating redundant correlations
NASA Astrophysics Data System (ADS)
Zhou, Tao; Su, Ri-Qi; Liu, Run-Ran; Jiang, Luo-Luo; Wang, Bing-Hong; Zhang, Yi-Cheng
2009-12-01
In this paper, based on a weighted projection of a bipartite user-object network, we introduce a personalized recommendation algorithm, called network-based inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering the higher order correlations, we design an improved algorithm that can, to some extent, eliminate the redundant correlations. We test our algorithm on two benchmark data sets, MovieLens and Netflix. Compared with NBI, the algorithmic accuracy, measured by the ranking score, can be further improved by 23 per cent for MovieLens and 22 per cent for Netflix. The present algorithm can even outperform the Latent Dirichlet Allocation algorithm, which requires much longer computational time. Furthermore, most previous studies considered the algorithmic accuracy only; in this paper, we argue that the diversity and popularity, as two significant criteria of algorithmic performance, should also be taken into account. With more or less the same accuracy, an algorithm giving higher diversity and lower popularity is more favorable. Numerical results show that the present algorithm can outperform the standard one simultaneously in all five adopted metrics: lower ranking score and higher precision for accuracy, larger Hamming distance and lower intra-similarity for diversity, as well as smaller average degree for popularity.
Equitable fund allocation, an economical approach for sustainable waste load allocation.
Ashtiani, Elham Feizi; Niksokhan, Mohammad Hossein; Jamshidi, Shervin
2015-08-01
This research aims to study a novel approach for waste load allocation (WLA) to meet environmental, economical, and equity objectives, simultaneously. For this purpose, based on a simulation-optimization model developed for Haraz River in north of Iran, the waste loads are allocated according to discharge permit market. The non-dominated solutions are initially achieved through multiobjective particle swarm optimization (MOPSO). Here, the violation of environmental standards based on dissolved oxygen (DO) versus biochemical oxidation demand (BOD) removal costs is minimized to find economical total maximum daily loads (TMDLs). This can save 41% in total abatement costs in comparison with the conventional command and control policy. The BOD discharge permit market then increases the revenues to 45%. This framework ensures that the environmental limits are fulfilled but the inequity index is rather high (about 4.65). For instance, the discharge permit buyer may not be satisfied about the equity of WLA. Consequently, it is recommended that a third party or institution should be in charge of reallocating the funds. It means that the polluters which gain benefits by unfair discharges should pay taxes (or funds) to compensate the losses of other polluters. This intends to reduce the costs below the required values of the lowest inequity index condition. These compensations of equitable fund allocation (EFA) may help to reduce the dissatisfactions and develop WLA policies. It is concluded that EFA in integration with water quality trading (WQT) is a promising approach to meet the objectives.
Optimizing cost-efficiency in mean exposure assessment - cost functions reconsidered
2011-01-01
Background Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Methods Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Results Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods. For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. Conclusions The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios. PMID:21600023
Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.
Mathiassen, Svend Erik; Bolin, Kristian
2011-05-21
Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used for informed design of exposure assessment strategies, provided that data are available on exposure variability and the costs of collecting and processing data. The present shortage of empirical evidence on costs and appropriate cost functions however impedes general conclusions on optimal exposure measurement strategies in different epidemiologic scenarios.
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
Peng, Yunfeng; Yang, Yuanhe
2016-06-28
Allometric and optimal hypotheses have been widely used to explain biomass partitioning in response to resource changes for individual plants; however, little evidence has been reported from measurements at the community level across a broad geographic scale. This study assessed the nitrogen (N) effect on community-level root to shoot (R/S) ratios and biomass partitioning functions by synthesizing global manipulative experiments. Results showed that, in aggregate, N addition decreased the R/S ratios in various biomes. However, the scaling slopes of the allometric equations were not significantly altered by the N enrichment, possibly indicating that N-induced reduction of the R/S ratio is a consequence of allometric allocation as a function of increasing plant size rather than an optimal partitioning model. To further illustrate this point, we developed power function models to explore the relationships between aboveground and belowground biomass for various biomes; then, we generated the predicted root biomass from the observed shoot biomass and predicted R/S ratios. The comparison of predicted and observed N-induced changes of the R/S ratio revealed no significant differences between each other, supporting the allometric allocation hypothesis. These results suggest that allometry, rather than optimal allocation, explains the N-induced reduction in the R/S ratio across global biomes.
Gorahava, Kaushik K; Rosenberger, Jay M; Mubayi, Anuj
2015-07-01
Visceral leishmaniasis (VL) is the most deadly form of the leishmaniasis family of diseases, which affects numerous developing countries. The Indian state of Bihar has the highest prevalence and mortality rate of VL in the world. Insecticide spraying is believed to be an effective vector control program for controlling the spread of VL in Bihar; however, it is expensive and less effective if not implemented systematically. This study develops and analyzes a novel optimization model for VL control in Bihar that identifies an optimal (best possible) allocation of chosen insecticide (dichlorodiphenyltrichloroethane [DDT] or deltamethrin) based on the sizes of human and cattle populations in the region. The model maximizes the insecticide-induced sandfly death rate in human and cattle dwellings while staying within the current state budget for VL vector control efforts. The model results suggest that deltamethrin might not be a good replacement for DDT because the insecticide-induced sandfly deaths are 3.72 times more in case of DDT even after 90 days post spray. Different insecticide allocation strategies between the two types of sites (houses and cattle sheds) are suggested based on the state VL-control budget and have a direct implication on VL elimination efforts in a resource-limited region. © The American Society of Tropical Medicine and Hygiene.
A theoretical basis for the analysis of redundant software subject to coincident errors
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.; Lee, L. D.
1985-01-01
Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.
Towards an Efficient Flooding Scheme Exploiting 2-Hop Backward Information in MANETs
NASA Astrophysics Data System (ADS)
Le, Trong Duc; Choo, Hyunseung
Flooding is an indispensable operation for providing control or routing functionalities to mobile ad hoc networks (MANETs). Previously, many flooding schemes have been studied with the intention of curtailing the problems of severe redundancies, contention, and collisions in traditional implementations. A recent approach with relatively high efficiency is 1HI by Liu et al., which uses only 1-hop neighbor information. The scheme achieves local optimality in terms of the number of retransmission nodes with time complexity &Theta(n log n), where n is the number of neighbors of a node; however, this method tends to make many redundant transmissions. In this paper, we present a novel flooding algorithm, 2HBI (2-hop backward information), that efficiently reduces the number of retransmission nodes and solves the broadcast storm problem in ad hoc networks using our proposed concept, “2-hop backward information.” The most significant feature of the proposed algorithm is that it does not require any extra communication overhead other than the exchange of 1-hop HELLO messages but maintains high deliverability. Comprehensive computer simulations show that the proposed scheme significantly reduces redundant transmissions in 1HI and in pure flooding, up to 38% and 91%, respectively; accordingly it alleviates contention and collisions in networks.
Weighted optimization of irradiance for photodynamic therapy of port wine stains
NASA Astrophysics Data System (ADS)
He, Linhuan; Zhou, Ya; Hu, Xiaoming
2016-10-01
Planning of irradiance distribution (PID) is one of the foremost factors for on-demand treatment of port wine stains (PWS) with photodynamic therapy (PDT). A weighted optimization method for PID was proposed according to the grading of PWS with a three dimensional digital illumination instrument. Firstly, the point clouds of lesions were filtered to remove the error or redundant points, the triangulation was carried out and the lesion was divided into small triangular patches. Secondly, the parameters such as area, normal vector and orthocenter for optimization of each triangular patch were calculated, and the weighted coefficients were determined by the erythema indexes and areas of patches. Then, the optimization initial point was calculated based on the normal vectors and orthocenters to optimize the light direction. In the end, the irradiation can be optimized according to cosine values of irradiance angles and weighted coefficients. Comparing the irradiance distribution before and after optimization, the proposed weighted optimization method can make the irradiance distribution match better with the characteristics of lesions, and has the potential to improve the therapeutic efficacy.
Predicting optimal transmission investment in malaria parasites.
Greischar, Megan A; Mideo, Nicole; Read, Andrew F; Bjørnstad, Ottar N
2016-07-01
In vertebrate hosts, malaria parasites face a tradeoff between replicating and the production of transmission stages that can be passed onto mosquitoes. This tradeoff is analogous to growth-reproduction tradeoffs in multicellular organisms. We use a mathematical model tailored to the life cycle and dynamics of malaria parasites to identify allocation strategies that maximize cumulative transmission potential to mosquitoes. We show that plastic strategies can substantially outperform fixed allocation because parasites can achieve greater fitness by investing in proliferation early and delaying the production of transmission stages. Parasites should further benefit from restraining transmission investment later in infection, because such a strategy can help maintain parasite numbers in the face of resource depletion. Early allocation decisions are predicted to have the greatest impact on parasite fitness. If the immune response saturates as parasite numbers increase, parasites should benefit from even longer delays prior to transmission investment. The presence of a competing strain selects for consistently lower levels of transmission investment and dramatically increased exploitation of the red blood cell resource. While we provide a detailed analysis of tradeoffs pertaining to malaria life history, our approach for identifying optimal plastic allocation strategies may be broadly applicable. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Schreiber, Sebastian J; Rosenheim, Jay A; Williams, Neal W; Harder, Lawrence D
2015-01-01
Variation in resource availability can select for traits that reduce the negative impacts of this variability on mean fitness. Such selection may be particularly potent for seed production in flowering plants, as they often experience variation in pollen receipt among individuals and among flowers within individuals. Using analytically tractable models, we examine the optimal allocations for producing ovules, attracting pollen, and maturing seeds in deterministic and stochastic pollen environments. In deterministic environments, the optimal strategy attracts sufficient pollen to fertilize every ovule and mature every zygote into a seed. Stochastic environments select for allocations proportional to the risk of seed production being limited by zygotes or seed maturation. When producing an ovule is cheap and maturing a seed is expensive, among-plant variation selects for attracting more pollen at the expense of producing fewer ovules and having fewer resources for seed maturation. Despite this increased allocation, such populations are likely to be pollen limited. In contrast, within-plant variation generally selects for an overproduction of ovules and, to a lesser extent, pollen attraction. Such populations are likely to be resource limited and exhibit low seed-to-ovule ratios. These results highlight the importance of multiscale variation in the evolution and ecology of resource allocations.
Effective Network Management via System-Wide Coordination and Optimization
2010-08-01
Srinath Sridhar, Matthew Streeter, Jimeng Sun, Michael Tschantz, Rangarajan Vasudevan, Vijay Vasude- van, Gaurav Veda, Shobha Venkataraman, Justin... Sharma and Byers [150] suggest the use of Bloom filters. While minimizing redundant measurements is a common high-level theme between cSamp and their...NSDI, 2004. [150] M. R. Sharma and J. W. Byers. Scalable Coordination Techniques for Distributed Network Monitoring. In Proc. of PAM, 2005. [151] S
Reliability considerations in long-life outer planet spacecraft system design
NASA Technical Reports Server (NTRS)
Casani, E. K.
1975-01-01
A Mariner Jupiter/Saturn mission has been planned for 1977. System reliability questions are discussed, taking into account the actual and design lifetime, causes of mission termination, in-flight failures and their consequences for the mission, and the use of redundancy to avoid failures. The design process employed optimizes the use of proven subsystem and system designs and then makes the necessary improvements to increase the lifetime as required.
An improved simulation based biomechanical model to estimate static muscle loadings
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Marras, William S.; Woolford, Barbara
1991-01-01
The objectives of this study are to show that the characteristics of an intact muscle are different from those of an isolated muscle and to describe a simulation based model. This model, unlike the optimization based models, accounts for the redundancy in the musculoskeletal system in predicting the amount of forces generated within a muscle. The results of this study show that the loading of the primary muscle is increased by the presence of other muscle activities. Hence, the previous models based on optimization techniques may underestimate the severity of the muscle and joint loadings which occur during manual material handling tasks.
NASA Astrophysics Data System (ADS)
Moslehi, M.; de Barros, F.; Rajagopal, R.
2014-12-01
Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.
Mass and Volume Optimization of Space Flight Medical Kits
NASA Technical Reports Server (NTRS)
Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry
2014-01-01
Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
Simulation-based planning for theater air warfare
NASA Astrophysics Data System (ADS)
Popken, Douglas A.; Cox, Louis A., Jr.
2004-08-01
Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.