Sample records for reef framework development

  1. Where's the reef: the role of framework in the Holocene

    USGS Publications Warehouse

    Hubbard, D.K.; Burke, R.B.; Gill, I.P.

    1998-01-01

    Holocene reef models generally emphasize the role of in-place and interlocking framework in the creation of a rigid structure that rises above its surroundings. By extension, a number of ancient biohermal deposits have been disqualified as 'true reefs' owing to their lack of recognizable framework. Fifty-four cores from several eastern Caribbean sites clearly demonstrate that in-place and interlocking framework is not common in these reefs that are comprised of varying mixtures of recognizable coral (primary framework), loose sediment/rubble and secondary framework made up mostly of coralgal fragments bound together by submarine cementation and biological encrustation. Recvovery of primary and secondary framework ranged from 22% (avg.) in branching-coral facies to 33% in intervals dominated by head corals. Accretion rate decreases as expected with water depth. However, the recovery of recognizable coral generally increased with water depth, inversely to presumed coral-growth rates. This pattern reflects a spectrum in the relative importance of coral growth (primary construction), bioerosion, hydromechanical breakdown and the transport of sediment and detritus. The relative importance of each is controlled by the physical-oceanographic conditions at the stie of reef development and will dictate both the architecture and the character of its internal fabric. We do not propose that framework reeds do not exist, as they most assuredly do. However, the fact that so many modern reefs are not dominated by in-place and interlocking framework suggests that its use as the primary determinant of ancient reefs may be unreasonable. We, therefore, propose the abandonment of framework-based models in favor of those that treat framework generation, physical/biological degradation, sedimentation, and encrustation as equal partners in the development of modern and ancient reefs alike.

  2. Differential impact of monsoon and large amplitude internal waves on coral reef development in the Andaman Sea.

    PubMed

    Wall, Marlene; Schmidt, Gertraud Maria; Janjang, Pornpan; Khokiattiwong, Somkiat; Richter, Claudio

    2012-01-01

    The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies - a proxy for LAIW impact - explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.

  3. Coral calcification and reef development under natural disturbances

    NASA Astrophysics Data System (ADS)

    Wall, M.; Schmidt, G. M.; Khokkiatiwong, S.; Richter, C.

    2012-04-01

    Corals are impressive ecosystem engineers shaping and influencing tropical shallow water environments through their complex carbonate framework. Calcification a key physiological process determining coral growth and reef development, is highly dependent on constant environmental conditions, especially temperature, aragonite saturation and pH. However, not in all reef areas such constant and stable conditons can be found. Coral reefs located in the Andaman Sea off the western Thai coast are subjected to large amplitude internal waves (LAIW), which induce strong oscillations in several physical and chemical environmental parameters and hence, offer the possibility to study the influence of fluctuating conditions on coral reefs. Characteristics of these oscillations as well as reef framework development have been studied on reefs of five islands, which are exposed to LAIW along their western sides and LAIW-sheltered on their eastern sides. LAIW reach these shallow water reef areas all year round, however, strongest fluctuations were recorded during the dry season (November to May) with temperature drops of up to 8°C and pH values ranging from 8.22-7.90. Several (up to 12) sudden changes in environmental conditions can occur during a day, which differ in intensity and duration. Salinity, pH and oxygen are well correlated with changes in temperature and thus, temperature variability calculated as degree days cooling (DDC) was used as proxy for the complex set of environmental variability. This proxy enabled us to combine frequency and intensity of disturbances in one value and allowed for ranking each study location according to the severity of LAIW disturbances. Framework height was found to be clearly reduced in areas exposed to LAIW compared to the complex three-dimensional carbonate framework in the LAIW-sheltered reefs. Moreover, it showed a strong linear correlation with DDC (Rsqr=0.732, p=0.007) indicating the negative effect of pulsed disturbances on coral reef development. LAIW are a ubiquitous phenomenon especially in tropical oceans where coral communities exposed to these internal waves may offer a unique possibility to study in situ the effect of several cumulative stressors on coral- and reef development, as well as the consequences for the whole reef community.

  4. Building resilience into practical conservation: identifying local management responses to global climate change in the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Maynard, J. A.; Marshall, P. A.; Johnson, J. E.; Harman, S.

    2010-06-01

    Climate change is now considered the greatest long-term threat to coral reefs, with some future change inevitable despite mitigation efforts. Managers must therefore focus on supporting the natural resilience of reefs, requiring that resilient reefs and reef regions be identified. We develop a framework for assessing resilience and trial it by applying the framework to target management responses to climate change on the southern Great Barrier Reef. The framework generates a resilience score for a site based on the evaluation of 19 differentially weighted indicators known or thought to confer resilience to coral reefs. Scores are summed, and sites within a region are ranked in terms of (1) their resilience relative to the other sites being assessed, and (2) the extent to which managers can influence their resilience. The framework was applied to 31 sites in Keppel Bay of the southern Great Barrier Reef, which has a long history of disturbance and recovery. Resilience and ‘management influence potential’ were both found to vary widely in Keppel Bay, informing site selection for the staged implementation of resilience-based management strategies. The assessment framework represents a step towards making the concept of resilience operational to reef managers and conservationists. Also, it is customisable, easy to teach and implement and effective in building support among local communities and stakeholders for management responses to climate change.

  5. The wicked problem of China's disappearing coral reefs.

    PubMed

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  6. The influence of sea level and cyclones on Holocene reef flat development: Middle Island, central Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.

    2016-09-01

    The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, E.G.

    Throughout the Mesozoic, shallow-water carbonate ramps and platforms of the circumequatorial Tethyan Ocean were characterized by extensive development of reef ecosystems, especially during times of eustatic highstand, expansion of the Tropics, and warm equable global climates. The greatest reef development was north of the paleoequator in the Caribbean and Indo-Mediterranean provinces. These reefs and associated debris facies comprise major petroleum reservoirs, in some cases with remarkable porosity and permeability normally attributed to a combination of sedimentologic, tectonic, and diagenetic factors. The biological evolution of Mesozoic reefs also has had an important, and in some cases dominant, role in determining reservoirmore » quality. Three major biological factors are critical to mesozoic reef-associated reservoir development: (1) the replacement/competitive displacement of coral-algal dominated, highly integrated reef ecosystems by loosely packed rudistid bivalve-dominated reef ecosystems in the Barremian-Albian; (2) the evolution of dominantly aragonitic, highly porous shells among framework-building rudistids in the middle and Late Cretaceous; and (3) competitive strategies among rudistids that effectively prevented widespread biological binding of Cretaceous reefs, leading to the production of large marginal fans that comprise major carbonate reservoirs. Detailed studies of these evolutionary trends in reef/framework development and of the distribution of different groups of bioconstructors on reefs lead to predictive modeling for primary and secondary porosity development in mesozoic carbonate reservoirs. The competitive displacement of coral-algal communities by rudistids on Cretaceous reefs was so effective that, even after Maastrichtian mass extinction of rudistids and other important groups comprising Mesozoic reef/carbonate platform ecosystems, coral-algal reef-building communities did not evolve again until the late Eocene.« less

  8. REEF: Retainable Evaluator Execution Framework

    PubMed Central

    Weimer, Markus; Chen, Yingda; Chun, Byung-Gon; Condie, Tyson; Curino, Carlo; Douglas, Chris; Lee, Yunseong; Majestro, Tony; Malkhi, Dahlia; Matusevych, Sergiy; Myers, Brandon; Narayanamurthy, Shravan; Ramakrishnan, Raghu; Rao, Sriram; Sears, Russell; Sezgin, Beysim; Wang, Julia

    2015-01-01

    Resource Managers like Apache YARN have emerged as a critical layer in the cloud computing system stack, but the developer abstractions for leasing cluster resources and instantiating application logic are very low-level. This flexibility comes at a high cost in terms of developer effort, as each application must repeatedly tackle the same challenges (e.g., fault-tolerance, task scheduling and coordination) and re-implement common mechanisms (e.g., caching, bulk-data transfers). This paper presents REEF, a development framework that provides a control-plane for scheduling and coordinating task-level (data-plane) work on cluster resources obtained from a Resource Manager. REEF provides mechanisms that facilitate resource re-use for data caching, and state management abstractions that greatly ease the development of elastic data processing work-flows on cloud platforms that support a Resource Manager service. REEF is being used to develop several commercial offerings such as the Azure Stream Analytics service. Furthermore, we demonstrate REEF development of a distributed shell application, a machine learning algorithm, and a port of the CORFU [4] system. REEF is also currently an Apache Incubator project that has attracted contributors from several instititutions.1 PMID:26819493

  9. Crustose coralline algae increased framework and diversity on ancient coral reefs.

    PubMed

    Weiss, Anna; Martindale, Rowan C

    2017-01-01

    Crustose coralline algae (CCA) are key producers of carbonate sediment on reefs today. Despite their importance in modern reef ecosystems, the long-term relationship of CCA with reef development has not been quantitatively assessed in the fossil record. This study includes data from 128 Cenozoic coral reefs collected from the Paleobiology Database, the Paleoreefs Database, as well as the original literature and assesses the correlation of CCA abundance with taxonomic diversity (both corals and reef dwellers) and framework of fossil coral reefs. Chi-squared tests show reef type is significantly correlated with CCA abundance and post-hoc tests indicate higher involvement of CCA is associated with stronger reef structure. Additionally, general linear models show coral reefs with higher amounts of CCA had a higher diversity of reef-dwelling organisms. These data have important implications for paleoecology as they demonstrate that CCA increased building capacity, structural integrity, and diversity of ancient coral reefs. The analyses presented here demonstrate that the function of CCA on modern coral reefs is similar to their function on Cenozoic reefs; thus, studies of ancient coral reef collapse are even more meaningful as modern analogues.

  10. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world.

    PubMed

    Manzello, Derek P; Kleypas, Joan A; Budd, David A; Eakin, C Mark; Glynn, Peter W; Langdon, Chris

    2008-07-29

    Ocean acidification describes the progressive, global reduction in seawater pH that is currently underway because of the accelerating oceanic uptake of atmospheric CO(2). Acidification is expected to reduce coral reef calcification and increase reef dissolution. Inorganic cementation in reefs describes the precipitation of CaCO(3) that acts to bind framework components and occlude porosity. Little is known about the effects of ocean acidification on reef cementation and whether changes in cementation rates will affect reef resistance to erosion. Coral reefs of the eastern tropical Pacific (ETP) are poorly developed and subject to rapid bioerosion. Upwelling processes mix cool, subthermocline waters with elevated pCO(2) (the partial pressure of CO(2)) and nutrients into the surface layers throughout the ETP. Concerns about ocean acidification have led to the suggestion that this region of naturally low pH waters may serve as a model of coral reef development in a high-CO(2) world. We analyzed seawater chemistry and reef framework samples from multiple reef sites in the ETP and found that a low carbonate saturation state (Omega) and trace abundances of cement are characteristic of these reefs. These low cement abundances may be a factor in the high bioerosion rates previously reported for ETP reefs, although elevated nutrients in upwelled waters may also be limiting cementation and/or stimulating bioerosion. ETP reefs represent a real-world example of coral reef growth in low-Omega waters that provide insights into how the biological-geological interface of coral reef ecosystems will change in a high-CO(2) world.

  11. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.

    PubMed

    Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip

    2012-06-01

    We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors

    NASA Astrophysics Data System (ADS)

    Montaggioni, Lucien F.

    2005-06-01

    A significant body of new information about the development of coral reefs during the last 23 ka has been generated in the last three decades. In the Indo-Pacific province, structures from a variety of geodynamic settings have been investigated using subsurface drilling and submersible diving. This paper is based principally on the re-examination of the core dataset from the literature, with reconversion of many previously published radiocarbon ages into calendar dates. Seven framework and three detrital facies were identified on the basis of the nature and growth shapes of dominant framework builders, and on that of the texture of sediments, respectively. Framework facies in high-hydrodynamic energy settings were dominated by an association of coralline algae and robust-branching corals ( Acropora robusta group, A. gr. humilis, A. palifera, Pocillopora damicornis) with locally encrusting coral forms (faviids). In moderate energy environments, these were replaced by domal ( Porites), tabular-branching ( Acropora gr. hyacinthus) and arborescent ( Acropora gr. muricata), whereas sheltered areas included an association of arborescent, foliaceous ( Montipora, Pavona) and encrusting coral species. Detrital facies comprise coral rubble, carbonate sand and mud. On compositional and textural bases, four main sand subfacies were recognized: coralgal rudstone to packstone; coral-molluscan grainstone/packstone; molluscan-foraminiferal grainstone/packstone; and green algal ( Halimeda) grainstone/packstone. Despite some overlaps in the sand facies association, each subfacies can provide additional support to reconstruction of paleoreef environments. Three types of framework facies association were identified within entire reef-margin sequences: framework of homogeneous composition reflecting stability of environmental conditions through time; superimposition of two distinct frameworks, usually as deeper water corals overlain by shallower, higher energy ones, and recurrent alternations of shallower and deeper coral assemblages. The two last associations resulted probably from lateral displacements of coral communities in response to rapid changes in accommodation space. Such facies transitions also are described from backreef sediment piles: gravel graded into sand and mud successively as a result of upward shallowing. The degree of reef development seems to be linked to coral community structure. Communities consisting principally of branching and domal coral forms favoured substantial accretion and the formation of well-developed reefs, whereas assemblages comprising foliaceous and encrusting colonies produced only incipient reefs. Within reef systems, the proportions of detritus over framework tend to increase as hydrodynamic energy declines. The Indo-Pacific reef systems are classified into four anatomy types on the basis of dominant depositional patterns: balanced aggrading/onlapping, unbalanced aggrading/downlapping, prograding and backstepping types. Vertical accretion rates of frameworks are highly variable and are not directly dictated by coral growth habits. However, the highest rates recorded (up to 20 mm year -1) relate to tabular- and arborescent-acroporid rich sections. Abrupt variations in the aggradation rates of framework are recorded in sequences at the transitional zone between two distinct coral assemblages. In detritus-dominated sequences, accumulation rates range from 0.2 to about 40 mm year -1, with higher values suggesting intense hurricane-controlled deposition. In addition, accretion rates also seem to depend on water-energy conditions. In high-energy environments, aggradation rates did not exceed 12 mm year -1, but reached 25 mm year -1 in more protected areas. By contrast, lateral accretion operated at an average rate of 90 mm year -1 in agitated waters, while it did not exceed the mean rate of 55 mm year -1 in calm waters. Changes in accretion rates appear to be linked to reef growth modes. In the reef zones driven by a "keep-up" mode, mean vertical accretion rates range at around 6 mm year -1. The reef zones developed through a "catch-up" mode at rates of 3-4 mm year -1. There was little variation in accretion rates according to latitude. At the Last Glacial Maximum, from 23 to about 19 ka BP, reefs (Reef Generation RGO) only developed along what were to become the foreslopes of present reefs, forming accumulations a few metres thick at vertical rates of up to 1 mm year -1. The rapid postglacial rise in sea level, from about 19 to 6.5 ka BP, was accompanied by the settlement of three successive reef generations (the so called RGI, RGII and RGIII), within the periods 17.5-14.7, 13.8-11.5 and 10 ka BP to the Present. During the Postglacial transgression, regional to local differences in gross morphology and internal architecture of the reefs have been determined by differing sea-level histories in combination with neotectonics and typographic factors. Locally, reef colonization seems to have been facilitated or prevented chiefly by small-scale topographic features. Development during subsequent deglaciation was probably largely independent of variations in sea surface temperatures. Water turbidity also seems to have been only a minor determinant of reef settlement and growth, but may locally have controlled the composition of coral communities, resulting in the growth of turbidity-tolerant domal and foliaceous forms. Changes in atmospheric CO 2 levels remained within the tolerance thresholds for reef calcification. The three main reef growth episodes coincide roughly with rapid increases in atmospheric pCO 2. Dust input and variations in sea surface salinities seem to have had a very limited control on reef growth. The LGM was characterized by salinities comparable with those of the present, but by higher dust fluxes. By contrast, nutrient levels, hydrodynamic energy, and to a lesser, extent coral recruitment in relation to substrate availability and ocean circulation, have played major roles in determining reef accretion patterns at both local and regional scales. Two periods of increased upwelling in the western Indian Ocean, at 15.3 and 11.5-10.8 ka BP, coincided with the demise of RGI and RGII. During deglaciation, high-frequency storm events probably led to a scarcity of typical growth framework reefs and favoured the formation of structures composed of reworked and recemented coral framework. Storm control may have been particularly important in the mid-Holocene when water depths over incipient reefs were greater than 5 m. From the LGM to the early Holocene, coral settlement has probably declined due to a lack of suitable nurseries, until the modern patterns of ocean circulation were established and thus favoured larval dispersal from refuges. It is highly desirable to improve analysis of the core database and to increase the number of core-transects, including forereef sites, to enhance our knowledge of Recent reef development.

  13. Using virtual reality to estimate aesthetic values of coral reefs

    PubMed Central

    Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.

    2018-01-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676

  14. Using virtual reality to estimate aesthetic values of coral reefs.

    PubMed

    Vercelloni, Julie; Clifford, Sam; Caley, M Julian; Pearse, Alan R; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E

    2018-04-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems.

  15. A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.

    PubMed

    Delevaux, Jade M S; Whittier, Robert; Stamoulis, Kostantinos A; Bremer, Leah L; Jupiter, Stacy; Friedlander, Alan M; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L L; Wiegner, Tracy; Ticktin, Tamara

    2018-01-01

    Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.

  16. Onondage pinnacle reefs in New York State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, G.M.

    1995-09-01

    Onondaga pinnacle reefs, part of the Onondaga Formation, developed in an epeiric setting of the lowermost Middle Devonian (Eifelian). The reefs were initiated as coral-crinoidal mounds in the Edgecliff Member of the formation. Whereas most Devonian reefs are composed of rugose corals. Coral is the predominant kind of fossil, followed by crinoids, brachiopods, mollusks, undifferentiated skeletal debris, and possible sponges. The initial mineralogy of the corals is inferred to have been calcite. The porosity of these reefs is almost unique among reef reservoirs. most reefs produce from secondary or diagenetic porosity; by contrast Onondaga reefs display primary intracoralline or frameworkmore » porosity. Between framework builders and/or skeletal particles cryptocrystalline/microcrystalline cement fills pores. As observed in modern reefs this kind of cement resembles micrite, but probable formed as high-magnesian calcite in a high-energy setting. Syntaxial or rim cement common lines crinoid particles. Some of these pinnacle reefs, formerly gas producers, are presently under development as gas-storage reservoirs.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, S.L.; Lighty, R.G.

    Coral-rudist reefs of the Lower Cretaceous Mural limestone, southeastern Arizona, show a pronounced relationship between specific reef facies, primary porosity, and early submarine diagenesis. These large open-shelf reefs differ from the well-studied low-relief rudist buildups, and provide an alternate analog for many Cretaceous reef reservoirs. Arizona buildups have diverse corals, high depositional relief, and a well-developed facies zonation from fore reef to back reef: skeletal grainstone talus, muddy fore reef with branching and lamellar corals, massive reef crest with abundant lamellar corals and sandy matrix, protected thickets of delicate branching corals and large rudist mounds, and a wide sediment apronmore » of well-washed coral, rudist, and benthic foraminiferal sands. These well-exposed outcrops permit a detailed facies comparison of primary interparticle porosity. Porosity as high as 40% in grainstones was occluded by later subsurface cements. Reef-framework interparticle porosity was negligible because fore-reef coral and back-reef rudist facies were infilled by muds, and high-energy reef-crest frameworks were filled by peloidal submarine cement crusts and muddy skeletal sands. These thick crusts coated lamellar corals in cryptic and open reef-crest areas, and are laminated with ripple and draped bed forms that suggest current influence. Similar peloidal crusts and laminated textures are common magnesium-calcite submarine cement features in modern reefs. By documenting specific facies control on early cementation and textural variability, patterns of late-stage subsurface diagenesis and secondary porosity may be more easily explained for Cretaceous reef reservoirs. Significant primary porosity might be retained between sands in back-reef facies and within coral skeletons.« less

  18. Species richness of motile cryptofauna across a gradient of reef framework erosion

    NASA Astrophysics Data System (ADS)

    Enochs, I. C.; Manzello, D. P.

    2012-09-01

    Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef's metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261-370 OTUs) than in live coral substrates (112-219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227-320 OTUs) and the lowest estimated richness of 47-115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

  19. Ocean acidification: Linking science to management solutions using the Great Barrier Reef as a case study.

    PubMed

    Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva

    2016-11-01

    Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands

    PubMed Central

    Whittier, Robert; Stamoulis, Kostantinos A.; Bremer, Leah L.; Jupiter, Stacy; Friedlander, Alan M.; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B.; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L. L.; Wiegner, Tracy; Ticktin, Tamara

    2018-01-01

    Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two ‘ridge-to-reef’ systems (Hā‘ena and Ka‘ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka‘ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā‘ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka‘ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management. PMID:29538392

  1. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    EPA Pesticide Factsheets

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  2. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Li, Shu; Yu, Kefu

    2013-03-01

    Bioerosion is an important limiting factor in carbonate accretion and reef framework development; however, few studies have quantified the direct impact of macroborers on high-latitude coral communities, which are viewed as potential refuge during a period of global warming. In this study, internal macrobioerosion of Porites corals was examined at Daya Bay, subtropical northern South China Sea. The principal borers were the bivalve Lithophaga spp. and the sponges Cliona spp. and Cliothosa spp. (≥80 %), while sipunculid and polychaete worms and barnacles accounted for small amounts of bioerosion (≤20 %). Porites corals were heavily bioeroded in areas impacted by aquacultural and urban activities (10.34-27.55 %) compared with corals in relatively unpolluted areas (2.18-6.76 %). High levels of bioerosion, especially boring bivalve infestation, significantly weaken the corals and increase their susceptibility to dislodgement and fragmentation in typhoons, limiting accumulation of limestone framework. This study implies that carbonate accretion and reef development for high-latitude coral communities may be limited in future high-CO2 and eutrophication-stressed environments.

  3. Fragile Reefs of the Eastern Pacific: Does low Cementation Provide a Model for Reefs in a High CO2 World?

    NASA Astrophysics Data System (ADS)

    Manzello, D.; Kleypas, J.; Eakin, M.; Budd, D.

    2007-05-01

    Around the world, reefs will experience high pCO2, low pH, low carbonate concentrations, and low aragonite saturation state as atmospheric CO2 rises. Ocean carbon chemistry measurements show that eastern Pacific waters already exist at high pCO2 and low carbonate concentrations due to natural upwelling in the region. Because of the upwelling, this region may serve as a model for coral reef development under enhanced atmospheric CO2 and oceanic pCO2; that is, low coral growth, low secondary cementation, and high physical, chemical, and biological erosion. Reefs in the eastern Pacific Ocean are characterized by low biological diversity and relatively small size. Both past coring and recent analysis reveal that, while many reefs in the eastern Pacific are several thousand years old, they are fragile and lack significant cementation, even in the innermost, oldest structures. They are also extremely porous with high water throughflow. Without secondary cementation, branching coral frameworks are held together only by organically produced calcium carbonate (e.g. coralline algae), sponges, and other reef infauna, and contain a high proportion of loose sediments. The result is reef frameworks that are more susceptible to destruction from mechanical or biological erosion. The poorly cemented nature of eastern Pacific reefs is thus hypothesized to have been a factor in the severe bioerosion that occurred on these reefs after past bleaching events (1982-3, 1997-8). We will present data that indicate low rates of cementation and high rates of erosion on eastern Pacific coral reefs and will compare current carbonate chemistry in the eastern Pacific to model predictions of what reefs around the globe may experience in coming decades.

  4. Biomimetric sentinel reef structures for optical sensing and communications

    NASA Astrophysics Data System (ADS)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  5. Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Barrie, J. Vaughn; Krautter, Manfred

    2005-09-01

    Multibeam imagery of siliceous sponge reefs (Hexactinellida, Hexactinosida) reveals the setting, form, and organization of five reef complexes on the western Canadian continental shelf. The reefs are built by framework skeleton sponges which trap clay-rich sediments resulting in a distinctive pattern of low intensity backscatter from the reefs that colonize more reflective glacial sediments of higher backscatter intensity. Bathymetry and backscatter maps show the distribution and form of reefs in two large complexes in the Queen Charlotte Basin (QCB) covering hundreds of km2, and three smaller reef complexes in the Georgia Basin (GB). Ridges up to 7 km long and 21 m in height, together with diversely shaped, coalescing bioherms and biostromes form the principal reef shape in the QCB whereas chains of wave-form, streamlined mounds up to 14 m in height have developed in the GB. Reef initiation is dependent on the distribution of high backscatter-intensity relict glacial surfaces, and the variation in reef complex morphology is probably the result of tidally driven, near seabed currents.

  6. Water Quality Standards for Coral Reef Protection | Science ...

    EPA Pesticide Factsheets

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality standards have not been effectively applied to coral reefs. The Environmental Protection Agency is promoting biocriteria and other water quality standards through collaborative development of bioassessment procedures, indicators and monitoring strategies. To support regulatory action, bioassessment indicators must be biologically meaningful, relevant to management, responsive to human disturbance, and relatively immune to natural variability. A rapid bioassessment protocol for reef-building stony corals was developed and tested for regulatory applicability. Preliminary testing in the Florida Keys found indicators had sufficient precision and provided information relevant to coral reef management. Sensitivity to human disturbance was demonstrated in the U.S. Virgin Islands for five of eight indicators tested. Once established, monitoring programs using these indicators can provide valuable, long-term records of coral condition and regulatory compliance. Development of a rapid bioassement protocol for reef-building stony corals was tested for regulatory applicability.

  7. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  8. 76 FR 63904 - Proposed Information Collection; Comment Request; Coral Reef Conservation Program Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Collection; Comment Request; Coral Reef Conservation Program Administration AGENCY: National Oceanic and... The Coral Reef Conservation Act of 2000 (Act) was enacted to provide a framework for conserving coral reefs. The Coral Reef Conservation Grant Program, under the Act, provides funds to broad- based...

  9. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs.

    PubMed

    Riding, R; Liang, L; Braga, J C

    2014-09-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.

  10. Mesophotic bioerosion: Variability and structural impact on U.S. Virgin Island deep reefs

    NASA Astrophysics Data System (ADS)

    Weinstein, David K.; Smith, Tyler B.; Klaus, James S.

    2014-10-01

    Mesophotic reef corals, found 30-150 m below sea level, build complex structures that provide habitats for diverse ecosystems. Whereas bioerosion is known to impact the development and persistence of shallow reef structures, little is known regarding the extent of mesophotic bioerosion or how it might affect deeper reef geomorphology and carbonate accretion. Originally pristine experimental coral substrates and collected coral rubble were both used to investigate the variation and significance of mesophotic coral reef bioerosion south of St. Thomas, U.S. Virgin Islands. Bioerosion rates were calculated from experimental coral substrates exposed as framework for 1 and 2 years at four structurally distinct mesophotic coral reef habitats (between 30 and 45 m) as well as at a mid-shelf patch reef (21 m) and a shallow fringing patch reef (9 m). The long-term effects of macroboring were assessed by examining coral rubble collected at all sites. Overall, differences in bioerosional processes were found between shallow and mesophotic reefs. Increases in bioerosion on experimental substrates (amount of weight lost) were related to both decreasing seawater depth and increasing biomass of bioeroding parrotfish. Significant differences in coral skeleton bioerosion rates were also found between the transitional mesophotic reef zone (30-35 m) and the upper mesophotic reef zone (35-50 m) after 2 years of exposure, ranging from - 19.6 to 3.7 g/year. Total coral rubble macroboring was greater at most deep sites compared to shallower sites. Bioerosional grazing was found to dominate initial substrate modification in reefs 30.7 m and shallower, but sponges are believed to act as the main time-averaged long-term substrate bioeroders in reefs between 35 and 50 m. Although initial substrate bioerosion rates of a uniform substrate were relatively homogeneous in the 35-50 m depth zone, comparison of site composition suggests that mesophotic bioerosion will vary depending on the amount, location, and type of available substrate, and the duration both coral rubble and in situ coral framework are exposed on the seafloor. These variations may exaggerate pronounced structural differences in mesophotic reef habitats that experience few other methods of erosion.

  11. Skeletal Strength and Skeletogenetic Mechanisms Over Phanerozoic Time

    NASA Astrophysics Data System (ADS)

    Constantz, B. R.

    2004-12-01

    Mineralized skeletons have a remarkable range of mechanical properties with respect to strength and durability. Measurements of skeletal mechanical properties show that taxonomic groups with relatively simple, `physiochemically-dominated' modes of mineralization possess skeletal strengths and durabilities that are among the lowest of any known mineralized skeletons. Organisms with relatively sophisticated, `biologically-dominated' modes of mineralization have mechanical properties among the highest values known for any materials. These extraordinarily strong and durable skeletal materials are found in mollusks, echinoderms, vertebrates, and arthropods, which are groups with primarily mobile ecological habits. These skeletons are frequently lightweight, non-massive skeletons with little phenotypic variation. By contrast, dominant reef framework builders and reef sediment formers, with physiochemically-dominated modes of mineralization, have non-mobile ecological habits and construct massive, phenotypically plastic skeletons, possessing extremely poor mechanical properties. Endolithic organisms that further degrade the mechanical properties of the mineralized skeletons of reef builders frequently ravage their massive skeletons. As a result, the skeletons of these groups commonly fragment, and play a central role in reef establishment and maintenance, as they are incorporated in reefal, wave-resistant carbonate buildups. Scleractinian corals have a physiochemically-dominated mode of mineralization and are the dominant modern reef framework builders. Mechanical properties of modern aragonitic scleractinian coral skeletons, tested alive, demonstrate skeletal strengths that are orders of magnitude lower than those seen in mollusks, echinoderms, vertebrates, and arthropods. Rudist bivalves, the dominant reef framework-building group of the Cretaceous, show prolific, massive, highly variable, calcific skeletal elements with structures similar to some reef-forming modern, non-mobile mollusks and the skeletons of other organisms with physiochemically-dominated modes of mineralization. Many aspects of the ecological habits of reef-framework building scleractinians and rudsits are similar, including relatively high skeletal growth rates, which produce massive skeletons and wave-resistant structures with entrapped bioclastic sediments. The principal adaptive role of mineralization in reef framework building groups appears to be the rapid production of massive, brittle, wave-resistant mineralized skeletons. The physiochemically-dominated mode of mineralization of these reef framework builders appears to have made them susceptible to secular variations in Phanerozoic seawater during `calcite' and `aragonite' seas, favoring scleractinians in aragonite seas and rudists during the Cretaceous calcite episode. By contrast, most mobile mollusks, echinoderms, vertebrates, and arthropods appear relatively unaffected by secular variations in seawater chemistry over the Phanerozoic

  12. Operationalizing resilience for adaptive coral reef management under global environmental change

    PubMed Central

    Anthony, Kenneth RN; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas AJ; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. PMID:25196132

  13. A Strategic Framework for Responding to Coral Bleaching Events in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Maynard, J. A.; Johnson, J. E.; Marshall, P. A.; Eakin, C. M.; Goby, G.; Schuttenberg, H.; Spillman, C. M.

    2009-07-01

    The frequency and severity of mass coral bleaching events are predicted to increase as sea temperatures continue to warm under a global regime of rising ocean temperatures. Bleaching events can be disastrous for coral reef ecosystems and, given the number of other stressors to reefs that result from human activities, there is widespread concern about their future. This article provides a strategic framework from the Great Barrier Reef to prepare for and respond to mass bleaching events. The framework presented has two main inter-related components: an early warning system and assessment and monitoring. Both include the need to proactively and consistently communicate information on environmental conditions and the level of bleaching severity to senior decision-makers, stakeholders, and the public. Managers, being the most timely and credible source of information on bleaching events, can facilitate the implementation of strategies that can give reefs the best chance to recover from bleaching and to withstand future disturbances. The proposed framework is readily transferable to other coral reef regions, and can easily be adapted by managers to local financial, technical, and human resources.

  14. Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Richards, Simon; Bernal, Juan Pablo; Cerdeira-Estrada, Sergio; Ibarra, M. Socrates; Corona-Martínez, Liliana; Martell-Dubois, Raúl

    2017-10-01

    Predicting the impact of sea-level (SL) rise on coral reefs requires reliable models of reef accretion. Most assume that accretion results from vertical growth of coralgal framework, but recent studies show that reefs exposed to hurricanes consist of layers of coral gravel rather than in-place corals. New models are therefore needed to account for hurricane impact on reef accretion over geological timescales. To investigate this geological impact, we report the configuration and development of a 4-km-long fringing reef at Punta Maroma along the northeast Yucatan Peninsula. Satellite-derived bathymetry shows the crest is set-back a uniform distance of 315 ±15 m from a mid-shelf slope break, and the reef-front decreases 50% in width and depth along its length. A 12-core drill transect constrained by multiple 230Th ages shows the reef is composed of an 2-m thick layer of coral clasts that has retrograded 100 m over its back-reef during the last 5.5 ka. These findings are consistent with a hurricane-control model of reef development where large waves trip and break over the mid-shelf slope break, triggering rapid energy dissipation and thus limiting how far upslope individual waves can fragment corals and redistribute clasts. As SL rises and water depth increases, energy dissipation during wave-breaking is reduced, extending the clast-transport limit, thus leading to reef retrogradation. This hurricane model may be applicable to a large sub-set of fringing reefs in the tropical Western-Atlantic necessitating a reappraisal of their accretion rates and response to future SL rise.

  15. Translational environmental biology: cell biology informing conservation.

    PubMed

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Millennial-scale ocean acidification and late Quaternary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riding, Dr Robert E; Liang, Liyuan; Braga, Dr Juan Carlos

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thicknessmore » over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.« less

  17. A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands

    EPA Science Inventory

    Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding...

  18. Incorporating benthic community changes into hydrochemical-based projections of coral reef calcium carbonate production under ocean acidification

    NASA Astrophysics Data System (ADS)

    Shaw, Emily C.; Hamylton, Sarah M.; Phinn, Stuart R.

    2016-06-01

    The existence of coral reefs is dependent on the production and maintenance of calcium carbonate (CaCO3) framework that is produced through calcification. The net production of CaCO3 will likely decline in the future, from both declining net calcification rates (decreasing calcification and increasing dissolution) and shifts in benthic community composition from calcifying organisms to non-calcifying organisms. Here, we present a framework for hydrochemical studies that allows both declining net calcification rates and changes in benthic community composition to be incorporated into projections of coral reef CaCO3 production. The framework involves upscaling net calcification rates for each benthic community type using mapped proportional cover of the benthic communities. This upscaling process was applied to the reef flats at One Tree and Lady Elliot reefs (Great Barrier Reef) and Shiraho Reef (Okinawa), and compared to existing data. Future CaCO3 budgets were projected for Lady Elliot Reef, predicting a decline of 53 % from the present value by end-century (800 ppm CO2) without any changes to benthic community composition. A further 5.7 % decline in net CaCO3 production is expected for each 10 % decline in calcifier cover, and net dissolution is predicted by end-century if calcifier cover drops below 18 % of the present extent. These results show the combined negative effect of both declining net calcification rates and changing benthic community composition on reefs and the importance of considering both processes for determining future reef CaCO3 production.

  19. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times.

    PubMed

    Salles, Tristan; Ding, Xuesong; Webster, Jody M; Vila-Concejo, Ana; Brocard, Gilles; Pall, Jodie

    2018-03-27

    Understanding the effects of climatic variability on sediment dynamics is hindered by limited ability of current models to simulate long-term evolution of sediment transfer from source to sink and associated morphological changes. We present a new approach based on a reduced-complexity model which computes over geological time: sediment transport from landmasses to coasts, reworking of marine sediments by longshore currents, and development of coral reef systems. Our framework links together the main sedimentary processes driving mixed siliciclastic-carbonate system dynamics. It offers a methodology for objective and quantitative sediment fate estimations over regional and millennial time-scales. A simulation of the Holocene evolution of the Great Barrier Reef shows: (1) how high sediment loads from catchments erosion prevented coral growth during the early transgression phase and favoured sediment gravity-flows in the deepest parts of the northern region basin floor (prior to 8 ka before present (BP)); (2) how the fine balance between climate, sea-level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates after ~6 ka BP; and, (3) how since 3 ka BP, with the decrease of accommodation space, reduced of vertical growth led to the lateral extension of reefs consistent with available observational data.

  20. Quaternary onset and evolution of Kimberley coral reefs (Northwest Australia) revealed by high-resolution seismic imaging

    NASA Astrophysics Data System (ADS)

    Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus

    2016-07-01

    The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal conditions, high-turbidity and frequent high-energy cyclonic events, corals have exhibited prolific reef growth during the Holocene developing significant reef accretionary structures. As a result coral reefs have generating habitat complexity and species diversity in what is a biodiversity hotspot.

  1. Advancing the integration of spatial data to map human and natural drivers on coral reefs

    PubMed Central

    Gove, Jamison M.; Walecka, Hilary R.; Donovan, Mary K.; Williams, Gareth J.; Jouffray, Jean-Baptiste; Crowder, Larry B.; Erickson, Ashley; Falinski, Kim; Friedlander, Alan M.; Kappel, Carrie V.; Kittinger, John N.; McCoy, Kaylyn; Norström, Albert; Nyström, Magnus; Oleson, Kirsten L. L.; Stamoulis, Kostantinos A.; White, Crow; Selkoe, Kimberly A.

    2018-01-01

    A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs. PMID:29494613

  2. Extinction vulnerability of coral reef fishes.

    PubMed

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Extinction vulnerability of coral reef fishes

    PubMed Central

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron MacNeil, M; McClanahan, Tim R; Öhman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-01-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. PMID:21320260

  4. Boring sponges, an increasing threat for coral reefs affected by bleaching events.

    PubMed

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-04-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold.

  5. Boring sponges, an increasing threat for coral reefs affected by bleaching events

    PubMed Central

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-01-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold. PMID:23610632

  6. An overview of Miocene reefs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, C.F. Jr.; Colgan, M.W.; Frost, S.H.

    1990-05-01

    Miocene reefs lived approximately within the latitudes of 27{degree}S to 48{degree}N compared with 25{degree}S and 32{degree}N for Holocene reefs. This expansion of reef-growing environments was the result of warm Miocene climates, aided by a eustatic sea level rise and tectonic styles that provided numerous foundations for reef development. The majority of Miocene reefs are found in three main areas: (1) Southeast Asia and the western Pacific, (2) the Mediterranean-Middle East, and (3) Middle America and the Caribbean. These regions, with their distinctive suites of coral and foramineral species, formed three biological provinces; respectively, they are the Indo-Pacific, Tethyan, and Westernmore » Atlantic provinces. Miocene reefs in Southeast Asia occur in several foreland basins as patch reef complexes on paleohighs and as barrier reefs in back-arc basins. Those reefs in the Mediterranean occur as fringing reefs, middle-shelf patch reefs, or as barrier reefs on the edges of tectonic blocks associated with Alpine thrust belts. Most reefs in the Caribbean grew on isolated open-ocean highs of volcanic origin. Miocene reefs display a diversity of framework types: (1) coral-encrusting, red algal boundstones with diverse coral faunas, (2) branching coral-encrusting, red algal boundstones with a limited Poritid fauna, (3) encrusting red algal boundstones. Barrier reef systems are especially rich in encrusting red algae and robust corals; grainstones are common as interbedded sediment. Patch reef complexes, however, display muddy carbonate textures, may have less diverse coral faunas, and commonly have larger foraminifera. The global distribution of Miocene reefs is important because (1) it provides insight into a paleoclimatic view of the earth during a major greenhouse stage and (2) Miocene buildups, such as the Arun (EUR of 14 tcf) and Bima fields (EUR of about 100 MMBO), are exploration targets.« less

  7. Operationalizing resilience for adaptive coral reef management under global environmental change.

    PubMed

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. © 2014 John Wiley & Sons Ltd.

  8. 76 FR 59377 - Amendments to the Reef Fish, Spiny Lobster, Queen Conch and Coral and Reef Associated Plants and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Invertebrates Fishery Management Plans of Puerto Rico and the U.S. Virgin Islands AGENCY: National Marine..., Queen Conch, and Coral and Reef Associated Plants and Invertebrates for the U.S. Caribbean for review... establish framework procedures for spiny lobster and coral and reef associated plants and invertebrates...

  9. Expanded Florida reef development during the mid-Pliocene warm period

    NASA Astrophysics Data System (ADS)

    Klaus, James S.; Meeder, John F.; McNeill, Donald F.; Woodhead, Jon F.; Swart, Peter K.

    2017-05-01

    The coral fauna of the Tamiami Formation documents a northern expansion of reef development along the Florida Peninsula during the mid-Pliocene warm period (MPWP). Radiometric dating (U-Pb) of Solenastrea bournoni produced an age of 2.99 ± 0.11 Ma, constraining reef development to the MPWP and the peak of Plio-Pleistocene faunal turnover; subsequent to the final closure of the Central American Seaway (CAS) but prior to major Northern Hemisphere Glaciation (NHG). Coral faunal analyses are based on a total of 1614 coral specimens collected along a 165 km stretch of the west Florida coast, and included rarefaction and detrended correspondence analysis (DCA). A total of 60 coral species occur within the Tamiami Formation, with faunal assemblages ranging from 42 to 87% extinct taxa. The Tamiami collections can be split into a southern "reef" assemblage with high diversity of stenotopic taxa and a northern "non-reef" assemblage with lower diversity eurytopic taxa. The southern reef assemblage contains framework buildups of the dominant tropical taxa Stylophora affinis, Orbicella annularis, and Acropora cervicornis. We interpret enhanced west Florida reef development during the middle Pliocene to be a product of more equitable sea surface temperatures, and reduced salinity fluctuations associated with higher sea levels. While mean sea surface temperature estimates based on oxygen isotopic analysis of the coral Solenastrea bournoni (25.3 °C) are similar to present day values (26 °C), a completely flooded southern Florida Platform in the Pliocene would be less prone to salinity fluctuations associated with coastal runoff and extreme cold-water events during winter storms. While higher latitude range shifts of tropical reef corals associated with current global climate change have been documented elsewhere in the world, we do not foresee the West Florida Shelf being conducive to significant range shifts in tropical coral taxa or reef development within the coming century.

  10. Effectiveness of removals of the invasive lionfish: how many dives are needed to deplete a reef?

    PubMed

    Usseglio, Paolo; Selwyn, Jason D; Downey-Wall, Alan M; Hogan, J Derek

    2017-01-01

    Introduced Indo-Pacific red lionfish ( Pterois volitans/miles ) have spread throughout the greater Caribbean and are associated with a number of negative impacts on reef ecosystems. Human interventions, in the form of culling activities, are becoming common to reduce their numbers and mitigate the negative effects associated with the invasion. However, marine managers must often decide how to best allocate limited resources. Previous work has identified the population size thresholds needed to limit the negative impacts of lionfish. Here we develop a framework that allows managers to predict the removal effort required to achieve specific targets (represented as the percent of lionfish remaining on the reef). We found an important trade-off between time spent removing and achieving an increasingly smaller lionfish density. The model used in our suggested framework requires relatively little data to parameterize, allowing its use with already existing data, permitting managers to tailor their culling strategy to maximize efficiency and rate of success.

  11. Effectiveness of removals of the invasive lionfish: how many dives are needed to deplete a reef?

    PubMed Central

    Downey-Wall, Alan M.; Hogan, J. Derek

    2017-01-01

    Introduced Indo-Pacific red lionfish (Pterois volitans/miles) have spread throughout the greater Caribbean and are associated with a number of negative impacts on reef ecosystems. Human interventions, in the form of culling activities, are becoming common to reduce their numbers and mitigate the negative effects associated with the invasion. However, marine managers must often decide how to best allocate limited resources. Previous work has identified the population size thresholds needed to limit the negative impacts of lionfish. Here we develop a framework that allows managers to predict the removal effort required to achieve specific targets (represented as the percent of lionfish remaining on the reef). We found an important trade-off between time spent removing and achieving an increasingly smaller lionfish density. The model used in our suggested framework requires relatively little data to parameterize, allowing its use with already existing data, permitting managers to tailor their culling strategy to maximize efficiency and rate of success. PMID:28243542

  12. Shelf stratigraphy and the influence of antecedent substrate on Holocene reef development, south Oahu, Hawaii

    USGS Publications Warehouse

    Grossman, E.E.; Barnhardt, W.A.; Hart, P.; Richmond, B.M.; Field, M.E.

    2006-01-01

    Paired analyses of drill cores and high-resolution seismic reflection data show that development of Holocene framework reefs on the Oahu (Hawaii) shelf is limited to settings of low wave energy and to the period 8000 to 3000 yr BP. A prominent bounding surface that is mapped across much of the Oahu shelf is an erosion surface cut into Marine Isotope Stages 5 and 7 limestones that show extensive loss of primary porosity, aragonite, and MgCO3 owing to meteoric and vadose-zone diagenesis. This acoustic reflector is found exposed at the surface where wave energy is high or in the shallow subsurface below Holocene reef and sand sheet deposits where energy is low. Ship-towed video along 30 km of the shelf reveals a steady decrease in limestone accumulation from offshore of Honolulu southeast to Koko Head where the seafloor is characterized by volcanic pavement and/or thin sand deposits. This may reflect the build-up of late Pleistocene volcanics associated with the Hanauma Bay eruption (30,000-7000 yr BP) that now comprise the substrate in depths shallow enough to limit reef accretion. The absence of significant Holocene reef build-up on the south Oahu shelf is consistent with observations from north-facing coasts that lack Holocene reefs, indicating that Holocene reef formation in Hawaii is complex and patchy.

  13. Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Obura, David O.

    2005-05-01

    The impact of climate change through thermal stress-related coral bleaching on coral reefs of the Western Indian Ocean has been well documented and is caused by rising sea water temperatures associated with background warming trends and extreme climate events. Recent studies have identified a number of factors that may reduce the impact of coral bleaching and mortality at a reef or sub-reef level. However, there is little scientific consensus as yet, and it is unclear how well current science supports the immediate needs of management responses to climate change. This paper provides evidence from the Western Indian Ocean in support of recent hypotheses on coral and reef vulnerability to thermal stress that have been loosely termed 'resistance and resilience to bleaching'. The paper argues for a more explicit definition of terms, and identifies three concepts affecting coral-zooxanthellae holobiont and reef vulnerability to thermal stress previously termed 'resistance to bleaching': 'thermal protection', where some reefs are protected from the thermal conditions that induce bleaching and/or where local physical conditions reduce bleaching and mortality levels; 'thermal resistance', where individual corals bleach to differing degrees to the same thermal stress; and 'thermal tolerance', where individual corals suffer differing levels of mortality when exposed to the same thermal stress. 'Resilience to bleaching' is a special case of ecological resilience, where recovery following large-scale bleaching mortality varies according to ecological and other processes. These concepts apply across multiple levels of biological organization and temporal and spatial scales. Thermal resistance and tolerance are genetic properties and may interact with environmental protection properties resulting in phenotypic variation in bleaching and mortality of corals. The presence or absence of human threats and varying levels of reef management may alter the influence of the above factors, particularly through their impacts on resilience, offering the opportunity for management interventions to mitigate the impacts of thermal stress and recovery on coral reefs. These concepts are compiled within an overarching framework of spatial resilience theory. This provides a framework for developing linked scientific and management questions relating to the larger scale impacts of climate change on coral reefs, their management needs and prospects for their future.

  14. Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions

    NASA Astrophysics Data System (ADS)

    Mehra, Akshay; Maloof, Adam

    2018-03-01

    The earliest metazoans capable of biomineralization appeared during the late Ediacaran Period (635–541 Ma) in strata associated with shallow water microbial reefs. It has been suggested that some Ediacaran microbial reefs were dominated (and possibly built) by an abundant and globally distributed tubular organism known as Cloudina. If true, this interpretation implies that metazoan framework reef building—a complex behavior that is responsible for some of the largest bioconstructions and most diverse environments in modern oceans—emerged much earlier than previously thought. Here, we present 3D reconstructions of Cloudina populations, produced using an automated serial grinding and imaging system coupled with a recently developed neural network image classifier. Our reconstructions show that Cloudina aggregates are composed of transported remains while detailed field observations demonstrate that the studied reef outcrops contain only detrital Cloudina buildups, suggesting that Cloudina played a minor role in Ediacaran reef systems. These techniques have wide applicability to problems that require 3D reconstructions where physical separation is impossible and a lack of density contrast precludes tomographic imaging techniques.

  15. Calcification by Reef-Building Sclerobionts

    PubMed Central

    Mallela, Jennie

    2013-01-01

    It is widely accepted that deteriorating water quality associated with increased sediment stress has reduced calcification rates on coral reefs. However, there is limited information regarding the growth and development of reef building organisms, aside from the corals themselves. This study investigated encruster calcification on five fore-reefs in Tobago subjected to a range of sedimentation rates (1.2 to 15.9 mg cm−2 d−1). Experimental substrates were used to assess rates of calcification in sclerobionts (e.g. crustose coralline algae, bryozoans and barnacles) across key reef microhabitats: cryptic (low-light), exposed (open-horizontal) and vertical topographic settings. Sedimentation negatively impacted calcification by photosynthesising crustose coralline algae in exposed microhabitats and encrusting foram cover (%) in exposed and cryptic substrates. Heterotrophs were not affected by sedimentation. Fore-reef, turbid water encruster assemblages calcified at a mean rate of 757 (SD ±317) g m−2 y−1. Different microhabitats were characterised by distinct calcareous encruster assemblages with different rates of calcification. Taxa with rapid lateral growth dominated areal cover but were not responsible for the majority of CaCO3 production. Cryptobiont assemblages were composed of a suite of calcifying taxa which included sciaphilic cheilostome bryozoans and suspension feeding barnacles. These calcified at mean rates of 20.1 (SD ±27) and 4.0 (SD ±3.6) g m−2 y−1 respectively. Encruster cover (%) on exposed and vertical substrates was dominated by crustose coralline algae which calcified at rates of 105.3 (SD ±67.7) g m−2 y−1 and 56.3 (SD ±8.3) g m−2 y−1 respectively. Globally, encrusting organisms contribute significant amounts of carbonate to the reef framework. These results provide experimental evidence that calcification rates, and the importance of different encrusting organisms, vary significantly according to topography and sediment impacts. These findings also highlight the need for caution when modelling reef framework accretion and interpreting results which extrapolate information from limited data. PMID:23555864

  16. A geological perspective on the degradation and conservation of western Atlantic coral reefs.

    PubMed

    Kuffner, Ilsa B; Toth, Lauren T

    2016-08-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs-as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species-cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for Conservation Biology.

  17. Integrating observational and modelling systems for the management of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.

    2016-02-01

    Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.

  18. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs.

    PubMed

    Enochs, Ian C; Manzello, Derek P; Kolodziej, Graham; Noonan, Sam H C; Valentino, Lauren; Fabricius, Katharina E

    2016-11-16

    Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO 2 ) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO 2 , and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO 2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat. © 2016 The Authors.

  19. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs

    PubMed Central

    Manzello, Derek P.; Kolodziej, Graham; Noonan, Sam H. C.; Valentino, Lauren; Fabricius, Katharina E.

    2016-01-01

    Ocean acidification (OA) impacts the physiology of diverse marine taxa; among them corals that create complex reef framework structures. Biological processes operating on coral reef frameworks remain largely unknown from naturally high-carbon-dioxide (CO2) ecosystems. For the first time, we independently quantified the response of multiple functional groups instrumental in the construction and erosion of these frameworks (accretion, macroboring, microboring, and grazing) along natural OA gradients. We deployed blocks of dead coral skeleton for roughly 2 years at two reefs in Papua New Guinea, each experiencing volcanically enriched CO2, and employed high-resolution micro-computed tomography (micro-CT) to create three-dimensional models of changing skeletal structure. OA conditions were correlated with decreased calcification and increased macroboring, primarily by annelids, representing a group of bioeroders not previously known to respond to OA. Incubation of these blocks, using the alkalinity anomaly methodology, revealed a switch from net calcification to net dissolution at a pH of roughly 7.8, within Intergovernmental Panel on Climate Change's (IPCC) predictions for global ocean waters by the end of the century. Together these data represent the first comprehensive experimental study of bioerosion and calcification from a naturally high-CO2 reef ecosystem, where the processes of accelerated erosion and depressed calcification have combined to alter the permanence of this essential framework habitat. PMID:27852802

  20. A geological perspective on the degradation and conservation of western Atlantic coral reefs

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Toth, Lauren T.

    2016-01-01

    Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.

  1. Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: the rise of benthic suspension feeding.

    PubMed

    Wood, R; Curtis, A

    2015-03-01

    We describe new, ecologically complex reef types from the Ediacaran Nama Group, Namibia, dated at ~548 million years ago (Ma), where the earliest known skeletal metazoans, Cloudina riemkeae and Namacalathus, formed extensive reefs up to 20 m in height and width. C. riemkeae formed densely aggregating assemblages associated with microbialite and thrombolite, each from 30 to 100 mm high, which successively colonised former generations to create stacked laminar or columnar reef frameworks. C. riemkeae individuals show budding, multiple, radiating attachment sites and cementation between individuals. Isolated Namacalathus either intergrew with C. riemkeae or formed dense, monospecific aggregations succeeding C. riemkeae frameworks, providing a potential example of environmentally mediated ecological succession. Cloudina and Namacalathus also grow cryptically, either as pendent aggregations from laminar crypt ceilings in microbial framework reefs or as clusters associated with thrombolite attached to neptunian dyke walls. These reefs are notable for their size, exceeding that of the succeeding Lower Cambrian archaeocyath-microbial communities. The repeated colonisation shown by C. riemkeae of former assemblages implies philopatric larval aggregation to colonise limited favourable substrates. As such, not only were skeletal metazoans more important contributors to reef building in the Ediacaran, but there were also more variable reef types with more complex ecologies, than previously thought. Such an abundance of inferred suspension feeders with biomineralised skeletons indicates the efficient exploitation of new resources, more active carbon removal with a strengthened energy flow between planktic and benthic realms, and the rise of biological control over benthic carbonate production. These mark the prelude to the Cambrian Explosion and the modernisation of the global carbon cycle. © 2014 John Wiley & Sons Ltd.

  2. First observations of the structure and megafaunal community of a large Lophelia reef on the Ghanaian shelf (the Gulf of Guinea)

    NASA Astrophysics Data System (ADS)

    Buhl-Mortensen, L.; Serigstad, B.; Buhl-Mortensen, P.; Olsen, M. N.; Ostrowski, M.; Błażewicz-Paszkowycz, M.; Appoh, E.

    2017-03-01

    The distribution of cold-water coral reefs is relatively well known in the North-east Atlantic as compared to the Central-east Atlantic, where only a few documentations exist from low latitudes. In 2012 an initial survey was conducted on a reef situated at 400 m depth on the continental shelf off Ghana. The reef corals and fauna were visually documented using a Video Assisted Multi Sampler (VAMS) coupled with an ROV. Here we present the results from three dives on the 1400 m long and 70 m high reef with an ambient temperatures between 9 and 10 °C. The banana shaped reef was oriented perpendicular to the main current, the convex side facing the current and there was no sign of human impact. The great height of the reef is probably a result of undisturbed growth for more than 20,000 years. On the Norwegian continental shelf the largest reefs are around 30 m high and have been aged to 9000 years. The reef morphology resembles that of Northeast Atlantic Lophelia reefs. The main reef building coral was Lophelia pertusa with contribution from Madrepora oculata, Solenosmilia variabilis, and occasional occurrences of Dendrophyllia cf. alternata. The skeleton of Aphrocallistes beatrix (Hexactinellidae) contributed to the reef framework and the reef consisted of 46% coral blocks 22% sediment, 13% coral rubble, 11% sponge skeleton and 8% live corals. A rich megafauna of 31 taxa was recorded and most frequent was Acesta excavate (bivalve), Aphrocallistes beatrix (with an associated Zooanthida on 39% of the colonies), squat lobsters, hydroids and bryozoans. Six fish species were recorded of which the Sebastidae Helicolenus dactylopterus and Nettastoma melanurum were found amongst coral blocks. The reef community showed several similarities with the northern reefs with sponges, Sebastes spp., squat lobsters, and Acesta excavata being common megafauna associates. In contrast the gorgonian corals that are characteristic of the northern reefs seemed to be lacking and Hexactinellidae rather than Demospongia were common on the reef and contributed to the reef framework. Crabs that are uncommon on northern reefs were frequently encountered.

  3. 77 FR 12323 - Draft Environmental Impact Statement for the General Management Plan, Buck Island Reef National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ...Pursuant to 42 U.S.C. 4332(2)(C) of the National Environmental Policy Act of 1969 and National Park Service (NPS) policy in Director's Order Number 2 (Park Planning) and Director's Order Number 12 (Conservation Planning, Environmental Impact Analysis, and Decision- making) the NPS announces the availability of a DEIS/GMP for Buck Island Reef National Monument, Virgin Islands. The document provides a framework for management, use, and development options for Buck Island Reef National Monument by the NPS for the next 15 to 20 years. It describes four management alternatives for consideration, including a No-Action Alternative that continues current management policies and the NPS's preferred alternative. The document analyzes the environmental impacts of the alternatives.

  4. CORAL DISEASE & HEALTH CONSORTIUM: FINDING SOLUTIONS

    EPA Science Inventory

    The National Oceanic Atmospheric Administration (NOAA), the Environmental Protection Agency (EPA), and the Department of Interior (DOI) developed the framework for a Coral Disease and Health Consortium (CDHC) for the United States Coral Reef Task Force (USCRTF) through an interag...

  5. How accessible are coral reefs to people? A global assessment based on travel time.

    PubMed

    Maire, Eva; Cinner, Joshua; Velez, Laure; Huchery, Cindy; Mora, Camilo; Dagata, Stephanie; Vigliola, Laurent; Wantiez, Laurent; Kulbicki, Michel; Mouillot, David

    2016-04-01

    The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low-conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources. © 2016 John Wiley & Sons Ltd/CNRS.

  6. Microbial contributions to the persistence of coral reefs.

    PubMed

    Webster, Nicole S; Reusch, Thorsten B H

    2017-10-01

    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.

  7. Miocene reef corals: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, S.H.

    1988-01-01

    Tectonic blockage in the Middle East of westward-flowing Tethys surface circulation during the latest Oligocene led to creation in the earliest Miocene of endemic Mediterranean, Western Atlantic-Caribbean, and Indo-Pacific realms. A great reduction in reef coral diversity from 60-80 Oligocene species to 25-35 early Miocene species occurred in the Western Atlantic-Caribbean and Mediterranean areas accompanied by a decrease in reef growth. A slower and less drastic change apparently occurred in the Indo-Pacific area. Early Miocene reef corals of the Western Atlantic-Caribbean comprise a transition between the cosmopolitan Oligocene fauna and its endemic mid-Miocene to modern counterpart. Although early Miocene reefsmore » were dominated by a Porites-Montastrea assemblage, eastward flow of Pacific circulation brought with it ''exotic'' corals such as Coscinaraea and Pseudocolumnastrea. Also, many cosmopolitan genera persisted from the Oligocene. During the middle to late Miocene, most of the species still living on Holocene reefs evolved. As the Mediterranean basin became more restricted, there was a slow decline in reef corals from 20 - 25 species in the Aquitainian to less than five species in the Messinian. Eustatic lowstand led to the extinction of reef-building corals in the late Messinian. In the Indo-Pacific, Neogene evolution of reef corals was conservative. Excluding the Acroporidae and Seriatoporidae, most Holocene framework species had evolved by the middle Miocene. Interplay between regional tectonics and eustatic sea level changes led to extensive development of middle to late Miocene pinnacle reefs over the southwestern Pacific.« less

  8. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M. S.; Duineveld, G. C. A.; Huvenne, V. A. I.; Roberts, J. M.

    2017-03-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef `mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral reefs.

  9. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2014-09-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.

  11. Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea

    NASA Astrophysics Data System (ADS)

    Roik, Anna; Roder, Cornelia; Röthig, Till; Voolstra, Christian R.

    2016-06-01

    The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.

  12. Development of small carbonate banks on the south Florida platform margin: Response to sea level and climate change

    USGS Publications Warehouse

    Mallinson, David J.; Hine, Albert C.; Hallock, Pamela; Locker, Stanley D.; Shinn, Eugene; Naar, David; Donahue, Brian; Weaver, Douglas C.

    2003-01-01

    Geophysical and coring data from the Dry Tortugas, Tortugas Bank, and Riley’s Hump on the southwest Florida margin reveal the stratigraphic framework and growth history of these carbonate banks. The Holocene reefs of the Dry Tortugas and Tortugas Bank are approximately 14 and 10 m thick, respectively, and are situated upon Pleistocene reefal edifices. Tortugas Bank consists of the oldest Holocene corals in the Florida Keys with earliest coral recruitment occurring at ∼9.6 cal ka. Growth curves for the Tortugas Bank reveal slow growth (<1 mm/yr) until 6.2 cal ka, then a rapid increase to 3.4 mm/yr, until shallow reef demise at ∼4.2 cal ka. Coral reef development at the Dry Tortugas began at ∼6.4 cal ka. Aggradation at the Dry Tortugas was linear, and rapid (∼3.7 mm/yr) and kept pace with sea-level change. The increase in aggradation rate of Tortugas Bank at 6.2 cal ka is attributed to the growth of the Dry Tortugas reefs, which formed a barrier to inimical shelf water. Termination of shallow (<15 m below sea level) reef growth at Tortugas Bank at ∼4.2 cal ka is attributed to paleoclimate change in the North American interior that increased precipitation and fluvial discharge. Reef growth rates and characteristics are related to the rate of sea-level rise relative to the position of the reef on the shelf margin, and are additionally modified by hydrographic conditions related to climate change.

  13. Upper Miocene reef complex of Mallorca, Balearic Islands, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomar, L.

    1988-02-01

    The late Tortonian-Messinian coral reef platform of south Mallorca onlaps a folded middle late Miocene carbonate platform on which progradation of up to 20 km occurs. Vertical sea cliffs (up to 100 m high) superbly show the last 5 km of this progradation and complement the numerous water-well cores from the island interior. The Mallorca reef presents the most complete facies zonation of the Miocene reefs of the western Mediterranean. The reef wall framework is up to 20 m thick and shows (1) erosional reef flat with reef breccia and small corals; (2) spur-and-grove zone with large, massive corals; (3)more » deep buttresses and pinnacles with terraces of branching corals; and (4) deep reef wall with flat, laminar coral colonies, branching red algae, and Halimeda sands.« less

  14. A framework for responding to coral disease outbreaks that facilitates adaptive management.

    PubMed

    Beeden, Roger; Maynard, Jeffrey A; Marshall, Paul A; Heron, Scott F; Willis, Bette L

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  15. A Framework for Responding to Coral Disease Outbreaks that Facilitates Adaptive Management

    NASA Astrophysics Data System (ADS)

    Beeden, Roger; Maynard, Jeffrey A.; Marshall, Paul A.; Heron, Scott F.; Willis, Bette L.

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  16. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    PubMed

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  17. Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments

    NASA Astrophysics Data System (ADS)

    Santos, Isaac R.; Erler, Dirk; Tait, Douglas; Eyre, Bradley D.

    2010-12-01

    Coral reefs are characterized by high gross productivity in spite of low nutrient concentrations. This apparent paradox may be partially reconciled if seawater recirculation in permeable sediments over large (meters) and long (hours to days) scales is an important source of recycled nitrogen and phosphorus to coral reefs. In this paper we use radon (222Rn, a natural tracer) to quantify tidally driven pore water (or groundwater) exchange between (1) an offshore coral cay island and its fringing reef lagoon and (2) a reef lagoon and the surrounding ocean. As seawater infiltrates Heron Island at high tide, it acquires a radon signal that can be detected when pore waters emerge from carbonate sands at low tide. A nonsteady state model indicated that vertical pore water upwelling rates (or saline submarine groundwater discharge) were >40 cm/d within the reef lagoon and >100 cm/d outside the lagoon at low tide. Within the lagoon, tidal pumping and temperature-driven convection were the main driving forces of pore water advection. At low tide, the reef lagoon level is about 1 m higher than the surrounding ocean. As a result, a steep hydraulic gradient develops at the reef edge, driving unidirectional filtration through the reef framework. Groundwaters were highly enriched in nitrate (average of 530 μmol, likely influenced by bird guano) relative to lagoon waters (1.9 μmol). Rough but conservative estimates indicated that groundwater-derived nitrate fluxes (7.9 mmol/m2/d) can replace the entire lagoon nitrate inventory every <19 days. We speculate that as offshore coral islands "breath" (inhale seawater at high tide and exhale groundwater at low tide), they release nutrients that lead to sustained productivity within coral reefs.

  18. Coral Reef Response to Marine Isotope Stage (MIS) 5e Sea Level Changes in the Granitic Seychelles

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.

    2015-12-01

    Sea-level position has a direct control on coral reef morphology and composition. Examining changes in these parameters in fossil reefs can inform reconstructions of past sea-level behavior and, indirectly, ice sheet dynamics. Here we provide a detailed examination of fossil reefs from Marine Isotope Stage (MIS) 5e. These fossil reefs are located in the granitic Seychelles, which is tectonically stable site and far-field from the former margins of Northern Hemisphere ice sheets. To reconstruct relative sea level (RSL), we combine RTK and Total Station elevation surveys with sedimentary and taxonomic evaluations of eight fossil reef sites. Carbonate coralgal reef buildups of the shallowest portion of the reef are preserved in limestone outcrops that are protected by granite boulder overhangs. Two primary outcrop morphologies were observed at these sites: plastering and massive. Plastering outcrops manifest as thin (~ 1 m height x 1 m width x 0.5 m depth) vertical successions of reef framework and detritus, while massive outcrops are larger (~ 2-6 m height x 2-6 m width x 1-2 m depth). The base of these limestone outcrops consistently record a period of reef growth, characterized by corals or coralline algae colonizing the surface or face of a granite boulder and building upwards. This lower reefal unit is capped by a disconformity that is commonly overlain by coral rubble or a ~10 cm thick layer of micrite. Rubble units contain coarse fragments of the coralgal reef buildups while micrite layers consist of a relatively homogeneous fine-grained carbonate, bearing coral-dwelling, Pyrgomatid barnacles. In many of the outcrops, this succession is repeated upsection with another unit of coralgal reef framework capped by a disconformity that is recognized by the sharp transition to coral rubble or micrite with barnacles. We identified four distinct fossil coralgal assemblages in the limestone outcrops. These assemblages are consistent with modern assemblages which constrain the paleo-water depth histories at each site. The combination of reef taxonomy as well as accretion hiatuses provides robust control on the reef, and thus sea-level, history of this region, and by extension, global mean sea level, during MIS 5e.

  19. Lithifying Microbes Associated to Coral Rubbles

    NASA Astrophysics Data System (ADS)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  20. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats.

    PubMed

    Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee

    2016-08-01

    Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming.

  1. Controls on coral-ground development along the northern Mesoamerican Reef tract.

    PubMed

    Rodríguez-Martínez, Rosa E; Jordán-Garza, Adán G; Maldonado, Miguel A; Blanchon, Paul

    2011-01-01

    Coral-grounds are reef communities that colonize rocky substratum but do not form framework or three-dimensional reef structures. To investigate why, we used video transects and underwater photography to determine the composition, structure and status of a coral-ground community located on the edge of a rocky terrace in front of a tourist park, Xcaret, in the northern Mesoamerican Reef tract, Mexico. The community has a relatively low coral, gorgonian and sponge cover (<10%) and high algal cover (>40%). We recorded 23 species of Scleractinia, 14 species of Gorgonacea and 30 species of Porifera. The coral community is diverse but lacks large coral colonies, being dominated instead by small, sediment-tolerant, and brooding species. In these small colonies, the abundance of potentially lethal interactions and partial mortality is high but decreases when colonies are larger than 40 cm. Such characteristics are consistent with an environment control whereby storm waves periodically remove larger colonies and elevate sediment flux. The community only survives these storm conditions due to its slope-break location, which ensures lack of burial and continued local recruitment. A comparison with similar coral-ground communities in adjacent areas suggests that the narrow width of the rock terrace hinders sediment stabilization, thereby ensuring that communities cannot escape bottom effects and develop into three-dimensional reef structures on geological time scales.

  2. Novel reef fabrics from the Devonian Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Wood, Rachel

    1998-11-01

    Large cement-filled cavities (0.2 to 1.5 m wide) are well developed in slope-margin sediments of the spectacular Upper Devonian (Frasnian) reefs of the Canning Basin, Western Australia, where they account for up to 50% of the primary porosity. These are here interpreted as primary reef framework cavities that formed beneath a variety of domal, tabular or laminar stromatoporoid sponges. Of particular note are those created by unusual, very thin (2 to 8 mm), laminar stromatoporoids (mainly Stachyodes australe), that formed arching, hollow domes up to 0.3 m in height and 1.5 m in diameter over the sediment surface to enclose flat-based cavities. The free undersurface of these stromatoporoids often supported a hitherto unrecognised cryptic community, dominated by pendent growth of the putative calcified cyanobacterium Renalcis, with rare intergrown lithistid sponges and spiny atrypid brachiopods. The uneven growth surface of the cryptos imparts an irregular, stromatactis-like texture to the upper surface of the remaining cavity, which is filled by early marine, finely banded, fibrous cements (mainly radiaxial calcite) interbedded with often multiple generations of geopetal sediment containing peloids and ostracod debris. This ecology yields the tabular stromatoporoid- Renalcis fabric described ubiquitously from the Canning Basin reef complex. Such unusual reef fabrics are a consequence of the ecology of shallow marine mid-Palaeozoic reefs which were quite unlike that of modern coral reefs. The frequent preservation of relatively delicate, in situ communities was due to (1) rapid and pervasive early cementation, (2) growth under non-energetic conditions, and (3) the relative insignificance of bioeroders associated with reefs at this time.

  3. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  4. Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, P.M.; Kowalik, W.S.

    1995-08-01

    Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less

  5. Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.

    PubMed

    West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra

    2017-01-01

    The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.

  6. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2015-03-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.

  7. Subsurface Permian reef complexes of southern Tunisia: Shelf carbonate setting and paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Zaafouri, Adel; Haddad, Sofiene; Mannaî-Tayech, Beya

    2017-05-01

    2-D seismic reflection sections, borehole data as well as published and unpublished data have been investigated to reconstruct the paleogeography of southern Tunisia during Middle to Late Permian times. Paleogeographical reconstruction based on the integration of petroleum well data and 2-D seismic facies interpretation shows three main depositional areas with very contrasting sedimentary pile. These are 1) a subsiding basin; 2) an outer shelf carbonate, and 3) an inner shelf carbonate. Based on typical electric responses of reef buildups to seismic wave, we shall urge that during Middle Permian times, the outer carbonate shelf was subject of reef barrier development. Lithology evidences from core samples show that reef framework correspond mainly to fossiliferous limestone and dolomite. The WNW-ESE recognized reef barrier led between latitudes 33° 10‧ 00″N and 33° 20‧ 00″N. The Tebaga of Medenine outcrop constitutes the northern-edge of this barrier. Westward it may be extended to Bir Soltane area whereas its extension eastward is still to be determined. Biogenic buildups took place preferentially over faulted Carboniferous and lower Paleozoic paleohighs resulting likely from the Hercynian orogeny. The subsiding basin is located north of Tebaga of Medenine outcrop where Upper Permian sedimentary sequence is made entirely of 4000 m deep marine green silty shale facies. These are ascribed to unorganized and chaotic reflectors. Inner carbonate shelf facies succession corresponds to a typical interbedding of shallow marine carbonate deposits, shale, dolomite, and anhydrite inducing parallel-layered of strong amplitude and good continuity reflectors. Also within the inner carbonate shelf patch reef or reef pinnacles have been identified based on their seismic signature particularly their low vertical development as compared to reef complexes. Southward, towards Sidi Toui area, the Upper Permian depositional sequence thins out and bears witness of land influences as entailed by the increase of silicoclastic sedimentary supply and the lack of marine fossil.

  8. The demise of a major Acropora palmata bank-barrier reef off the southeast coast of Barbados, West Indies

    NASA Astrophysics Data System (ADS)

    MacIntyre, I. G.; Glynn, P. W.; Toscano, M. A.

    2007-12-01

    Formerly attributed to human activity, the demise of a bank-barrier reef off southeastern Barbados known as Cobbler’s Reef is now thought to be largely the result of late Holocene, millennial-scale storm damage. Eleven surface samples of the reef crest coral Acropora palmata from nine sites along its 15-km length plot above the western Atlantic sea-level curve from 3,000 to 4,500 cal years ago (calibrated, calendar 14C years). These elevated clusters suggest that the reef complex suffered extensive storm damage during this period. The constant heavy wave action typical of this area and consequent low herbivory maintain conditions favoring algal growth, thereby limiting the reestablishment of post-storm reef framework. Site descriptions and detailed line surveys show a surface now composed mainly of reworked fragments of A. palmata covered with algal turf, macroalgae and crustose coralline algae. The reef contains no live A. palmata and only a few scattered coral colonies consisting primarily of Diploria spp . and Porites astreoides, along with the hydrocoral Millepora complanata. A few in situ framework dates plot at expected depths for normal coral growth below the sea-level curve during and after the period of intense storm activity. The most recent of these in situ samples are 320 and 400 cal years old. Corals of this late period likely succumbed to high turbidity associated with land clearance for sugarcane agriculture in the mid-1600s.

  9. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic

    PubMed Central

    2016-01-01

    Reef restoration activities have proliferated in response to the need to mitigate coral declines and recover lost reef structure, function, and ecosystem services. Here, we describe the recent shift from costly and complex engineering solutions to recover degraded reef structure to more economical and efficient ecological approaches that focus on recovering the living components of reef communities. We review the adoption and expansion of the coral gardening framework in the Caribbean and Western Atlantic where practitioners now grow and outplant 10,000’s of corals onto degraded reefs each year. We detail the steps for establishing a gardening program as well as long-term goals and direct and indirect benefits of this approach in our region. With a strong scientific basis, coral gardening activities now contribute significantly to reef and species recovery, provide important scientific, education, and outreach opportunities, and offer alternate livelihoods to local stakeholders. While challenges still remain, the transition from engineering to ecological solutions for reef degradation has opened the field of coral reef restoration to a wider audience poised to contribute to reef conservation and recovery in regions where coral losses and recruitment bottlenecks hinder natural recovery. PMID:27781176

  10. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic.

    PubMed

    Lirman, Diego; Schopmeyer, Stephanie

    2016-01-01

    Reef restoration activities have proliferated in response to the need to mitigate coral declines and recover lost reef structure, function, and ecosystem services. Here, we describe the recent shift from costly and complex engineering solutions to recover degraded reef structure to more economical and efficient ecological approaches that focus on recovering the living components of reef communities. We review the adoption and expansion of the coral gardening framework in the Caribbean and Western Atlantic where practitioners now grow and outplant 10,000's of corals onto degraded reefs each year. We detail the steps for establishing a gardening program as well as long-term goals and direct and indirect benefits of this approach in our region. With a strong scientific basis, coral gardening activities now contribute significantly to reef and species recovery, provide important scientific, education, and outreach opportunities, and offer alternate livelihoods to local stakeholders. While challenges still remain, the transition from engineering to ecological solutions for reef degradation has opened the field of coral reef restoration to a wider audience poised to contribute to reef conservation and recovery in regions where coral losses and recruitment bottlenecks hinder natural recovery.

  11. Morphological plasticity of the depth generalist coral, Montastraea cavernosa, on mesophotic reefs in Bermuda.

    PubMed

    Goodbody-Gringley, Gretchen; Waletich, Justin

    2018-04-02

    Scleractinian corals have global ecological, structural, social, and economic importance that is disproportionately large relative to their areal extent. These reef building corals form the architectural framework for shallow water tropical reef systems, supporting the most productive and biologically diverse marine ecosystems on Earth (Veron, 1995). Reef-building scleractinian species are dependent on photosynthetic products supplied by symbiotic zooxanthellae of the genus Symbiodinium, restricting their distribution to the photic zone (Stambler, 2011). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Caiyun

    2015-06-01

    Accurate mapping and effective monitoring of benthic habitat in the Florida Keys are critical in developing management strategies for this valuable coral reef ecosystem. For this study, a framework was designed for automated benthic habitat mapping by combining multiple data sources (hyperspectral, aerial photography, and bathymetry data) and four contemporary imagery processing techniques (data fusion, Object-based Image Analysis (OBIA), machine learning, and ensemble analysis). In the framework, 1-m digital aerial photograph was first merged with 17-m hyperspectral imagery and 10-m bathymetry data using a pixel/feature-level fusion strategy. The fused dataset was then preclassified by three machine learning algorithms (Random Forest, Support Vector Machines, and k-Nearest Neighbor). Final object-based habitat maps were produced through ensemble analysis of outcomes from three classifiers. The framework was tested for classifying a group-level (3-class) and code-level (9-class) habitats in a portion of the Florida Keys. Informative and accurate habitat maps were achieved with an overall accuracy of 88.5% and 83.5% for the group-level and code-level classifications, respectively.

  13. Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats

    PubMed Central

    Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee

    2016-01-01

    Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming. PMID:27540589

  14. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service.

    PubMed

    Belhassen, Yaniv; Rousseau, Meghan; Tynyakov, Jenny; Shashar, Nadav

    2017-12-01

    Artificial reefs are increasingly being used around the globe to attract recreational divers, for both environmental and commercial reasons. This paper examines artificial coral reefs as recreational ecosystem services (RES) by evaluating their attractiveness and effectiveness and by examining divers' attitudes toward them. An online survey targeted at divers in Israel (n = 263) indicated that 35% of the dives in Eilat (a resort city on the shore of the Red Sea) take place at artificial reefs. A second study monitored divers' behavior around the Tamar artificial reef, one of the most popular submerged artificial reefs in Eilat, and juxtaposed it with divers' activities around two adjacent natural reefs. Findings show that the average diver density at the artificial reef was higher than at the two nearby natural knolls and that the artificial reef effectively diverts divers from natural knolls. A third study that examined the attitudes towards natural vs. artificial reefs found that the artificial reefs are considered more appropriate for training, but that divers feel less relaxed around them. By utilizing the RES approach as a framework, the study offers a comprehensive methodology that brings together the aesthetic, behavioral, and attitudinal aspects in terms of which artificial reefs can be evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Science and management of coral reefs: problems and prospects

    NASA Astrophysics Data System (ADS)

    Wells, S. M.

    1995-11-01

    It should be recognised that many principles of reef management do not need further research, as they involve changing human behaviour and activities in order to remove or reduce impacts on reefs. Much of the time of a reef manager is taken up with social, economic and political issues: the integration of reef management into broad coastal zone management objectives; the development of community participation and co-management; and the organisation of training and education pro-grammes so that people in countries where reefs are located are able to take responsibility for their sustainable management. Perhaps the main obstacle to be overcome is poor communication (Harmon 1994). Many reef scientists are already strongly convinced of the need to communicate their results and the implications of these for management and conservation policy (Hatcher et al. 1989), but they may however need to understand that reef managers are not always able or willing to act on their advice because of political, economic or social factors. Pure research is increasingly being conducted within a framework of goals identified as important to society. Funding is invariably easier to obtain if it can be demonstrated that the research will have some ultimate benefit in management terms, and much research is being commissioned because of the need for practical solutions. As the complexity of management becomes more apparent and managers themselves call for more scientific support and advice, the role that science has to play in perceiving and defining problems, understanding the mechanisms involved and strategically assessing potential solutions, becomes more central. Often, only a slight adjustment to a project is required in order for data to be collected that is of direct value to a reef manager.Partnerships built between scientists and managers engaged in adaptive management efforts may lead to more rapid progress in managing reefs and may banish the `science and management' dichotomy once and for all.

  16. 50 CFR 622.227 - Adjustment of management measures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.227 Adjustment of management measures. In accordance with the framework procedures of the FMP for Coral, Coral... following: (a) South Atlantic coral, coral reefs, and live/hard bottom habitats. Definitions of essential...

  17. 50 CFR 622.227 - Adjustment of management measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.227 Adjustment of management measures. In accordance with the framework procedures of the FMP for Coral, Coral... following: (a) South Atlantic coral, coral reefs, and live/hard bottom habitats. Definitions of essential...

  18. Defining the biological integrity of coral reefs using a biological condition gradient framework

    EPA Science Inventory

    Under authority of the Clean Water Act (CWA), the US EPA is committed to protecting the biological integrity of tropical ecosystems, including mangroves, seagrasses and coral reefs that lie within the 3-mile limit of the territorial seas. The biological condition gradient (BCG) w...

  19. A Decision Framework to Protect Coral Reefs in Guánica Bay, Puerto Rico

    EPA Science Inventory

    A Watershed Management Plan (WMP) for Guánica Bay, Puerto Rico, was introduced in 2008 by a nonprofit organization, the Center for Watershed Protection, with the intent of protecting coral reefs from damage related to watershed discharges. The plan was initially generated with th...

  20. 50 CFR 622.42 - Adjustment of management measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Reef Fish Resources of the Gulf of Mexico § 622.42 Adjustment of management measures. In accordance with the framework procedures of the FMP for the Reef Fish Resources of the Gulf of Mexico, the RA...

  1. Coral seas in fifty years: Need for local policies

    NASA Astrophysics Data System (ADS)

    Longley, P.; Cheng, N. S.; Fontaine, R. M.; Horton, K.; Bhattacharya, A.

    2017-12-01

    Arising stressors from both global and local sources threaten coral reefs, with studies indicating that local and global sources might reduce coral resilience. Local sources include sediment stress and nutrient stress from fishing; global sources include increasing sea surface temperature and ocean acidification. Through an in-depth review and re-analysis of published work, conducted under the scope of a course in the spring of 2017 semester and follow up research over the summer of 2017 and fall of 2017, students in Environmental Studies Course, ENVS 4100: Coral reefs, at the University of Colorado Boulder have developed a framework to initiate a discussion of global and local policies focused on protection of coral reefs. The research aims to assess current threats and suggest mitigation efforts. The paper uses secondary research to analyze impact of ocean acidification on aragonite saturation levels, current thermal stress, nutrient stress, and sediment factors that influence the health of coral and its surrounding ecosystem over the Common Era. Case studies in this paper include the Caribbean and Red Sea coral reefs, due to the variation of the atmosphere, temperature, and human activity in these regions. This paper intends to offer sufficient evidence that will lead to appropriate policy decisions that pertain to reef conservation.

  2. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use

    PubMed Central

    Brandl, Simon J.; Robbins, William D.; Bellwood, David R.

    2015-01-01

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. PMID:26354935

  3. Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use.

    PubMed

    Brandl, Simon J; Robbins, William D; Bellwood, David R

    2015-09-22

    Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant-pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats. © 2015 The Author(s).

  4. Systematic mapping of bedrock and habitats along the Florida reef tract: central Key Largo to Halfmoon Shoal (Gulf of Mexico)

    USGS Publications Warehouse

    Lidz, Barbara H.; Reich, Christopher D.; Shinn, Eugene A.

    2007-01-01

    The fragile coral reefs of the Florida Keys form the largest living coral reef ecosystem in the continental United States. Lining the shallow outer shelf approximately 5 to 7 km seaward of the keys, the reefs have national aesthetic and resource value. As recently as the 1970s, the coral reefs were the heart of a vibrant ecosystem. Since then, the health of all ecosystem components has declined markedly due to a variety of environmental stressors . Corals are succumbing to bleaching and diseases. Species that are the building blocks of solid reef framework are increasingly being replaced by species that do not construct reef framework. Algal proliferation is increasing competition for space and hard surfaces needed by coral larvae for settlement. Decline of the coral reef ecosystem has significant negative implications for economic vitality of the region, ranging from viability of the tourism industry attracted by the aesthetics to commercial fisheries drawn by the resources. At risk of loss are biologic habitats and reef resources, including interconnected habitats for endangered species in shoreline mangroves, productive nearshore marine and wetland nurseries, and economic offshore fisheries. In 1997, the U.S. Geological Survey's Coastal and Marine Geology Program undertook a comprehensive 7-year-long mission to consolidate, synthesize, and map new (1997) and existing geologic and biologic information into a digitized regional database and one-volume reference source on the geologic history of the Florida Keys reef tract (this report). The project was conducted in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program. The purpose was to examine the natural evolution and demise of several coral reef ecosystems over the past 325,000 years, with an eye toward gaining a better understanding of the cause of the reef decline observed today. Scientific data and datasets presented in this report are intended for use by others in ongoing efforts to delineate which components of reef decline in the Florida Keys may be natural and which may be a result of human activities. Beyond scientific baseline datasets, this report also incorporates environmental, social, and historical aspects of the Florida Keys, including the impact of exploratory oil wells on benthic habitats off Florida.

  5. Sedimentologic succession of uplifted coral community, Urvina Bay, Isabela Island, Galapagos Archipelago, Ecuador

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, M.W.; Hollander, D.

    1987-05-01

    In March 1954, along the west-central coast of Isabela Island, an upward movement of magma suddenly raised Urvina Bay over 6 m and exposed several square kilometers of carbonate deposits covering a young aa lava flow (around 1000 years old). Results from 6 transect lines across the uplift, 30 cores, and 10 trenches describe the sedimentologic and ecologic transition from barren basalt to diverse carbonate sediments with small coral reefs. Along horizontal transects spanning from 0 to 7 m paleowater depth, there is a seaward progression from beaches, mangroves, and basalt to thick deposits (> 1.6 m) of carbonate sandsmore » and small coral reefs. Variation in water depth, degree of wave exposure, and irregularity of the aa lava topography provided many microhabitats where coral, calcareous algae, and mollusks settled and grew. Eight hermatypic coral species are found throughout the shelf, and three species (i.e., Pavona clavus, Pocillopora damicornis, and Porites lobata) produced five small, isolated, monospecific, coral-reef frameworks. The vertical section seen in cores and trenches shows that calcium carbonate increased upward, whereas volcanic sediments decreased; however, episodic layers occur with high concentrations of basaltic sands. In vertical samples from the central portion of the shelf, the coral population changed from small, isolated colonies of Psammocora (Plesioseris) superficalis near the basalt basement to large reef-forming colonies of Pocillopora damicornis farther upsection. Reefs of the Galapagos Islands are small and less diverse than most Pacific reefs. Nonetheless, understanding their temporal successional development should throw light on the origin and history of larger oceanic reefs in the Pacific.« less

  6. Advances in monitoring the human dimension of natural resource systems: an example from the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Marshall, N. A.; Bohensky, E.; Curnock, M.; Goldberg, J.; Gooch, M.; Nicotra, B.; Pert, P.; Scherl, L. M.; Stone-Jovicich, S.; Tobin, R. C.

    2016-11-01

    The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n = 210), marine-based tourism operators (n = 119), tourists (n = 2877), local residents (n = 3181), and other Australians (n = 2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision-making through substantial inclusion in three key policy documents.

  7. 50 CFR 622.77 - Adjustment of management measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ATLANTIC Coral and Coral Reefs of the Gulf of Mexico § 622.77 Adjustment of management measures. In accordance with the framework procedures of the FMP for Coral and Coral Reefs of the Gulf of Mexico, the RA may establish or modify the following: (a) Gulf coral resources. For a species or species group...

  8. 50 CFR 622.77 - Adjustment of management measures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ATLANTIC Coral and Coral Reefs of the Gulf of Mexico § 622.77 Adjustment of management measures. In accordance with the framework procedures of the FMP for Coral and Coral Reefs of the Gulf of Mexico, the RA may establish or modify the following: (a) Gulf coral resources. For a species or species group...

  9. 50 CFR 665.18 - Framework adjustments to management measures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... By July 31 of each year, a Council-appointed coral reef ecosystem monitoring team will prepare an annual report on coral reef fisheries of the western Pacific region. The report will contain, among other... may establish a new target number based on the 5-year review. (d) Precious coral measures—(1...

  10. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  11. Consequences of a government-controlled agricultural price increase on fishing and the coral reef ecosystem in the republic of kiribati.

    PubMed

    Reddy, Sheila M W; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by sustainable livelihood and ecosystem-based management frameworks.

  12. Consequences of a Government-Controlled Agricultural Price Increase on Fishing and the Coral Reef Ecosystem in the Republic of Kiribati

    PubMed Central

    Reddy, Sheila M. W.; Groves, Theodore; Nagavarapu, Sriniketh

    2014-01-01

    Background Economic development policies may have important economic and ecological consequences beyond the sector they target. Understanding these consequences is important to improving these policies and finding opportunities to align economic development with natural resource conservation. These issues are of particular interest to governments and non-governmental organizations that have new mandates to pursue multiple benefits. In this case study, we examined the direct and indirect economic and ecological effects of an increase in the government-controlled price for the primary agricultural product in the Republic of Kiribati, Central Pacific. Methods/Principal Findings We conducted household surveys and underwater visual surveys of the coral reef to examine how the government increase in the price of copra directly affected copra labor and indirectly affected fishing and the coral reef ecosystem. The islands of Kiribati are coral reef atolls and the majority of households participate in copra agriculture and fishing on the coral reefs. Our household survey data suggest that the 30% increase in the price of copra resulted in a 32% increase in copra labor and a 38% increase in fishing labor. Households with the largest amount of land in coconut production increased copra labor the most and households with the smallest amount of land in coconut production increased fishing the most. Our ecological data suggests that increased fishing labor may result in a 20% decrease in fish stocks and 4% decrease in coral reef-builders. Conclusions/Significance We provide empirical evidence to suggest that the government increase in the copra price in Kiribati had unexpected and indirect economic and ecological consequences. In this case, the economic development policy was not in alignment with conservation. These results emphasize the importance of accounting for differences in household capital and taking a systems approach to policy design and evaluation, as advocated by sustainable livelihood and ecosystem-based management frameworks. PMID:24820734

  13. A Decision Support Framework For Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    EPA Science Inventory

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environ...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lighty, R.G.; Russell, K.L.

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm incrementsmore » from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.« less

  15. Framework of barrier reefs threatened by ocean acidification.

    PubMed

    Comeau, Steeve; Lantz, Coulson A; Edmunds, Peter J; Carpenter, Robert C

    2016-03-01

    To date, studies of ocean acidification (OA) on coral reefs have focused on organisms rather than communities, and the few community effects that have been addressed have focused on shallow back reef habitats. The effects of OA on outer barrier reefs, which are the most striking of coral reef habitats and are functionally and physically different from back reefs, are unknown. Using 5-m long outdoor flumes to create treatment conditions, we constructed coral reef communities comprised of calcified algae, corals, and reef pavement that were assembled to match the community structure at 17 m depth on the outer barrier reef of Moorea, French Polynesia. Communities were maintained under ambient and 1200 μatm pCO2 for 7 weeks, and net calcification rates were measured at different flow speeds. Community net calcification was significantly affected by OA, especially at night when net calcification was depressed ~78% compared to ambient pCO2 . Flow speed (2-14 cm s(-1) ) enhanced net calcification only at night under elevated pCO2 . Reef pavement also was affected by OA, with dissolution ~86% higher under elevated pCO2 compared to ambient pCO2 . These results suggest that net accretion of outer barrier reef communities will decline under OA conditions predicted within the next 100 years, largely because of increased dissolution of reef pavement. Such extensive dissolution poses a threat to the carbonate foundation of barrier reef communities. © 2015 John Wiley & Sons Ltd.

  16. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    PubMed Central

    Rix, Laura; de Goeij, Jasper M.; Mueller, Christina E.; Struck, Ulrich; Middelburg, Jack J.; van Duyl, Fleur C.; Al-Horani, Fuad A.; Wild, Christian; Naumann, Malik S.; van Oevelen, Dick

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21–40% of the mucus carbon and 32–39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments. PMID:26740019

  17. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    PubMed

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  18. 78 FR 6218 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ...NMFS issues this final rule to implement management measures described in Amendment 38 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). This final rule modifies post-season accountability measures (AMs) that affect the recreational harvest of shallow-water grouper species (SWG), changes the trigger for recreational sector AMs for gag and red grouper, and revises the Gulf reef fish framework procedure. The intent of this final rule is to achieve optimum yield (OY) while ensuring the Gulf reef fish fishery resources are utilized efficiently.

  19. Two waves of colonization straddling the K-Pg boundary formed the modern reef fish fauna.

    PubMed

    Price, S A; Schmitz, L; Oufiero, C E; Eytan, R I; Dornburg, A; Smith, W L; Friedman, M; Near, T J; Wainwright, P C

    2014-05-22

    Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous-Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction.

  20. Two waves of colonization straddling the K–Pg boundary formed the modern reef fish fauna

    PubMed Central

    Price, S. A.; Schmitz, L.; Oufiero, C. E.; Eytan, R. I.; Dornburg, A.; Smith, W. L.; Friedman, M.; Near, T. J.; Wainwright, P. C.

    2014-01-01

    Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous–Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction. PMID:24695431

  1. Facies development and paleoenvironment of the Hajajah Limestone Member, Aruma Formation, central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset S.; Ismail, Abdelmoneim; Youssef, Mohamed; Nour, Hamdy

    2016-12-01

    The Campanian Hajajah Limestone Member of the Aruma Formation was formed during two regressive episodes. Each of them formed of three depositional facies, from base to top: 1) intra-shelf basin facies, made up of fossiliferous green shale and mudstone with ostracods and badly preserved foraminifers. 2) fore-reef facies, consists of hard, massive, marly coralline limestone. The upper part is rich with low divers, badly to moderate preserved, solitary and colonial corals, and, 3) back reef and near-shore facies, consists of fossiliferous sandy dolomitized, bioturbated limestone with abundant reworked corals, bivalves, gastropods, and aggregate grains. On the basis of field observations, micro-and macrofossils and microfacies analysis, the Hajajah Limestone Member was deposited in distal marine settings below storm wave base in a low-energy environment changed upward to fore-reef framework in an open marine environment with moderate to high energy conditions and terminated with shallow marine facies with accumulation of skeletal grains by storms during regression.

  2. Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos

    PubMed Central

    Lambert, Anne; François, Loïc; Barth, Paul; Gillet, Benjamin; Hughes, Sandrine; Piganeau, Gwenaël; Leulier, Francois; Viriot, Laurent

    2017-01-01

    Larval recruitment, the transition of pelagic larvae into reef-associated juveniles, is a critical step for the resilience of marine fish populations but its molecular control is unknown. Here, we investigate whether thyroid-hormones (TH) and their receptors (TR) coordinate the larval recruitment of the coral-reef-fish Acanthurus triostegus. We demonstrate an increase of TH-levels and TR-expressions in pelagic-larvae, followed by a decrease in recruiting juveniles. We generalize these observations in four other coral reef-fish species. Treatments with TH or TR-antagonist, as well as relocation to the open-ocean, disturb A. triostegus larvae transformation and grazing activity. Likewise, chlorpyrifos, a pesticide often encountered in coral-reefs, impairs A. triostegus TH-levels, transformation, and grazing activity, hence diminishing this herbivore’s ability to control the spread of reef-algae. Larval recruitment therefore corresponds to a TH-controlled metamorphosis, sensitive to endocrine disruption. This provides a framework to understand how larval recruitment, critical to reef-ecosystems maintenance, is altered by anthropogenic stressors. PMID:29083300

  3. Geochemical partitioning of lead in biogenic carbonate sediments in a coral reef depositional environment.

    PubMed

    Horta-Puga, Guillermo

    2017-03-15

    The fate of trace elements in reef depositional environments has not been extensively investigated. The aim of this study was to determine the partitioning of Pb in sediments of the Veracruz Reef System, and its relation to local environmental sources. Lead was determined in four geochemical fractions: exchangeable (3.8±0.4μgg -1 ), carbonate (57.0±13.6μgg -1 ), organic matter (2.0±0.9μgg -1 ), and mineral (17.5±5.4μgg -1 ). For the mineral fraction, lead concentrations were higher in those reefs influenced by river discharge or by long-distance transport of terrigenous sediments. The bioavailable concentration of lead (range: 21.9-85.6μgg -1 ) indicates that the Veracruz Reef System is a moderately polluted area. As expected, the carbonate fraction contained the highest proportion of Pb (70%), and because the reef framework is largely made up of by biogenic carbonate sediments, hence, it is therefore the most important repository of Pb in coral reef depositional environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Drivers and predictions of coral reef carbonate budget trajectories

    PubMed Central

    Graham, Nicholas A. J.; Jennings, Simon; Perry, Chris T.

    2017-01-01

    Climate change is one of the greatest threats to the long-term maintenance of coral-dominated tropical ecosystems, and has received considerable attention over the past two decades. Coral bleaching and associated mortality events, which are predicted to become more frequent and intense, can alter the balance of different elements that are responsible for coral reef growth and maintenance. The geomorphic impacts of coral mass mortality have received relatively little attention, particularly questions concerning temporal recovery of reef carbonate production and the factors that promote resilience of reef growth potential. Here, we track the biological carbonate budgets of inner Seychelles reefs from 1994 to 2014, spanning the 1998 global bleaching event when these reefs lost more than 90% of coral cover. All 21 reefs had positive budgets in 1994, but in 2005 budgets were predominantly negative. By 2014, carbonate budgets on seven reefs were comparable with 1994, but on all reefs where an ecological regime shift to macroalgal dominance occurred, budgets remained negative through 2014. Reefs with higher massive coral cover, lower macroalgae cover and lower excavating parrotfish biomass in 1994 were more likely to have positive budgets post-bleaching. If mortality of corals from the 2016 bleaching event is as severe as that of 1998, our predictions based on past trends would suggest that six of eight reefs with positive budgets in 2014 would still have positive budgets by 2030. Our results highlight that reef accretion and framework maintenance cannot be assumed from the ecological state alone, and that managers should focus on conserving aspects of coral reefs that support resilient carbonate budgets. PMID:28123092

  5. Drivers and predictions of coral reef carbonate budget trajectories.

    PubMed

    Januchowski-Hartley, Fraser A; Graham, Nicholas A J; Wilson, Shaun K; Jennings, Simon; Perry, Chris T

    2017-01-25

    Climate change is one of the greatest threats to the long-term maintenance of coral-dominated tropical ecosystems, and has received considerable attention over the past two decades. Coral bleaching and associated mortality events, which are predicted to become more frequent and intense, can alter the balance of different elements that are responsible for coral reef growth and maintenance. The geomorphic impacts of coral mass mortality have received relatively little attention, particularly questions concerning temporal recovery of reef carbonate production and the factors that promote resilience of reef growth potential. Here, we track the biological carbonate budgets of inner Seychelles reefs from 1994 to 2014, spanning the 1998 global bleaching event when these reefs lost more than 90% of coral cover. All 21 reefs had positive budgets in 1994, but in 2005 budgets were predominantly negative. By 2014, carbonate budgets on seven reefs were comparable with 1994, but on all reefs where an ecological regime shift to macroalgal dominance occurred, budgets remained negative through 2014. Reefs with higher massive coral cover, lower macroalgae cover and lower excavating parrotfish biomass in 1994 were more likely to have positive budgets post-bleaching. If mortality of corals from the 2016 bleaching event is as severe as that of 1998, our predictions based on past trends would suggest that six of eight reefs with positive budgets in 2014 would still have positive budgets by 2030. Our results highlight that reef accretion and framework maintenance cannot be assumed from the ecological state alone, and that managers should focus on conserving aspects of coral reefs that support resilient carbonate budgets. © 2017 The Authors.

  6. Integrating physiological and biomechanical drivers of population growth over environmental gradients on coral reefs.

    PubMed

    Madin, Joshua S; Hoogenboom, Mia O; Connolly, Sean R

    2012-03-15

    Coral reefs exhibit marked spatial and temporal variability, and coral reef organisms exhibit trade-offs in functional traits that influence demographic performance under different combinations of abiotic environmental conditions. In many systems, trait trade-offs are modelled using an energy and/or nutrient allocation framework. However, on coral reefs, differences in biomechanical vulnerability have major demographic implications, and indeed are believed to play an essential role in mediating species coexistence because highly competitive growth forms are vulnerable to physical dislodgment events that occur with high frequency (e.g. annual summer storms). Therefore, an integrated energy allocation and biomechanics framework is required to understand the effect of physical environmental gradients on species' demographic performance. However, on coral reefs, as in most ecosystems, the effects of environmental conditions on organisms are measured in different currencies (e.g. lipid accumulation, survival and number of gametes), and thus the relative contributions of these effects to overall capacity for population growth are not readily apparent. A comprehensive assessment of links between the environment and the organism, including those mediated by biomechanical processes, must convert environmental effects on individual-level performance (e.g. survival, growth and reproduction) into a common currency that is relevant to the capacity to contribute to population growth. We outline such an approach by considering the population-level performance of scleractinian reef corals over a hydrodynamic gradient, with a focus on the integrating the biomechanical determinants of size-dependent coral colony dislodgment as a function of flow, with the effects of flow on photosynthetic energy acquisition and respiration.

  7. Taphonomy of coral reefs from Southern Lagoon of Belize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphall, M.J.; Ginsburg, R.N.

    1985-02-01

    The Southern Lagoon of the Belize barrier complex, an area of some 600 km/sup 2/, contains a tremendous number of lagoon reefs, which range in size from patches several meters across to rhomboidal-shaped structures several kilometers in their long dimension. These lagoon reefs are remarkable because they have Holocene sediment accumulations in excess of 13 m consisting almost entirely of coral debris and lime mud and sand, and rise up to 30 m above the surrounding lagoon floor with steeply sloping sides (50-80/sup 0/), yet are totally uncemented. The reef-building biota and their corresponding deposits were studied at a representativemore » reef, the rhomboidal complex of Channel Cay. As with many of the reefs in this area, the steeply sloping flanks of Channel Cay are covered mainly by the branched staghorn coral Acropora cervicornis and ribbonlike and platy growth of Agaricia spp. The living corals are not cemented to the substrate, but are merely intergrown. Fragmented pieces of corals accumulate with an open framework below the living community; this open framework is subsequently infilled by lime muds and sands produced mainly from bioerosion. Results from probing and coring suggest that the bafflestone fabric of coral debris and sediment extends at least 13 m into the subsurface. Radiocarbon-age estimates indicate these impressive piles of coral rubble and sediment have accumulated in the past 9000 yr (giving a minimum accumulation rate of 1.4 m/1000 yr) and illustrate the potential for significant carbonate buildups without the need for early lithification.« less

  8. Budget of coral-derived organic carbon in a fringing coral reef of the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Naumann, Malik S.; Richter, Claudio; Mott, Claudius; el-Zibdah, Mohammad; Manasrah, Riyad; Wild, Christian

    2012-12-01

    The continuous release of organic C-rich material by reef-building corals can contribute substantially to biogeochemical processes and concomitant rapid nutrient recycling in coral reef ecosystems. However, our current understanding of these processes is limited to platform reefs exhibiting a high degree of ecosystem closure compared to the globally most common fringing reef type. This study carried out in the northern Gulf of Aqaba (Red Sea) presents the first quantitative budget for coral-derived organic carbon (COC) in a fringing reef and highlights the importance of local hydrodynamics. Diel reef-wide COC release amounted to 1.1 ± 0.2 kmol total organic carbon (TOC) representing 1-3% of gross benthic primary production. Most COC (73%) was released as particulate organic C (POC), the bulk of which (34-63%) rapidly settled as mucus string aggregates accounting for approximately 28% of total POC sedimentation. Sedimentation of mucus strings, but also dilution of suspended and dissolved COC in reef waters retained 82% of diel COC release in the fringing reef, providing a potentially important organic source for a COC-based food web. Pelagic COC degradation represented 0.1-1.6% of pelagic microbial respiration recycling 32% of diel retained COC. Benthic COC degradation contributed substantially (29-47%) to reef-wide microbial respiration in reef sands, including 20-38% by mucus string POC, and consumed approximately 52% of all retained COC. These findings point out the importance of COC as a C carrier for different reef types. COC may further represent a source of organic carbon for faunal communities colonising reef framework cavities complementing the efficient retention and recycling of COC within fringing reef environments.

  9. 77 FR 62209 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... shallow-water grouper species (SWG), change the trigger for AMs, and revise the Gulf reef fish framework... change. All Personal Identifying Information (for example, name, address, etc.) voluntarily submitted by... use of a moving average has not been practicable due to the frequent changes that have occurred in the...

  10. Demography of the ecosystem engineer Crassostrea gigas, related to vertical reef accretion and reef persistence

    NASA Astrophysics Data System (ADS)

    Walles, Brenda; Mann, Roger; Ysebaert, Tom; Troost, Karin; Herman, Peter M. J.; Smaal, Aad C.

    2015-03-01

    Marine species characterized as structure building, autogenic ecosystem engineers are recognized worldwide as potential tools for coastal adaptation efforts in the face of sea level rise. Successful employment of ecosystem engineers in coastal protection largely depends on long-term persistence of their structure, which is in turn dependent on the population dynamics of the individual species. Oysters, such as the Pacific oyster (Crassostrea gigas), are recognized as ecosystem engineers with potential for use in coastal protection. Persistence of oyster reefs is strongly determined by recruitment and shell production (growth), processes facilitated by gregarious settlement on extant shell substrate. Although the Pacific oyster has been introduced world-wide, and has formed dense reefs in the receiving coastal waters, the population biology of live oysters and the quantitative mechanisms maintaining these reefs has rarely been studied, hence the aim of the present work. This study had two objectives: (1) to describe the demographics of extant C. gigas reefs, and (2) to estimate vertical reef accretion rates and carbonate production in these oyster reefs. Three long-living oyster reefs (>30 years old), which have not been exploited since their first occurrence, were examined in the Oosterschelde estuary in the Netherlands. A positive reef accretion rate (7.0-16.9 mm year-1 shell material) was observed, consistent with self-maintenance and persistent structure. We provide a framework to predict reef accretion and population persistence under varying recruitment, growth and mortality scenarios.

  11. Demise of reef-flat carbonate accumulation with late Holocene sea-level fall: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.

    2008-01-01

    Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tribble, G.W.

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a strongermore » tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.« less

  13. 77 FR 64300 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ...NMFS proposes to implement management measures described in Amendment 38 to the Fishery Management Plan for the Reef Fish Resources of the Gulf of Mexico (FMP) prepared by the Gulf of Mexico (Gulf) Fishery Management Council (Council). If implemented, this rule would modify post-season accountability measures (AMs) that affect shallow- water grouper species (SWG), change the trigger for AMs, and revise the Gulf reef fish framework procedure. The intent of this proposed rule is to achieve optimum yield (OY) while ensuring the fishery resources are utilized efficiently.

  14. Revised paleoenvironmental analysis of the Holocene portion of the Barbados sea-level record: Cobbler's Reef revisited

    NASA Astrophysics Data System (ADS)

    Toscano, Marguerite A.

    2016-06-01

    Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler's Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500-3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler's Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler's Reef.

  15. Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract

    USGS Publications Warehouse

    Brock, J.C.; Wright, C.W.; Kuffner, I.B.; Hernandez, R.; Thompson, P.

    2006-01-01

    In this study we examined the ability of the NASA Experimental Advanced Airborne Research Lidar (EAARL) to discriminate cluster zones of massive stony coral colonies on northern Florida reef tract (NFRT) patch reefs based on their topographic complexity (rugosity). Spatially dense EAARL laser submarine topographic soundings acquired in August 2002 were used to create a 1-m resolution digital rugosity map for adjacent NFRT study areas characterized by patch reefs (Region A) and diverse substratums (Region B). In both regions, sites with lidar-sensed rugosities above 1.2 were imaged by an along-track underwater videography system that incorporated the acquisition of instantaneous GPS positions. Subsequent manual interpretation of videotape segments was performed to identify substratum types that caused elevated lidar-sensed rugosity. Our study determined that massive coral colony formation, modified by subsequent physical and biological processes that breakdown patch reef framework, was the primary source of topographic complexity sensed by the EAARL in the NFRT. Sites recognized by lidar scanning to be topographically complex preferentially occurred around the margins of patch reefs, constituted a minor fraction of the reef system, and usually reflected the presence of massive coral colonies in cluster zones, or their derivatives created by mortality, bioerosion, and physical breakdown.

  16. Conservation genetics and the resilience of reef-building corals.

    PubMed

    van Oppen, Madeleine J H; Gates, Ruth D

    2006-11-01

    Coral reefs have suffered long-term decline due to a range of anthropogenic disturbances and are now also under threat from climate change. For appropriate management of these vulnerable and valuable ecosystems it is important to understand the factors and processes that determine their resilience and that of the organisms inhabiting them, as well as those that have led to existing patterns of coral reef biodiversity. The scleractinian (stony) corals deposit the structural framework that supports and promotes the maintenance of biological diversity and complexity of coral reefs, and as such, are major components of these ecosystems. The success of reef-building corals is related to their obligate symbiotic association with dinoflagellates of the genus Symbiodinium. These one-celled algal symbionts (zooxanthellae) live in the endodermal tissues of their coral host, provide most of the host's energy budget and promote rapid calcification. Furthermore, zooxanthellae are the main primary producers on coral reefs due to the oligotrophic nature of the surrounding waters. In this review paper, we summarize and critically evaluate studies that have employed genetics and/or molecular biology in examining questions relating to the evolution and ecology of reef-building corals and their algal endosymbionts, and that bear relevance to coral reef conservation. We discuss how these studies can focus future efforts, and examine how these approaches enhance our understanding of the resilience of reef-building corals.

  17. Effects of ocean acidification on the dissolution rates of reef-coral skeletons.

    PubMed

    van Woesik, Robert; van Woesik, Kelly; van Woesik, Liana; van Woesik, Sandra

    2013-01-01

    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m(-2) y(-1), which is approximately -10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050.

  18. Linking social and ecological systems to sustain coral reef fisheries.

    PubMed

    Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P

    2009-02-10

    The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.

  19. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    PubMed

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  20. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks

    PubMed Central

    Schill, Steven R.; Raber, George T.; Roberts, Jason J.; Treml, Eric A.; Brenner, Jorge; Halpin, Patrick N.

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008–2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future. PMID:26641083

  1. Understanding the murky history of the Coral Triangle: Miocene corals and reef habitats in East Kalimantan (Indonesia)

    NASA Astrophysics Data System (ADS)

    Santodomingo, Nadiezhda; Renema, Willem; Johnson, Kenneth G.

    2016-09-01

    Studies on ancient coral communities living in marginal conditions, including low light, high turbidity, extreme temperatures, or high nutrients, are important to understand the current structure of reefs and how they could potentially respond to global changes. The main goal of this study was to document the rich and well-preserved fossil coral fauna preserved in Miocene exposures of the Kutai Basin in East Kalimantan, Indonesia. Our collections include almost forty thousand specimens collected from 47 outcrops. Seventy-nine genera and 234 species have been identified. Three different coral assemblages were found corresponding to small patch reefs that developed under the influence of high siliciclastic inputs from the Mahakam Delta. Coral assemblages vary in richness, structure, and composition. Platy coral assemblages were common until the Serravallian (Middle Miocene), while branching coral assemblages became dominant in the Tortonian (Late Miocene). By the late Tortonian massive coral assemblages dominated, similar to modern-style coral framework. Our results suggest that challenging habitats, such as the Miocene turbid habitats of East Kalimantan, might have played an important role during the early diversification of the Coral Triangle by hosting a pool of resilient species more likely to survive the environmental changes that have affected this region since the Cenozoic. Further research that integrates fossil and recent turbid habitats may provide a glimpse into the dynamics and future of coral reefs as "typical" clear-water reefs continue to decline in most regions.

  2. Calcification, Storm Damage and Population Resilience of Tabular Corals under Climate Change

    PubMed Central

    Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.

    2012-01-01

    Two facets of climate change–increased tropical storm intensity and ocean acidification–are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms’ short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs. PMID:23056379

  3. Chemical versus mechanical bioerosion of coral reefs by boring sponges--lessons from Pione cf. vastifica.

    PubMed

    Zundelevich, A; Lazar, B; Ilan, M

    2007-01-01

    Bioerosion by boring sponges is an important mechanism shaping the structure of coral reefs all around the world. To determine the excavation rate by boring sponges, we developed a system in which chemical and mechanical boring rates [calcium carbonate (CaCO(3)) dissolution and chip production, respectively] were measured simultaneously in experimental tanks containing reefal rock inhabited by a boring sponge. Pione cf. vastifica (Hancock 1849) was chosen as a model species to study the erosion rate of boring sponges. It is an abundant species in the coral reefs of the Nature Reserve Reef, Elat, Gulf of Aqaba, northern Red Sea, reaching maximum abundance at 25-30 m. The rate of chemical bioerosion was determined from the increase in tank-seawater alkalinity over time, and the mechanical bioerosion rate was estimated from the total amount of CaCO(3) chips produced over the same time interval. The measured bioerosion rate of P. cf. vastifica was 2.3 g m(-2) sponge day(-1), showing seasonal but not diurnal variations, suggesting that the zooxanthellae harboring the sponge have no effect on its boring rate. The experiments indicated clearly that per each mass of chips that P. cf. vastifica produces during its boring activity, it dissolves three masses of reef CaCO(3) framework. Assuming that some additional boring sponges can use a similar strategy of bioerosion, these findings suggest that chips, the most obvious erosion products of boring sponges, represent only a small fraction of boring sponge bioerosion capacity.

  4. Balance of constructive and destructive carbonate processes on mesophotic coral reefs

    NASA Astrophysics Data System (ADS)

    Weinstein, D. K.; Klaus, J. S.; Smith, T. B.; Helmle, K. P.; Marshall, D.

    2013-12-01

    Net carbonate accumulation of coral reefs is the product of both constructive and destructive processes that can ultimately influence overall reef geomorphology. Differences in these processes with depth may in part explain why the coral growth-light intensity association does no result in the traditionally theorized reef accretion decrease with depth. Until recently, physical sampling limitations had prevented the acquisition of sedimentary data needed to assess in situ carbonate accumulation in mesophotic reefs (30-150 m). Coral framework production, secondary carbonate production (calcareous encrusters), and bioerosion, the three most critical components of net carbonate accumulation, were analyzed in mesophotic reefs more than 10 km south of St. Thomas, U.S. Virgin Islands along a very gradual slope that limits sediment transport and sedimentation. Recently dead samples of the massive coral, Orbicella annularis collected from three structurally different upper mesophotic coral reef habitats (30-45 m) were cut parallel to the primary growth axis to identify density banding through standard x-radiographic techniques. Assuming annual banding, mesophotic linear extension rates were calculated on the order of 0.7-1.5 mm/yr. Weight change of experimental coral substrates exposed for 3 years indicate differing rates (1.1-17.2 g/yr) of bioerosion and secondary accretion between mesophotic sites. When correcting bioerosion rates for high mesophotic skeletal density, carbonate accumulation rates were found to vary significantly between neighboring mesophotic reefs with distinctive structures. Results imply variable rates of mesophotic reef net carbonate accretion with the potential to influence overall reef/platform morphology, including localized mesophotic reef structure.

  5. Feedbacks Between Wave Energy And Declining Coral Reef Structure: Implications For Coastal Morphodynamics

    NASA Astrophysics Data System (ADS)

    Grady, A. E.; Jenkins, C. J.; Moore, L. J.; Potts, D. C.; Burgess, P. M.; Storlazzi, C. D.; Elias, E.; Reidenbach, M. A.

    2013-12-01

    The incident wave energy dissipated by the structural complexity and bottom roughness of coral reef ecosystems, and the carbonate sediment produced by framework-building corals, provide natural shoreline protection and nourishment, respectively. Globally, coral reef ecosystems are in decline as a result of ocean warming and acidification, which is exacerbated by chronic regional stressors such as pollution and disease. As a consequence of declining reef health, many reef ecosystems are experiencing reduced coral cover and shifts to dominance by macroalgae, resulting in a loss of rugosity and thus hydrodynamic roughness. As coral reef architecture is compromised and carbonate skeletons are eroded, wave energy dissipation and sediment transport patterns--along with the carbonate sediment budget of the coastal environment--may be altered. Using a Delft3D numerical model of the south-central Molokai, Hawaii, fringing reef, we simulate the effects of changing reef states on wave energy and sediment transport. To determine the temporally-varying effects of biotic and abiotic stressors such as storms and bleaching on the reef structure and carbonate production, we couple Delft3D with CarboLOT, a model that simulates growth and competition of carbonate-producing organisms. CarboLOT is driven by the Lotka-Volterra population ecology equations and niche suitability principles, and accesses the CarboKB database for region-specific, carbonate-producing species information on growth rates, reproduction patterns, habitat suitability, as well as organism geometries. Simulations assess how changing reef states--which alter carbonate sediment production and reef morphology and thus hydrodynamic roughness--impact wave attenuation and sediment transport gradients along reef-fronted beaches. Initial results suggest that along fringing reefs having characteristics similar to the Molokai fringing reef, projected sea level rise will likely outpace coral reef accretion, and the increased residual wave energy transported to the coast may result in the alteration of alongshore sediment transport gradients and substantial changes to coastal morphology.

  6. A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure

    NASA Astrophysics Data System (ADS)

    Duvall, M. S.; Hench, J. L.

    2016-02-01

    The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.

  7. Dolomitization of Quaternary reef limestones, Aitutaki, Cook Islands

    USGS Publications Warehouse

    Hein, J.R.; Gray, S.C.; Richmond, B.M.; White, L.D.

    1992-01-01

    The primary reef framework is considered to have been deposited during several highstands of sea level. Following partial to local recrystallization of the limestone, a signle episode of dolomitization occurred. Both tidal and thermal pumping drove large quantities of seawater through the porous rocks and perhaps maintained a wide mixing zone. However, the isotopic, geochemical and petrographic data do not clearly indicate the extent of seawater mixing. -from Authors

  8. Self-recognition in corals facilitates deep-sea habitat engineering

    USGS Publications Warehouse

    Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  9. Reef Development on Artificial Patch Reefs in Shallow Water of Panjang Island, Central Java

    NASA Astrophysics Data System (ADS)

    Munasik; Sugiyanto; Sugianto, Denny N.; Sabdono, Agus

    2018-02-01

    Reef restoration methods are generally developed by propagation of coral fragments, coral recruits and provide substrate for coral attachment using artificial reefs (ARs). ARs have been widely applied as a tool for reef restoration in degraded natural reefs. Successful of coral restoration is determined by reef development such as increasing coral biomass, natural of coral recruits and fauna associated. Artificial Patch Reefs (APRs) is designed by combined of artificial reefs and coral transplantation and constructed by modular circular structures in shape, were deployed from small boats by scuba divers, and are suitable near natural reefs for shallow water with low visibility of Panjang Island, Central Java. Branching corals of Acropora aspera, Montipora digitata and Porites cylindrica fragments were transplanted on to each module of two units of artificial patch reefs in different periods. Coral fragments of Acropora evolved high survival and high growth, Porites fragments have moderate survival and low growth, while fragment of Montipora show in low survival and moderate growth. Within 19 to 22 months of APRs deployment, scleractinian corals were recruited on the surface of artificial patch reef substrates. The most recruits abundant was Montastrea, followed by Poritids, Pocilloporids, and Acroporids. We conclude that artificial patch reefs with developed by coral fragments and natural coral recruitment is one of an alternative rehabilitation method in shallow reef with low visibility.

  10. Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types

    NASA Astrophysics Data System (ADS)

    Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.

    2014-05-01

    In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.

  11. How cold-water coral mounds modify their physical environment and therefore influence reef development

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Lavaleye, M.; van Haren, H.; Mohn, C.; Cyr, F.

    2015-12-01

    Cold-water coral framework acts as a sediment trap and as a result kilometres long and up to 360m high mound structures have formed on the SE Rockall Bank. Earlier observations showed that most of the mounds have their summits around 550 m water depth and summits have been reported as being covered with living coral. Pelagia cruises in 2012 and 2013 revealed completely new insights in mound development. Video transects across mounds with different morphology showed that summits of the highest and largest mounds are presently not covered by living coral as opposed to smaller and lower mounds which are covered with a thriving living coral framework. Measurements in the water column with CTD and near-bottom with benthic landers and thermistor string showed that turbulence is likely the most important factor influencing nutrient and food supply and thus coral growth. It seems that the large mounds have outgrown themselves and that their relatively large size and flat summits are limiting turbulence, thereby limiting oxygen, nutrient and food replenishment. Redistribution of nutrients, oxygen and food is vital for ecosystem functioning and reef development. The presence of a healthy coral cover on the summits of the small mounds was also shown by the vertical mound growth rate measured in sediment cores. These showed fourfold higher sedimentation rates during the Holocene on small mounds compared to highest mounds.

  12. Depth and coral cover drive the distribution of a coral macroborer across two reef systems.

    PubMed

    Maher, Rebecca L; Johnston, Michelle A; Brandt, Marilyn E; Smith, Tyler B; Correa, Adrienne M S

    2018-01-01

    Bioerosion, the removal of calcium carbonate from coral frameworks by living organisms, influences a variety of reef features, from their topographic complexity to the net balance of carbonate budgets. Little is known, however, about how macroborers, which bore into reef substrates leaving traces greater than 0.1 mm diameter, are distributed across coral reefs, particularly reef systems with high (>50%) stony coral cover or at mesophotic depths (≥30 m). Here, we present an accurate and efficient method for quantifying macroborer densities from stony coral hosts via image analysis, using the bioeroding barnacle, Lithotrya dorsalis, and its host coral, Orbicella franksi, as a case study. We found that in 2014, L. dorsalis densities varied consistently with depth and host percent cover in two Atlantic reef systems: the Flower Garden Banks (FGB, northwest Gulf of Mexico) and the U.S. Virgin Islands (USVI). Although average barnacle density was nearly 4.5 times greater overall in the FGB than in the USVI, barnacle density decreased with depth in both reef regions. Barnacle density also scaled negatively with increasing coral cover in the study areas, suggesting that barnacle populations are not strictly space-limited in their distribution and settlement opportunities. Our findings suggest that depth and host coral cover, and potentially, local factors may strongly influence the abundance of macroborers, and thus the rate of CaCO3 loss, in a given reef system. Our image analysis method for quantifying macroborers can be standardized across historical and modern reef records to better understand how borers impact host growth and reef health.

  13. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    NASA Astrophysics Data System (ADS)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean-atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean-atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in greenhouse gas emissions can be achieved within the next two to three decades, maximizing coral survivorship during this time may be critical to ensuring healthy reefs can recover in the long term.

  14. From artificial structures to self-sustaining oyster reefs

    NASA Astrophysics Data System (ADS)

    Walles, Brenda; Troost, Karin; van den Ende, Douwe; Nieuwhof, Sil; Smaal, Aad C.; Ysebaert, Tom

    2016-02-01

    Coastal ecosystems are increasingly recognized as essential elements within coastal defence schemes and coastal adaptation. The capacity of coastal ecosystems, like marshes and oyster reefs, to maintain their own habitat and grow with sea-level rise via biophysical feedbacks is seen as an important advantage of such systems compared to man-made hard engineering structures. Providing a suitable substrate for oysters to settle on offers a kick-start for establishment at places where they were lost or are desirable for coastal protection. Accumulation of shell material, through recruitment and growth, is essential to the maintenance of oyster reefs as it provides substrate for new generations (positive feedback loop), forming a self-sustainable structure. Insight in establishment, survival and growth thresholds and knowledge about the population dynamics are necessary to successfully implement oyster reefs in coastal defence schemes. The aim of this paper is to investigate whether artificial Pacific oyster reefs develop into self-sustaining oyster reefs that contribute to coastal protection. Reef development was investigated by studying recruitment, survival and growth rates of oysters on artificial oyster reefs in comparison with nearby natural Pacific oyster reefs. The artificial reef structure successfully offered substrate for settlement of oysters and therefore stimulated reef formation. Reef development, however, was hampered by local sedimentation and increasing tidal emersion. Tidal emersion is an important factor that can be used to predict where artificial oyster reefs have the potential to develop into self-sustaining reefs that could contribute to coastal protection, but it is also a limiting factor in using oyster reefs for coastal protection.

  15. RESEARCH: Influence of Social, Biophysical, and Managerial Conditions on Tourism Experiences Within the Great Barrier Reef World Heritage Area.

    PubMed

    Shafer; Inglis

    2000-07-01

    / Managing protected areas involves balancing the enjoyment of visitors with the protection of a variety of cultural and biophysical resources. Tourism pressures in the Great Barrier Reef World Heritage Area (GBRWHA) are creating concerns about how to strike this balance in a marine environment. Terrestrial-based research has led to conceptual planning and management frameworks that address issues of human use and resource protection. The limits of acceptable change (LAC) framework was used as a conceptual basis for a study of snorkeling at reef sites in the GBRWHA. The intent was to determine if different settings existed among tourism operators traveling to the reef and, if so, to identify specific conditions relating to those settings. Snorkelers (N = 1475) traveling with tourism operations of different sizes who traveled to different sites completed surveys. Results indicated that snorkelers who traveled with larger operations (more people and infrastructure) differed from those traveling with smaller operations (few people and little on-site infrastructure) on benefits received and in the way that specific conditions influenced their enjoyment. Benefits related to nature, escape, and family helped to define reef experiences. Conditions related to coral, fish, and operator staff had a positive influence on the enjoyment of most visitors but, number of people on the trip and site infrastructure may have the greatest potential as setting indicators. Data support the potential usefulness of visitor input in applying the LAC concept to a marine environment where tourism and recreational uses are rapidly changing.

  16. Carbon Cycle Model of a Hawaiian Barrier Reef under Rising Ocean Acidification and Temperature Conditions of the Anthropocene

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.

    2015-12-01

    A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 ­concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA and rising temperatures, the surface waters could switch from being a present-day source of CO2 to the atmosphere to a future sink. This ecosystem specific model can be applied to any reef system where data are available to constrain the initial model state and is a powerful tool for examining future changes in coral reef carbon budgets.

  17. Developing a multi-stressor gradient for coral reefs

    EPA Science Inventory

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  18. Kenya.

    PubMed

    Obura, D O

    2001-12-01

    The Kenya coast is bathed by the northward-flowing warm waters of the East Africa Coastal Current, located between latitudes 1 and 5 degrees S. With a narrow continental shelf, the coastal marine environments are dominated by coral reefs, seagrass beds and mangroves, with large expanses of sandy substrates where river inputs from Kenya's two largest rivers, the Tana and Athi rivers, prevent the growth of coral reefs. The northern part of the coast is seasonally influenced by upwelling waters of the Somali Current, resulting in lower water temperatures for part of the year. The coast is made up of raised Pleistocene reefs on coastal plains and hills of sedimentary origin, which support native habitats dominated by scrub bush and remnant pockets of the forests that used to cover East Africa and the Congo basin. The marine environment is characterized by warm tropical conditions varying at the surface between 25 degrees C and 31 degrees C during the year, stable salinity regimes, and moderately high nutrient levels from terrestrial runoff and groundwater. The semi-diurnal tidal regime varies from 1.5 to 4 m amplitude from neap to spring tides, creating extensive intertidal platform and rocky-shore communities exposed twice-daily during low tides. Fringing reef crests dominate the whole southern coast and parts of the northern coast towards Somalia, forming a natural barrier to the wave energy from the ocean. Coral reefs form the dominant ecosystem along the majority of the Kenya coast, creating habitats for seagrasses and mangroves in the lagoons and creeks protected by the reef crests. Kenya's marine environment faces a number of threats from the growing coastal human population estimated at just under three million in 2000. Extraction of fish and other resources from the narrow continental shelf, coral reef and mangrove ecosystems increases each year with inadequate monitoring and management structures to protect the resource bases. Coastal development in urban and tourist centers proceeds with little regard for environmental and social impacts. With a faltering economy, industrial development in Mombasa proceeds with few checks on pollution and other impacts. In 1998 Kenya's coral reefs suffered 50-80% mortality from the El Niño-related coral bleaching event that affected the entire Indian Ocean. The institutional, human resource and legal infrastructure for managing the coastal environment has in the past been low, however these are rapidly improving with the revitalization of national institutions and the passing in 1999 of an Environment Act. Marine Protected Areas are the key tool currently used in management of marine ecosystems, and focus principally on coral reefs and biodiversity protection. New initiatives are underway to improve application of fisheries regulations, and to use Integrated Coastal Area Management (ICAM) as a framework for protecting marine and coastal environments.

  19. Pennsylvanian stratigraphic reefs in Kansas, some modern comparisons and implications

    USGS Publications Warehouse

    Heckel, P.H.

    1972-01-01

    Broad platformlike buildups in the Stanton Limestone in southeastern Kansas are composed primarily of lime mud and phylloid algae and are rimmed with skeletal calcarenite composed largely of echinoderm and algal debris. Bordering the buildups are large (1??30 km) channels, lined or filled with similar calcarenite, and a broader basin containing shaly skeletal calcilutite. Grain abrasion and spar cement in the rimming calcarenites indicate water agitation and suggest wave resistance of the buildups during growth. Wave resistance may have been provided by 1) stalked echinoderms, which are resilient when alive and bind sediment with their roots, and also by 2) early drusy cementation of loose sediment to a coherent mass. Comparison to modern channel-separated buildups in the Persian Gulf and the Great Barrier Reef complex brings out the relative significance of organic frameworks in these different geologic settings. Recognized organic frameworks range from absent or insignificant in the Pennsylvanian examples through locally present but insignificant in the Persian Gulf, to apparently important in maintaining the buildups in the Great Barrier Reef. All three examples, however, exhibit patterns of original hydrodynamic control over initiation and gross form of the buildups. Determining significance of organic frameworks to overall buildup growth involves examining both their positions relative to evidence of wave action and the nature of binding in contemporaneous talus produced by wave action on the buildup. ?? 1972 Ferdinand Enke Verlag Stuttgart.

  20. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments.

    PubMed

    Gittins, John R; D'Angelo, Cecilia; Oswald, Franz; Edwards, Richard J; Wiedenmann, Jörg

    2015-01-01

    The genomic framework that enables corals to adjust to unfavourable conditions is crucial for coral reef survival in a rapidly changing climate. We have explored the striking intraspecific variability in the expression of coral pigments from the green fluorescent protein (GFP) family to elucidate the genomic basis for the plasticity of stress responses among reef corals. We show that multicopy genes can greatly increase the dynamic range over which corals can modulate transcript levels in response to the light environment. Using the red fluorescent protein amilFP597 in the coral Acropora millepora as a model, we demonstrate that its expression increases with light intensity, but both the minimal and maximal gene transcript levels vary markedly among colour morphs. The pigment concentration in the tissue of different morphs is strongly correlated with the number of gene copies with a particular promoter type. These findings indicate that colour polymorphism in reef corals can be caused by the environmentally regulated expression of multicopy genes. High-level expression of amilFP597 is correlated with reduced photodamage of zooxanthellae under acute light stress, supporting a photoprotective function of this pigment. The cluster of light-regulated pigment genes can enable corals to invest either in expensive high-level pigmentation, offering benefits under light stress, or to rely on low tissue pigment concentrations and use the conserved resources for other purposes, which is preferable in less light-exposed environments. The genomic framework described here allows corals to pursue different strategies to succeed in habitats with highly variable light stress levels. In summary, our results suggest that the intraspecific plasticity of reef corals' stress responses is larger than previously thought. © 2014 The Authors Molecular Ecology Published by John Wiley & Sons Ltd.

  1. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  2. Repeated invasions into the twilight zone: evolutionary origins of a novel assemblage of fishes from deep Caribbean reefs.

    PubMed

    Tornabene, Luke; Van Tassell, James L; Robertson, D Ross; Baldwin, Carole C

    2016-08-01

    Mesophotic and deeper reefs of the tropics are poorly known and underexplored ecosystems worldwide. Collectively referred to as the 'twilight zone', depths below ~30-50 m are home to many species of reef fishes that are absent from shallower depths, including many undescribed and endemic species. We currently lack even a basic understanding of the diversity and evolutionary origins of fishes on tropical mesophotic reefs. Recent submersible collections in the Caribbean have provided new specimens that are enabling phylogenetic reconstructions that incorporate deep-reef representatives of tropical fish genera. Here, we investigate evolutionary depth transitions in the family Gobiidae (gobies), the most diverse group of tropical marine fishes. Using divergence-time estimation coupled with stochastic character mapping to infer the timing of shallow-to-deep habitat transitions in gobies, we demonstrate at least four transitions from shallow to mesophotic depths. Habitat transitions occurred in two broad time periods (Miocene, Pliocene-Pleistocene), and may have been linked to the availability of underutilized niches, as well as the evolution of morphological/behavioural adaptations for life on deep reefs. Further, our analysis shows that at least three evolutionary lineages that invaded deep habitats subsequently underwent speciation, reflecting another unique mode of radiation within the Gobiidae. Lastly, we synthesize depth distributions for 95 species of Caribbean gobies, which reveal major bathymetric faunal breaks at the boundary between euphotic and mesophotic reefs. Ultimately, our study is the first rigorous investigation into the origin of Caribbean deep-reef fishes and provides a framework for future studies that utilize rare, deep-reef specimens. © 2016 John Wiley & Sons Ltd.

  3. Monitoring the impacts of Ocean Acidification on coral reef bioerosion: challenges, methods, recommendations

    NASA Astrophysics Data System (ADS)

    Enochs, I.; Manzello, D.; Carlton, R.

    2013-05-01

    Coral reef habitats exist as a dynamic balance between the additive process of calcification and the destructive effects of erosion. A disruption to either the positive or negative side of the coral reef carbonate budget can push a reef system towards rapid collapse. It is well understood that Ocean Acidification (OA) may impair calcification and emerging experimental evidence suggests that it will likely increase the erosive potential of a diverse suite of bioeroding taxa. This may lead to previously unforeseen scenarios where reef framework degradation occurs at a faster pace than that predicted by more simplistic models, resulting from the multifaceted impacts of both slower coral growth and enhanced rates of habitat erosion. As such, it is of paramount importance that monitoring plans tasked with assessing reef resilience to climate change and OA incorporate methods for quantifying bioerosion. This is a complex undertaking as reef ecosystem bioerosion is the result of numerous behaviors, employed by diverse flora and fauna, operating at vastly different scales. Furthermore, these erosive processes are highly variable, dependent on seasonal fluctuations and differing between reef regions, species, individuals, and even the physical characteristics of the substrates acted upon. The strengths and weaknesses of existing bioerosion monitoring methodologies are discussed, ranging from quantification of single species erosion rates to multi-phyletic census-based approaches. Traditional techniques involving the weight change of carbonate blocks are compared alongside more modern methodologies such as micro computed tomography. Finally, recommendations are made for a comprehensive monitoring strategy, incorporating multiple methodologies in a time and cost-effective manner.

  4. The structure and composition of Holocene coral reefs in the Middle Florida Keys

    USGS Publications Warehouse

    Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.

    2016-07-21

    The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published records of the Holocene history of reefs in the region. The objectives of the present study were to (1) provide general descriptions of unpublished core records from Alligator Reef and (2) collect and describe new Holocene reef cores from two additional locations in the Middle Keys: Sombrero and Tennessee Reefs.

  5. 78 FR 20292 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... for comments. SUMMARY: NMFS proposes to implement management measures described in a framework action... snapper framework action. Management Measures Contained in This Proposed Rule This rule would set the 2013... Fishery of the Gulf of Mexico; Red Snapper Management Measures AGENCY: National Marine Fisheries Service...

  6. ReefLink Database: A decision support tool for Linking Coral Reefs and Society Through Systems Thinking

    EPA Science Inventory

    Coral reefs provide the ecological foundation for productive and diverse fish and invertebrate communities that support multibillion dollar reef fishing and tourism industries. Yet reefs are threatened by growing coastal development, climate change, and over-exploitation. A key i...

  7. Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks

    NASA Astrophysics Data System (ADS)

    Cyronak, Tyler; Schulz, Kai G.; Santos, Isaac R.; Eyre, Bradley D.

    2014-08-01

    Physical uptake of anthropogenic CO2 is the dominant driver of ocean acidification (OA) in the open ocean. Due to expected decreases in calcification and increased dissolution of CaCO3 framework, coral reefs are thought to be highly susceptible to OA. However, biogeochemical processes can influence the pCO2 and pH of coastal ecosystems on diel and seasonal time scales, potentially modifying the long-term effects of increasing atmospheric CO2. By compiling data from the literature and removing the effects of short-term variability, we show that the average pCO2 of coral reefs throughout the globe has increased ~3.5-fold faster than in the open ocean over the past 20 years. This rapid increase in pCO2 has the potential to enhance the acidification and predicted effects of OA on coral reef ecosystems. A simple model demonstrates that potential drivers of elevated pCO2 include additional anthropogenic disturbances beyond increasing global atmospheric CO2 such as enhanced nutrient and organic matter inputs.

  8. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event.

    PubMed

    Buglass, Salome; Donner, Simon D; Alemu I, Jahson B

    2016-03-15

    In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Palaeoecological records of coral community development on a turbid, nearshore reef complex: baselines for assessing ecological change

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.; Perry, C. T.; Smithers, S. G.; Morgan, K. M.; Santodomingo, N.; Johnson, K. G.

    2017-09-01

    Understanding past coral community development and reef growth is crucial for placing contemporary ecological and environmental change within appropriate reef-building timescales. On Australia's Great Barrier Reef (GBR), coral reefs situated within coastal inner-shelf zones are a particular priority. This is due to their close proximity to river point sources, and therefore susceptibility to reduced water quality discharged from coastal catchments, many of which have been modified following European settlement (ca. 1850 AD). However, the extent of water-quality decline and its impacts on the GBR's inner-shelf reefs remain contentious. In this study, palaeoecological coral assemblage records were developed for five proximal coral reefs situated within a nearshore turbid-zone reef complex on the central GBR. A total of 29 genera of Scleractinia were identified from the palaeoecological inventory of the reef complex, with key contributions to reef-building made by Acropora, Montipora, and Turbinaria. Discrete intervals pre- and post-dating European settlement, but associated with equivalent water depths, were identified using Bayesian age-depth modelling, enabling investigation of competing ideas of the main drivers of nearshore coral assemblage change. Specifically, we tested the hypotheses that changes in the composition of nearshore coral assemblages are: (1) intrinsically driven and linked to vertical reef development towards sea level, and (2) the result of changes in water quality associated with coastal river catchment modification. Our records found no discernible evidence of change in the generic composition of coral assemblages relative to European settlement. Instead, two distinctive depth-stratified assemblages were identified. This study demonstrates the robust nature of nearshore coral communities under reported water-quality decline and provides a useful context for the monitoring and assessment of ecological change on reefs located within the most nearshore turbid-zone environments of the central GBR.

  10. Temporal variation in development of ecosystem services from oyster reef restoration

    USGS Publications Warehouse

    LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.

    2014-01-01

    Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.

  11. Ocean acidification affects coral growth by reducing skeletal density.

    PubMed

    Mollica, Nathaniel R; Guo, Weifu; Cohen, Anne L; Huang, Kuo-Fang; Foster, Gavin L; Donald, Hannah K; Solow, Andrew R

    2018-02-20

    Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.

  12. Wave- and tidally-driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii

    USGS Publications Warehouse

    Storlazzi, C.D.; Ogston, A.S.; Bothner, Michael H.; Field, M.E.; Presto, M.K.

    2004-01-01

    The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1m) and its advection across the reef crest and onto the deeper fore reef. The time-series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.

  13. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis.

    PubMed

    Suggett, David J; Warner, Mark E; Leggat, William

    2017-10-01

    Coral reefs have entered an era of 'ecological crisis' as climate change drives catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). The phylogenetic diversity of Symbiodinium frequently corresponds to patterns of coral health and survival, but knowledge of functional diversity is ultimately necessary to reconcile broader ecological success over space and time. We explore here functional traits underpinning the complex biology of Symbiodinium that spans free-living algae to coral endosymbionts. In doing so we propose a mechanistic framework integrating the primary traits of resource acquisition and utilisation as a means to explain Symbiodinium functional diversity and to resolve the role of Symbiodinium in driving the stability of coral reefs under an uncertain future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multiple outer-reef tracts along the south Florida bank margin: Outlier reefs, a new windward-margin model

    USGS Publications Warehouse

    Lidz, Barbara H.; Hine, A.C.; Shinn, Eugene A.; Kindinger, Jack G.

    1991-01-01

    High-resolution seismic-reflection profiles off the lower Florida Keys reveal a multiple outlier-reef tract system ~0.5 to 1.5 km sea-ward of the bank margin. The system is characterized by a massive, outer main reef tract of high (28 m) unburied relief that parallels the margin and at least two narrower, discontinuous reef tracts of lower relief between the main tract and the shallow bank-margin reefs. The outer tract is ~0.5 to 1 km wide and extends a distance of ~57 km. A single pass divides the outer tract into two main reefs. The outlier reefs developed on antecedent, low-gradient to horizontal offbank surfaces, interpreted to be Pleistocene beaches that formed terracelike features. Radiocarbon dates of a coral core from the outer tract confirm a pre-Holocene age. These multiple outlier reefs represent a new windward-margin model that presents a significant, unique mechanism for progradation of carbonate platforms during periods of sea-level fluctuation. Infilling of the back-reef terrace basins would create new terraced promontories and would extend or "step" the platform seaward for hundreds of metres. Subsequent outlier-reef development would produce laterally accumulating sequences.

  15. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  16. Ocean acidification and warming will lower coral reef resilience

    PubMed Central

    Anthony, Kenneth R N; Maynard, Jeffrey A; Diaz-Pulido, Guillermo; Mumby, Peter J; Marshall, Paul A; Cao, Long; Hoegh-Guldberg, Ove

    2011-01-01

    Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local-scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local-scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the future is unclear. Here, we analyse quantitatively how different combinations of CO2 and fishing pressure on herbivores will affect the ecological resilience of a simplified benthic reef community, as defined by its capacity to maintain and recover to coral-dominated states. We use a dynamic community model integrated with the growth and mortality responses for branching corals (Acropora) and fleshy macroalgae (Lobophora). We operationalize the resilience framework by parameterizing the response function for coral growth (calcification) by ocean acidification and warming, coral bleaching and mortality by warming, macroalgal mortality by herbivore grazing and macroalgal growth via nutrient loading. The model was run for changes in sea surface temperature and water chemistry predicted by the rise in atmospheric CO2 projected from the IPCC's fossil-fuel intensive A1FI scenario during this century. Results demonstrated that severe acidification and warming alone can lower reef resilience (via impairment of coral growth and increased coral mortality) even under high grazing intensity and low nutrients. Further, the threshold at which herbivore overfishing (reduced grazing) leads to a coral–algal phase shift was lowered by acidification and warming. These analyses support two important conclusions: Firstly, reefs already subjected to herbivore overfishing and nutrification are likely to be more vulnerable to increasing CO2. Secondly, under CO2 regimes above 450–500 ppm, management of local-scale disturbances will become critical to keeping reefs within an Acropora-rich domain.

  17. Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions

    PubMed Central

    Cowman, Peter F.

    2014-01-01

    Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the ocean’s surface. Yet our understanding of how mechanistic processes have underpinned the generation of this diversity is limited. However, it has become clear that the biogeographic history of the marine tropics has played an important role in shaping the diversity of tropical reef fishes we see today. In the last decade, molecular phylogenies and age estimation techniques have provided a temporal framework in which the ancestral biogeographic origins of reef fish lineages have been inferred, but few have included fully sampled phylogenies or made inferences at a global scale. We are currently at a point where new sequencing technologies are accelerating the reconstruction and the resolution of the Fish Tree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity in the tropics? Here, I review the literature concerning the evolutionary history of reef-associated fishes from a biogeographic perspective. I summarize the major biogeographic and climatic events over the last 65 million years that have regionalized the tropical marine belt and what effect they have had on the molecular record of fishes and global biodiversity patterns. By examining recent phylogenetic trees of major reef associated groups, I identify gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish assemblages. Finally, I discuss questions that remain to be answered and new approaches to uncover the mechanistic processes that underpin the evolution of biodiversity on coral reefs. PMID:25431581

  18. Baseline data for evaluating development trajectory and provision of ecosystem services of created fringing oyster reefs in Vermilion Bay, Louisiana

    USGS Publications Warehouse

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Understanding the time frame in which ecosystem services (that is, water quality maintenance, shoreline protection, habitat provision) are expected to be provided is important when restoration projects are being designed and implemented. Restoration of three-dimensional shell habitats in coastal Louisiana and elsewhere presents a valuable and potentially self-sustaining approach to providing shoreline protection, enhancing nekton habitat, and providing water quality maintenance. As with most restoration projects, the development of expected different ecosystem services often occurs over varying time frames, with some services provided immediately and others taking longer to develop. This project was designed initially to compare the provision and development of ecosystem services by created fringing shoreline reefs in subtidal and intertidal environments in Vermilion Bay, Louisiana. Specifically, the goal was to test the null hypothesis that over time, the oyster recruitment and development of a sustainable oyster reef community would be similar at both intertidal and subtidal reef bases, and these sustainable reefs would in time provide similar shoreline stabilization, nekton habitat, and water quality services over similar time frames. Because the ecosystem services hypothesized to be provided by oyster reefs reflect long-term processes, fully testing the above-stated null hypothesis requires a longer-time frame than this project allowed. As such, this project was designed to provide the initial data on reef development and provision of ecosystem services, to identify services that may develop immediately, and to provide baseline data to allow for longer-term follow up studies tracking reef development over time. Unfortunately, these initially created reef bases (subtidal, intertidal) were not constructed as planned because of the Deepwater Horizon oil spill in April 2010, which resulted in reef duplicates being created 6 months apart. Further confounding the project were additional construction and restoration projects along the same shorelines which occurred between 2011 and June 2012. Because of constant activity near and around the reefs and continuing construction, development trajectories could not be compared among reef types at this time. This report presents the data collected at the sites over 3 years (2010–2012), describing only conditions and trends. In addition, these data provide an extensive and detailed dataset documenting initial conditions and initial ecosystem changes which will prove valuable in future data collection and analyses of reef development at this site. Data collection characterized the local water quality conditions (salinity, temperature, total suspended sediments, dissolved oxygen, chlorophyll a), adjacent marsh vegetation, soils, and shoreline position along the project shoreline at Vermilion Bay. During the study, marsh vegetation and soil characteristics were similar across the study area and did not change over time. Shoreline movement indicated shoreline loss at all sites, which varied by reefs. Water quality conditions followed expected seasonal patterns for this region, and no significant nonseasonal changes were measured throughout the study period. Despite oyster recruitment in fall 2010 and 2011, few if any oysters survived from the 2010 year class to 2012. At the last sampling of this project, some oysters recruited in fall 2011 survived through 2012, resulting in an on-reef density of 18.3 ± 2.1 individuals per square meter (mean size: 85.6 ± 2.2 millimeters). Because project goals were to compare reef development and provision of ecosystem services over time, as well as many of the processes identified for monitoring reflect long-term processes, results and data are presented only qualitatively, and trends or observations should be interpreted cautiously at this point. Measurable system responses to reef establishment require more time than was available for this study. These data provide a valuable baseline that can be ultimately used to help inform site selections for future restoration projects as well to further investigate the development trajectories of ecosystem provision of created reefs in this region.

  19. Suitability of oyster restoration sites along the Louisiana coast: Examining site and stock × site interaction

    USGS Publications Warehouse

    Schwarting Miller, Lindsay; La Peyre, Jerome F.; LaPeyre, Megan K.

    2017-01-01

    Recognition of the global loss of subtidal oyster reefs has led to a rise in reef restoration efforts, including in the Gulf of Mexico. Created reef success depends entirely on selecting a location that supports long-term oyster growth and survival, including the recruitment and survival of on-reef oysters. Significant changes in estuarine salinity through management of freshwater inflows and through changed precipitation patterns may significantly impact the locations of optimal oyster restoration sites. These rapid shifts in conditions necessitate a need to better understand both impacts to on-reef oyster growth and population development, and variation in oyster stock performance. Oyster growth, mortality, condition, and disease prevalence were examined in three different stocks of oysters located in protected cages, as well as oyster recruitment and mortality on experimental reef units in three different locations representing a salinity gradient, along the Louisiana Gulf coast in 2011 and 2012. Over a 2-y period, the high-salinity site had highest oyster growth rate in protected cages but demonstrated the least likelihood for reef development based on on-reef oyster population failure, likely because of predation-related mortality (high recruitment and 100% mortality). In contrast, the midsalinity site with moderate oyster growth and on-reef recruitment and low mortality demonstrated a higher likelihood for reef development. The lowest salinity site exhibited extreme variability in all oyster responses between years because of extreme variation in environmental conditions during the study, indicating a low likelihood of long-term reef development. Whereas limited differences in stock performance between sites were found, the range of site environmental conditions tested was ultimately much lower than expected and may not have provided a wide enough range of conditions. In areas with limited, low recruitment, or rapidly changing environmental conditions, seeding with stocks selected for best growth and survival under expected future environmental conditions could better ensure reef development by using oyster populations best suited to the predicted conditions. With rapidly changing estuarine conditions from anthropogenic activities and climate change, siting of oyster reef restoration incorporating both oyster population dynamics and in situ biotic and abiotic interactions is critical in better directing site selection for reef restoration efforts.

  20. Linking Rock Magnetic Parameters and Tropical Paleoclimate in Postglacial Carbonates of the Tahitian Coral Reef

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.; Lund, S.; Camoin, G.; Thouveny, N.

    2009-12-01

    In areas far away from active plate boundaries and previously glaciated regions, ecologically sensitive coral reefs provide an ideal laboratory for studying the timing and extent of deglaciation events as well as climatic change/variability at sub-millennial timescales. We have studied the Post Last-Glacial-Maximum (Post-LGM) coral reef terrace sediments recovered from the island of Tahiti on IODP Expedition 310. Samples for magnetic analysis were obtained from 632 meters of core from three reef tracts (Maraa, Tiarei, Faaa) surrounding the island (37 holes at 22 sites). The Post-LGM sediments are composed of >95% carbonate residing in a mixture of macroscopic framework corals, encrusting coralline algae, and bacterial microbialites (60% of the total core volume). Detailed paleomagnetic and rock magnetic measurements indicate that the microbialites carry a strong and stable natural magnetic remanence residing almost entirely in titanomagnetite derived from the Tahitian volcanic edifice. Within each tract, paleomagnetic results (inclination, relative paleointensity) were correlated to build a composite magnetic stratigraphy, which we could then compile with radiocarbon dates to develop an absolute chronostratigraphy. At the Maraa tract, for example, we use 54 radiocarbon dates to date our composite section to 7,500 to 13,500 cal. ybp. and demonstrate that the reef developed in a smooth and coherent manner over this interval. Overlaying the chronostratigraphy on measurements of the variation in magnetic properties including susceptibility, ARM, and IRM we can monitor changes in concentration, composition and grainsize of the influx of volcanogenic sediment over time. The ARM, IRM, and CHI intensities (normalized to sample weight) show a single strong peak between~9-10,000 years ago. We also observe a ~500-yr cyclicity in magnetic grain size and a clear increase in grain size associated with the Younger Dryas that we interpret to be related to rainfall variability. The rainfall variability, driven on both a global and regional scale, ultimately results from changes in western Pacific sea-surface temperatures (SST) that drive the island monsoon. Comparison with other proxy data will allow us to build up a detailed climate picture of this key postglacial period.

  1. The continuing decline of coral reefs in Bahrain.

    PubMed

    Burt, John A; Al-Khalifa, Khalifa; Khalaf, Ebtesam; Alshuwaikh, Bassem; Abdulwahab, Ahmed

    2013-07-30

    Historically coral reefs of Bahrain were among the most extensive in the southern basin of the Arabian Gulf. However, Bahrain's reefs have undergone significant decline in the last four decades as a result of large-scale coastal development and elevated sea surface temperature events. Here we quantitatively surveyed six sites including most major coral reef habitats around Bahrain and a reef located 72 km offshore. Fleshy and turf algae now dominate Bahrain's reefs (mean: 72% cover), and live coral cover is low (mean: 5.1%). Formerly dominant Acropora were not observed at any site. The offshore Bulthama reef had the highest coral cover (16.3%) and species richness (22 of the 23 species observed, 13 of which were exclusive to this site). All reefs for which recent and historical data are available show continued degradation, and it is unlikely that they will recover under continuing coastal development and projected climate change impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Considering Species Tolerance to Climate Change in Conservation Management at Little Cayman's Coral Reefs

    NASA Astrophysics Data System (ADS)

    Camp, E.; Manfrino, C.; Smith, D.; Suggett, D.

    2013-05-01

    There is growing evidence demonstrating that climate change, notably increased frequency and intensity of thermal anomalies combined with ocean acidification, will negatively impact the future growth and viability of many reef systems, including those in the Caribbean. One key question that remains unanswered is whether or not there are management options aimed at protecting coral species from these threats. Little Cayman (Cayman Islands) provides a rare opportunity to investigate global climate stressors without the confounding impact of local anthropogenic stressors. Our research has focused on two climate change issues: Firstly, we have identified species-specific coral bleaching susceptibility (and the influence of regulation upon this susceptibility) to thermal anomalies. Species level of vulnerability to thermal anomalies can decrease when grown under variable temperature. Environmental variability may be key in influencing the susceptibility of corals to stress. The second part of our research has therefore addressed the variability in inorganic carbon chemistry that naturally occurs where certain reef building corals exist. We have identified how the inorganic carbon chemistry varies naturally among habitats and thus how corals within these habitats are potentially adapted to future acidification. Spatial, diurnal, lunar and seasonal variability have been identified as important factors with pCO2 values of up to 700-800 μatm and pH values as low as 7.801 for lagoon habitats, showing that some species are already being exposed to typical pCO2 and pH levels expected for the oceans in ~50 years' time. Using an eco-physiological approach, we are exploring how some reef-building corals are able to acclimate to more variable chemistry compared to others and whether this natural capacity installs increased tolerance to future acidification. These eco-physiological studies provide important information that can be utilized in a management framework. The aim of this framework will be to provide options to buffer or decrease the future impacts of global climate change on tropical coral reef systems.

  3. Novel tradable instruments in the conservation of coral reefs, based on the coral gardening concept for reef restoration.

    PubMed

    Rinkevich, Baruch

    2015-10-01

    Nearly all coral reefs bordering nations have experienced net losses in reef biodiversity, goods and services, even without considering the ever-developing global change impacts. In response, this overview wishes to reveal through prospects of active reef-restoration, the currently non-marketed or poorly marketed reef services, focusing on a single coral species (Stylophora pistillata). It is implied that the integration of equity capitals and other commodification with reef-restoration practices will improve total reef services. Two tiers of market-related activities are defined, the traditional first-tier instruments (valuating costs/gains for extracting tradable goods and services) and novel second-tier instruments (new/expanded monetary tools developed as by-products of reef restoration measures). The emerging new suite of economic mechanisms based on restoration methodologies could be served as an incentive for ecosystem conservation, enhancing the sum values of all services generated by coral reefs, where the same stocks of farmed/transplanted coral colonies will be used as market instruments. I found that active restoration measures disclose 12 classes of second-tier goods and services, which may partly/wholly finance restoration acts, bringing to light reef capitalizations that allow the expansion of markets with products that have not been considered before. The degree to which the second tier of market-related services could buffer coral-reef degradation is still unclear and would vary with different reef types and in various reef restoration scenarios; however, reducing the uncertainty associated with restoration. It is expected that the expansion of markets with the new products and the enhancement of those already existing will be materialized even if reef ecosystems will recover into different statuses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Developing a multi-stressor gradient for coral reefs | Science ...

    EPA Pesticide Factsheets

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  5. Development and implementation of coral reef biocriteria in U.S. jurisdictions.

    PubMed

    Bradley, Patricia; Fisher, William S; Bell, Heidi; Davis, Wayne; Chan, Valerie; LoBue, Charles; Wiltse, Wendy

    2009-03-01

    Coral reefs worldwide are declining at an alarming rate and are under continuous threat from both natural and anthropogenic environmental stressors. Warmer sea temperatures attributed to global climate change and numerous human activities at local scales place these valuable ecosystems at risk. Reefs provide numerous services, including shoreline protection, fishing, tourism and biological diversity, which are lost through physical damage, overfishing, and pollution. Pollution can be controlled under provisions of the Clean Water Act, but these options have not been fully employed to protect coral reefs. No U.S. jurisdiction has implemented coral reef biocriteria, which are narrative or quantitative water quality standards based on the condition of a biological resource or assemblage. The President's Ocean Action Plan directs the U.S. Environmental Protection Agency (EPA) to develop biological assessment methods and biological criteria for evaluating and maintaining the health of coral reef ecosystems. EPA has formed the Coral Reef Biocriteria Working Group (CRBWG) to foster development of coral reef biocriteria through focused research, evaluation and communication among Agency partners and U.S. jurisdictions. Ongoing CRBWG activities include development and evaluation of a rapid bioassessment protocol for application in biocriteria programs; development of a survey design and monitoring strategy for the U.S. Virgin Islands; comprehensive reviews of biocriteria approaches proposed by states and territories; and assembly of data from a variety of monitoring programs for additional metrics. Guidance documents are being prepared to assist U.S. jurisdictions in reaching protective and defensible biocriteria.

  6. Testing new approaches to carbonate system simulation at the reef scale: the ReefSam model first results, application to a question in reef morphology and future challenges.

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Webster, Jody

    2016-04-01

    Numerical simulation of the stratigraphy and sedimentology of carbonate systems (carbonate forward stratigraphic modelling - CFSM) provides significant insight into the understanding of both the physical nature of these systems and the processes which control their development. It also provides the opportunity to quantitatively test conceptual models concerning stratigraphy, sedimentology or geomorphology, and allows us to extend our knowledge either spatially (e.g. between bore holes) or temporally (forwards or backwards in time). The later is especially important in determining the likely future development of carbonate systems, particularly regarding the effects of climate change. This application, by its nature, requires successful simulation of carbonate systems on short time scales and at high spatial resolutions. Previous modelling attempts have typically focused on the scales of kilometers and kilo-years or greater (the scale of entire carbonate platforms), rather than at the scale of centuries or decades, and tens to hundreds of meters (the scale of individual reefs). Previous work has identified limitations in common approaches to simulating important reef processes. We present a new CFSM, Reef Sedimentary Accretion Model (ReefSAM), which is designed to test new approaches to simulating reef-scale processes, with the aim of being able to better simulate the past and future development of coral reefs. Four major features have been tested: 1. A simulation of wave based hydrodynamic energy with multiple simultaneous directions and intensities including wave refraction, interaction, and lateral sheltering. 2. Sediment transport simulated as sediment being moved from cell to cell in an iterative fashion until complete deposition. 3. A coral growth model including consideration of local wave energy and composition of the basement substrate (as well as depth). 4. A highly quantitative model testing approach where dozens of output parameters describing the reef morphology and development are compared with observational data. Despite being a test-bed and work in progress, ReefSAM was able to simulate the Holocene development of One Tree Reef in the Southern Great Barrier Reef (Australia) and was able to improve upon previous modelling attempts in terms of both quantitative measures and qualitative outputs, such as the presence of previously un-simulated reef features. Given the success of the model in simulating the Holocene development of OTR, we used it to quantitatively explore the effect of basement substrate depth and morphology on reef maturity/lagoonal filling (as discussed by Purdy and Gischer 2005). Initial results show a number of non-linear relationships between basement substrate depth, lagoonal filling and volume of sand produced on the reef rims and deposited in the lagoon. Lastly, further testing of the model has revealed new challenges which are likely to manifest in any attempt at reef-scale simulation. Subtly different sets of energy direction and magnitude input parameters (different in each time step but with identical probability distributions across the entire model run) resulted in a wide range of quantitative model outputs. Time step length is a likely contributing factor and the results of further testing to address this challenge will be presented.

  7. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings

    PubMed Central

    Morgan, Kyle M.; Perry, Chris T.; Smithers, Scott G.; Johnson, Jamie A.; Daniell, James J.

    2016-01-01

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km2), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R2 = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances. PMID:27432782

  8. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings.

    PubMed

    Morgan, Kyle M; Perry, Chris T; Smithers, Scott G; Johnson, Jamie A; Daniell, James J

    2016-07-19

    Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.

  9. Developing the Biological Condition Gradient (BCG), as a Tool for Describing the Condition of US Coral Reefs

    EPA Science Inventory

    Understanding effects of human activity on coral reefs requires knowing what characteristics constitute a high quality coral reef and identifying measurable criteria. The BCG is a conceptual model that describes how biological attributes of coral reefs change along a gradient of ...

  10. Lower permian reef-bank bodies’ characterization in the pre-caspian basin

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Wang, Yankun; Yin, Jiquan; Luo, Man; Liang, Shuang

    2018-02-01

    Reef-bank reservoir is one of the targets for exploration of marine carbonate rocks in the Pre-Caspian Basin. Within this basin, the reef-bank bodies were primarily developed in the subsalt Devonian-Lower Permian formations, and are dominated by carbonate platform interior and margin reef-banks. The Lower Permian reef-bank present in the eastern part of the basin is considered prospective. This article provides a sequence and sedimentary facies study utilizing drilling and other data, as well as an analysis and identification of the Lower Permian reef-bank features along the eastern margin of the Pre-Caspian Basin using sub-volume coherence and seismic inversion techniques. The results indicate that the sub-volume coherence technique gives a better reflection of lateral distribution of reefs, and the seismic inversion impedance enables the identification of reef bodies’ development phases in the vertical direction, since AI (impedance) is petrophysically considered a tool for distinguishing the reef limestone and the clastic rocks within the formation (limestone exhibits a relatively high impedance than clastic rock). With this method, the existence of multiple phases of the Lower Permian reef-bank bodies along the eastern margin of the Pre-Caspian Basin has been confirmed. These reef-bank bodies are considered good subsalt exploration targets due to their lateral connectivity from south to north, large distribution range and large scale.

  11. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    NASA Astrophysics Data System (ADS)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  12. Environmental quality and preservation; reefs, corals, and carbonate sands; guides to reef-ecosystem health and environment

    USGS Publications Warehouse

    Lidz, Barbara H.

    2001-01-01

    Introduction In recent years, the health of the entire coral reef ecosystem that lines the outer shelf off the Florida Keys has declined markedly. In particular, loss of those coral species that are the building blocks of solid reef framework has significant negative implications for economic vitality of the region. What are the reasons for this decline? Is it due to natural change, or are human activities (recreational diving, ship groundings, farmland runoff, nutrient influx, air-borne contaminants, groundwater pollutants) a contributing factor and if so, to what extent? At risk of loss are biologic resources of the reefs, including habitats for endangered species in shoreline mangroves, productive marine and wetland nurseries, and economic fisheries. A healthy reef ecosystem builds a protective offshore barrier to catastrophic wave action and storm surges generated by tropical storms and hurricanes. In turn, a healthy reef protects the homes, marinas, and infrastructure on the Florida Keys that have been designed to capture a lucrative tourism industry. A healthy reef ecosystem also protects inland agricultural and livestock areas of South Florida whose produce and meat feed much of the United States and other parts of the world. In cooperation with the National Oceanic and Atmospheric Administration's (NOAA) National Marine Sanctuary Program, the U.S. Geological Survey (USGS) continues longterm investigations of factors that may affect Florida's reefs. One of the first steps in distinguishing between natural change and the effects of human activities, however, is to determine how coral reefs have responded to past environmental change, before the advent of man. By so doing, accurate scientific information becomes available for Marine Sanctuary management to understand natural change and thus to assess and regulate potential human impact better. The USGS studies described here evaluate the distribution (location) and historic vitality (thickness) of Holocene reefs in South Florida, relative to type of underlying bedrock morphology, and their varied natural response to rising sea level. These studies also assess movement and accumulation of sands, relative to direction of prevailing energy, and origin of the component sand grains. Geophysical data collected with highresolution sound-wave instruments that provide pictures of the sediment and bedrock are used to interpret sediment thickness. Reef thickness is determined by collecting limestone rock cores by drilling. Drill cores through reefs are used to identify the coral species that built them and to determine how reefs reacted to rising sea level. These data are supplemented by using isotope-dating techniques to derive the carbon-14 (C14) age of the corals and mangrove peat in the cores. Mangrove peat forms in very shallow water and at the shoreline but is found today buried beneath offshore reefs.

  13. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  14. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    PubMed Central

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660

  15. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.

    PubMed

    Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura

    2014-05-13

    The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  16. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation

    USGS Publications Warehouse

    Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura

    2014-01-01

    The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.

  17. Five-year evaluation of habitat remediation in Thunder Bay, Lake Huron: Comparison of constructed reef characteristics that attract spawning lake trout

    USGS Publications Warehouse

    Marsden, J. Ellen; Binder, Thomas R.; Johnson, James; He, Ji; Dingledine, Natalie; Adams, Janice; Johnson, Nicholas S.; Buchinger, Tyler J.; Krueger, Charles C.

    2016-01-01

    Degradation of aquatic habitats has motivated construction and research on the use of artificial reefs to enhance production of fish populations. However, reefs are often poorly planned, reef design characteristics are not evaluated, and reef assessments are short-term. We constructed 29 reefs in Thunder Bay, Lake Huron, in 2010 and 2011 to mitigate for degradation of a putative lake trout spawning reef. Reefs were designed to evaluate lake trout preferences for height, orientation, and size, and were compared with two degraded natural reefs and a high-quality natural reef (East Reef). Eggs and fry were sampled on each reef for five years post-construction, and movements of 40 tagged lake trout were tracked during three spawning seasons using acoustic telemetry. Numbers of adults and spawning on the constructed reefs were initially low, but increased significantly over the five years, while remaining consistent on East Reef. Adult density, egg deposition, and fry catch were not related to reef height or orientation of the constructed reefs, but were related to reef size and adjacency to East Reef. Adult lake trout visited and spawned on all except the smallest constructed reefs. Of the metrics used to evaluate the reefs, acoustic telemetry produced the most valuable and consistent data, including fine-scale examination of lake trout movements relative to individual reefs. Telemetry data, supplemented with diver observations, identified several previously unknown natural spawning sites, including the high-use portions of East Reef. Reef construction has increased the capacity for fry production in Thunder Bay without apparently decreasing the use of the natural reef. Results of this project emphasize the importance of multi-year reef assessment, use of multiple assessment methods, and comparison of reef characteristics when developing artificial reef projects. Specific guidelines for construction of reefs focused on enhancing lake trout spawning are suggested.

  18. Holocene reef growth over irregular Pleistocene karst confirms major influence of hydrodynamic factors on Holocene reef development

    NASA Astrophysics Data System (ADS)

    Salas-Saavedra, Marcos; Dechnik, Belinda; Webb, Gregory E.; Webster, Jody M.; Zhao, Jian-xin; Nothdurft, Luke D.; Clark, Tara R.; Graham, Trevor; Duce, Stephanie

    2018-01-01

    Many factors govern reef growth through time, but their relative contributions are commonly poorly known. A prime example is the degree to which modern reef morphology is controlled by contemporary hydrodynamic settings or antecedent topography. Fortunately, reefs record essential information for interpreting palaeoclimate and palaeoenvironment within their structure as they accrete in response to environmental change. Five new cores recovered from the margin of Heron Reef, southern Great Barrier Reef (GBR), provide new insights into Holocene reef development and relationships between Holocene reefs and Pleistocene antecedent topography, suggesting much more irregular underlying topography than expected based on the configuration of the overlying modern reef margin. Cores were recovered to depths of 30 m and 94 new 230Th ages document growth between 8408 ± 24 and 2222 ± 16 yrs. BP. One core penetrated Pleistocene basement at ∼15.3 m with Holocene reef growth initiated by ∼8.4 ka BP. However, 1.83 km west along the same smooth margin, four cores failed to penetrate Pleistocene basement at depths between 20 and 30 m, suggesting that the margin at this location overlies a karst valley, or alternatively, the antecedent platform does not extend there. A 48 m-long margin-perpendicular transect of three cores documents the filling of this topographic low, at least 30 m beneath the current reef top, with seaward lateral accretion at a rate of 34.3 m/ka. Cores indicate steady vertical and lateral accretion between 3.2 and 1.8 ka BP with no evidence of the hiatus in reef flat progradation seen in most other offshore reefs of the GBR at that time. These cores suggest that the relative protection afforded by the valley allowed for unconsolidated sediment to accumulate, enabling continuous progradation even when other areas of the reef flat appear to have 'turned off'. Additionally, the cores suggest that although reefs in the southern GBR clearly owe their location to Pleistocene antecedent topography, modern reef morphology at sea level primarily reflects the interaction of Holocene reef communities with contemporary hydrodynamics.

  19. Self-generated morphology in lagoon reefs

    PubMed Central

    Hamblin, Michael G.

    2015-01-01

    The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. PMID:26175962

  20. Depth as an Organizing Force in Pocillopora damicornis: Intra-Reef Genetic Architecture

    PubMed Central

    Gorospe, Kelvin D.; Karl, Stephen A.

    2015-01-01

    Relative to terrestrial plants, and despite similarities in life history characteristics, the potential for corals to exhibit intra-reef local adaptation in the form of genetic differentiation along an environmental gradient has received little attention. The potential for natural selection to act on such small scales is likely increased by the ability of coral larval dispersal and settlement to be influenced by environmental cues. Here, we combine genetic, spatial, and environmental data for a single patch reef in Kāne‘ohe Bay, O‘ahu, Hawai‘i, USA in a landscape genetics framework to uncover environmental drivers of intra-reef genetic structuring. The genetic dataset consists of near-exhaustive sampling (n = 2352) of the coral, Pocillopora damicornis at our study site and six microsatellite genotypes. In addition, three environmental parameters – depth and two depth-independent temperature indices – were collected on a 4 m grid across 85 locations throughout the reef. We use ordinary kriging to spatially interpolate our environmental data and estimate the three environmental parameters for each colony. Partial Mantel tests indicate a significant correlation between genetic relatedness and depth while controlling for space. These results are also supported by multi-model inference. Furthermore, spatial Principle Component Analysis indicates a statistically significant genetic cline along a depth gradient. Binning the genetic dataset based on size-class revealed that the correlation between genetic relatedness and depth was significant for new recruits and increased for larger size classes, suggesting a possible role of larval habitat selection as well as selective mortality in structuring intra-reef genetic diversity. That both pre- and post-recruitment processes may be involved points to the adaptive role of larval habitat selection in increasing adult survival. The conservation importance of uncovering intra-reef patterns of genetic diversity is discussed. PMID:25806798

  1. Possible modes of coral-reef development at Molokai, Hawaii, inferred from seismic-reflection profiling

    USGS Publications Warehouse

    Barnhardt, W.A.; Richmond, B.M.; Grossman, E.E.; Hart, P.

    2005-01-01

    High-resolution, seismic-reflection data elucidate the late Quaternary development of the largest coral-reef complex in the main Hawaiian Islands. Six acoustic facies were identified from reflection characteristics and lithosome geometry. An extensive, buried platform with uniformly low relief was traced beneath fore-reef and marginal shelf environments. This highly reflective surface dips gently seaward to ???130 m depth and locally crops out on the seafloor. It probably represents a wave-cut platform or ancient reef flat. We propose alternative evolutionary models, in which sea-level changes have modulated the development of reef systems, to explain the observed stratigraphic relationships. The primary difference between the models is the origin of the underlying antecedent surface, which arguably could have formed during either regression/lowstand or subsequent transgression. 

  2. Hurricanes, coral reefs and rainforests: resistance, ruin and recovery in the Caribbean

    USGS Publications Warehouse

    Lugo, Ariel E.; Rogers, Caroline S.; Nixon, Scott W.

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some reefs from fully developed hurricane waves. While storms may produce dramatic local reef damage, they appear to have little impact on the ability of coral reefs to provide food or habitat for fish and other animals. Rainforests experience an enormous increase in wind energy during hurricanes with dramatic structural changes in the vegetation. The resulting changes in forest microclimate are larger than those on reefs and the loss of fruit, leaves, cover, and microclimate has a great impact on animal populations. Recovery of many aspects of rainforest structure and function is rapid, though there may be long-term changes in species composition. While resistance and repair have maintained reefs and rainforests in the past, human impacts may threaten their ability to survive.

  3. Linking social, ecological, and physical science to advance natural and nature-based protection for coastal communities.

    PubMed

    Arkema, Katie K; Griffin, Robert; Maldonado, Sergio; Silver, Jessica; Suckale, Jenny; Guerry, Anne D

    2017-07-01

    Interest in the role that ecosystems play in reducing the impacts of coastal hazards has grown dramatically. Yet the magnitude and nature of their effects are highly context dependent, making it difficult to know under what conditions coastal habitats, such as saltmarshes, reefs, and forests, are likely to be effective for saving lives and protecting property. We operationalize the concept of natural and nature-based solutions for coastal protection by adopting an ecosystem services framework that propagates the outcome of a management action through ecosystems to societal benefits. We review the literature on the basis of the steps in this framework, considering not only the supply of coastal protection provided by ecosystems but also the demand for protective services from beneficiaries. We recommend further attention to (1) biophysical processes beyond wave attenuation, (2) the combined effects of multiple habitat types (e.g., reefs, vegetation), (3) marginal values and expected damage functions, and, in particular, (4) community dependence on ecosystems for coastal protection and co-benefits. We apply our approach to two case studies to illustrate how estimates of multiple benefits and losses can inform restoration and development decisions. Finally, we discuss frontiers for linking social, ecological, and physical science to advance natural and nature-based solutions to coastal protection. © 2017 New York Academy of Sciences.

  4. Assessing baseline levels of coral health in a newly established marine protected area in a global scuba diving hotspot.

    PubMed

    Hein, Margaux Y; Lamb, Joleah B; Scott, Chad; Willis, Bette L

    2015-02-01

    While coral reefs are increasingly threatened worldwide, they are also increasingly used for recreational activities. Given the environmental and socio-economic significance of coral reefs, understanding the links between human activities and coral health and evaluating the efficacy of marine protected areas (MPAs) as a management regime to prevent further deterioration are critically important. The aim of this study was to quantify indicators of coral health at sites inside and outside a newly rezoned MPA framework in the dive tourism hotspot of Koh Tao, Thailand. We found that patterns in the health and diversity of coral communities one year on did not reflect the protected status conferred by newly zoned MPAs, but instead reflected past history of recreational use around the island. Sites characterised as past high-use sites had lower mean percent cover of hard corals overall and of corals in the typically disease- and disturbance-susceptible family Acroporidae, but higher mean cover of species in the more weedy family Agariciidae. Past high use sites also had higher mean prevalence of infectious diseases and other indicators of compromised health. Sites within the newly established MPAs are currently subjected to higher levels of environmental and anthropogenic pressures, with sedimentation, algal overgrowth, feeding scars from Drupella snails, and breakage particularly prevalent compared to sites in non-MPA areas. Given the greater prevalence of these factors within protected sites, the capacity of the MPA framework to effectively prevent further deterioration of Koh Tao's reefs is unclear. Nevertheless, our study constitutes a strong baseline for future long-term evaluations of the potential of MPAs to maintain coral health and diversity on highly threatened reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Environmental Impact Assessment in the marine environment: A comparison of legal frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Flávia, E-mail: f.c.diasguerra@vu.nl; Liga para a Protecção da Natureza, 1500-124 Lisboa; Grilo, Catarina

    Environmental Impact Assessment (EIA) is a well-established practice in most developed countries, even though its application to projects in the marine environment is at a much earlier stage of development. We use the Portuguese example to address marine EIA legislation since its exclusive economic zone (EEZ) is currently the third largest in the European Union and its EIA legislation does not require various offshore activities with potentially negative environmental impacts to undergo EIA before being licensed. This paper aims to determine whether three types of projects implemented within Portuguese maritime zones – artificial reefs using sunken ships, hydrocarbon prospecting andmore » wave-energy generation – would benefit from application of an appropriately designed EIA. We have conducted a structured review of EIA legal provisions from seven other countries, and considered whether a full EIA was required for each project type. Consequently, 12 Environmental Impact Statements (EIS) have been compared to identify patterns of (dis)similarity across countries and project types. Additionally, we identified key descriptors and predicted impacts for each project type referred to in their EIS. The main conclusion is that ultimately all three projects would benefit from mandatory EIA in Portugal. This paper is relevant for countries with large maritime areas and underdeveloped marine EIA legislation, helping improve international policy-making relating to these three types of marine projects. - Highlights: • EIA is not mandatory for some project types developed in Portuguese maritime zones. • Artificial reefs, oil&gas prospecting and wave-energy licensing differ in 8 countries. • EIA should be mandatory in Portugal for artificial reefs and oil&gas prospecting. • However, an AEInc approach is enough for wave-energy projects in Portugal. • Findings could be extended to other EU countries with extensive maritime zones.« less

  6. Exploring the hidden shallows: extensive reef development and resilience within the turbid nearshore Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Perry, Chris; Smithers, Scott; Johnson, Jamie; Daniell, James

    2016-04-01

    Mean coral cover on Australia's Great Barrier Reef (GBR) has reportedly declined by over 15% during the last 30 years. Climate change events and outbreaks of coral disease have been major drivers of degradation, often exacerbating the stresses caused by localised human activities (e.g. elevated sediment and nutrient inputs). Here, however, in the first assessment of nearshore reef occurrence and ecology across meaningful spatial scales (15.5 sq km), we show that areas of the GBR shelf have exhibited strong intra-regional variability in coral resilience to declining water quality. Specifically, within the highly-turbid "mesophotic" nearshore (<10 m depth) of the central GBR, where terrigenous seafloor sediments are persistently resuspended by wave processes, coral cover averages 38% (twice that reported on mid- and outer-shelf reefs). Of the mapped area, 11% of the seafloor has distinct reef or coral community cover, a density comparable to that measured across the entire GBR shelf (9%). Identified coral taxa (21 genera) exhibited clear depth-stratification corresponding closely to light attenuation and seafloor topography. Reefs have accreted relatively rapidly during the late-Holocene (1.8-3.0 mm y-1) with rates of vertical reef growth influenced by intrinsic shifts in coral assemblages associated with reef development. Indeed, these shallow-water reefs may have similar potential as refugia from large-scale disturbance as their deep-water (>30 m) "mesophotic" equivalents, and also provide a basis from which to model future trajectories of reef growth within nearshore areas.

  7. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys.

    PubMed

    Manzello, Derek P; Enochs, Ian C; Kolodziej, Graham; Carlton, Renée; Valentino, Lauren

    2018-01-01

    The persistence of coral reef frameworks requires that calcium carbonate (CaCO 3 ) production by corals and other calcifiers outpaces CaCO 3 loss via physical, chemical, and biological erosion. Coral bleaching causes declines in CaCO 3 production, but this varies with bleaching severity and the species impacted. We conducted census-based CaCO 3 budget surveys using the established ReefBudget approach at Cheeca Rocks, an inshore patch reef in the Florida Keys, annually from 2012 to 2016. This site experienced warm-water bleaching in 2011, 2014, and 2015. In 2017, we obtained cores of the dominant calcifying coral at this site, Orbicella faveolata , to understand how calcification rates were impacted by bleaching and how they affected the reef-wide CaCO 3 budget. Bleaching depressed O. faveolata growth and the decline of this one species led to an overestimation of mean (± std. error) reef-wide CaCO 3 production by + 0.68 (± 0.167) to + 1.11 (± 0.236) kg m -2  year -1 when using the static ReefBudget coral growth inputs. During non-bleaching years, the ReefBudget inputs slightly underestimated gross production by - 0.10 (± 0.022) to - 0.43 (± 0.100) kg m -2  year -1 . Carbonate production declined after the first year of back-to-back bleaching in 2014, but then increased after 2015 to values greater than the initial surveys in 2012. Cheeca Rocks is an outlier in the Caribbean and Florida Keys in terms of coral cover, carbonate production, and abundance of O. faveolata , which is threatened under the Endangered Species Act. Given the resilience of this site to repeated bleaching events, it may deserve special management attention.

  8. Coral identity underpins architectural complexity on Caribbean reefs.

    PubMed

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  9. Conservation of coral reefs through active restoration measures: recent approaches and last decade progress.

    PubMed

    Rinkevich, Baruch

    2005-06-15

    The scientific discipline of active restoration of denuded coral reef areas has drawn much attention in the past decade as it became evident that this ecosystem does not often recover naturally from anthropogenic stress without manipulation. Essentially, the choices are eitherthe continuous degradation of the reefs or active restoration to encourage reef development. As a result, worldwide restoration operations during the past decade have been recognized as being a major tool for reef rehabilitation. This situation has also stirred discussions and debates on the various restoration measures suggested as management options, supplementary to the traditional conservation acts. The present essay reviews past decade's (1994-2004) approaches and advances in coral reef restoration. While direct coral transplantation is still the primer vehicle of operations used, the concept of in situ and ex situ coral nurseries (the gardening concept), where coral materials (nubbins, branches, spats) are maricultured to a size suitable for transplantation, has been gaining recognition. The use of nubbins (down to the size of a single or few polyps) has been suggested and employed as a unique technique for mass production of coral colonies. Restoration of ship grounding sites and the use of artificial reefs have become common tools for specific restoration needs. Substrate stabilization, 3-D structural consideration of developing colonies, and the use of molecular/biochemical tools are part of novel technology approaches developed in the past decade. Economic considerations for reef restoration have become an important avenue for evaluating success of restoration activities. It has been suggested that landscape restoration and restoration genetics are important issues to be studied. In the future, as coral reef restoration may become the dominant conservation act, there would be the need not only to develop improved protocols but also to define the conceptual bases.

  10. Recent and relict topography of Boo Bee patch reef, Belize

    USGS Publications Warehouse

    Halley, R.B.; Shinn, E.A.; Hudson, J.H.; Lidz, B.; Taylor, D.L.

    1977-01-01

    Five core borings were taken on and around Boo Bee Patch Reef to better understand the origin of such shelf lagoon reefs. The cores reveal 4 stages of development: (1) subaerial exposure of a Pleistocene "high" having about 8 meters of relief, possibly a Pleistocene patch reef; (2) deposition of peat and impermeable terrigenous clay 3 meters thick around the high; (3) initiation of carbonate sediment production by corals and algae on the remaining 5 meters of hard Pleistocene topography and carbonate mud on the surrounding terrigenous clay; and (4) accelerated organic accumulation on the patch reef. Estimates of patch reef sedimentation rates (1.6 m/1000 years) are 3 to 4 times greater than off-reef sedimentation rates (0.4-0.5 m/1000 years). During periods of Pleistocene sedimentation on the Belize shelf, lagoon patch reefs may have grown above one another, stacking up to form reef accumulation of considerable thickness.

  11. Artificial reefs and reef restoration in the Laurentian Great Lakes

    USGS Publications Warehouse

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  12. Patch reef modeling: a comparison of Devonian and recent examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Precht, W.F.

    In reef research, models have been developed to define variations in the lithic and biotic development of facies. Walker and Alberstadt, and Hoffman and Narkiewicz developed models for growth of ancient reef communities. Although these models form a solid foundation by which patch reefs can be classed and zoned, they are neither complete nor accurate for all reef types. A comparison was made of Lower Devonian patch reefs from the Appalachian basin of New York, New Jersey, and Pennsylvania, and Holocene examples from the Bahamas and Florida Keys to identify the structure, orientation, community variability, and succession of the reefmore » biofacies. The complexion and genesis of the carbonate lithofacies were also studied. Results show similarities; these include the size, areal distribution, 3-D geometry, wave-resistance potential, lateral sequences of facies, sedimentary textures and structures, vertical zonation explained by growth from low-energy to high-energy regimes, biotic diversity, growth habit and form, and postmortem alteration. Thus, when used in conjunction with the traditional models, the recent can serve as the basis for a general model which include most patch reef types. However, these models should not be used as explicit analogs for all Phanerozoic reefs. Knowing and understanding the limitations of these comparative studies are essential to a fuller comprehension of the potential for variations which exist within and between the traditional models.« less

  13. Automated benthic counting of living and non-living components in Ngedarrak Reef, Palau via subsurface underwater video.

    PubMed

    Marcos, Ma Shiela Angeli; David, Laura; Peñaflor, Eileen; Ticzon, Victor; Soriano, Maricor

    2008-10-01

    We introduce an automated benthic counting system in application for rapid reef assessment that utilizes computer vision on subsurface underwater reef video. Video acquisition was executed by lowering a submersible bullet-type camera from a motor boat while moving across the reef area. A GPS and echo sounder were linked to the video recorder to record bathymetry and location points. Analysis of living and non-living components was implemented through image color and texture feature extraction from the reef video frames and classification via Linear Discriminant Analysis. Compared to common rapid reef assessment protocols, our system can perform fine scale data acquisition and processing in one day. Reef video was acquired in Ngedarrak Reef, Koror, Republic of Palau. Overall success performance ranges from 60% to 77% for depths of 1 to 3 m. The development of an automated rapid reef classification system is most promising for reef studies that need fast and frequent data acquisition of percent cover of living and nonliving components.

  14. Evaluating Environmental Effects of Dredged Material Management Alternatives: A Technical Framework

    DTIC Science & Technology

    1992-11-01

    fluctuating flows and tamperatures would be difficult. Biological processes such as nitrification, nutrient catabolism, and photosynthesis are important...communities as tidal flats, seagrass meadows, oyster beds, clam flats, fishing reefs, and freshwater aquatic plant establishment. The bottom of many

  15. Individual-based analyses reveal limited functional overlap in a coral reef fish community.

    PubMed

    Brandl, Simon J; Bellwood, David R

    2014-05-01

    Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  16. Development of A 2,000-10,000-Lb Improved Container Delivery System

    DTIC Science & Technology

    2010-04-01

    System. The fourth airdrop system within the program is the Skirt Reefed G-12. The Skirt Reefed G-12 is intended to be a HV airdrop system...UNCLASSIFIED 5 D. Skirt Reefed G-12 System The Skirt Reefed G-12 System utilizes the G-12 parachute packed in accordance with Humanitarian Airdrop...Procedures2 with a slight variation in the reefing line material used. After several tests and many failures, the 9/16- inch tubular nylon and 2 turns of

  17. Watershed processes from ridge to reef: consequences of feral ungulates for coral reef and effects of watershed management

    Treesearch

    Gordon Tribble; Jonathan Stock; Jim Jacobi

    2016-01-01

    Molokai’s south shore has some of Hawaii’s most extensive and best-developed coral reefs. Historic terrigenous sedimentation appears to have impacted coral growth along several miles of fringing reef. The land upslope of the reef consists of small watersheds with streams that flow intermittently to the ocean. A USGS gage at the outlet of one of the most impacted...

  18. Global warming transforms coral reef assemblages.

    PubMed

    Hughes, Terry P; Kerry, James T; Baird, Andrew H; Connolly, Sean R; Dietzel, Andreas; Eakin, C Mark; Heron, Scott F; Hoey, Andrew S; Hoogenboom, Mia O; Liu, Gang; McWilliam, Michael J; Pears, Rachel J; Pratchett, Morgan S; Skirving, William J; Stella, Jessica S; Torda, Gergely

    2018-04-01

    Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.

  19. Global variations of large megathrust earthquake rupture characteristics

    PubMed Central

    Kanamori, Hiroo

    2018-01-01

    Despite the surge of great earthquakes along subduction zones over the last decade and advances in observations and analysis techniques, it remains unclear whether earthquake complexity is primarily controlled by persistent fault properties or by dynamics of the failure process. We introduce the radiated energy enhancement factor (REEF), given by the ratio of an event’s directly measured radiated energy to the calculated minimum radiated energy for a source with the same seismic moment and duration, to quantify the rupture complexity. The REEF measurements for 119 large [moment magnitude (Mw) 7.0 to 9.2] megathrust earthquakes distributed globally show marked systematic regional patterns, suggesting that the rupture complexity is strongly influenced by persistent geological factors. We characterize this as the existence of smooth and rough rupture patches with varying interpatch separation, along with failure dynamics producing triggering interactions that augment the regional influences on large events. We present an improved asperity scenario incorporating both effects and categorize global subduction zones and great earthquakes based on their REEF values and slip patterns. Giant earthquakes rupturing over several hundred kilometers can occur in regions with low-REEF patches and small interpatch spacing, such as for the 1960 Chile, 1964 Alaska, and 2011 Tohoku earthquakes, or in regions with high-REEF patches and large interpatch spacing as in the case for the 2004 Sumatra and 1906 Ecuador-Colombia earthquakes. Thus, combining seismic magnitude Mw and REEF, we provide a quantitative framework to better represent the span of rupture characteristics of great earthquakes and to understand global seismicity. PMID:29750186

  20. Valuing snorkeling visits to the Florida Keys with stated and revealed preference models

    Treesearch

    Timothy Park; J. Michael Bowker; Vernon R. Leeworthy

    2002-01-01

    Coastal coral reefs, especially in the Florida Keys, are declining at a disturbing rate. Marine ecologists and reef scientists have emphasized the importance of establishing nonmarket values of coral reefs to assess the cost effectiveness of coral reef management and remediation programs. The purpose of this paper is to develop a travel cost--contingent valuation model...

  1. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise.

    PubMed

    Ridge, Justin T; Rodriguez, Antonio B; Joel Fodrie, F; Lindquist, Niels L; Brodeur, Michelle C; Coleman, Sara E; Grabowski, Jonathan H; Theuerkauf, Ethan J

    2015-10-07

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species' ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20-40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR.

  2. Fringing coral reef condition decline: assembling the puzzle of human impact associated to coastal development.

    NASA Astrophysics Data System (ADS)

    Garza-Perez, J. R.; Lopez-Patoni, A.; Naranjo-Garcia, M. J.

    2014-12-01

    Coral cover at Akumal fringing coral reef decreased 50% in a 13 yr. period, while the adjacent coastal zone increased its human-modified surface (associated to urban-tourist development) in 192%. In the same period, the number of local residents only increased 20% (1088 to1362) but the visitors did in 50% from ca. 200,000 to ca. 300,000. In this coastal zone, the phreatic acts as a storage of nutrients and pollutants from sources related to human activity, thus having a chronic run-off towards the reef, with acute episodes during the rainy season, specially during the anomalous rainy season of 2013. Using videotransects for monitoring the benthic reef components, changes were detected: from 2000 to 2013 the algae cover increased 166%, the reef condition and the reef structure indexes decreased in 50%, and coral diseases incidence increased 25% after a spike increment of 150% in 2010. The role of anthropogenic-stress indicators (population, modified land area, nutrients) was explored along reef condition indicators (reef structure and diversity indexes, topographic complexity, benthic cover and coral diseases incidence) via spatial analysis and multivariate statistics. Spatial patterns of the change in reef condition derived from high-resolution satellite imagery also provided insight for the stressors analysis and their relationships along the study period. Stress indicators (land-modified area and population) are correlated to decreases in coral cover and in reef structure. Direct stressors as sedimentation, nutrients and pollutants seem to be related to the decrease in overall reef condition, although time-series data is lacking; the contextual interpretation of their effects, paired with benthic condition characteristics suggest a strong relationship between these stressors and the decrease in the condition of the reef.

  3. Oyster reef restoration in the Northern Gulf of Mexico: effect of artificial substrate and sge on nekton and benthic macroinvertebrate assemblage use

    USGS Publications Warehouse

    Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.

    2013-01-01

    In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5years) and old (>6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.

  4. First results from IODP Expedition 325 to the Great Barrier Reef: unlocking climate and sea level secrets since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Webster, J. M.; Yokoyama, Y.; Cotterill, C.; Expedition 325 Scientists

    2010-12-01

    Integrated Ocean Drilling Program (IODP) Exp. 325 (GBREC: Great Barrier Reef Environmental Change) that investigated fossil reefs on the shelf edge of the Great Barrier Reef (GBR), was the fourth IODP expedition to use a mission-specific platform, and was conducted by the European Consortium for Ocean Research Drilling (ECORD) Science Operator (ESO). The scientific objectives are to establish the course of sea level change, define sea-surface temperature variations, and to analyze the impact of these environmental changes on reef growth and geometry over the period of 20-10 ka. Exp.325 complements and extends the findings of the 2005 Exp. 310 (Tahiti Sea Level) that recovered Postglacial coral reef cores from the flanks of Tahiti from 41.6-117.5 meters below sea level and spanned ~16 to ~8 ka. Preliminary data confirms that Exp. 325 recovered truly unique and valuable fossil coral reef material from key periods in Earth's sea level and climate history from 30 to 9 ka. On Exp. 325 a succession of fossil reef structures preserved on the shelf edge seaward of the modern barrier reef were cored at three geographic locations (Hydrographers Passage, Noggin Pass and Ribbon Reef) from a dynamically positioned vessel in February-April 2010. A total of 34 boreholes were cored from 17 sites in four transects at depths ranging from 42.2 to 167.2 meters below sea level. Borehole logging of four boreholes provided continuous geophysical information about the drilled strata. The cores were split and described during the Onshore Science Party at the IODP Bremen Core Repository (Germany) in July 2010, where minimum and some standard measurements were made. Initial lithologic and biologic observations identified high-quality fossil coralgal frameworks, consistent with shallow, high energy reef settings - crucial for precise reconstructions of sea level and paleoclimate change. Preliminary C14-AMS and U-Th age interpretations from 60 core catcher samples confirmed that the cores span ages from >30 to 9 ka. This chronology, combined with their recovered depths, clearly demonstrates that Exp. 325 recovered coral reef material from key periods of interest for sea level change and environmental reconstruction, including the Last Glacial Maximum, Heinrich Events 1 and 2, 19ka-MWP, Bølling-Allerød, MWP1A, the Younger Dryas and MWPB. The new Exp. 325 cores are especially important because few fossil coral records span these intervals, and even fewer are from stable, passive margin settings far from the confounding influences of ice sheets or tectonic activity. This paper summarizes Exp. 325’s first results and their broader implications for understanding global sea-level and paleoclimate changes, and provides a first interpretation of how these reefs responded to environmental stress.

  5. Oyster reef restoration in the northern Gulf of Mexico: extent, methods and outcomes

    USGS Publications Warehouse

    LaPeyre, Megan K.; Furlong, Jessica N.; Brown, Laura A.; Piazza, Bryan P.; Brown, Ken

    2014-01-01

    Shellfish reef restoration to support ecological services has become more common in recent decades, driven by increasing awareness of the functional decline of shellfish systems. Maximizing restoration benefits and increasing efficiency of shellfish restoration activities would greatly benefit from understanding and measurement of system responses to management activities. This project (1) compiles a database of northern Gulf of Mexico inshore artificial oyster reefs created for restoration purposes, and (2) quantitatively assesses a subset of reefs to determine project outcomes. We documented 259 artificial inshore reefs created for ecological restoration. Information on reef material, reef design and monitoring was located for 94, 43 and 20% of the reefs identified. To quantify restoration success, we used diver surveys to quantitatively sample oyster density and substrate volume of 11 created reefs across the coast (7 with rock; 4 with shell), paired with 7 historic reefs. Reefs were defined as fully successful if there were live oysters, and partially successful if there was hard substrate. Of these created reefs, 73% were fully successful, while 82% were partially successful. These data highlight that critical information related to reef design, cost, and success remain difficult to find and are generally inaccessible or lost, ultimately hindering efforts to maximize restoration success rates. Maintenance of reef creation information data, development of standard reef performance measures, and inclusion of material and reef design testing within reef creation projects would be highly beneficial in implementing adaptive management. Adaptive management protocols seek specifically to maximize short and long-term restoration success, but are critically dependent on tracking and measuring system responses to management activities.

  6. 76 FR 19750 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... control rule, establish a generic framework procedure for implementing management changes, establish the... Mexico Fishery Management Council; Public Meeting AGENCY: National Marine Fisheries Service (NMFS.... SUMMARY: The Gulf of Mexico Fishery Management Council will convene a meeting of the Reef Fish Advisory...

  7. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    PubMed

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  8. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2018-03-01

    Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef will reduce a maximum of 0.44 m of the SWHr. According to analysis of drilled core, corymbose Acropora corals will be key to reducing the risks, and 2.6-5.8 kg CaCO3 m-2 yr-1, equivalent to > 8 % of coral cover, will be required to keep a healthy reef by 2100. This study highlights that the maintaining reef growth (as a function of coral cover) in the future is effective in reducing the risk of coastal damage arising from wave action. Although the present study focuses on Melekeok fringing reef, many coral reefs are in the same situation under conditions of intensified TCs and SLR, and therefore the results of this study are applicable to other reefs. These researches are critical in guiding policy development directed at disaster prevention for small island nations and for developing and developed countries.

  9. Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0

    NASA Astrophysics Data System (ADS)

    Salles, Tristan; Pall, Jodie; Webster, Jody M.; Dechnik, Belinda

    2018-06-01

    Assemblages of corals characterise specific reef biozones and the environmental conditions that change spatially across a reef and with depth. Drill cores through fossil reefs record the time and depth distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological timescales but are poorly constrained at centennial to geological timescales. pyReef-Core is a stratigraphic forward model designed to solve the problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea-level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes and (2) the evolution of an idealised coral reef core since the last interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.

    Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coralmore » zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.« less

  11. Experimental studies of rapid bioerosion of coral reefs in the Galápagos Islands

    NASA Astrophysics Data System (ADS)

    Reaka-Kudla, M. L.; Feingold, J. S.; Glynn, W.

    1996-06-01

    Experimental carbonate blocks of coral skeleton, Porites lobata (PL), and cathedral limestone (LS) were deployed for 14.8 months at shallow (5 6 m) and deep (11 13m) depths on a severely bioeroded coral reef, Champion Island, Galápagos Islands, Ecuador. Sea urchins ( Eucidaris thouarsii) were significantly more abundant at shallow versus deep sites. Porites lobata blocks lost an average of 25.4 kg m-2yr-1 (23.71 m-2yr-1 or 60.5% decrease yr-1). Losses did not vary significantly at depths tested. Internal bioeroders excavated an average of 2.6 kg m-2 yr-1 (2.41 m-2 yr-1 or 0.6% decrease yr-1), while external bioeroders removed an average of 22.8 kg m-2 yr-1). (21.31 m-2 yr-1). or 59.9% decrease yr-1). few encrusting organisms were observed on the PL blocks. Cathedral limestone blocks lost an average of 4.1 kg m-2 yr-1). (1.81 m-2 yr-1). or 4.6% decrease yr-'), also with no relation to depth. Internal bioeroders excavated an average of 0.6 kg m-2 yr-1). (0.31 m-2 yr-1). or 0.7% decrease yr-1). and external bioeroders removed an average of 3.5 kg m-2 yr-1). (1.51 m-2 yr-1). or 3.9% decrease yr-1). from the LS blocks. Most (57.6%) encrustation occurred on the bottom of LS blocks, and there was more accretion on block bottoms in deep (61.4 mg cm-2 yr-1). versus shallow (35.0 mg cm-2 yr-1) sites. External bioerosion reduced the average height of the reef framework by 0.2 cm yr-1). for hard substrata (represented by LS) and 2.3 cm yr-1). for soft substrata (represented by PL). The results of this study suggest that coral reef frameworks in the Galápagos Islands are in serious jeopardy. If rates of coral recruitment do not increase, and if rates of bioerosion do not decline, coral reefs in the Galápagos Islands could be eliminated entirely.

  12. A detrital sediment budget of a Maldivian reef platform

    NASA Astrophysics Data System (ADS)

    Morgan, K. M.; Kench, P. S.

    2014-10-01

    Sediment dynamics are an important control on the morphology and development of reef systems by actively removing and redistributing excess detrital sediment. This study presents quantitative data from direct point measurements of sediment transport on the platform surface and fore-reef slope of Vabbinfaru reef, North Malé Atoll, Maldives. A suite of sediment traps were used to construct actual rates of platform sediment fluxes and off-reef export over different spatial and temporal (seasonal) scales to establish key sediment transport pathways. Findings showed that high sediment fluxes occur on Vabbinfaru platform in the absence of major storm activity (up to 1905 g m- 1 d- 1), with 95% of annual transport occurring during the southwest monsoon as a result of increased wave energy. Climate-driven changes in the platform process regime caused a reversal of net sediment transport pathways between each monsoon season. Off-reef export rates were high, reaching a maximum of 12.58 kg m- 1 y- 1 for gravel and 407 g m- 1 d- 1 for sand-sized sediment. An estimated 127,120 kg is exported from the platform annually equating to a significant loss from the reef sediment budget and contributing to the long-term geomorphic development of the fore-reef slope and atoll basin. Detrital sediment reservoirs on Vabbinfaru are not purely depositional carbonate sinks, but rather temporary stores that are important in the transfer of sediment between reef zones.

  13. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    PubMed

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  14. Reefing Line Tension in CPAS Main Parachute Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2013-01-01

    Reefing lines are an essential feature to manage inflation loads. During each Engineering Development Unit (EDU) test of the Capsule Parachute Assembly System (CPAS), a chase aircraft is staged to be level with the cluster of Main ringsail parachutes during the initial inflation and reefed stages. This allows for capturing high-quality still photographs of the reefed skirt, suspension line, and canopy geometry. The over-inflation angles are synchronized with measured loads data in order to compute the tension force in the reefing line. The traditional reefing tension equation assumes radial symmetry, but cluster effects cause the reefed skirt of each parachute to elongate to a more elliptical shape. This effect was considered in evaluating multiple parachutes to estimate the semi-major and semi-minor axes. Three flight tests are assessed, including one with a skipped first stage, which had peak reefing line tension over three times higher than the nominal parachute disreef sequence.

  15. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    NASA Astrophysics Data System (ADS)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.

  16. Mapping the Rainforest of the Sea: Global Coral Reef Maps for Global Conservation

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2006-01-01

    Coral reefs are the center of marine biodiversity, yet are under threat with an estimated 60% of coral reef habitats considered at risk by the World Resources Institute. The location and extent of coral reefs in the world are the basic information required for resource management and as a baseline for monitoring change. A NASA sponsored partnership between remote sensing scientists, international agencies and NGOs, has developed a new generation of global reef maps based on data collected by satellites. The effort, dubbed the Millennium Coral Reef Map aims to develop new methods for wide distribution of voluminous satellite data of use to the conservation and management communities. We discuss the tradeoffs between remote sensing data sources, mapping objectives, and the needs for conservation and resource management. SeaWiFS data were used to produce a composite global shallow bathymetry map at 1 km resolution. Landsat 7/ETM+ data acquisition plans were modified to collect global reefs and new operational methods were designed to generate the firstever global coral reef geomorphology map. We discuss the challenges encountered to build these databases and in implementing the geospatial data distribution strategies. Conservation applications include a new assessment of the distribution of the world s marine protected areas (UNEPWCMC), improved spatial resolution in the Reefs at Risk analysis for the Caribbean (WRI), and a global basemap for the Census of Marine Life's OBIS database. The Millennium Coral Reef map and digital image archive will pay significant dividends for local and regional conservation projects around the globe. Complete details of the project are available at http://eol.jsc.nasa.gov/reefs.

  17. Cambrian Series 3 carbonate platform of Korea dominated by microbial-sponge reefs

    NASA Astrophysics Data System (ADS)

    Hong, Jongsun; Lee, Jeong-Hyun; Choh, Suk-Joo; Lee, Dong-Jin

    2016-07-01

    Metazoans have been considered as negligible components of Cambrian Series 3 and Furongian microbial-dominated reefs, in contrast to their presence in earlier Terreneuvian-Cambrian Series 2 microbial-archaeocyath reefs. However, recent discoveries of sponges in Cambrian Series 3-Furongian reefs of Australia, China, Iran, USA, and Korea have raised question regarding their contribution in terms of carbonate platform development, which have never been assessed. This study examines Cambrian Series 3 deposits of the Daegi Formation, Korea to elucidate this question. The 100-m-thick middle part of the Daegi Formation is dominated by boundstone facies, which occupies 45% of the study interval, as well as bioclastic wackestone to packstone, bioclastic grainstone, and ooid packstone to grainstone facies. The Daegi reefs are primarily thrombolitic in composition, with 90% (n = 26/29) of the reefs containing an average of 9% sponges in aerial percentage calculated from thin sections. Lithistid sponges composed of peloidal fabrics, some desma spicules, and spicule networks commonly occupy the interstitial space in microbial clusters, are encrusted by mesoclots and Epiphyton, and are surrounded by micrite. Subordinate non-lithistid demosponges occur within clusters of microbial elements. The middle Daegi Formation can be largely subdivided into shoal environment dominated by grainstone to packstone facies and shallow subtidal platform interior environment located behind shoal with wackestone to packstone facies. The microbial-sponge reefs mainly developed around platform interior as patch reefs. The current study indicates that metazoans in the form of lithistid and non-lithistid demosponges are nearly ubiquitously incorporated in Daegi reefs and contributed greatly to the formation of microbial-sponge reefs as well as carbonate platform during the time. Study of these microbial-sponge reefs and their distribution within the carbonate platform may help us to understand how carbonate sedimentary environments responded to the extinction of archaeocyaths.

  18. Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida

    USGS Publications Warehouse

    Lidz, B.H.

    2004-01-01

    Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.

  19. CO2 System Permeable Sediment Chemistry and Modeling of It's Behavior Under Rising temperature and Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; De Carlo, E. H.; Guidry, M.; Mackenzie, F. T.

    2016-02-01

    Porewater was collected from highly permeable, carbonate-rich, sandy sediments at two locations, CRIMP-2 and Ala Wai, on coral reefs on Oahu, Hawaii. Samples were collected at the sediment-water interface and from porewater wells installed at sediment depths of 2, 4, 6, 8, 12, 16, 20, 30, 40, and 60 cm. Total alkalinity and dissolved inorganic carbon were enriched, relative to the overlying water column, and ratios of TA:DIC at the two sites (0.80 and 0.93) suggest that aerobic respiration and sulfate reduction - both coupled with carbonate mineral dissolution - in the oxic and anoxic layers, respectively, are the major controls on the biogeochemistry of the porewater-sediment system. The porewater was approaching thermodynamic saturation with respect to aragonite and was found to be undersaturated with respect to all phases of magnesian calcite containing greater than 12 mol% MgCO3. In addition to microbial controls on porewater diagenesis, transient physical events in the water column, such as swells and changing bottom current speeds, appear to exert a strong influence on the porewater chemistry due to the highly permeable and porous nature of the sediments. Profiles collected before and after swell events at each location show an apparent flushing of the porewater system, replacing low pH, high DIC interstitial waters with seawater from the overlying water column. Using this data, along with data collected in numerous prior studies, a CO2-carbonic acid system biogeochemical box model of the barrier reef flat of Kaneohe Bay, Oahu was developed in order to determine how increasing DIC of the open ocean source waters due to rising anthropogenic CO2 emissions and ocean acidification affects the CaCO3 budget of coral reef systems. This 17-box model was forced using the Representative Concentration Pathway (RCP) scenarios that predict CO2 atmospheric concentrations and temperature anomalies out to 2100. Model outputs predict a decrease in net ecosystem carbonate production, although the reef does not reach a state of net erosion by 2100. This dual approach allows for a better understanding of how sediment porewaters, sediments, and reef frameworks will respond to anthropogenic changes over the next century and provides valuable insight into the threshold when coral reefs could switch from net accretion to net erosion.

  20. Workshop on Biological Integrity of Coral Reefs August 21-22 ...

    EPA Pesticide Factsheets

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characteristics (reef attributes) that determine the condition of linear coral reefs inhabiting shallow waters (<12 m) in southwestern Puerto Rico.• Use those reef attributes to recommend categorical condition rankings for establishing a biological condition gradient.• Ascertain through expert consensus those reef attributes that characterize biological integrity (a natural, fully-functioning system of organisms and communities) for coral reefs. • Develop a conceptual, narrative model that describes how biological attributes of coral reefs change along a gradient of increasing anthropogenic stress.The workshop brought together scientists with expertise in coral reef taxonomic groups (e.g., stony corals, fishes, sponges, gorgonians, algae, seagrasses and macroinvertebrates), as well as community structure, organism condition, ecosystem function and ecosystem connectivity. The experts evaluated photos and videos from 12 stations collected during EPA Coral Reef surveys (2010 & 2011) from Puerto Rico on coral reefs exhibiting a wide range of conditions. The experts individually rated each station as to observed condition (“good”, “fair” or “poor”) and documented their rationale for

  1. Water quality guidelines for the Great Barrier Reef World Heritage Area: a basis for development and preliminary values.

    PubMed

    Moss, Andrew; Brodie, Jon; Furnas, Miles

    2005-01-01

    The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC Guidelines) provide default national guideline values for a wide range of indicators of relevance to the protection of the ecological condition of natural waters. However, the ANZECC Guidelines also place a strong emphasis on the need to develop more locally relevant guidelines. Using a structured framework, this paper explores indicators and regional data sets that can be used to develop more locally relevant guidelines for the Great Barrier Reef World Heritage Area (GBRWHA). The paper focuses on the water quality impacts of adjacent catchments on the GBRWHA with the key stressors addressed being nutrients, sediments and agricultural chemicals. Indicators relevant to these stressors are discussed including both physico-chemical pressure indicators and biological condition indicators. Where adequate data sets are available, guideline values are proposed. Generally, data were much more readily available for physico-chemical pressure indicators than for biological condition indicators. Specifically, guideline values are proposed for the major nutrients nitrogen (N) and phosphorus (P) and for chlorophyll-a. More limited guidelines are proposed for sediment related indicators. For most agricultural chemicals, the ANZECC Guidelines are likely to remain the default of choice for some time but it is noted that there is data in the literature that could be used to develop more locally relevant guidelines.

  2. The Açu Reef morphology, distribution, and inter reef sedimentation on the outer shelf of the NE Brazil equatorial margin

    NASA Astrophysics Data System (ADS)

    do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice

    2018-05-01

    Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs have trapped relict siliciclastic sediments within the three sets of reefs, west of the Açu Incised Valley and adjacent coasts. Lines evidence of easterly nearshore currents carried sediments from the old Açu Incised Valley and adjacent coasts. These incipiently drowned reefs influence the water circulation patterns of the modern shelf system, its carbonate sedimentation, and sediment transport. This study provides a new example of reef occurrence which might be more commonly observed on similar equatorial continental shelves.

  3. Maximizing oyster-reef growth supports green infrastructure with accelerating sea-level rise

    PubMed Central

    Ridge, Justin T.; Rodriguez, Antonio B.; Joel Fodrie, F.; Lindquist, Niels L.; Brodeur, Michelle C.; Coleman, Sara E.; Grabowski, Jonathan H.; Theuerkauf, Ethan J.

    2015-01-01

    Within intertidal communities, aerial exposure (emergence during the tidal cycle) generates strong vertical zonation patterns with distinct growth boundaries regulated by physiological and external stressors. Forecasted accelerations in sea-level rise (SLR) will shift the position of these critical boundaries in ways we cannot yet fully predict, but landward migration will be impaired by coastal development, amplifying the importance of foundation species’ ability to maintain their position relative to rising sea levels via vertical growth. Here we show the effects of emergence on vertical oyster-reef growth by determining the conditions at which intertidal reefs thrive and the sharp boundaries where reefs fail, which shift with changes in sea level. We found that oyster reef growth is unimodal relative to emergence, with greatest growth rates occurring between 20–40% exposure, and zero-growth boundaries at 10% and 55% exposures. Notably, along the lower growth boundary (10%), increased rates of SLR would outpace reef accretion, thereby reducing the depth range of substrate suitable for reef maintenance and formation, and exacerbating habitat loss along developed shorelines. Our results identify where, within intertidal areas, constructed or natural oyster reefs will persist and function best as green infrastructure to enhance coastal resiliency under conditions of accelerating SLR. PMID:26442712

  4. Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development

    NASA Astrophysics Data System (ADS)

    Echappé, Caroline; Gernez, Pierre; Méléder, Vona; Jesus, Bruno; Cognie, Bruno; Decottignies, Priscilla; Sabbe, Koen; Barillé, Laurent

    2018-02-01

    Satellite remote sensing (RS) is routinely used for the large-scale monitoring of microphytobenthos (MPB) biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985-2015) combining high-resolution (30 m) Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI). Emphasis was placed on the analysis of a before-after control-impact (BACI) experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact) negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our study provides the first multi-sensor RS satellite evidence of the promoting and structuring effect of oyster reefs on MPB biofilms.

  5. A Decision Support System for Ecosystem-Based Management of Tropical Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Muller-Karger, F. E.; Eakin, C.; Guild, L. S.; Nemani, R. R.; Hu, C.; Lynds, S. E.; Li, J.; Vega-Rodriguez, M.; Coral Reef Watch Decision Support System Team

    2010-12-01

    We review a new collaborative program established between the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to augment the NOAA Coral Reef Watch decision-support system. NOAA has developed a Decision Support System (DSS) under the Coral Reef Watch (CRW) program to forecast environmental stress in coral reef ecosystems around the world. This DSS uses models and 50 km Advanced Very High Resolution Radiometer (AVHRR) to generate “HotSpot” and Degree Heating Week coral bleaching indices. These are used by scientists and resource managers around the world. These users, including National Marine Sanctuary managers, have expressed the need for higher spatial resolution tools to understand local issues. The project will develop a series of coral bleaching products at higher spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR data. We will generate and validate products at 1 km resolution for the Caribbean Sea and Gulf of Mexico, and test global assessments at 4 and 50 km. The project will also incorporate the Global Coral Reef Millennium Map, a 30-m resolution thematic classification of coral reefs developed by the NASA Landsat-7 Science Team, into the CRW. The Millennium Maps help understand the geomorphology of individual reefs around the world. The products will be available through the NOAA CRW and UNEP-WCMC web portals. The products will help users formulate policy options and management decisions. The augmented DSS has a global scope, yet it addresses the needs of local resource managers. The work complements efforts to map and monitor coral reef communities in the U.S. territories by NOAA, NASA, and the USGS, and is a contribution to international efforts in ecological forecasting of coral reefs under changing environments, coral reef research, resource management, and conservation. Acknowledgement: Funding is provided by the NASA Ecological Forecasting application area and by NOAA NESDIS.

  6. Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef

    PubMed Central

    Enochs, Ian C.; Manzello, Derek P.; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M.; Fitchett, Mark D.; Carlton, Renee; Price, Nichole N.

    2016-01-01

    Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2–195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat. PMID:27467570

  7. Elevated Colonization of Microborers at a Volcanically Acidified Coral Reef.

    PubMed

    Enochs, Ian C; Manzello, Derek P; Tribollet, Aline; Valentino, Lauren; Kolodziej, Graham; Donham, Emily M; Fitchett, Mark D; Carlton, Renee; Price, Nichole N

    2016-01-01

    Experiments have demonstrated that ocean acidification (OA) conditions projected to occur by the end of the century will slow the calcification of numerous coral species and accelerate the biological erosion of reef habitats (bioerosion). Microborers, which bore holes less than 100 μm diameter, are one of the most pervasive agents of bioerosion and are present throughout all calcium carbonate substrates within the reef environment. The response of diverse reef functional groups to OA is known from real-world ecosystems, but to date our understanding of the relationship between ocean pH and carbonate dissolution by microborers is limited to controlled laboratory experiments. Here we examine the settlement of microborers to pure mineral calcium carbonate substrates (calcite) along a natural pH gradient at a volcanically acidified reef at Maug, Commonwealth of the Northern Mariana Islands (CNMI). Colonization of pioneer microborers was higher in the lower pH waters near the vent field. Depth of microborer penetration was highly variable both among and within sites (4.2-195.5 μm) over the short duration of the study (3 mo.) and no clear relationship to increasing CO2 was observed. Calculated rates of biogenic dissolution, however, were highest at the two sites closer to the vent and were not significantly different from each other. These data represent the first evidence of OA-enhancement of microboring flora colonization in newly available substrates and provide further evidence that microborers, especially bioeroding chlorophytes, respond positively to low pH. The accelerated breakdown and dissolution of reef framework structures with OA will likely lead to declines in structural complexity and integrity, as well as possible loss of essential habitat.

  8. Microbial stowaways: Addressing oil spill impacts and the artificial reef effect on deep-sea microbiomes

    NASA Astrophysics Data System (ADS)

    Hamdan, L. J.; Salerno, J. L.; Blackwell, C. A.; Little, B.; McGown, C.; Fitzgerald, L. A.; Damour, M.

    2016-02-01

    Shipwrecks enhance macro-biological diversity in the deep ocean, but, to date, studies have not explored the reef effect on deep-sea microbiological diversity. This is an important concept to address in a restoration framework, as microbial biogeochemical function impacts recruitment and adhesion of higher trophic levels on artificial reefs. In addition, microbial biofilms influence the preservation of shipwrecks through biologically mediated corrosion. Oil and gas-related activities have potential to disrupt the base of the reef trophic web; therefore, bacterial diversity and gene function at six shipwrecks (3 steel-hulled; 3 wood-hulled) in the northern Gulf of Mexico was investigated as part of the GOM-SCHEMA (Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology) project. Sites were selected based on proximity to the Deepwater Horizon spill's subsurface plume, depth, hull type, and existing archaeological data. Classification of taxa in sediments adjacent to and at distance from wrecks, in water, and on experimental steel coupons was used to evaluate how the presence of shipwrecks and spill contaminants in the deep biosphere influenced diversity. At all sites, and in all sample types, Proteobacteria were most abundant. Biodiversity was highest in surface sediments and in coupon biofilms adjacent to two steel-hulled wrecks in the study (Halo and Anona) and decreased with sediment depth and distance from the wrecks. Sequences associated with the iron oxidizing Mariprofundus genus were elevated at steel-hulled sites, indicating wreck-specific environmental selection. Despite evidence of the reef effect on microbiomes, bacterial composition was structured primarily by proximity to the spill and secondarily by hull material at all sites. This study provides the first evidence of an artificial reef effect on deep-sea microbial communities and suggests that biodiversity and function of primary colonizers of shipwrecks may be impacted by the spill.

  9. Coral distribution patterns in Miocene Reefs of Anguilla, Leeward Islands, West Indies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, A.B.; Johnson, K.G.

    1988-01-01

    Anguilla, a 27 by 5 km island at 18/sup 0/13'N, 63/sup 0/05'W, parallels the northwest edge of the Anguilla bank (St. Martin plateau) in the outer lesser Angilles volcanic arc, which was active from the Eocene to Oligocene. Except for scattered exposures of tuff or basalt, the island is composed predominantly of reefal limestones and marls of the 70-m thick, middle Miocene Anguilla Formation, deposited on a shallow inner shelf platform extending from volcanoes near St. Martin. The reef framework consists of branched and platy corals interspersed with calcareous sand lenses. Although the limestones have been uplifted and subjected tomore » minor faulting, little evidence supports extensive transport across a slope. Coral distribution patterns have been quantified across the reefal units by point-counting species occurrences at 0.16-m intervals within 1-m/sup 2/ quadrants placed haphazardly across vertical exposures. Eight coral species (of possibly 18 total) were recorded. Cluster analysis delineated four facies: (1) a low-diversity facies dominated by branched Porites, (2) an intermediate diversity facies dominated by branched Porites, (3) a high-diversity facies dominated by massive Montastraea, Siderastrea, and Porites, and (4) an intermediate diversity facies dominated by platy Porites. These facies consists of lenses, no more than 100 m long and 2 m high, arranged in no apparent regular sequence. Thus, they do not represent zones across a depth gradient. Comparisons with living Caribbean reefs suggests that the Anguilla Miocene reefs were similar to small, modern, backreef fringing and patch reefs near the San Blas Islands of Panama, reefs whose variable composition and patchy distribution depend largely on sedimentation and current patterns.« less

  10. Resource partitioning along multiple niche axes drives functional diversity in parrotfishes on Caribbean coral reefs.

    PubMed

    Adam, Thomas C; Kelley, Megan; Ruttenberg, Benjamin I; Burkepile, Deron E

    2015-12-01

    The recent loss of key consumers to exploitation and habitat degradation has significantly altered community dynamics and ecosystem function across many ecosystems worldwide. Predicting the impacts of consumer losses requires knowing the level of functional diversity that exists within a consumer assemblage. In this study, we document functional diversity among nine species of parrotfishes on Caribbean coral reefs. Parrotfishes are key herbivores that facilitate the maintenance and recovery of coral-dominated reefs by controlling algae and provisioning space for the recruitment of corals. We observed large functional differences among two genera of parrotfishes that were driven by differences in diet. Fishes in the genus Scarus targeted filamentous algal turf assemblages, crustose coralline algae, and endolithic algae and avoided macroalgae, while fishes in the genus Sparisoma preferentially targeted macroalgae. However, species with similar diets were dissimilar in other attributes, including the habitats they frequented, the types of substrate they fed from, and the spatial scale at which they foraged. These differences indicate that species that appear to be functionally redundant when looking at diet alone exhibit high levels of complementarity when we consider multiple functional traits. By identifying key functional differences among parrotfishes, we provide critical information needed to manage parrotfishes to enhance the resilience of coral-dominated reefs and reverse phase shifts on algal-dominated reefs throughout the wider Caribbean. Further, our study provides a framework for predicting the impacts of consumer losses in other species rich ecosystems.

  11. Glowing Seashells: Diversity of Fossilized Coloration Patterns on Coral Reef-Associated Cone Snail (Gastropoda: Conidae) Shells from the Neogene of the Dominican Republic

    PubMed Central

    Hendricks, Jonathan R.

    2015-01-01

    The biology of modern Conidae (cone snails)—which includes the hyperdiverse genus Conus—has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework. Here, ultraviolet light is used to reveal and characterize the original shell coloration patterns of 28 species of cone snails from three Neogene coral reef-associated deposits from the Cibao Valley, northern Dominican Republic. These fossils come from the upper Miocene Cercado Fm. and lower Pliocene Gurabo Fm., and range in age from about 6.6-4.8 Ma. Comparison of the revealed coloration patterns with those of extant species allow the taxa to be assigned to three genera of cone snails (Profundiconus, Conasprella, and Conus) and at least nine subgenera. Thirteen members of these phylogenetically diverse reef faunas are described as new species. These include: Profundiconus? hennigi, Conasprella (Ximeniconus) ageri, Conus anningae, Conus lyelli, Conus (Atlanticonus?) franklinae, Conus (Stephanoconus) gouldi, Conus (Stephanoconus) bellacoensis, Conus (Ductoconus) cashi, Conus (Dauciconus) garrisoni, Conus (Dauciconus?) zambaensis, Conus (Spuriconus?) kaesleri, Conus (Spuriconus?) lombardii, and Conus (Lautoconus?) carlottae. Each of the three reef deposits contain a minimum of 14–16 cone snail species, levels of diversity that are similar to modern Indo-Pacific reef systems. Finally, most of the 28 species can be assigned to modern clades and thus have important implications for understanding the biogeographic and temporal histories of these clades in tropical America. PMID:25830769

  12. Dredging in the Spratly Islands: Gaining Land but Losing Reefs.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Birkeland, Charles; McManus, John W

    2016-03-01

    Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation.

  13. Dredging in the Spratly Islands: Gaining Land but Losing Reefs

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Birkeland, Charles; McManus, John W.

    2016-01-01

    Coral reefs on remote islands and atolls are less exposed to direct human stressors but are becoming increasingly vulnerable because of their development for geopolitical and military purposes. Here we document dredging and filling activities by countries in the South China Sea, where building new islands and channels on atolls is leading to considerable losses of, and perhaps irreversible damages to, unique coral reef ecosystems. Preventing similar damage across other reefs in the region necessitates the urgent development of cooperative management of disputed territories in the South China Sea. We suggest using the Antarctic Treaty as a positive precedent for such international cooperation. PMID:27031949

  14. Developing a Biological Condition Gradient for the Protection of Puerto Rico's Coral Reefs

    EPA Science Inventory

    We introduce the application of the Biological Condition Gradient (BCG) to coral reefs: a conceptual model that describes how biological attributes of coral reef ecosystems might change along a gradient of increasing anthropogenic stress. Under authority of the Clean Water Act, t...

  15. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    PubMed

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  16. Stratigraphy and evolution of emerged Pleistocene reefs at the Red Sea coast of Sudan

    NASA Astrophysics Data System (ADS)

    Hamed, Basher; Bussert, Robert; Dominik, Wilhelm

    2016-02-01

    Emerged Pleistocene coral reefs constitute a prominent landform along the Red Sea coast of Sudan. They are well exposed with a thickness of up to 12 m and extend over a width of about 3 km parallel to the coastline. Four major reef units that represent different reef zones are distinguished. Unit 1 is located directly at the coastline and is assigned to the rock-reef rim, while unit 2 represents the reef-front zone. Unit 3 is attributed to the reef-flat zone and unit 4 to the back-reef zone. The stratigraphic position and age of the four units respectively the facies zones are based on field relationships and δ18O analysis. Results of δ18O analysis of coral, gastropod and bivalve samples were correlated to previous age dating of correlative reefs in Sudan and other parts of the Red Sea region. Estimation of reef ages was mainly based on δ18O values of the reef-front zone (unit 2) and the observed sedimentary succession of the reefs. δ18O values of two Porites coral samples from the reef-front zone strongly suggest equivalent ages of 120 and 122 ka that correspond to marine isotope stage MIS 5.5. Based on δ18O values and the field relationship to the reef-front zone, ages of reef-flat zone (unit 3) and back-reef zone (unit 4) could be assigned to MIS 9 and MIS 7 respectively. MIS 5.1 is suggested for the reef-rock rim (unit 1). The relationship of the reef zones to individual MIS might be explained by the predominance of a specific zone during a certain stage, while other facies were less well developed and/or later eroded by wave action. The reef unit most distal from the recent coastline formed during interglacial stage MIS 7, while former studies assign this unit to interglacial stage MIS 9. Unique flourishing, high diversity and excellent preservation of corals in the back-reef unit of MIS 7 reflect growth in troughs landward of the oldest reef-flat formed during previous interglacial stage MIS 9.

  17. Coral reefs and the World Bank.

    PubMed

    Hatziolos, M

    1997-01-01

    The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.

  18. Modern coral reefs of western Atlantic: new geological perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during themore » postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.« less

  19. The effects of substratum material and surface orientation on the developing epibenthic community on a designed artificial reef.

    PubMed

    Ushiama, Shinjiro; Smith, James A; Suthers, Iain M; Lowry, Michael; Johnston, Emma L

    2016-10-01

    Artificial reefs provide shelter and can be an important source of food for fish depending on the epibenthic community on the structure. The growth and diversity of this community is influenced by the substratum material and the surface orientation of the reef. Settlement plates of four materials (Perspex, sandstone, wood and steel) were deployed in three orientations (upwards, downwards and vertical) at a depth of 33 m on a designed artificial reef (DAR) off the coast of Sydney, Australia. After three months, the steel surfaces had lower invertebrate species richness, total abundance and diversity compared to other surfaces. Steel was not an ideal material for the initial recruitment and growth of epibenthic invertebrates. A longer duration would be required to develop a mature epibenthic community. Surface orientation had species-specific impacts. Surface material and orientation are important factors for developing epibenthic assemblages, and are thus likely to affect the broader artificial reef assemblage, including fish.

  20. Holocene reef development where wave energy reduces accommodation

    USGS Publications Warehouse

    Grossman, Eric E.; Fletcher, Charles H.

    2004-01-01

    Analyses of 32 drill cores obtained from the windward reef of Kailua Bay, Oahu, Hawaii, indicate that high wave energy significantly reduced accommodation space for reef development in the Holocene and produced variable architecture because of the combined influence of sea-level history and wave exposure over a complex antecedent topography. A paleostream valley within the late Pleistocene insular limestone shelf provided accommodation space for more than 11 m of vertical accretion since sea level flooded the bay 8000 yr BP. Virtually no net accretion (pile-up of fore-reef-derived rubble (rudstone) and sparse bindstone, and (3) a final stage of catch-up bindstone accretion in depths > 6 m. Coral framestone accreted at rates of 2.5-6.0 mm/yr in water depths > 11 m during the early Holocene; it abruptly terminated at ~4500 yr BP because of wave scour as sea level stabilized. More than 4 m of rudstone derived from the upper fore reef accreted at depths of 6 to 13 m below sea level between 4000 and 1500 yr BP coincident with late Holocene relative sea-level fall. Variations in the thickness, composition, and age of these reef facies across spatial scales of 10-1000 m within Kailua Bay illustrate the importance of antecedent topography and wave-related stress in reducing accommodation space for reef development set by sea level. Although accommodation space of 6 to 17 m has existed through most of the Holocene, the Kailua reef has been unable to catch up to sea level because of persistent high wave stress.

  1. The impacts of tourism on coral reef conservation awareness and support in coastal communities in Belize

    NASA Astrophysics Data System (ADS)

    Diedrich, A.

    2007-12-01

    Marine recreational tourism is one of a number of threats to the Belize Barrier Reef but, conversely, represents both a motivation and source of resources for its conservation. The growth of tourism in Belize has resulted in the fact that many coastal communities are in varying stages of a socio-economic shift from dependence on fishing to dependence on tourism. In a nation becoming increasingly dependent on the health of its coral reef ecosystems for economic prosperity, a shift from extractive uses to their preservation is both necessary and logical. Through examining local perception data in five coastal communities in Belize, each attracting different levels of coral reef related tourism, this analysis is intended to explore the relationship between tourism development and local coral reef conservation awareness and support. The results of the analysis show a positive correlation between tourism development and coral reef conservation awareness and support in the study communities. The results also show a positive correlation between tourism development and local perceptions of quality of life, a trend that is most likely the source of the observed relationship between tourism and conservation. The study concludes that, because the observed relationship may be dependent on continued benefits from tourism as opposed to a perceived crisis in coral reef health, Belize must pay close attention to tourism impacts in the future. Failure to do this could result in a destructive feedback loop that would contribute to the degradation of the reef and, ultimately, Belize’s diminished competitiveness in the ecotourism market.

  2. Biological condition gradient: Applying a framework for determining the biological integrity of coral reefs

    EPA Science Inventory

    The goals of the U.S. Clean Water Act (CWA) are to restore and maintain the chemical, physical and biological integrity of water resources. Although clean water is a goal, another is to safeguard biological communities by defining levels of biological integrity to protect aquatic...

  3. Influence of Eunice norvegica on feeding and calcification in the coral Lophelia pertusa

    NASA Astrophysics Data System (ADS)

    Mueller, C. E.; van Oevelen, D.; Middelburg, J. J.; Lundälv, T.

    2012-04-01

    Lophelia pertusa is the main framework building cold-water coral in the North Atlantic. It forms complex reef structures, extending up to several km in length and several meters in hight. Many species are attracted by the coral frame work, forming a highly diverse community within the reef. Although most work has focused on the corals, the functioning of the system also depends on interactions between corals and associated species. A particular example is the Polychaete Eunice norvegica that lives in close association with the coral host. The Polychaete builds a thin texture-tube between living coral branches and stimulates the coral to calcify the tube. This process strengthens the reef framwork by thickening and connecting coral brances and thereby acts as a positive feedback on the development of large reef structures. This comes however at an metabolic cost for the coral due to the enhanced calcificationrates. Another negative feedback for cold-water coral may be food related, since aquaria observations have shown that Eunice occasionally steels food from its host coral. In this study we investigated the interactions between the coral and polychaete related to calcification and food partitioning for two food types (algae and Artemia). The uptake of 13C and 15N labeled food sources by the worm and the coral was studied in chambers with only corals, only the polychaete and both species present. After 7 days, corals and worms were analyzed for isotope incorporation in bulk tissue and skeleton samples and specific fatty acids (13C) using GC-c-IRMS (gas-chromatography-combustion-isotope ratio mass spectrometry). Corals that were kept in the presence of Eunice indeed showed a higher calcification rates of 7.4 ug C (day* g dw coral)-1, evidencing the stimulation of calcification by Eunice. Interestingly, food uptake of algae and Artemia was higher in the coral-worm treatment for both species as compared to the single species treatments. These results shed new light on trophic and non-trophic interactions in cold-water coral reefs.

  4. Spatial extent of potential habitats of the Mesophotic Coral Ecosystem (MCE, 20-80 m) in the tropical North Atlantic (TNA)

    NASA Astrophysics Data System (ADS)

    Ginsburg, R. N.

    2012-12-01

    The Mesophotic Coral Ecosystem is the deeper-water extension of the much-studied, shallow reef community. It occurs on steep slopes and shelf areas, in the TNA off Belize, the Bahamas, the US Virgin Islands, and the Flower Garden Banks. Framework-building corals at these depths are primarily platy montastraeids and agariciids, with lesser amounts of massive encrusting species. The closely-spaced, platy colonies, expanding up to nearly two meters in diameter have up to 50% live coral cover. The colonies are elevated above the substrate. Their growth creates a thicket-like structure with large, open spaces for mobile species (fish and crustaceans) and extensive habitat for attached and grazing invertebrates. The MCE includes genera or species of zooxanthellate corals, invertebrates and fish, some of which are the same as those in shallow water. Given, the widespread, recent declines of TNA coral communities at depth less than 20 m, it is essential to know the total regional extent of the MCE. To determine the likely depth locations of these deeper coral communities we used methods pioneered by REEFS AT RISK,1998 that incorporates data from the Danish Hydrological Institute (DHI), "MIKE C-MAP" depth points and data on coastline location *NASA, "Sea WiFS" and NIMA, "VMAP," 1997. The results for the larger areas of reef development and for shelf areas are below:Potential MCE shelf habitats.t; Potential MCE platform margin habitats.t;

  5. Oyster reefs can outpace sea-level rise

    NASA Astrophysics Data System (ADS)

    Rodriguez, Antonio B.; Fodrie, F. Joel; Ridge, Justin T.; Lindquist, Niels L.; Theuerkauf, Ethan J.; Coleman, Sara E.; Grabowski, Jonathan H.; Brodeur, Michelle C.; Gittman, Rachel K.; Keller, Danielle A.; Kenworthy, Matthew D.

    2014-06-01

    In the high-salinity seaward portions of estuaries, oysters seek refuge from predation, competition and disease in intertidal areas, but this sanctuary will be lost if vertical reef accretion cannot keep pace with sea-level rise (SLR). Oyster-reef abundance has already declined ~85% globally over the past 100 years, mainly from over harvesting, making any additional losses due to SLR cause for concern. Before any assessment of reef response to accelerated SLR can be made, direct measures of reef growth are necessary. Here, we present direct measurements of intertidal oyster-reef growth from cores and terrestrial lidar-derived digital elevation models. On the basis of our measurements collected within a mid-Atlantic estuary over a 15-year period, we developed a globally testable empirical model of intertidal oyster-reef accretion. We show that previous estimates of vertical reef growth, based on radiocarbon dates and bathymetric maps, may be greater than one order of magnitude too slow. The intertidal reefs we studied should be able to keep up with any future accelerated rate of SLR (ref. ) and may even benefit from the additional subaqueous space allowing extended vertical accretion.

  6. Coastal Erosion in a Coral Reef Island, Taiping Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Su, S.; Ma, G.; Liang, M.; Chu, J.

    2011-12-01

    Reef flats surrounding islands are known to dissipate much offshore wave energy, and thereby protect beaches from erosion. Taiping Island, the largest coral reef islands of the Spratly Islands in the South China Sea, has been observed the shorelines erosion on the southwest coast over past decades. It is recognized that wave and current processes across coral reefs affect reef-island development and morphology. A number of studies suggest effects of climate changes, sea-level rise and storm-intensity increase, determine the magnitude of wave energy on the reef platform and will likely intensify the erosion. The topographical change in the local region, the southwest reef flat was dredged a channel for navigation, may be a significant factor in influencing current characteristics. Numerical modeling is used to describe both hydrodynamics and sediment dynamics because there are no field measurements available around the reef flat. Field observations off the island conducted in August 2004 and November 2005 provides offshore wave characteristics of the predominant wind seasons. Numerical simulations perform the spatial and temporal variation of waves and current patterns and coastal erosion potential on the reef platform.

  7. Subtropical Biotic Fringing Reefs as Ecological Laboratories.

    ERIC Educational Resources Information Center

    Hunt, Jeffrey W.

    1980-01-01

    Describes a 16-week course in marine biology involving a class-coordinated investigation of a subtropical biotic fringing reef of Hawaii. Describes in detail the development of preliminary hypotheses regarding general cause-effect relationships on the reef, and the exploration of specific areas, such as chemical or physical factors. (CS)

  8. Bioconstructor Guild Analysis to Assess Maldivian Reefs Following Ocean Warming and Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Bianchi, C. N.; Morri, C.; Montefalcone, M.

    2016-02-01

    Extreme climatic anomalies related to global warming have triggered coral bleaching events across most tropical regions. The hot wave of 1998 El Niño caused mass coral mortality throughout the Indian Ocean. The Maldives has been among the most affected countries, with 60-100% coral mortality reported. Hard coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% only by 2014. Between 1997 and 2015, we evaluated the change in cover on Maldivian reef flats of different bioconstructor guilds: i) primary builders are those organisms that build the reef framework and therefore assure reef aggradation; ii) secondary builders provide calcareous material to fill in the frame; iii) binders are encrusters that consolidate the reef edifice; iv) bafflers are soft-bodied algae and colonial invertebrates that, although not actively participating in the bioconstruction, help retaining sediment; v) abiotic attributes (rock, rubble, sand) evidently do not give any contribution to the bioconstruction. A bioconstruction potential index (BCP) was devised using the following formula: BCP = Σin (siCi%) × 100-1where, n is the number of bioconstructor guilds (5, in this case), si is an importance score assigned to the ith guild, and Ci% is the cover of the ith guild. In this study, the value of si has been established at 3 for the primary builders, 2 for the secondary builders, 1 for the binders, 0 for the bafflers, and -1 for the abiotic attributes. Therefore, BCP ranges theoretically from 3, in the unrealistic case of 100% cover by primary constructors, to -1, when only abiotic attributes are present and no bioconstruction is possible, the reef thus being prone to erosion and drowning. When applied to the Maldives data, BCP provided clear threshold values to evaluate constructional capacity. Negative values characterised Maldivian reefs between 1999 and 2003-3007. Values between 0 and 1 depict reefs capable of constratal growth only, and were found 2004-2008 and 2010-2013. Values of BCP greater than 1 are indicative of superstratal growth, and were found in 1997-1998 and again after 2012-2014. Further applications of BCP to other reefs in different regions of the tropical ocean are needed to test how universal this index might be.

  9. Ratings of Everyday Executive Functioning (REEF): A parent-report measure of preschoolers' executive functioning skills.

    PubMed

    Nilsen, Elizabeth S; Huyder, Vanessa; McAuley, Tara; Liebermann, Dana

    2017-01-01

    Executive functioning (EF) facilitates the development of academic, cognitive, and social-emotional skills and deficits in EF are implicated in a broad range of child psychopathologies. Although EF has clear implications for early development, the few questionnaires that assess EF in preschoolers tend to ask parents for global judgments of executive dysfunction and thus do not cover the full range of EF within the preschool age group. Here we present a new measure of preschoolers' EF-the Ratings of Everyday Executive Functioning (REEF)-that capitalizes on parents' observations of their preschoolers' (i.e., 3- to 5-year-olds) behavior in specific, everyday contexts. Over 4 studies, items comprising the REEF were refined and the measure's reliability and validity were evaluated. Factor analysis of the REEF yielded 1 factor, with items showing strong internal reliability. More important, children's scores on the REEF related to both laboratory measures of EF and another parent-report EF questionnaire. Moreover, reflecting divergent validity, the REEF was more strongly related to measures of EF as opposed to measures of affective styles. The REEF also captured differences in children's executive skills across the preschool years, and norms at 6-month intervals are reported. In summary, the REEF is a new parent-report measure that provides researchers with an efficient, valid, and reliable means of assessing preschoolers' executive functioning. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    PubMed

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    PubMed Central

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-01-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline. PMID:28893981

  12. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century.

    PubMed

    Clark, Tara R; Roff, George; Zhao, Jian-Xin; Feng, Yue-Xing; Done, Terence J; McCook, Laurence J; Pandolfi, John M

    2017-09-26

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.

  13. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century

    NASA Astrophysics Data System (ADS)

    Clark, Tara R.; Roff, George; Zhao, Jian-xin; Feng, Yue-xing; Done, Terence J.; McCook, Laurence J.; Pandolfi, John M.

    2017-09-01

    Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.

  14. Coral Reef Resilience, Tipping Points and the Strength of Herbivory

    PubMed Central

    Holbrook, Sally J.; Schmitt, Russell J.; Adam, Thomas C.; Brooks, Andrew J.

    2016-01-01

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience. PMID:27804977

  15. Embracing a world of subtlety and nuance on coral reefs

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.

    2017-09-01

    Climate change will homogenise the environment and generate a preponderance of mediocre reefs. Managing seascapes of mediocrity will be challenging because our science is ill prepared to deal with the `shades of grey' of reef health; we tend to study natural processes in the healthiest reefs available. Yet much can be gained by examining the drivers and implications of even subtle changes in reef state. Where strong ecological interactions are discovered, even small changes in abundance can have profound impacts on coral resilience. Indeed, if we are to develop effective early warnings of critical losses of resilience, then monitoring must place greater emphasis on measuring and interpreting changes in reef recovery rates. In terms of mechanism, a more nuanced approach is needed to explore the generality of what might be considered `dogma'. A more nuanced approach to science will serve managers needs well and help minimise the rise of mediocrity in coral reef ecosystems.

  16. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    PubMed

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  17. NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers

    NASA Astrophysics Data System (ADS)

    Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.

    2010-12-01

    A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.

  18. Decadal-scale rates of reef erosion following El Niño-related mass coral mortality.

    PubMed

    Roff, George; Zhao, Jian-Xin; Mumby, Peter J

    2015-12-01

    As the frequency and intensity of coral mortality events increase under climate change, understanding how declines in coral cover may affect the bioerosion of reef frameworks is of increasing importance. Here, we explore decadal-scale rates of bioerosion of the framework building coral Orbicella annularis by grazing parrotfish following the 1997/1998 El Niño-related mass mortality event at Long Cay, Belize. Using high-precision U-Th dating and CT scan analysis, we quantified in situ rates of external bioerosion over a 13-year period (1998-2011). Based upon the error-weighted average U-Th age of dead O. annularis skeletons, we estimate the average external bioerosion between 1998 and 2011 as 0.92 ± 0.55 cm depth. Empirical observations of herbivore foraging, and a nonlinear numerical response of parrotfish to an increase in food availability, were used to create a model of external bioerosion at Long Cay. Model estimates of external bioerosion were in close agreement with U-Th estimates (0.85 ± 0.09 cm). The model was then used to quantify how rates of external bioerosion changed across a gradient of coral mortality (i.e., from few corals experiencing mortality following coral bleaching to complete mortality). Our results indicate that external bioerosion is remarkably robust to declines in coral cover, with no significant relationship predicted between the rate of external bioerosion and the proportion of O. annularis that died in the 1998 bleaching event. The outcome was robust because the reduction in grazing intensity that follows coral mortality was compensated for by a positive numerical response of parrotfish to an increase in food availability. Our model estimates further indicate that for an O. annularis-dominated reef to maintain a positive state of reef accretion, a necessity for sustained ecosystem function, live cover of O. annularis must not drop below a ~5-10% threshold of cover. © 2015 John Wiley & Sons Ltd.

  19. EPA Field Manual for Coral Reef Assessments

    EPA Science Inventory

    The Water Quality Research Program (WQRP) supports development of coral reef biological criteria. Research is focused on developing methods and tools to support implementation of legally defensible biological standards for maintaining biological integrity, which is protected by ...

  20. 75 FR 54044 - Fisheries in the Western Pacific; Community Development Program Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... result of FWS concerns associated with the Fishery Management Plan for Coral Reef Ecosystems of the... referenced 2002 agreement was limited in scope to the Coral Reef Ecosystems Fishery Management Plan and was... the fishing regulations for coral reef ecosystem species in national wildlife refuges from 50 CFR 600...

  1. Relating Landscape Development Intensity to Coral Reef Condition in the Watersheds of St. Croix, U.S. Virgin Islands

    EPA Science Inventory

    Diagnosing the degree to which local landscape activities impact coral reef ecosystems and their ecological services is critically important to coastal and watershed decision-makers. We report, for the first time, a study that relates coral reef condition metrics to metrics of h...

  2. Origin of Silurian reefs in the Alexander Terrane of southeastern Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soja, C.M.

    1991-04-01

    Lower to Upper Silurian (upper Llandovery-Ludlow) limestones belonging to the Heceta Formation record several episodes of reef growth in the Alexander terrane of southeastern Alaska. As the oldest carbonates of wide-spread distribution in the region, the Heceta limestones represent the earliest development of a shallow-marine platform within the Alexander arc and the oldest foundation for reef evolution. These deposits provide important insights into the dynamic processes, styles, and bathymetry associated with reef growth in tectonically active oceanic islands. Massive stromatoporoids, corals, and red algae are preserved in fragmental rudstones and represent a fringing reef that formed at the seaward edgemore » of the incipient marine shelf. Accessory constituents in this reef include crinoids and the cyanobacterium Girvanella. Small biostromes were constructed by ramose corals and stromatoporoids on oncolitic substrates in backreef or lagoonal environments. These buildups were associated with low-diversity assemblages of brachiopods and with gastropods, amphiporids, calcareous algae and cyanobacteria. Microbial boundstones reflect the widespread encrustation of cyanobacteria and calcified microproblematica on shelly debris as stromatolitic mats that resulted in the development of a stromatactoid-bearing mud mound and a barrier reef complex. Epiphytaceans, other microbes, and aphrosalpingid sponges were the primary frame-builders of the barrier reefs. These buildups attained significant relief at the shelf margin and shed detritus as slumped blocks and debris flows into deep-water sites along the slope. The similarity of these stromatolitic-aphrosalpingid reefs to those from Siluro-Devonian strata of autochthonous southwestern Alaska suggests paleobiogeographic ties of the Alexander terrane to cratonal North America during the Silurian.« less

  3. A record of recent change in terrestrial sedimentation in a coral-reef environment, La Parguera, Puerto Rico: a response to coastal development?

    PubMed

    Ryan, K E; Walsh, J P; Corbett, D R; Winter, A

    2008-06-01

    Increased sediment flux to the coastal ocean due to coastal development is considered a major threat to the viability of coral reefs. A change in the nature of sediment supply and storage has been identified in a variety of coastal settings, particularly in response to European colonization, but sedimentation around reefs has received less attention. This research examines the sedimentary record adjacent to a coastal village that has experienced considerable land-use change over the last few decades. Sediment cores were analyzed to characterize composition and sediment accumulation rates. Sedimentation rates decreased seaward across the shelf from 0.85 cm y(-1) in a nearshore bay to 0.19 cm y(-1) in a fore-reef setting. Data reflected a significant (up to 2x) increase over the last approximately 80 years in terrestrial sediment accumulating in the back-reef setting, suggesting greater terrestrial sediment flux to the area. Reef health has declined, and increased turbidity is believed to be an important impact, particularly when combined with additional stressors.

  4. Project O.R.B (Operation Reef Ball): Creating Artificial Reefs, Educating the Community

    NASA Astrophysics Data System (ADS)

    Phipps, A.

    2012-04-01

    The Project O.R.B. (Operation Reef Ball) team at South Plantation High School's Everglades Restoration & Environmental Science Magnet Program is trying to help our ailing south Florida coral reefs by constructing, deploying, and monitoring designed artificial reefs. Students partnered with the Reef Ball Foundation, local concrete companies, state parks, Girl Scouts, Sea Scouts, local universities and environmental agencies to construct concrete reef balls, each weighing approximately 500 lbs (227 kg). Students then deployed two artificial reefs consisting of over 30 concrete reef balls in two sites previously permitted for artificial reef deployment. One artificial reef was placed approximately 1.5 miles (2.4 km) offshore of Golden Beach in Miami-Dade County with the assistance of Florida Atlantic University and their research vessel. A twin reef was deployed at the mouth of the river in Oleta River State Park in Miami. Monitoring and maintenance of the sites is ongoing with semi-annual reports due to the Reef Ball Foundation and DERM (Department of Environmental Resource Management) of Miami-Dade County. A second goal of Project O.R.B. is aligned with the Florida Local Action Strategy, the Southeast Florida Coral Reef Initiative, and the U.S. Coral Reef Task Force, all of which point out the importance of awareness and education as key components to the health of our coral reefs. Project O.R.B. team members developed and published an activity book targeting elementary school students. Outreach events incorporate cascade learning where high school students teach elementary and middle school students about various aspects of coral reefs through interactive "edu-tainment" modules. Attendees learn about water sampling, salinity, beach erosion, surface runoff, water cycle, ocean zones, anatomy of coral, human impact on corals, and characteristics of a well-designed artificial reef. Middle school students snorkel on the artificial reef to witness first-hand the success of this artificial reef. Over 3,000 students have been reached through the educational outreach endeavors of Project O.R.B. This successful STEM project models the benefits of partnerships with universities, local K-12 public schools and community conservation organizations and provides students with authentic learning experiences. Students are able to have a positive impact on their local coral reef environment, their peers and their community through this comprehensive service-learning project.

  5. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    NASA Astrophysics Data System (ADS)

    Hochberg, E. J.

    2016-02-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  6. Battelle developing reefs to ease habitat losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    Artificial reefs may be the answer to solving a worldwide problem of declining fish habitats, or they may only be good for creating fishing spots. Researchers at Battelle's Ocean Sciences Laboratory in Duxbury, Massachusetts, are studying artificial reefs in the Delaware River to determine if they are a solution to habitat losses in estuaries and coastal regions. [open quotes]Right now, we don't know if the fish are using the reefs simply as a grazing land, and then moving on, or if they're using the areas to colonize,[close quotes] said researcher Karen Foster. [open quotes]Ultimately, we hope to find they aremore » colonizing.[close quotes] In 1989, Battelle researchers placed 16 prefabricated concrete reefs 45 feet deep in Delaware Bay. The reefs were placed in clusters of four, and monitoring began the following year. The federal government ordered the reefs placed in the bay as a mitigation technique for fish habitat that was lost when the river was dredged for navigational purposes. Researchers examined the reefs twice last summer. It will take five years, Foster said, before researchers can determine if the reefs are increasing the fish population. Early tests show, however, the populations of mussels, sponges, corals, and anemones increased by up to 150 percent over an area of bay bottom where the reefs were placed. Divers take crustacean samples from the reefs, and fish are caught near the reefs for examination. Researchers dissect the fish stomachs and analyze the contents to determine if they have been feeding at the reefs. [open quotes]If we find blue mussels in the stomach of the fish, that's great because we know that blue mussels are growing on the reef,[close quotes] Foster said.« less

  7. Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function

    NASA Astrophysics Data System (ADS)

    Hochberg, E. J.

    2015-12-01

    Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.

  8. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance

    PubMed Central

    Fung, Tak; Garza-Pérez, Joaquín Rodrigo; Acosta-González, Gilberto; Bozec, Yves-Marie; Johnson, Craig R.

    2017-01-01

    Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica. PMID:28445546

  9. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance.

    PubMed

    Arias-González, Jesús Ernesto; Fung, Tak; Seymour, Robert M; Garza-Pérez, Joaquín Rodrigo; Acosta-González, Gilberto; Bozec, Yves-Marie; Johnson, Craig R

    2017-01-01

    Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica.

  10. A 3D seismic investigation of the Ray Gas Storage Reef in Macomb County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, S.F.; Dixon, R.A.

    1995-09-01

    A 4.2 square mile 3D seismic survey was acquired over the Ray Niagaran Reef Gas Storage Field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the field. Goals of the survey were: (1) to determine if additional storage capacity could be found, either as extensions to the main reef or as undiscovered satellite reefs, (2) to determine if 3D seismic data can be utilized to quantify reservoir parameters in order to maximize the productive capacity of infill wells, and (3) to investigate the relationship between the main reef body and a lowmore » relief/flow volume gas well east of the reef. Interpretation of the 3D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and the relationship between porosity and seismic amplitude was investigated. A possible connection between the main reef and the low relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3D seismic data, and underscores the necessity of acquiring such a survey prior to developing a new storage reservoir.« less

  11. Modelling Coral Reef Futures to Inform Management: Can Reducing Local-Scale Stressors Conserve Reefs under Climate Change?

    PubMed Central

    Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems. PMID:24260347

  12. Modelling coral reef futures to inform management: can reducing local-scale stressors conserve reefs under climate change?

    PubMed

    Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R

    2013-01-01

    Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems.

  13. Phylogenetic novelties and geographic anomalies among tropical Verongida.

    PubMed

    Diaz, Maria C; Thacker, Robert W; Redmond, Niamh E; Matterson, Kenan O; Collins, Allen G

    2013-09-01

    Exploring marine sponges from shallow tropical reefs of the Caribbean and western Central Pacific, as part of large biodiversity (Moorea Biocode Project) and evolutionary (Porifera Tree of Life) research projects, we encountered 13 skeleton-less specimens, initially divided in two morphological groups, which had patterns of coloration and oxidation typical of taxa of the order Verongida (Demospongiae). The first group of samples inhabited open and cryptic habitats of shallow (15-20 m) Caribbean reefs at Bocas del Toro Archipelago, Panama. The second group inhabited schiophilous (e.g., inner coral framework and crevices) habitats on shallow reefs (0.5-20 m deep) in Moorea Island, French Polynesia. We applied an integrative approach by combining analyses of external morphology, histological observations, 18S rDNA, and mtCOI to determine the identity and the relationships of these unknown taxa within the order Verongida. Molecular analyses revealed that none of the species studied belonged to Hexadella (Ianthellidae, Verongida), the only fibreless genus of the Order Verongida currently recognized. The species from the Caribbean locality of Bocas del Toro (Panama) belong to the family Ianthellidae and is closely related to the Pacific genera Ianthella and Anomoianthella, both with well-developed fiber reticulations. We suggest the erection of a new generic denomination to include this novel eurypylous, fibreless ianthellid. The species collected in Moorea were all diplodal verongid taxa, with high affinities to a clade containing Pseudoceratina, Verongula, and Aiolochroia, a Pacific and two Caribbean genera, respectively. These unknown species represented at least three different taxa distinguished by DNA sequence analysis and morphological characteristics. Two new genera and a new species of Pseudoceratina are here proposed to accommodate these novel biological discoveries. The evolutionary and ecological meaning of having or lacking a fiber skeleton within Verongida is challenged under the evidence of the existence of fibreless genera within various verongid clades. Furthermore, the discovery of a fibreless Peudoceratina suggests that the possession of a spongin-chitin fiber reticulation is an "ecological" plastic trait that might be lost under certain conditions, such us growing within another organism's skeletal framework. These results raise new questions about the ecological and evolutionary significance of the development of a fiber skeleton and of sponges' adaptability to various environmental conditions.

  14. Behavior of a wave-driven buoyant surface jet on a coral reef

    USGS Publications Warehouse

    Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.

    2017-01-01

    A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.

  15. A 3-D seismic investigation of the Ray gas storage reef, Macomb County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, S.F.; Dixon, R.A.

    1994-08-01

    A 4.2 mi[sup 2] 3-D seismic survey was acquired over the Ray Niagaran reef gas storage field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the storage reservoir. Goals of the survey were to (1) determine if additional storage capacity could be found either as extensions to the Ray reef or as undiscovered satellite reefs, (2) investigate the relationship between the main body and a low-relief gas well east of the reef, and (3) determine if seismic data can be used to quantify reservoir parameters to maximize the productive capacity of infillmore » wells. Interpretation of the 3-D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and a possible relationship between porosity and seismic amplitude was investigated. A potential connection between the main reef and the low-relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3-D seismic data, and underscores the necessity of such a survey prior to developing a new storage reservoir.« less

  16. Behavior of a wave-driven buoyant surface jet on a coral reef

    NASA Astrophysics Data System (ADS)

    Herdman, Liv M. M.; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.

    2017-05-01

    A wave-driven surface-buoyant jet exiting a coral reef was studied in order to quantify the amount of water reentrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and alongshore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of alongshore velocity to jet velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.

  17. The unnatural history of Kāne'ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts.

    PubMed

    Bahr, Keisha D; Jokiel, Paul L; Toonen, Robert J

    2015-01-01

    Kāne'ohe Bay, which is located on the on the NE coast of O'ahu, Hawai'i, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāne'ohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Lo'e (Coconut Island) in the southern region of the bay became home to the Hawai'i Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960's the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of Kāne'ohe Bay developed under estuarine conditions and thus have been subjected to multiple natural stresses. These include storm floods, a more extreme temperature range than more oceanic reefs, high rates of sedimentation, and exposure at extreme low tides. Deposition and degradation of organic materials carried into the bay from the watershed results in low pH conditions such that according to some ocean acidification projections the rich coral reefs in the bay should not exist. Increased global temperature due to anthropogenic fossil fuel emmisions is now impacting these reefs with the first "bleaching event" in 1996 and a second more severe event in 2014. The reefs of Kāne'ohe Bay have developed and persist under rather severe natural and anthropogenic perturbations. To date, these reefs have proved to be very resilient once the stressor has been removed. A major question remains to be answered concerning the limits of Kāne'ohe Bay reef resilience in the face of global climate change.

  18. Monitoring Land Based Sources of Pollution over Coral Reefs using VIIRS Ocean Color Products

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Strong, A. E.; Eakin, C. M.; Wang, M.; Hernandez, W. J.; Cardona Maldonado, M. A.; De La Cour, J. L.; Liu, G.; Tirak, K.; Heron, S. F.; Skirving, W. J.; Armstrong, R.; Warner, R. A.

    2016-02-01

    NOAA's Coral Reef Watch (CRW) program and the NESDIS Ocean Color Team are developing new products to monitor land based sources of pollution (LBSP) over coral reef ecosystems using the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the S-NPP satellite. LBSP are a major threat to corals that can cause disease and mortality, disrupt critical ecological reef functions, and impede growth, reproduction, and larval settlement, among other impacts. From VIIRS, near-real-time satellite products of Chlorophyll-a, Kd(490), and sea surface temperature are being developed for three U.S. Coral Reef Task Force priority watershed sites - Ka'anapali (West Maui, Hawai'i), Faga'alu (American Samoa), and Guánica Bay (Puerto Rico). Background climatological levels of these parameters are being developed to construct anomaly products. Time-series data are being generated to monitor changes in water quality in near-real-time and provide information on historical variations, especially following significant rain events. A pilot calibration/validation field study of the VIIRS-based ocean color products is underway in Puerto Rico; we plan to expand this validation effort to the other two watersheds. Working with local resource managers, we have identified a focal area for product development and validation for each watershed and its associated local reefs. This poster will present preliminary results and identify a path forward to ensure marine resource managers understand and correctly use the new ocean color products, and to help NOAA CRW refine its satellite products to maximize their benefit to coral reef management. NOAA - National Oceanic and Atmospheric Administration NESDIS - NOAA/National Environmental Satellite, Data, and Information Service S-NPP - Suomi National Polar-orbiting Partnership

  19. An Ecosystem Service Evaluation Tool to Support Ridge-to-Reef Management and Conservation in Hawaii

    NASA Astrophysics Data System (ADS)

    Oleson, K.; Callender, T.; Delevaux, J. M. S.; Falinski, K. A.; Htun, H.; Jin, G.

    2014-12-01

    Faced with increasing anthropogenic stressors and diverse stakeholders, local managers are adopting a ridge-to-reef and multi-objective management approach to restore declining coral reef health state. An ecosystem services framework, which integrates ecological indicators and stakeholder values, can foster more applied and integrated research, data collection, and modeling, and thus better inform the decision-making process and realize decision outcomes grounded in stakeholders' values. Here, we describe a research program that (i) leverages remotely sensed and empirical data to build an ecosystem services-based decision-support tool geared towards ridge-to-reef management; and (ii) applies it as part of a structured, value-based decision-making process to inform management in west Maui, a NOAA coral reef conservation priority site. The tool links terrestrial and marine biophysical models in a spatially explicit manner to quantify and map changes in ecosystem services delivery resulting from management actions, projected climate change impacts, and adaptive responses. We couple model outputs with localized valuation studies to translate ecosystem service outcomes into benefits and their associated socio-cultural and/or economic values. Managers can use this tool to run scenarios during their deliberations to evaluate trade-offs, cost-effectiveness, and equity implications of proposed policies. Ultimately, this research program aims at improving the effectiveness, efficiency, and equity outcomes of ecosystem-based management. This presentation will describe our approach, summarize initial results from the terrestrial modeling and economic valuations for west Maui, and highlight how this decision support tool benefits managers in west Maui.

  20. A Biophysical Model for Hawaiian Coral Reefs: Coupling Local Ecology, Larval Transport and Climate Change

    NASA Astrophysics Data System (ADS)

    Kapur, M. R.

    2016-02-01

    Simulative models of reef ecosystems have been used to evaluate ecological responses to a myriad of disturbance events, including fishing pressure, coral bleaching, invasion by alien species, and nutrient loading. The Coral Reef Scenario Evaluation Tool (CORSET), has been developed and instantiated for both the Meso-American Reef (MAR) and South China Sea (SCS) regions. This model is novel in that it accounts for the many scales at which reef ecosystem processes take place; is comprised of a "bottom-up" structure wherein complex behaviors are not pre-programmed, but emergent and highly portable to new systems. Local-scale dynamics are coupled across regions through larval connectivity matrices, derived sophisticated particle transport simulations that include key elements of larval behavior. By this approach, we are able to directly evaluate some of the potential consequences of larval connectivity patterns across a range of spatial scales and under multiple climate scenarios. This work develops and applies the CORSET (Coral Reef Scenario Evaluation Tool) to the Main Hawaiian Islands under a suite of climate and ecological scenarios. We introduce an adaptation constant into reef-building coral dynamics to simulate observed resiliencies to bleaching events. This presentation will share results from the model's instantiation under two Resource Concentration Pathway climate scenarios, with emphasis upon larval connectivity dynamics, emergent coral tolerance to increasing thermal anomalies, and patterns of spatial fishing closures. Results suggest that under a business-as-usual scenario, thermal tolerance and herbivore removal will have synergistic effects on reef resilience.

  1. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Treesearch

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  2. pyBadlands: A framework to simulate sediment transport, landscape dynamics and basin stratigraphic evolution through space and time

    PubMed Central

    2018-01-01

    Understanding Earth surface responses in terms of sediment dynamics to climatic variability and tectonics forcing is hindered by limited ability of current models to simulate long-term evolution of sediment transfer and associated morphological changes. This paper presents pyBadlands, an open-source python-based framework which computes over geological time (1) sediment transport from landmasses to coasts, (2) reworking of marine sediments by longshore currents and (3) development of coral reef systems. pyBadlands is cross-platform, distributed under the GPLv3 license and available on GitHub (http://github.com/badlands-model). Here, we describe the underlying physical assumptions behind the simulated processes and the main options already available in the numerical framework. Along with the source code, a list of hands-on examples is provided that illustrates the model capabilities. In addition, pre and post-processing classes have been built and are accessible as a companion toolbox which comprises a series of workflows to efficiently build, quantify and explore simulation input and output files. While the framework has been primarily designed for research, its simplicity of use and portability makes it a great tool for teaching purposes. PMID:29649301

  3. The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)

    NASA Astrophysics Data System (ADS)

    Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.

    2018-04-01

    Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.

  4. Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean acidification on coral reefs

    NASA Astrophysics Data System (ADS)

    Lantz, C. A.; Atkinson, M. J.; Winn, C. W.; Kahng, S. E.

    2014-03-01

    There is an interest in developing approaches to "ecosystem-based" management for coral reefs. One aspect of ecosystem performance is to monitor carbon metabolism of whole communities. In an effort to explore robust techniques to monitor the metabolism of fringing reefs, especially considering the possible effects of ocean acidification, a yearlong study of the carbonate chemistry of a nearshore fringing reef in Hawaii was conducted. Diurnal changes in seawater carbonate chemistry were measured once a week in an algal-dominated and a coral-dominated reef flat on the Waimanalo fringing reef, Hawaii, from April of 2010 until May of 2011. Calculated rates of gross primary production (GPP) and net community calcification ( G) were similar to previous estimates of community metabolism for other coral reefs (GPP 971 mmol C m-2 d-1; G 186 mmol CaCO3 m-2 d-1) and indicated that this reef was balanced in terms of organic metabolism, exhibited net calcification, and was a net source of CO2 to the atmosphere. Average slopes of total alkalinity versus dissolved inorganic carbon (TA-DIC slope) for the coral-dominated reef flat exhibited a greater calcification-to-net photosynthesis ratio than for the algal-dominated reef flat (coral slope vs. algal slope). Over the course of the time series, TA-DIC slopes remained significantly different between sites and were not correlated with diurnal averages in reef-water residence time or solar irradiance. These characteristic slopes for each reef flat reflect the relationship between carbon and carbonate community metabolism and can be used as a tool to monitor ecosystem function in response to ocean acidification.

  5. A Restoration Suitability Index Model for the Eastern Oyster (Crassostrea virginica) in the Mission-Aransas Estuary, TX, USA

    PubMed Central

    Beseres Pollack, Jennifer; Cleveland, Andrew; Palmer, Terence A.; Reisinger, Anthony S.; Montagna, Paul A.

    2012-01-01

    Oyster reefs are one of the most threatened marine habitats on earth, with habitat loss resulting from water quality degradation, coastal development, destructive fishing practices, overfishing, and storm impacts. For successful and sustainable oyster reef restoration efforts, it is necessary to choose sites that support long-term growth and survival of oysters. Selection of suitable sites is critically important as it can greatly influence mortality factors and may largely determine the ultimate success of the restoration project. The application of Geographic Information Systems (GIS) provides an effective methodology for identifying suitable sites for oyster reef restoration and removes much of the uncertainty involved in the sometimes trial and error selection process. This approach also provides an objective and quantitative tool for planning future oyster reef restoration efforts. The aim of this study was to develop a restoration suitability index model and reef quality index model to characterize locations based on their potential for successful reef restoration within the Mission-Aransas Estuary, Texas, USA. The restoration suitability index model focuses on salinity, temperature, turbidity, dissolved oxygen, and depth, while the reef quality index model focuses on abundance of live oysters, dead shell, and spat. Size-specific Perkinsus marinus infection levels were mapped to illustrate general disease trends. This application was effective in identifying suitable sites for oyster reef restoration, is flexible in its use, and provides a mechanism for considering alternative approaches. The end product is a practical decision-support tool that can be used by coastal resource managers to improve oyster restoration efforts. As oyster reef restoration activities continue at small and large-scales, site selection criteria are critical for assisting stakeholders and managers and for maximizing long-term sustainability of oyster resources. PMID:22792410

  6. The influence of sea-level rise on fringing reef sediment dynamics: field observations and numerical modeling

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine

    2011-01-01

    While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.

  7. DEVELOPMENT AND IMPLEMENTATION OF CORAL REEF BIOCRITERIA IN U.S. JURISDICTIONS

    EPA Science Inventory

    U.S. coral reef ecosystems are threatened by a variety of anthropogenic activities (e.g., pollution, over fishing, vessel groundings, excess nutrients, coastal development, etc.), natural stressors (e.g., tropical storms), and natural stressors that have been exacerbated by anth...

  8. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Cheal, A. J.; MacNeil, M. Aaron; Cripps, E.; Emslie, M. J.; Jonker, M.; Schaffelke, B.; Sweatman, H.

    2010-12-01

    Changes from coral to macroalgal dominance following disturbances to corals symbolize the global degradation of coral reefs. The development of effective conservation measures depends on understanding the causes of such phase shifts. The prevailing view that coral-macroalgal phase shifts commonly occur due to insufficient grazing by fishes is based on correlation with overfishing and inferences from models and small-scale experiments rather than on long-term quantitative field studies of fish communities at affected and resilient sites. Consequently, the specific characteristics of herbivorous fish communities that most promote reef resilience under natural conditions are not known, though this information is critical for identifying vulnerable ecosystems. In this study, 11 years of field surveys recorded the development of the most persistent coral-macroalgal phase shift (>7 years) yet observed on Australia’s Great Barrier Reef (GBR). This shift followed extensive coral mortality caused by thermal stress (coral bleaching) and damaging storms. Comparisons with two similar reefs that suffered similar disturbances but recovered relatively rapidly demonstrated that the phase shift occurred despite high abundances of one herbivore functional group (scraping/excavating parrotfishes: Labridae). However, the shift was strongly associated with low fish herbivore diversity and low abundances of algal browsers (predominantly Siganidae) and grazers/detritivores (Acanthuridae), suggesting that one or more of these factors underpin reef resilience and so deserve particular protection. Herbivorous fishes are not harvested on the GBR, and the phase shift was not enhanced by unusually high nutrient levels. This shows that unexploited populations of herbivorous fishes cannot ensure reef resilience even under benign conditions and suggests that reefs could lose resilience under relatively low fishing pressure. Predictions of more severe and widespread coral mortality due to global climate change emphasize the need for more effective identification and protection of ecosystem components that are critical for the prevention of coral reef phase shifts.

  9. Genetic markers for antioxidant capacity in a reef-building coral.

    PubMed

    Jin, Young K; Lundgren, Petra; Lutz, Adrian; Raina, Jean-Baptiste; Howells, Emily J; Paley, Allison S; Willis, Bette L; van Oppen, Madeleine J H

    2016-05-01

    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs.

  10. First description of the neuro-anatomy of a larval coral reef fish Amphiprion ocellaris.

    PubMed

    Jacob, H; Metian, M; Brooker, R M; Duran, E; Nakamura, N; Roux, N; Masanet, P; Soulat, O; Lecchini, D

    2016-09-01

    The present study described the neuro-anatomy of a larval coral reef fish Amphiprion ocellaris and hypothesized that morphological changes during the transition from the oceanic environment to a reef environment (i.e. recruitment) have the potential to be driven by changes to environmental conditions and associated changes to cognitive requirements. Quantitative comparisons were made of the relative development of three specific brain areas (telencephalon, mesencephalon and cerebellum) between 6 days post-hatch (dph) larvae (oceanic phase) and 11 dph (at reef recruitment). The results showed that 6 dph larvae had at least two larger structures (telencephalon and mesencephalon) than 11 dph larvae, while the size of cerebellum remained identical. These results suggest that the structure and organization of the brain may reflect the cognitive demands at every stage of development. This study initiates analysis of the relationship between behavioural ecology and neuroscience in coral reef fishes. © 2016 The Fisheries Society of the British Isles.

  11. In-situ Effects of Eutrophication and Overfishing on Physiology and Bacterial Diversity of the Red Sea Coral Acropora hemprichii

    PubMed Central

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ 15N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account. PMID:23630625

  12. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii.

    PubMed

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.

  13. Modeling Hydrodynamics on the Wave Group Scale in Topographically Complex Reef Environments

    NASA Astrophysics Data System (ADS)

    Reyns, J.; Becker, J. M.; Merrifield, M. A.; Roelvink, J. A.

    2016-02-01

    The knowledge of the characteristics of waves and the associated wave-driven currents is important for sediment transport and morphodynamics, nutrient dynamics and larval dispersion within coral reef ecosystems. Reef-lined coasts differ from sandy beaches in that they have a steep offshore slope, that the non-sandy bottom topography is very rough, and that the distance between the point of maximum short wave dissipation and the actual coastline is usually large. At this short wave breakpoint, long waves are released, and these infragravity (IG) scale motions account for the bulk of the water level variance on the reef flat, the lagoon and eventually, the sandy beaches fronting the coast through run-up. These IG energy dominated water level motions are reinforced during extreme events such as cyclones or swells through larger incident band wave heights and low frequency wave resonance on the reef. Recently, a number of hydro(-morpho)dynamic models that have the capability to model these IG waves have successfully been applied to morphologically differing reef environments. One of these models is the XBeach model, which is curvilinear in nature. This poses serious problems when trying to model an entire atoll for example, as it is extremely difficult to build curvilinear grids that are optimal for the simulation of hydrodynamic processes, while maintaining the topology in the grid. One solution to remediate this problem of grid connectivity is the use of unstructured grids. We present an implementation of the wave action balance on the wave group scale with feedback to the flow momentum balance, which is the foundation of XBeach, within the framework of the unstructured Delft3D Flexible Mesh model. The model can be run in stationary as well as in instationary mode, and it can be forced by regular waves, time series or wave spectra. We show how the code is capable of modeling the wave generated flow at a number of topographically complex reef sites and for a number of different forcing conditions, by comparison with field data.

  14. Possible Evidence of Multiple Sea Level Oscillations in the Seychelles During the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Dutton, A. L.; Vyverberg, K.; Webster, J.; Dechnik, B.; Zwartz, D.; Lambeck, K.

    2013-12-01

    In search of a eustatic sea level signal on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its far-field location with respect to the former margins of Northern Hemisphere ice sheets, glacio-hydro-isostatic models predict that relative sea level in the Seychelles should lie within a few meters of the globally averaged eustatic signal during interglacial periods. We have surveyed and dated fossil coral reefs from the last interglacial period to determine the magnitude of peak sea level and to assess sedimentologic evidence of potential sea level oscillations. Numerous outcrops we studied in detail exhibit a stratigraphic sequence comprised of in situ coralgal framework at the base, capped by thick coralline algae crusts, and overlain by coral rubble deposits. We also observed a succession of three stacked coralgal reefs within a single outcrop, separated by hardgrounds that have been bored by molluscs. In general, the succession within each reef unit consists of interlayered corals and crusts of coralline algae-vermetid gastropods-encrusting foraminifera. The lower two reef units are capped by a well-cemented 5 to 10 cm thick carbonate mud layer that is heavily bored by molluscs. These two surfaces may represent exposure surfaces during brief sea level oscillations, where sea level fell and exposed the top of the reef sequence, which was subsequently bored when sea level rose again and reef growth resumed. The elevations of the corals in each reef unit provide minimum elevations of sea level during each of the three pulses of sea level highstands during the last interglacial period. Significantly, since many of these corals are capped by thick coralline algae layers that contain vermetid gastropods and encrusting foraminifera that are indicative of the intertidal zone, there is strong evidence that these corals grew in extremely shallow water, providing a robust indication of sea level position. These observations ostensibly support the notion that the last interglacial period was characterized by ice sheet instability, causing multiple sea level oscillations.

  15. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  16. Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia.

    PubMed

    Baum, Gunilla; Januar, Hedi I; Ferse, Sebastian C A; Kunzmann, Andreas

    2015-01-01

    Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80% of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.

  17. Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia

    PubMed Central

    Baum, Gunilla; Januar, Hedi I.; Ferse, Sebastian C. A.; Kunzmann, Andreas

    2015-01-01

    Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80% of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation. PMID:26378910

  18. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change.

  19. Towards an integrated network of coral immune mechanisms

    PubMed Central

    Palmer, C. V.; Traylor-Knowles, N.

    2012-01-01

    Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts. PMID:22896649

  20. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    PubMed

    Velásquez, Johanna; Sánchez, Juan A

    2015-01-01

    What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks.

  1. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs

    PubMed Central

    Velásquez, Johanna; Sánchez, Juan A.

    2015-01-01

    Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks. PMID:26177191

  2. Coral reef metabolism and carbon chemistry dynamics of a coral reef flat

    NASA Astrophysics Data System (ADS)

    Albright, Rebecca; Benthuysen, Jessica; Cantin, Neal; Caldeira, Ken; Anthony, Ken

    2015-05-01

    Global carbon emissions continue to acidify the oceans, motivating growing concern for the ability of coral reefs to maintain net positive calcification rates. Efforts to develop robust relationships between coral reef calcification and carbonate parameters such as aragonite saturation state (Ωarag) aim to facilitate meaningful predictions of how reef calcification will change in the face of ocean acidification. Here we investigate natural trends in carbonate chemistry of a coral reef flat over diel cycles and relate these trends to benthic carbon fluxes by quantifying net community calcification and net community production. We find that, despite an apparent dependence of calcification on Ωarag seen in a simple pairwise relationship, if the dependence of net calcification on net photosynthesis is accounted for, knowing Ωarag does not add substantial explanatory value. This suggests that, over short time scales, the control of Ωarag on net calcification is weak relative to factors governing net photosynthesis.

  3. Towards an Ontology for Reef Islands

    NASA Astrophysics Data System (ADS)

    Duce, Stephanie

    Reef islands are complex, dynamic and vulnerable environments with a diverse range of stake holders. Communication and data sharing between these different groups of stake holders is often difficult. An ontology for the reef island domain would improve the understanding of reef island geomorphology and improve communication between stake holders as well as forming a platform from which to move towards interoperability and the application of Information Technology to forecast and monitor these environments. This paper develops a small, prototypical reef island domain ontology, based on informal, natural language relations, aligned to the DOLCE upper-level ontology, for 20 fundamental terms within the domain. A subset of these terms and their relations are discussed in detail. This approach reveals and discusses challenges which must be overcome in the creation of a reef island domain ontology and which could be relevant to other ontologies in dynamic geospatial domains.

  4. Century-scale records of land-based activities recorded in Mesoamerican coral cores.

    PubMed

    Carilli, Jessica E; Prouty, Nancy G; Hughen, Konrad A; Norris, Richard D

    2009-12-01

    The Mesoamerican Reef, the second-largest barrier reef in the world, is located in the western Caribbean Sea off the coasts of Mexico, Belize, Guatemala, and Honduras. Particularly in the south, the surrounding watersheds are steep and the climate is extremely wet. With development and agricultural expansion, the potential for negative impacts to the reef from land-based runoff becomes high. We constructed annually resolved century-scale records of metal/calcium ratios in coral skeletons collected from four sites experiencing a gradient of land-based runoff. Our proxy data indicate that runoff onto the reef has increased relatively steadily over time at all sites, consistent with land use trends from historical records. Sediment supply to the reef is greater in the south, and these more exposed reefs will probably benefit most immediately from management that targets runoff reduction. However, because runoff at all sites is steadily increasing, even distal sites will benefit from watershed management.

  5. Assessing the effects of non-point source pollution on American Samoa's coral reef communities.

    PubMed

    Houk, Peter; Didonato, Guy; Iguel, John; Van Woesik, Robert

    2005-08-01

    Surveys were completed on Tutuila Island, American Samoa, to characterize reef development and assess the impacts of non-point source pollution on adjacent coral reefs at six sites. Multivariate analyses of benthic and coral community data found similar modern reef development at three locations; Aoa, Alofau, and Leone. These sites are situated in isolated bays with gentle sloping foundations. Aoa reefs had the highest estimates of crustose coralline algae cover and coral species richness, while Leone and Alofau showed high abundances of macroalgae and Porites corals. Aoa has the largest reef flat between watershed discharge and the reef slope, and the lowest human population density. Masefau and Fagaalu have a different geomorphology consisting of cemented staghorn coral fragments and steep slopes, however, benthic and coral communities were not similar. Benthic data suggest Fagaalu is heavily impacted compared with all other sites. Reef communities were assessed as bio-criteria indicators for waterbody health, using the EPA aquatic life use support designations of (1) fully supportive, (2) partially supportive, and (3) non-supportive for aquatic life. All sites resulted in a partially supportive ranking except Fagaalu, which was non-supportive. The results of this rapid assessment based upon relative benthic community measures are less desirable than long-term dataset analyses from monitoring programs, however it fills an important role for regulatory agencies required to report annual waterbody assessments. Future monitoring sites should be established to increase the number of replicates within each geological and physical setting to allow for meaningful comparisons along a gradient of hypothesized pollution levels.

  6. Preliminary numerical simulation for shallow strata stability of coral reef in South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, Qinqin; Zhan, Wenhuan; Zhang, Jinchang

    2017-04-01

    Coral reefs are the geologic material and special rock and soil, which live in shallow water of the tropic ocean and are formed through biological and geological action. Since infrastructure construction is being increasingly developed on coral reefs during recent years, it is necessary to evaluate the shallow strata stability of coral reefs in the South China Sea. The paper is to study the borehole profiles for shallow strata of coral reefs in the South China Sea, especially in the hydrodynamic marine environment?, and to establish a geological model for numerical simulation with Geo-Studio software. Five drilling holes show a six-layer shallow structure of South China Sea, including filling layer, mid-coarse sand, coral sand gravel, fine sand, limestone debris and reef limestone. The shallow coral reef profile next to lagoon is similar to "layers cake", in which the right side close to the sea is analogous to "block cake". The simulation results show that coral reef stability depends on wave loads and earthquake strength, as well as the physical properties of coral reefs themselves. The safety factor of the outer reef is greater than 10.0 in the static condition, indicating that outer reefs are less affected by the wave and earthquake. However, the safety factor next to lagoon is ranging from 0.1 to 4.9. The main reason for the variations that the strata of coral reefs close to the sea are thick. For example, the thickness of reef limestone is more than 10 m and equivalent to the block. When the thickness of inside strata is less than 10 m, they show weak engineering geological characteristics. These findings can provide useful information for coral reef constructions in future. This work was funded by National Basic Research Program of China (contract: 2013CB956104) and National Natural Science Foundation of China (contract: 41376063).

  7. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts

    PubMed Central

    Jokiel, Paul L.; Toonen, Robert J.

    2015-01-01

    Kāneʻohe Bay, which is located on the on the NE coast of Oʻahu, Hawaiʻi, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāneʻohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Loʻe (Coconut Island) in the southern region of the bay became home to the Hawaiʻi Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960’s the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of Kāneʻohe Bay developed under estuarine conditions and thus have been subjected to multiple natural stresses. These include storm floods, a more extreme temperature range than more oceanic reefs, high rates of sedimentation, and exposure at extreme low tides. Deposition and degradation of organic materials carried into the bay from the watershed results in low pH conditions such that according to some ocean acidification projections the rich coral reefs in the bay should not exist. Increased global temperature due to anthropogenic fossil fuel emmisions is now impacting these reefs with the first “bleaching event” in 1996 and a second more severe event in 2014. The reefs of Kāneʻohe Bay have developed and persist under rather severe natural and anthropogenic perturbations. To date, these reefs have proved to be very resilient once the stressor has been removed. A major question remains to be answered concerning the limits of Kāneʻohe Bay reef resilience in the face of global climate change. PMID:26020007

  8. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985-2012

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-12-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  9. Last interglacial reef growth beneath Belize barrier and isolated platform reefs

    USGS Publications Warehouse

    Gischler, Eberhard; Lomando, Anthony J.; Hudson, J. Harold; Holmes, Charles W.

    2000-01-01

    We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatán. The previously held concept of a neotectonically stable eastern Yucatán is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125–130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize.

  10. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012

    PubMed Central

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-01-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985–2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985–91 and 2006–12 – a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress. PMID:27922080

  11. Warming Trends and Bleaching Stress of the World's Coral Reefs 1985-2012.

    PubMed

    Heron, Scott F; Maynard, Jeffrey A; van Hooidonk, Ruben; Eakin, C Mark

    2016-12-06

    Coral reefs across the world's oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world's reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the 'winter' reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  12. Remote Sensing Tropical Coral Reefs: The View from Above

    NASA Astrophysics Data System (ADS)

    Purkis, Sam J.

    2018-01-01

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  13. Remote Sensing Tropical Coral Reefs: The View from Above.

    PubMed

    Purkis, Sam J

    2018-01-03

    Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.

  14. Taking the metabolic pulse of the world's coral reefs.

    PubMed

    Cyronak, Tyler; Andersson, Andreas J; Langdon, Chris; Albright, Rebecca; Bates, Nicholas R; Caldeira, Ken; Carlton, Renee; Corredor, Jorge E; Dunbar, Rob B; Enochs, Ian; Erez, Jonathan; Eyre, Bradley D; Gattuso, Jean-Pierre; Gledhill, Dwight; Kayanne, Hajime; Kline, David I; Koweek, David A; Lantz, Coulson; Lazar, Boaz; Manzello, Derek; McMahon, Ashly; Meléndez, Melissa; Page, Heather N; Santos, Isaac R; Schulz, Kai G; Shaw, Emily; Silverman, Jacob; Suzuki, Atsushi; Teneva, Lida; Watanabe, Atsushi; Yamamoto, Shoji

    2018-01-01

    Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.

  15. Taking the metabolic pulse of the world’s coral reefs

    PubMed Central

    Andersson, Andreas J.; Langdon, Chris; Albright, Rebecca; Bates, Nicholas R.; Caldeira, Ken; Carlton, Renee; Corredor, Jorge E.; Dunbar, Rob B.; Enochs, Ian; Erez, Jonathan; Eyre, Bradley D.; Gattuso, Jean-Pierre; Gledhill, Dwight; Kayanne, Hajime; Kline, David I.; Koweek, David A.; Lantz, Coulson; Lazar, Boaz; Manzello, Derek; McMahon, Ashly; Meléndez, Melissa; Page, Heather N.; Santos, Isaac R.; Schulz, Kai G.; Shaw, Emily; Silverman, Jacob; Suzuki, Atsushi; Teneva, Lida; Watanabe, Atsushi; Yamamoto, Shoji

    2018-01-01

    Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems. PMID:29315312

  16. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys.

    PubMed

    Kenkel, Carly D; Almanza, Albert T; Matz, Mikhail V

    2015-12-01

    Despite decades of monitoring global reef decline, we are still largely unable to explain patterns of reef deterioration at local scales, which precludes the development of effective management strategies. Offshore reefs of the Florida Keys, USA, experience milder temperatures and lower nutrient loads in comparison to inshore reefs yet remain considerably more degraded than nearshore patch reefs. A year-long reciprocal transplant experiment of the mustard hill coral (Porites astreoides) involving four source and eight transplant locations reveals that corals adapt and/or acclimatize to their local habitat on a < 10-km scale. Surprisingly, transplantation to putatively similar environmental types (e.g., offshore corals moved to a novel offshore site, or along-shore transplantation) resulted in greater reductions in fitness proxies, such as coral growth, than cross-channel transplantation between inshore and offshore reefs. The only abiotic factor showing significantly greater differences between along-shore sites was daily temperature range extremes (rather than the absolute high or low temperatures reached), providing a possible explanation for this pattern. Offshore-origin corals exhibited significant growth reductions at sites with greater daily temperature ranges, which explained up to 39% of the variation in their mass gain. In contrast, daily temperature range explained at most 9% of growth variation in inshore-origin corals, suggesting that inshore corals are more tolerant of high-frequency temperature fluctuations. Finally, corals incur trade-offs when specializing to their native reef. Across reef locations the coefficient of selection against coral transplants was 0.07 ± 0.02 (mean ± SE). This selection against immigrants could hinder the ability of corals to recolonize devastated reefs, whether through assisted migration efforts or natural recruitment events, providing a unifying explanation for observed patterns of coral decline in this reef system.

  17. Expectations and Outcomes of Reserve Network Performance following Re-zoning of the Great Barrier Reef Marine Park.

    PubMed

    Emslie, Michael J; Logan, Murray; Williamson, David H; Ayling, Anthony M; MacNeil, M Aaron; Ceccarelli, Daniela; Cheal, Alistair J; Evans, Richard D; Johns, Kerryn A; Jonker, Michelle J; Miller, Ian R; Osborne, Kate; Russ, Garry R; Sweatman, Hugh P A

    2015-04-20

    Networks of no-take marine reserves (NTMRs) are widely advocated for preserving exploited fish stocks and for conserving biodiversity. We used underwater visual surveys of coral reef fish and benthic communities to quantify the short- to medium-term (5 to 30 years) ecological effects of the establishment of NTMRs within the Great Barrier Reef Marine Park (GBRMP). The density, mean length, and biomass of principal fishery species, coral trout (Plectropomus spp., Variola spp.), were consistently greater in NTMRs than on fished reefs over both the short and medium term. However, there were no clear or consistent differences in the structure of fish or benthic assemblages, non-target fish density, fish species richness, or coral cover between NTMR and fished reefs. There was no indication that the displacement and concentration of fishing effort reduced coral trout populations on fished reefs. A severe tropical cyclone impacted many survey reefs during the study, causing similar declines in coral cover and fish density on both NTMR and fished reefs. However, coral trout biomass declined only on fished reefs after the cyclone. The GBRMP is performing as expected in terms of the protection of fished stocks and biodiversity for a developed country in which fishing is not excessive and targets a narrow range of species. NTMRs cannot protect coral reefs directly from acute regional-scale disturbance but, after a strong tropical cyclone, impacted NTMR reefs supported higher biomass of key fishery-targeted species and so should provide valuable sources of larvae to enhance population recovery and long-term persistence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Role of Sediments and Nutrients in the Condition of a Coral Reef Under Tourist Pressure: Akumal México.

    NASA Astrophysics Data System (ADS)

    Naranjo-Garcia, M. J.; Vadés Lozano, D. S.; Real-De-Leon, E.; Lopez-Aguiar, K.; Garza-Perez, J. R.

    2014-12-01

    Akumal, Mexico, was the first tourist resort in the Mexican Caribbean mainland, its highly developed coastal zone lies directly above the phreatic, and it is directly connected to the sub-littoral waters. Akumal is also known as a well-developed fringing coral reef, now in a critical condition. The main objective of this study was to explore the relationship between two of the main indicators of human pressure (nutrients and sedimentation, linked to coastal development and water run-offs) and the condition of the reef benthos, during a year. The sampling design used four transects perpendicular to shore, associated to different tourist and water run-off exposure, for a total of 12 stations distributed in three different reef zones (transition zone, shallow and deep spurs and grooves). Monthly samples were collected: water samples close to the reef lagoon drain channels and at bottom depth at each station, and sediment traps were recovered and replaced also at each station. Reef Benthos videotransects were recorded bi-monthly at each station to assess its condition. Macroalgae and filamentous algae dominate benthic cover (up to 50%), hard-coral cover ranges from 5-9%. Five coral-diseases were recorded, affecting 10.16% of the coral colonies: Caribbean Ciliate Infection, White Band, Purple Spots, White Spots and Yellow Band. The sedimentation rate -sr- ranged from 0.13 to 83.7 mg/cm2/day during the year; 86% of the samples had a sr ≤ 10 mg/cm2/day (reefs not stressed); 13% of the samples had a sr ranging from 10 to 50 mg/cm2/day (stressed reefs); and 1% of the samples were over the critical threshold (>50 mg/cm2/day). Dissolved Inorganic Nitrogen concentrations during the year were above those recorded previously in Caribbean reefs. The most abundant fraction was ammonium, surpassing both Mexican norms: For protection of aquatic life in coastal zones (0.01 mg/L), and the critical threshold for aquatic life (0.4 mg/L). These concentration limits are considered as drivers of eutrophication, one of the main established causes of reef degradation globally. High concentrations of ammonium and other nutrients have been linked to increases in algae cover and coral diseases incidence, and to decreases in rates of coral calcification, fertility, production and viability of coral larvae, and the associated diversity loss.

  19. An ArcGIS decision support tool for artificial reefs site selection (ArcGIS ARSS)

    NASA Astrophysics Data System (ADS)

    Stylianou, Stavros; Zodiatis, George

    2017-04-01

    Although the use and benefits of artificial reefs, both socio-economic and environmental, have been recognized with research and national development programmes worldwide their development is rarely subjected to a rigorous site selection process and the majority of the projects use the traditional (non-GIS) approach, based on trial and error mode. Recent studies have shown that the use of Geographic Information Systems, unlike to traditional methods, for the identification of suitable areas for artificial reefs siting seems to offer a number of distinct advantages minimizing possible errors, time and cost. A decision support tool (DSS) has been developed based on the existing knowledge, the multi-criteria decision analysis techniques and the GIS approach used in previous studies in order to help the stakeholders to identify the optimal locations for artificial reefs deployment on the basis of the physical, biological, oceanographic and socio-economic features of the sites. The tool provides to the users the ability to produce a final report with the results and suitability maps. The ArcGIS ARSS support tool runs within the existing ArcMap 10.2.x environment and for the development the VB .NET high level programming language has been used along with ArcObjects 10.2.x. Two local-scale case studies were conducted in order to test the application of the tool focusing on artificial reef siting. The results obtained from the case studies have shown that the tool can be successfully integrated within the site selection process in order to select objectively the optimal site for artificial reefs deployment.

  20. Criteria for successful exploration for Miocene reef production in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downey, M.W.

    1990-06-01

    An abundance of modern geologic, geophysical, and geochemical data has been provided to interested members of the petroleum industry by the Philippine government, in cooperation with the World Bank. These data have been analyzed to assess whether more, and larger, Miocene reef fields should be expected in the Philippines. In the past decade, exploration by Cities Service (OXY), Amoco, Alcorn, and others has resulted in the discovery of several small Miocene reef and Miocene sandstone oil fields in offshore Palawan. Phillips/Shell also made a significant gas discovery of about 750 bcf in a Palawan Miocene reef that is currently uneconomicmore » to develop given the water depth (1,090 ft) and distance from users. Miocene reefs are commonly buried within Miocene clastics, and, where these impinging clastics are porous, they allow pathways for hydrocarbons to leak from the Miocene reefs. Drape closure is an important positive factor in assessing seal risk for Philippine Miocene reefs. Source rocks to charge middle and upper Miocene reefs are typically restricted to lower Miocene horizons. Geothermal gradients are modest in much of the Philippine offshore, and only select areas provide sufficient burial to mature and expel significant hydrocarbons. It is predicted by the author that additional, larger, and highly profitable Miocene reef fields will be found by future explorers in areas where Miocene reefs have drape closure top seals and are adjacent to deeply buried Miocene source rocks.« less

  1. [Effects of artificial reef construction to marine ecosystem services value: a case of Yang-Meikeng artificial reef region in Shenzhen].

    PubMed

    Qin, Chuan-xin; Chem, Pi-mao; Jia, Xiao-ping

    2011-08-01

    Based on the researches and statistic data of Yangmeikeng artificial reef region in Shenzhen in 2008 and by the method of ecosystem services value, this paper analyzed the effects of artificial reef construction in the region on the marine ecosystem services. After the artificial reef construction, the tourism service value in the region decreased from 87% to 42%, food supply service value increased from 7% to 27%, and the services value of raw material supply, climatic regulation, air quality regulation, water quality regulation, harmful organism and disease regulation, and knowledge expansion had a slight increase, as compared to the surrounding coastal areas. The total services value per unit area of Yangmeikeng artificial reef region in 2008 was 1714.7 x 10(4) yuan x km(-2), far higher than the mean services value of coastal marine ecosystem in the surrounding areas of Shenzhen and in the world. Artificial reef construction affected and altered the structure of regional marine ecosystem services value, and improved the regional ecosystem services value, being of significance for the rational exploitation and utilization of marine resources and the successful recovery of damaged marine eco-environment and fish resources. Utilizing the method of ecosystem services value to evaluate artificial reef construction region could better elucidate the benefits of artificial reef construction, effectively promote the development of our artificial reef construction, and improve the management of marine ecosystem.

  2. Does herbivorous fish protection really improve coral reef resilience? A case study from new caledonia (South Pacific).

    PubMed

    Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel

    2013-01-01

    Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.

  3. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 2. A regional-scale predictive model for the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A; Heron, Scott F; Brodie, Jon E; Done, Terence J; Masiri, Itsara; Hinrichs, Saskia

    2017-01-15

    A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Adaptation Design Tool for Climate-Smart Management of Coral Reefs and Other Natural Resources.

    PubMed

    West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Gibbs, David A; Bradley, Patricia; Julius, Susan H

    2018-06-22

    Scientists and managers of natural resources have recognized an urgent need for improved methods and tools to enable effective adaptation of management measures in the face of climate change. This paper presents an Adaptation Design Tool that uses a structured approach to break down an otherwise overwhelming and complex process into tractable steps. The tool contains worksheets that guide users through a series of design considerations for adapting their planned management actions to be more climate-smart given changing environmental stressors. Also provided with other worksheets is a framework for brainstorming new adaptation options in response to climate threats not yet addressed in the current plan. Developed and tested in collaboration with practitioners in Hawai'i and Puerto Rico using coral reefs as a pilot ecosystem, the tool and associated reference materials consist of worksheets, instructions and lessons-learned from real-world examples. On the basis of stakeholder feedback from expert consultations during tool development, we present insights and recommendations regarding how to maximize tool efficiency, gain the greatest value from the thought process, and deal with issues of scale and uncertainty. We conclude by reflecting on how the tool advances the theory and practice of assessment and decision-making science, informs higher level strategic planning, and serves as a platform for a systematic, transparent and inclusive process to tackle the practical implications of climate change for management of natural resources.

  5. Amplitude of late Miocene sea-level fluctuations from karst development in reef-slope deposits (SE Spain)

    NASA Astrophysics Data System (ADS)

    Reolid, Jesús; Betzler, Christian; Braga, Juan Carlos

    2016-11-01

    A prograding late Miocene carbonate platform in southern Spain revealing different sea-level pinning points was analysed with the aim to increase the accuracy of reconstruction of past sea-level changes. These pinning points are distinct diagenetic zones (DZ) and the position of reef-framework deposits. DZ1 is defined by the dissolution of bioclastic components and DZ2 by calcitic cement precipitation in dissolution pores. Calcite cements are granular and radiaxial fibrous, and are of meteoric origin as deduced from cathodoluminescence, EDX spectroscopy, as well as from δ13C and δ18O isotope analyses. DZ3 has moldic porosity after aragonitic bioclasts with minor granular calcitic cements. DZ1 and DZ2 indicate karstification and the development of a coastal palaeoaquifer during a sea-level lowstand. DZ3 diagenetic features are related to the final subaerial exposure of the section during the Messinian Salinity Crisis. Facies and diagenetic data reveal a complete cycle of sea-level fall (23 ± 1 m) and rise (31 ± 1 m). A robust age model based on magneto- and cyclostratigraphy for these deposits places this cycle between 5.89 and 5.87 Ma. Therefore, for the first time, this work allows a direct comparison of an outcrop with a pelagic marine proxy record of a specific Neogene sea-level fluctuation.

  6. Variability in reef connectivity in the Coral Triangle

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.

    2015-12-01

    The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM) suggest that these major barriers to larval dispersal persist into the future under 8.5 W/m2 of climate forcing, despite some regional changes in connectivity between reefs.

  7. Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems

    PubMed Central

    Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change. PMID:23637939

  8. The dynamics of architectural complexity on coral reefs under climate change.

    PubMed

    Bozec, Yves-Marie; Alvarez-Filip, Lorenzo; Mumby, Peter J

    2015-01-01

    One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate-driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species-specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony-scale (1-10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas emissions) interventions for the persistence of functional reef habitats. © 2014 John Wiley & Sons Ltd.

  9. Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.

    PubMed

    Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G

    2013-01-01

    Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.

  10. Taxonomic richness and abundance of cryptic peracarid crustaceans in the Puerto Morelos Reef National Park, Mexico

    PubMed Central

    Alvarez, Fernando

    2017-01-01

    Background and Aims Cryptic peracarids are an important component of the coral reef fauna in terms of diversity and abundance, yet they have been poorly studied. The aim of this study was to evaluate the taxonomic richness and abundance of cryptic peracarids in coral rubble in the Puerto Morelos Reef National Park, Mexico (PMRNP), and their relationship with depth. Methods Three reef sites were selected: (1) Bonanza, (2) Bocana, and (3) Jardines. At each site six kilograms of coral rubble were collected over four sampling periods at three depths: 3 m (back-reef), 6–8 m (fore-reef), and 10–12 m (fore-reef). Results A total of 8,887 peracarid crustaceans belonging to 200 taxa distributed over five orders and 63 families was obtained; 70% of the taxa were identified to species and 25% to genus level. Fifty species of those collected represent new records for the Mexican Caribbean Sea. Isopoda was the most speciose order while Tanaidacea was the most abundant. Discussion Cryptic peracarid taxonomic richness and abundance were related to depth with higher values of both parameters being found in the shallow (3 m) back-reef, possibly due to a higher reef development and a greater accumulation of coral rubble produced during hurricanes. Peracarid data obtained in the present study can be used as a baseline for future monitoring programs in the PMRNP. PMID:28630800

  11. Variability in chemical defense across a shallow to mesophotic depth gradient in the Caribbean sponge Plakortis angulospiculatus

    NASA Astrophysics Data System (ADS)

    Slattery, Marc; Gochfeld, Deborah J.; Diaz, M. Cristina; Thacker, Robert W.; Lesser, Michael P.

    2016-03-01

    The transition between shallow and mesophotic coral reef communities in the tropics is characterized by a significant gradient in abiotic and biotic conditions that could result in potential trade-offs in energy allocation. The mesophotic reefs in the Bahamas and the Cayman Islands have a rich sponge fauna with significantly greater percent cover of sponges than in their respective shallow reef communities, but relatively low numbers of spongivores. Plakortis angulospiculatus, a common sponge species that spans the depth gradient from shallow to mesophotic reefs in the Caribbean, regenerates faster following predation and invests more energy in protein synthesis at mesophotic depths compared to shallow reef conspecifics. However, since P. angulospiculatus from mesophotic reefs typically contain lower concentrations of chemical feeding deterrents, they are not able to defend new tissue from predation as efficiently as conspecifics from shallow reefs. Nonetheless, following exposure to predators on shallow reefs, transplanted P. angulospiculatus from mesophotic depths developed chemical deterrence to predatory fishes. A survey of bioactive extracts indicated that a specific defensive metabolite, plakortide F, varied in concentration with depth, producing altered deterrence between shallow and mesophotic reef P. angulospiculatus. Different selective pressures in shallow and mesophotic habitats have resulted in phenotypic plasticity within this sponge species that is manifested in variable chemical defense and tissue regeneration at wound sites.

  12. Earth Resources. A Continuing Bibliography with Indexes

    DTIC Science & Technology

    1987-11-01

    Airborne microwave Doppler measurements of ocean of Guinea according to ground-based and satellite Coral reef remote sensing applications wave directional...understanding of internal Coral reef remote sensing applications an earth-to-satellite Hadamard transform laser long-path waves in the ocean p 20 A87-32951...classifications of coral reefs , and an are provided and new topographic features that are revealed are autocorrelation technique is being developed to

  13. Testing a multi-tiered stress-gradient model for risk assessment using sediment constituents from coral reef environments

    USGS Publications Warehouse

    Lidz, B.H.; Hallock, P.; ,

    2000-01-01

    Coral reefs are threatened worldwide by stresses ranging from local to global in extent. One of the major challenges in studies of reef decline is understanding how to distinguish between changes resulting from natural, anthropogenic, local, and global environmental perturbations. As such, a conceptual risk-assessment model is developed that includes tiers for natural stresses, global/regional stresses, and local anthropogenic stresses.

  14. Seismic evidence of glacial-age river incision into the Tahaa barrier reef, French Polynesia

    USGS Publications Warehouse

    Toomey, Michael; Woodruff, Jonathan D.; Ashton, Andrew D.; Perron, J. Taylor

    2016-01-01

    Rivers have long been recognized for their ability to shape reef-bound volcanic islands. On the time-scale of glacial–interglacial sea-level cycles, fluvial incision of exposed barrier reef lagoons may compete with constructional coral growth to shape the coastal geomorphology of ocean islands. However, overprinting of Pleistocene landscapes by Holocene erosion or sedimentation has largely obscured the role lowstand river incision may have played in developing the deep lagoons typical of modern barrier reefs. Here we use high-resolution seismic imagery and core stratigraphy to examine how erosion and/or deposition by upland drainage networks has shaped coastal morphology on Tahaa, a barrier reef-bound island located along the Society Islands hotspot chain in French Polynesia. At Tahaa, we find that many channels, incised into the lagoon floor during Pleistocene sea-level lowstands, are located near the mouths of upstream terrestrial drainages. Steeper antecedent topography appears to have enhanced lowstand fluvial erosion along Tahaa's southwestern coast and maintained a deep pass. During highstands, upland drainages appear to contribute little sediment to refilling accommodation space in the lagoon. Rather, the flushing of fine carbonate sediment out of incised fluvial channels by storms and currents appears to have limited lagoonal infilling and further reinforced development of deep barrier reef lagoons during periods of highstand submersion.

  15. Investigating the experience: A case study of a science professional development program based on Kolb's experiential learning model

    NASA Astrophysics Data System (ADS)

    Davis, Brian L.

    Professional development for educators has been defined as the process or processes by which teachers achieve higher levels of professional competence and expand their understanding of self, role, context and career (Duke and Stiggins, 1990). Currently, there is limited research literature that examines the effect a professional development course, which uses David Kolb's experiential learning model, has on the professional growth and teaching practice of middle school science teachers. The purpose of this interpretive case study is to investigate how three science teachers who participated in the Rivers to Reef professional development course interpreted the learning experience and integrated the experience into their teaching practice. The questions guiding this research are (1) What is the relationship between a professional development course that uses an experiential learning model and science teaching practice? (2) How do the Rivers to Reef participants reflect on and describe the course as a professional growth experience? The creation of the professional development course and the framework for the study were established using David Kolb's (1975) experiential learning theory and the reflection process model designed by David Boud (1985). The participants in the study are three middle school science teachers from schools representing varied settings and socioeconomic levels in the southeastern United States. Data collected used the three-interview series interview format designed by Dolbere and Schuman (Seidman, 1998). Data was analyzed for the identification of common categories related to impact on science teaching practice and professional growth. The major finding of this study indicates the years of teaching experience of middle school science teachers significantly influences how they approach professional development, what and how they learn from the experience, and the ways in which the experience influences their teaching practices.

  16. Monitoring Biogeochemical Processes in Coral Reef Environments with Remote Sensing: A Cross-Disciplinary Approach.

    NASA Astrophysics Data System (ADS)

    Perez, D.; Phinn, S. R.; Roelfsema, C. M.; Shaw, E. C.; Johnston, L.; Iguel, J.; Camacho, R.

    2017-12-01

    Primary production and calcification are important to measure and monitor over time, because of their fundamental roles in the carbon cycling and accretion of habitat structure for reef ecosystems. However, monitoring biogeochemical processes in coastal environments has been difficult due to complications in resolving differences in water optical properties from biological productivity and other sources (sediment, dissolved organics, etc.). This complicates application of algorithms developed for satellite image data from open ocean conditions, and requires alternative approaches. This project applied a cross-disciplinary approach, using established methods for monitoring productivity in terrestrial environments to coral reef systems. Availability of regularly acquired high spatial (< 5m pixels), multispectral satellite imagery has improved mapping and monitoring capabilities for shallow, marine environments such as seagrass and coral reefs. There is potential to further develop optical models for remote sensing applications to estimate and monitor reef system processes, such as primary productivity and calcification. This project collected field measurements of spectral absorptance and primary productivity and calcification rates for two reef systems: Heron Reef, southern Great Barrier Reef and Saipan Lagoon, Commonwealth of the Northern Mariana Islands. Field data were used to parameterize a light-use efficiency (LUE) model, estimating productivity from absorbed photosynthetically active radiation. The LUE model has been successfully applied in terrestrial environments for the past 40 years, and could potentially be used in shallow, marine environments. The model was used in combination with a map of benthic community composition produced from objective based image analysis of WorldView 2 imagery. Light-use efficiency was measured for functional groups: coral, algae, seagrass, and sediment. However, LUE was overestimated for sediment, which led to overestimation of productivity for the mapped area. This was due to differences in spatial and temporal resolution of field data used in the model. The limitations and application of the LUE model to coral reef environments will be presented.

  17. Architecture and morphology of coral reef sequences. Modeling and observations from uplifting islands of SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Pastier, Anne-Morwenn; Husson, Laurent; Bezos, Antoine; Pedoja, Kevin; Elliot, Mary; Hafidz, Abdul; Imran, Muhammad; Lacroix, Pascal; Robert, Xavier

    2016-04-01

    During the Late Neogene, sea level oscillations have profoundly shaped the morphology of the coastlines of intertropical zones, wherein relative sea level simultaneously controlled reef expansion and erosion of earlier reef bodies. In uplifted domains like SE Sulawesi, the sequences of fossil reefs display a variety of fossil morphologies. Similarly, the morphologies of the modern reefs are highly variable, including cliff notches, narrow fringing reefs, wide flat terraces, and barriers reefs. In this region, where uplift rates vary rapidly laterally, the entire set of morphologies is displayed within short distances. We developed a numerical model that predicts the architecture of fossil reefs sequences and apply it to observations from SE Sulawesi, accounting -amongst other parameters- for reef growth, coastal erosion, and uplift rates. The observations that we use to calibrate our models are mostly the morphology of both the onshore (dGPS and high-resolution Pleiades DEM) and offshore (sonar) coast, as well as U-Th radiometrically dated coral samples. Our method allows unravelling the spatial and temporal evolution of large domains on map view. Our analysis indicates that the architecture and morphology of uplifting coastlines is almost systematically polyphased (as attested by samples of different ages within a unique terrace), which assigns a primordial role to erosion, comparable to reef growth. Our models also reproduce the variety of modern morphologies, which are chiefly dictated by the uplift rates of the pre-existing morphology of the substratum, itself responding to the joint effects of reef building and subsequent erosion. In turn, we find that fossil and modern morphologies can be returned to uplift rates rather precisely, as the parametric window of each specific morphology is often narrow.

  18. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport

    USGS Publications Warehouse

    Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.

    2011-01-01

    Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.

  19. The effect of local hydrodynamics on the spatial extent and morphology of cold-water coral habitats at Tisler Reef, Norway

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.

    2018-03-01

    This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.

  20. 78 FR 33259 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Council (Council). This final rule establishes a closure date for the 2013 recreational sector for the... February 21, 2013, NMFS published a proposed rule for the framework action and requested public comments.... This final rule: (1) Establishes a closure date for the recreational sector for the harvest of gag...

  1. Modern stromatolite reefs fringing a brackish coastline, Chetumal Bay, Belize

    NASA Astrophysics Data System (ADS)

    Rasmussen, Kenneth A.; MacIntyre, Ian G.; Prufert, Leslie

    1993-03-01

    Reef-forming stromatolites have been discovered along the windward shoreline of Chetumal Bay, Belize, just south of the mouth of the Rio Hondo. The reefs and surrounding sediment are formed by the precipitation of submicrocrystalline calcite upon the sheaths of filamentous cyanobacteria, principally Scytonema, under a seasonally fluctuating, generally brackish salinity regime (0‰10‰). Well-cemented, wave-resistant buttresses of coalesced stromatolite heads form arcuate or club-shaped reefs up to 42 m long and 1.5 m in relief that are partially emergent during low tide. Oncolitic rubble fields are present between well-developed reefs along the 1.5 km trend, which parallels the mangrove coastline 40-100 m offshore. The mode of reef growth, as illustrated by surface relief and internal structure, changes with increasing water depth and energy, proximity to bottom sediments, and dominant cyanobacterial taxa. Sediment trapping and binding by cyanobacteria are of limited importance to reef growth, and occur only where stromatolite heads or oncolites are in direct contact with the sandy sea floor. Radiocarbon-dated mangrove peat at the base of the reef suggests that it began to form about 2300 yr B.P., as shoreline encrustations that were stranded offshore following storm-induced retreat of the mangrove coast.

  2. [Influence of sediments and tungsten traces on the skeletal structure of Pseudodiploria: a reef building scleractinian coral from the Veracruz Reef System National Park, Mexico].

    PubMed

    Colín-García, Norberto A; Campos, Jorge E; Tello-Musi, Jose Luis; Arias-González, Jesús E

    2016-09-01

    Coral reefs are under intense conditions of stress caused by the anthropogenic activities in coastal areas and the increase of human population. Water effluents from urban and industrial areas carry large amounts of sediments and pollutants affecting corals populations, inducing bioerosion, increasing diseases and promoting the development of algae that compete for space with corals. In the Veracruz Reef System National Park (VRSNP) coral reefs are strongly affected by human activities carried out in the area. Gallega and Galleguilla reefs are among the most affected by wastewater discharges from the industrial (petrochemical and metallurgical) and urban areas in their vicinity. To assess the potential impact of this contamination on corals in the VRSNP, a chemical composition and morphology study of 76 Pseudodiploria colonies collected in reefs Gallega, Galleguilla, Isla Verde and Isla de Enmedio, was performed. Fragments of ~10 cm2 were collected and boric acid at 0.5 % was used to remove tissue from the skeleton; once clean, the morphology of each sample was determined with a scanning electron microscope (SEM). Subsequently, to test the chemical composition, an energy dispersion spectroscopy of X-ray chemical microanalysis (EDSX) was performed in the SEM. We found that corals from Gallega and Galleguilla reefs, located closer to human populations, presented high levels of tungsten and the skeleton exhibited multiple perforations. In contrast, corals from the farthest offshore reefs (Isla Verde and Isla de Enmedio) exhibited lower levels of tungsten and fewer perforations in their skeleton. These results demonstrated that anthropogenic activities in the NPVRS are affecting corals skeleton, highly damaging and promoting their bioerosion. The presence of traces of tungsten in the skeleton of corals is an evidence of the damage that waste discharges are causing to coral reefs. Discharges of large amounts of contaminants promoted the growth of harmful species that grow and develop into the corals skeleton, causing its bioerosion, and making them susceptible to disease and physical damage. This study is the first evidence of the effects of contamination on these species; therefore, further studies are necessary to determine the impact of pollution on their biology and survival.

  3. A clear human footprint in the coral reefs of the Caribbean.

    PubMed

    Mora, Camilo

    2008-04-07

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.

  4. A clear human footprint in the coral reefs of the Caribbean

    PubMed Central

    Mora, Camilo

    2008-01-01

    The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs. PMID:18182370

  5. Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs

    PubMed Central

    Martz, Todd R.; Brainard, Russell E.

    2012-01-01

    Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of ‘warming’ and ‘acidification’ expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH. PMID:22952785

  6. Sewage pollution in Negril, Jamaica: effects on nutrition and ecology of coral reef macroalgae

    NASA Astrophysics Data System (ADS)

    Lapointe, B. E.; Thacker, K.; Hanson, C.; Getten, L.

    2011-07-01

    Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH{4/+} and SRP (N:P ˜13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetomorpha linum in shallow waters of Long Bay and Codium isthmocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.

  7. Spatial variability of sediment transport processes over intra‐ and subtidal timescales within a fringing coral reef system

    USGS Publications Warehouse

    Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.

    2018-01-01

    Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.

  8. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish.

    PubMed

    Grol, Monique G G; Nagelkerken, Ivan; Rypel, Andrew L; Layman, Craig A

    2011-01-01

    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24-47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77-100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change.

  9. Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish

    PubMed Central

    Grol, Monique G. G.; Rypel, Andrew L.; Layman, Craig A.

    2010-01-01

    Ecosystems are intricately linked by the flow of organisms across their boundaries, and such connectivity can be essential to the structure and function of the linked ecosystems. For example, many coral reef fish populations are maintained by the movement of individuals from spatially segregated juvenile habitats (i.e., nurseries, such as mangroves and seagrass beds) to areas preferred by adults. It is presumed that nursery habitats provide for faster growth (higher food availability) and/or low predation risk for juveniles, but empirical data supporting this hypothesis is surprisingly lacking for coral reef fishes. Here, we investigate potential mechanisms (growth, predation risk, and reproductive investment) that give rise to the distribution patterns of a common Caribbean reef fish species, Haemulon flavolineatum (French grunt). Adults were primarily found on coral reefs, whereas juvenile fish only occurred in non-reef habitats. Contrary to our initial expectations, analysis of length-at-age revealed that growth rates were highest on coral reefs and not within nursery habitats. Survival rates in tethering trials were 0% for small juvenile fish transplanted to coral reefs and 24–47% in the nurseries. As fish grew, survival rates on coral reefs approached those in non-reef habitats (56 vs. 77–100%, respectively). As such, predation seems to be the primary factor driving across-ecosystem distributions of this fish, and thus the primary reason why mangrove and seagrass habitats function as nursery habitat. Identifying the mechanisms that lead to such distributions is critical to develop appropriate conservation initiatives, identify essential fish habitat, and predict impacts associated with environmental change. PMID:21072542

  10. Coral reef diseases in the Atlantic-Caribbean

    USGS Publications Warehouse

    Rogers, Caroline S.; Weil, Ernesto; Dubinsky, Zvy; Stambler, Noga

    2010-01-01

    Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

  11. Development and Application of a Three-dimensional Seismo-acoustic Coupled-mode Model

    DTIC Science & Technology

    2014-09-30

    of coral reef fish need to locate a reef , and sound emanating from reefs may act as a cue to guide them. Using acoustic data collected from Bahia...approximate the solution to the wave equation. RELATED PROJECTS Geoacoustic inversion in three-dimensional environments The goal of this project is...shear wave speed Under this project an laboratory measurements the compressional and shear wave speeds and attenuations in coarse and fine grained

  12. Cruise report RV Ocean Surveyor Cruise 0-1-00-GM; the bathymetry and acoustic backscatter of the Pinnacles area; northern Gulf of Mexico, May 23, through June 10, 2000; Venice, LA to Venice, LA

    USGS Publications Warehouse

    Gardner, James V.; Sulak, Kenneth J.; Dartnell, Peter; Hellequin, Laurent; Calder, Brian R.; Mayer, Larry A.

    2000-01-01

    An extensive deep (~100 m) reef tract occurs on the Mississippi-Alabama outer continental shelf (OCS). The tract, known as "The Pinnacles", is apparently part of a sequence of drowned reef complexes along the "40-fathom" shelf edge of the northern Gulf of Mexico (Ludwick and Walton, 1957). It is critical to determine the accurate geomorphology of deep-reefs because of their importance as benthic habitats for fisheries. The Pinnacles were mapped by Ludwick and Walton (1957) using a single-beam echo sounder but the spatial extent and morphology were interpreted from a series of widely separated, poorly navigated bathymetric profiles. Other recent studies, supported by Minerals Management Service (MMS), used towed sidescan sonars and single-channel seismic-reflection profiling. None of the existing studies provide the quality of geomorphic data necessary for reasonable habitat studies. The fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have relatively ignored. The ecology of deep ahermatypic reefs is fundamentally different from hermatipic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Deep OCS reefs also lie below the practical working depths for SCUBA; consequently, remote investigations from a ship or in situ investigations using submersibles or ROVs are required. Community structure and trophodynamics of demersal fishes of the Pinnacles are presently the focus of USGS reseach. A goal of the research is to answer questions concerning the relataive roles played by geomorphology and surficial geology in the interaction with and control of biological differentiation. OCS reefs are important because we now know that such areas are important coral reef fish havens, key spawning 2 sites, and a critical early larval and juvenile habitats for economically important sport/food fishes. Also, deep-reef ecosystems as well as the fish populations they sustain are impacted by intensive oil-field development. It is now known that deep OCS reefs function as a key source of re-population (via seasonal and ontogenetic migration) of already heavily impacted inshore reefs. A reflection of this realization is the recent closure by the Gulf States Fisheries Management Council of a 600 mi 2 area of the Florida Middle Grounds (another unmapped major "40-fathom" OCS reef complex) to commercial fishing to preserve grouper spawning aggregations. It is known that the Pinnacles reefs support a lush fauna of ahermatypic hard corals, soft corals, black corals, sessile crinoids and sponges—together forming a living habitat for a well-developed fish fauna. The fish fauna comprises typical Caribbean reef fishes and Carolinian shelf fishes, plus epipelagic fishes, and a few deep-sea fishes. The base of the megafaunal invertebrate food web is plankton, borne by essentially continuous semi-laminar currents flowing predominantly out of the SW, up, along and across the shelf edge. These currents are intercepted by pinnacles reefs, which lie roughly in two linear tracts, parallel to the coastline (see fig. 1 in report). USGS research initiated in 1997 (Sulak et al., in progress) has demonstrated that the Pinnacles reef fish fauna is dominated by planktivorous fishes. Ongoing food habits, trophic web and stable isotope analyses by the USGS are reinforcing a basic picture of deep OCS reefs as ecosystems based on exogenous current-borne plankton. Long-term current meter deployments have demonstrated that the >3 m,

  13. Global inequities between polluters and the polluted: climate change impacts on coral reefs.

    PubMed

    Wolff, Nicholas H; Donner, Simon D; Cao, Long; Iglesias-Prieto, Roberto; Sale, Peter F; Mumby, Peter J

    2015-11-01

    For many ecosystem services, it remains uncertain whether the impacts of climate change will be mostly negative or positive and how these changes will be geographically distributed. These unknowns hamper the identification of regional winners and losers, which can influence debate over climate policy. Here, we use coral reefs to explore the spatial variability of climate stress by modelling the ecological impacts of rising sea temperatures and ocean acidification, two important coral stressors associated with increasing greenhouse gas (GHG) emissions. We then combine these results with national per capita emissions to quantify inequities arising from the distribution of cause (CO2 emissions) and effect (stress upon reefs) among coral reef countries. We find pollution and coral stress are spatially decoupled, creating substantial inequity of impacts as a function of emissions. We then consider the implications of such inequity for international climate policy. Targets for GHG reductions are likely to be tied to a country's emissions. Yet within a given level of GHG emissions, our analysis reveals that some countries experience relatively high levels of impact and will likely experience greater financial cost in terms of lost ecosystem productivity and more extensive adaptation measures. We suggest countries so disadvantaged be given access to international adaptation funds proportionate with impacts to their ecosystem. We raise the idea that funds could be more equitably allocated by formally including a metric of equity within a vulnerability framework. © 2015 John Wiley & Sons Ltd.

  14. Responses of reef building corals to microplastic exposure.

    PubMed

    Reichert, Jessica; Schellenberg, Johannes; Schubert, Patrick; Wilke, Thomas

    2018-06-01

    Pollution of marine environments with microplastic particles (i.e. plastic fragments <5 mm) has increased rapidly during the last decades. As these particles are mainly of terrestrial origin, coastal ecosystems such as coral reefs are particularly threatened. Recent studies revealed that microplastic ingestion can have adverse effects on marine invertebrates. However, little is known about its effects on small-polyp stony corals that are the main framework builders in coral reefs. The goal of this study is to characterise how different coral species I) respond to microplastic particles and whether the exposure might II) lead to health effects. Therefore, six small-polyp stony coral species belonging to the genera Acropora, Pocillopora, and Porites were exposed to microplastics (polyethylene, size 37-163 μm, concentration ca. 4000 particles L -1 ) over four weeks, and responses and effects on health were documented. The study showed that the corals responded differentially to microplastics. Cleaning mechanisms (direct interaction, mucus production) but also feeding interactions (i.e. interaction with mesenterial filaments, ingestion, and egestion) were observed. Additionally, passive contact through overgrowth was documented. In five of the six studied species, negative effects on health (i.e. bleaching and tissue necrosis) were reported. We here provide preliminary knowledge about coral-microplastic-interactions. The results call for further investigations of the effects of realistic microplastic concentrations on growth, reproduction, and survival of stony corals. This might lead to a better understanding of resilience capacities in coral reef ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The applicability of terrestrial visitor impact management strategies to the protection of coral reefs

    USGS Publications Warehouse

    Marion, J.L.; Rogers, C.S.

    1994-01-01

    A dramatic expansion in nature-based tourism to tropical coastal destinations has occurred in the past 20 years. Tourism development, combined with intense recreational pressures, has irreversibly transformed and degraded many popular scenic natural environments. This paper examines the management of recreational impacts to coral reefs using Virgin Islands National Park as a case study. A review of terrestrial recreational ecology research explores the implications and potential applicability of some principal findings to the protection of coral reefs. Visitor impact management recommendations for the protection of coral reefs are offered. Managers can minimize coral reef recreational impacts by (1) restricting high-impact uses, (2) containing rather than dispersing recreational use, (3) encouraging the use of resistant environments, (4) teaching low-impact recreational practices, and (5) enforcing park rules and regulations.

  16. Do Lanice conchilega (sandmason) aggregations classify as reefs? Quantifying habitat modifying effects

    NASA Astrophysics Data System (ADS)

    Rabaut, Marijn; Vincx, Magda; Degraer, Steven

    2009-03-01

    The positive effects of the tube dwelling polychaete Lanice conchilega for the associated benthic community emphasizes this bio-engineer’s habitat structuring capacity (Rabaut et al. in Estuar Coastal Shelf Sci, 2007). Therefore, L. conchilega aggregations are often referred to as reefs. The reef building capacity of ecosystem engineers is important for marine management as the recognition as reef builder will increase the protected status the concerned species. To classify as reefs however, bio-engineering activities need to significantly alter several habitat characteristics: elevation, sediment consolidation, spatial extent, patchiness, reef builder density, biodiversity, community structure, longevity and stability [guidelines to apply the EU reef-definition by Hendrick and Foster-Smith (J Mar Biol Assoc UK 86:665-677, 2006)]. This study investigates the physical and temporal characteristics of high density aggregations of L. conchilega. Results show that the elevation and sediment consolidation of the biogenic mounds was significantly higher compared to the surrounding unstructured sediment. Areas with L. conchilega aggregations tend to be extensive and patchiness is high (coverage 5-18%). The discussion of present study evaluates whether L. conchilega aggregations can be considered as reefs (discussing physical, biological and temporal characteristics). Individual aggregations were found to persist for several years if yearly renewal of existing aggregations through juvenile settlement occurred. This renewal is enhanced by local hydrodynamic changes and availability of attaching structures (adult tubes). We conclude that the application of the EU definition for reefs provides evidence that all physical and biological characteristics are present to classify L. conchilega as a reef builder. For temporal characteristics, this study shows several mechanisms exist for reefs to persist for a longer period of time. However, a direct evidence of long-lived individual reefs does not exist. As a range of aggregation development exists, ‘reefiness’ is not equal for all aggregations and a scoring table to quantify L. conchilega reefiness is presented.

  17. Coral reef evolution on rapidly subsiding margins

    USGS Publications Warehouse

    Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.

    2009-01-01

    A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate changes, as well as a record of the response of coral reefs to these changes over the last six glacial cycles. ?? 2008 Elsevier B.V. All rights reserved.

  18. 76 FR 39858 - Western Pacific Fisheries; Approval of a Marine Conservation Plan for Guam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... assessment and monitoring of Guam coral reef flat communities. Objective 6. Domestic fisheries development... life-history data of nearshore reef fish. g. Support Guam volunteer fishery data collection project. h...

  19. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry

    NASA Astrophysics Data System (ADS)

    Roche, Ronan C.; Harvey, Chloe V.; Harvey, James J.; Kavanagh, Alan P.; McDonald, Meaghan; Stein-Rostaing, Vivienne R.; Turner, John R.

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  20. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  1. Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry: Southern Molokai, Hawaii

    USGS Publications Warehouse

    Storlazzi, C.D.; Logan, J.B.; Field, M.E.

    2003-01-01

    High-resolution Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) laser-determined bathymetric data were used to define the morphology of spur-and-groove structures on the fringing reef off the south coast of Molokai, Hawaii. These data provide a basis for mapping and analyzing morphology of the reef with a level of precision and spatial coverage never before attained. An extensive fringing coral reef stretches along the central two-thirds of Molokai's south shore (???40 km); along the east and west ends there is only a thin veneer of living coral with no developed reef complex. In total, ???4800 measurements of spur-and-groove height and the distance between adjacent spur crests (wavelength) were obtained along four isobaths. Between the 5m and 15m isobaths, the mean spur height increased from 0.7 m to 1.6 m, whereas the mean wavelength increased from 71 m to 104 m. Reef flat width was found to exponentially decrease with increasing wave energy. Overall, mean spur-and-groove height and wavelength were shown to be inversely proportional to wave energy. In high-energy environments, spur-and-groove morphology remains relatively constant across all water depths. In low-energy environments, however, spur-and-groove structures display much greater variation; they are relatively small and narrow in shallow depths and develop into much larger and broader features in deeper water. Therefore, it appears that waves exert a primary control on both the small and large-scale morphology of the reef off south Molokai.

  2. Economic valuation of ecosystem services from coral reefs in the South Pacific: taking stock of recent experience.

    PubMed

    Laurans, Yann; Pascal, Nicolas; Binet, Thomas; Brander, Luke; Clua, Eric; David, Gilbert; Rojat, Dominique; Seidl, Andrew

    2013-02-15

    The economic valuation of coral reefs ecosystem services is currently seen as a promising approach to demonstrate the benefits of sustainable management of coral ecosystems to policymakers and to provide useful information for improved decisions. Most coral reefs economic studies have been conducted in the United States, Southeast Asia and the Caribbean, and only a few have covered the South Pacific region. In this region, coral reefs are essential assets for small island developing states as well as for developed countries. Accordingly, a series of ecosystem services valuations has been carried out recently in the South Pacific, to try and supply decision-makers with new information. Applying ecosystem services valuation to the specific ecological, social, economic and cultural contexts of the South Pacific is however not straightforward. This paper analyses how extant valuations address the various management challenges of coral reef regions in general and more specifically for the South Pacific. Bearing in mind that economic valuation has to match policy-making contexts, we emphasize a series of specific considerations when conducting and applying ecosystem services valuation in South Pacific ecological and social contexts. Finally, the paper examines the decision-making situations in which extant valuations took place. We conclude that, although ecosystem valuations have been effectively used as a means to raise awareness with respect to coral reef conservation, methodologies will have to be further developed, with multidisciplinary inputs, if they are to provide valuable inputs in local and technical decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Development Strategy for Effective Sampling to Detect Possible Nutrient Fluxes in Oligotrophic Coastal Reef Waters in the Caribbean

    DTIC Science & Technology

    2009-01-01

    catastrophic events (eg, hurricanes, tsuna- mis, floodings, harmful algal blooms and coral bleachings ). These changes have been known to jeopardise the...SUPPLEMENTARY NOTES 20090814035 14. ABSTRACT The stress contributed by nutrients to the coral reef ecosystem is among many problems that may be resolved using...Rosenstiel School of Marine and Atmospheric Science, University of Miami The stress contributed by nutrients to the coral reef ecosystem is among many

  4. Monitoring of Beachsaver Reef with Filter Blanket and Double-T Sill at Cape May Point, New Jersey, Section 227 Demonstration Site; First Year Monitoring - 2002-2003

    DTIC Science & Technology

    2005-07-01

    evaluate the functional, structural, and economic performance of the patented Beachsaver Reef prefabricated concrete submerged breakwater and the less...expensive prefabricated concrete structure called a Double-T sill. This demonstration project was developed through a cooperative effort of the U.S...patented Beachsaver Reef prefabricated concrete submerged breakwater and a less expensive, prefabricated concrete structure called a Double-T sill. Data

  5. Modelling reef zonation in the Greater St Lucia Wetland Park, South Africa

    NASA Astrophysics Data System (ADS)

    Schleyer, Michael H.; Celliers, Louis

    2005-05-01

    East Africa has a rich coral fauna that extends to Maputaland in KwaZulu-Natal, South Africa. At this latitude, considered high and marginal for coral distribution and development, they form a veneer on limited, late Pleistocene reefs rather than forming the accretive, aragonite structures known as coral reefs. It is thus more appropriate to refer to them in this region as coral communities, the environment being rendered marginal for their development by reduced temperatures, light and aragonite saturation state. Subsequent to their discovery, the reefs were afforded protection within two Marine Protected Areas (the St Lucia and Maputaland Marine Reserves). They are found primarily within three reef complexes, with only the central complex being readily accessible to the public for ecotourism at present. With the creation of the Greater St Lucia Wetland Park, a World Heritage Site, and the expectation of an accompanying increase in ecotourism, the status quo seems set to change. The reefs are thus the current focus of a modelling initiative to provide decision support in their management. This paper examines the unique nature of the South African communities, their vulnerability and importance in the regional and global context, and, using representative data from the model, how an anticipated increase in their use could affect their sustainability. The case for scientifically based zonation for their use is presented.

  6. Coastal circulation and sediment dynamics in Pelekane and Kawaihae Bays, Hawaii--measurements of waves, currents, temperature, salinity, turbidity, and geochronology: November 2010--March 2011

    USGS Publications Warehouse

    Storlazzi, Curt D.; Field, Michael E.; Presto, M. Katherine; Swarzenski, Peter W.; Logan, Joshua B.; Reiss, Thomas E.; Elfers, Timothy C.; Cochran, Susan A.; Torresan, Michael E.; Chezar, Hank

    2012-01-01

    Coral reef communities on the Island of Hawaii have been heavily affected by the construction of Kawaihae Harbor in the 1950s and by subsequent changes in land use in the adjacent watershed. Sedimentation and other forms of land-based pollution have led to declines in water quality and coral reef health over the past two decades (Tissot, 1998). Erosion mitigation efforts are underway on land, and there is a need to evaluate the impact of these actions on the adjacent coastal ecosystem. The Kohala Center and Kohala Watershed Partnership was awarded $2.69 million from the National Oceanographic and Atmospheric Administration’s (NOAA) Restoration Center as part of the American Recovery and Reinvestment Act of 2009 to stabilize soil and improve land-use practices in the Pelekane Bay watershed. The grant allowed the Kohala Watershed Partnership to implement various upland watershed management activities to reduce land-based sources of pollution into Pelekane Bay. However, a number of questions must be answered in order to: (1) evaluate the effectiveness of the terrestrial watershed remediation efforts; (2) understand the potential of the local marine ecosystem to recover; and (3) understand the potential threat that existing mud deposits in the bay pose to adjacent, relatively pristine coral reef ecosystems. The goal of this experiment was to help address these questions and establish a framework to evaluate the success of the Kohala Watershed Partnership restoration efforts. This research program will also provide resource managers with information relevant to other watershed restoration efforts currently being planned in neighboring watersheds. This project involved an interdisciplinary team of coral reef biologists from the University of Hawaii Coral Reef Assessment and Monitoring Program, who focused on the impact of sedimentation on the biota of Pelekane Bay, and a team of geologists and oceanographers from the U.S. Geological Survey (USGS), who focused on the circulation and sediment dynamics in Pelekane and Kawaihae Bays. The initial findings from the USGS research program are described in this report. These measurements support the ongoing studies being conducted as part of the USGS Coastal and Marine Geology Program’s Pacific Coral Reef Project to better understand the effect of geologic and oceanographic processes on coral reef systems.

  7. Effects of fringing reefs on tsunami inundation: American Samoa

    USGS Publications Warehouse

    Gelfenbaum, G.; Apotsos, A.; Stevens, A.W.; Jaffe, B.

    2011-01-01

    A numerical model of tsunami inundation, Delft3D, which has been validated for the 29 September 2009 tsunami in Tutuila, American Samoa, is used to better understand the impact of fringing coral reefs and embayments on tsunami wave heights, inundation distances, and velocities. The inundation model is used to explore the general conditions under which fringing reefs act as coastal buffers against incoming tsunamis. Of particular interest is the response of tsunamis to reefs of varying widths, depths, and roughness, as well as the effects of channels incised in the reef and the focusing effect of embayments. Model simulations for conditions similar to Tutuila, yet simplified to be uniform in the alongshore, suggest that for narrow reefs, less than about 200 m wide, the shoaling owing to shallow water depths over the fringing reef dominates, inducing greater wave heights onshore under some conditions and farther inundation inland. As the reef width increases, wave dissipation through bottom friction begins to dominate and the reef causes the tsunami wave heights to decrease and the tsunami to inundate less far inland. A sensitivity analysis suggests that coral reef roughness is important in determining the manner in which a fringing reef affects tsunami inundation. Smooth reefs are more likely to increase the onshore velocity within the tsunami compared to rough reefs. A larger velocity will likely result in an increased impact of the tsunami on structures and buildings. Simulations developed to explore 2D coastal morphology show that incised channels similar to those found around Tutuila, as well as coastal embayments, also affect tsunami inundation, allowing larger waves to penetrate farther inland. The largest effect is found for channels located within embayments, and for embayments that narrow landward. These simulations suggest that embayments that narrow landward, such as Fagafue Bay on the north side of Tutuila, and that have an incised deep channel, can cause a significant increase in tsunami wave heights, inundation distances, and velocities. Wide embayments, similar in size to Massacre Bay, induce some tsunami amplification, but not as much as for the narrowing embayment.

  8. Impact of warming events on reef-scale temperature variability as captured in two Little Cayman coral Sr/Ca records

    NASA Astrophysics Data System (ADS)

    von Reumont, J.; Hetzinger, S.; Garbe-Schönberg, D.; Manfrino, C.; Dullo, W.-Chr.

    2016-03-01

    The rising temperature of the world's oceans is affecting coral reef ecosystems by increasing the frequency and severity of bleaching and mortality events. The susceptibility of corals to temperature stress varies on local and regional scales. Insights into potential controlling parameters are hampered by a lack of long term in situ data in most coral reef environments and sea surface temperature (SST) products often do not resolve reef-scale variations. Here we use 42 years (1970-2012) of coral Sr/Ca data to reconstruct seasonal- to decadal-scale SST variations in two adjacent but distinct reef environments at Little Cayman, Cayman Islands. Our results indicate that two massive Diploria strigosa corals growing in the lagoon and in the fore reef responded differently to past warming events. Coral Sr/Ca data from the shallow lagoon successfully record high summer temperatures confirmed by in situ observations (>33°C). Surprisingly, coral Sr/Ca from the deeper fore reef is strongly affected by thermal stress events, although seasonal temperature extremes and mean SSTs at this site are reduced compared to the lagoon. The shallow lagoon coral showed decadal variations in Sr/Ca, supposedly related to the modulation of lagoonal temperature through varying tidal water exchange, influenced by the 18.6 year lunar nodal cycle. Our results show that reef-scale SST variability can be much larger than suggested by satellite SST measurements. Thus, using coral SST proxy records from different reef zones combined with in situ observations will improve conservation programs that are developed to monitor and predict potential thermal stress on coral reefs.

  9. Ecosystem regime shifts disrupt trophic structure.

    PubMed

    Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K

    2018-01-01

    Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability. © 2017 by the Ecological Society of America.

  10. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: Insights from Maui Nui, Hawaii

    USGS Publications Warehouse

    Storlazzi, Curt; van Ormondt, Maarten; Chen, Yi-Leng; Elias, Edwin P. L.

    2017-01-01

    Connectivity among individual marine protected areas (MPAs) is one of the most important considerations in the design of integrated MPA networks. To provide such information for managers in Hawaii, USA, a numerical circulation model was developed to determine the role of ocean currents in transporting coral larvae from natal reefs throughout the high volcanic islands of the Maui Nui island complex in the southeastern Hawaiian Archipelago. Spatially- and temporally-varying wind, wave, and circulation model outputs were used to drive a km-scale, 3-dimensional, physics-based circulation model for Maui Nui. The model was calibrated and validated using satellite-tracked ocean surface current drifters deployed during coral-spawning conditions, then used to simulate the movement of the larvae of the dominant reef-building coral, Porites compressa, from 17 reefs during eight spawning events in 2010–2013. These simulations make it possible to investigate not only the general dispersal patterns from individual coral reefs, but also how anomalous conditions during individual spawning events can result in large deviations from those general patterns. These data also help identify those reefs that are dominated by self-seeding and those where self-seeding is limited to determine their relative susceptibility to stressors and potential roadblocks to recovery. Overall, the numerical model results indicate that many of the coral reefs in Maui Nui seed reefs on adjacent islands, demonstrating the interconnected nature of the coral reefs in Maui Nui and providing a key component of the scientific underpinning essential for the design of a mutually supportive network of MPAs to enhance conservation of coral reefs.

  11. Development of Miocene-Pliocene reef trend, St. Croix, U. S. Virgin Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, I.; Eby, D.E.; Hubbard, D.K.

    1988-01-01

    The Miocene-Pliocene reef trend on St. Croix, U.S. Virgin Islands, rims the present southern western coasts of the island and includes accompanying lagoonal and forereef facies. The reef trend was established on a foram-algal bank facies that represents basinal shallowing from the deep-water pelagic and hemipelagic facies of the Miocene Kingshill Limestone. Information on facies distribution and thickness is derived from rock exposures and 22 test wells drilled to a maximum depth of 91 m. The greatest thickness of the reef facies exists in a subsidiary graben on the south coast of St. Croix. The thickness of the reef sectionmore » in this locality is due to preservation of the section in a downdropped block. Reef faunas include extant corals, as well as several extinct genera. Extant corals (e.g. Montastrea annularis, Diploria sp., and Porites porites) and extinct corals (e.g., Stylophora affinis, Antillea bilobata, and Thysanus sp.) are the main reef frame-builders. Coralline algea and large benthic foraminifera are significant contributors to the sediments both prior to and during scleractinian reef growth. Dolomitization and calcite cementation occur prominantly in an area corresponding to a Holocene lagoon. The spatial distribution of the dolomite suggests that the lagoon is a Tertiary feature directly related to the dolomitization process. Stable isotopic values suggest dolomitization of fluids of elevated salinity.« less

  12. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  13. Oman's coral reefs: A unique ecosystem challenged by natural and man-related stresses and in need of conservation.

    PubMed

    Burt, J A; Coles, S; van Lavieren, H; Taylor, O; Looker, E; Samimi-Namin, K

    2016-04-30

    Oman contains diverse and abundant reef coral communities that extend along a coast that borders three environmentally distinct water bodies, with corals existing under unique and often stressful environmental conditions. In recent years Oman's reefs have undergone considerable change due to recurrent predatory starfish outbreaks, cyclone damage, harmful algal blooms, and other stressors. In this review we summarize current knowledge of the biology and status of corals in Oman, particularly in light of recent stressors and projected future threats, and examine current reef management practices. Oman's coral communities occur in marginal environmental conditions for reefs, and hence are quite vulnerable to anthropogenic effects. We recommend a focus on developing conservation-oriented coral research to guide proactive management and expansion of the number and size of designated protected areas in Oman, particularly those associated with critical coral habitat. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Making a model meaningful to coral reef managers in a developing nation: a case study of overfishing and rock anchoring in Indonesia.

    PubMed

    Maynard, Jeffrey A; Anthony, Kenneth R N; Afatta, Siham; Dahl-Tacconi, Nancy; Hoegh-Guldberg, Ove

    2010-10-01

    Most of the world's coral reefs line the coasts of developing nations, where impacts from intense and destructive fishing practices form critical conservation issues for managers. Overfishing of herbivorous fishes can cause phase shifts to macroalgal dominance, and fishers' use of rocks as anchors lowers coral cover, giving further competitive advantage to macroalgae. Overfishing and anchoring have been studied extensively, but the role of their interaction in lowering coral reef resilience has not been quantified formally. We analyzed the combined effects of overfishing and rock anchoring on a range of reef habitat types--varying from high coral and low macroalgae cover to low coral and high macroalgae cover--in a marine park in Indonesia. We parameterized a model of coral and algal dynamics with three intensities of anchoring and fishing pressure. Results of the model indicated that damage caused by rock anchoring was equal to or possibly more devastating to coral reefs in the area than the impact of overfishing. This is an important outcome for local managers, who usually have the funds to distribute less-damaging anchors, but normally are unable to patrol regularly and effectively enough to reduce the impact of overfishing. We translated model results into an interactive visual tool that allows managers to explore the benefits of reducing anchoring frequency and fishing pressure. The potential consequences of inaction were made clear: the likelihood that any of the reef habitats will be dominated in the future by macroalgae rather than corals depends on reducing anchoring frequency, fishing pressure, or both. The tool provides a platform for strengthened relationships between managers and conservationists and can facilitate the uptake of recommendations regarding resource allocation and management actions. Conservation efforts for coral reefs in developing nations are likely to benefit from transforming model projections of habitat condition into tools local managers can understand and interact with. © 2010 Society for Conservation Biology.

  15. Ridge to reef assessment of metal concentration and mineralogy in rocks and sediments on St. John, U.S. Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harrington, R. J.; Gray, S. C.; Ramos-Scharron, C. E.; O'Shea, B.

    2012-12-01

    Land development on the island of St. John, US Virgin Islands is increasing terrigenous sediment loads into coastal bays and this is adversely affecting its sensitive, near-shore coral reef systems. Accelerated erosion of by-products originating from igneous bedrock may contribute metal-rich sediment to ephemeral streams and bays around St. John. In order to determine how development is affecting the production and transportation of land-based metals from watersheds to reef environments, we compare the chemistry and mineralogy of bedrock and sediment of both an undeveloped and a developed watershed and their corresponding bays. Both watersheds are comprised of bedrock of similar lithology (Water Island Formation: plagiorhyolite and basalt). Our study objectives are to: 1) determine what metal elements could serve as reliable stable geochemical tracers to track the transport of land-derived sediments to reefs; 2) document the total change in metal concentrations from in-situ bedrock and sediment along travel paths as the sediment gets transported from the watersheds to the reefs; and 3) estimate erosion rates from active sediment sources and metal accumulation rates within the marine environment. Whole rock, soil, stream, shore and reef sediment samples were collected from both study areas to represent a ridge to reef progression of material as it is eroded from the bedrock and transported to the reefs. Samples of in-situ rock and sediments were collected by hand, while material representing sediment being eroded from the watersheds and settling in the ephemeral streams and bays was captured by terrestrial and marine sediment traps. Major and trace element concentrations and the mineralogy of rock and sediments were analyzed using X-ray fluorescence, petrography and X-ray diffraction. Analyses of bedrock samples reveal mineral and elemental compositions typical of basalt and plagiorhyolite. In hydrothermally altered bedrock Ba and K concentrations elevated above non-hydrothermally altered bedrock are detected. A chemical weathering index of bedrock and adjacent C and B soil horizons suggests that some major elements, such as Ca, K and Na, are chemically weathering from bedrock and soils. However, some major and trace elements that derive from terrigenous sources (FeO, Al2O3, TiO2, Cu, Zr) resist chemical weathering and are transported to the shore and reef within eroded terrestrial sediment. The concentrations of these metals in marine trap sediments are strongly correlated with percent terrigenous material (R2= 0.80 - 0.94, p: <0.0001). This suggests these elements can be used as tracers for sediment derived from terrestrial environments. Watershed terrestrial metals concentrations do not show a consistent pattern of change from ridge to reef, but are generally higher in the watershed than the shore and reef sites. Higher concentrations (5 to 50 times higher depending on the element) of terrigenous derived metals are detected below the developed watershed compared to the undeveloped watershed. These data support previous research showing higher rates of terrigenous sedimentation in the marine environments of developed bays. These geochemical data will be compared to a watershed-scale erosion analysis of both study areas to quantify metal flux rates in this type of sub-tropical island system.

  16. Artificial Reefs Created by Electrolysis and Coral Transplantation: An Approach Ensuring the Compatibility of Environmental Protection and Diving Tourism

    NASA Astrophysics Data System (ADS)

    van Treeck, P.; Schuhmacher, H.

    1999-08-01

    Coral reefs are currently being subjected to increasing pressure caused by water sports, especially scuba diving. Highly complex reef coenoses are affected by mechanical breakage and the coverage of corals by resuspended sediments. As the ecological capacity of the biocoenosis is exceeded, sensitive species are suppressed and the community is impoverished. The conflict between the needs of nature conservation and the economic interests of diving tourism can be mitigated by the creation of artificial underwater attractions as reef substitutes. Specially designed underwater structures are ideal for many diving activities, which can be diverted from sensitive natural habitats in that way. It is also possible to develop model reef communities for training and environmental education purposes. Our new concept is based on the elegant solution, proposed by Hilbertz et al. (1977), of depositing calcium minerals from the seawater in situ by electrolysis. We report on experiments conducted near Aqaba (Red Sea) showing that it is feasible to transplant living coral fragments on to the substrate being developed by electrochemical processes. In this way, the formation of a diverse community on any structure desired can be considerably enhanced.

  17. Boat noise prevents soundscape-based habitat selection by coral planulae.

    PubMed

    Lecchini, David; Bertucci, Frédéric; Gache, Camille; Khalife, Adam; Besson, Marc; Roux, Natacha; Berthe, Cecile; Singh, Shubha; Parmentier, Eric; Nugues, Maggy M; Brooker, Rohan M; Dixson, Danielle L; Hédouin, Laetitia

    2018-06-18

    Understanding the relationship between coral reef condition and recruitment potential is vital for the development of effective management strategies that maintain coral cover and biodiversity. Coral larvae (planulae) have been shown to use certain sensory cues to orient towards settlement habitats (e.g. the odour of live crustose coralline algae - CCA). However, the influence of auditory cues on coral recruitment, and any effect of anthropogenic noise on this process, remain largely unknown. Here, we determined the effect of protected reef (MPA), exploited reef (non-MPA) soundscapes, and a source of anthropogenic noise (boat) on the habitat preference for live CCA over dead CCA in the planula of two common Indo-Pacific coral species (Pocillopora damicornis and Acropora cytherea). Soundscapes from protected reefs significantly increased the phonotaxis of planulae of both species towards live CCA, especially when compared to boat noise. Boat noise playback prevented this preferential selection of live CCA as a settlement substrate. These results suggest that sources of anthropogenic noise such as motor boat can disrupt the settlement behaviours of coral planulae. Acoustic cues should be accounted for when developing management strategies aimed at maximizing larval recruitment to coral reefs.

  18. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States

    PubMed Central

    Beck, Michael W.; Bresch, David N.; Calil, Juliano; Meliane, Imen

    2018-01-01

    Coastal risks are increasing from both development and climate change. Interest is growing in the protective role that coastal nature-based measures (or green infrastructure), such as reefs and wetlands, can play in adapting to these risks. However, a lack of quantitative information on their relative costs and benefits is one principal factor limiting their use more broadly. Here, we apply a quantitative risk assessment framework to assess coastal flood risk (from climate change and economic exposure growth) across the United States Gulf of Mexico coast to compare the cost effectiveness of different adaptation measures. These include nature-based (e.g. oyster reef restoration), structural or grey (e.g., seawalls) and policy measures (e.g. home elevation). We first find that coastal development will be a critical driver of risk, particularly for major disasters, but climate change will cause more recurrent losses through changes in storms and relative sea level rise. By 2030, flooding will cost $134–176.6 billion (for different economic growth scenarios), but as the effects of climate change, land subsidence and concentration of assets in the coastal zone increase, annualized risk will more than double by 2050 with respect to 2030. However, from the portfolio we studied, the set of cost-effective adaptation measures (with benefit to cost ratios above 1) could prevent up to $57–101 billion in losses, which represents 42.8–57.2% of the total risk. Nature-based adaptation options could avert more than $50 billion of these costs, and do so cost effectively with average benefit to cost ratios above 3.5. Wetland and oyster reef restoration are found to be particularly cost-effective. This study demonstrates that the cost effectiveness of nature-based, grey and policy measures can be compared quantitatively with one another, and that the cost effectiveness of adaptation becomes more attractive as climate change and coastal development intensifies in the future. It also shows that investments in nature-based adaptation could meet multiple objectives for environmental restoration, adaptation and flood risk reduction. PMID:29641611

  19. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States.

    PubMed

    Reguero, Borja G; Beck, Michael W; Bresch, David N; Calil, Juliano; Meliane, Imen

    2018-01-01

    Coastal risks are increasing from both development and climate change. Interest is growing in the protective role that coastal nature-based measures (or green infrastructure), such as reefs and wetlands, can play in adapting to these risks. However, a lack of quantitative information on their relative costs and benefits is one principal factor limiting their use more broadly. Here, we apply a quantitative risk assessment framework to assess coastal flood risk (from climate change and economic exposure growth) across the United States Gulf of Mexico coast to compare the cost effectiveness of different adaptation measures. These include nature-based (e.g. oyster reef restoration), structural or grey (e.g., seawalls) and policy measures (e.g. home elevation). We first find that coastal development will be a critical driver of risk, particularly for major disasters, but climate change will cause more recurrent losses through changes in storms and relative sea level rise. By 2030, flooding will cost $134-176.6 billion (for different economic growth scenarios), but as the effects of climate change, land subsidence and concentration of assets in the coastal zone increase, annualized risk will more than double by 2050 with respect to 2030. However, from the portfolio we studied, the set of cost-effective adaptation measures (with benefit to cost ratios above 1) could prevent up to $57-101 billion in losses, which represents 42.8-57.2% of the total risk. Nature-based adaptation options could avert more than $50 billion of these costs, and do so cost effectively with average benefit to cost ratios above 3.5. Wetland and oyster reef restoration are found to be particularly cost-effective. This study demonstrates that the cost effectiveness of nature-based, grey and policy measures can be compared quantitatively with one another, and that the cost effectiveness of adaptation becomes more attractive as climate change and coastal development intensifies in the future. It also shows that investments in nature-based adaptation could meet multiple objectives for environmental restoration, adaptation and flood risk reduction.

  20. Shell concrete pavement.

    DOT National Transportation Integrated Search

    1966-10-01

    This report describes the testing performed with reef shell, clam shell and a combination of reef and clam shell used as coarse aggregate to determine if a low modulus concrete could be developed for use as a base material as an alternate to the pres...

  1. Environmental and ecological controls of coral community metabolism on Palmyra Atoll

    NASA Astrophysics Data System (ADS)

    Koweek, David; Dunbar, Robert B.; Rogers, Justin S.; Williams, Gareth J.; Price, Nichole; Mucciarone, David; Teneva, Lida

    2015-03-01

    Accurate predictions of how coral reefs may respond to global climate change hinge on understanding the natural variability to which these ecosystems are exposed and to which they contribute. We present high-resolution estimates of net community calcification (NCC) and net community production (NCP) from Palmyra Atoll, an uninhabited, near-pristine coral reef ecosystem in the central Pacific. In August-October 2012, we employed a combination of Lagrangian and Eulerian frameworks to establish high spatial (~2.5 km2) and temporal (hourly) resolution coral community metabolic estimates. Lagrangian drifts, all conducted during daylight hours, resulted in NCC estimates of -51 to 116 mmol C m-2 h-1, although most NCC estimates were in the range of 0-40 mmol C m-2 h-1. Lagrangian drift NCP estimates ranged from -7 to 67 mmol C m-2 h-1. In the Eulerian setup, we present carbonate system parameters (dissolved inorganic carbon, total alkalinity, pH, and pCO2) at sub-hourly resolution through several day-night cycles and provide hourly NCC and NCP rate estimates. We compared diel cycles of all four carbonate system parameters to the offshore surface water (0-50 m depth) and show large departures from offshore surface water chemistry. Hourly Eulerian estimates of NCC aggregated over the entire study ranged from 14 to 53 mmol C m-2 h-1, showed substantial variability during daylight hours, and exhibited a diel cycle with elevated NCC in the afternoons and depressed, but positive, NCC at night. The Eulerian NCP range was very high (-55 to 177 mmol C m-2 h-1) and exhibited strong variability during daylight hours. Principal components analysis revealed that NCC and NCP were most closely aligned with diel cycle forcing, whereas the NCC/NCP ratio was most closely aligned with reef community composition. Our analysis demonstrates that ecological community composition is the primary determinant of coral reef biogeochemistry on a near-pristine reef and that reef biogeochemistry is likely to be responsive to human behaviors that alter community composition.

  2. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations

    PubMed Central

    Bellwood, D. R.; Goatley, C. H. R.; Brandl, S. J.; Bellwood, O.

    2014-01-01

    The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs. PMID:24573852

  3. Fifty million years of herbivory on coral reefs: fossils, fish and functional innovations.

    PubMed

    Bellwood, D R; Goatley, C H R; Brandl, S J; Bellwood, O

    2014-04-22

    The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene-Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs.

  4. Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes

    PubMed Central

    Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.

    2011-01-01

    Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714

  5. Effects of ocean acidification and sea-level rise on coral reefs

    USGS Publications Warehouse

    Yates, K.K.; Moyer, R.P.

    2010-01-01

    U.S. Geological Survey (USGS) scientists are developing comprehensive records of historical and modern coral reef growth and calcification rates relative to changing seawater chemistry resulting from increasing atmospheric CO2 from the pre-industrial period to the present. These records will provide the scientific foundation for predicting future impacts of ocean acidification and sea-level rise on coral reef growth. Changes in coral growth rates in response to past changes in seawater pH are being examined by using cores from coral colonies.

  6. Recreational Diving Impacts on Coral Reefs and the Adoption of Environmentally Responsible Practices within the SCUBA Diving Industry.

    PubMed

    Roche, Ronan C; Harvey, Chloe V; Harvey, James J; Kavanagh, Alan P; McDonald, Meaghan; Stein-Rostaing, Vivienne R; Turner, John R

    2016-07-01

    Recreational diving on coral reefs is an activity that has experienced rapidly growing levels of popularity and participation. Despite providing economic activity for many developing coastal communities, the potential role of dive impacts in contributing to coral reef damage is a concern at heavily dived locations. Management measures to address this issue increasingly include the introduction of programmes designed to encourage environmentally responsible practices within the dive industry. We examined diver behaviour at several important coral reef dive locations within the Philippines and assessed how diver characteristics and dive operator compliance with an environmentally responsible diving programme, known as the Green Fins approach, affected reef contacts. The role of dive supervision was assessed by recording dive guide interventions underwater, and how this was affected by dive group size. Of the 100 recreational divers followed, 88 % made contact with the reef at least once per dive, with a mean (±SE) contact rate of 0.12 ± 0.01 per min. We found evidence that the ability of dive guides to intervene and correct diver behaviour in the event of a reef contact decreases with larger diver group sizes. Divers from operators with high levels of compliance with the Green Fins programme exhibited significantly lower reef contact rates than those from dive operators with low levels of compliance. The successful implementation of environmentally responsible diving programmes, which focus on influencing dive industry operations, can contribute to the management of human impacts on coral reefs.

  7. Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates

    PubMed Central

    Edmunds, Peter J.; Adjeroud, Mehdi; Baskett, Marissa L.; Baums, Iliana B.; Budd, Ann F.; Carpenter, Robert C.; Fabina, Nicholas S.; Fan, Tung-Yung; Franklin, Erik C.; Gross, Kevin; Han, Xueying; Jacobson, Lianne; Klaus, James S.; McClanahan, Tim R.; O'Leary, Jennifer K.; van Oppen, Madeleine J. H.; Pochon, Xavier; Putnam, Hollie M.; Smith, Tyler B.; Stat, Michael; Sweatman, Hugh; van Woesik, Robert; Gates, Ruth D.

    2014-01-01

    The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past. PMID:25272143

  8. A morphometric assessment and classification of coral reef spur and groove morphology

    NASA Astrophysics Data System (ADS)

    Duce, S.; Vila-Concejo, A.; Hamylton, S. M.; Webster, J. M.; Bruce, E.; Beaman, R. J.

    2016-07-01

    Spurs and grooves (SaGs) are a common and important feature of coral reef fore slopes worldwide. However, they are difficult to access and hence their morphodynamics and formation are poorly understood. We use remote sensing, with extensive ground truthing, to measure SaG morphometrics and environmental factors at 11,430 grooves across 17 reefs in the southern Great Barrier Reef, Australia. We revealed strong positive correlations between groove length, orientation and wave exposure with longer, more closely-spaced grooves oriented easterly reflecting the dominant swell regime. Wave exposure was found to be the most important factor controlling SaG distribution and morphology. Gradient of the upper reef slope was also an important limiting factor, with SaGs less likely to develop in steeply sloping (> 5°) areas. We used a subset of the morphometric data (11 reefs) to statistically define four classes of SaG. This classification scheme was tested on the remaining six reefs. SaGs in the four classes differ in morphology, groove substrate and coral cover. These differences provide insights into SaG formation mechanisms with implications to reef platform growth and evolution. We hypothesize SaG formation is dominated by coral growth processes at two classes and erosion processes at one class. A fourth class may represent relic features formed earlier in the Holocene transgression. The classes are comparable with SaGs elsewhere, suggesting the classification could be applied globally with the addition of new classes if necessary. While further research is required, we show remotely sensed SaG morphometrics can provide useful insights into reef platform evolution.

  9. Contrasts within an outlier-reef system: Evidence for differential quaternary evolution, south Florida windward margin, U.S.A.

    USGS Publications Warehouse

    Lidz, B.H.; Shinn, E.A.; Hine, A.C.; Locker, S.D.

    1997-01-01

    Closely spaced, high-resolution, seismic-reflection profiles acquired off the upper Florida Keys (i.e., north) reveal a platform-margin reef-and-trough system grossly similar to, yet quite different from, that previously described off the lower Keys (i.e., south). Profiles and maps generated for both areas show that development was controlled by antecedent Pleistocene topography (presence or absence of an upper-slope bedrock terrace), sediment availability, fluctuating sea level, and coral growth rate and distribution. The north terrace is sediment-covered and exhibits linear, buried, low-relief, seismic features of unknown character and origin. The south terrace is essentially sediment-free and supports multiple, massive, high-relief outlier reefs. Uranium disequilibrium series dates on outlier-reef corals indicate a Pleistocene age (~83-84 ka). A massive Pleistocene reef with both aggradational (north) and progradational (south) aspects forms the modern margin escarpment landward of the terrace. Depending upon interpretation (the north margin-escarpment reef may or may not be an outlier reef), the north margin is either more advanced or less advanced than the south margin. During Holocene sea-level rise, Pleistocene bedrock was inundated earlier and faster first to the north (deeper offbank terrace), then to the south (deeper platform surface). Holocene overgrowth is thick (8 m) on the north outer-bank reefs but thin (0.3 m) on the south outlier reefs. Differential evolution resulted from interplay between fluctuating sea level and energy regime established by prevailing east-southeasterly winds and waves along an arcuate (ENE-WSW) platform margin.

  10. Movement patterns of silvertip sharks ( Carcharhinus albimarginatus) on coral reefs

    NASA Astrophysics Data System (ADS)

    Espinoza, Mario; Heupel, Michelle. R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2015-09-01

    Understanding how sharks use coral reefs is essential for assessing risk of exposure to fisheries, habitat loss, and climate change. Despite a wide Indo-Pacific distribution, little is known about the spatial ecology of silvertip sharks ( Carcharhinus albimarginatus), compromising the ability to effectively manage their populations. We examined the residency and movements of silvertip sharks in the central Great Barrier Reef (GBR). An array of 56 VR2W acoustic receivers was used to monitor shark movements on 17 semi-isolated reefs. Twenty-seven individuals tagged with acoustic transmitters were monitored from 70 to 731 d. Residency index to the study site ranged from 0.05 to 0.97, with a mean residency (±SD) of 0.57 ± 0.26, but most individuals were detected at or near their tagging reef. Clear seasonal patterns were apparent, with fewer individuals detected between September and February. A large proportion of the tagged population (>71 %) moved regularly between reefs. Silvertip sharks were detected less during daytime and exhibited a strong diel pattern in depth use, which may be a strategy for optimizing energetic budgets and foraging opportunities. This study provides the first detailed examination of the spatial ecology and behavior of silvertip sharks on coral reefs. Silvertip sharks remained resident at coral reef habitats over long periods, but our results also suggest this species may have more complex movement patterns and use larger areas of the GBR than common reef shark species. Our findings highlight the need to further understand the movement ecology of silvertip sharks at different spatial and temporal scales, which is critical for developing effective management approaches.

  11. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Kleypas, J.; Castruccio, F.; Curchitser, E. N.; Pinsky, M. L.; Jönsson, B.; Watson, J. R.

    2018-07-01

    The global center of marine biodiversity is located in the western tropical Pacific in a region known as the "Coral Triangle" (CT). This region is also considered the most threatened of all coral reef regions, because multiple impacts, including rising temperatures and coral bleaching, have already caused high mortality of reef corals over large portions of the CT. Larval dispersal and recruitment play a critical role in reef recovery after such disturbances, but our understanding of reproductive connectivity between reefs is limited by a paucity of observations. Oceanographic modeling can provide an economical and efficient way to augment our understanding of reef connectivity, particularly over an area as large as the CT, where marine ecosystem management has become a priority. This work combines daily averaged surface current velocity and direction from a Regional Ocean Modeling System developed for the CT region (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of larval transport between reefs for a typical broadcasting coral. A 47-year historical simulation (1960-2006) was used to analyze the potential connectivity, the physical drivers of larval transport, and its variability following bi-annual spawning events in April and September. Potential connectivity between reefs was highly variable from year to year, emphasizing the need for long simulations. The results suggest that although reefs in this region are highly self-seeded, comparatively rare long-distance dispersal events may play a vital role in shaping regional patterns of reef biodiversity and recovery following disturbance. The spatial pattern of coral "subpopulations," which are based on the potential connectivity between reefs, agrees with observed regional-scale patterns of biodiversity, suggesting that the physical barriers to larval dispersal are a first-order driver of coral biodiversity in the CT region. These physical barriers persist through the 21st Century when the model is forced with the Community Earth System Model (CESM) RCP8.5 climate scenario, despite some regional changes in connectivity between reefs.

  12. Assessing the Diversity of Halimeda spp. on Pulley Ridge Mesophotic Reefs

    NASA Astrophysics Data System (ADS)

    Luzader, R. K.; Baco-Taylor, A.

    2016-02-01

    The Florida reef system contains an array of organisms that contribute to the development of the reef structure. These include calcifying green macroalgae of the genus Halimeda, which provides important ecosystem services by stabilizing the reefs through calcification. Halimeda is one of several groups of shallow water reef taxa with a depth range that extends into the mesophotic zone. It has been hypothesized the mesophotic reefs may serve as refugia for shallow water taxa impacted by climate change and other anthropogenic stressors. To test this hypothesis, in 2012-2015, the mesophotic reefs of Pulley Ridge and Dry Tortugas were sampled to assess genetic connectivity to the shallow water reefs of the Florida Keys. A diverse array of Halimeda species were represented on Pulley Ridge. Halimeda species are known to be difficult to identify and delineate morphologically and the taxonomy of Halimeda species has been revised several times based on molecular data. Thus, before connectivity of mesophotic Halimeda to shallow populations can be assessed, our first goal is to determine whether there is overlap of any of the Halimeda species between the mesophotic and shallow reefs, and then to determine if any of the species are present in sufficient abundance for population genetics. We sequenced portions of two chloroplast genes commonly used for algal phylogenetics and barcoding, tufA and rbcL, for at least 5 individuals of each morphotype collected on Dry Tortugas and the Pulley Ridge mesophotic reefs. Preliminary results suggest that Halimeda tuna, the species previously reported as the dominant Halimeda species on Pulley Ridge, was relatively uncommon. Morphological results and comparison of initial genetic results to sequences in GenBank suggest that H. goreaui is abundant at the Dry Tortugas site and H. fragilis, H. copiosa and H. discoidea are common on Pulley Ridge, indicating greater Halimeda diversity in the mesophotic reef system than previously documented.

  13. Estimating the impact of oyster restoration scenarios on transient fish production

    USGS Publications Warehouse

    McCoy, Elizabeth; Borrett, Stuart R.; LaPeyre, Megan K.; Peterson, Bradley J.

    2017-01-01

    Oyster reef restoration projects are increasing in number both to enhance oyster density and to retain valuable ecosystem services provided by oyster reefs. Although some oyster restoration projects have demonstrated success by increasing density and biomass of transient fish, it still remains a challenge to quantify the effects of oyster restoration on transient fish communities. We developed a bioenergetics model to assess the impact of selected oyster reef restoration scenarios on associated transient fish species. We used the model to analyze the impact of changes in (1) oyster population carrying capacity; (2) oyster population growth rate; and (3) diet preference of transient fish on oyster reef development and associated transient fish species. Our model results indicate that resident fish biomass is directly affected by oyster restoration and oyster biomass, and oyster restoration can have cascading impacts on transient fish biomass. Furthermore, the results highlight the importance of a favorable oyster population growth rate during early restoration years, as it can lead to rapid increases in mean oyster biomass and biomass of transient fish species. The model also revealed that a transient fish's diet solely dependent on oyster reef-derived prey could limit the biomass of transient fish species, emphasizing the importance of habitat connectivity in estuarine areas to enhance transient fish species biomass. Simple bioenergetics models can be developed to understand the dynamics of a system and make qualitative predictions of management and restoration scenarios.

  14. The influence of micro-topography and external bioerosion on coral-reef-building organisms: recruitment, community composition and carbonate production over time

    NASA Astrophysics Data System (ADS)

    Mallela, Jennie

    2018-03-01

    The continued health and function of tropical coral reefs is highly dependent on the ability of reef-building organisms to build large, complex, three-dimensional structures that continue to accrete and evolve over time. The recent deterioration of reef health globally, including loss of coral cover, has resulted in significant declines in architectural complexity at a large, reef-scape scale. Interestingly, the fine-scale role of micro-structure in initiating and facilitating future reef development and calcium carbonate production has largely been overlooked. In this study, experimental substrates with and without micro-ridges were deployed in the lagoon at One Tree Island for 34 months. This study assessed how the presence or absence of micro-ridges promoted recruitment by key reef-building sclerobionts (corals and encrusters) and their subsequent development at micro (mm) and macro (cm) scales. Experimental plates were examined after 11 and 34 months to assess whether long-term successional and calcification processes on different micro-topographies led to convergent or divergent communities over time. Sclerobionts were most prevalent in micro-grooves when they were available. Interestingly, in shallow lagoon reef sites characterised by shoals of small parrotfish and low urchin abundance, flat substrates were also successfully recruited to. Mean rates of carbonate production were 374 ± 154 (SD) g CaCO3 m-2 yr-1 within the lagoon. Substrates with micro-ridges were characterised by significantly greater rates of carbonate production than smooth substrates. The orientation of the substrate and period of immersion also significantly impacted rates of carbonate production, with CaCO3 on cryptic tiles increasing by 28% between 11 and 34 months. In contrast, rates on exposed tiles declined by 35% over the same time. In conclusion, even at sites characterised by small-sized parrotfish and low urchin density, micro-topography is an important settlement niche clearly favouring sclerobiont early life-history processes and subsequent carbonate production.

  15. The Impact of Marine Protected Areas on Reef-Wide Population Structure and Fishing-Induced Phenotypes in Coral-Reef Fishes

    NASA Astrophysics Data System (ADS)

    Fidler, Robert Young, III

    Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solarmore » thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.« less

  17. Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah

    USGS Publications Warehouse

    Stugard, Frederick

    1954-01-01

    During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the U.S. atomic Energy Commission. A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey. The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium deposits. Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore sheets mined on the Point in fine-grained sandstones of the Chinle formation. Three additional holes were located around Tecumseh Hill to probe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef. Only one trace of uranium mineral was detected in the 13 drill holes by logging of drill cores, gamma-ray logging of the holes, and analysis of many core splits from favorable lithology. Extensive traversing with Geiger counters throughout the district and detailed geologic mapping of areas on Buckeye Reef and on East Reef indicate that the chances of discovering significant uranium deposits in the Silver Reef district are very poor, because of: highly variable lithology, closely faulted structure, and obliteration of the shallow uranium-bearing lenses by silver mining. Most of the available ore in the district was in the Pumpkin Point area and has been mined during 1950 to 1953. No ore reserves can be computed for the district before further development work. The most favorable remaining area in the district is now being explored by the operators with Atomic Energy Commission supervision.

  18. A new, high-resolution global mass coral bleaching database

    PubMed Central

    Rickbeil, Gregory J. M.; Heron, Scott F.

    2017-01-01

    Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50%) or likely (>66%) probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures. PMID:28445534

  19. A new, high-resolution global mass coral bleaching database.

    PubMed

    Donner, Simon D; Rickbeil, Gregory J M; Heron, Scott F

    2017-01-01

    Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50%) or likely (>66%) probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures.

  20. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore.

    PubMed

    Guest, J R; Tun, K; Low, J; Vergés, A; Marzinelli, E M; Campbell, A H; Bauman, A G; Feary, D A; Chou, L M; Steinberg, P D

    2016-11-08

    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3-4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6-7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates.

  1. 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore

    PubMed Central

    Guest, J. R.; Tun, K.; Low, J.; Vergés, A.; Marzinelli, E. M.; Campbell, A. H.; Bauman, A. G.; Feary, D. A.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    Coral cover on reefs is declining globally due to coastal development, overfishing and climate change. Reefs isolated from direct human influence can recover from natural acute disturbances, but little is known about long term recovery of reefs experiencing chronic human disturbances. Here we investigate responses to acute bleaching disturbances on turbid reefs off Singapore, at two depths over a period of 27 years. Coral cover declined and there were marked changes in coral and benthic community structure during the first decade of monitoring at both depths. At shallower reef crest sites (3–4 m), benthic community structure recovered towards pre-disturbance states within a decade. In contrast, there was a net decline in coral cover and continuing shifts in community structure at deeper reef slope sites (6–7 m). There was no evidence of phase shifts to macroalgal dominance but coral habitats at deeper sites were replaced by unstable substrata such as fine sediments and rubble. The persistence of coral dominance at chronically disturbed shallow sites is likely due to an abundance of coral taxa which are tolerant to environmental stress. In addition, high turbidity may interact antagonistically with other disturbances to reduce the impact of thermal stress and limit macroalgal growth rates. PMID:27824083

  2. Evaluating the human impact on groundwater quality discharging into a coastal reef lagoon

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Soto, M.; Lecossec, A.; Monroy-Rios, E.

    2008-12-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean. In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. No seasonal parameters differences were observed, suggesting that groundwater composition reaching the reef lagoon is not changing seasonally. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  3. Simulations of Long-Term Community Dynamics in Coral Reefs - How Perturbations Shape Trajectories

    PubMed Central

    Kubicek, Andreas; Muhando, Christopher; Reuter, Hauke

    2012-01-01

    Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations – anthropogenic and natural – many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions. We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community – comprised of scleractinian corals and algae – under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies) of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs. PMID:23209397

  4. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada.

    PubMed

    Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze

    2018-03-15

    Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and implementation criteria. Four pilot units were implemented in 2015 and are currently being field-tested. This paper presents one of the few existing examples available to date of a reef restoration project designed and engineered to deliver risk reduction benefits. The case study shows how engineering and ecology can work together in community-based adaptation. Our findings are particularly important for Small Island States on the front lines of climate change, who have the most to gain from protecting and managing coral reefs as coastal infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Biology and ecology of the vulnerable holothuroid, Stichopus herrmanni, on a high-latitude coral reef on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Wolfe, Kennedy; Byrne, Maria

    2017-12-01

    Tropical aspidochirotid holothuroids are among the largest coral reef invertebrates, but gaps remain in our understanding of their ecological roles in lagoon sediment habitats, a vast component of coral-reef ecosystems. Stichopus herrmanni, listed as vulnerable (IUCN), is currently a major fishery species on the Great Barrier Reef (GBR) and throughout the Indo-Pacific. It is critical to characterise how this species interacts with its environment to understand how its removal may impact ecosystem functionality. We investigated seasonal variation in movement, bioturbation, feeding and gonad development of S. herrmanni over 3 yr at One Tree Reef, which has been a no-take area for decades. We determined the direct influence of the deposit-feeding activity of S. herrmanni on sediment turnover and granulometry, and on the abundance of infauna and benthic productivity in a comprehensive in situ analysis of tropical holothuroid feeding ecology. This species is highly mobile with identifiable individuals exhibiting site fidelity over 3 yr. With the potential to turn over an estimated 64-250 kg individual-1 yr-1, S. herrmanni is a major bioturbator. Stichopus herrmanni is a generalist feeder and influences trophic interactions by altering the abundance of infauna and microalgae. Stichopus herrmanni exhibited decreased feeding activity and gonad development in winter, the first documentation of a seasonal disparity in the bioturbation activity of a tropical holothuroid. Sediment digestion and dissolution by S. herrmanni has the potential to influence seawater chemistry, a particularly important feature in a changing ocean. Our results provide essential baseline data on the functional roles of this ecologically important species to inform development of ecosystem-based bêche-de-mer fisheries management on the GBR.

  6. Diel ontogenetic shift in parasitic activity in a gnathiid isopod on Caribbean coral reefs

    NASA Astrophysics Data System (ADS)

    Sikkel, P. C.; Ziemba, R. E.; Sears, W. T.; Wheeler, J. C.

    2009-06-01

    Ontogenetic niche shifts are characteristic of organisms with complex life cycles such as many marine invertebrates. Research has focused primarily on changes in habitat or diet. However, ontogenetic changes can also occur in the temporal pattern of foraging. Gnathiid isopods feed on fish blood throughout their larval stages and are the primary food item for cleaning organisms on coral reefs. At sites in Australia and the Caribbean, gnathiid larvae exhibit size-related differences in diel activity. However, it is unclear whether this is due to interspecific or intraspecific variation in behavior. Fish were deployed in cages near sunset on shallow reefs off St. John, U.S. Virgin Islands and allowed to be infected with larval gnathiids. Larvae collected from fish retrieved near midnight developed into adults, with most developing into females. In contrast, approximately 80% of gnathiids collected after first light developed into second or third stage larvae, and nearly all of the remaining, large, individuals developed into males. Comparison of ITS2 gene regions from individuals collected in emergence traps from the same reefs during the day versus during the night revealed no differences in this highly variable region. Thus, gnathiid larvae at this locality shift their time of activity as they develop, and larvae developing into males remain active over a longer time period than those developing into females.

  7. Hidden impacts of ocean acidification to live and dead coral framework.

    PubMed

    Hennige, S J; Wicks, L C; Kamenos, N A; Perna, G; Findlay, H S; Roberts, J M

    2015-08-22

    Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world's oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20-30% weaker after 12 months), meaning the exposed bases of reefs will be less effective 'load-bearers', and will become more susceptible to bioerosion and mechanical damage by 2100. © 2015 The Authors.

  8. Towards a new paleotemperature proxy from reef coral occurrences.

    PubMed

    Lauchstedt, Andreas; Pandolfi, John M; Kiessling, Wolfgang

    2017-09-05

    Global mean temperature is thought to have exceeded that of today during the last interglacial episode (LIG, ~ 125,000 yrs b.p.) but robust paleoclimate data are still rare in low latitudes. Occurrence data of tropical reef corals may provide new proxies of low latitude sea-surface temperatures. Using modern reef coral distributions we developed a geographically explicit model of sea surface temperatures. Applying this model to coral occurrence data of the LIG provides a latitudinal U-shaped pattern of temperature anomalies with cooler than modern temperatures around the equator and warmer subtropical climes. Our results agree with previously published estimates of LIG temperatures and suggest a poleward broadening of the habitable zone for reef corals during the LIG.

  9. Rapid transition in the structure of a coral reef community: the effects of coral bleaching and physical disturbance.

    PubMed

    Ostrander, G K; Armstrong, K M; Knobbe, E T; Gerace, D; Scully, E P

    2000-05-09

    Coral reef communities are in a state of change throughout their geographical range. Factors contributing to this change include bleaching (the loss of algal symbionts), storm damage, disease, and increasing abundance of macroalgae. An additional factor for Caribbean reefs is the aftereffects of the epizootic that reduced the abundance of the herbivorous sea urchin, Diadema antillarum. Although coral reef communities have undergone phase shifts, there are few studies that document the details of such transitions. We report the results of a 40-month study that documents changes in a Caribbean reef community affected by bleaching, hurricane damage, and an increasing abundance of macroalgae. The study site was in a relatively pristine area of the reef surrounding the island of San Salvador in the Bahamas. Ten transects were sampled every 3-9 months from November 1994 to February 1998. During this period, the corals experienced a massive bleaching event resulting in a significant decline in coral abundance. Algae, especially macroalgae, increased in abundance until they effectively dominated the substrate. The direct impact of Hurricane Lili in October 1996 did not alter the developing community structure and may have facilitated increasing algal abundance. The results of this study document the rapid transition of this reef community from one in which corals and algae were codominant to a community dominated by macroalgae. The relatively brief time period required for this transition illustrates the dynamic nature of reef communities.

  10. Miocene reef carbonates of Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, H.G. Jr.

    1988-02-01

    Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extent (> 20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocenemore » in the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergence of narrow reef tracts as has been postulated by others for south Guam. Alternatively, the authors are proposing that Miocene bathymetry and the volume of terrigenous influx militated against significant reef core formation. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less

  11. Ocean acidification causes bleaching and productivity loss in coral reef builders.

    PubMed

    Anthony, K R N; Kline, D I; Diaz-Pulido, G; Dove, S; Hoegh-Guldberg, O

    2008-11-11

    Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO(2) levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO(2) is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO(2) induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO(2) scenario led to a 30% increase in productivity in Acropora, whereas high CO(2) lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO(2) leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.

  12. Ten years after the crime: Lasting effects of damage from a cruise ship anchor on a coral reef in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Rogers, C.S.; Garrison, V.H.

    2001-01-01

    In October 1988, a cruise ship dropped its anchor on a coral reef in Virgin Islands National Park, St. John, creating a distinct scar roughly 128 m long and 3 m wide from a depth of 22 m to a depth of 6 m. The anchor pulverized coral colonies and smashed part of the reef framework. In April 1991, nine permanent quadrats (1 m2) were established inside the scar over a depth range of 9 m to 12.5 m. At that time, average coral cover inside the scar was less than 1%. These quadrats were surveyed again in 1992, 1993, 1994, 1995 and 1998. Recruits of 19 coral species have been observed, with Agaricia agaricites and Porites spp. the most abundant. Quadrats surveyed outside the scar in June 1994 over the same depth range had a higher percent coral cover (mean = 7.4%, SD = 4.5) and greater average size (maximum length) of coral colonies than in quadrats inside the damaged area. Although coral recruits settle into the scar in high densities, live coral cover has not increased significantly in the last 10 yrs, reflecting poor survival and growth of newly settled corals. The relatively planar aspect of the scar may increase the vulnerability of the recruits to abrasion and mortality from shifting sediments. Ten years after the anchor damage occurred, live coral cover in the still-visible scar (mean = 2.6%, SD = 2.7) remains well below the cover found in the adjacent, undamaged reef.

  13. Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras.

    PubMed

    Laverick, Jack H; Andradi-Brown, Dominic A; Rogers, Alex D

    2017-01-01

    Shallow water zooxanthellate coral reefs grade into ecologically distinct mesophotic coral ecosystems (MCEs) deeper in the euphotic zone. MCEs are widely considered to start at an absolute depth limit of 30m deep, possibly failing to recognise that these are distinct ecological communities that may shift shallower or deeper depending on local environmental conditions. This study aimed to explore whether MCEs represent distinct biological communities, the upper boundary of which can be defined and whether the depth at which they occur may vary above or below 30m. Mixed-gas diving and closed-circuit rebreathers were used to quantitatively survey benthic communities across shallow to mesophotic reef gradients around the island of Utila, Honduras. Depths of up to 85m were sampled, covering the vertical range of the zooxanthellate corals around Utila. We investigate vertical reef zonation using a variety of ecological metrics to identify community shifts with depth, and the appropriateness of different metrics to define the upper MCE boundary. Patterns observed in scleractinian community composition varied between ordination analyses and approaches utilising biodiversity indices. Indices and richness approaches revealed vertical community transition was a gradation. Ordination approaches suggest the possibility of recognising two scleractinian assemblages. We could detect a mesophotic and shallow community while illustrating that belief in a static depth limit is biologically unjustified. The switch between these two communities occurred across bathymetric gradients as small as 10m and as large as 50m in depth. The difference between communities appears to be a loss of shallow specialists and increase in depth-generalist taxa. Therefore, it may be possible to define MCEs by a loss of shallow specialist species. To support a biological definition of mesophotic reefs, we advocate this analytical framework should be applied around the Caribbean and extended into other ocean basins where MCEs are present.

  14. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition

    PubMed Central

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial heterogeneity in species responses can provide further insurance against natural disturbances in coral reef ecosystems by promoting high levels of key species (herbivores). They can also allow the ecosystem to recover more quickly. PMID:26393511

  15. Harnessing Natural Recovery Processes to Improve Restoration Outcomes: An Experimental Assessment of Sponge-Mediated Coral Reef Restoration

    PubMed Central

    Biggs, Brendan C.

    2013-01-01

    Background Restoration is increasingly implemented to reestablish habitat structure and function following physical anthropogenic disturbance, but scientific knowledge of effectiveness of methods lags behind demand for guidelines. On coral reefs, recovery is largely dependent on coral reestablishment, and substratum stability is critical to the survival of coral fragments and recruits. Concrete is often used to immobilize rubble, but its ecological performance has not been rigorously evaluated, and restoration has generally fallen short of returning degraded habitat to pre-disturbance conditions. Fragments of erect branching sponges mediate reef recovery by facilitating rubble consolidation, yet such natural processes have been largely overlooked in restoring reefs. Methods On two reefs in Curacao, four treatments - coral rubble alone, rubble seeded with sponge fragments, rubble bound by concrete, and concrete “rubble” bound by concrete - were monitored over four years to investigate rubble consolidation with and without sponges and the ecological performance of treatments in terms of the number and diversity of coral recruits. Species specific rates of sponge fragment attachment to rubble, donor sponge growth and tissue replacement, and fragment survival inside rubble piles were also investigated to evaluate sponge species performance and determine rates for sustainably harvesting tissue. Findings/Significance Rubble piles seeded with sponges retained height and shape to a significantly greater degree, lost fewer replicates to water motion, and were significantly more likely to be consolidated over time than rubble alone. Significantly more corals recruited to sponge-seeded rubble than to all other treatments. Coral diversity was also greatest for rubble with sponges and it was the only treatment to which framework building corals recruited. Differences in overall sponge species performance suggest species selection is important to consider. Employing organisms that jump start successional pathways and facilitate recovery can significantly improve restoration outcomes; however, best practices require techniques be tailored to each system. PMID:23750219

  16. Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009-2010): Evidence for seasonal dissolution

    NASA Astrophysics Data System (ADS)

    Muehllehner, Nancy; Langdon, Chris; Venti, Alyson; Kadko, David

    2016-05-01

    Ocean acidification is projected to lower the Ωar of reefal waters by 0.3-0.4 units by the end of century, making it more difficult for calcifying organisms to secrete calcium carbonate while at the same time making the environment more favorable for abiotic and biotic dissolution of the reefal framework. There is great interest in being able to project the point in time when coral reefs will cross the tipping point between being net depositional to net erosional in terms of their carbonate budgets. Periodic in situ assessments of the balance between carbonate production and dissolution that spans seasonal time scales may prove useful in monitoring and formulating projections of the impact of ocean acidification on reefal carbonate production. This study represents the first broad-scale geochemical survey of the rates of net community production (NCP) and net community calcification (NCC) across the Florida Reef Tract (FRT). Surveys were performed at approximately quarterly intervals in 2009-2010 across seven onshore-offshore transects spanning the upper, middle, and lower Florida Keys. Averaged across the FRT, the rates of NCP and NCC were positive during the spring/summer at 62 ± 7 and 17 ± 2 mmol m-2 d-1, respectively, and negative during the fall/winter at -33 ± 6 and -7 ± 2 mmol m-2 d-1. The most significant finding of the study was that the northernmost reef is already net erosional (-1.1 ± 0.4 kg CaCO3 m-2 yr-1) and midreefs to the south were net depositional on an annual basis (0.4 ± 0.1 kg CaCO3 m-2 yr-1) but erosional during the fall and winter. Only the two southernmost reefs were net depositional year-round. These results indicate that parts of the FRT have already crossed the tipping point for carbonate production and other parts are getting close.

  17. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition.

    PubMed

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial heterogeneity in species responses can provide further insurance against natural disturbances in coral reef ecosystems by promoting high levels of key species (herbivores). They can also allow the ecosystem to recover more quickly.

  18. Coral reefs: threats and conservation in an era of global change.

    PubMed

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.

  19. An anomalous Pt-Pd occurrence below the JM reef, Stillwater Complex, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlveen, C.L.

    1993-04-01

    The late Archean Stillwater Complex, in south-central Montana, consists of the Basal, Ultramafic, and Banded series. The Lower Banded series contains several anomalous platinum-group element (PGE) occurrences, with the JM reef having the highest values (an average of 6,250 ppb Pt and 24,000 ppb Pd) and greatest lateral persistence. The Coors anomaly, below the reef, is near the middle of the complex. This zone contains bronzite cumulates which range from 100--14,600 ppb Pt, with an average of 1,250 ppb. Pt:Pd ratios in the Coors zone average 1:1.7, compared to 1:3.8 in the reef. Sulfides associated with the PGE's show immisciblemore » textures indicating a magmatic origin similar to the reef. The anomaly lies approximately 200 m below the reef along the Banded-Ultramafic series contact where the Gabbronorite 1 zone is virtually absent. Layering between the reef and the Ultramafic series bronzitite is irregular and thin compared to the normal 400-m thickness exposed elsewhere in the complex. Bronzitites which contain the PGE's are podiform and often pegmatoidal. Norites adjacent to the bronzities also tend to be pegmatoidal and sulfide-bearing, but contain an average of only 75 ppb Pt. Microprobe analyses of bronzites in this zone show abruptly lower Mg/(Mg + Fe) of 0.77 compared to 0.83 in the uppermost bronzitite. The disrupted layering and thinning in the Coors area may have formed by slumping, scouring, or thermal erosion in the cumulate pile during crystallization. Coors mineralization may have developed through processes similar to those in the JM reef. However, occurrence of the coors mineralization with irregular layering and higher PGE ratios suggest an origin different than that in the reef.« less

  20. Seasonal Dynamics of Fish Assemblages on Breakwaters and Natural Rocky Reefs in a Temperate Estuary: Consistent Assemblage Differences Driven by Sub-Adults

    PubMed Central

    Fowler, Ashley M.; Booth, David J.

    2013-01-01

    Development of infrastructure around cities is rapidly increasing the amount of artificial substrate (termed artificial reef, ‘AR’) in coastal marine habitats. However, effects of ARs on marine communities remain unknown, because it is unclear whether ARs can maintain similar communities to natural reefs. We investigated whether well-established (> 30 years old) breakwaters could consistently approximate fish assemblages on interspersed rocky reefs in a temperate estuary over 6 consecutive seasons using regular visual surveys between June 2009 (winter) and November 2010 (spring). We examined whether assemblage differences between reef types were driven by differences in juvenile recruitment, or were related to differences in older life-stages. Assemblages on both reef types were dominated by juveniles (61% of individuals) and sub-adults (34% of individuals). Seasonal fluctuations in assemblage parameters (species richness, diversity, sub-adult abundance) were similar between reef types, and levels of species diversity and assemblage composition were generally comparable. However, abundance and species richness were consistently higher (1.9-7.6 and 1.3-2.6 times, respectively) on breakwaters. These assemblage differences could not be explained by differences in juvenile recruitment, with seasonal patterns of recruitment and juvenile species found to be similar between reef types. In contrast, abundances of sub-adults were consistently higher (1.1-12 times) at breakwaters, and assemblage differences appeared to be driven by this life-stage. Our results indicate that breakwaters in temperate estuaries are capable of supporting abundant and diverse fish assemblages with similar recruitment process to natural reefs. However, breakwaters may not approximate all aspects of natural assemblage structure, with differences maintained by a single-life stage in some cases. PMID:24086634

  1. Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing Coral Reef: Evidence from Molokai, Hawaii

    USGS Publications Warehouse

    Ogston, A.S.; Field, M.E.

    2010-01-01

    Accelerating sea-level rise associated with global climate change will affect sedimentary processes on coral reefs and other shoreline environments by increasing energy and sediment resuspension. On reefs, sedimentation is known to increase coral stress and bleaching as particles that settle on coral surfaces interfere with photosynthesis and feeding, and turbidity induced by suspended sediment reduces incident light levels. Using relationships developed from observations of wave orbital velocity, water-surface elevation, and suspended-sediment concentration on a fringing reef flat of Molokai, Hawaii, predictions of the average daily maximum in suspended-sediment concentration increase from ~11 mg/l to ~20 mg/l with 20 cm sea-level rise. The duration of time concentrations exceeds 10 mg/l increases from 9 to 37. An evaluation of the reduction of wave energy flux through breaking and frictional dissipation across the reef flat shows an increase of ~80 relative to the present will potentially reach the shoreline as sea level increases by 20 cm. Where the shoreline exists on low, flat terrain, the increased energy could cause significant erosion of the shoreline. Considering the sediment budget, the sediment flux is predicted to increase and removal of fine-grained sediment may be expedited on some fringing reefs, and sediment in storage on the inner reef could ultimately be reduced. However, increased shoreline erosion may add sediment and offset removal from the reef flat. The shifts in sediment availability and transport that will occur as result of a modest increase in sea level have wide application to fringing coral reefs elsewhere, as well as other shoreline environments. ?? 2010 the Coastal Education & Research Foundation (CERF).

  2. Tectonic control of Middle Devonian reef building in the Mechra ben Abbou (northern Rehamna, Morocco)Contrôle tectonique de l'édification des récifs Dévonien moyen de Mechra ben Abbou (Rehamna, Maroc)

    NASA Astrophysics Data System (ADS)

    El Kamel, Fouad; El Hassani, Ahmed; Mohsine, Assia; Remmal, Toufik

    2000-01-01

    In the carbonated platform of Upper Emsian to Givetian age, the reef edification is previous to, and contemporaneous with, a tilted block tectonic that has favoured the bioconstruction in its upper part. The tectonic expression is illustrated by several instability marks, such as tension faults, progressive unconformity and the resulting landslide, observed in both the reef development zone and the external platform.

  3. A robust operational model for predicting where tropical cyclone waves damage coral reefs

    NASA Astrophysics Data System (ADS)

    Puotinen, Marji; Maynard, Jeffrey A.; Beeden, Roger; Radford, Ben; Williams, Gareth J.

    2016-05-01

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the ‘damage zone’) enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia’s Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  4. A robust operational model for predicting where tropical cyclone waves damage coral reefs.

    PubMed

    Puotinen, Marji; Maynard, Jeffrey A; Beeden, Roger; Radford, Ben; Williams, Gareth J

    2016-05-17

    Tropical cyclone (TC) waves can severely damage coral reefs. Models that predict where to find such damage (the 'damage zone') enable reef managers to: 1) target management responses after major TCs in near-real time to promote recovery at severely damaged sites; and 2) identify spatial patterns in historic TC exposure to explain habitat condition trajectories. For damage models to meet these needs, they must be valid for TCs of varying intensity, circulation size and duration. Here, we map damage zones for 46 TCs that crossed Australia's Great Barrier Reef from 1985-2015 using three models - including one we develop which extends the capability of the others. We ground truth model performance with field data of wave damage from seven TCs of varying characteristics. The model we develop (4MW) out-performed the other models at capturing all incidences of known damage. The next best performing model (AHF) both under-predicted and over-predicted damage for TCs of various types. 4MW and AHF produce strikingly different spatial and temporal patterns of damage potential when used to reconstruct past TCs from 1985-2015. The 4MW model greatly enhances both of the main capabilities TC damage models provide to managers, and is useful wherever TCs and coral reefs co-occur.

  5. Polymorphic Microsatellite Loci for Endemic Mussismilia Corals (Anthozoa: Scleractinia) of the Southwest Atlantic Ocean.

    PubMed

    Zilberberg, Carla; Peluso, Lívia; Marques, Jessica A; Cunha, Haydée

    2014-01-01

    In the Southwest Atlantic, coral reefs are unique due to their growth form, low species richness, and a high level of endemic coral species, which include the most important reef builders. Although these reefs are the only true biogenic reefs in the South Atlantic Ocean, population genetic studies are still lacking. The purpose of this study was to develop a suite of microsatellite loci to help gain insights into the population diversity and connectivity of the endemic scleractinian coral with the largest distributional range along the Southwest Atlantic coast, Mussismilia hispida Fourteen microsatellite loci were characterized, and their degree of polymorphism was analyzed in 33 individuals. The number of alleles varied between 4 and 17 per loci, and H o varied between 0.156 and 0.928, with 2 loci showing significant heterozygote deficiency. Cross-amplification tests on the other 2 species of the genus (Mussismilia braziliensis and Mussismilia harttii) demonstrated that these markers are suitable for studies of population diversity and structure of all 3 species of Mussismilia Because they are the most important reef builders in the Southwest Atlantic, the developed microsatellite loci may be important tools for connectivity and conservation studies of these endemic corals. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Changes in Reef Fish Abundances Associated with the Introduction of Indo-Pacific Lionfish to the Florida Keys National Marine Sanctuary: a Twenty Year Time Series.

    NASA Astrophysics Data System (ADS)

    Hepner, M.; Muller-Karger, F. E.; Gittings, S.; Stallings, C.

    2016-02-01

    The Marine Biodiversity Observation Network (MBON) is a partnership between academic, private, and government researchers seeking to understand how marine biodiversity changes over long periods of time. In this context, a study of the multi-agency Reef Visual Census (RVC) data, collected over twenty years in the Florida Keys National Marine Sanctuary (FKNMS), was analyzed to measure possible changes in reef fish abundances as a result of possible predation by lionfish predation or due to related trophic cascading. Lionfish were first sighted in the FKNMS in January 2009, with abundances and frequency of occurrence increasing three to six fold throughout the sanctuary by 2011. Their high consumption rates of smaller fish, coupled with their rapidly increasing densities may be having a significant effect on coral reef fish communities. The study compares the natural variability in reef fish abundances from 1994-2009 in the FKNMS, 15 years prior to the first lionfish detected in the sanctuary, to changes in reef fish abundances 5 years after the invasion. The MBON project also aims to develop environmental DNA (eDNA) technology for conducting biodiversity assessments. eDNA is an emerging technique that seeks to quantify biodiversity in an area by obtaining genetic material directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material. All marine organisms shed DNA into their surrounding habitat, leaving a "fingerprint." Similar to forensic science, the DNA can be collected from seawater and analyzed to determine what species were recently present. The MBON team is evaluating whether eDNA can be used to adequately monitor reef fish biodiversity in coral reef ecosystems. We will compare species detected in our samples to the taxonomic composition of reef fish communities at the sample site as recorded over the past twenty years in the Reef Visual Census data.

  7. The oldest Quaternary ooids and young reefs in the eastern Indian Ocean, evidence from the Northwest Shelf of Australia, IODP Expedition 356.

    NASA Astrophysics Data System (ADS)

    Gallagher, S. J.; Reuning, L.; Himmler, T.; Henderiks, J.; De Vleeschouwer, D.; Groeneveld, J.; Fulthorpe, C.; Bogus, K.; Expedition 356 Scientists, I.

    2016-12-01

    Modern reefs are common in the Indian Ocean off the west coast of Australia (south of 15°S) where the warm Leeuwin Current extends their modern distribution to 29°S. Two key features that distinguish these tropical from non-tropical carbonates are the presence of coral reefs and ooids. Coral reefs are generally confined to seawater >18°C. Ooids form at temperatures >20°C with salinities >37‰. Modern ooids are forming in the hypersaline Shark Bay and are well known from late Quaternary strata in the region. Globally, marine ooids have been interpreted to be direct evidence of physiochemical precipitation from seawater during periods of elevated alkalinity and supersaturation. Their occurrence in the subsurface of the Northwest Shelf of Australia (NWS) may be used as sea surface temperature, palaeobathymetry and aridity indices. However, the longer-term history of reefs and ooids is not well constrained in the NWS. IODP expedition 356 cored a series of sections down dip from the Houtman-Abrolhos (29°S) and Barrow Island reefs (22°S) and up dip from the Rowley Shoals (18°S) to determine their age and origin. The stratigraphy of the cored sections was mapped using regional seismic data to constrain the age of reef onset. Coring also yielded several horizons of pre-late Quaternary ooids. Our analyses reveals that reefs from 22°S to 30°S are younger than 600,000 years old and that ooids are present in strata up to 750,000 years old. We suggest stronger Leeuwin Current activity related to an enhanced Indonesian Throughflow and increased aridity triggered tropical carbonate expansion on the Northwest Shelf during the Middle Pleistocene Transition. Knowledge of the timing and circumstances that triggered tropical reef development in the Indo-Pacific in the past is critical if we are to understand the resilience of modern reefs with future climate change.

  8. Catchment management and the Great Barrier Reef.

    PubMed

    Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H

    2001-01-01

    Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed.

  9. Bathymetric distribution of foraminifera in Jamaican reef environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.E.; Liddell, W.D.

    1985-02-01

    Recent foraminifera inhabiting Jamaican north-coast fringing reefs display variations in distributional patterns that are related to bathymetry and reef morphology. Sediment samples containing foraminifera were collected along a profile that traversed the back reef (depth 1-2 m), fore-reef terrace (3-15 m), fore-reef escarpment (15-27 m), fore-reef slope (30-55 m), and upper deep fore reef (70 m). Approximately 150 species distributed among 80 genera were identified from the samples. Preliminary analyses indicate that diversity values (S, H') are lowest on the fore-reef terrace (79, 3.0, respectively), increase similarly in back-reef and fore-reef escarpment and slope settings (93, 3.4), and are highestmore » on the deep fore reef (109, 3.7). Larger groupings (suborders) exhibit distinct bathymetric trends with miliolids occurring more commonly in back-reef (comprising 51% of the fauna) than in fore-reef (28%) zones, whereas agglutinated and planktonic species occur more commonly in deeper reef (> 15 m, 9% and 4%, respectively) than in shallower reef zones (< 15 m, 3%, and 0.5%, respectively). Among the more common species Amphistegina gibbosa (Rotolina) is much more abundant in fore-reef (3%) environments, and Sorites marginalis (Miliolina) occurs almost exclusively in the back reef, where it comprises 5.5% of the fauna. Q-mode cluster analysis, involving all species collected, enabled the delineation of back-reef, shallow fore-reef, and deeper fore-reef biofacies, also indicating the potential utility of foraminiferal distributions in detailed paleoenvironment interpretations of ancient reef settings.« less

  10. Assessment of human activities impact on groundwater quality discharging into a reef lagoon

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.

    2010-03-01

    The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.

  11. Predatory fish depletion and recovery potential on Caribbean reefs.

    PubMed

    Valdivia, Abel; Cox, Courtney Ellen; Bruno, John Francis

    2017-03-01

    The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions.

  12. Project Overview: A Reef Manager's Guide to Coral Bleaching ...

    EPA Pesticide Factsheets

    The purpose of this report is to provide the latest scientific knowledge and discuss available management options to assist local and regional managers in responding effectively to mass coral bleaching events. Background A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral bleaching; and (2) compile a tool kit of currently available strategies for adaptive management of coral reefs in a changing climate. The result is a compendium of current information, tools, and practical suggestions to aid managers in their efforts to protect reefs in a way that maximizes reef resilience in the face of continuing climate change. The Guide is a joint publication of the National Oceanic and Atmospheric Administration, the Great Barrier Reef Marine Park Authority, and The World Conservation Union, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. EPA’s Office of Research and Development was a major contributor to the Guide through authorship and participation in the final review and editing process for the entire report. A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral blea

  13. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Molokaʻi, Hawaiʻi

    PubMed Central

    Jokiel, Paul L.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1 (offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance. PMID:25653896

  14. Miocene reef carbonates of Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegrist, H.G. Jr.

    1988-01-01

    Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extend (>20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocene inmore » the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergency of narrow reef tracts as has been postulated by others for south Guam. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less

  15. Response of reef corals on a fringing reef flat to elevated suspended-sediment concentrations: Moloka‘i, Hawai‘i

    USGS Publications Warehouse

    Jokiel, Paul L.; Rodgers, Ku'ulei S.; Storlazzi, Curt D.; Field, Michael E.; Lager, Claire V.; Lager, Dan

    2014-01-01

    A long-term (10 month exposure) experiment on effects of suspended sediment on the mortality, growth, and recruitment of the reef corals Montipora capitata and Porites compressa was conducted on the shallow reef flat off south Molokaʻi, Hawaiʻi. Corals were grown on wire platforms with attached coral recruitment tiles along a suspended solid concentration (SSC) gradient that ranged from 37 mg l−1 (inshore) to 3 mg l−1(offshore). Natural coral reef development on the reef flat is limited to areas with SSCs less than 10 mg l−1 as previously suggested in the scientific literature. However, the experimental corals held at much higher levels of turbidity showed surprisingly good survivorship and growth. High SSCs encountered on the reef flat reduced coral recruitment by one to three orders of magnitude compared to other sites throughout Hawaiʻi. There was a significant correlation between the biomass of macroalgae attached to the wire growth platforms at the end of the experiment and percentage of the corals showing mortality. We conclude that lack of suitable hard substrate, macroalgal competition, and blockage of recruitment on available substratum are major factors accounting for the low natural coral coverage in areas of high turbidity. The direct impact of high turbidity on growth and mortality is of lesser importance.

  16. ELEVATED TEMPERATURE AND ULTRAVIOLET LIGHT AFFECT CONDITION OF REEF BUILDING CORALS

    EPA Science Inventory

    Abstract and Poster for the EPA Science Forum.

    Reef-building corals are declining throughout the world, even at locations with low human populations. Declines have been linked to global changes in land use and climate change. EPA's Office of Research and Development is inv...

  17. Impacts of Artificial Reefs on Surrounding Ecosystems

    NASA Astrophysics Data System (ADS)

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish aggregations associated with Senigallia reef based on the analysis of multibeam backscatter data in the water column is also explored. The settlement of the reefs and any terrain change are investigated over time providing a useful description of the local hydrodynamics and geological processes. All the artificial structures (made up by water-based concrete for Senigallia reef and mainly steel for St. Petersburg Beach reef) are identified and those showing substantial horizontal and/or vertical movements are analyzed in detail. Most artificial modules of Senigallia reef are not intact and scour signatures are well depicted around them, indicating reversals of the local current. This is due to both the wind pattern and to the quite close arrangement of the reef units that tend to deflect the bottom flow. As regards to the St. Petersburg Beach reef, all the man-made steel units are still in their upright position. Only a large barge shows a gradual collapse of its south side, and presents well-developed scouring at its east-northeast side, indicating dominant bottom flow from west-southwest to east-northeast. While an overall seafloor depth shallowing of about 0.30 m from down-current deposits was observed for Senigallia reef, an overall deepening of about 0.08 m due to scour was observed at the St. Petersburg Beach reef. Based on the backscatter data interpretation, surficial sediments are coarser in the vicinities of both artificial reefs than corresponding surrounding sediments. Scouring reveals this coarser layer underneath the prevalent mud sediment at Senigallia reef, and the predominant silt sediment at St. Petersburg Beach reef. In the ten years of Senigalia reef study, large-scale variations between clay and silt appear to be directly linked to large flood events that have occurred just prior to the change. As regards the water column investigation, acoustic backscatter from fish aggregations gives detailed information on their morphology and spatial distribution. In addition, relative fish biomass estimates can be extrapolated. Results suggest that most of the fish aggregations are generally associated with the artificial modules showing a tendency for mid- and bottom-water depth distribution than for the surface waters. This study contributes to understanding the changes in artificial reefs over time in relation to coastal processes. Moreover, the preliminary results concerning the water column backscatter data represents progress in fisheries acoustics research as a result of three-dimensional acoustics. They demonstrate the benefits of multibeam sonar as a tool to investigate and quantify size distribution and geometry of fish aggregations associated with shallow marine habitats.

  18. Long-term movement patterns of a coral reef predator

    NASA Astrophysics Data System (ADS)

    Heupel, M. R.; Simpfendorfer, C. A.

    2015-06-01

    Long-term monitoring is required to fully define periodicity and patterns in animal movement. This is particularly relevant for defining what factors are driving the presence, location, and movements of individuals. The long-term movement and space use patterns of grey reef sharks, Carcharhinus amblyrhynchos, were examined on a whole of reef scale in the southern Great Barrier Reef to define whether movement and activity space varied through time. Twenty-nine C. amblyrhynchos were tracked for over 2 years to define movement patterns. All individuals showed high residency within the study site, but also had high roaming indices. This indicated that individuals remained in the region and used all of the monitored habitat (i.e., the entire reef perimeter). Use of space was consistent through time with high reuse of areas most of the year. Therefore, individuals maintained discrete home ranges, but undertook broader movements around the reef at times. Mature males showed greatest variation in movement with larger activity spaces and movement into new regions during the mating season (August-September). Depth use patterns also differed, suggesting behaviour or resource requirements varied between sexes. Examination of the long-term, reef-scale movements of C. amblyrhynchos has revealed that reproductive activity may play a key role in space use and activity patterns. It was unclear whether mating behaviour or an increased need for food to sustain reproductive activity and development played a greater role in these patterns. Reef shark movement patterns are becoming more clearly defined, but research is still required to fully understand the biological drivers for the observed patterns.

  19. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean

    PubMed Central

    Pina-Amargós, Fabián; González-Sansón, Gaspar; Martín-Blanco, Félix

    2014-01-01

    Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope), inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed. PMID:24688853

  20. Last interglacial sea levels and regional tectonics from fossil coral reefs at the Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Bar, N.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.; Stein, M.

    2017-12-01

    Elevated fossil reef terraces along the northeast coast of the Gulf of Aqaba (GOA) illuminate the history of tectonic uplift and sea-level changes during the last interglacial period. The terraces comprise fringing reefs, some with clear reef structure that includes a reef flat and a shallow back lagoon accurately marking sea-levels. U-Th ages of precipitation of aragonitic corals and recrystallization of aragonite to calcite corals from three terraces are used to constrain the local sea-level pattern. Terrace R3 was probably formed during an earlier stage of MIS5e at 130-132 ka and recrystallized to calcite at 124±8 ka. Terrace R2, comprising a wide and developed reef flat, formed during a stable sea level of MIS5e at 129-121 ka and recrystallized to calcite at 104±6 ka. Terrace R1 formed during a short still-stand at 117 ka. All terraces formed when sea level was a few meters above the modern GOA level. The recrystallization age of Terrace R2 implies that at around 104±6 ka (MIS5c) sea level was close to its MIS5e elevation. The tectonic setting is superimposed by local faulting that caused small vertical displacements within the terraces. The elevation and ages of the reef flats indicate a slow average uplift, 0.12±0.05 m/kyr, similar to rates inferred for other reef terraces along GOA and the Red Sea. This implies an overall long-term slow tectonic uplift of the Arabian lithosphere during the late Quaternary.

  1. Evidence for protection of targeted reef fish on the largest marine reserve in the Caribbean.

    PubMed

    Pina-Amargós, Fabián; González-Sansón, Gaspar; Martín-Blanco, Félix; Valdivia, Abel

    2014-01-01

    Marine reserves can restore fish abundance and diversity in areas impacted by overfishing, but the effectiveness of reserves in developing countries where resources for enforcement are limited, have seldom been evaluated. Here we assess whether the establishment in 1996 of the largest marine reserve in the Caribbean, Gardens of the Queen in Cuba, has had a positive effect on the abundance of commercially valuable reef fish species in relation to neighboring unprotected areas. We surveyed 25 sites, including two reef habitats (reef crest and reef slope), inside and outside the marine reserve, on five different months, and over a one-and-a-half year period. Densities of the ten most frequent, highly targeted, and relatively large fish species showed a significant variability across the archipelago for both reef habitats that depended on the month of survey. These ten species showed a tendency towards higher abundance inside the reserve in both reef habitats for most months during the study. Average fish densities pooled by protection level, however, showed that five out of these ten species were at least two-fold significantly higher inside than outside the reserve at one or both reef habitats. Supporting evidence from previously published studies in the area indicates that habitat complexity and major benthic communities were similar inside and outside the reserve, while fishing pressure appeared to be homogeneous across the archipelago before reserve establishment. Although poaching may occur within the reserve, especially at the boundaries, effective protection from fishing was the most plausible explanation for the patterns observed.

  2. A new record of the late Pleistocene coral Pocillopora palmata from the Dry Tortugas, Florida reef tract, USA

    USGS Publications Warehouse

    Toth, Lauren T.; Kuffner, Ilsa B.; Cheng, Hai; Edwards, R. Lawrence

    2015-01-01

    Pocilloporid corals dominated shallow-water environments in the Caribbean during much of the Cenozoic; however, the regional diversity of this family declined over the last 15 My, culminating with the extinction of its final member, Pocillopora palmata, during the latest Pleistocene. Here we present a new record of P. palmata from Dry Tortugas National Park in the Florida Keys and infer its likely age. Although most existing records of P. palmata are from the sub-aerial reef deposits of MIS5e (∼ 125 ka), the presently submerged reef in the Dry Tortugas was too deep (> 18 m) during this period to support significant reef growth. In contrast, the maximum water depth during MIS5a (∼ 82 ka) was only ∼ 5.6 m, which would have been ideal for P. palmata. Diagenetic alteration prevented direct dating of the samples; however, the similarity between the depths of the Pleistocene bedrock in the Dry Tortugas and other reefs in the Florida Keys, which have been previously dated to MIS5a, support the conclusion that P. palmata likely grew in the Dry Tortugas during this period. Our study provides important new information on the history of P. palmata, but it also highlights the vital need for more comprehensive studies of the Quaternary history of Caribbean reef development. With modern reef degradation already driving yet another restructuring of Caribbean coral assemblages, insights from past extinctions may prove critical in determining the prognosis of Caribbean reefs in the future.

  3. Linking removal targets to the ecological effects of invaders: a predictive model and field test.

    PubMed

    Green, Stephanie J; Dulvy, Nicholas K; Brooks, Annabelle M L; Akins, John L; Cooper, Andrew B; Miller, Skylar; Côté, Isabelle M

    Species invasions have a range of negative effects on recipient ecosystems, and many occur at a scale and magnitude that preclude complete eradication. When complete extirpation is unlikely with available management resources, an effective strategy may be to suppress invasive populations below levels predicted to cause undesirable ecological change. We illustrated this approach by developing and testing targets for the control of invasive Indo-Pacific lionfish (Pterois volitans and P. miles) on Western Atlantic coral reefs. We first developed a size-structured simulation model of predation by lionfish on native fish communities, which we used to predict threshold densities of lionfish beyond which native fish biomass should decline. We then tested our predictions by experimentally manipulating lionfish densities above or below reef-specific thresholds, and monitoring the consequences for native fish populations on 24 Bahamian patch reefs over 18 months. We found that reducing lionfish below predicted threshold densities effectively protected native fish community biomass from predation-induced declines. Reductions in density of 25–92%, depending on the reef, were required to suppress lionfish below levels predicted to overconsume prey. On reefs where lionfish were kept below threshold densities, native prey fish biomass increased by 50–70%. Gains in small (<6 cm) size classes of native fishes translated into lagged increases in larger size classes over time. The biomass of larger individuals (>15 cm total length), including ecologically important grazers and economically important fisheries species, had increased by 10–65% by the end of the experiment. Crucially, similar gains in prey fish biomass were realized on reefs subjected to partial and full removal of lionfish, but partial removals took 30% less time to implement. By contrast, the biomass of small native fishes declined by >50% on all reefs with lionfish densities exceeding reef-specific thresholds. Large inter-reef variation in the biomass of prey fishes at the outset of the study, which influences the threshold density of lionfish, means that we could not identify a single rule of thumb for guiding control efforts. However, our model provides a method for setting reef-specific targets for population control using local monitoring data. Our work is the first to demonstrate that for ongoing invasions, suppressing invaders below densities that cause environmental harm can have a similar effect, in terms of protecting the native ecosystem on a local scale, to achieving complete eradication.

  4. Impact of mussel bioengineering on fine-grained sediment dynamics in a coastal lagoon: A numerical modelling investigation

    NASA Astrophysics Data System (ADS)

    Forsberg, Pernille L.; Lumborg, Ulrik; Bundgaard, Klavs; Ernstsen, Verner B.

    2017-12-01

    Rødsand lagoon in southeast Denmark is a non-tidal coastal lagoon. It is home to a wide range of marine flora and fauna and part of the Natura 2000 network. An increase in turbidity through elevated levels of suspended sediment concentration (SSC) within the lagoon may affect the ecosystem health due to reduced light penetration. Increasing SSC levels within Rødsand lagoon could be caused by increasing storm intensity or by a sediment spill from dredging activities west of the lagoon in relation to the planned construction of the Fehmarnbelt fixed link between Denmark and Germany. The aim of the study was to investigate the impact of a mussel reef on sediment import and SSC in a semi-enclosed lagoon through the development of a bioengineering modelling application that makes it possible to include the filtrating effect of mussels in a numerical model of the lagoonal system. The numerical implementation of an exterior mussel reef generated a reduction in the SSC in the vicinity of the reef, through the adjacent inlet and in the western part of the lagoon. The mussel reef reduced the sediment import to Rødsand lagoon by 13-22% and reduced the SSC within Rødsand lagoon by 5-9% depending on the filtration rate and the reef length. The results suggest that the implementation of a mussel reef has the potential to relieve the pressure of increasing turbidity levels within a semi-enclosed lagoonal system. However, further assessment and development of the bioengineering application and resulting ecosystem impacts are necessary prior to actual implementation.

  5. Experimental analysis of the effects of consumer exclusion on recruitment and succession of a coral reef system along a water quality gradient in the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Plass-Johnson, Jeremiah G.; Heiden, Jasmin P.; Abu, Nur; Lukman, Muhammad; Teichberg, Mirta

    2016-03-01

    The composition of coral reef benthic communities is strongly affected by variation in water quality and consumer abundance and composition. This is particularly evident in highly populated coastal regions where humans depend on coral reef resources and where terrestrial run-off can change the chemical composition of the water. We tested the effects of grazing pressure and ambient water conditions along an established eutrophication gradient on the recruitment and successional development of benthic communities of the Spermonde Archipelago, Indonesia, through caging experiments with settlement tiles. Within 1 month, benthic community composition of the closest reef to land, near the city of Makassar, was significantly different from other sites further offshore, driven primarily by differences in recruitment of invertebrates or turf algae. In contrast to other caging experiments, consumer exclusion had no effect after 3 months, suggesting that larger, mobile consumers had little effect on the benthic communities of these reefs at all sites. Despite conditions that usually favour macroalgal development, this group was rarely observed on recruitment tiles even after 4 months of consumer exclusion. Furthermore, tiles from both the caged and open treatments retained high proportions of open space indicating the possible role of small-sized or non-fish consumers that were not excluded from the experiment. These results indicate that, unlike many other studies, benthic consumers in the Spermonde Archipelago had little effect on the recruitment and early succession of the reef habitat and that unexamined biota such as mesograzers may be significant in degraded systems.

  6. Management strategies for coral reefs and people under global environmental change: 25 years of scientific research.

    PubMed

    Comte, Adrien; Pendleton, Linwood H

    2018-03-01

    Coral reef ecosystems and the people who depend on them are increasingly exposed to the adverse effects of global environmental change (GEC), including increases in sea-surface temperature and ocean acidification. Managers and decision-makers need a better understanding of the options available for action in the face of these changes. We refine a typology of actions developed by Gattuso et al. (2015) that could serve in prioritizing strategies to deal with the impacts of GEC on reefs and people. Using the typology we refined, we investigate the scientific effort devoted to four types of management strategies: mitigate, protect, repair, adapt that we tie to the components of the chain of impact they affect: ecological vulnerability or social vulnerability. A systematic literature review is used to investigate quantitatively how scientific effort over the past 25 years is responding to the challenge posed by GEC on coral reefs and to identify gaps in research. A growing literature has focused on these impacts and on management strategies to sustain coral reef social-ecological systems. We identify 767 peer reviewed articles published between 1990 and 2016 that address coral reef management in the context of GEC. The rate of publication of such studies has increased over the years, following the general trend in climate research. The literature focuses on protect strategies the most, followed by mitigate and adapt strategies, and finally repair strategies. Developed countries, particularly Australia and the United States, are over-represented as authors and locations of case studies across all types of management strategies. Authors affiliated in developed countries play a major role in investigating case studies across the globe. The majority of articles focus on only one of the four categories of actions. A gap analysis reveals three directions for future research: (1) more research is needed in South-East Asia and other developing countries where the impacts of GEC on coral reefs will be the greatest, (2) more scholarly effort should be devoted to understanding how adapt and repair strategies can deal with the impacts of GEC, and (3) the simultaneous assessment of multiple strategies is needed to understand trade-offs and synergies between actions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysismore » in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that results will be exportable throughout the basin. Ten petrophysically significant facies have been described in the northern reef trend, providing significantly more resolution than the standard 4-6 that are used most often in the basin (e.g. Gill, 1977). Initial petrophysical characterization (sonic velocity analysis under confining pressures) shows a clear pattern that is dependent upon facies and resulting pore architecture. Primary facies is a key factor in the ultimate diagenetic modification of the rock and the resulting pore architecture. Facies with good porosity and permeability clearly show relatively slow velocity values as would be expected, and low porosity and permeability samples exhibit fast sonic velocity values, again as expected. What is significant is that some facies that have high porosity values, either measured directly or from wireline logs, also have very fast sonic velocity values. This is due to these facies having a pore architecture characterized by more localized pores (vugs, molds or fractures) that are not in communication.« less

  8. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    PubMed

    Manikandan, B; Ravindran, J; Shrinivaasu, S; Marimuthu, N; Paramasivam, K

    2014-10-01

    Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.

  9. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.

  10. Using Knowledge of Chemical and Structural Defenses of Seaweeds to Develop a Standardized Measure of Herbivory in Tropical and Subtropical Habitats

    NASA Astrophysics Data System (ADS)

    Paul, V. J.

    2016-02-01

    Herbivory is an important process determining the structure and function of marine ecosystems, and this is especially true on coral reefs and in associated tropical and subtropical habitats where grazing by fishes can be intense. As reef degradation is occurring on a global scale, and overfishing can contribute to this problem, rates of herbivory can be an important indicator of reef function and resilience. Our goal was to develop a standardized herbivory assay that can be deployed globally to measure the impact of herbivorous fishes across multiple habitat types. Many tropical and subtropical seaweeds contain chemical and structural defenses that can protect them from herbivores, and this information was key to selecting a range of marine plants that are differentially palatable to herbivorous fishes for these assays. We present method development and experimental results from extensive deployment of these herbivory assays at Carrie Bow Cay, Belize.

  11. Oyster reef restoration in controlling coastal pollution around India: A viewpoint.

    PubMed

    Chakraborty, Parthasarathi

    2017-02-15

    Coastal waters receive large amounts of nutrients and pollutants from different point and nonpoint sources through bays and estuaries. Excess supply of nutrients in coastal waters may have detrimental effects, leading to hypoxia and anoxia from eutrophication. Reduction in concentrations of excess nutrients/pollutants in bays/estuarine system is must for healthy coastal ecosystem functioning. Conservations of bays, estuaries and coastal zones are must for sustainable development in any maritime country. Excellent ability of oyster in removing and controlling the concentrations of nutrients, pollutants, suspended particulate matters from bays and estuarine waters stimulated me to provide a viewpoint on oyster reef restoration in controlling nutrient/heavy metals fluxes and marine coastal pollution around India. Oyster reefs restoration may decrease nutrient and heavy metals fluxes in coastal waters and reduce the intensity of oxygen depletion in the coastal Arabian Sea (seasonal) and Bay of Bengal. However, extensive research is recommended to understand the impact of oyster reef restoration in controlling coastal pollution which is essential for sustainable development around India. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Global Estimate of the Number of Coral Reef Fishers.

    PubMed

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.

  13. A Global Estimate of the Number of Coral Reef Fishers

    PubMed Central

    Teh, Louise S. L.; Teh, Lydia C. L.; Sumaila, U. Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world’s small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale. PMID:23840327

  14. Long-term Changes in Habitat Provision by a Temperate Benthic Bioconstructor Threatened by Extreme Events

    NASA Astrophysics Data System (ADS)

    Cocito, S.; Lombardi, C.

    2016-02-01

    In a wide range of temperate environmental settings, long-lived, carbonate benthic organisms provide the framework of biogenic constructions, which create and maintain habitats and ecological niches for many species. These physical structures provide living space which progressively increases as framework grows. In temperate waters, bryozoans can have reef-constructing roles, and can substitute for corals in abundance and structure. As all bioconstructional species, they are seriously threaten by climate changes and its consequences such as thermal anomalies. The present study provides an assessment of changes in habitat provision by a reef-forming bryozoan dominating sub-tidal rocky reefs in the Ligurian Sea (NW Mediterranean) through 9-year time. Large ellipsoidal foliaceous colonies of Pentapora fascialis were monitored in 12 replicated stations (area: 1 m2) at two depths (11 and 22 m) from 1997 to 2005. Variation of living space (i.e. empty colony spaces) was computed by using colony width and high recorded annually. Impacts and long-term consequences of the 1999 and 2003 thermal anomalies were evaluated as changes in empty colony spaces. Over the 9 year monitoring, living space resulted more abundant at the deep stations (2947±617 cm3) than at the shallow ones (1652±494 cm3). Rapid decline in living space (90% and 94% reduction at 11 and 22 m stations, respectively) following the 1999 event was mainly due to the necrosis and reduction of the largest colonies. Differently, after the 2003 thermal anomaly the living space decline occurred gradually during the following 2 years. Interestingly, between the two events, colonies at the deep stations regained living space to pre-disturbance level (5671±1862 cm3) showing higher resilience to disturbance. Detecting effects of extreme events on bioconstructions and associated biota will contribute to the assessment of biodiversity changes and to predict future changes in threatened marine ecosystems.

  15. St. Petersburg Coastal and Marine Science Center coral reef research

    USGS Publications Warehouse

    Poore, Richard Z.; Kuffner, Ilsa B.; Kellogg, Christina A.

    2010-01-01

    The U.S. Geological Survey (USGS) Coral Reef Ecosystem STudies (CREST) Project specifically addresses priorities identified in the 'Facing tomorrow's challenges' U.S. Geological Survey science in the decade 2007-2017' document (USGS, 2007). Research includes a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, as well as likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major focus areas. We seek to increase the understanding of reef structure, ecological integrity, and responses to global change.

  16. Tropical fishes dominate temperate reef fish communities within western Japan.

    PubMed

    Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.

  17. Tropical Fishes Dominate Temperate Reef Fish Communities within Western Japan

    PubMed Central

    Nakamura, Yohei; Feary, David A.; Kanda, Masaru; Yamaoka, Kosaku

    2013-01-01

    Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources. PMID:24312528

  18. New Constraints from the Seychelles on the Timing and Magnitude of Peak Global Mean Sea Level during the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.; Edwards, R. L.

    2016-12-01

    Projecting the rate of future sea-level rise remains a primary challenge associated with continued climate change. However, uncertainties remain in our understanding of the rate of polar ice sheet retreat in warmer-than-present climates. To address this issue, we present a new sea level reconstruction from the tectonically stable granitic Seychelles based on Last Interglacial coral ages and elevations within their sedimentary and stratigraphic context, including estimates of paleo-water depth based on newly defined coralgal assemblages. The reef facies analyzed here has a narrow and shallow paleowater depth range (<2 m) providing increased control on the absolute position of sea level during this time period. Corrected for local glacial isostatic adjustment effects including the fingerprint associated with polar ice sheet mass loss, corals found in primary growth position within in situ coralgal reef framework confirm that global mean sea level (GMSL) was nearly 6 m above present early in the interglacial period. Each coral was dated in triplicate and screened for anomalous U-series geochemistry parameters. The combination of age-elevation data with the sedimentary micro and macro facies and stratigraphic analysis reveals a sea-level rise over 5-6 thousand years that is punctuated by repeated episodes of reef disturbance. These episodes are marked stratigraphically by coral rubble layers or extensive lateral encrustations of Millepora sp. that are infested with coral-dwelling barnacles. These disturbance layers may have been generated through internal reef processes and/or external agents, including coral disease, bleaching, predation, hurricanes, or sub-aerial exposure. In total, these new observations provide improved constraints on the timing, magnitude, and rates of sea-level rise during the Last Interglacial.

  19. Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs

    NASA Astrophysics Data System (ADS)

    Almany, G. R.; Connolly, S. R.; Heath, D. D.; Hogan, J. D.; Jones, G. P.; McCook, L. J.; Mills, M.; Pressey, R. L.; Williamson, D. H.

    2009-06-01

    Networks of no-take reserves are important for protecting coral reef biodiversity from climate change and other human impacts. Ensuring that reserve populations are connected to each other and non-reserve populations by larval dispersal allows for recovery from disturbance and is a key aspect of resilience. In general, connectivity between reserves should increase as the distance between them decreases. However, enhancing connectivity may often tradeoff against a network’s ability to representatively sample the system’s natural variability. This “representation” objective is typically measured in terms of species richness or diversity of habitats, but has other important elements (e.g., minimizing the risk that multiple reserves will be impacted by catastrophic events). Such representation objectives tend to be better achieved as reserves become more widely spaced. Thus, optimizing the location, size and spacing of reserves requires both an understanding of larval dispersal and explicit consideration of how well the network represents the broader system; indeed the lack of an integrated theory for optimizing tradeoffs between connectivity and representation objectives has inhibited the incorporation of connectivity into reserve selection algorithms. This article addresses these issues by (1) updating general recommendations for the location, size and spacing of reserves based on emerging data on larval dispersal in corals and reef fishes, and on considerations for maintaining genetic diversity; (2) using a spatial analysis of the Great Barrier Reef Marine Park to examine potential tradeoffs between connectivity and representation of biodiversity and (3) describing a framework for incorporating environmental fluctuations into the conceptualization of the tradeoff between connectivity and representation, and that expresses both in a common, demographically meaningful currency, thus making optimization possible.

  20. Ocean acidification causes bleaching and productivity loss in coral reef builders

    PubMed Central

    Anthony, K. R. N.; Kline, D. I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O.

    2008-01-01

    Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO2 levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO2 is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO2 induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO2 scenario led to a 30% increase in productivity in Acropora, whereas high CO2 lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO2 leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses. PMID:18988740

  1. Evaluating surface transport predictions of alternative ocean-atmosphere models using surface drifters in the Belizean Barrier Reef

    NASA Astrophysics Data System (ADS)

    Lindo-Atichati, D.; Curcic, M.; Paris, C. B.; Buston, P. M.

    2016-02-01

    Determining the appropriate resolution of circulation models often lacks statistical evaluation. Thus, the gains from implementing high-resolution versus less-costly low-resolution models are not always clear. Here we construct a hierarchy of ocean-atmosphere models operating at multiple-scales within a 1×1° domain of the Belizean Barrier Reef (BBR). We compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h), the resolution of the atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. We also investigate the effect of semi-diurnal tides on the local circulation. The model with highest resolution and with tidal forcing resolves higher number of looping trajectories and sub-mesoscale coherent structures. This may be a key factor in reducing discrepancy between simulated and observed velocities and dispersion. Simulations conducted with the highest resolution ocean-atmosphere model and tidal forcing highlight an intensification of the velocity fields throughout the summer and reveal several processes: mesoscale anticyclonic circulation around Glovers Reef, and recurrent sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to estimate the best surface transport prediction from different ocean-atmosphere models using metrics derived from high frequency drifters' data. Also, this study provides an evaluated high-resolution ocean-atmosphere model that resolves tides for the Belizean Barrier Reef.

  2. Trip report: pilot studies of factors linking watershed function and coastal ecosystem health in American Samoa

    USGS Publications Warehouse

    Atkinson, Carter T.; Medeiros, Arthur C.

    2010-01-01

    Coral reef resources in the territory of American Samoa face significant problems from overfishing, non-point source pollution, global warming, and continuing population growth and development. The islands are still relatively isolated relative to other parts of the Pacific and have managed to avoid some of the more devastating invasive species that have reached other archipelagoes. As a result, there are opportunities for collaborative and integrative research and monitoring programs to help restore and maintain biodiversity and functioning natural ecosystem in the archipelago. We found that the 'Ridge to Reef' paradigm already exists in American Samoa, with a high degree of interagency cooperation and efficient use of limited resources already taking place in the Territory. USGS may be able to make contributions as a partner organization in the Coral Reef Advisory Group (CRAG) through deployment of sediment monitoring instrumentation to supplement stream monitoring by the American Samoa Environmental Protection Agency, by providing high resolution vegetation and land-use maps of main islands, by providing additional support to the American Samoa Department of Marine and Wildlife Resources and the National Park Service for monitoring of invasive species, by working with members of CRAG to initiate sediment transport studies on Samoan reefs, and by developing new projects on the effects of bacterial contamination and pollutants on coral reef physiology and demography.

  3. Predatory fish depletion and recovery potential on Caribbean reefs

    PubMed Central

    Valdivia, Abel; Cox, Courtney Ellen; Bruno, John Francis

    2017-01-01

    The natural, prehuman abundance of most large predators is unknown because of the lack of historical data and a limited understanding of the natural factors that control their populations. Determining the supportable predator biomass at a given location (that is, the predator carrying capacity) would help managers to optimize protection and would provide site-specific recovery goals. We assess the relationship between predatory reef fish biomass and several anthropogenic and environmental variables at 39 reefs across the Caribbean to (i) estimate their roles determining local predator biomass and (ii) determine site-specific recovery potential if fishing was eliminated. We show that predatory reef fish biomass tends to be higher in marine reserves but is strongly negatively related to human activities, especially coastal development. However, human activities and natural factors, including reef complexity and prey abundance, explain more than 50% of the spatial variation in predator biomass. Comparing site-specific predator carrying capacities to field observations, we infer that current predatory reef fish biomass is 60 to 90% lower than the potential supportable biomass in most sites, even within most marine reserves. We also found that the scope for recovery varies among reefs by at least an order of magnitude. This suggests that we could underestimate unfished biomass at sites that provide ideal conditions for predators or greatly overestimate that of seemingly predator-depleted sites that may have never supported large predator populations because of suboptimal environmental conditions. PMID:28275730

  4. Reef Sound as an Orientation Cue for Shoreward Migration by Pueruli of the Rock Lobster, Jasus edwardsii

    PubMed Central

    Green, Bridget S.; Gardner, Caleb; Hesse, Jan; Stanley, Jenni A.

    2016-01-01

    The post-larval or puerulus stage of spiny, or rock, lobsters (Palinuridae) swim many kilometres from open oceans into coastal waters where they subsequently settle. The orientation cues used by the puerulus for this migration are unclear, but are presumed to be critical to finding a place to settle. Understanding this process may help explain the biological processes of dispersal and settlement, and be useful for developing realistic dispersal models. In this study, we examined the use of reef sound as an orientation cue by the puerulus stage of the southern rock lobster, Jasus edwardsii. Experiments were conducted using in situ binary choice chambers together with replayed recording of underwater reef sound. The experiment was conducted in a sandy lagoon under varying wind conditions. A significant proportion of puerulus (69%) swam towards the reef sound in calm wind conditions. However, in windy conditions (>25 m s-1) the orientation behaviour appeared to be less consistent with the inclusion of these results, reducing the overall proportion of pueruli that swam towards the reef sound (59.3%). These results resolve previous speculation that underwater reef sound is used as an orientation cue in the shoreward migration of the puerulus of spiny lobsters, and suggest that sea surface winds may moderate the ability of migrating pueruli to use this cue to locate coastal reef habitat to settle. Underwater sound may increase the chance of successful settlement and survival of this valuable species. PMID:27310676

  5. Reef Sound as an Orientation Cue for Shoreward Migration by Pueruli of the Rock Lobster, Jasus edwardsii.

    PubMed

    Hinojosa, Ivan A; Green, Bridget S; Gardner, Caleb; Hesse, Jan; Stanley, Jenni A; Jeffs, Andrew G

    2016-01-01

    The post-larval or puerulus stage of spiny, or rock, lobsters (Palinuridae) swim many kilometres from open oceans into coastal waters where they subsequently settle. The orientation cues used by the puerulus for this migration are unclear, but are presumed to be critical to finding a place to settle. Understanding this process may help explain the biological processes of dispersal and settlement, and be useful for developing realistic dispersal models. In this study, we examined the use of reef sound as an orientation cue by the puerulus stage of the southern rock lobster, Jasus edwardsii. Experiments were conducted using in situ binary choice chambers together with replayed recording of underwater reef sound. The experiment was conducted in a sandy lagoon under varying wind conditions. A significant proportion of puerulus (69%) swam towards the reef sound in calm wind conditions. However, in windy conditions (>25 m s-1) the orientation behaviour appeared to be less consistent with the inclusion of these results, reducing the overall proportion of pueruli that swam towards the reef sound (59.3%). These results resolve previous speculation that underwater reef sound is used as an orientation cue in the shoreward migration of the puerulus of spiny lobsters, and suggest that sea surface winds may moderate the ability of migrating pueruli to use this cue to locate coastal reef habitat to settle. Underwater sound may increase the chance of successful settlement and survival of this valuable species.

  6. Future coral reef habitat marginality: Temporal and spatial effects of climate change in the Pacific basin

    USGS Publications Warehouse

    Guinotte, J.M.; Buddemeier, R.W.; Kleypas, J.A.

    2003-01-01

    Marginal reef habitats are regarded as regions where coral reefs and coral communities reflect the effects of steady-state or long-term average environmental limitations. We used classifications based on this concept with predicted time-variant conditions of future climate to develop a scenario for the evolution of future marginality. Model results based on a conservative scenario of atmospheric CO2 increase were used to examine changes in sea surface temperature and aragonite saturation state over the Pacific Ocean basin until 2069. Results of the projections indicated that essentially all reef locations are likely to become marginal with respect to aragonite saturation state. Significant areas, including some with the highest biodiversity, are expected to experience high-temperature regimes that may be marginal, and additional areas will enter the borderline high temperature range that have experienced significant ENSO-related bleaching in the recent past. The positive effects of warming in areas that are presently marginal in terms of low temperature were limited. Conditions of the late 21st century do not lie outside the ranges in which present-day marginal reef systems occur. Adaptive and acclimative capabilities of organisms and communities will be critical in determining the future of coral reef ecosystems.

  7. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.

  8. Image Fusion Applied to Satellite Imagery for the Improved Mapping and Monitoring of Coral Reefs: a Proposal

    NASA Astrophysics Data System (ADS)

    Gholoum, M.; Bruce, D.; Hazeam, S. Al

    2012-07-01

    A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.

  9. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs.

    PubMed

    Ruppert, Jonathan L W; Vigliola, Laurent; Kulbicki, Michel; Labrosse, Pierre; Fortin, Marie-Josée; Meekan, Mark G

    2018-01-01

    Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts. © 2017 John Wiley & Sons Ltd.

  10. Clues to Coral Reef Ecosystem Health: Spectral Analysis Coupled with Radiative Transfer Modeling

    NASA Astrophysics Data System (ADS)

    Guild, L.; Ganapol, B.; Kramer, P.; Armstrong, R.; Gleason, A.; Torres, J.; Johnson, L.; Garfield, N.

    2003-12-01

    Coral reefs are among the world's most productive and biologically rich ecosystems and are some of the oldest ecosystems on Earth. Coralline structures protect coastlines from storms, maintain high diversity of marine life, and provide nurseries for marine species. Coral reefs play a role in carbon cycling through high rates of organic carbon metabolism and calcification. Coral reefs provide fisheries habitat that are the sole protein source for humans on remote islands. Reefs respond immediately to environmental change and therefore are considered "canaries" of the oceans. However, the world's reefs are in peril: they have shrunk 10-50% from their historical extent due to climate change and anthropogenic activity. An important contribution to coral reef research is improved spectral distinction of reef species' health where anthropogenic activity and climate change impacts are high. Relatively little is known concerning the spectral properties of coral or how coral structures reflect and transmit light. New insights into optical processes of corals under stressed conditions can lead to improved interpretation of airborne and satellite data and forecasting of immediate or long-term impacts of events such as bleaching and disease in coral. We are investigating the spatial and spectral resolution required to detect remotely changes in reef health by coupling spectral analysis of in situ spectra and airborne spectral data with a new radiative transfer model called CorMOD2. Challenges include light attenuation by the water column, atmospheric scattering, and scattering caused by the coral themselves that confound the spectral signal. In CorMOD2, input coral reflectance measurements produce modeled absorption through an inversion at each visible wavelength. The first model development phase of CorMOD2 imposes a scattering baseline that is constant regardless of coral condition, and further specifies that coral is optically thick. Evolution of CorMOD2 is towards a coral-specific radiative transfer model that includes coral biochemical concentrations, specific absorptivities of coral components, and transmission measurements from coral surfaces.

  11. Biology and ecology of the hydrocoral millepora on coral reefs.

    PubMed

    Lewis, John B

    2006-01-01

    Millepores are colonial polypoidal hydrozoans secreting an internal calcareous skeleton of an encrusting or upright form, often of considerable size. Defensive polyps protruding from the skeleton are numerous and highly toxic and for this reason millepores are popularly known as "stinging corals" or "fire corals." In shallow tropical seas millepore colonies are conspicuous on coral reefs and may be locally abundant and important reef-framework builders. The history of systematic research on the Milleporidae and the sister family Stylasteridae is rich and full with the works of early naturalists beginning with Linnaeus. Seventeen living millepore species are recognised. Marked phenotypic variation in form and structure of colonies is characteristic of the genus Millepora. The first published descriptions of the anatomy and histology of millepores were by H. N. Moseley in one of the Challenger Expedition reports. These original, detailed accounts by Moseley remain valid and, except for recent descriptions of the ultrastructure of the skeleton and skeletogenic tissues, have not needed much modification. Millepores occur worldwide on coral reefs at depths of between 1 and 40 m and their distribution on reefs is generally zoned in response to physical factors. Colonies may be abundant locally on coral reefs but usually comprise <10% of the overall surface cover. Growth rates of colonies are similar to the measured rates of branching and platelike scleractinian corals. Millepores are voracious zooplankton feeders and they obtain part of their nutrition from autotrophic sources, photosynthetic production by symbiotic zooxanthellae. Reproduction in millepores is characterised by alternation of generations with a well-developed polypoid stage that buds off planktonic medusae. Sexual reproduction is seasonal for known species and the medusae have a brief planktonic life. Asexual production is achieved by sympodial growth, the production of new skeleton and soft tissue along a growing edge or branch tip, and by the reattachment, regeneration and repair of damaged or broken colony fragments. The physiological and ecological responses of species of millepores are similar to those of the species of scleractinian corals over a broad range of natural and anthropogenic disturbances. Severe damage to colonies may occur during major storms. Delicately branching species are more susceptible than massive and bladed species. The ability of broken fragments to regenerate can ameliorate the extent of damage. Widespread bleaching and mortality of millepores has been reported during mass bleaching events that have affected many coral reefs. Millepores are often the first to recover after short-term bleaching events. Harmful effects of oil spills, chronic oil pollution and oil-spill detergents have been widely reported for millepores. Although the hydrozoan coenosarc, with its fiercely stinging zooids, does not appear to be an attractive substratum for attachment and settlement of epizooans, a number of sessile and errant forms commonly occur on millepores. These include barnacles, amphipods, tanaid and alpheid crustaceans, polychaetes and gastropods. Burrowing molluscs, polychaetes and crustacea also abound. Many of these species or their close relatives also occur on scleractinian corals. A variety of predators, grazers and fouling organisms occur on millepores. These include errant polychaetes, several coral-feeding fish and a gastropod mollusc. Various invasive green, red and brown algae are widespread, growing on dead branches of millepores and overgrowing live coral tissue. Various "band diseases" associated with microorganisms that appear to cause lesions on millepores and loss of tissue have been documented but are not of widespread occurrence. Infestations of endolithic algae and fungi growing within the skeletons have been reported in a number of millepore species.

  12. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.

    PubMed

    Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G

    2016-01-01

    After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes.

  13. Preliminary assessment of bioengineered fringing shoreline reefs in Grand Isle and Breton Sound, Louisiana

    USGS Publications Warehouse

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Restoration of three-dimensional shell habitats in coastal Louisiana presents a valuable and potentially self-sustaining approach to providing shoreline protection and critical nekton habitat and may contribute to water quality maintenance. The use of what has been called “living shorelines” is particularly promising because in addition to the hypothesized shoreline protection services, it is predicted that, if built and located in viable sites, these living shorelines may ultimately contribute to water quality maintenance through filtration of bivalves and may enhance nekton habitat. This approach, however, has not been tested extensively in different shallow water estuarine settings; understanding under what conditions a living shoreline must have to support a sustainable oyster population, and where these reefs may provide valuable shoreline protection, is key to ensuring that this approach provides an effective tool for coastal restoration. This project gathered preliminary data on the sustainability and shoreline stabilization of three large bioengineered fringing reefs located in Grand Isle, Lake Eloi, and Lake Fortuna, Louisiana. We collected preconstruction and postconstruction physiochemical and biological data by using a before-after-control-impact approach to evaluate the effectiveness of these living shoreline structures on reducing marsh erosion, enabling reef sustainability, and providing other ecosystem benefits. Although this project was originally designed to compare reef performance and impacts across three different locations over 2 years, delays in construction because of the Deepwater Horizon oil spill resulted in reefs being built from 12 to 18 months later than anticipated. As a result, monitoring postconstruction was severely limited. One reef, Grand Isle, was completed in March 2011 and monitored up to 18 months postcreation, whereas Lake Eloi and Lake Fortuna reefs were not completed until January 2012, and only 8 months of postconstruction data are available. Data for the latter two sites thus reflect only the 2012 spring/summer seasons, which were further impacted by a direct hit by Hurricane Isaac in August 2012, which resulted in shoreward movement of approximately 14 percent of the bioengineered structures at Lake Fortuna. Given the shortened monitoring timeframe and significant differences in construction schedules, we were not able to provide a full postconstruction assessment of the sites or a full comparison of site success based on local site characteristics. Because many of the impacts that were identified for monitoring reflect long-term processes, results and data presented should be interpreted cautiously. Sustainable oyster reefs require recruitment, growth, and survival at a rate that keeps pace with mortality and shell disarticulation. Although one site failed to recruit (establishment plus survival > 50 millimeters [mm]) over two spawning seasons, two sites only had 6 months postconstruction data available for assessment. Although there are good data on the requirements for oyster growth, there is limited explicit information on the site-specific water quality, hydrodynamic, and biological interaction effects that may determine successful reef establishment. Furthermore, interannual variability can significantly affect reef establishment, and our shortened timeframe of sampling (less than one spawning season for two of the reefs; two spawning seasons for one reef), combined with a lack of prerestoration monitoring data, limit our ability to draw any conclusions about long-term reef sustainability. Bioengineered reefs are thought to provide some benefits to shoreline stabilization through their structure by immediately attenuating wave energies and directly reducing erosion rates at shorelines sheltered by the reefs but also by increasing sediment deposition behind the reefs. Preliminary data indicate differences in reef impact by site; given the short timeframe of postconstruction data at two of the sites, and differences in reef placement between sites, however, it is difficult to draw any conclusions. Longer-term data collection and further analyses comparing reef placement; local wind, wave energy, sediment transport processes; and local bathymetry may help in parameterizing sites where fringing reefs may be most beneficial for shoreline protection. In addition to basic reef sustainability and shoreline stabilization, we measured both water quality parameters and nekton abundances around the newly created reefs and adjacent reference sites. Within the timeframe of monitoring, no effect of reefs on water quality was detected at any site. Given that water quality effects are hypothesized to result from the filtration activities of bivalves, and reefs either failed to recruit (settlement plus survival to > 50 mm) or successfully recruited but only had a couple months of growth prior to this report, it was not expected that an effect would be detectable in this timeframe. Nekton such as blue crab, gulf menhaden, and anchovies were found to be more abundant on the reefs; larger, more transient species were not found to be affected by reef presence. Future work examining smaller organisms and juveniles, including more explicit studies examining why and how these organisms preferentially use oyster reefs, would be useful in the design of other bioengineered reefs and help in understanding the role of the reefs in supporting the nekton community. It is clear from the initial work that ensuring correct site selection by better understanding what local site factors influence oyster populations is key to establishing successful living shoreline reefs. Ultimately, the success of the reefs in providing any ecosystem service relies on their ability to build a viable oyster population that is self-sustaining over the long term. As many of the ecosystem processes hypothesized to result from reefs develop over the long term (4–6 years), some level of monitoring over the next few years is highly recommended in order to accurately assess the long term viability of the reefs, their provision of ecosystem services, and to provide better guidance for future projects.

  14. [A review of the role and function of microbes in coral reef ecosystem].

    PubMed

    Zhou, Jin; Jin, Hui; Cai, Zhong-Hua

    2014-03-01

    Coral reef is consisted with several kinds of reef-associated organisms, including coral, fish, benthos, algae and microbes, which is an important marine ecosystem. Coral reef lives in the oligotrophic environment, has very highly primary productivity and net productivity, and is called "tropical rain forest in ocean". In corals, diverse microorganisms exert a significant influence on biogeochemical and ecological processes, including food webs, organism life cycles, and nutrient cycling. With the development of molecular biology, the role of microorganisms in a coral system is becoming more outstanding. In this article, we reviewed current understanding on 1) the onset of coral-bacterial associations; 2) the characteristics of microbes in coral (specificity, plasticity and co-evolution) ; 3) the role and signal regulation of microbes in the health and disease of coral; and 4) the response mechanism of microbes for global climatic change and consequent effects, such as temperature rise, ocean acidification and eutrophication. The aims of this article were to summarize the latest theories and achievements, clear the mechanism of microbial ecology in coral reefs and provide a theoretical reference for better protection and maintaining the coral's biodiversity.

  15. Florida Integrated Science Center (FISC) Coral Reef Research

    USGS Publications Warehouse

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  16. NeMO-Net & Fluid Lensing: The Neural Multi-Modal Observation & Training Network for Global Coral Reef Assessment Using Fluid Lensing Augmentation of NASA EOS Data

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.

  17. Ocean acidification and calcifying reef organisms: A mesocosm investigation

    USGS Publications Warehouse

    Jokiel, P.L.; Rodgers, K.S.; Kuffner, I.B.; Andersson, A.J.; Cox, E.F.; MacKenzie, F.T.

    2008-01-01

    A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ?? 130 ??atm (mean ?? sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year-1 while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year-1, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments. ?? 2008 Springer-Verlag.

  18. Ocean acidification and calcifying reef organisms: a mesocosm investigation

    NASA Astrophysics Data System (ADS)

    Jokiel, P. L.; Rodgers, K. S.; Kuffner, I. B.; Andersson, A. J.; Cox, E. F.; MacKenzie, F. T.

    2008-09-01

    A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide ( pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 μatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year-1 while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year-1, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.

  19. Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs.

    PubMed

    Kikuchi, Ruy K P; Leão, Zelinda M A N; Oliveira, Marília D M

    2010-05-01

    Coral reefs along the Eastern Brazilian coast extend for a distance of 800 km from 12 degrees to 18 degrees S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90's in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonics > 20cm per reef site) and of the coral recruits (colonies < 2cm per square meter), and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5 km from the coast, are in poorer condition than the reefs located more than 5 km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearshore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been most severely impacted by the effects of direct human activities such as cuthrophic waters associated with sewage pollution, higher sedimentation rates and water turbidity, inadequate use of the reefs and over exploitation of their resources. The implementation of a more effective coral reef monitoring program in Bahia is mandatory, in order to improve the strategies for protection and management efforts of the reefs.

  20. Eliciting stakeholder values for coral reef management tasks in the Guánica Bay watershed, Puerto Rico

    EPA Science Inventory

    The EPA is developing a valuation protocol for southwest Puerto Rico that will support the US Coral Reef Task Force’s (USCRTF) Partnership Initiative in the Guánica Bay/Rio Loco (GB/RL) Watershed. The GB/RL watershed is located in southwestern Puerto Rico and includes the urbaniz...

Top