Along-Track Reef Imaging System (ATRIS)
Brock, John; Zawada, Dave
2006-01-01
"Along-Track Reef Imaging System (ATRIS)" describes the U.S. Geological Survey's Along-Track Reef Imaging System, a boat-based sensor package for rapidly mapping shallow water benthic environments. ATRIS acquires high resolution, color digital images that are accurately geo-located in real-time.
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
This RPC (Rapid Prototyping Capability) experiment will demonstrate the use of VIIRS (Visible/Infrared Imager/Radiometer Suite) and LDCM (Landsat Data Continuity Mission) sensor data as significant input to the NOAA (National Oceanic and Atmospheric Administration) ICON/ CREWS (Integrated Coral Reef Observation System/Coral Reef Early Warning System). The project affects the Coastal Management Program Element of the Applied Sciences Program.
Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions
NASA Astrophysics Data System (ADS)
Mehra, Akshay; Maloof, Adam
2018-03-01
The earliest metazoans capable of biomineralization appeared during the late Ediacaran Period (635–541 Ma) in strata associated with shallow water microbial reefs. It has been suggested that some Ediacaran microbial reefs were dominated (and possibly built) by an abundant and globally distributed tubular organism known as Cloudina. If true, this interpretation implies that metazoan framework reef building—a complex behavior that is responsible for some of the largest bioconstructions and most diverse environments in modern oceans—emerged much earlier than previously thought. Here, we present 3D reconstructions of Cloudina populations, produced using an automated serial grinding and imaging system coupled with a recently developed neural network image classifier. Our reconstructions show that Cloudina aggregates are composed of transported remains while detailed field observations demonstrate that the studied reef outcrops contain only detrital Cloudina buildups, suggesting that Cloudina played a minor role in Ediacaran reef systems. These techniques have wide applicability to problems that require 3D reconstructions where physical separation is impossible and a lack of density contrast precludes tomographic imaging techniques.
Can we measure beauty? Computational evaluation of coral reef aesthetics
Guibert, Marine; Foerschner, Anja; Co, Tim; Calhoun, Sandi; George, Emma; Hatay, Mark; Dinsdale, Elizabeth; Sandin, Stuart A.; Smith, Jennifer E.; Vermeij, Mark J.A.; Felts, Ben; Dustan, Phillip; Salamon, Peter; Rohwer, Forest
2015-01-01
The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters, neglecting changes in their aesthetic appearance. Here we introduce a standardized computational approach to assess coral reef environments based on 109 visual features designed to evaluate the aesthetic appearance of art. The main feature groups include color intensity and diversity of the image, relative size, color, and distribution of discernable objects within the image, and texture. Specific coral reef aesthetic values combining all 109 features were calibrated against an established biogeochemical assessment (NCEAS) using machine learning algorithms. These values were generated for ∼2,100 random photographic images collected from 9 coral reef locations exposed to varying levels of anthropogenic influence across 2 ocean systems. Aesthetic values proved accurate predictors of the NCEAS scores (root mean square error < 5 for N ≥ 3) and significantly correlated to microbial abundance at each site. This shows that mathematical approaches designed to assess the aesthetic appearance of photographic images can be used as an inexpensive monitoring tool for coral reef ecosystems. It further suggests that human perception of aesthetics is not purely subjective but influenced by inherent reactions towards measurable visual cues. By quantifying aesthetic features of coral reef systems this method provides a cost efficient monitoring tool that targets one of the most important socioeconomic values of coral reefs directly tied to revenue for its local population. PMID:26587350
A Bird Eye View of Australia Heron Island
2016-09-29
Heron Island is located in Queensland, Australia, approximately 45 miles (72 kilometers) off the Australian mainland, to the northeast of Gladstone. Part of Australia's Great Barrier Reef, the island is an evergreen coral cay surrounded by Wistari coral reef. Although just 42 acres in size, the island is home to a large resort and the University of Queensland's Heron Island Research Station. The island is famous for diving and snorkeling and is a World Heritage-Listed Marine National Park. It is one of two locations on the Great Barrier Reef that are serving as bases for in-water validation activities for NASA's Coral Reef Airborne Laboratory (CORAL) mission, which is studying the condition and function of the Great Barrier Reef and selected reef systems worldwide using NASA's airborne Portable Remote Imaging Spectrometer (PRISM) instrument from an altitude of 28,000 feet (8,500 meters). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this image of Heron Island and its surroundings on December 22, 2001. The island appears at the left of the reef (Heron Reef) in the center of the image. Vegetation is red on the image. The image covers an area of 10.3 by 18.6 miles (16.5 by 30.0 kilometers), and is located at 23.5 degrees south, 151.9 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20900
Depth and coral cover drive the distribution of a coral macroborer across two reef systems.
Maher, Rebecca L; Johnston, Michelle A; Brandt, Marilyn E; Smith, Tyler B; Correa, Adrienne M S
2018-01-01
Bioerosion, the removal of calcium carbonate from coral frameworks by living organisms, influences a variety of reef features, from their topographic complexity to the net balance of carbonate budgets. Little is known, however, about how macroborers, which bore into reef substrates leaving traces greater than 0.1 mm diameter, are distributed across coral reefs, particularly reef systems with high (>50%) stony coral cover or at mesophotic depths (≥30 m). Here, we present an accurate and efficient method for quantifying macroborer densities from stony coral hosts via image analysis, using the bioeroding barnacle, Lithotrya dorsalis, and its host coral, Orbicella franksi, as a case study. We found that in 2014, L. dorsalis densities varied consistently with depth and host percent cover in two Atlantic reef systems: the Flower Garden Banks (FGB, northwest Gulf of Mexico) and the U.S. Virgin Islands (USVI). Although average barnacle density was nearly 4.5 times greater overall in the FGB than in the USVI, barnacle density decreased with depth in both reef regions. Barnacle density also scaled negatively with increasing coral cover in the study areas, suggesting that barnacle populations are not strictly space-limited in their distribution and settlement opportunities. Our findings suggest that depth and host coral cover, and potentially, local factors may strongly influence the abundance of macroborers, and thus the rate of CaCO3 loss, in a given reef system. Our image analysis method for quantifying macroborers can be standardized across historical and modern reef records to better understand how borers impact host growth and reef health.
Marcos, Ma Shiela Angeli; David, Laura; Peñaflor, Eileen; Ticzon, Victor; Soriano, Maricor
2008-10-01
We introduce an automated benthic counting system in application for rapid reef assessment that utilizes computer vision on subsurface underwater reef video. Video acquisition was executed by lowering a submersible bullet-type camera from a motor boat while moving across the reef area. A GPS and echo sounder were linked to the video recorder to record bathymetry and location points. Analysis of living and non-living components was implemented through image color and texture feature extraction from the reef video frames and classification via Linear Discriminant Analysis. Compared to common rapid reef assessment protocols, our system can perform fine scale data acquisition and processing in one day. Reef video was acquired in Ngedarrak Reef, Koror, Republic of Palau. Overall success performance ranges from 60% to 77% for depths of 1 to 3 m. The development of an automated rapid reef classification system is most promising for reef studies that need fast and frequent data acquisition of percent cover of living and nonliving components.
2008-05-02
ISS016-E-019394 (30 Dec. 2007) --- Al Wadj Bank, Saudi Arabia is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Saudi Arabia boasts the most coral reefs of any Middle Eastern country, as it includes coastline along both the Red Sea and Gulf of Arabia. This high resolution image depicts a portion of the Al Wadj Bank, located along the northern Red Sea coast. Despite the relatively high salinity of Red Sea water (compared to other oceans), approximately 260 species of coral are found here, according to scientists. Large tracts of the Saudi Arabian coastline are undeveloped, and reefs in these areas are in generally good ecological health. However, reefs located near large urban centers like Jeddeh have suffered degradation due to land reclamation, pollution, and increased terrigeneous sediment input. The Al Wadj Bank includes a healthy and diverse reef system, extensive seagrass beds, and perhaps the largest population of dugong -- a marine mammal similar to the North American manatee -- in the eastern Red Sea. The portion of the Bank in this image illustrates the complex form and topography of the reef system. Several emergent islands (tan) - surrounded primarily by dark green seagrass - are visible, the largest located at top left. Only the islands are above the waterline -- over the reef structures the water color ranges from light teal (shallow) to turquoise (increasing depth). The southern edge of the reef is well indicated by the deep, dark blue water of the Red Sea at image top.
NASA Astrophysics Data System (ADS)
Gholoum, M.; Bruce, D.; Hazeam, S. Al
2012-07-01
A coral reef ecosystem, one of the most complex marine environmental systems on the planet, is defined as biologically diverse and immense. It plays an important role in maintaining a vast biological diversity for future generations and functions as an essential spawning, nursery, breeding and feeding ground for many kinds of marine species. In addition, coral reef ecosystems provide valuable benefits such as fisheries, ecological goods and services and recreational activities to many communities. However, this valuable resource is highly threatened by a number of environmental changes and anthropogenic impacts that can lead to reduced coral growth and production, mass coral mortality and loss of coral diversity. With the growth of these threats on coral reef ecosystems, there is a strong management need for mapping and monitoring of coral reef ecosystems. Remote sensing technology can be a valuable tool for mapping and monitoring of these ecosystems. However, the diversity and complexity of coral reef ecosystems, the resolution capabilities of satellite sensors and the low reflectivity of shallow water increases the difficulties to identify and classify its features. This paper reviews the methods used in mapping and monitoring coral reef ecosystems. In addition, this paper proposes improved methods for mapping and monitoring coral reef ecosystems based on image fusion techniques. This image fusion techniques will be applied to satellite images exhibiting high spatial and low to medium spectral resolution with images exhibiting low spatial and high spectral resolution. Furthermore, a new method will be developed to fuse hyperspectral imagery with multispectral imagery. The fused image will have a large number of spectral bands and it will have all pairs of corresponding spatial objects. This will potentially help to accurately classify the image data. Accuracy assessment use ground truth will be performed for the selected methods to determine the quality of the information derived from image classification. The research will be applied to the Kuwait's southern coral reefs: Kubbar and Um Al-Maradim.
Unmixing-Based Denoising as a Pre-Processing Step for Coral Reef Analysis
NASA Astrophysics Data System (ADS)
Cerra, D.; Traganos, D.; Gege, P.; Reinartz, P.
2017-05-01
Coral reefs, among the world's most biodiverse and productive submerged habitats, have faced several mass bleaching events due to climate change during the past 35 years. In the course of this century, global warming and ocean acidification are expected to cause corals to become increasingly rare on reef systems. This will result in a sharp decrease in the biodiversity of reef communities and carbonate reef structures. Coral reefs may be mapped, characterized and monitored through remote sensing. Hyperspectral images in particular excel in being used in coral monitoring, being characterized by very rich spectral information, which results in a strong discrimination power to characterize a target of interest, and separate healthy corals from bleached ones. Being submerged habitats, coral reef systems are difficult to analyse in airborne or satellite images, as relevant information is conveyed in bands in the blue range which exhibit lower signal-to-noise ratio (SNR) with respect to other spectral ranges; furthermore, water is absorbing most of the incident solar radiation, further decreasing the SNR. Derivative features, which are important in coral analysis, result greatly affected by the resulting noise present in relevant spectral bands, justifying the need of new denoising techniques able to keep local spatial and spectral features. In this paper, Unmixing-based Denoising (UBD) is used to enable analysis of a hyperspectral image acquired over a coral reef system in the Red Sea based on derivative features. UBD reconstructs pixelwise a dataset with reduced noise effects, by forcing each spectrum to a linear combination of other reference spectra, exploiting the high dimensionality of hyperspectral datasets. Results show clear enhancements with respect to traditional denoising methods based on spatial and spectral smoothing, facilitating the coral detection task.
Lidz, B.H.; Brock, J.C.; Nagle, D.B.
2008-01-01
A recently developed remote-sensing instrument acquires high-quality digital photographs in shallow-marine settings within water depths of 15 m. The technology, known as the Along-Track Reef-Imaging System, provides remarkably clear, georeferenced imagery that allows visual interpretation of benthic class (substrates, organisms) for mapping coral reef habitats, as intended. Unforeseen, however, are functions new to the initial technologic purpose: interpr??table evidence for real-time biogeologic processes and for perception of scaled-up skeletal self-similarity of scleractinian microstructure. Florida reef sea trials lacked the grid structure required to map contiguous habitat and submarine topography. Thus, only general observations could be made relative to times and sites of imagery. Degradation of corals was nearly universal; absence of reef fish was profound. However, ???1% of more than 23,600 sea-trial images examined provided visual evidence for local environs and processes. Clarity in many images was so exceptional that small tracks left by organisms traversing fine-grained carbonate sand were visible. Other images revealed a compelling sense, not yet fully understood, of the microscopic wall structure characteristic of scleractinian corals. Conclusions drawn from classifiable images are that demersal marine animals, where imaged, are oblivious to the equipment and that the technology has strong capabilities beyond mapping habitat. Imagery acquired along predetermined transects that cross a variety of geomorphic features within depth limits will ( 1) facilitate construction of accurate contour maps of habitat and bathymetry without need for ground-truthing, (2) contain a strong geologic component of interpreted real-time processes as they relate to imaged topography and regional geomorphology, and (3) allow cost-effective monitoring of regional- and local-scale changes in an ecosystem by use of existing-image global-positioning system coordinates to re-image areas. Details revealed in the modern setting have taphonomic implications for what is often found in the geologic record.
2004-09-20
ISS009-E-23808 (20 September 2004) --- A fringing coral reef in the Red Sea is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). The Sudanese coast of the Red Sea is a well known destination for divers due to clear water and abundance of coral reefs (or shiaab in Arabic). According to NASA scientists studying the ISS imagery, reefs are formed primarily from precipitation of calcium carbonate by corals; massive reef structures are built over thousands of years of succeeding generations of coral. In the Red Sea, fringing reefs form on shallow shelves of less than 50 meters depth along the coastline. This photograph illustrates the intricate morphology of the reef system located along the coast between Port Sudan to the northwest and the Tokar River delta to the southeast. Close to shore, fringing reefs border the coastline. Farther offshore grows a larger, more complicated barrier reef structure. Different parts of the reef structure show up as variable shades of light blue. Deeper water channels (darker blue) define the boundaries for individual reefs within the greater barrier reef system. Such a complex pattern of reefs may translate into greater ecosystem diversity through a wide variety of local reef environments.
NASA Astrophysics Data System (ADS)
Chirayath, V.
2014-12-01
Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.
NASA Technical Reports Server (NTRS)
Estep, L.; Spruce, J.; Blonski, S.; Moore, R.
2008-01-01
Coral reefs are some of the most biologically rich and economically important ecosystems on Earth. Coral reefs are Earth's largest biological structures and have taken thousands of years to form. Coral reefs not only provide important habitat for many marine animals and plants, but they also provide humanity with food, jobs, chemicals, protection against storms, and life-saving pharmaceuticals. Severe bleaching events have occurred that have dramatic long-term ecological impacts to corals, including loss of reef-building corals, changes in benthic habitat, and, in some cases, changes in larval fish populations (Holden and Ledrew, 1998). Some researchers suggest that 10 percent of Earth s coral reefs have already been destroyed and that another 60 percent are in danger. Scientists have proposed that as much as 95 percent of Jamaica's reefs are dying or dead. This poster reports on a Rapid Prototyping Capability (RPC) experiment done to determine whether future NASA sensors - the Visible/Infrared Imager/Radiometer Suite (VIIRS) and Landsat Data Continuity Mission (LDCM) - could generate key data products for the Integrated Coral Reef Observation Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST) operated by the National Oceanic and Atmospheric Administration (NOAA).
NASA Astrophysics Data System (ADS)
Perez, D.; Phinn, S. R.; Roelfsema, C. M.; Shaw, E. C.; Johnston, L.; Iguel, J.; Camacho, R.
2017-12-01
Primary production and calcification are important to measure and monitor over time, because of their fundamental roles in the carbon cycling and accretion of habitat structure for reef ecosystems. However, monitoring biogeochemical processes in coastal environments has been difficult due to complications in resolving differences in water optical properties from biological productivity and other sources (sediment, dissolved organics, etc.). This complicates application of algorithms developed for satellite image data from open ocean conditions, and requires alternative approaches. This project applied a cross-disciplinary approach, using established methods for monitoring productivity in terrestrial environments to coral reef systems. Availability of regularly acquired high spatial (< 5m pixels), multispectral satellite imagery has improved mapping and monitoring capabilities for shallow, marine environments such as seagrass and coral reefs. There is potential to further develop optical models for remote sensing applications to estimate and monitor reef system processes, such as primary productivity and calcification. This project collected field measurements of spectral absorptance and primary productivity and calcification rates for two reef systems: Heron Reef, southern Great Barrier Reef and Saipan Lagoon, Commonwealth of the Northern Mariana Islands. Field data were used to parameterize a light-use efficiency (LUE) model, estimating productivity from absorbed photosynthetically active radiation. The LUE model has been successfully applied in terrestrial environments for the past 40 years, and could potentially be used in shallow, marine environments. The model was used in combination with a map of benthic community composition produced from objective based image analysis of WorldView 2 imagery. Light-use efficiency was measured for functional groups: coral, algae, seagrass, and sediment. However, LUE was overestimated for sediment, which led to overestimation of productivity for the mapped area. This was due to differences in spatial and temporal resolution of field data used in the model. The limitations and application of the LUE model to coral reef environments will be presented.
Earth Observations taken by the Expedition 10 crew
2004-12-03
ISS010-E-09287 (3 December 2004) --- Howland Island, Oceania is featured in this digital image photographed by an Expedition 10 crewmember on the International Space Station (ISS). Howland Island is a United States possession located in the north Pacific between Australia and the Hawaiian Islands. Prior to 1890, organic nitrate (guano) was mined from the island by both the United States and the British. This tiny island is currently part of the US National Wildlife Refuge system, and provides nesting areas and forage for a variety of birds and marine wildlife. The island is composed of coral fragments and is surrounded by an active fringing reef. White breakers encircling the island indicate the position of the reef. Astronauts aboard the Space Station photograph numerous reefs around the world as part of a global mapping and monitoring program. High-resolution images such as this one are used to update geographic maps of reefs and islands, assess the health of reef ecosystems, and calculate bathymetry of the surrounding ocean bottom.
NASA Astrophysics Data System (ADS)
Chen, Jianyu; Mao, Zhihua; He, Xianqiang
2009-01-01
Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.
Possible return of Acropora cervicornis at Pulaski Shoal, Dry Tortugas National Park, Florida
Lidz, Barbara H.; Zawada, David G.
2013-01-01
Seabed classification is essential to assessing environmental associations and physical status in coral reef ecosystems. At Pulaski Shoal in Dry Tortugas National Park, Florida, nearly continuous underwater-image coverage was acquired in 15.5 hours in 2009 along 70.2 km of transect lines spanning ~0.2 km2. The Along-Track Reef-Imaging System (ATRIS), a boat-based, high-speed, digital imaging system, was used. ATRIS-derived benthic classes were merged with a QuickBird satellite image to create a habitat map that defines areas of senile coral reef, carbonate sand, seagrasses, and coral rubble. This atypical approach of starting with extensive, high-resolution in situ imagery and extrapolating between transect lines using satellite imagery leverages the strengths of each remote-sensing modality. The ATRIS images also captured the spatial distribution of two species once common on now-degraded Florida-Caribbean coral reefs: the stony staghorn coral Acropora cervicornis, a designated threatened species, and the long-spined urchin Diadema antillarum. This article documents the utility of ATRIS imagery for quantifying number and estimating age of A. cervicornis colonies (n = 400, age range, 5–11 y) since the severe hypothermic die-off in the Dry Tortugas in 1976–77. This study is also the first to document the largest number of new colonies of A. cervicornis tabulated in an area of the park where coral-monitoring stations maintained by the Fish and Wildlife Research Institute have not been established. The elevated numbers provide an updated baseline for tracking revival of this species at Pulaski Shoal.
Brock, J.C.; Wright, C.W.; Kuffner, I.B.; Hernandez, R.; Thompson, P.
2006-01-01
In this study we examined the ability of the NASA Experimental Advanced Airborne Research Lidar (EAARL) to discriminate cluster zones of massive stony coral colonies on northern Florida reef tract (NFRT) patch reefs based on their topographic complexity (rugosity). Spatially dense EAARL laser submarine topographic soundings acquired in August 2002 were used to create a 1-m resolution digital rugosity map for adjacent NFRT study areas characterized by patch reefs (Region A) and diverse substratums (Region B). In both regions, sites with lidar-sensed rugosities above 1.2 were imaged by an along-track underwater videography system that incorporated the acquisition of instantaneous GPS positions. Subsequent manual interpretation of videotape segments was performed to identify substratum types that caused elevated lidar-sensed rugosity. Our study determined that massive coral colony formation, modified by subsequent physical and biological processes that breakdown patch reef framework, was the primary source of topographic complexity sensed by the EAARL in the NFRT. Sites recognized by lidar scanning to be topographically complex preferentially occurred around the margins of patch reefs, constituted a minor fraction of the reef system, and usually reflected the presence of massive coral colonies in cluster zones, or their derivatives created by mortality, bioerosion, and physical breakdown.
Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation
NASA Astrophysics Data System (ADS)
Sasano, Masahiko; Imasato, Motonobu; Yamano, Hiroya; Oguma, Hiroyuki
2016-06-01
A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.
NASA Astrophysics Data System (ADS)
Levy, J.; Franklin, E. C.; Hunter, C. L.
2016-12-01
Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef scientists a new perspective on meso-scale coral reef dynamics. We envision that similar low altitude aerial surveys will be incorporated as a standard component of shallow-water reef studies, especially on reefs too dangerous or remote for in situ surveys.
Assessing the spatial distribution of coral bleaching using small unmanned aerial systems
NASA Astrophysics Data System (ADS)
Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.
2018-06-01
Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.
Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function
NASA Astrophysics Data System (ADS)
Hochberg, E. J.
2016-02-01
Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.
Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function
NASA Astrophysics Data System (ADS)
Hochberg, E. J.
2015-12-01
Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.
Decision Support Tool Evaluation Report for Coral Reef Early Warning System (CREWS) Version 7.0
NASA Technical Reports Server (NTRS)
D'Sa, Eurico; Hall, Callie; Zanoni, Vicki; Holland, Donald; Blonski, Slawomir; Pagnutti, Mary; Spruce, Joseph P.
2004-01-01
The Coral Reef Early Warning System (CREWS) is operated by NOAA's Office of Oceanic and Atmospheric Research as part of its Coral Reef Watch program in response to the deteriorating global state of coral reef and related benthic ecosystems. In addition to sea surface temperatures (SSTs), the two most important parameters used by the CREWS network in generating coral reef bleaching alerts are 1) wind speed and direction and 2) photosynthetically available radiation (PAR). NASA remote sensing products that can enhance CREWS in these areas include SST and PAR products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and wind data from the Quick Scatterometer (QuikSCAT). CREWS researchers are also interested in chlorophyll, chromophoric dissolved organic matter (CDOM), and salinity. Chlorophyll and CDOM are directly available as NASA products, while rainfall (an available NASA product) can be used as a proxy for salinity. Other potential NASA inputs include surface reflectance products from MODIS, the Advanced Spaceborne Thermal Emission and Reflection Radiometer, and Landsat. This report also identifies NASA-supported ocean circulation models and products from future satellite missions that might enchance the CREWS DST.
NASA Astrophysics Data System (ADS)
Suomalainen, Juha; Mucher, Sander; Kooistra, Lammert; Meesters, Erik
2014-05-01
The Dutch Caribbean island of Bonaire is one of the world's top diving holiday destinations much due to its clear waters and healthy coral reefs. The coral reefs surround the western side of the island as an approximately 50-150m wide band. However, the general consensus is that the extent and biodiversity of the Bonarian coral reef is constantly decreasing due to anthropogenic pressures. The last extensive study of the health of the reef ecosystem was performed in 1985 by Van Duyl creating an underwater atlas. In order to update this atlas of Bonaire's coral reefs, in October 2013, a hyperspectral mapping campaign was performed using the WUR Hyperspectral Mapping System (HYMSY). A dive validation campaign has been planned for early 2014. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing it to be mounted on varying platforms. In Bonaire the system was flown on two platforms. (1) on a Cessna airplane to provide a coverage for whole west side of the island with a hyperspectral map in 2-4m resolution and a RGB orthomosaic in 15cm resolution, and (2) on a kite pulled by boat and car to provide a subset coverage in higher resolution. In this presentation we will present our mapping technique and first results including a preliminary underwater atlas and conclusions on reef development.
Lagoons and Reefs of New Caledonia
2011-04-20
NASA image acquired May 10, 2001 In July 2008, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) added 27 new areas to its list of World Heritage sites. One of those areas included the lagoons of New Caledonia. Some 1,200 kilometers (750 miles) east of Australia, this French-governed archipelago contains the world’s third-largest coral reef structure. The coral reefs enclose the waters near the islands in shallow lagoons of impressive biodiversity. On May 10, 2001, the Enhanced Thematic Mapper Plus on NASA’s Landsat 7 satellite captured this image of Île Balabio, off the northern tip of Grande Terra, New Caledonia’s main island. In this natural-color image, the islands appear in shades of green and brown—mixtures of vegetation and bare ground. The surrounding waters range in color from pale aquamarine to deep blue, and the color differences result from varying depths. Over coral reef ridges and sand bars, the water is shallowest and palest in color. Darker shades of blue characterize deeper waters. Reef-enclosed, shallow waters surround Île Balabio, and a larger, semi-enclosed lagoon appears immediately east of that island. Immediately north of Grande Terra, unenclosed, deeper waters predominate. The coral reefs around New Caledonia support an unusual diversity of species, including large numbers of predators and big fish, turtles, and the world’s third-largest dugong population. NASA image created by Jesse Allen, using Landsat data provided by the United States Geological Survey. Caption by Michon Scott. Instrument: Landsat 7 - ETM+ Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
A Decision Support System for Ecosystem-Based Management of Tropical Coral Reef Environments
NASA Astrophysics Data System (ADS)
Muller-Karger, F. E.; Eakin, C.; Guild, L. S.; Nemani, R. R.; Hu, C.; Lynds, S. E.; Li, J.; Vega-Rodriguez, M.; Coral Reef Watch Decision Support System Team
2010-12-01
We review a new collaborative program established between the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to augment the NOAA Coral Reef Watch decision-support system. NOAA has developed a Decision Support System (DSS) under the Coral Reef Watch (CRW) program to forecast environmental stress in coral reef ecosystems around the world. This DSS uses models and 50 km Advanced Very High Resolution Radiometer (AVHRR) to generate “HotSpot” and Degree Heating Week coral bleaching indices. These are used by scientists and resource managers around the world. These users, including National Marine Sanctuary managers, have expressed the need for higher spatial resolution tools to understand local issues. The project will develop a series of coral bleaching products at higher spatial resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR data. We will generate and validate products at 1 km resolution for the Caribbean Sea and Gulf of Mexico, and test global assessments at 4 and 50 km. The project will also incorporate the Global Coral Reef Millennium Map, a 30-m resolution thematic classification of coral reefs developed by the NASA Landsat-7 Science Team, into the CRW. The Millennium Maps help understand the geomorphology of individual reefs around the world. The products will be available through the NOAA CRW and UNEP-WCMC web portals. The products will help users formulate policy options and management decisions. The augmented DSS has a global scope, yet it addresses the needs of local resource managers. The work complements efforts to map and monitor coral reef communities in the U.S. territories by NOAA, NASA, and the USGS, and is a contribution to international efforts in ecological forecasting of coral reefs under changing environments, coral reef research, resource management, and conservation. Acknowledgement: Funding is provided by the NASA Ecological Forecasting application area and by NOAA NESDIS.
Using virtual reality to estimate aesthetic values of coral reefs
Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.
2018-01-01
Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676
Using virtual reality to estimate aesthetic values of coral reefs.
Vercelloni, Julie; Clifford, Sam; Caley, M Julian; Pearse, Alan R; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E
2018-04-01
Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems.
Australia's Great Barrier Reef
NASA Technical Reports Server (NTRS)
2001-01-01
The Great Barrier Reef extends for 2,000 kilometers along the northeastern coast of Australia. It is not a single reef, but a vast maze of reefs, passages, and coral cays (islands that are part of the reef). This nadir true-color image was acquired by the MISR instrument on August 26, 2000 (Terra orbit 3679), and shows part of the southern portion of the reef adjacent to the central Queensland coast. The width of the MISR swath is approximately 380 kilometers, with the reef clearly visible up to approximately 200 kilometers from the coast. It may be difficult to see the myriad details in the browse image, but if you retrieve the higher resolution version, a zoomed display reveals the spectacular structure of the many reefs.The more northerly coastal area in this image shows the vast extent of sugar cane cultivation, this being the largest sugar producing area in Australia, centered on the city of Mackay. Other industries in the area include coal, cattle, dairying, timber, grain, seafood, and fruit. The large island off the most northerly part of the coast visible in this image is Whitsunday Island, with smaller islands and reefs extending southeast, parallel to the coast. These include some of the better known resort islands such as Hayman, Lindeman, Hamilton, and Brampton Islands.Further south, just inland of the small semicircular bay near the right of the image, is Rockhampton, the largest city along the central Queensland coast, and the regional center for much of central Queensland. Rockhampton is just north of the Tropic of Capricorn. Its hinterland is a rich pastoral, agricultural, and mining region.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.NASA Astrophysics Data System (ADS)
Zuo, Xiuling; Su, Fenzhen; Zhao, Huanting; Zhang, Junjue; Wang, Qi; Wu, Di
2017-05-01
Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef flat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was <10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered 787 m2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.
NASA Technical Reports Server (NTRS)
Andrefeouet, Serge; Robinson, Julie
2000-01-01
Coral reefs worldwide are suffering from severe and rapid degradation (Bryant et A, 1998; Hoegh-Guldberg, 1999). Quick, consistent, large-scale assessment is required to assess and monitor their status (e.g., USDOC/NOAA NESDIS et al., 1999). On-going systematic collection of high resolution digital satellite data will exhaustively complement the relatively small number of SPOT, Landsat 4-5, and IRS scenes acquired for coral reefs the last 20 years. The workhorse for current image acquisition is the Landsat 7 ETM+ Long Term Acquisition Plan (Gasch et al. 2000). Coral reefs are encountered in tropical areas and cloud contamination in satellite images is frequently a problem (Benner and Curry 1998), despite new automated techniques of cloud cover avoidance (Gasch and Campana 2000). Fusion of multidate acquisitions is a classical solution to solve the cloud problems. Though elegant, this solution is costly since multiple images must be purchased for one location; the cost may be prohibitive for institutions in developing countries. There are other difficulties associated with fusing multidate images as well. For example, water quality or surface state can significantly change through time in coral reef areas making the bathymetric processing of a mosaiced image strenuous. Therefore, another strategy must be selected to detect clouds and improve coral reefs mapping. Other supplemental data could be helpful and cost-effective for distinguishing clouds and generating the best possible reef maps in the shortest amount of time. Photographs taken from the 1960s to the present from the Space Shuttle and other human-occupied spacecraft are one under-used source of alternative multitemporal data (Lulla et al. 1996). Nearly 400,000 photographs have been acquired during this period, an estimated 28,000 of these taken to date are of potential value for reef remote sensing (Robinson et al. 2000a). The photographic images can be digitized into three bands (red, green and blue) and processed for various applications (e.g., Benner and Curry 1998, Nedeltchev 1999, Glasser and Lulla 2000, Robinson et al. 2000c, Webb et al, in press).
Fluid Lensing and Applications to Remote Sensing of Aquatic Environments
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2017-01-01
The use of fluid lensing technology on UAVs is presented as a novel means for 3D imaging of aquatic ecosystems from above the water's surface at the centimeter scale. Preliminary results are presented from airborne fluid lensing campaigns conducted over the coral reefs of Ofu Island, American Samoa (2013) and the stromatolite reefs of Shark Bay, Western Australia (2014), covering a combined area of 15km2. These reef ecosystems were revealed with centimetre-scale 2D resolution, and an accompanying 3D bathymetry model was derived using fluid lensing, Structure from Motion and UAV position data. Data products were validated from in-situ survey methods including underwater calibration targets, depth measurements and millimetre-scale high-dynamic range gigapixel photogrammetry. Fluid lensing is an experimental technology that uses water transmitting wavelengths to passively image underwater objects at high-resolution by exploiting time-varying optical lensing events caused by surface waves. Fluid lensing data are captured from low-altitude, cost-effective electric UAVs to achieve multispectral imagery and bathymetry models at the centimetre scale over regional areas. As a passive system, fluid lensing is presently limited by signal-to-noise ratio and water column inherent optical properties to approximately 10 m depth over visible wavelengths in clear waters. The datasets derived from fluid lensing present the first centimetre-scale images of a reef acquired from above the ocean surface, without wave distortion. The 3D multispectral data distinguish coral, fish and invertebrates in American Samoa, and reveal previously undocumented, morphologically distinct, stromatolite structures in Shark Bay. These findings suggest fluid lensing and multirotor electric drones represent a promising advance in the remote sensing of aquatic environments at the centimetre scale, or 'reef scale' relevant to the conservation of reef ecosystems. Pending further development and validation of fluid lensing methods, these technologies present a solution for large-scale 3D surveys of shallow aquatic habitats with centimetre-scale spatial resolution and hourly temporal sampling.
Coral reef monitoring by the compact airborne spectrographic imager (CASI)
NASA Astrophysics Data System (ADS)
Miyazaki, Tadakuni; Tokumura, Kimiaki; Sugita, Mikio
1997-12-01
The casi has the spatial resolution of about 3 m X 3 m at the ground level and its spectral resolution is about 6 nm. The wavelength range for the measurement is from 430 to 870 nm and the number of the bands is 72 bands. An airplane carrying casi flew over Kuroshima Island, Okinawa and acquired image data of Kuroshima Island and the surrounding sea area. The flight courses were 6 courses at the altitude of 9,000 feet and 2 courses of 6,000 feet. At the same time, spectral measurements of the sea surface and several coral reefs underwater were carried out at an area of coral reefs off Kuroshima Island. The supervised and unsupervised classification were applied to the casi imageries to extract and classify the area of coral reefs off Kuroshima Island. The produced classification maps of the coral reefs were compared with the ground truth map of coral reefs made by the professional divers to evaluate the results. The results showed significant similarity of the distribution pattern of corral reefs.
Observation of coral reefs on Ishigaki Island, Japan, using Landsat TM images and aerial photographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Tsuneo; Kayanne, Hajime
1997-06-01
Ishigaki Island is located at the southwestern end of Japanese Islands and famous for its fringing coral reefs. More than twenty LANDSAT TM images in twelve years and aerial photographs taken on 1977 and 1994 were used to survey two shallow reefs on this island, Shiraho and Kabira. Intensive field surveys were also conducted in 1995. All satellite images of Shiraho were geometrically corrected and overlaid to construct a multi-date satellite data set. The effects of solar elevation and tide on satellite imagery were studied with this data set. The comparison of aerial and satellite images indicated that significant changesmore » occurred between 1977 and 1984 in Kabira: rapid formation in the western part and decrease in the eastern part of dark patches. The field surveys revealed that newly formed dark patches in the west contain young corals. These results suggest that remote sensing is useful for not only mapping but also monitoring of shallow coral reefs.« less
NASA Fluid Lensing & MiDAR - Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
Piti's Tepungan Bay and Tumon Bay, two of five marine preserves in Guam, have not been mapped to a level of detail sufficient to support proposed management strategies. This project addresses this gap by providing high resolution maps to promote sustainable, responsible use of the area while protecting natural resources. Dr. Chirayath, a research scientist at the NASA Ames Laboratory, developed a theoretical model and algorithm called 'Fluid Lensing'. Fluid lensing removes optical distortions caused by moving water, improving the clarity of the images taken of the corals below the surface. We will also be using MiDAR, a next-generation remote sensing instrument that provides real-time multispectral video using an array of LED emitters coupled with NASA's FluidCam Imaging System, which may assist Guam's coral reef response team in understanding the severity and magnitude of coral bleaching events. This project will produce a 3D orthorectified model of the shallow water coral reef ecosystems in Tumon Bay and Piti marine preserves. These 3D models may be printed, creating a tactile diorama and increasing understanding of coral reefs among various audiences, including key decision makers. More importantly, the final data products can enable accurate and quantitative health assessment capabilities for coral reef ecosystems.
NASA Technical Reports Server (NTRS)
2002-01-01
This MODIS true-color image of the Yucatan Peninsula was acquired from data captured on October 6, 2001. The Peninsula is comprised of several Mexican states, including Yucatan in the north, Quintana Roo to the east, and Campeche to the west. Mexico also shares the Yucatan Peninsula with the countries of Belize and Guatamala, located to the south of these states. Phytoplankton show up as blue-green swirls off the western coast of Yucatan, in the center of the image, mixed in with sediment and other organic matter. Off the eastern coast of the Peninsula, running north and south along the right side of he image, the region's barrier reef is visible. Second only to Australia's Great Barrier Reef in size, the reef spans 180 miles from the northern tip of the Peninsula south into the Gulf of Honduras, and houses over 35 different species of reef-building corals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne Pennington; Mohamed Ibrahim; Roger Turpening
Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal tomore » the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through the perforation of the receiver well. The seismic images obtained, and interpretations of them, as assisted by Amplitude-versus-Angle studies and accompanying inversion, provide additional insight into the internal geometry of these two reefs and provide data that should be useful for reservoir management.« less
Arellano-Méndez, Leonardo U; Bello-Pineda, Javier; Aké-Castillo, José A; Pérez-España, Horacio; Martínez-Cardenas, Leonardo
2016-06-01
Seagrasses in coastal environments have been threatened by increased human activities; these have negatively altered processes and environmental services, and have decreased grassland areas. The aim of this study was to generate knowledge of Thalassia testudinum distribution, state of the structure and fragmentation level in two reefs of the Veracruz Reef System National Park (PNSAV). Two different reefs were selected: Sacrificios in the North and near the coast, and Cabezo in the South and away from the coast. Shoot-specific and area-specific characteristics of submerged macrophytes meadows present were determined, and four morpho-functional groups were identified. Significant differences between plant coverage were tested through nonparametric ANOVA, Kruskal-Wallis test. A supervised classification of spatial high-resolution image verified with field data was performed (55 Sacrificios and 290 Cabezo). The fragmentation level was calculated using landscape metrics, class level and thematic maps were made based on four covers. The meadows were dominated by Thalassia testudinum; maximum densities were 208 shoot/m2 in Cabezo, and 176 shoot/m2 in Sacrificios. Cabezo presented grasses with short (9 cm) and thin leaves (0.55 cm) on average; while Sacrificios showed longer (23.5 cm) and thicker (1 cm) leaves. Sacrificios showed lower fragmentation degree than Cabezo; in both cases, the vegetation cover fragmentation corresponded to less than 50 %. Although Cabezo reef presents further fragmentation, which creates a large number of microenvironments, being recognized for its importance as recruitment area. This work serves as a baseline for the creation of an adequate management plan (formation of a core area of Cabezo). It is necessary to complement this work with new efforts for the recognition of seagrass prairies in all PNSAV reefs, as well as periodic monitoring and recognition of ecosystem services. .
NASA Astrophysics Data System (ADS)
Beisiegel, Kolja; Darr, Alexander; Zettler, Michael L.; Friedland, René; Gräwe, Ulf; Gogina, Mayya
2018-07-01
Quantitative sampling of sessile assemblages on temperate subtidal rocky reefs is expensive and severely time-limited by logistics. However, knowledge about distribution patterns of critical and endangered species and habitats at different spatial scales is needed for effective marine management strategies. To gain information of sessile community distribution on broader spatial scales (>1 km), visual imaging was employed for the first time on a reef complex in the south-western Baltic Sea. Analysis of 3000 images along 6 transects (in total 18 km long) from 10 to 40 m depth revealed high natural variation in reef physical structure, with well-defined changes in sessile species richness, cover and composition. Overall 14 morphological groups could be distinguished by imaging and 4 distinct community groups associated with specific habitat requirements were identified. Depth remained the best descriptor. However, data indicate that light intensity, concentration of organic carbon and suspended particulate matter have an effect on reef community distribution. Compared to fully marine conditions, the study revealed a unique zonation pattern in the circalittoral zone of the Fehmarnbelt brackish transition area, with an unexpected reef habitat in the trench. We conclude that towed camera platform imagery might help to close the information gap regarding rocky reefs in the temperate subtidal. It provides a valuable tool to assess the main distribution patterns of sessile assemblages on rough terrain, potentially applicable for management and conservation planning.
2014-08-30
ISS040E112662 (08/30/2014) ---- Cancún, Mexico. A long lens was used by astronauts aboard the International Space Station to take this image, and it highlights many natural and built features. The street pattern of Mexico’s tourist mecca, Cancún, contrasts with the waterways of the marinas that open into the bay and the lagoons. Brilliant blue water over coral reefs contrast with the dark waters of inland lagoons. The reefs are the second largest reef system on Earth, and draw tourists from all over the world. The wide, well developed beach on the gulf coast (image upper right) is the result of vigorous wave energy; the white sand makes the beach easily visible from space. But wave energy is reduced along Cancún’s protected shoreline (image center) and the beaches are thin or non-existant. Fair-weather cumulus clouds are scattered across the image top left. To shoot crisp mages with long lenses, astronaut photographers must learn to brace themselves against the ISS bulkhead to prevent any slight shaking that would blur or “smear” the picture. Counterintuitively, they then need to move the camera carefully retaining the target at the same point in the viewfinder (the landscape moves across the viewfinder quickly with long lenses). This is called tracking the target and requires good coordination by the photographer—again, to prevent blurring. Shorter lenses do not require this skill because the image appears to pass more slowly across the viewfinder.
NASA Astrophysics Data System (ADS)
Leon, J. X.; Baldock, T.; Callaghan, D. P.; Hoegh-guldberg, O.; Mumby, P.; Phinn, S. R.; Roelfsema, C. M.; Saunders, M. I.
2013-12-01
Coral reef hydrodynamics operate at several and overlapping spatial-temporal scales. Waves have the most important forcing function on shallow (< 5 m) reefs as they drive most ecological and biogeochemical processes by exerting direct physical stress, directly mixing water (temperature and nutrients) and transporting sediments, nutrients and plankton. Reef flats are very effective at dissipating wave energy and providing an important ecosystem service by protecting highly valued shorelines. The effectiveness of reef flats to dissipate wave energy is related to the extreme hydraulic roughness of the benthos and substrate composition. Hydraulic roughness is usually obtained empirically from frictional-dissipation calculations, as detailed field measurements of bottom roughness (e.g. chain-method or profile gauges) is a very labour and time-consuming task. In this study we measured the impact of coral structures on wave directional spreading. Field data was collected during October 2012 across a reef flat on Lizard Island, northern Great Barrier Reef. Wave surface levels were measured using an array of self-logging pressure sensors. A rapid in situ close-range photogrammetric method was used to create a high-resolution (0.5 cm) image mosaic and digital elevation model. Individual coral heads were extracted from these datasets using geo-morphometric and object-based image analysis techniques. Wave propagation was modelled using a modified version of the SWAN model which includes the measured coral structures in 2m by 1m cells across the reef. The approach followed a cylinder drag approach, neglecting skin friction and inertial components. Testing against field data included bed skin friction. Our results show, for the first time, how the variability of the reef benthos structures affects wave dissipation across a shallow reef flat. This has important implications globally for coral reefs, due to the large extent of their area occupied by reef flats, particularly, as global-scale degradation in coral reef health is causing a lowering of reef carbonate production that might lead to a decrease in reef structure and roughness.
Northern Florida reef tract benthic metabolism scaled by remote sensing
Brock, J.C.; Yates, K.K.; Halley, R.B.; Kuffner, I.B.; Wright, C.W.; Hatcher, B.G.
2006-01-01
Holistic rates of excess organic carbon production (E) and calcification for a 0.5 km2 segment of the backreef platform of the northern Florida reef tract (NFRT) were estimated by combining biotope mapping using remote sensing with community metabolic rates determined with a benthic incubation system. The use of ASTER multispectral satellite imaging for the spatial scaling of benthic metabolic processes resulted in errors in E and net calcification (G) of 48 and 431% respectively, relative to estimates obtained using AISA hyperspectral airborne scanning. At 19 and 125%, the E and G errors relative to the AISA-based estimates were less pronounced for an analysis that used IKONOS multispectral satellite imagery to spatially extrapolate the chamber process measurements. Our scaling analysis indicates that the holistic calcification rate of the backreef platform of the northern Florida reef tract is negligible at 0.07 g CaCO3 m-2 d-1. All of the mapped biotopes in this reef zone are net heterotrophic, resulting in an estimated holistic excess production rate of -0.56 g C m-2 d-1, and an overall gross primary production to respiration ratio of 0.85. Based on our finding of ubiquitous heterotrophy, we infer that the backreef platform of the NFRT is a sink for external inputs of suspended particulate organic matter. Further, our results suggest that the inward advection of inorganic nutrients is not a dominant forcing mechanism for benthic biogeochemical function in the NFRT. We suggest that the degradation of the northern Florida reef tract may parallel the community phase shifts documented within other reef systems polluted by organic detritus.
Coralline reefs classification in Banco Chinchorro, Mexico
NASA Astrophysics Data System (ADS)
Contreras-Silva, Ameris I.; López-Caloca, Alejandra A.
2009-09-01
The coralline reefs in Banco Chinchorro, Mexico, are part of the great reef belt of the western Atlantic. This reef complex is formed by an extensive coralline structure with great biological richness and diversity of species. These colonies are considered highly valuable ecologically, economically, socially and culturally, and they also inherently provide biological services. Fishing and scuba diving have been the main economic activities in this area for decades. However, in recent years, there has been a bleaching process and a decrease of the coral colonies in Quintana Roo, Mexico. This drop is caused mainly by the production activities performed in the oil platforms and the presence of hurricanes among other climatic events. The deterioration of the reef system can be analyzed synoptically using remote sensing. Thanks to this type of analysis, it is possible to have updated information of the reef conditions. In this paper, satellite imagery in Landsat TM and SPOT 5 is applied in the coralline reefs classification in the 1980- 2006 time period. Thus, an integral analysis of the optical components of the water surrounding the coralline reefs, such as on phytoplankton, sediments, yellow substance and even on the same water adjacent to the coral colonies, is performed. The use of a texture algorithm (Markov Random Field) was a key tool for their identification. This algorithm, does not limit itself to image segmentation, but also works on edge detection. In future work the multitemporal analysis of the results will determine the deterioration degree of these habitats and the conservation status of the coralline areas.
Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana
2008-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.
Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.
2007-01-01
The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.
Advancing UAS methods for monitoring coastal environments
NASA Astrophysics Data System (ADS)
Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.
2017-12-01
Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition. Concurrently, we test the accuracy of UAS platforms and image analysis tools against traditional high-resolution mapping equipment (GPS and terrestrial lidar) and in situ sampling (density quadrats) to conduct error analysis of UAS orthoimagery and data processing.
NASA Astrophysics Data System (ADS)
Pradhan, Biswajeet; Kabiri, Keivan
2012-07-01
This paper describes an assessment of coral reef mapping using multi sensor satellite images such as Landsat ETM, SPOT and IKONOS images for Tioman Island, Malaysia. The study area is known to be one of the best Islands in South East Asia for its unique collection of diversified coral reefs and serves host to thousands of tourists every year. For the coral reef identification, classification and analysis, Landsat ETM, SPOT and IKONOS images were collected processed and classified using hierarchical classification schemes. At first, Decision tree classification method was implemented to separate three main land cover classes i.e. water, rural and vegetation and then maximum likelihood supervised classification method was used to classify these main classes. The accuracy of the classification result is evaluated by a separated test sample set, which is selected based on the fieldwork survey and view interpretation from IKONOS image. Few types of ancillary data in used are: (a) DGPS ground control points; (b) Water quality parameters measured by Hydrolab DS4a; (c) Sea-bed substrates spectrum measured by Unispec and; (d) Landcover observation photos along Tioman island coastal area. The overall accuracy of the final classification result obtained was 92.25% with the kappa coefficient is 0.8940. Key words: Coral reef, Multi-spectral Segmentation, Pixel-Based Classification, Decision Tree, Tioman Island
NASA Astrophysics Data System (ADS)
Doo, Steve S.; Hamylton, Sarah; Finfer, Joshua; Byrne, Maria
2017-03-01
Large benthic foraminifera (LBFs) are a vital component of coral reef carbonate production, often overlooked due to their small size. These super-abundant calcifiers are crucial to reef calcification by generation of lagoon and beach sands. Reef-scale carbonate production by LBFs is not well understood, and seasonal fluctuations in this important process are largely unquantified. The biomass of five LBF species in their algal flat habitat was quantified in the austral winter (July 2013), spring (October 2013), and summer (February 2014) at One Tree Reef. WorldView-2 satellite images were used to characterize and create LBF habitat maps based on ground-referenced photographs of algal cover. Habitat maps and LBF biomass measurements were combined to estimate carbonate storage across the entire reef flat. Total carbonate storage of LBFs on the reef flat ranged from 270 tonnes (winter) to 380 tonnes (summer). Satellite images indicate that the habitat area used by LBFs ranged from 0.6 (winter) to 0.71 km2 (spring) of a total possible area of 0.96 km2. LBF biomass was highest in the winter when algal habitat area was lowest, but total carbonate storage was the highest in the summer, when algal habitat area was intermediate. Our data suggest that biomass measurements alone do not capture total abundance of LBF populations (carbonate storage), as the area of available habitat is variable. These results suggest LBF carbonate production studies that measure biomass in discrete locations and single time points fail to capture accurate reef-scale production by not incorporating estimates of the associated algal habitat. Reef-scale measurements in this study can be incorporated into carbonate production models to determine the role of LBFs in sedimentary landforms (lagoons, beaches, etc.). Based on previous models of entire reef metabolism, our estimates indicate that LBFs contribute approximately 3.9-5.4% of reef carbonate budgets, a previously underappreciated carbon sink.
Development of A 2,000-10,000-Lb Improved Container Delivery System
2010-04-01
System. The fourth airdrop system within the program is the Skirt Reefed G-12. The Skirt Reefed G-12 is intended to be a HV airdrop system...UNCLASSIFIED 5 D. Skirt Reefed G-12 System The Skirt Reefed G-12 System utilizes the G-12 parachute packed in accordance with Humanitarian Airdrop...Procedures2 with a slight variation in the reefing line material used. After several tests and many failures, the 9/16- inch tubular nylon and 2 turns of
NASA Astrophysics Data System (ADS)
Chirayath, V.; Instrella, R.
2016-02-01
We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.
NASA Astrophysics Data System (ADS)
Chirayath, V.
2015-12-01
We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.
NASA Technical Reports Server (NTRS)
2002-01-01
Heron Island is located at the sourthern end of Australia's 2,050 km-long Great Barrier Reef. Surrounded by coral reef and home to over 1000 species of fish, scuba divers and scientists alike are drawn to the island's resort and research station. The true-color image above was taken by Space Imaging's Ikonos satellite with a resolution of 4 meters per pixel-high enough to see individual boats tied up at the small marina. The narrow channel leading from the marina to the ocean was blasted and dredged decades ago, before the island became a national park. Since then the Australian government has implemented conservation measures, such as limiting the number of tourists and removing or recycling, instead of incinerating, all trash. One of the applications of remote sensing data from Ikonos is environmental monitoring, including studies of coral reef health. For more information about the island, read Heron Island. Image by Robert Simmon, based on data copyright Space Imaging
Self-generated morphology in lagoon reefs
Hamblin, Michael G.
2015-01-01
The three-dimensional form of a coral reef develops through interactions and feedbacks between its constituent organisms and their environment. Reef morphology therefore contains a potential wealth of ecological information, accessible if the relationships between morphology and ecology can be decoded. Traditionally, reef morphology has been attributed to external controls such as substrate topography or hydrodynamic influences. Little is known about inherent reef morphology in the absence of external control. Here we use reef growth simulations, based on observations in the cellular reefs of Western Australia’s Houtman Abrolhos Islands, to show that reef morphology is fundamentally determined by the mechanical behaviour of the reef-building organisms themselves—specifically their tendency to either remain in place or to collapse. Reef-building organisms that tend to remain in place, such as massive and encrusting corals or coralline algae, produce nodular reefs, whereas those that tend to collapse, such as branching Acropora, produce cellular reefs. The purest reef growth forms arise in sheltered lagoons dominated by a single type of reef builder, as in the branching Acropora-dominated lagoons of the Abrolhos. In these situations reef morphology can be considered a phenotype of the predominant reef building organism. The capacity to infer coral type from reef morphology can potentially be used to identify and map specific coral habitat in remotely sensed images. More generally, identifying ecological mechanisms underlying other examples of self-generated reef morphology can potentially improve our understanding of present-day reef ecology, because any ecological process capable of shaping a reef will almost invariably be an important process in real time on the living reef. PMID:26175962
Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.
Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip
2012-06-01
We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cold water corals - Converting short term scientific excitement into long term public interest
NASA Astrophysics Data System (ADS)
Maestad, K.
2009-04-01
The Vesteraalen area off the Northern Norwegian coast is of ecological importance as a spawning ground for several fish stocks and as a corridor for migrating mature fish and drifting fish larvae for other stocks. The area is also of great interest to oil exploration companies for its hitherto untapped energy supplies. In the midst of it all, there are a number of cold-water coral reefs. Researchers at the Institute of Marine Research in Norway have constructed a sophisticated system for monitoring habitats around the cold-water corals and their environment over time. Two so-called landers will be placed next to coral reefs, will be equipped with echo sounders, camera, hydrophone, acoustic current profiler, CTD-sensor and sediment traps in March 09. This will provide high quality data regarding both physical conditions and biological activity. The sensors will make it possible to observe how different species interact with each other, with particular focus on the activity of fish and how they use the reef habitat. The system will have the capacity to transmit data live from the ocean floor. Creating attention in national media regarding such a ground-breaking project is not all that difficult. Already, the Norwegian national TV channel NRK has confirmed participation on the cruise that will deploy the landers. However, this project also presents communication challenges. One of which is to find a way of making echogram images of the reef understandable ("readable") to people not familiar with interpreting echo sounder signals. This will be especially important if it is decided to make the data from the coral reef available live on the internet. Furthermore, the aim will be to create interest amongst specific audiences in following the life in and around the coral reef over time.
A comparison between boat-based and diver-based methods for quantifying coral bleaching
Zawada, David G.; Ruzicka, Rob; Colella, Michael A.
2015-01-01
Recent increases in both the frequency and severity of coral bleaching events have spurred numerous surveys to quantify the immediate impacts and monitor the subsequent community response. Most of these efforts utilize conventional diver-based methods, which are inherently time-consuming, expensive, and limited in spatial scope unless they deploy large teams of scientifically-trained divers. In this study, we evaluated the effectiveness of the Along-Track Reef Imaging System (ATRIS), an automated image-acquisition technology, for assessing a moderate bleaching event that occurred in the summer of 2011 in the Florida Keys. More than 100,000 images were collected over 2.7 km of transects spanning four patch reefs in a 3-h period. In contrast, divers completed 18, 10-m long transects at nine patch reefs over a 5-day period. Corals were assigned to one of four categories: not bleached, pale, partially bleached, and bleached. The prevalence of bleaching estimated by ATRIS was comparable to the results obtained by divers, but only for corals > 41 cm in size. The coral size-threshold computed for ATRIS in this study was constrained by prevailing environmental conditions (turbidity and sea state) and, consequently, needs to be determined on a study-by-study basis. Both ATRIS and diver-based methods have innate strengths and weaknesses that must be weighed with respect to project goals.
Biomimetric sentinel reef structures for optical sensing and communications
NASA Astrophysics Data System (ADS)
Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor
2017-05-01
Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.
Coral reef connectivity within the Western Gulf of Mexico
NASA Astrophysics Data System (ADS)
Salas-Monreal, David; Marin-Hernandez, Mark; Salas-Perez, Jose de Jesus; Salas-de-Leon, David Alberto; Monreal-Gomez, Maria Adela; Perez-España, Horacio
2018-03-01
The yearlong monthly mean satellite data of the geostrophic velocities, the sea surface temperature and the chlorophyll-a values were used to elucidate any possible pathway among the different coral reef systems of the Western Gulf of Mexico (WGM). The geostrophic current velocities suggested different pathways connecting the coral reef areas. The typical coastal alongshore pathway constricted to the continental shelf, and two open ocean pathway, the first connecting the Campeche Reef System (CRS) with the Veracruz (VRS) and Tuxpan-Lobos Reef Systems (TLRS), and the second pathway connecting the Tuxpan-Lobos Reef System with the Flower Garden Reef System (FGRS). According to the pathways there should be more larvae transport from the southern Gulf of Mexico reef systems toward the FGRS than the other way. The connection from the southern Gulf of Mexico toward the FGRS took place during January, May, July, August and September (2015), while the connection from the FGRS toward the southern Gulf of Mexico reef system took place during January and February (2015), this was also suggested via model outputs. The density radio (R) was used as a first approximation to elucidate the influence of the freshwater continental discharges within the continental shelf. All coral reef areas were located where the Chlorophyll-a monthly mean values had values bellow 1 mg m- 2 with a density radio between 0 and 1, i.e. under the influence of continental discharges.
Oyster reef restoration in the northern Gulf of Mexico: extent, methods and outcomes
LaPeyre, Megan K.; Furlong, Jessica N.; Brown, Laura A.; Piazza, Bryan P.; Brown, Ken
2014-01-01
Shellfish reef restoration to support ecological services has become more common in recent decades, driven by increasing awareness of the functional decline of shellfish systems. Maximizing restoration benefits and increasing efficiency of shellfish restoration activities would greatly benefit from understanding and measurement of system responses to management activities. This project (1) compiles a database of northern Gulf of Mexico inshore artificial oyster reefs created for restoration purposes, and (2) quantitatively assesses a subset of reefs to determine project outcomes. We documented 259 artificial inshore reefs created for ecological restoration. Information on reef material, reef design and monitoring was located for 94, 43 and 20% of the reefs identified. To quantify restoration success, we used diver surveys to quantitatively sample oyster density and substrate volume of 11 created reefs across the coast (7 with rock; 4 with shell), paired with 7 historic reefs. Reefs were defined as fully successful if there were live oysters, and partially successful if there was hard substrate. Of these created reefs, 73% were fully successful, while 82% were partially successful. These data highlight that critical information related to reef design, cost, and success remain difficult to find and are generally inaccessible or lost, ultimately hindering efforts to maximize restoration success rates. Maintenance of reef creation information data, development of standard reef performance measures, and inclusion of material and reef design testing within reef creation projects would be highly beneficial in implementing adaptive management. Adaptive management protocols seek specifically to maximize short and long-term restoration success, but are critically dependent on tracking and measuring system responses to management activities.
Great Barrier Reef, Queensland, Australia
NASA Technical Reports Server (NTRS)
1990-01-01
This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.
Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...
NASA Technical Reports Server (NTRS)
Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan
2011-01-01
This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411
Falter, James L; Lowe, Ryan J; Zhang, Zhenlin; McCulloch, Malcolm
2013-01-01
We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2), pH, and aragonite saturation state (Ω(ar)) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2), pH, and Ω(ar) are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO(2) relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2) in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2).
Sea-floor geology of a part of Mamala Bay, Hawaii
Hampton, Monty A.; Torresan, Michael E.; Barber, John H.
1997-01-01
We surveyed the sea-floor geology within a 200-km2 area of Mamala Bay, off Honolulu, Hawaii by collecting and analyzing sidescan sonar images, 3.5-kHz profiles, video and still visual images, and box-core samples. The study area extends from 20-m water depth on the insular shelf to 600-m water depth in a southeast-trending trough. The sidescan images depict three principal types of sea-floor material: low-backscatter natural sediment, high-backscatter drowned carbonate reef, and intermediate-backscatter dredged-material deposits. Cores indicate that the natural sediment is muddy sand, composed of carbonate reef and microfauna debris with some volcanic grains. Vague areal trends in composition are evident. The dredged material comprises poorly sorted, cobble- to clay-size mixtures of reef, volcanic, and man-made debris, up to 35 cm thick. Dredged-material deposits are not evident in the 3.5-kHz profiles. In the sidescan images they appear as isolated, circular to subcircular imprints, apparently formed by individual drops, around the periphery of their occurrence, but they overlap and coalesce to a nearly continuous, intermediate-backscatter blanket toward the center of three disposal sites investigated. We did not observe significant currents during our camera surveys, but there is abundant evidence of sediment reworking: symmetrical and asymmetrical ripples in the visual images, sand waves in the 3.5-kHz profiles and side-scan images, moats around the reefs in 3.5-kHz profiles, winnowed dredged material in the visual images, and burial of dredged material by natural sediment in cores. Most current indicators imply a westerly to northwesterly transport direction, along contours or up-slope, although there are a few areas of easterly indicators. Internal waves probably drive the transport; their possible existence is implied by measured water-column density gradients.
Sea-floor geology of a part of Mamala Bay, Hawai'i
Hampton, M.A.; Torresan, M.E.; Barber, J.H.
1997-01-01
We surveyed the sea-floor geology within a 200-km2 area of Mamala Bay, off Honolulu, Hawai'i, by collecting and analyzing sidescan sonar images, 3.5kHz profiles, video and still visual images, and box-core samples. The study area extends from 20-m water depth on the insular shelf to 600-m water depth in a southeast-trending trough. The sidescan images depict three principal types of seafloor material: low-backscatter natural sediment, high-backscatter drowned carbonate reef, and intermediate-backscatter dredged-material deposits. Cores indicate that the natural sediment is muddy sand, composed of carbonate reef and microfauna debris with some volcanic grains. Vague areal trends in composition are evident. The dredged material comprises poorly sorted, cobble- to clay-size mixtures of reef, volcanic, and man-made debris, up to 35 cm thick. Dredged-material deposits are not evident in the 3.5-kHz profiles. In the sidescan images they appear as isolated, circular to subcircular imprints, apparently formed by individual drops, around the periphery of their occurrence, but they overlap and coalesce to a nearly continuous, intermediate-backscatter blanket toward the center of three disposal sites investigated. We did not observe noticeable currents during our camera surveys, but there is abundant evidence of sediment reworking: symmetrical and asymmetrical ripples in the visual images, sand waves in the 3.5-kHz profiles and side-scan images, moats around the reefs in 3.5-kHz profiles, winnowed dredged material in the visual images, and burial of dredged material by natural sediment in cores. Most current indicators imply a westerly to northwesterly transport direction, along contours or upslope, although there are a few areas of easterly indicators. Internal waves probably drive the transport; their possible existence is implied by measured water-column density gradients.
Connectivity and systemic resilience of the Great Barrier Reef.
Hock, Karlo; Wolff, Nicholas H; Ortiz, Juan C; Condie, Scott A; Anthony, Kenneth R N; Blackwell, Paul G; Mumby, Peter J
2017-11-01
Australia's iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.
A 3-D seismic investigation of the Ray gas storage reef, Macomb County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, S.F.; Dixon, R.A.
1994-08-01
A 4.2 mi[sup 2] 3-D seismic survey was acquired over the Ray Niagaran reef gas storage field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the storage reservoir. Goals of the survey were to (1) determine if additional storage capacity could be found either as extensions to the Ray reef or as undiscovered satellite reefs, (2) investigate the relationship between the main body and a low-relief gas well east of the reef, and (3) determine if seismic data can be used to quantify reservoir parameters to maximize the productive capacity of infillmore » wells. Interpretation of the 3-D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and a possible relationship between porosity and seismic amplitude was investigated. A potential connection between the main reef and the low-relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3-D seismic data, and underscores the necessity of such a survey prior to developing a new storage reservoir.« less
NASA Astrophysics Data System (ADS)
Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert
2016-04-01
The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction. One source of light for shading does show all morphologic features needed for description. Additionally, more details such as fault lines, overlaps and characteristic edges of complex shell structures are clearly detected by simply changing the illumination on the shaded digital surface model. In a further study, the potential of edge detection of the individual shells will be analyzed based on statistical analysis by keeping track of the local accumulative shading gradient. The results are compared to manually identified edges. In a following study phase, the detected edges will be improved by graph cut segmentation. We assume that this technique can lead to automatically extracted teaching set for object segmentation on a complex environment. The project is supported by the Austrian Science Fund (FWF P 25883-N29).
A 3D seismic investigation of the Ray Gas Storage Reef in Macomb County, Michigan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, S.F.; Dixon, R.A.
1995-09-01
A 4.2 square mile 3D seismic survey was acquired over the Ray Niagaran Reef Gas Storage Field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the field. Goals of the survey were: (1) to determine if additional storage capacity could be found, either as extensions to the main reef or as undiscovered satellite reefs, (2) to determine if 3D seismic data can be utilized to quantify reservoir parameters in order to maximize the productive capacity of infill wells, and (3) to investigate the relationship between the main reef body and a lowmore » relief/flow volume gas well east of the reef. Interpretation of the 3D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and the relationship between porosity and seismic amplitude was investigated. A possible connection between the main reef and the low relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3D seismic data, and underscores the necessity of acquiring such a survey prior to developing a new storage reservoir.« less
Moreno Navas, Juan; Miller, Peter I; Miller, Peter L; Henry, Lea-Anne; Hennige, Sebastian J; Roberts, J Murray
2014-01-01
Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.
Navas, Juan Moreno; Miller, Peter L.; Henry, Lea-Anne; Hennige, Sebastian J.; Roberts, J. Murray
2014-01-01
Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications. PMID:24873971
The role of the reef-dune system in coastal protection in Puerto Morelos (Mexico)
NASA Astrophysics Data System (ADS)
Franklin, Gemma L.; Torres-Freyermuth, Alec; Medellin, Gabriela; Allende-Arandia, María Eugenia; Appendini, Christian M.
2018-04-01
Reefs and sand dunes are critical morphological features providing natural coastal protection. Reefs dissipate around 90 % of the incident wave energy through wave breaking, whereas sand dunes provide the final natural barrier against coastal flooding. The storm impact on coastal areas with these features depends on the relative elevation of the extreme water levels with respect to the sand dune morphology. However, despite the importance of barrier reefs and dunes in coastal protection, poor management practices have degraded these ecosystems, increasing their vulnerability to coastal flooding. The present study aims to theoretically investigate the role of the reef-dune system in coastal protection under current climatic conditions at Puerto Morelos, located in the Mexican Caribbean Sea, using a widely validated nonlinear non-hydrostatic numerical model (SWASH). Wave hindcast information, tidal level, and a measured beach profile of the reef-dune system in Puerto Morelos are employed to estimate extreme runup and the storm impact scale for current and theoretical scenarios. The numerical results show the importance of including the storm surge when predicting extreme water levels and also show that ecosystem degradation has important implications for coastal protection against storms with return periods of less than 10 years. The latter highlights the importance of conservation of the system as a mitigation measure to decrease coastal vulnerability and infrastructure losses in coastal areas in the short to medium term. Furthermore, the results are used to evaluate the applicability of runup parameterisations for beaches to reef environments. Numerical analysis of runup dynamics suggests that runup parameterisations for reef environments can be improved by including the fore reef slope. Therefore, future research to develop runup parameterisations incorporating reef geometry features (e.g. reef crest elevation, reef lagoon width, fore reef slope) is warranted.
Sea anemones (Cnidaria, Anthozoa, Actiniaria) from coral reefs in the southern Gulf of Mexico.
González-Muñoz, Ricardo; Simões, Nuno; Tello-Musi, José Luis; Rodríguez, Estefanía
2013-01-01
Seven sea anemone species from coral reefs in the southern Gulf of Mexico are taxonomically diagnosed and images from living specimens including external and internal features, and cnidae are provided. Furthermore, the known distribution ranges from another 10 species are extended. No species records of sea anemones have been previously published in the primary scientific literature for coral reefs in the southern Gulf of Mexico and thus, this study represents the first inventory for the local actiniarian fauna.
Sea anemones (Cnidaria, Anthozoa, Actiniaria) from coral reefs in the southern Gulf of Mexico
González-Muñoz, Ricardo; Simões, Nuno; Tello-Musi, José Luis; Rodríguez, Estefanía
2013-01-01
Abstract Seven sea anemone species from coral reefs in the southern Gulf of Mexico are taxonomically diagnosed and images from living specimens including external and internal features, and cnidae are provided. Furthermore, the known distribution ranges from another 10 species are extended. No species records of sea anemones have been previously published in the primary scientific literature for coral reefs in the southern Gulf of Mexico and thus, this study represents the first inventory for the local actiniarian fauna. PMID:24146599
Cochran, Susan A.; Goodman, James A.; Purkis, Samuel J.; Phinn, Stuart R.
2013-01-01
Photographic imaging is the oldest form of remote sensing used in coral reef studies. This chapter briefly explores the history of photography from the 1850s to the present, and delves into its application for coral reef research. The investigation focuses on both photographs collected from low-altitude fixed-wing and rotary aircraft, and those collected from space by astronauts. Different types of classification and analysis techniques are discussed, and several case studies are presented as examples of the broad use of photographs as a tool in coral reef research.
NASA Astrophysics Data System (ADS)
Armstrong, Roy A.; Singh, Hanumant
2006-09-01
Optical imaging of coral reefs and other benthic communities present below one attenuation depth, the limit of effective airborne and satellite remote sensing, requires the use of in situ platforms such as autonomous underwater vehicles (AUVs). The Seabed AUV, which was designed for high-resolution underwater optical and acoustic imaging, was used to characterize several deep insular shelf reefs of Puerto Rico and the US Virgin Islands using digital imagery. The digital photo transects obtained by the Seabed AUV provided quantitative data on living coral, sponge, gorgonian, and macroalgal cover as well as coral species richness and diversity. Rugosity, an index of structural complexity, was derived from the pencil-beam acoustic data. The AUV benthic assessments could provide the required information for selecting unique areas of high coral cover, biodiversity and structural complexity for habitat protection and ecosystem-based management. Data from Seabed sensors and related imaging technologies are being used to conduct multi-beam sonar surveys, 3-D image reconstruction from a single camera, photo mosaicking, image based navigation, and multi-sensor fusion of acoustic and optical data.
NASA Astrophysics Data System (ADS)
Bufarale, Giada; Collins, Lindsay B.; O'Leary, Michael J.; Stevens, Alexandra; Kordi, Moataz; Solihuddin, Tubagus
2016-07-01
The inner shelf Kimberley Bioregion of Northwest Australia is characterised by a macrotidal setting where prolific coral reefs growth as developed around a complex drowned landscape and is considered a biodiversity "hotspot". High-resolution shallow seismic studies were conducted across various reef settings in the Kimberley (Buccaneer Archipelago, north of Dampier Peninsula, latitude: between 16°40‧S and 16°00‧S) to evaluate stratigraphic evolution, interaction with different substrates, morphological patterns and distribution. Reef sites were chosen to assess most of the reef types present, particularly high intertidal planar reefs and fringing reefs. Reef internal acoustic reflectors were identified according to their shape, stratigraphic position and characteristics. Two main seismic horizons were identified marking the boundaries between Holocene reef (Marine Isotope Stage 1, MIS 1, last 12 ky), commonly 10-20 m thick, and MIS 5 (Last Interglacial, LIG, ~120 ky, up to 12 m thick) and Proterozoic rock foundation over which Quaternary reef growth occurred. Within the Holocene Reef unit, at least three minor internal reflectors, generally discontinuous, subparallel to the reef flat were recognised and interpreted as either growth hiatuses or a change of the coral framework or sediment matrix. The LIG reefs represent a new northernmost occurrence along the Western Australian coast. The research presented here achieved the first regional geophysical study of the Kimberley reefs. Subbottom profiles demonstrated that the surveyed reefs are characterised by a multi-stage reef buildup, indicating that coral growth occurred in the Kimberley during previous sea level highstands. The data show also that antecedent substrate and regional subsidence have contributed, too, in determining the amount of accommodation available for reef growth and controlling the morphology of the successive reef building stages. Moreover, the study showed that in spite of macrotidal conditions, high-turbidity and frequent high-energy cyclonic events, corals have exhibited prolific reef growth during the Holocene developing significant reef accretionary structures. As a result coral reefs have generating habitat complexity and species diversity in what is a biodiversity hotspot.
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.
Monitoring Growth of Hard Corals as Performance Indicators for Coral Reefs
ERIC Educational Resources Information Center
Crabbe, M. James; Karaviotis, Sarah; Smith, David J.
2004-01-01
Digital videophotography, computer image analysis and physical measurements have been used to monitor sedimentation rates, coral cover, genera richness, rugosity, and estimated recruitment dates of massive corals at three different sites in the Wakatobi Marine National Park, Indonesia, and on the reefs around Discovery Bay, Jamaica.…
Evidence from aerial photography of structural loss of coral reefs at Barbados, West Indies
NASA Astrophysics Data System (ADS)
Lewis, J.
2002-04-01
In response to concerns about widespread degradation of coral reefs at Barbados, West Indies, over the past two decades, maps and planimetric areas of 20 fringing coral reefs were estimated from enlargements of aerial photographs of the island, using geographic information system analysis. There were statistically significant reductions in reef areas over a 40-year period from 1950 to 1991. Areal losses exceeding measurement and boundary interpretation errors of 10% were detected on eight of the 20 reefs. Ground validation carried out by divers on six of the reefs confirmed physical losses of reef structures and accumulation of rubble and sand substrata at sites where substantial planimetric area loss was detected on aerial photographs. Structural losses occurred along the "spur and groove" system of the reef-seaward edge, within deep channels or breaches in the reef front, and along the flanks or ends of reefs. The location and nature of the observed losses suggest that storm damage and seasonal alterations in beach morphology are the two most important factors contributing to geomorphological structural loss of the reefs.
Coral reefs provide the ecological foundation for productive and diverse fish and invertebrate communities that support multibillion dollar reef fishing and tourism industries. Yet reefs are threatened by growing coastal development, climate change, and over-exploitation. A key i...
Virus-host interactions and their roles in coral reef health and disease.
Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S
2017-04-01
Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.
Remote Sensing Tropical Coral Reefs: The View from Above
NASA Astrophysics Data System (ADS)
Purkis, Sam J.
2018-01-01
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis—it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
Remote Sensing Tropical Coral Reefs: The View from Above.
Purkis, Sam J
2018-01-03
Carbonate precipitation has been a common life strategy for marine organisms for 3.7 billion years, as, therefore, has their construction of reefs. As favored by modern corals, reef-forming organisms have typically adopted a niche in warm, shallow, well-lit, tropical marine waters, where they are capable of building vast carbonate edifices. Because fossil reefs form water aquifers and hydrocarbon reservoirs, considerable effort has been dedicated to understanding their anatomy and morphology. Remote sensing has a particular role to play here. Interpretation of satellite images has done much to reveal the grand spatial and temporal tapestry of tropical reefs. Comparative sedimentology, whereby modern environments are contrasted with the rock record to improve interpretation, has been particularly transformed by observations made from orbit. Satellite mapping has also become a keystone technology to quantify the coral reef crisis-it can be deployed not only directly to quantify the distribution of coral communities, but also indirectly to establish a climatology for their physical environment. This article reviews the application of remote sensing to tropical coralgal reefs in order to communicate how this fast-growing technology might be central to addressing the coral reef crisis and to look ahead at future developments in the science.
Connectivity and systemic resilience of the Great Barrier Reef
Wolff, Nicholas H.; Ortiz, Juan C.; Condie, Scott A.; Anthony, Kenneth R. N.; Blackwell, Paul G.; Mumby, Peter J.
2017-01-01
Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem’s systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these ‘robust source reefs’, which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change. PMID:29182630
A Bayesian-Based System to Assess Wave-Driven Flooding Hazards on Coral Reef-Lined Coasts
NASA Astrophysics Data System (ADS)
Pearson, S. G.; Storlazzi, C. D.; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.
2017-12-01
Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, "XBNH") was used to create a large synthetic database for use in a "Bayesian Estimator for Wave Attack in Reef Environments" (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.
Gurney, Georgina G.; Melbourne-Thomas, Jessica; Geronimo, Rollan C.; Aliño, Perry M.; Johnson, Craig R.
2013-01-01
Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems. PMID:24260347
Gurney, Georgina G; Melbourne-Thomas, Jessica; Geronimo, Rollan C; Aliño, Perry M; Johnson, Craig R
2013-01-01
Climate change has emerged as a principal threat to coral reefs, and is expected to exacerbate coral reef degradation caused by more localised stressors. Management of local stressors is widely advocated to bolster coral reef resilience, but the extent to which management of local stressors might affect future trajectories of reef state remains unclear. This is in part because of limited understanding of the cumulative impact of multiple stressors. Models are ideal tools to aid understanding of future reef state under alternative management and climatic scenarios, but to date few have been sufficiently developed to be useful as decision support tools for local management of coral reefs subject to multiple stressors. We used a simulation model of coral reefs to investigate the extent to which the management of local stressors (namely poor water quality and fishing) might influence future reef state under varying climatic scenarios relating to coral bleaching. We parameterised the model for Bolinao, the Philippines, and explored how simulation modelling can be used to provide decision support for local management. We found that management of water quality, and to a lesser extent fishing, can have a significant impact on future reef state, including coral recovery following bleaching-induced mortality. The stressors we examined interacted antagonistically to affect reef state, highlighting the importance of considering the combined impact of multiple stressors rather than considering them individually. Further, by providing explicit guidance for management of Bolinao's reef system, such as which course of management action will most likely to be effective over what time scales and at which sites, we demonstrated the utility of simulation models for supporting management. Aside from providing explicit guidance for management of Bolinao's reef system, our study offers insights which could inform reef management more broadly, as well as general understanding of reef systems.
Cheung, Siu Gin; Wai, Ho Yin; Shin, Paul K S
2010-02-01
Artificial reefs can enhance habitat heterogeneity, especially in seabed degraded by bottom-dredging and trawling. However, the trophodynamics of such reef systems are not well understood. This study provided baseline data on trophic relationships in the benthic environment associated with artificial reefs in late spring and mid summer of subtropical Hong Kong, using fatty acid profiles as an indicator. Data from sediments collected at the reef base, materials from sediment traps deployed on top and bottom of the reefs, total particulate matter from the water column and oyster tissues from reef surface were subjected to principal component analysis. Results showed variations of fatty acid profiles in the total particulate matter, upper sediment trap and oyster tissue samples collected in the two samplings, indicating seasonal, trophodynamic changes within the reef system. The wastes produced by fish aggregating at the reefs can also contribute a source of biodeposits to the nearby benthic environment. Copyright 2009 Elsevier Ltd. All rights reserved.
Spatial distribution of epibenthic molluscs on a sandstone reef in the Northeast of Brazil.
Martinez, A S; Mendes, L F; Leite, T S
2012-05-01
The present study investigated the distribution and abundance of epibenthic molluscs and their feeding habits associated to substrate features (coverage and rugosity) in a sandstone reef system in the Northeast of Brazil. Rugosity, low coral cover and high coverage of zoanthids and fleshy alga were the variables that influenced a low richness and high abundance of a few molluscan species in the reef habitat. The most abundant species were generalist carnivores, probably associated to a lesser offer and variability of resources in this type of reef system, when compared to the coral reefs. The results found in this study could reflect a normal characteristic of the molluscan community distribution in sandstone reefs, with low coral cover, or could indicate a degradation state of this habitat if it is compared to coral reefs, once that the significantly high coverage of fleshy alga has been recognized as a negative indicator of reef ecosystems health.
Forecasts for NOAA Marine Sanctuaries
/Forecast The Gray's Reef Sea Turtle Satellite Tagging Project utilizes satellite transmitter tags to Synopsis/Forecast(0-20nm) Synopsis/Forecast(20-60nm) The Gray's Reef Sea Turtle Satellite Tagging Project utilizes satellite transmitter tags to monitor adult and juvenile loggerhead sea click image for more
The Coral Reef pH-stat: An Important Defense Against Ocean Acidification? (Invited)
NASA Astrophysics Data System (ADS)
Andersson, A. J.; Yeakel, K.; Bates, N.; de Putron, S.; Collins, A.
2013-12-01
Concerns have been raised on how coral reefs will be affected by ocean acidification (OA), but there are currently no direct predictions on how seawater CO2 chemistry and pH within coral reefs might change in response to OA. Projections of future changes in seawater pH and aragonite saturation state have only been applied to open ocean conditions surrounding coral reef environments rather than the reef systems themselves. The seawater CO2 chemistry within heterogenous coral reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the major biogeochemical processes occurring on the reef, i.e., net ecosystem organic carbon production and calcification, which combined act to modify the seawater chemistry. We argue that these processes and coral reefs in general could as a pH-stat, partly regulating seawater pH on the reef and offsetting changes in seawater chemistry imposed by ocean acidification. Based on observations from the Bermuda coral reef, we show that a range of anticipated biogeochemical responses of coral reef communities to OA by the end of this century could partially offset changes in seawater pH by an average of 12% to 24%.
Lidz, Barbara H.; Hine, A.C.; Shinn, Eugene A.; Kindinger, Jack G.
1991-01-01
High-resolution seismic-reflection profiles off the lower Florida Keys reveal a multiple outlier-reef tract system ~0.5 to 1.5 km sea-ward of the bank margin. The system is characterized by a massive, outer main reef tract of high (28 m) unburied relief that parallels the margin and at least two narrower, discontinuous reef tracts of lower relief between the main tract and the shallow bank-margin reefs. The outer tract is ~0.5 to 1 km wide and extends a distance of ~57 km. A single pass divides the outer tract into two main reefs. The outlier reefs developed on antecedent, low-gradient to horizontal offbank surfaces, interpreted to be Pleistocene beaches that formed terracelike features. Radiocarbon dates of a coral core from the outer tract confirm a pre-Holocene age. These multiple outlier reefs represent a new windward-margin model that presents a significant, unique mechanism for progradation of carbonate platforms during periods of sea-level fluctuation. Infilling of the back-reef terrace basins would create new terraced promontories and would extend or "step" the platform seaward for hundreds of metres. Subsequent outlier-reef development would produce laterally accumulating sequences.
Mapping seagrass beds and coral reefs in the coastal region of Vietnam using VNREDSAT-1 data
NASA Astrophysics Data System (ADS)
Lau, K. V.; Chen, C. F.; Nguyen, S. T.; Chen, C. R.; Tong Phuoc, H. S.; Nguyen, H. H.
2015-12-01
Seagrass beds and coral reefs are two important ecosystems in the coastal zone. They play an important role to protect and shelter various marine organisms. Both seagrass beds and coral reefs could prevent the coastline from erosion. While seagrass stabilizes sediments and acts as a biofilter, coral reefs can control carbon dioxide in the ocean water. Besides, seagrass also provides direct food for many fish and marine animals. Therefore, mapping seagrass beds and coral reefs is very important for coastal management and conservation. In May 2013, Vietnam launched the first satellite for earth observations, called Vietnam Natural Resources, Environment and Disaster Monitoring Satellite (VNREDSAT-1). It is a great opportunity for environmental monitoring in the country using the data from this satellite. The objective of this study is to use the VNREDSAT-1 data to map seagrass beds and coral reefs in the coastal region of Ninh Hai district, Ninh Thuan province, Vietnam, where the seagrass still remains in good a condition. We processed the VNREDSAT-1 image through four steps: (1) Atmospheric correction using Second Simulation of the Satellite Signal in the Solar Spectrum radiative transfer model (6S), (2) Sun glint removal by using Hedley method, (3) Water column correction using the depth-variant index (DII) proposed by Lyzenga, and (4) Image classification using the maximum likelihood algorithm. The mapping results verified with the ground reference data showed a good overall accuracy of 75% and Kappa coefficient of 0.7. The total area of seagrass beds was approximately 323.09 ha, which mainly distributed in My Hoa and Thai An villages. The total area of coral reefs was approximately 564.42 ha, located along the coast and on outer area to seagrass and shoreline reefs. This study demonstrates the applicability of VNREDSAT-1 for underwater habitat monitoring. The results could be useful for natural resources managers to devise strategies for management and conservation of underwater ecosystems in Vietnam.
A Bayesian-based system to assess wave-driven flooding hazards on coral reef-lined coasts
Pearson, S. G.; Storlazzi, Curt; van Dongeren, A. R.; Tissier, M. F. S.; Reniers, A. J. H. M.
2017-01-01
Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic, “XBNH”) was used to create a large synthetic database for use in a “Bayesian Estimator for Wave Attack in Reef Environments” (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs that are flooding indicators, and was validated for a number of available field cases. It was found that, in order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in early warning systems or risk assessment studies, and can be used to make projections about how wave-induced flooding on coral reef-lined coasts may change due to climate change.
NASA Astrophysics Data System (ADS)
Gacutan, J.; Vila-Concejo, A.; Nothdurft, L. D.; Fellowes, T. E.; Cathey, H. E.; Opdyke, B. N.; Harris, D. L.; Hamylton, S.; Carvalho, R. C.; Byrne, M.; Webster, J. M.
2017-10-01
Sediment transport is a key driver of reef zonation and biodiversity, where an understanding of sediment dynamics gives insights into past reef processes and allows the prediction of geomorphic responses to changing environmental conditions. However, modal conditions within the back-reef seldom promote sediment transport, hence direct observation is inherently difficult. Large benthic foraminifera (LBF) have previously been employed as 'tracers' to infer sediment transport pathways on coral reefs, as their habitat is largely restricted to the algal flat and post-mortem, their calcium carbonate test is susceptible to sediment transport forces into the back-reef. Foraminiferal test abundance and post-depositional test alteration have been used as proxies for sediment transport, although the resolution of these measures becomes limited by low test abundance and the lack of variation within test alteration. Here we propose the novel use of elemental ratios as a proxy for sediment transport. Two species, Baculogypsina sphaerulata and Calcarina capricornia, were analysed using a taphonomic index within One Tree and Lady Musgrave reefs, Great Barrier Reef (Australia). Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine Mg/Ca and Sr/Ca and these ratios were compared with taphonomic data. Decreases in test Mg/Ca accompany increases in Sr/Ca in specimens from algal-flat to lagoonal samples in both species, mirroring trends indicated by taphonomic values, therefore indicating a relationship with test alteration. To delineate mechanisms driving changes in elemental ratios, back-scattered electron (BSE) images, elemental mapping and in situ quantitative spot analyses by electron microprobe microanalysis (EPMA) using wavelength dispersive X-ray spectrometers (WDS) were performed on un-altered algal flat and heavily abraded tests for both species. EPMA analyses reveal heterogeneity in Mg/Ca between spines and the test wall, implying the loss of appendages results in a decrease in Mg/Ca. BSE imaging and WDS elemental mapping provided evidence for cementation, facilitated by microbial-boring as the primary cause of increasing Sr/Ca. These novel proxies hold advantages over taphonomic measures and further provide a rapid method to infer sediment transport pathways within back-reef environments.
Great Barrier Reef, Queensland, Australia
NASA Technical Reports Server (NTRS)
1991-01-01
The Great Barrier Reef of Queensland, Australia extends for roughly 2,000 km along the northeast coast of Australia and is made up of thousands of individual reefs which define the edge of the Continental shelf. Swan Reef, the southern part of the reef system, is seen in this view. Water depths around the reefs are quite shallow (less than 1 to 36 meters) but only a few kilometers offshore, water depths can reach 1,000 meters.
The Crew Earth Observations Experiment: Earth System Science from the ISS
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin
2007-01-01
This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.
Simulating reef response to sea-level rise at Lizard Island: A geospatial approach
NASA Astrophysics Data System (ADS)
Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.
2014-10-01
Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards at a rate commensurate with the rate of rise, thereby maintaining their original profile and position relative to the sea surface and the leeward and lagoonal sites with a low accretion rate maintain a similar profile but slowly gain depth relative to sea-level. The result of this variable response is that elevated features of the reef platform, such as reef patches and crests tend to become more pronounced.
NOAA Photo Library - Navigating the Collection
exotic locations such as the People's Republic of China, the Red Sea region, the catacombs of Lima, and boatload of fins, fur, and feathers. Whales, seals, sea lions, sea birds, and also the occasional bird , and Red Sea reefs are found in this collection. Also disturbing images of coral reef bleaching, dead
Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.
Price, Samantha A; Tavera, Jose J; Near, Thomas J; Wainwright, Peter C
2013-02-01
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow-water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef-dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine-scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Ampou, Eghbert Elvan; Ouillon, Sylvain; Iovan, Corina; Andréfouët, Serge
2018-06-01
In Bunaken Island (Indonesia), a time-series of very high resolution (2-4m) satellite imagery was used to draw the long-term dynamics of shallow reef flat habitats from 2001 to 2015. Lack of historical georeferenced ground-truth data oriented the analysis towards a scenario-approach based on the monitoring of selected unambiguously-changing habitat polygons characterized in situ in 2014 and 2015. Eight representative scenarios (coral colonization, coral loss, coral stability, and sand colonization by seagrass) were identified. All occurred simultaneously in close vicinity, precluding the identification of a single general cause of changes that could have affected the whole reef. Likely, very fine differences in reef topography, exposure to wind/wave and sea level variations were responsible for the variety of trajectories. While trajectories of reef habitats is a way to measure resilience and coral recovery, here, the 15-year time-series was too short to be able to conclude on the resilience of Bunaken reefs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Macroalgal herbivory on recovering versus degrading coral reefs
NASA Astrophysics Data System (ADS)
Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.
2014-06-01
Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change with context, differing between systems that are regenerating versus degrading.
36 CFR 7.73 - Buck Island Reef National Monument.
Code of Federal Regulations, 2013 CFR
2013-07-01
...), seashells, corals, dead coral, sea fans, sponges and all associated reef invertebrates, plants, fruits and... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Buck Island Reef National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.73 Buck Island Reef National Monument...
36 CFR 7.73 - Buck Island Reef National Monument.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), seashells, corals, dead coral, sea fans, sponges and all associated reef invertebrates, plants, fruits and... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Buck Island Reef National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.73 Buck Island Reef National Monument...
36 CFR 7.73 - Buck Island Reef National Monument.
Code of Federal Regulations, 2014 CFR
2014-07-01
...), seashells, corals, dead coral, sea fans, sponges and all associated reef invertebrates, plants, fruits and... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Buck Island Reef National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.73 Buck Island Reef National Monument...
36 CFR 7.73 - Buck Island Reef National Monument.
Code of Federal Regulations, 2010 CFR
2010-07-01
...), seashells, corals, dead coral, sea fans, sponges and all associated reef invertebrates, plants, fruits and... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Buck Island Reef National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.73 Buck Island Reef National Monument...
36 CFR 7.73 - Buck Island Reef National Monument.
Code of Federal Regulations, 2011 CFR
2011-07-01
...), seashells, corals, dead coral, sea fans, sponges and all associated reef invertebrates, plants, fruits and... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Buck Island Reef National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.73 Buck Island Reef National Monument...
Mapping the Rainforest of the Sea: Global Coral Reef Maps for Global Conservation
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2006-01-01
Coral reefs are the center of marine biodiversity, yet are under threat with an estimated 60% of coral reef habitats considered at risk by the World Resources Institute. The location and extent of coral reefs in the world are the basic information required for resource management and as a baseline for monitoring change. A NASA sponsored partnership between remote sensing scientists, international agencies and NGOs, has developed a new generation of global reef maps based on data collected by satellites. The effort, dubbed the Millennium Coral Reef Map aims to develop new methods for wide distribution of voluminous satellite data of use to the conservation and management communities. We discuss the tradeoffs between remote sensing data sources, mapping objectives, and the needs for conservation and resource management. SeaWiFS data were used to produce a composite global shallow bathymetry map at 1 km resolution. Landsat 7/ETM+ data acquisition plans were modified to collect global reefs and new operational methods were designed to generate the firstever global coral reef geomorphology map. We discuss the challenges encountered to build these databases and in implementing the geospatial data distribution strategies. Conservation applications include a new assessment of the distribution of the world s marine protected areas (UNEPWCMC), improved spatial resolution in the Reefs at Risk analysis for the Caribbean (WRI), and a global basemap for the Census of Marine Life's OBIS database. The Millennium Coral Reef map and digital image archive will pay significant dividends for local and regional conservation projects around the globe. Complete details of the project are available at http://eol.jsc.nasa.gov/reefs.
Origin and evolution of the Candlelight Reef-Sand Clay system, St. Croix.
Gerhard, L.C.
1981-01-01
Candlelight reef is the buttressing western terminus of the northeastern St. Croix reef system, caused by a combination of paleotopography and longshore drift which created a stable pile of detrital material at this position. Reef colonization proceeded eastward along the former slope break on the limestone terrace; turbid gyres along the eastern margin of the former Southgate drainage prevented further westward colonization. The presence of detrital cobbles in Sand Cay and Candlelight reef is explained by this model. An unconformity between underlying fine-grained quartzose rocks and overlying carbonates, need represent only an eustatic sea level rise rather than any fundamental tectonic event.-from Author
Behavior of a wave-driven buoyant surface jet on a coral reef
Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.
2017-01-01
A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.
Behavior of a wave-driven buoyant surface jet on a coral reef
NASA Astrophysics Data System (ADS)
Herdman, Liv M. M.; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.
2017-05-01
A wave-driven surface-buoyant jet exiting a coral reef was studied in order to quantify the amount of water reentrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and alongshore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of alongshore velocity to jet velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.
NASA Astrophysics Data System (ADS)
Jordán-Garza, A. G.; González-Gándara, C.; Salas-Pérez, J. J.; Morales-Barragan, A. M.
2017-04-01
Corals on the reef corridor of the southwestern Gulf of Mexico have evolved on a terrigenous shallow continental shelf under the influence of several natural river systems. As a result, water turbidity on these reefs can be high, with visibility as low as <1 m, depending on reef location and season. Using a presence-absence species database from field surveys, literature search, and satellite data on sea surface temperature, turbidity and chlorophyll-a, the coral species composition and environmental variables were analyzed for the three main reef systems of the reef corridor of the southwestern Gulf of Mexico. Completeness of the data set was assessed using species accumulation curves and non-parametric estimators of species richness. Differences in coral assemblages' composition between the reef systems were investigated using univariate (ANOVA) and multivariate (nMDS, ANOSIM, SIMPER) analyses and the relationship between the assemblages and environmental data was assessed using a forward selection process in canonical correspondence analysis (CCA) to eliminate non-significant environmental variables. The northern and central Veracruz reef systems share a similar number of coral species (p=0.78 mult. comp.) and both showed higher species richness than the southern system (p<0.001 mult. comp.). In terms of the assemblages' structure, significant differences were found (ANOSIM R=0.3, p=0.001) with larger average dissimilitude between north-south (75.4% SIMPER) and central-south (74.2%) than north-central (27%) comparisons. Only environmental variables related to water turbidity and productivity were significant on the final CCA configuration, which showed a gradient of increasing turbidity from north to south. Reef geomorphology and the effect of turbidity help explain differences in coral assemblages' composition. More studies are necessary to establish if turbidity could function as a refuge for future environmental stress. Each Veracruz reef system is at the same time unique and shares a pool of coral species. To protect these ecosystems it is necessary to effectively manage water quality and consider coral diversity on the reef corridor of the southwestern Gulf of Mexico.
2017-12-08
Great Barrier Reef - August 8th, 1999 Description: What might be mistaken for dinosaur bones being unearthed at a paleontological dig are some of the individual reefs that make up the Great Barrier Reef, the world's largest tropical coral reef system. The reef stretches more than 2,000 kilometers (1,240 miles) along the coast of Queensland, Australia. It supports astoundingly complex and diverse communities of marine life and is the largest structure on the planet built by living organisms. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Barrett, Samuel; Webster, Jody
2016-04-01
Numerical simulation of the stratigraphy and sedimentology of carbonate systems (carbonate forward stratigraphic modelling - CFSM) provides significant insight into the understanding of both the physical nature of these systems and the processes which control their development. It also provides the opportunity to quantitatively test conceptual models concerning stratigraphy, sedimentology or geomorphology, and allows us to extend our knowledge either spatially (e.g. between bore holes) or temporally (forwards or backwards in time). The later is especially important in determining the likely future development of carbonate systems, particularly regarding the effects of climate change. This application, by its nature, requires successful simulation of carbonate systems on short time scales and at high spatial resolutions. Previous modelling attempts have typically focused on the scales of kilometers and kilo-years or greater (the scale of entire carbonate platforms), rather than at the scale of centuries or decades, and tens to hundreds of meters (the scale of individual reefs). Previous work has identified limitations in common approaches to simulating important reef processes. We present a new CFSM, Reef Sedimentary Accretion Model (ReefSAM), which is designed to test new approaches to simulating reef-scale processes, with the aim of being able to better simulate the past and future development of coral reefs. Four major features have been tested: 1. A simulation of wave based hydrodynamic energy with multiple simultaneous directions and intensities including wave refraction, interaction, and lateral sheltering. 2. Sediment transport simulated as sediment being moved from cell to cell in an iterative fashion until complete deposition. 3. A coral growth model including consideration of local wave energy and composition of the basement substrate (as well as depth). 4. A highly quantitative model testing approach where dozens of output parameters describing the reef morphology and development are compared with observational data. Despite being a test-bed and work in progress, ReefSAM was able to simulate the Holocene development of One Tree Reef in the Southern Great Barrier Reef (Australia) and was able to improve upon previous modelling attempts in terms of both quantitative measures and qualitative outputs, such as the presence of previously un-simulated reef features. Given the success of the model in simulating the Holocene development of OTR, we used it to quantitatively explore the effect of basement substrate depth and morphology on reef maturity/lagoonal filling (as discussed by Purdy and Gischer 2005). Initial results show a number of non-linear relationships between basement substrate depth, lagoonal filling and volume of sand produced on the reef rims and deposited in the lagoon. Lastly, further testing of the model has revealed new challenges which are likely to manifest in any attempt at reef-scale simulation. Subtly different sets of energy direction and magnitude input parameters (different in each time step but with identical probability distributions across the entire model run) resulted in a wide range of quantitative model outputs. Time step length is a likely contributing factor and the results of further testing to address this challenge will be presented.
Coral Calcification Across a Natural Gradient in Ocean Acidification
NASA Astrophysics Data System (ADS)
Cohen, A. L.; Brainard, R. E.; Young, C.; Shamberger, K. E.; McCorkle, D. C.; Feely, R. A.; Mcleod, E.; Cantin, N.; Rose, K.; Lohmann, G. P.
2011-12-01
Much of our understanding of the impact of ocean acidification on coral calcification comes from laboratory manipulation experiments in which corals are reared under a range of seawater pH and aragonite saturation states (μar) equivalent to those projected for the next hundred years. In general, experiments show a consistently negative impact of acidification on coral calcification, leading to predictions of mass coral reef extinctions by dissolution as natural rates of carbonate erosion exceed the rates at which corals and other reef calcifiers can replace it. The tropical oceans provide a natural laboratory within which to test hypotheses about the longer term impact and adaptive potential of corals to acidification of the reef environment. Here we report results of a study in which 3-D CT scan and imaging techniques were used to quantify annual rates of calcification by conspecifics at 12 reefs sites spanning a natural gradient in ocean acidification. In situ μar calculated from alkalinity and DIC measurements of reef seawater ranged from less than 2.7 on an eastern Pacific Reef to greater than 4.0 in the central Red Sea. No correlation between μar and calcification was observed across this range. Corals living on low μar reefs appear to be calcifying as fast, sometimes faster than conspecifics living on high μar reefs. We used total lipid and tissue thickness to index the energetic status of colonies collected at each of our study sites. Our results support the hypothesis that energetics plays a key role in the coral calcification response to ocean acidification. Indeed, the true impact of acidification on coral reefs will likely be felt as temperatures rise and the ocean becomes more stratified, depleting coral energetic reserves through bleaching and reduced nutrient delivery to oceanic reefs.
Evaluation and application of new AVIRIS data for the study of coral reefs in Hawaiian Islands
NASA Astrophysics Data System (ADS)
Wei, J.; Lee, Z.
2017-12-01
During the HyspIRI Hawaii campaign in early 2017, we collected hyperspectral remote sensing reflectance over coral reef environments in Kaneohe Bay in Oahu and the coastal waters of Maui Island. Based on in-situ measurements, we evaluated the data quality of reflectance measurements by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS). Further, these data were used to refine the remote sensing algorithms for identification of live corals, water bathymetry, and water clarity for the entire flight lines. Our results suggested great improvement in our understanding and capabilities of using HyspIRI-like data to observe and monitor coral reef environments.
Longo, G O; Floeter, S R
2012-10-01
This study compared remote underwater video and traditional direct diver observations to assess reef fish feeding impact on benthos across multiple functional groups within different trophic categories (e.g. herbivores, zoobenthivores and omnivores) and in two distinct reef systems: a subtropical rocky reef and a tropical coral reef. The two techniques were roughly equivalent, both detecting the species with higher feeding impact and recording similar bite rates, suggesting that reef fish feeding behaviour at the study areas are not strongly affected by the diver's presence. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea.
Eyal, Gal; Wiedenmann, Jörg; Grinblat, Mila; D'Angelo, Cecilia; Kramarsky-Winter, Esti; Treibitz, Tali; Ben-Zvi, Or; Shaked, Yonathan; Smith, Tyler B; Harii, Saki; Denis, Vianney; Noyes, Tim; Tamir, Raz; Loya, Yossi
2015-01-01
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50-60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40-100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging.
Social interactions among grazing reef fish drive material flux in a coral reef ecosystem.
Gil, Michael A; Hein, Andrew M
2017-05-02
In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This "behavioral coupling" causes bursts of feeding activity that account for up to 68% of the fish community's consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.
Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor
Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas
2013-01-01
Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921
NASA Astrophysics Data System (ADS)
Cobleigh, K.
2016-02-01
Coral reefs are threatened by increasing sea surface temperatures and decreasing surface seawater pH. Although numerous experimental studies have examined the effects of these global scale stressors on corals, few have quantified the effects of temperature and acidification on coral skeletal morphology. We conducted controlled laboratory experiments to investigate the effects of temperature (25, 28, 32°C) and CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) on skeletal morphology of the highly resilient Caribbean reef-building coral Siderastrea siderea over a 95-day interval. Post-treatment S. siderea corallites from nearshore, backreef, and forereef colonies were imaged via stereo microscopy to evaluate impact of warming and acidification on corallite height and infilling. Both an increase and decrease in temperature relative to the control (i.e., near-present-day temperatures) resulted in increased corallite height but decreased skeletal infilling. In contrast, corals reared under the lowest (i.e., pre-industrial) and highest pCO2 treatments (i.e., extreme pCO2) exhibited both decreased corallite height and skeletal infilling relative to the control. We observed no difference in corallite height or infilling across reef zones, either within or across treatments. Interestingly, the warming projected for the end of the 21st century (32°C) resulted in increased corallite height and reduced corallite infilling. Acidification projected for the same interval (pCO2 = 604 µatm) also resulted in increased corallite height and decreased infilling. Collectively, our results suggest that these two global stressors will result in S. siderea corallites that are taller yet less infilled by the end of the 21st century. Changes in S. siderea arising from warming and acificiation may exacerbate observed declines in coral health across Caribbean reef systems.
Design for perception management system on offshore reef based on integrated management
NASA Astrophysics Data System (ADS)
Peng, Li; Qiankun, Wang
2017-06-01
According to an analysis of actual monitoring demands using integrated management and information technology, a quad monitoring system is proposed to provide intelligent perception of offshore reefs, including indoor building environments, architectural structures, and facilities and perimeter integrity. This will strengthen the ability to analyse and evaluate offshore reef operation and health, promoting efficiency in decision making.
Checklist of fishes from madagascar reef, campeche bank, méxico.
Zarco Perello, Salvador; Moreno Mendoza, Rigoberto; Simões, Nuno
2014-01-01
This study presents the first list of fish species from Madagascar Reef, Campeche Bank, Gulf of México. Field surveys and literature review identified 54 species belonging to 8 orders, 30 families and 43 genera, comprising both conspicuous and cryptic fishes. Species richness was lower at this reef site compared to reefs in the Mexican Caribbean, Veracruz or Tuxpan, but was similar to other reefs in the same region. Species composition was a mixture of species present in all the reef systems of the Mexican Atlantic. Hypoplectrusecosur was recorded here for the first time in the Gulf of Mexico, Mycteropercamicrolepis, Equetuslanceolatus and Chaetodipterusfaber were new records for the reefs of the Campeche Bank, Elacatinusxanthiprora was recorded for the second time in Mexico and expanded its known distribution westwards from Alacranes Reef and Sanopusreticulatus, endemic of the Yucatan state, was recorded here for the first time on a reef.
Checklist of Fishes from Madagascar Reef, Campeche Bank, México
2014-01-01
Abstract This study presents the first list of fish species from Madagascar Reef, Campeche Bank, Gulf of México. Field surveys and literature review identified 54 species belonging to 8 orders, 30 families and 43 genera, comprising both conspicuous and cryptic fishes. Species richness was lower at this reef site compared to reefs in the Mexican Caribbean, Veracruz or Tuxpan, but was similar to other reefs in the same region. Species composition was a mixture of species present in all the reef systems of the Mexican Atlantic. Hypoplectrus ecosur was recorded here for the first time in the Gulf of Mexico, Mycteroperca microlepis, Equetus lanceolatus and Chaetodipterus faber were new records for the reefs of the Campeche Bank, Elacatinus xanthiprora was recorded for the second time in Mexico and expanded its known distribution westwards from Alacranes Reef and Sanopus reticulatus, endemic of the Yucatan state, was recorded here for the first time on a reef. PMID:24891834
Multi-site evaluation of IKONOS data for classification of tropical coral reef environments
Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.
2003-01-01
Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.
Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.
Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J
2014-06-15
A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Humphries, Austin T.; LaPeyre, Megan K.; Kimball, Matthew E.; Rozas, Lawrence P.
2011-01-01
Structurally complex habitats are often associated with more diverse and abundant species assemblages in both aquatic and terrestrial ecosystems. Biogenic reefs formed by the eastern oyster (Crassostrea virginica) are complex in nature and are recognized for their potential habitat value in estuarine systems along the US Atlantic and Gulf of Mexico coasts. Few studies, however, have examined the response of nekton to structural complexity within oyster reefs. We used a quantitative sampling technique to examine how the presence and complexity of experimental oyster reefs influence the abundance, biomass, and distribution of nekton by sampling reefs 4 months and 16 months post-construction. Experimental oyster reefs were colonized immediately by resident fishes and decapod crustaceans, and reefs supported a distinct nekton assemblage compared to mud-bottom habitat. Neither increased reef complexity, nor age of the experimental reef resulted in further changes in nekton assemblages or increases in nekton abundance or diversity. The presence of oyster reefs per se was the most important factor determining nekton usage.
Historical Trends in pH and Carbonate Biogeochemistry on the Belize Mesoamerican Barrier Reef System
NASA Astrophysics Data System (ADS)
Fowell, S. E.; Foster, G. L.; Ries, J. B.; Castillo, K. D.; de la Vega, E.; Tyrrell, T.; Donald, H. K.; Chalk, T. B.
2018-04-01
Coral reefs are important ecosystems that are increasingly negatively impacted by human activities. Understanding which anthropogenic stressors play the most significant role in their decline is vital for the accurate prediction of future trends in coral reef health and for effective mitigation of these threats. Here we present annually resolved boron and carbon isotope measurements of two cores capturing the past 90 years of growth of the tropical reef-building coral Siderastrea siderea from the Belize Mesoamerican Barrier Reef System. The pairing of these two isotope systems allows us to parse the reconstructed pH change into relative changes in net ecosystem productivity and net ecosystem calcification between the two locations. This approach reveals that the relationship between seawater pH and coral calcification, at both a colony and ecosystem level, is complex and cannot simply be modeled as linear or even positive. This study also underscores both the utility of coupled δ11B-δ13C measurements in tracing past biogeochemical cycling in coral reefs and the complexity of this cycling relative to the open ocean.
Kayal, Mohsen; Vercelloni, Julie; Lison de Loma, Thierry; Bosserelle, Pauline; Chancerelle, Yannick; Geoffroy, Sylvie; Stievenart, Céline; Michonneau, François; Penin, Lucie; Planes, Serge; Adjeroud, Mehdi
2012-01-01
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Bouckaert, Emliy K.; Auer, Nancy A.; Roseman, Edward F.; James Boase,
2014-01-01
Lake sturgeon (Acipenser fulvescens) were historically abundant in the St. Clair – Detroit River System (SCDRS), a 160 km river/channel network. In the SCDRS, lake sturgeon populations have been negatively affected by the loss/degradation of natural spawning habitat. To address habitat loss for lake sturgeon and other species, efforts are underway to restore spawning substrate by constructing artificial reefs. The main objective of this study was to conduct post-construction monitoring of lake sturgeon egg deposition and larval emergence near two of these artificial reefs: Fighting Island Reef (FIR) in the Detroit River, and Middle Channel Reef in the St. Clair River. An additional site in the St. Clair River where lake sturgeon spawn on a coal clinker bed was also investigated. From 2010 to 2012, viable eggs and larvae were collected from all of these reefs, indicating that conditions are suitable for egg deposition, incubation, and larval emergence. In the St. Clair River, the results indicate the likelihood of other spawning sites upstream of these artificial reef sites.
Horta-Puga, Guillermo
2017-03-15
The fate of trace elements in reef depositional environments has not been extensively investigated. The aim of this study was to determine the partitioning of Pb in sediments of the Veracruz Reef System, and its relation to local environmental sources. Lead was determined in four geochemical fractions: exchangeable (3.8±0.4μgg -1 ), carbonate (57.0±13.6μgg -1 ), organic matter (2.0±0.9μgg -1 ), and mineral (17.5±5.4μgg -1 ). For the mineral fraction, lead concentrations were higher in those reefs influenced by river discharge or by long-distance transport of terrigenous sediments. The bioavailable concentration of lead (range: 21.9-85.6μgg -1 ) indicates that the Veracruz Reef System is a moderately polluted area. As expected, the carbonate fraction contained the highest proportion of Pb (70%), and because the reef framework is largely made up of by biogenic carbonate sediments, hence, it is therefore the most important repository of Pb in coral reef depositional environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrodynamic response of a fringing coral reef to a rise in mean sea level
NASA Astrophysics Data System (ADS)
Taebi, Soheila; Pattiaratchi, Charitha
2014-07-01
Ningaloo Reef, located along the northwest coast of Australia, is one of the longest fringing coral reefs in the world extending ~300 km. Similar to other fringing reefs, it consists of a barrier reef ~1-6 km offshore with occasional gaps, backed by a shallow lagoon. Wave breaking on the reef generates radiation stress gradients that produces wave setup across the reef and lagoon and mean currents across the reef. A section of Ningaloo Reef at Sandy Bay was chosen as the focus of an intense 6-week field experiment and numerical simulation using the wave model SWAN coupled to the three-dimensional circulation model ROMS. The physics of nearshore processes such as wave breaking, wave setup and mean flow across the reef was investigated in detail by examining the various momentum balances established in the system. The magnitude of the terms and the distance of their peaks from reef edge in the momentum balance were sensitive to the changes in mean sea level, e.g. the wave forces decreased as the mean water depth increased (and hence, wave breaking dissipation was reduced). This led to an increase in the wave power at the shoreline, a slight shift of the surf zone to the lee side of the reef and changes in the intensity of the circulation. The predicted hydrodynamic fields were input into a Lagrangian particle tracking model to estimate the transport time scale of the reef-lagoon system. Flushing time of the lagoon with the open ocean was computed using two definitions in renewal of semi-enclosed water basins and revealed the sensitivity of such a transport time scale to methods. An increase in the lagoon exchange rate at smaller mean sea-level rise and the decrease at higher mean sea-level rise was predicted through flushing time computed using both methods.
Variability in reef connectivity in the Coral Triangle
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Kleypas, J. A.; Castruccio, F. S.; Watson, J. R.; Curchitser, E. N.
2015-12-01
The Coral Triangle (CT) is not only the global center of marine biodiversity, it also supports the livelihoods of millions of people. Unfortunately, it is also considered the most threatened of all reef regions, with rising temperature and coral bleaching already taking a toll. Reproductive connectivity between reefs plays a critical role in the reef's capacity to recover after such disturbances. Thus, oceanographic modeling efforts to understand patterns of reef connectivity are essential to the effective design of a network of Marine Protected Areas (MPAs) to conserve marine ecosystems in the Coral Triangle. Here, we combine a Regional Ocean Modeling System developed for the Coral Triangle (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of coral larval transport between reefs. A 47-year hindcast simulation (1960-2006) was used to investigate the variability in larval transport of a broadcasting coral following mass spawning events in April and September. Potential connectivity between reefs was highly variable and stochastic from year to year, emphasizing the importance of decadal or longer simulations in identifying connectivity patterns, key source and sink regions, and thus marine management targets for MPAs. The influence of temperature on realized connectivity (future work) may add further uncertainty to year-to-year patterns of connectivity between reefs. Nonetheless, the potential connectivity results we present here suggest that although reefs in this region are primarily self-seeded, rare long-distance dispersal may promote recovery and genetic exchange between reefs in the region. The spatial pattern of "subpopulations" based solely on the physical drivers of connectivity between reefs closely match regional patterns of biodiversity, suggesting that physical barriers to larval dispersal may be a key driver of reef biodiversity. Finally, 21st Century simulations driven by the Community Earth System Model (CESM) suggest that these major barriers to larval dispersal persist into the future under 8.5 W/m2 of climate forcing, despite some regional changes in connectivity between reefs.
NASA Astrophysics Data System (ADS)
Eggertsen, L.; Ferreira, C. E. L.; Fontoura, L.; Kautsky, N.; Gullström, M.; Berkström, C.
2017-09-01
Seascape connectivity is regarded essential for healthy reef fish communities in tropical shallow systems. A number of reef fish species use separate adult and nursery habitats, and hence contribute to nutrient and energy transfer between habitats. Seagrass beds and mangroves often constitute important nursery habitats, with high structural complexity and protection from predation. Here, we investigated if reef fish assemblages in the tropical south-western Atlantic demonstrate ontogenetic habitat connectivity and identify possible nurseries on three reef systems along the eastern Brazilian coast. Fish were surveyed in fore reef, back reef, Halodule wrightii seagrass beds and seaweed beds. Seagrass beds contained lower abundances and species richness of fish than expected, while Sargassum-dominated seaweed beds contained significantly more juveniles than all other habitats (average juvenile fish densities: 32.6 per 40 m2 in Sargassum beds, 11.2 per 40 m2 in back reef, 10.1 per 40 m2 in fore reef, and 5.04 per 40 m2 in seagrass beds), including several species that are found in the reef habitats as adults. Species that in other regions worldwide (e.g. the Caribbean) utilise seagrass beds as nursery habitats were here instead observed in Sargassum beds or back reef habitats. Coral cover was not correlated to adult fish distribution patterns; instead, type of turf was an important variable. Connectivity, and thus pathways of nutrient transfer, seems to function differently in east Brazil compared to many tropical regions. Sargassum-dominated beds might be more important as nurseries for a larger number of fish species than seagrass beds. Due to the low abundance of structurally complex seagrass beds we suggest that seaweed beds might influence adult reef fish abundances, being essential for several keystone species of reef fish in the tropical south-western Atlantic.
NASA Astrophysics Data System (ADS)
Alldredge, A. L.; King, J. M.
2009-12-01
Zooplankton were 3-8 times more abundant during the day near the surface than elsewhere in the water column over a 1-2.4 m deep back reef in Moorea, French Polynesia. Zooplankton were also significantly more abundant near the surface at night although gradients were most pronounced under moonlight. Zooplankton in a unidirectional current became concentrated near the surface within 2 m of departing a well-mixed trough immediately behind the reef crest, indicating that upward swimming behavior, rather than near-bottom depletion by reef planktivores, was the proximal cause of these gradients. Zooplankton were highly enriched near the surface before and after a full lunar eclipse but distributed evenly throughout the water column during the eclipse itself supporting light as a proximal cue for the upward swimming behavior of many taxa. This is the first investigation of the vertical distribution of zooplankton over a shallow back reef typical of island barrier reef systems common around the world. Previous studies on deeper fringing reefs found zooplankton depletion near the bottom but no enrichment aloft. In Moorea, where seawater is continuously recirculated out the lagoon and back across the reef crest onto the back reef, selection for upward swimming behavior may be especially strong, because the surface serves both as a refuge from predation and an optimum location for retention within the reef system. Planktivorous fish and corals that can forage or grow even marginally higher in the water column might have a substantial competitive advantage over those nearer the bottom on shallow reefs. Zooplankton abundance varied more over a few tens of centimeters vertical distance than it did between seasons or even between day and night indicating that great care must be taken to accurately assess the availability of zooplankton as food on shallow reefs.
NASA Astrophysics Data System (ADS)
Hill, Nicole A.; Lucieer, Vanessa; Barrett, Neville S.; Anderson, Tara J.; Williams, Stefan B.
2014-06-01
Management of the marine environment is often hampered by a lack of comprehensive spatial information on the distribution of diversity and the bio-physical processes structuring regional ecosystems. This is particularly true in temperate reef systems beyond depths easily accessible to divers. Yet these systems harbor a diversity of sessile life that provide essential ecosystem services, sustain fisheries and, as with shallower ecosystems, are also increasingly vulnerable to anthropogenic impacts and environmental change. Here we use cutting-edge tools (Autonomous Underwater Vehicles and ship-borne acoustics) and analytical approaches (predictive modelling) to quantify and map these highly productive ecosystems. We find the occurrence of key temperate-reef biota can be explained and predicted using standard (depth) and novel (texture) surrogates derived from multibeam acoustic data, and geographic surrogates. This suggests that combinations of fine-scale processes, such as light limitation and habitat complexity, and broad-scale processes, such as regional currents and exposure regimes, are important in structuring these diverse deep-reef communities. While some dominant habitat forming biota, including canopy algae, were widely distributed, others, including gorgonians and sea whips, exhibited patchy and restricted distributions across the reef system. In addition to providing the first quantitative and full coverage maps of reef diversity for this area, our modelling revealed that offshore reefs represented a regional diversity hotspot that is of high ecological and conservation value. Regional reef systems should not, therefore, be considered homogenous units in conservation planning and management. Full-coverage maps of the predicted distribution of biota (and associated uncertainty) are likely to be increasingly valuable, not only for conservation planning, but in the ongoing management and monitoring of these less-accessible ecosystems.
Assessing Coral Reefs on a Pacific-Wide Scale Using the Microbialization Score
McDole, Tracey; Nulton, James; Barott, Katie L.; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O.; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A.; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J.; Brainard, Russell E.; Rohwer, Forest
2012-01-01
The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing. PMID:22970122
Assessing coral reefs on a Pacific-wide scale using the microbialization score.
McDole, Tracey; Nulton, James; Barott, Katie L; Felts, Ben; Hand, Carol; Hatay, Mark; Lee, Hochul; Nadon, Marc O; Nosrat, Bahador; Salamon, Peter; Bailey, Barbara; Sandin, Stuart A; Vargas-Angel, Bernardo; Youle, Merry; Zgliczynski, Brian J; Brainard, Russell E; Rohwer, Forest
2012-01-01
The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change) have been identified, the mechanism(s) of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.
NASA Astrophysics Data System (ADS)
Kourafalou, V. H.; Androulidakis, Y. S.; Kang, H.; Smith, R. H.; Valle-Levinson, A.
2018-07-01
The Pulley Ridge and Dry Tortugas coral reefs are among the most pristine, but also fragile, marine ecosystems of the continental United States. Understanding connectivity processes between them and with surrounding shelf and deep areas is fundamental for their management. This study focuses on the physical processes related to the connectivity of these reefs. Unprecedented in situ time series were used at these specific reef locations, together with satellite observations and numerical simulations, to investigate the dynamics controlling local circulation on the Southwestern Florida Shelf (SWFS) under oceanic influence. The approach of the Loop Current and Florida Current (LC/FC) system to the SWFS slope can induce 0.5 to 1 m/s offshore flows impacting the Pulley Ridge and Dry Tortugas reefs. On the other hand, when the LC/FC system retreats from the slope, onshore flows can carry open-sea waters over the coral reefs. Local formation of cyclonic eddies is possible near the Dry Tortugas reefs in the LC approach case and passage of upstream LC Frontal Eddies is possible in the LC retreat case. Offshore currents ∼1 m/s over the SWFS slope were also found during periods of anticyclonic LC Eddy separation. A novel finding is the shedding and northward propagation of mesoscale anticyclonic eddies from the core of the LC along the West Florida Shelf. Eddy shedding may have a broader effect on the dynamics of the shelf around the study reef areas. Long periods of LC/FC domination over these coral reefs (reaching several weeks to months) are characterized by strong (∼1 m/s) along-shelf currents and continuous upwelling processes, which may weaken the slope stratification and bring colder, deeper waters over the shelf-break and toward the shallower shelf region.
Reefing Line Tension in CPAS Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2013-01-01
Reefing lines are an essential feature to manage inflation loads. During each Engineering Development Unit (EDU) test of the Capsule Parachute Assembly System (CPAS), a chase aircraft is staged to be level with the cluster of Main ringsail parachutes during the initial inflation and reefed stages. This allows for capturing high-quality still photographs of the reefed skirt, suspension line, and canopy geometry. The over-inflation angles are synchronized with measured loads data in order to compute the tension force in the reefing line. The traditional reefing tension equation assumes radial symmetry, but cluster effects cause the reefed skirt of each parachute to elongate to a more elliptical shape. This effect was considered in evaluating multiple parachutes to estimate the semi-major and semi-minor axes. Three flight tests are assessed, including one with a skipped first stage, which had peak reefing line tension over three times higher than the nominal parachute disreef sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzullo, S.J.; Anderson-Underwood, K.E.; Burke, C.D.
Coral patch reefs are major components of Holocene platform carbonate facies systems in tropical and subtropical areas. The biotic composition, growth and relationship to sea level history, and diagenetic attributes of a representative Holocene patch reef ([open quotes]Elmer Reef[close quotes]) in the Mexico Rocks complex in northern Belize are described and compared to those of Holocene patch reefs in southern Belize. Elmer Reef has accumulated in shallow (2.5 m) water over the last 420 yr, under static sea level conditions. Rate of vertical construction is 0.3-0.5 m/100 yr, comparable to that of patch reefs in southern Belize. A pronounced coralmore » zonation exists across Elmer Reef, with Monastrea annularis dominating on its crest and Acropora cervicornis occurring on its windward and leeward flanks. The dominance of Montastrea on Elmer Reef is unlike that of patch reefs in southern Belize, in which this coral assumes only a subordinate role in reef growth relative to that of Acropora palmata. Elmer Reef locally is extensively biodegraded and marine, fibrous aragonite and some bladed high-magnesium calcite cements occur throughout the reef section, partially occluding corallites and interparticle pores in associated sands. Patch reefs in southern Belize have developed as catch-up and keep-up reefs in a transgressive setting. In contrast, the dominant mode of growth of Elmer Reef, and perhaps other patch reefs in Mexico Rocks, appears to be one of lateral rather than vertical accretion. This style of growth occurs in a static sea level setting where there is only limited accommodation space because of the shallowness of the water, and such reefs are referred to as [open quotes]expansion reefs[close quotes]. 39 refs., 8 figs., 2 tabs.« less
Storlazzi, C.D.; Ogston, A.S.; Bothner, Michael H.; Field, M.E.; Presto, M.K.
2004-01-01
The fringing coral reef off the south coast of Molokai, Hawaii is currently being studied as part of a US Geological Survey (USGS) multi-disciplinary project that focuses on geologic and oceanographic processes that affect coral reef systems. For this investigation, four instrument packages were deployed across the fringing coral reef during the summer of 2001 to understand the processes governing fine-grained terrestrial sediment suspension on the shallow reef flat (h=1m) and its advection across the reef crest and onto the deeper fore reef. The time-series measurements suggest the following conceptual model of water and fine-grained sediment transport across the reef: Relatively cool, clear water flows up onto the reef flat during flooding tides. At high tide, more deep-water wave energy is able to propagate onto the reef flat and larger Trade wind-driven waves can develop on the reef flat, thereby increasing sediment suspension. Trade wind-driven surface currents and wave breaking at the reef crest cause setup of water on the reef flat, further increasing the water depth and enhancing the development of depth-limited waves and sediment suspension. As the tide ebbs, the water and associated suspended sediment on the reef flat drains off the reef flat and is advected offshore and to the west by Trade wind- and tidally- driven currents. Observations on the fore reef show relatively high turbidity throughout the water column during the ebb tide. It therefore appears that high suspended sediment concentrations on the deeper fore reef, where active coral growth is at a maximum, are dynamically linked to processes on the muddy, shallow reef flat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, C.F. Jr.; Colgan, M.W.; Frost, S.H.
1990-05-01
Miocene reefs lived approximately within the latitudes of 27{degree}S to 48{degree}N compared with 25{degree}S and 32{degree}N for Holocene reefs. This expansion of reef-growing environments was the result of warm Miocene climates, aided by a eustatic sea level rise and tectonic styles that provided numerous foundations for reef development. The majority of Miocene reefs are found in three main areas: (1) Southeast Asia and the western Pacific, (2) the Mediterranean-Middle East, and (3) Middle America and the Caribbean. These regions, with their distinctive suites of coral and foramineral species, formed three biological provinces; respectively, they are the Indo-Pacific, Tethyan, and Westernmore » Atlantic provinces. Miocene reefs in Southeast Asia occur in several foreland basins as patch reef complexes on paleohighs and as barrier reefs in back-arc basins. Those reefs in the Mediterranean occur as fringing reefs, middle-shelf patch reefs, or as barrier reefs on the edges of tectonic blocks associated with Alpine thrust belts. Most reefs in the Caribbean grew on isolated open-ocean highs of volcanic origin. Miocene reefs display a diversity of framework types: (1) coral-encrusting, red algal boundstones with diverse coral faunas, (2) branching coral-encrusting, red algal boundstones with a limited Poritid fauna, (3) encrusting red algal boundstones. Barrier reef systems are especially rich in encrusting red algae and robust corals; grainstones are common as interbedded sediment. Patch reef complexes, however, display muddy carbonate textures, may have less diverse coral faunas, and commonly have larger foraminifera. The global distribution of Miocene reefs is important because (1) it provides insight into a paleoclimatic view of the earth during a major greenhouse stage and (2) Miocene buildups, such as the Arun (EUR of 14 tcf) and Bima fields (EUR of about 100 MMBO), are exploration targets.« less
Beeden, R J; Turner, M A; Dryden, J; Merida, F; Goudkamp, K; Malone, C; Marshall, P A; Birtles, A; Maynard, J A
2014-12-01
Managing to support coral reef resilience as the climate changes requires strategic and responsive actions that reduce anthropogenic stress. Managers can only target and tailor these actions if they regularly receive information on system condition and impact severity. In large coral reef areas like the Great Barrier Reef Marine Park (GBRMP), acquiring condition and impact data with good spatial and temporal coverage requires using a large network of observers. Here, we describe the result of ~10 years of evolving and refining participatory monitoring programs used in the GBR that have rangers, tourism operators and members of the public as observers. Participants complete Reef Health and Impact Surveys (RHIS) using a protocol that meets coral reef managers' needs for up-to-date information on the following: benthic community composition, reef condition and impacts including coral diseases, damage, predation and the presence of rubbish. Training programs ensure that the information gathered is sufficiently precise to inform management decisions. Participants regularly report because the demands of the survey methodology have been matched to their time availability. Undertaking the RHIS protocol we describe involves three ~20 min surveys at each site. Participants enter data into an online data management system that can create reports for managers and participants within minutes of data being submitted. Since 2009, 211 participants have completed a total of more than 10,415 surveys at more than 625 different reefs. The two-way exchange of information between managers and participants increases the capacity to manage reefs adaptively, meets education and outreach objectives and can increase stewardship. The general approach used and the survey methodology are both sufficiently adaptable to be used in all reef regions.
Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea
Eyal, Gal; Wiedenmann, Jörg; Grinblat, Mila; D’Angelo, Cecilia; Kramarsky-Winter, Esti; Treibitz, Tali; Ben-Zvi, Or; Shaked, Yonathan; Smith, Tyler B.; Harii, Saki; Denis, Vianney; Noyes, Tim; Tamir, Raz; Loya, Yossi
2015-01-01
The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50–60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40–100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging. PMID:26107282
Linking social and ecological systems to sustain coral reef fisheries.
Cinner, Joshua E; McClanahan, Timothy R; Daw, Tim M; Graham, Nicholas A J; Maina, Joseph; Wilson, Shaun K; Hughes, Terence P
2009-02-10
The ecosystem goods and services provided by coral reefs are critical to the social and economic welfare of hundreds of millions of people, overwhelmingly in developing countries [1]. Widespread reef degradation is severely eroding these goods and services, but the socioeconomic factors shaping the ways that societies use coral reefs are poorly understood [2]. We examine relationships between human population density, a multidimensional index of socioeconomic development, reef complexity, and the condition of coral reef fish populations in five countries across the Indian Ocean. In fished sites, fish biomass was negatively related to human population density, but it was best explained by reef complexity and a U-shaped relationship with socioeconomic development. The biomass of reef fishes was four times lower at locations with intermediate levels of economic development than at locations with both low and high development. In contrast, average biomass inside fishery closures was three times higher than in fished sites and was not associated with socioeconomic development. Sustaining coral reef fisheries requires an integrated approach that uses tools such as protected areas to quickly build reef resources while also building capacities and capital in societies over longer time frames to address the complex underlying causes of reef degradation.
Sewage pollution in Negril, Jamaica: effects on nutrition and ecology of coral reef macroalgae
NASA Astrophysics Data System (ADS)
Lapointe, B. E.; Thacker, K.; Hanson, C.; Getten, L.
2011-07-01
Coral reefs in the Negril Marine Park (NMP), Jamaica, have been increasingly impacted by nutrient pollution and macroalgal blooms following decades of intensive development as a major tourist destination. A baseline survey of DIN and SRP concentrations, C:N:P and stable nitrogen isotope ratios (δ15N) of abundant reef macroalgae on shallow and deep reefs of the NMP in 1998 showed strong P-limitation and evidence of increasing sewage pollution. In 1999, a sewage collection and treatment project began diverting wastewater from the resort and urban areas to a pond system that discharged partially-treated effluent into the South Negril River (SNR). These sewage discharges significantly increased concentrations of NH{4/+} and SRP (N:P ˜13) in the SNR, which flows into Long Bay and around Negril's "West End". Concentrations of SRP, the primary limiting nutrient, were higher on shallow reefs of the West End in 2001 compared to 1998. Stable nitrogen isotope ratios (δ15N) of abundant reef macroalgae on both shallow and deep reefs of the West End in 2002 were significantly higher than baseline values in 1998, indicating an escalating impact of sewage nitrogen pollution over this timeframe. The increased nutrient concentrations and δ15N enrichment of reef macroalgae correlated with blooms of the chlorophyte Chaetomorpha linum in shallow waters of Long Bay and Codium isthmocladum and Caulerpa cupressoides on deep reefs of the West End. Sewage treatment systems adjacent to coral reefs must include nutrient removal to ensure that DIN and SRP concentrations, after dilution, are below the low thresholds noted for these oligotrophic ecosystems.
Workshop on Biological Integrity of Coral Reefs August 21-22 ...
This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characteristics (reef attributes) that determine the condition of linear coral reefs inhabiting shallow waters (<12 m) in southwestern Puerto Rico.• Use those reef attributes to recommend categorical condition rankings for establishing a biological condition gradient.• Ascertain through expert consensus those reef attributes that characterize biological integrity (a natural, fully-functioning system of organisms and communities) for coral reefs. • Develop a conceptual, narrative model that describes how biological attributes of coral reefs change along a gradient of increasing anthropogenic stress.The workshop brought together scientists with expertise in coral reef taxonomic groups (e.g., stony corals, fishes, sponges, gorgonians, algae, seagrasses and macroinvertebrates), as well as community structure, organism condition, ecosystem function and ecosystem connectivity. The experts evaluated photos and videos from 12 stations collected during EPA Coral Reef surveys (2010 & 2011) from Puerto Rico on coral reefs exhibiting a wide range of conditions. The experts individually rated each station as to observed condition (“good”, “fair” or “poor”) and documented their rationale for
Albright, Rebecca; Anthony, Kenneth R N; Baird, Mark; Beeden, Roger; Byrne, Maria; Collier, Catherine; Dove, Sophie; Fabricius, Katharina; Hoegh-Guldberg, Ove; Kelly, Ryan P; Lough, Janice; Mongin, Mathieu; Munday, Philip L; Pears, Rachel J; Russell, Bayden D; Tilbrook, Bronte; Abal, Eva
2016-11-01
Coral reefs are one of the most vulnerable ecosystems to ocean acidification. While our understanding of the potential impacts of ocean acidification on coral reef ecosystems is growing, gaps remain that limit our ability to translate scientific knowledge into management action. To guide solution-based research, we review the current knowledge of ocean acidification impacts on coral reefs alongside management needs and priorities. We use the world's largest continuous reef system, Australia's Great Barrier Reef (GBR), as a case study. We integrate scientific knowledge gained from a variety of approaches (e.g., laboratory studies, field observations, and ecosystem modelling) and scales (e.g., cell, organism, ecosystem) that underpin a systems-level understanding of how ocean acidification is likely to impact the GBR and associated goods and services. We then discuss local and regional management options that may be effective to help mitigate the effects of ocean acidification on the GBR, with likely application to other coral reef systems. We develop a research framework for linking solution-based ocean acidification research to practical management options. The framework assists in identifying effective and cost-efficient options for supporting ecosystem resilience. The framework enables on-the-ground OA management to be the focus, while not losing sight of CO2 mitigation as the ultimate solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.« less
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
NASA Astrophysics Data System (ADS)
Arnaud-Haond, S.; Van den Beld, I. M. J.; Becheler, R.; Orejas, C.; Menot, L.; Frank, N.; Grehan, A.; Bourillet, J. F.
2017-11-01
The scleractinian coral Lophelia pertusa has been the focus of deep-sea research since the recognition of the vast extent of coral reefs in North Atlantic waters two decades ago, long after their existence was mentioned by fishermen. These reefs where shown to provide habitat, concentrate biomass and act as feeding or nursery grounds for many species, including those targeted by commercial fisheries. Thus, the attention given to this cold-water coral (CWC) species from researchers and the wider public has increased. Consequently, new research programs triggered research to determine the full extent of the corals geographic distribution and ecological dynamics of ;Lophelia reefs;. The present study is based on a systematic standardised sampling design to analyze the distribution and coverage of CWC reefs along European margins from the Bay of Biscay to Iceland. Based on Remotely Operated Vehicle (ROV) image analysis, we report an almost systematic occurrence of Madrepora oculata in association with L. pertusa with similar abundances of both species within explored reefs, despite a tendency of increased abundance of L. pertusa compared to M. oculata toward higher latitudes. This systematic association occasionally reached the colony scale, with ;twin; colonies of both species often observed growing next to each other when isolated structures were occurring off-reefs. Finally, several ;false chimaera; were observed within reefs, confirming that colonial structures can be ;coral bushes; formed by an accumulation of multiple colonies even at the inter-specific scale, with no need for self-recognition mechanisms. Thus, we underline the importance of the hitherto underexplored M. oculata in the Eastern Atlantic, re-establishing a more balanced view that both species and their yet unknown interactions are required to better elucidate the ecology, dynamics and fate of European CWC reefs in a changing environment.
Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.
2015-12-01
The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.
The importance of spatial fishing behavior for coral reef resilience
NASA Astrophysics Data System (ADS)
Rassweiler, A.; Lauer, M.; Holbrook, S. J.
2016-02-01
Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.
Rodríguez, Sara C.; López-Victoria, Mateo; Zapata, Fernando A.; Zea, Sven; Galindo-Martínez, Claudia T.; Iglesias-Prieto, Roberto; Pollock, Joseph; Medina, Mónica
2017-01-01
Coral reefs are commonly associated with oligotrophic, well-illuminated waters. In 2013, a healthy coral reef was discovered in one of the least expected places within the Colombian Caribbean: at the entrance of Cartagena Bay, a highly-polluted system that receives industrial and sewage waste, as well as high sediment and freshwater loads from an outlet of the Magdalena River (the longest and most populated river basin in Colombia). Here we provide the first characterization of Varadero Reef’s geomorphology and biological diversity. We also compare these characteristics with those of a nearby reference reef, Barú Reef, located in an area much less influenced by the described polluted system. Below the murky waters, we found high coral cover of 45.1% (±3.9; up to 80% in some sectors), high species diversity, including 42 species of scleractinian coral, 38 of sponge, three of lobster, and eight of sea urchin; a fish community composed of 61 species belonging to 24 families, and the typical zonation of a Caribbean fringing reef. All attributes found correspond to a reef that, according to current standards should be considered in “good condition”. Current plans to dredge part of Varadero threaten the survival of this reef. There is, therefore, an urgent need to describe the location and characteristics of Varadero as a first step towards gaining acknowledgement of its existence and garnering inherent legal and environmental protections. PMID:29259841
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoekman, S. Kent; Broch, Broch; Robbins, Curtis
The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solarmore » thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.« less
Mumby, Peter J; van Woesik, Robert
2014-05-19
Coral reefs are highly sensitive to the stress associated with greenhouse gas emissions, in particular ocean warming and acidification. While experiments show negative responses of most reef organisms to ocean warming, some autotrophs benefit from ocean acidification. Yet, we are uncertain of the response of coral reefs as systems. We begin by reviewing sources of uncertainty and complexity including the translation of physiological effects into demographic processes, indirect ecological interactions among species, the ability of coral reefs to modify their own chemistry, adaptation and trans-generational plasticity. We then incorporate these uncertainties into two simple qualitative models of a coral reef system under climate change. Some sources of uncertainty are far more problematic than others. Climate change is predicted to have an unambiguous negative effect on corals that is robust to several sources of uncertainty but sensitive to the degree of biogeochemical coupling between benthos and seawater. Macroalgal, zoanthid, and herbivorous fish populations are generally predicted to increase, but the ambiguity (confidence) of such predictions are sensitive to the source of uncertainty. For example, reversing the effect of climate-related stress on macroalgae from being positive to negative had no influence on system behaviour. By contrast, the system was highly sensitive to a change in the stress upon herbivorous fishes. Minor changes in competitive interactions had profound impacts on system behaviour, implying that the outcomes of mesocosm studies could be highly sensitive to the choice of taxa. We use our analysis to identify new hypotheses and suggest that the effects of climatic stress on coral reefs provide an exceptional opportunity to test emerging theories of ecological inheritance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Healthy coral reefs may assure coastal protection in face of climate change related sea level rise
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.; Canavesio, R.; Collin, A.
2016-12-01
Coral reefs are diverse ecosystems that support millions of people worldwide providing crucial services, of which, coastal protection is one of the most relevant. The efficiency of coral reefs in protecting coastlines and dissipating waves is directly linked to the cover of living corals and three dimensional reef structural complexity. Climate change and human impacts are leading to severe global reductions in live coral cover, posing serious concerns regarding the capacity of degraded reef systems in protecting tropical coastal regions. Although it is known that the loss of structurally complex reefs may lead to greater erosion of coastlines, this process has rarely been quantified and it is still unknown whether the maintenance of healthy reefs through conservation will be enough to guarantee coastal protection during rising sea levels. We show that a significant loss of wave dissipation and a subsequent increase in back-reef wave height (up to 5 times present wave height) could occur even at present sea level if living corals are lost and reef structural complexity is reduced. Yet we also show that healthy reefs, measured by structural complexity and efficiency of vertical reef accretion, may maintain their present capacity of wave dissipation even under rising sea levels. Our results indicate that the health of coral reefs and not sea level rise will be the major determinant of the coastal protection services provided by coral reefs and calls for investments into coral reef conservation to ensure the future protection of tropical coastal communities.
Hierarchical drivers of reef-fish metacommunity structure.
MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P
2009-01-01
Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.
Coral reef evolution on rapidly subsiding margins
Webster, J.M.; Braga, J.C.; Clague, D.A.; Gallup, C.; Hein, J.R.; Potts, D.C.; Renema, W.; Riding, R.; Riker-Coleman, K.; Silver, E.; Wallace, L.M.
2009-01-01
A series of well-developed submerged coral reefs are preserved in the Huon Gulf (Papua New Guinea) and around Hawaii. Despite different tectonics settings, both regions have experienced rapid subsidence (2-6??m/ka) over the last 500??ka. Rapid subsidence, combined with eustatic sea-level changes, is responsible for repeated drowning and backstepping of coral reefs over this period. Because we can place quantitative constraints on these systems (i.e., reef drowning age, eustatic sea-level changes, subsidence rates, accretion rates, basement substrates, and paleobathymetry), these areas represent unique natural laboratories for exploring the roles of tectonics, reef accretion, and eustatic sea-level changes in controlling the evolution of individual reefs, as well as backstepping of the entire system. A review of new and existing bathymetric, radiometric, sedimentary facies and numerical modeling data indicate that these reefs have had long, complex growth histories and that they are highly sensitive, recording drowning not only during major deglaciations, but also during high-frequency, small-amplitude interstadial and deglacial meltwater pulse events. Analysis of five generalized sedimentary facies shows that reef drowning is characterized by a distinct biological and sedimentary sequence. Observational and numerical modeling data indicate that on precessional (20??ka) and sub-orbital timescales, the rate and amplitude of eustatic sea-level changes are critical in controlling initiation, growth, drowning or sub-aerial exposure, subsequent re-initiation, and final drowning. However, over longer timescales (> 100-500??ka) continued tectonic subsidence and basement substrate morphology influence broad scale reef morphology and backstepping geometries. Drilling of these reefs will yield greatly expanded stratigraphic sections compared with similar reefs on slowly subsiding, stable and uplifting margins, and thus they represent a unique archive of sea-level and climate changes, as well as a record of the response of coral reefs to these changes over the last six glacial cycles. ?? 2008 Elsevier B.V. All rights reserved.
The Good, The Bad, and The Distant: Soundscape Cues for Larval Fish.
Piercy, Julius J B; Smith, David J; Codling, Edward A; Hill, Adam J; Simpson, Stephen D
2016-01-01
Coral reef noise is an important navigation cue for settling reef fish larvae and can thus potentially affect reef population dynamics. Recent evidence has shown that fish are able to discriminate between the soundscapes of different types of habitat (e.g., mangrove and reef). In this study, we investigated whether discernible acoustic differences were present between sites within the same coral reef system. Differences in sound intensity and transient content were found between sites, but site-dependent temporal variation was also present. We discuss the implications of these findings for settling fish larvae.
Changing carbonate chemistry in ocean waters surrounding coral reefs in the CMIP5 ensemble
NASA Astrophysics Data System (ADS)
Ricke, K.; Schneider, K.; Cao, L.; Caldeira, K.
2012-12-01
Coral reefs comprise some of the most biodiverse ecosystems in the world. Today they are threatened by a number of stressors, including pollution, bleaching from global warming and ocean acidification. In this study, we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs. We use results from 13 Earth System Models included in the Coupled Model Intercomparison Project 5 (CMIP5) to examine the changing aragonite saturations (Ωa) of open ocean waters surrounding approximately 6,000 coral reefs. These 13 Earth System Models participating in CMIP5 each have interactive ocean biogeochemistry models that output state variables including DIC, alkalinity, SST, and salinity. Variation in these values were combined with values from the GLODAP database to calculate aragonite, the form of calcium carbonate that corals use to make their skeletons. We used reef locations from ReefBase that were within one degree (in latitude or longitude) of water masses represented both in the GLODAP database and in the climate models. Carbonate chemistry calculations were performed by Dr. James C. Orr (IPSL) as part of a separate study. We find that in preindustrial times, 99.9 % of coral reefs were located in regions of the ocean with aragonite saturations of 3.5 or more. The saturation threshold for viable reef ecosystems in uncertain, but the pre-industrial distribution of water chemistry surrounding coral reefs may nevertheless provide some indication of viability. We examine the fate of coral reefs in the context of several potential aragonite saturation thresholds, i.e., when Ωa_crit equals 3, 3.25, or 3.5. We show that under a business-as-usual scenario Representative Concentration Pathway (RCP) 8.5, the specific value of Ωa_crit does not affect the long-term fate of coral reefs -- by the end of the 21st century, no coral reef considered is surrounded by water with Ωa> 3. However, under scenarios with significant CO2 emissions abatement, the aragonite saturation threshold is critical to projecting the fate of coral reefs -- under RCP 4.5, less than 5% of reefs are surrounded by waters with Ωa < 3.5 by the end of the century, but nearly half are still surrounded by waters with saturations greater than 3. Our results indicate that only under a very aggressive emissions elimination (and CO2 air-capture) scenario (RCP 2.6) are a majority of coral reefs projected to remain in waters with Ωa > 3.5 at the end of the century. We find that, except for one model that is an outlier, the spread of aragonite saturation states across earth system models in the CMIP5 ensemble is narrow, implying that these ocean chemistry projections are fairly robust.
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.
Schmitz, Lars; Wainwright, Peter C
2011-11-19
Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.
50 CFR 622.4 - Permits and fees.
Code of Federal Regulations, 2011 CFR
2011-10-01
... migratory pelagic fish. (B) South Atlantic coastal migratory pelagic fish. (C) Gulf reef fish. (D) South... regarding a limited access system for charter vessel/headboat permits for Gulf reef fish and Gulf coastal... headboat, respectively. (iv) If Federal regulations for Gulf reef fish in subparts A, B, or C of this part...
36 CFR 7.46 - Virgin Islands Coral Reef National Monument.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Virgin Islands Coral Reef... pelagic fish, baitfish, lobsters, conch, whelk, corals, sponges and all associated reef invertebrates, and... OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.46 Virgin Islands Coral...
36 CFR 7.46 - Virgin Islands Coral Reef National Monument.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Virgin Islands Coral Reef... pelagic fish, baitfish, lobsters, conch, whelk, corals, sponges and all associated reef invertebrates, and... OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.46 Virgin Islands Coral...
50 CFR 622.4 - Permits and fees.
Code of Federal Regulations, 2010 CFR
2010-10-01
... migratory pelagic fish. (B) South Atlantic coastal migratory pelagic fish. (C) Gulf reef fish. (D) South... regarding a limited access system for charter vessel/headboat permits for Gulf reef fish and Gulf coastal... headboat, respectively. (iv) If Federal regulations for Gulf reef fish in subparts A, B, or C of this part...
New evidence for the barrier reef model, Permian Capitan Reef complex, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkland, B.L.; Moore, C.H. Jr.
1990-05-01
Recent paleontologic and petrologic observations suggest that the Capitan Formation was deposited as an organic or ecologic reef that acted as an emergent barrier to incoming wave energy. In outcrops in the Guadalupe Mountains and within Carlsbad Caverns, massive reef boundstone contains a highly diverse assemblage of frame-building and binding organisms. In modern reefs, diversity among frame builders decreases dramatically with depth. Marine cement is abundant in reef boundstone, but limited in back-reef grainstone and packstone. This cementation pattern is similar to that observed in modern emergent barrier reef systems. Based on comparison with modern analogs, these dasycladrominated back-reef sedimentsmore » and their associated biota are indicative of shallow, hypersaline conditions. Few of these dasyclads exhibit broken or abraded segments and some thallus sections are still articulated suggesting that low-energy, hypersaline conditions occurred immediately shelfward of the reef. In addition, large-scale topographic features, such as possible spur and groove structures between Walnut Canyon and Rattlesnake Canyon, and facies geometries, such as the reef to shelf transition, resemble those found in modern shallow-water reefs. The organisms that formed the Capitan Reef appear to have lived in, and responded to, physical and chemical conditions similar to those that control the geometry of modern shallow-water reefs. Like their modern counterparts, they seem to have strongly influenced adjacent environments. In light of this evidence, consideration should be given to either modifying or abandoning the marginal mound model in favor of the originally proposed barrier reef model.« less
From artificial structures to self-sustaining oyster reefs
NASA Astrophysics Data System (ADS)
Walles, Brenda; Troost, Karin; van den Ende, Douwe; Nieuwhof, Sil; Smaal, Aad C.; Ysebaert, Tom
2016-02-01
Coastal ecosystems are increasingly recognized as essential elements within coastal defence schemes and coastal adaptation. The capacity of coastal ecosystems, like marshes and oyster reefs, to maintain their own habitat and grow with sea-level rise via biophysical feedbacks is seen as an important advantage of such systems compared to man-made hard engineering structures. Providing a suitable substrate for oysters to settle on offers a kick-start for establishment at places where they were lost or are desirable for coastal protection. Accumulation of shell material, through recruitment and growth, is essential to the maintenance of oyster reefs as it provides substrate for new generations (positive feedback loop), forming a self-sustainable structure. Insight in establishment, survival and growth thresholds and knowledge about the population dynamics are necessary to successfully implement oyster reefs in coastal defence schemes. The aim of this paper is to investigate whether artificial Pacific oyster reefs develop into self-sustaining oyster reefs that contribute to coastal protection. Reef development was investigated by studying recruitment, survival and growth rates of oysters on artificial oyster reefs in comparison with nearby natural Pacific oyster reefs. The artificial reef structure successfully offered substrate for settlement of oysters and therefore stimulated reef formation. Reef development, however, was hampered by local sedimentation and increasing tidal emersion. Tidal emersion is an important factor that can be used to predict where artificial oyster reefs have the potential to develop into self-sustaining reefs that could contribute to coastal protection, but it is also a limiting factor in using oyster reefs for coastal protection.
Population maintenance among tropical reef fishes: Inferences from small-island endemics
Robertson, D. Ross
2001-01-01
To what extent do local populations of tropical reef fishes persist through the recruitment of pelagic larvae to their natal reef? Endemics from small, isolated islands can help answer that question by indicating whether special biological attributes are needed for long-term survival under enforced localization in high-risk situations. Taxonomically and biologically, the endemics from seven such islands are broadly representative of their regional faunas. As natal-site recruitment occurs among reef fishes in much less isolated situations, these characteristics of island endemics indicate that a wide range of reef fishes could have persistent self-sustaining local populations. Because small islands regularly support substantial reef fish faunas, regional systems of small reserves could preserve much of the diversity of these fishes. PMID:11331752
NASA Astrophysics Data System (ADS)
Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.
2017-12-01
Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.
Meirelles, Pedro M; Amado-Filho, Gilberto M; Pereira-Filho, Guilherme H; Pinheiro, Hudson T; de Moura, Rodrigo L; Joyeux, Jean-Christophe; Mazzei, Eric F; Bastos, Alex C; Edwards, Robert A; Dinsdale, Elizabeth; Paranhos, Rodolfo; Santos, Eidy O; Iida, Tetsuya; Gotoh, Kazuyoshi; Nakamura, Shota; Sawabe, Tomoo; Rezende, Carlos E; Gadelha, Luiz M R; Francini-Filho, Ronaldo B; Thompson, Cristiane; Thompson, Fabiano L
2015-01-01
Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC) were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA) reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame) than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame). A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta) were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90%) than the CCA reefs (~40%) and rhodolith beds (~10%). Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon). VTC mounts represent important hotspots of biodiversity that deserve further conservation actions.
Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service
NASA Astrophysics Data System (ADS)
Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.
2014-12-01
Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.
Mass coral bleaching in 2010 in the southern Caribbean.
Alemu I, Jahson Berhane; Clement, Ysharda
2014-01-01
Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching.
Mass Coral Bleaching in 2010 in the Southern Caribbean
Alemu I, Jahson Berhane; Clement, Ysharda
2014-01-01
Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching. PMID:24400078
Coral reefs under rapid climate change and ocean acidification.
Hoegh-Guldberg, O; Mumby, P J; Hooten, A J; Steneck, R S; Greenfield, P; Gomez, E; Harvell, C D; Sale, P F; Edwards, A J; Caldeira, K; Knowlton, N; Eakin, C M; Iglesias-Prieto, R; Muthiga, N; Bradbury, R H; Dubi, A; Hatziolos, M E
2007-12-14
Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
Hyperspectral remote sensing of wild oyster reefs
NASA Astrophysics Data System (ADS)
Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent
2016-04-01
The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.
NASA Astrophysics Data System (ADS)
Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.
2013-12-01
Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to dominant components of benthic cover compositions (1 - 10's m); and individual benthic cover type scale (0.5-5.0's m), was completed using object based segmentation and semi-automated labelling through membership rules. Accuracy assessment of the satellite image based maps and field data sets scales maps produced with 90% maximum accuracy larger scales and less complex maps, versus 40 % at smaller scale and complex maps. The study showed that current data sets and object based analysis are able to reliable map at various scales and level of complexity covering a variety of extent and environments at various times; as a result science and management can use these tools to assess and understand the ecological processes taking place in coral and SAV environments.
An extensive reef system at the Amazon River mouth
Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Moraes, Fernando C.; Brasileiro, Poliana S.; Salomon, Paulo S.; Mahiques, Michel M.; Bastos, Alex C.; Almeida, Marcelo G.; Silva, Jomar M.; Araujo, Beatriz F.; Brito, Frederico P.; Rangel, Thiago P.; Oliveira, Braulio C. V.; Bahia, Ricardo G.; Paranhos, Rodolfo P.; Dias, Rodolfo J. S.; Siegle, Eduardo; Figueiredo, Alberto G.; Pereira, Renato C.; Leal, Camille V.; Hajdu, Eduardo; Asp, Nils E.; Gregoracci, Gustavo B.; Neumann-Leitão, Sigrid; Yager, Patricia L.; Francini-Filho, Ronaldo B.; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S.; Moreira, Ana P. B.; Oliveira, Louisi; Soares, Ana C.; Araujo, Lais; Oliveira, Nara L.; Teixeira, João B.; Valle, Rogerio A. B.; Thompson, Cristiane C.; Rezende, Carlos E.; Thompson, Fabiano L.
2016-01-01
Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 106–km2 plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume’s eastward retroflection, conditions the existence of this extensive (~9500 km2) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth–ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes. PMID:27152336
An extensive reef system at the Amazon River mouth.
Moura, Rodrigo L; Amado-Filho, Gilberto M; Moraes, Fernando C; Brasileiro, Poliana S; Salomon, Paulo S; Mahiques, Michel M; Bastos, Alex C; Almeida, Marcelo G; Silva, Jomar M; Araujo, Beatriz F; Brito, Frederico P; Rangel, Thiago P; Oliveira, Braulio C V; Bahia, Ricardo G; Paranhos, Rodolfo P; Dias, Rodolfo J S; Siegle, Eduardo; Figueiredo, Alberto G; Pereira, Renato C; Leal, Camille V; Hajdu, Eduardo; Asp, Nils E; Gregoracci, Gustavo B; Neumann-Leitão, Sigrid; Yager, Patricia L; Francini-Filho, Ronaldo B; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S; Moreira, Ana P B; Oliveira, Louisi; Soares, Ana C; Araujo, Lais; Oliveira, Nara L; Teixeira, João B; Valle, Rogerio A B; Thompson, Cristiane C; Rezende, Carlos E; Thompson, Fabiano L
2016-04-01
Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.
REEF: Retainable Evaluator Execution Framework
Weimer, Markus; Chen, Yingda; Chun, Byung-Gon; Condie, Tyson; Curino, Carlo; Douglas, Chris; Lee, Yunseong; Majestro, Tony; Malkhi, Dahlia; Matusevych, Sergiy; Myers, Brandon; Narayanamurthy, Shravan; Ramakrishnan, Raghu; Rao, Sriram; Sears, Russell; Sezgin, Beysim; Wang, Julia
2015-01-01
Resource Managers like Apache YARN have emerged as a critical layer in the cloud computing system stack, but the developer abstractions for leasing cluster resources and instantiating application logic are very low-level. This flexibility comes at a high cost in terms of developer effort, as each application must repeatedly tackle the same challenges (e.g., fault-tolerance, task scheduling and coordination) and re-implement common mechanisms (e.g., caching, bulk-data transfers). This paper presents REEF, a development framework that provides a control-plane for scheduling and coordinating task-level (data-plane) work on cluster resources obtained from a Resource Manager. REEF provides mechanisms that facilitate resource re-use for data caching, and state management abstractions that greatly ease the development of elastic data processing work-flows on cloud platforms that support a Resource Manager service. REEF is being used to develop several commercial offerings such as the Azure Stream Analytics service. Furthermore, we demonstrate REEF development of a distributed shell application, a machine learning algorithm, and a port of the CORFU [4] system. REEF is also currently an Apache Incubator project that has attracted contributors from several instititutions.1 PMID:26819493
NASA Astrophysics Data System (ADS)
Ford, Murray R.
2014-06-01
Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.
Coral Reef Resilience, Tipping Points and the Strength of Herbivory
Holbrook, Sally J.; Schmitt, Russell J.; Adam, Thomas C.; Brooks, Andrew J.
2016-01-01
Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience. PMID:27804977
Coral Reef Resilience, Tipping Points and the Strength of Herbivory.
Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J
2016-11-02
Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.
Applications of fractals in ecology.
Sugihara, G; M May, R
1990-03-01
Fractal models describe the geometry of a wide variety of natural objects such as coastlines, island chains, coral reefs, satellite ocean-color images and patches of vegetation. Cast in the form of modified diffusion models, they can mimic natural and artificial landscapes having different types of complexity of shape. This article provides a brief introduction to fractals and reports on how they can be used by ecologists to answer a variety of basic questions, about scale, measurement and hierarchy in, ecological systems. Copyright © 1990. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Huntington, B. E.; Lirman, D.
2012-12-01
Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.
Deep reefs are not universal refuges: Reseeding potential varies among coral species
Bongaerts, Pim; Riginos, Cynthia; Brunner, Ramona; Englebert, Norbert; Smith, Struan R.; Hoegh-Guldberg, Ove
2017-01-01
Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this “reseeding” hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the “deep reef refuge hypothesis” holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon. PMID:28246645
Lidz, B.H.; Shinn, E.A.; Hine, A.C.; Locker, S.D.
1997-01-01
Closely spaced, high-resolution, seismic-reflection profiles acquired off the upper Florida Keys (i.e., north) reveal a platform-margin reef-and-trough system grossly similar to, yet quite different from, that previously described off the lower Keys (i.e., south). Profiles and maps generated for both areas show that development was controlled by antecedent Pleistocene topography (presence or absence of an upper-slope bedrock terrace), sediment availability, fluctuating sea level, and coral growth rate and distribution. The north terrace is sediment-covered and exhibits linear, buried, low-relief, seismic features of unknown character and origin. The south terrace is essentially sediment-free and supports multiple, massive, high-relief outlier reefs. Uranium disequilibrium series dates on outlier-reef corals indicate a Pleistocene age (~83-84 ka). A massive Pleistocene reef with both aggradational (north) and progradational (south) aspects forms the modern margin escarpment landward of the terrace. Depending upon interpretation (the north margin-escarpment reef may or may not be an outlier reef), the north margin is either more advanced or less advanced than the south margin. During Holocene sea-level rise, Pleistocene bedrock was inundated earlier and faster first to the north (deeper offbank terrace), then to the south (deeper platform surface). Holocene overgrowth is thick (8 m) on the north outer-bank reefs but thin (0.3 m) on the south outlier reefs. Differential evolution resulted from interplay between fluctuating sea level and energy regime established by prevailing east-southeasterly winds and waves along an arcuate (ENE-WSW) platform margin.
Carbonate system parameters of an algal-dominated reef along west Maui
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt
2018-01-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Kleypas, J.; Castruccio, F.; Curchitser, E. N.; Pinsky, M. L.; Jönsson, B.; Watson, J. R.
2018-07-01
The global center of marine biodiversity is located in the western tropical Pacific in a region known as the "Coral Triangle" (CT). This region is also considered the most threatened of all coral reef regions, because multiple impacts, including rising temperatures and coral bleaching, have already caused high mortality of reef corals over large portions of the CT. Larval dispersal and recruitment play a critical role in reef recovery after such disturbances, but our understanding of reproductive connectivity between reefs is limited by a paucity of observations. Oceanographic modeling can provide an economical and efficient way to augment our understanding of reef connectivity, particularly over an area as large as the CT, where marine ecosystem management has become a priority. This work combines daily averaged surface current velocity and direction from a Regional Ocean Modeling System developed for the CT region (CT-ROMS) with a Lagrangian particle tracking tool (TRACMASS) to investigate the probability of larval transport between reefs for a typical broadcasting coral. A 47-year historical simulation (1960-2006) was used to analyze the potential connectivity, the physical drivers of larval transport, and its variability following bi-annual spawning events in April and September. Potential connectivity between reefs was highly variable from year to year, emphasizing the need for long simulations. The results suggest that although reefs in this region are highly self-seeded, comparatively rare long-distance dispersal events may play a vital role in shaping regional patterns of reef biodiversity and recovery following disturbance. The spatial pattern of coral "subpopulations," which are based on the potential connectivity between reefs, agrees with observed regional-scale patterns of biodiversity, suggesting that the physical barriers to larval dispersal are a first-order driver of coral biodiversity in the CT region. These physical barriers persist through the 21st Century when the model is forced with the Community Earth System Model (CESM) RCP8.5 climate scenario, despite some regional changes in connectivity between reefs.
Assessing the Diversity of Halimeda spp. on Pulley Ridge Mesophotic Reefs
NASA Astrophysics Data System (ADS)
Luzader, R. K.; Baco-Taylor, A.
2016-02-01
The Florida reef system contains an array of organisms that contribute to the development of the reef structure. These include calcifying green macroalgae of the genus Halimeda, which provides important ecosystem services by stabilizing the reefs through calcification. Halimeda is one of several groups of shallow water reef taxa with a depth range that extends into the mesophotic zone. It has been hypothesized the mesophotic reefs may serve as refugia for shallow water taxa impacted by climate change and other anthropogenic stressors. To test this hypothesis, in 2012-2015, the mesophotic reefs of Pulley Ridge and Dry Tortugas were sampled to assess genetic connectivity to the shallow water reefs of the Florida Keys. A diverse array of Halimeda species were represented on Pulley Ridge. Halimeda species are known to be difficult to identify and delineate morphologically and the taxonomy of Halimeda species has been revised several times based on molecular data. Thus, before connectivity of mesophotic Halimeda to shallow populations can be assessed, our first goal is to determine whether there is overlap of any of the Halimeda species between the mesophotic and shallow reefs, and then to determine if any of the species are present in sufficient abundance for population genetics. We sequenced portions of two chloroplast genes commonly used for algal phylogenetics and barcoding, tufA and rbcL, for at least 5 individuals of each morphotype collected on Dry Tortugas and the Pulley Ridge mesophotic reefs. Preliminary results suggest that Halimeda tuna, the species previously reported as the dominant Halimeda species on Pulley Ridge, was relatively uncommon. Morphological results and comparison of initial genetic results to sequences in GenBank suggest that H. goreaui is abundant at the Dry Tortugas site and H. fragilis, H. copiosa and H. discoidea are common on Pulley Ridge, indicating greater Halimeda diversity in the mesophotic reef system than previously documented.
Coral Reef Early Warning System (CREWS) RPC Experiment
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Hall, Callie
2007-01-01
This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.
Biting cleaner fish use altruism to deceive image-scoring client reef fish.
Bshary, Redouan
2002-01-01
Humans are more likely to help those who they have observed helping others previously. Individuals may thus benefit from being altruistic without direct reciprocity of recipients but due to gains in 'image' and associated indirect reciprocity. I suggest, however, that image-scoring individuals may be exploitable by cheaters if pay-offs vary between interactions. I illustrate this point with data on cleaner-client reef fish interactions. I show the following: (i) there is strong variation between cleaners with respect to cheating of clients (i.e. feeding on client tissue instead of parasites); (ii) clients approach cleaners, that they observe cooperating with their current client and avoid cleaners that they observe cheating; (iii) cleaners that cheat frequently are avoided more frequently than more cooperative cleaners (iv) cleaners that cheat frequently behave altruistically towards their smallest client species; (v) altruistic acts are followed by exploitative interactions. Thus, it appears that cleaners indeed have an image score, which selects for cooperative cleaners. However, cheating cleaners use altruism in potentially low-pay-off interactions to deceive and attract image-scoring clients that will be exploited. PMID:12396482
Colour thresholds in a coral reef fish
Vorobyev, M.; Marshall, N. J.
2016-01-01
Coral reef fishes are among the most colourful animals in the world. Given the diversity of lifestyles and habitats on the reef, it is probable that in many instances coloration is a compromise between crypsis and communication. However, human observation of this coloration is biased by our primate visual system. Most animals have visual systems that are ‘tuned’ differently to humans; optimized for different parts of the visible spectrum. To understand reef fish colours, we need to reconstruct the appearance of colourful patterns and backgrounds as they are seen through the eyes of fish. Here, the coral reef associated triggerfish, Rhinecanthus aculeatus, was tested behaviourally to determine the limits of its colour vision. This is the first demonstration of behavioural colour discrimination thresholds in a coral reef species and is a critical step in our understanding of communication and speciation in this vibrant colourful habitat. Fish were trained to discriminate between a reward colour stimulus and series of non-reward colour stimuli and the discrimination thresholds were found to correspond well with predictions based on the receptor noise limited visual model and anatomy of the eye. Colour discrimination abilities of both reef fish and a variety of animals can therefore now be predicted using the parameters described here. PMID:27703704
A critical review of environmental management of the 'not so Great' Barrier Reef
NASA Astrophysics Data System (ADS)
Brodie, Jon; Waterhouse, Jane
2012-06-01
Recent estimates put average coral cover across the Great Barrier Reef (GBR) at about 20-30%. This is estimated to be a large reduction since the 1960s. The Great Barrier Reef Marine Park Act was enacted in 1975 and the Great Barrier Reef Marine Park Authority (GBRMPA) set up shortly afterwards. So the question is: why has coral cover continued to decline when the GBR is being managed with a management regime often recognised as 'the best managed coral reef system in the world', based on a strong science-for-management ethic. The stressors which are known to be most responsible for the loss of coral cover (and general 'reef health') are terrestrial pollution including the link to outbreaks of crown of thorns starfish, fishing impacts and climate change. These have been established through a long and intensive research effort over the last 30 years. However the management response of the GBRMPA after 1975, while based on a strong science-for-management program, did not concentrate on these issues but instead on managing access through zoning with restrictions on fishing in very limited areas and tourism management. Significant action on fishing, including trawling, did not occur until the Trawl Management Plan of 2000 and the rezoning of the GBR Marine Park in 2004. Effective action on terrestrial pollution did not occur until the Australian Government Reef Rescue initiative which commenced in 2008. Effective action on climate change has yet to begin either nationally or globally. Thus it is not surprising that coral cover on the GBR has reduced to values similar to those seen in other coral reef areas in the world such as Indonesia and the Philippines. Science has always required long periods to acquire sufficient evidence to drive management action and hence there is a considerable time lag between the establishment of scientific evidence and the introduction of effective management. It can still be credibly claimed that the GBR is the best managed coral reef system in the world but it must be realised that this is a relative assessment against other reef systems and management regimes and not an absolute claim for effective management.
Nocturnality constrains morphological and functional diversity in the eyes of reef fishes
2011-01-01
Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687
Meirelles, Pedro M.; Amado-Filho, Gilberto M.; Pereira-Filho, Guilherme H.; Pinheiro, Hudson T.; de Moura, Rodrigo L.; Joyeux, Jean-Christophe; Mazzei, Eric F.; Bastos, Alex C.; Edwards, Robert A.; Dinsdale, Elizabeth; Paranhos, Rodolfo; Santos, Eidy O.; Iida, Tetsuya; Gotoh, Kazuyoshi; Nakamura, Shota; Sawabe, Tomoo; Rezende, Carlos E.; Gadelha, Luiz M. R.; Francini-Filho, Ronaldo B.; Thompson, Cristiane; Thompson, Fabiano L.
2015-01-01
Seamounts are considered important sources of biodiversity and minerals. However, their biodiversity and health status are not well understood; therefore, potential conservation problems are unknown. The mesophotic reefs of the Vitória-Trindade Seamount Chain (VTC) were investigated via benthic community and fish surveys, metagenomic and water chemistry analyses, and water microbial abundance estimations. The VTC is a mosaic of reef systems and includes fleshy algae dominated rhodolith beds, crustose coralline algae (CCA) reefs, and turf algae dominated rocky reefs of varying health levels. Macro-carnivores and larger fish presented higher biomass at the CCA reefs (4.4 kg per frame) than in the rhodolith beds and rocky reefs (0.0 to 0.1 kg per frame). A larger number of metagenomic sequences identified as primary producers (e.g., Chlorophyta and Streptophyta) were found at the CCA reefs. However, the rocky reefs contained more diseased corals (>90%) than the CCA reefs (~40%) and rhodolith beds (~10%). Metagenomic analyses indicated a heterotrophic and fast-growing microbiome in rocky reef corals that may possibly lead to unhealthy conditions possibly enhanced by environmental features (e.g. light stress and high loads of labile dissolved organic carbon). VTC mounts represent important hotspots of biodiversity that deserve further conservation actions. PMID:26090804
Espinoza, Mario; Salas, Eva
2005-01-01
The reefs are heterogeneous systems that maintain a high diversity of organisms. Fish community structure varies within and among reefs, so it would be expected that reef structure and heterogeneity should affect fish communities inhabiting reefs. Four reef patches at Catalinas Islands (Sur, La Pared, Roca Sucia and Sombrero) and one in Ocotal beach (10 degrees 28'45" N; 85 degrees 52'35" W) were studied with visual censuses (July-December 2003). The structure and composition of fishes between Catalinas islands and Ocotal beach were different, and habitat structure and composition explain most of the variance founded. The presence of the fleshy algae Caulerpa sertularioides in Ocotal, and the corals Tubastrea coccinea and Pocillopora spp. at Catalinas Island explained the variability among sites and how it affected fish community structure and composition. The butterfly fish Johnrandallia nigrirostris, damselfish Microspathodon dorsalis, and surgeon fish Prionurus punctatus were directly correlated with the ahermatipic coral Tubastrea coccinea in Roca Sucia reef, while the angel fish Holacanthus passer was associated to reefs with a major percentage of rocky substrate. Other species such as the damselfish Abudefduf troschelli and Halichoeres dispilus were more abundant at Ocotal, where the algae C sertularioides dominated. The number and abundance of reef fishes was directly correlated with the rugosity index at the reefs of Roca Sucia and Ocotal, but not at reefs of La Pared and Sombrero.
A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry
Zawada, D.G.; Brock, J.C.
2009-01-01
Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.
Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs
Suchley, Adam; McField, Melanie D.
2016-01-01
Long-term phase shifts from coral to macroalgal dominated reef systems are well documented in the Caribbean. Although the impact of coral diseases, climate change and other factors is acknowledged, major herbivore loss through disease and overfishing is often assigned a primary role. However, direct evidence for the link between herbivore abundance, macroalgal and coral cover is sparse, particularly over broad spatial scales. In this study we use a database of coral reef surveys performed at 85 sites along the Mesoamerican Reef of Mexico, Belize, Guatemala and Honduras, to examine potential ecological links by tracking site trajectories over the period 2005–2014. Despite the long-term reduction of herbivory capacity reported across the Caribbean, the Mesoamerican Reef region displayed relatively low macroalgal cover at the onset of the study. Subsequently, increasing fleshy macroalgal cover was pervasive. Herbivorous fish populations were not responsible for this trend as fleshy macroalgal cover change was not correlated with initial herbivorous fish biomass or change, and the majority of sites experienced increases in macroalgae browser biomass. This contrasts the coral reef top-down herbivore control paradigm and suggests the role of external factors in making environmental conditions more favourable for algae. Increasing macroalgal cover typically suppresses ecosystem services and leads to degraded reef systems. Consequently, policy makers and local coral reef managers should reassess the focus on herbivorous fish protection and consider complementary measures such as watershed management in order to arrest this trend. PMID:27280075
NASA Astrophysics Data System (ADS)
Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.
2014-10-01
Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.
Use of riverine through reef habitat systems by dog snapper ( Lutjanus jocu ) in eastern Brazil
NASA Astrophysics Data System (ADS)
Moura, Rodrigo L.; Francini-Filho, Ronaldo B.; Chaves, Eduardo M.; Minte-Vera, Carolina V.; Lindeman, Kenyon C.
2011-11-01
The early life history of Western Atlantic snappers from the Southern hemisphere is largely unknown. Habitat use of different life stages (i.e. size categories) of the dog snapper ( Lutjanus jocu) was examined across the largest South Atlantic reef-estuarine complex (Abrolhos Shelf, Brazil, 16-19° S). Visual surveys were conducted in different habitats across the shelf (estuary, inner-shelf reefs and mid-shelf reefs). Lutjanus jocu showed higher densities on inner-shelf habitats, with a clear increase in fish size across the shelf. Individuals <7 cm were associated with both the estuary (mangrove and rocky habitats) and inner-shelf reefs (particularly shallow fore-reefs and tide pools). Individuals ranging 10-30 cm were broadly distributed, but consistently more abundant on inner-shelf reefs. Individuals between 30 and 40 cm were more common on mid-shelf reefs, while individuals >40 cm were recorded only on mid-shelf reefs. Literature data indicate that individuals ranging 70-80 cm are common on deep offshore reefs. This pattern suggests that the dog snapper performs ontogenetic cross-shelf migrations. Protecting portions of the different habitats used by the dog snapper during its post-settlement life cycle is highlighted as an important conservation and management measure.
Wave-driven Hydrodynamics for Different Reef Geometries and Roughness Scenarios
NASA Astrophysics Data System (ADS)
Franklin, G. L.; Marino-Tapia, I.; Torres-Freyermuth, A.
2013-05-01
In fringing reef systems where a shallow lagoon is present behind the reef crest, wave breaking appears to dominate circulation, controlling numerous key processes such as the transport and dispersion of larvae, nutrients and sediments. Despite their importance, there is a need for more detailed knowledge on the hydrodynamic processes that take place within the surf zone of these systems and the effects different combinations of geometries and roughness have on them. The present study focuses on the use of two-dimensional (2DV) numerical model simulations and data obtained during a field campaign in Puerto Morelos, Quintana Roo, Mexico to better understand the detailed surf zone processes that occur over a fringing reef. The model used is Cornell Breaking Wave and Structures (COBRAS), which solves Reynolds-Averaged Navier-Stokes (RANS) equations. Reef geometries implemented in the model include a reef flat and two different reef crests. The effect of roughness on wave setup, radiation stress, mean flows, and cross-shore spectral evolution for the model results was studied using different roughness coefficients (Nikuradse) and a bathymetric profile obtained in the field using the bottom track option of an Acoustic Doppler Current Profiler. Field data were also analysed for the configuration and roughness of Puerto Morelos. Model results reveal that for all profiles wave setup increased significantly (~22%) with increasing bed roughness, in agreement with previous findings for sandy beaches.For all wave heights and periods studied, increasing roughness also affected spectral wave evolution across the reef, with a significant reduction in energy, particularly at infragravity frequencies. The presence of a reef crest in the profile resulted in differences in behaviour at infragravity frequencies. For example, preliminary results suggest that there is a shift towards higher frequencies as waves progress into the lagoon when a crest is present, something that does not appear to occur over the reef flat. Time-averaged velocities exhibited a dominant onshore flow due to waves at the surface, as is generally reported for coral reefs. Model results also suggest the presence of offshore velocities, which were slightly greater over the reef flat compared to the reef crest. Maximum offshore velocities appear to be more localised in the case of the reef flat whereas they extended over a larger area in the case of the reef crest. In all cases, increased roughness resulted in reduced velocities. These results are important since they concern processes that affect the circulation within the lagoon, which has implications in terms of the lagoon's residence time and hence heat dispersion and exposure to pollutants.
Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, P.M.; Kowalik, W.S.
1995-08-01
Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less
Carbonate system parameters of an algal-dominated reef along West Maui
NASA Astrophysics Data System (ADS)
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan; Gallagher, Chris; Cheriton, Olivia; Storlazzi, Curt D.
2018-04-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process - primarily SGD fluxes - controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.
Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh
2009-09-01
Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.
Ugalde, Diana; Gómez, Patricia; Simões, Nuno
2015-01-19
Marine sponges usually constitute the most diverse group of the benthic community in coral reefs. Although they are reasonably well studied at the northern Gulf of Mexico (GMx), the southern GMx is poorly known and lacks records from many major reef systems that lie off the Mexican coast. The present taxonomic study is the first sponge account from Alacranes reef, the largest coral reef system in the GMx, and from the shallow reef banks of Sisal, both in the northwest Yucatan Peninsula. The 19 species herein described represent the first sponge fauna records from these reefs. Among these, seven species represent new record for GMx: Erylus formosus, Cliona flavifodina, Spirastrella aff. mollis, Strongylacidon bermuda, Topsentia bahamensis, Agelas tubulata and Chelonaplysilla aff. erecta. Twelve species are new records for the Southern GMx: Erylus trisphaerus, Cliona amplicavata, Chondrilla caribensis, Halichondria lutea, Hymeniacidon caerulea, Axinella corrugata, Dragmacidon reticulatum, Chalinula molitba, Amphimedon caribica, A. complanata, Hyatella cavernosa and Dysidea variabilis. Additionally, a redescription of Erylus trisphaerus is presented which had not been reviewed since its original description in 1953 off Western Florida, except that it was listed for north La Habana, Cuba.
Measuring coral reef community metabolism using new benthic chamber technology
Yates, K.K.; Halley, R.B.
2003-01-01
Accurate measurement of coral reef community metabolism is a necessity for process monitoring and in situ experimentation on coral reef health. Traditional methodologies used for these measurements are effective but limited by location and scale constraints. We present field trial results for a new benthic chamber system called the Submersible Habitat for Analyzing Reef Quality (SHARQ). This large, portable incubation system enables in situ measurement and experimentation on community- scale metabolism. Rates of photosynthesis, respiration, and calcification were measured using the SHARQ for a variety of coral reef substrate types on the reef flat of South Molokai, Hawaii, and in Biscayne National Park, Florida. Values for daily gross production, 24-h respiration, and net calcification ranged from 0.26 to 6.45 g O2 m-2 day-1, 1.96 to 8.10 g O2 m-2 24 h-1, and 0.02 to 2.0 g CaCO3 m -2 day-1, respectively, for all substrate types. Field trials indicate that the SHARQ incubation chamber is an effective tool for in situ isolation of a water mass over a variety of benthic substrate types for process monitoring, experimentation, and other applications.
Live coral cover in the fossil record: an example from Holocene reefs of the Dominican Republic
NASA Astrophysics Data System (ADS)
Lescinsky, H.; Titus, B.; Hubbard, D.
2012-06-01
Fossil reefs hold important ecological information that can provide a prehuman baseline for understanding recent anthropogenic changes in reefs systems. The most widely used proxy for reef "health," however, is live coral cover, and this has not been quantified in the fossil record because it is difficult to establish that even adjacent corals were alive at the same time. This study uses microboring and taphonomic proxies to differentiate between live and dead corals along well-defined time surfaces in Holocene reefs of the Enriquillo Valley, Dominican Republic. At Cañada Honda, live coral cover ranged from 59 to 80% along a contemporaneous surface buried by a storm layer, and the reef, as a whole had 33-80% live cover within the branching, mixed, massive and platy zones. These values equal or exceed those in the Dominican Republic and Caribbean today or reported decades ago. The values from the western Dominican Republic provide a geologic baseline against which modern anthropogenic changes in Caribbean reefs can be considered.
Cochran, Susan A.; Gibbs, Ann E.; D'Antonio, Nicole L.; Storlazzi, Curt D.
2016-05-18
The coral reef in Faga‘alu Bay, Tutuila, American Samoa, has suffered numerous natural and anthropogenic stresses. Areas once dominated by live coral are now mostly rubble surfaces covered with turf or macroalgae. In an effort to improve the health and resilience of the coral reef system, the U.S. Coral Reef Task Force selected Faga‘alu Bay as a priority study area. To support these efforts, the U.S. Geological Survey mapped nearly 1 km2 of seafloor to depths of about 60 m. Unconsolidated sediment (predominantly sand) constitutes slightly greater than 50 percent of the seafloor in the mapped area; reef and other hardbottom potentially available for coral recruitment constitute nearly 50 percent of the mapped area. Of this potentially available hardbottom, only slightly greater than 37 percent is covered with at least 10 percent coral, which is fairly evenly distributed between the reef flat, fore reef, and offshore bank/shelf.
Modeling Reef Island Morphodynamics in Profile and Plan View
NASA Astrophysics Data System (ADS)
Ashton, A. D.; Ortiz, A. C.; Lorenzo-Trueba, J.
2016-12-01
Reef islands are carbonate detrital landforms perched atop shallow reef flats of atolls and barrier reef systems. Often comprising the only subaerial, inhabitable land of many island chains and island nations, these low-lying, geomorphically active landforms face considerable hazards from climate change. While there hazards include wave overtopping and groundwater salinization, sea-level rise and wave climate change will affect sediment transport and shoreline dynamics, including the possibility for wholesale reorganization of the islands themselves. Here we present a simplified morphodynamic model that can spatially quantify the potential impacts of climate change on reef islands. Using parameterizations of sediment transport pathways and feedbacks from previously presented XBeach modeling results, we investigate how sea-level rise, change in storminess, and different carbonate production rates can affect the profile evolution of reef islands, including feedbacks with the shallow reef flat that bounds the islands offshore (and lagoonward). Model results demonstrate that during rising sea levels, the reef flat can serve as a sediment trap, starving reef islands of detrital sediment that could otherwise fortify the shore against sea-level-rise-driven erosion. On the other hand, if reef flats are currently shallow (likely due to geologic inheritance or biologic cementation processes) such that sea-level rise does not result in sediment accumulation on the flat, reef island shorelines may be more resilient to rising seas. We extend the model in plan view to examine how long-term (decadal) changes in wave approach direction could affect reef island shoreline orientation. We compare model results to historical and geologic change for different case studies on the Marshall Islands. This simplified modeling approach, focusing on boundary dynamics and mass fluxes, provides a quantitative tool to predict the response of reef island environments to climate change.
Barillé, Laurent; Le Bris, Anthony; Méléder, Vona; Launeau, Patrick; Robin, Marc; Louvrou, Ioanna; Ribeiro, Lourenço
2017-01-01
The Pacific oyster, Crassostrea gigas (Thunberg), is the main bivalve species cultivated in the world. With global warming enabling its reproduction and larval survival at higher latitudes, this species is now recognized as invasive and creates wild oyster reefs globally. In this study, the spatial distribution of photosynthetic assemblages colonizing the shells of wild C. gigas was investigated on both a large scale (two contrasting types of reefs found in mudflats and rocky areas) and a small scale (within individual shells) using a hyperspectral imager. The microspatial distribution of all phototrophs was obtained by mapping the Normalized Difference Vegetation Index (NDVI). Second derivative (δδ) analyses of hyperspectral images at 462, 524, 571 and 647 nm were subsequently applied to map diatoms, cyanobacteria, rhodophytes and chlorophytes, respectively. A concomitant pigment analysis was carried out by high performance liquid chromatography and completed by taxonomic observations. This study showed that there was high microalgal diversity associated with wild oyster shells and that there were differences in the structure of the phototropic assemblages depending on the type of reef. Namely, vertically-growing oysters in mudflat areas had a higher biomass of epizoic diatoms (hyperspectral proxy at δδ462 nm) and were mainly colonized by species of the genera Navicula, Nitzschia and Hippodonta, which are epipelic or motile epipsammic. The assemblages on the horizontal oysters contained more tychoplanktonic diatoms (e.g. Thalassiosira pseudonana, T. proschkinae and Plagiogrammopsis vanheurckii). Three species of boring cyanobacteria were observed for both types of reef: Mastigocoleus testarum, Leptolyngbya terrebrans, and Hyella caespistosa, but the second derivative analysis at 524 nm showed a significantly higher biomass for the horizontally-growing oysters. There was no biomass difference for the boring chlorophyte assemblages (δδ647 nm), with two species: Eugomontia testarum and Ostreobium quekettii observed for both types of reef. This study shows that oyster shells are an idiosyncratic but ubiquitous habitat for phototrophic assemblages. The contribution of these assemblages in terms of biomass and production to the functioning of coastal areas, and particularly to shellfish ecosystems, remains to be evaluated.
Le Bris, Anthony; Méléder, Vona; Launeau, Patrick; Robin, Marc; Louvrou, Ioanna; Ribeiro, Lourenço
2017-01-01
The Pacific oyster, Crassostrea gigas (Thunberg), is the main bivalve species cultivated in the world. With global warming enabling its reproduction and larval survival at higher latitudes, this species is now recognized as invasive and creates wild oyster reefs globally. In this study, the spatial distribution of photosynthetic assemblages colonizing the shells of wild C. gigas was investigated on both a large scale (two contrasting types of reefs found in mudflats and rocky areas) and a small scale (within individual shells) using a hyperspectral imager. The microspatial distribution of all phototrophs was obtained by mapping the Normalized Difference Vegetation Index (NDVI). Second derivative (δδ) analyses of hyperspectral images at 462, 524, 571 and 647 nm were subsequently applied to map diatoms, cyanobacteria, rhodophytes and chlorophytes, respectively. A concomitant pigment analysis was carried out by high performance liquid chromatography and completed by taxonomic observations. This study showed that there was high microalgal diversity associated with wild oyster shells and that there were differences in the structure of the phototropic assemblages depending on the type of reef. Namely, vertically-growing oysters in mudflat areas had a higher biomass of epizoic diatoms (hyperspectral proxy at δδ462 nm) and were mainly colonized by species of the genera Navicula, Nitzschia and Hippodonta, which are epipelic or motile epipsammic. The assemblages on the horizontal oysters contained more tychoplanktonic diatoms (e.g. Thalassiosira pseudonana, T. proschkinae and Plagiogrammopsis vanheurckii). Three species of boring cyanobacteria were observed for both types of reef: Mastigocoleus testarum, Leptolyngbya terrebrans, and Hyella caespistosa, but the second derivative analysis at 524 nm showed a significantly higher biomass for the horizontally-growing oysters. There was no biomass difference for the boring chlorophyte assemblages (δδ647 nm), with two species: Eugomontia testarum and Ostreobium quekettii observed for both types of reef. This study shows that oyster shells are an idiosyncratic but ubiquitous habitat for phototrophic assemblages. The contribution of these assemblages in terms of biomass and production to the functioning of coastal areas, and particularly to shellfish ecosystems, remains to be evaluated. PMID:28934317
Integrating observational and modelling systems for the management of the Great Barrier Reef
NASA Astrophysics Data System (ADS)
Baird, M. E.; Jones, E. M.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Robson, B.; Schroeder, T.; Skerratt, J.; Steven, A. D.; Wild-Allen, K.
2016-02-01
Observational and modelling systems provide two sources of knowledge that must be combined to provide a more complete view than either observations or models alone can provide. Here we describe the eReefs coupled hydrodynamic, sediment and biogeochemical model that has been developed for the Great Barrier Reef; and the multiple observations that are used to constrain the model. Two contrasting examples of model - observational integration are highlighted. First we explore the carbon chemistry of the waters above the reef, for which observations are accurate, but expensive and therefore sparse, while model behaviour is highly skilful. For carbon chemistry, observations are used to constrain model parameterisation and quantify model error, with the model output itself providing the most useable knowledge for management purposes. In contrast, ocean colour provides inaccurate, but cheap and spatially and temporally extensive observations. Thus observations are best combined with the model in a data assimilating framework, where a custom-designed optical model has been developed for the purposes of incorporating ocean colour observations. The future management of Great Barrier Reef water quality will be based on an integration of observing and modelling systems, providing the most robust information available.
Response of the Great Barrier Reef to sea-level and environmental changes over the past 30,000 years
NASA Astrophysics Data System (ADS)
Webster, Jody M.; Braga, Juan Carlos; Humblet, Marc; Potts, Donald C.; Iryu, Yasufumi; Yokoyama, Yusuke; Fujita, Kazuhiko; Bourillot, Raphael; Esat, Tezer M.; Fallon, Stewart; Thompson, William G.; Thomas, Alexander L.; Kan, Hironobu; McGregor, Helen V.; Hinestrosa, Gustavo; Obrochta, Stephen P.; Lougheed, Bryan C.
2018-06-01
Previous drilling through submerged fossil coral reefs has greatly improved our understanding of the general pattern of sea-level change since the Last Glacial Maximum, however, how reefs responded to these changes remains uncertain. Here we document the evolution of the Great Barrier Reef (GBR), the world's largest reef system, to major, abrupt environmental changes over the past 30 thousand years based on comprehensive sedimentological, biological and geochronological records from fossil reef cores. We show that reefs migrated seaward as sea level fell to its lowest level during the most recent glaciation ( 20.5-20.7 thousand years ago (ka)), then landward as the shelf flooded and ocean temperatures increased during the subsequent deglacial period ( 20-10 ka). Growth was interrupted by five reef-death events caused by subaerial exposure or sea-level rise outpacing reef growth. Around 10 ka, the reef drowned as the sea level continued to rise, flooding more of the shelf and causing a higher sediment flux. The GBR's capacity for rapid lateral migration at rates of 0.2-1.5 m yr-1 (and the ability to recruit locally) suggest that, as an ecosystem, the GBR has been more resilient to past sea-level and temperature fluctuations than previously thought, but it has been highly sensitive to increased sediment input over centennial-millennial timescales.
Gress, Erika; Wright, Georgina; Exton, Dan A.; Rogers, Alex D.
2016-01-01
Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811
NASA Astrophysics Data System (ADS)
Drupp, P. S.; Mackenzie, F. T.; De Carlo, E. H.; Guidry, M.
2015-12-01
A CO2-carbonic acid system biogeochemical box model (CRESCAM, Coral Reef and Sediment Carbonate Model) of the barrier reef flat in Kaneohe Bay, Hawai'i was developed to determine how increasing temperature and dissolved inorganic carbon (DIC) content of open ocean source waters, resulting from rising anthropogenic CO2 emissions and ocean acidification, affect the CaCO3budget of coral reef ecosystems. CRESCAM consists of 17 reservoirs and 59 fluxes, including a surface water column domain, a two-layer permeable sediment domain, and a coral framework domain. Physical, chemical, and biological processes such as advection, carbonate precipitation/dissolution, and net ecosystem production and calcification were modeled. The initial model parameters were constrained by experimental and field data from previous coral reef studies, mostly in Kaneohe Bay over the past 50 years. The field studies include data collected by our research group for both the water column and sediment-porewater system.The model system, initially in a quasi-steady state condition estimated for the early 21st century, was perturbed using future projections to the year 2100 of the Anthropocene of atmospheric CO2 concentrations, temperature, and source water DIC. These perturbations were derived from the most recent (2013) IPCC's Representative Concentration Pathway (RCP) scenarios, which predict CO2 atmospheric concentrations and temperature anomalies out to 2100. A series of model case studies were also performed whereby one or more parameters (e.g., coral calcification response to declining surface water pH) were altered to investigate potential future outcomes. Our model simulations predict that although the Kaneohe Bay barrier reef will likely see a significant decline in NEC over the coming century, it is unlikely to reach a state of net erosion - a result contrary to several global coral reef model projections. In addition, we show that depending on the future response of NEP and NEC to OA and rising temperatures, the surface waters could switch from being a present-day source of CO2 to the atmosphere to a future sink. This ecosystem specific model can be applied to any reef system where data are available to constrain the initial model state and is a powerful tool for examining future changes in coral reef carbon budgets.
Monitoring Land Based Sources of Pollution over Coral Reefs using VIIRS Ocean Color Products
NASA Astrophysics Data System (ADS)
Geiger, E.; Strong, A. E.; Eakin, C. M.; Wang, M.; Hernandez, W. J.; Cardona Maldonado, M. A.; De La Cour, J. L.; Liu, G.; Tirak, K.; Heron, S. F.; Skirving, W. J.; Armstrong, R.; Warner, R. A.
2016-02-01
NOAA's Coral Reef Watch (CRW) program and the NESDIS Ocean Color Team are developing new products to monitor land based sources of pollution (LBSP) over coral reef ecosystems using the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the S-NPP satellite. LBSP are a major threat to corals that can cause disease and mortality, disrupt critical ecological reef functions, and impede growth, reproduction, and larval settlement, among other impacts. From VIIRS, near-real-time satellite products of Chlorophyll-a, Kd(490), and sea surface temperature are being developed for three U.S. Coral Reef Task Force priority watershed sites - Ka'anapali (West Maui, Hawai'i), Faga'alu (American Samoa), and Guánica Bay (Puerto Rico). Background climatological levels of these parameters are being developed to construct anomaly products. Time-series data are being generated to monitor changes in water quality in near-real-time and provide information on historical variations, especially following significant rain events. A pilot calibration/validation field study of the VIIRS-based ocean color products is underway in Puerto Rico; we plan to expand this validation effort to the other two watersheds. Working with local resource managers, we have identified a focal area for product development and validation for each watershed and its associated local reefs. This poster will present preliminary results and identify a path forward to ensure marine resource managers understand and correctly use the new ocean color products, and to help NOAA CRW refine its satellite products to maximize their benefit to coral reef management. NOAA - National Oceanic and Atmospheric Administration NESDIS - NOAA/National Environmental Satellite, Data, and Information Service S-NPP - Suomi National Polar-orbiting Partnership
Earth Observations taken by the Expedition 20 crew
2009-06-14
ISS020-E-009861 (14 June 2009) --- Big Thompson Mesa in the Capitol Reef National Park, Utah is featured in this image photographed by an Expedition 20 crew member on the International Space Station. This detailed photograph depicts a portion of Big Thompson Mesa located near the southern end of Capitol Reef National Park. Capitol Reef National Park is located on the Colorado Plateau, a physiographic and geologic province that comprises the adjacent quarters of Arizona, Colorado, New Mexico and Utah. Big Thompson Mesa (upper right) is part of a large feature known as the Waterpocket Fold. The Fold is a geologic structure called a monocline, characterized by generally flat-laying sedimentary rock layers with a steep and highly localized flexure– much like a carpet runner draped over a stair step. Monoclines on the Colorado Plateau are thought to be the result of faulting of stratigraphically lower and more brittle crystalline rocks; while the crystalline rocks were broken into raised or lowered blocks, the overlaying, less brittle sedimentary rocks were flexed without breaking. According to scientists, the portion of the Waterpocket Fold illustrated in this image includes layered rocks formed during the Mesozoic Era (approximately 250 – 65 million years ago) – the oldest layers are at the bottom of the sequence (and also, in this view, the image), with each successive layer younger than the preceding one going upwards in the sequence. Not all of the units present are clearly visible, but some of the major units can be easily distinguished. The bottom half of the image includes the oldest rocks in the view: dark brown and dark green Moenkopi (Trm) and Chinle (Trc) Formations. At center, two strikingly colored units are visible – light red to orange Wingate Sandstone (Jw) and white Navajo Sandstone (Jn). A topographic bench above these units includes reddish brown to brown Carmel Formation (Jc) and Entrada Sandstone (Je). The top of the cliff face above this bench - Big Thompson Mesa - is comprised of brown Dakota Sandstone (Kd). Scientists believe this sequence represents more than 100 million years of deposition. Much younger Quaternary (2.0 million to approximately 10,000 years old) deposits are also present in the view. A regional view of Capitol Reef National Park and the Waterpocket Fold is available here. The area shown in this view is located approximately 65 kilometers to the southeast of Fruita, UT near the southern end of Capitol Reef National Park.
Bringing the Coral to the Classroom: Using Clay Cores to Learn about Paleoceanography
NASA Astrophysics Data System (ADS)
Brenner, L. D.
2014-12-01
Scientists use myriad tools to reconstruct past surface ocean conditions to develop a comprehensive image of our Earth. Corals are often utilized to create high-resolution records of sea surface temperature, local salinity or precipitation, and overall reef health via geochemical analyses. Paleoceanography is often a completely foreign topic for younger students or is taught in an abstract way unaccompanied by lab experiences for older students. Additionally, it is quite rare for students to be regularly interacting with marine organisms and coastal processes, weakening their connection to the ocean. In order to strengthen this bond and help students to understand the global impacts of a distant ocean it is sometimes necessary to bring the coral reef to the classroom. Using modeling clay and large straws students can take their own coral cores and examine the alternating clay layers to create their own chronology. Different clay colors represent a spectrum of environmental conditions. Students can reconstruct the oceanic conditions according to their coral core and begin to appreciate the wealth of information stored in these reef structures. The goals of this activity are to introduce students to paleoceanography and teach just one of many ways that scientists can learn about the past. Ideally students will begin to cultivate an appreciation for the ocean and its role in the climate system.
Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.
Vergés, Adriana; Bennett, Scott; Bellwood, David R
2012-01-01
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.
Primary production of coral ecosystems in the Vietnamese coastal and adjacent marine waters
NASA Astrophysics Data System (ADS)
Tac-An, Nguyen; Minh-Thu, Phan; Cherbadji, I. I.; Propp, M. V.; Odintsov, V. S.; Propp, L. H.
2013-11-01
Coral reef ecosystems in coastal waters and islands of Vietnam have high primary production. Average gross primary production (GPP) in coral reef waters was 0.39 g C m-2 day-1. GPP of corals ranged from 3.12 to 4.37 g C m-2 day-1. GPP of benthic microalgae in coral reefs ranged from 2 to 10 g C m-2 day-1. GPP of macro-algae was 2.34 g C m-2 day-1. Therefore, the total of GPP of whole coral reef ecosystems could reach 7.85 to 17.10 g C m-2 day-1. Almost all values of the ratio of photosynthesis to respiration in the water bodies are higher than 1, which means these regions are autotrophic systems. Wire variation of GPP in coral reefs was contributed by species abundance of coral and organisms, nutrient supports and environmental characteristics of coral ecosystems. Coral reefs play an important ecological role of biogeochemical cycling of nutrients in waters around the reefs. These results contribute valuable information for the protection, conservation and sustainable exploitation of the natural resources in coral reef ecosystems in Vietnam.
Synergistic impacts of global warming on the resilience of coral reefs
Bozec, Yves-Marie; Mumby, Peter J.
2015-01-01
Recent epizootics have removed important functional species from Caribbean coral reefs and left communities vulnerable to alternative attractors. Global warming will impact reefs further through two mechanisms. A chronic mechanism reduces coral calcification, which can result in depressed somatic growth. An acute mechanism, coral bleaching, causes extreme mortality when sea temperatures become anomalously high. We ask how these two mechanisms interact in driving future reef state (coral cover) and resilience (the probability of a reef remaining within a coral attractor). We find that acute mechanisms have the greatest impact overall, but the nature of the interaction with chronic stress depends on the metric considered. Chronic and acute stress act additively on reef state but form a strong synergy when influencing resilience by intensifying a regime shift. Chronic stress increases the size of the algal basin of attraction (at the expense of the coral basin), whereas coral bleaching pushes the system closer to the algal attractor. Resilience can change faster—and earlier—than a change in reef state. Therefore, we caution against basing management solely on measures of reef state because a loss of resilience can go unnoticed for many years and then become disproportionately more difficult to restore.
NASA Astrophysics Data System (ADS)
Etnoyer, Peter J.; Wickes, Leslie N.; Silva, Mauricio; Dubick, J. D.; Balthis, Len; Salgado, Enrique; MacDonald, Ian R.
2016-03-01
Hard-bottom `mesophotic' reefs along the `40-fathom' (73 m) shelf edge in the northern Gulf of Mexico were investigated for potential effects of the Deepwater Horizon (DWH) oil spill from the Macondo well in April 2010. Alabama Alps Reef, Roughtongue Reef, and Yellowtail Reef were near the well, situated 60-88 m below floating oil discharged during the DWH spill for several weeks and subject to dispersant applications. In contrast, Coral Trees Reef and Madison Swanson South Reef were far from the DWH spill site and below the slick for less than a week or not at all, respectively. The reefs were surveyed by ROV in 2010, 2011, and 2014 and compared to similar surveys conducted one and two decades earlier. Large gorgonian octocorals were present at all sites in moderate abundance including Swiftia exserta, Hypnogorgia pendula, Thesea spp., and Placogorgia spp. The gorgonians were assessed for health and condition in a before-after-control-impact (BACI) research design using still images captured from ROV video transects. Injury was modeled as a categorical response to proximity and time using logistic regression. Condition of gorgonians at sites near Macondo well declined significantly post-spill. Before the spill, injury was observed for 4-9 % of large gorgonians. After the spill, injury was observed in 38-50 % of large gorgonians. Odds of injury for sites near Macondo were 10.8 times higher post-spill, but unchanged at far sites. The majority of marked injured colonies in 2011 declined further in condition by 2014. Marked healthy colonies generally remained healthy. Background stresses to corals, including fishing activity, fishing debris, and coral predation, were noted during surveys, but do not appear to account for the decline in condition at study sites near Macondo well.
Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.
Velásquez, Johanna; Sánchez, Juan A
2015-01-01
What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks.
Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs
Velásquez, Johanna; Sánchez, Juan A.
2015-01-01
Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral community structure with opposite diversity and composition patterns between oceanic and continental reefs. Even habitats with similar depths and overall environmental conditions did not share similar communities between oceanic and continental reefs. This indicates a strong regional influence over the local communities, probably due to water transparency differences between major reef types, i.e., oceanic vs. continental shelf-neritic. This was supported by contrasting patterns found in morphology, composition and evolutionary history of the species between atolls and reef banks. PMID:26177191
Goodbody-Gringley, Gretchen; Waletich, Justin
2018-04-02
Scleractinian corals have global ecological, structural, social, and economic importance that is disproportionately large relative to their areal extent. These reef building corals form the architectural framework for shallow water tropical reef systems, supporting the most productive and biologically diverse marine ecosystems on Earth (Veron, 1995). Reef-building scleractinian species are dependent on photosynthetic products supplied by symbiotic zooxanthellae of the genus Symbiodinium, restricting their distribution to the photic zone (Stambler, 2011). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Early Pleistocene origin of reefs around Lanai, Hawaii
Webster, Jody M.; Clague, David A.; Faichney, Iain D.E.; Fullagar, Paul D.; Hein, James R.; Moore, James G.; Paull, Charles K.
2010-01-01
A sequence of submerged terraces (L1–L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be <500 ka. We present bathymetric, observational, lithologic and 51 87Sr/86Sr isotopic measurements for the submerged Lanai terraces ranging from −300 to −1000 m (L3–L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (∼±0.23 Ma) to distinguish the age–depth relationship and drowning times of individual reefs, indicate that the L12–L3 reefs range in age from ∼1.3–0.5 Ma and are therefore about 0.5–0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (∼1.3–1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts.
Operationalizing resilience for adaptive coral reef management under global environmental change
Anthony, Kenneth RN; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas AJ; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie
2015-01-01
Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. PMID:25196132
Kenkel, Carly D; Almanza, Albert T; Matz, Mikhail V
2015-12-01
Despite decades of monitoring global reef decline, we are still largely unable to explain patterns of reef deterioration at local scales, which precludes the development of effective management strategies. Offshore reefs of the Florida Keys, USA, experience milder temperatures and lower nutrient loads in comparison to inshore reefs yet remain considerably more degraded than nearshore patch reefs. A year-long reciprocal transplant experiment of the mustard hill coral (Porites astreoides) involving four source and eight transplant locations reveals that corals adapt and/or acclimatize to their local habitat on a < 10-km scale. Surprisingly, transplantation to putatively similar environmental types (e.g., offshore corals moved to a novel offshore site, or along-shore transplantation) resulted in greater reductions in fitness proxies, such as coral growth, than cross-channel transplantation between inshore and offshore reefs. The only abiotic factor showing significantly greater differences between along-shore sites was daily temperature range extremes (rather than the absolute high or low temperatures reached), providing a possible explanation for this pattern. Offshore-origin corals exhibited significant growth reductions at sites with greater daily temperature ranges, which explained up to 39% of the variation in their mass gain. In contrast, daily temperature range explained at most 9% of growth variation in inshore-origin corals, suggesting that inshore corals are more tolerant of high-frequency temperature fluctuations. Finally, corals incur trade-offs when specializing to their native reef. Across reef locations the coefficient of selection against coral transplants was 0.07 ± 0.02 (mean ± SE). This selection against immigrants could hinder the ability of corals to recolonize devastated reefs, whether through assisted migration efforts or natural recruitment events, providing a unifying explanation for observed patterns of coral decline in this reef system.
A Synthesis and Comparison of Approaches for Quantifying Coral Reef Structure
NASA Astrophysics Data System (ADS)
Duvall, M. S.; Hench, J. L.
2016-02-01
The complex physical structures of coral reefs provide substrate for benthic organisms, surface area for material fluxes, and have been used as a predictor of reef-fish biomass and biodiversity. Coral reef topography has a first order effect on reef hydrodynamics by imposing drag forces and increasing momentum and scalar dispersion. Despite its importance, quantifying reef topography remains a challenge, as it is patchy and discontinuous while also varying over orders of magnitude in spatial scale. Previous studies have quantified reef structure using a range of 1D and 2D metrics that estimate vertical roughness, which is the departure from a flat geometric profile or surface. However, there is no general mathematical or conceptual framework by which to apply or compare these roughness metrics. While the specific calculations of different metrics vary, we propose that they can be classified into four categories based on: 1) vertical relief relative to a reference height; 2) gradients in vertical relief; 3) surface contour distance; or 4) variations in roughness with scale. We apply metrics from these four classes to idealized reef topography as well as natural reef topography data from Moorea, French Polynesia. Through the use of idealized profiles, we demonstrate the potential for reefs with different morphologies to possess the same value for some scale-dependent metrics (i.e. classes 1-3). Due to the superposition of variable-scale roughness elements in reef topography, we find that multi-scale metrics (i.e. class 4) can better characterize structural complexity by capturing surface roughness across a range of spatial scales. In particular, we provide evidence of the ability of 1D continuous wavelet transforms to detect changes in dominant roughness scales on idealized topography as well as within real reef systems.
Net Ecosystem Calcification by a Coral Reef Community under Natural Acidification
NASA Astrophysics Data System (ADS)
Shamberger, K.; Lentz, S. J.; Cohen, A. L.
2016-02-01
Net Ecosystem Calcification (NEC) is a measure of the balance between calcium carbonate production (calcification) and loss (dissolution) within a coral reef system. Establishing baseline NEC estimates for a broad range of coral reef systems today provides much needed information to constrain spatial and temporal variability within and amongst different systems, investigate the sensitivity of ecosystem scale calcification to environmental forcing, and improve projections of coral reef futures under ocean acidification throughout this century. Previous NEC studies have been limited to coral reefs with unidirectional (Lagrangian and flow respirometry studies) or negligible (slack water Eulerian studies) water flow across the reef for at least part of the day, usually on the order of hours. Here, we present NEC rates in a naturally low pH, semi-enclosed coral reef lagoon with high coral cover and diversity and tidally driven flow within the Palau Rock Islands. NEC was determined from data collected over the full diel cycle for four consecutive days, during two successive years and different seasons, using total alkalinity (TA), salinity, and volume budgets. Two different methods used to calculate NEC are in good agreement and show that the coral community is net calcifying despite high rates of bioerosion and pH (mean pH = 7.88 ± 0.02) and aragonite saturation state (Ωar = 2.66 ± 0.11) levels close to those projected for the end of this century. Critically, NEC rates in year 1 (17.0 - 23.7 mmol m-2 d-1) were half those of year 2 (42.0 - 48.1 mmol m-2 d-1), though the carbonate chemistry of the source water did not change between years. This suggests that single occupations and short term measurements do not adequately capture the full range of NEC variability within a system and that factors other than ocean acidification play an important role in modulating NEC rates.
Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil)
Walter, Juline M.; Tschoeke, Diogo A.; Meirelles, Pedro M.; de Oliveira, Louisi; Leomil, Luciana; Tenório, Márcio; Valle, Rogério; Salomon, Paulo S.; Thompson, Cristiane C.; Thompson, Fabiano L.
2016-01-01
Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms. PMID:27548380
From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 4)
2017-04-20
Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes
From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 2)
2017-04-03
Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes
From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 3)
2017-04-12
Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes
A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals
Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf
2016-01-01
Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983
A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.
Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf
2016-03-04
Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.
Diet and condition of mesopredators on coral reefs in relation to shark abundance
Meekan, Mark G.; Meeuwig, Jessica J.
2017-01-01
Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs via both risk effects and competitive exclusion. We used a “natural experiment” to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents of five species of mesopredatory teleosts largely contained fish while on reefs with abundant sharks, the same mesopredatory species consumed a larger proportion of benthic invertebrates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark abundance. Condition was defined as body weight, height and width for a given length and also estimated via several indices of condition. Due to the nature of natural experiments, alternative explanations cannot be discounted. However, the results were consistent with the hypothesis that loss of sharks may influence the diet and condition of mesopredators and by association, their fecundity and trophic role. Regardless of the mechanism (risk effects, competitive release, or other), our findings suggest that overfishing of sharks has the potential to trigger trophic cascades on coral reefs and that further declines in shark populations globally should be prevented to protect ecosystem health. PMID:28422965
Diet and condition of mesopredators on coral reefs in relation to shark abundance.
Barley, Shanta C; Meekan, Mark G; Meeuwig, Jessica J
2017-01-01
Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs via both risk effects and competitive exclusion. We used a "natural experiment" to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents of five species of mesopredatory teleosts largely contained fish while on reefs with abundant sharks, the same mesopredatory species consumed a larger proportion of benthic invertebrates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark abundance. Condition was defined as body weight, height and width for a given length and also estimated via several indices of condition. Due to the nature of natural experiments, alternative explanations cannot be discounted. However, the results were consistent with the hypothesis that loss of sharks may influence the diet and condition of mesopredators and by association, their fecundity and trophic role. Regardless of the mechanism (risk effects, competitive release, or other), our findings suggest that overfishing of sharks has the potential to trigger trophic cascades on coral reefs and that further declines in shark populations globally should be prevented to protect ecosystem health.
NASA Astrophysics Data System (ADS)
Delandmeter, Philippe; Lambrechts, Jonathan; Marmorino, George O.; Legat, Vincent; Wolanski, Eric; Remacle, Jean-François; Chen, Wei; Deleersnijder, Eric
2017-07-01
Interaction of tidal flow with a complex topography and bathymetry including headlands, islands, coral reefs and shoals create a rich submesoscale field of tidal jets, vortices, unsteady wakes, lee eddies and free shear layers, all of which impact marine ecology. A unique and detailed view of the submesoscale variability in a part of the Great Barrier Reef lagoon, Australia, that includes a number of small islands was obtained by using a "stereo" pair of 2-m-resolution visible-band images that were acquired just 54 s apart by the WorldView-3 satellite. Near-surface current and vorticity were extracted at a 50-m-resolution from those data using a cross-correlation technique and an optical-flow method, each yielding a similar result. The satellite-derived data are used to test the ability of the second-generation Louvain-la-Neuve ice-ocean model (SLIM), an unstructured-mesh, finite element model for geophysical and environmental flows, to reproduce the details of the currents in the region. The model succeeds in simulating the large-scale (> 1 km) current patterns, such as the main current and the width and magnitude of the jets developing in the gaps between the islands. Moreover, the order of magnitude of the vorticity and the occurrence of some vortices downstream of the islands are correctly reproduced. The smaller scales (< 500 m) are resolved by the model, although various discrepancies with the data are observed. The smallest scales (< 50 m) are unresolved by both the model- and image-derived velocity fields. This study shows that high-resolution models are able to a significant degree to simulate accurately the currents close to a rugged coast. Very-high-resolution satellite oceanography stereo images offer a new way to obtain snapshots of currents near a complex topography that has reefs, islands and shoals, and is a potential resource that could be more widely used to assess the predictive ability of coastal circulation models.
New directions in coral reef microbial ecology.
Garren, Melissa; Azam, Farooq
2012-04-01
Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Deposition of organic material in a coral reef lagoon, One Tree Island, Great Barrier Reef
NASA Astrophysics Data System (ADS)
Koop, K.; Larkum, A. W. D.
1987-07-01
Deposition of organic material was measured at four sites on One Tree Island coral reef using fixed sediment traps. Although no reliable data were obtained for the reef crest area because of problems of resuspension, mean deposition in the backreef area amounted to some 4 g organic C m -2 day -1 whereas in the lagoon it was about 1·5 g C m -2 day -1. This amounted to mean nitrogen deposition rates of 160 and 95 mg N m -2 day -1, respectively. As primary production by turf algae, the principal producers at One Tree Island, has been estimated at about 2·3 g C m -2 day -1 for the whole reef system and the weighted mean carbon deposition is estimated at 2·2 g C m -2 day -1, it is clear that the carbon produced by plants is largely retained in the system. Nitrogen deposition, on the other hand, amounted to only about 60% of that produced by turf algae and it must be assumed that much of this leached into the water during sedimentation. Losses of nitrogen may be minimized by incorporation of dissolved nitrogen by pelagic microheterotrophs which may in turn be consumed by filter feeders before they leave the reef.
Wooldridge, Scott A; Heron, Scott F; Brodie, Jon E; Done, Terence J; Masiri, Itsara; Hinrichs, Saskia
2017-01-15
A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N
2015-01-01
We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.
Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093
Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.
The influence of coral reef benthic condition on associated fish assemblages.
Chong-Seng, Karen M; Mannering, Thomas D; Pratchett, Morgan S; Bellwood, David R; Graham, Nicholas A J
2012-01-01
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.
Andradi-Brown, Dominic A; Macaya-Solis, Consuelo; Exton, Dan A; Gress, Erika; Wright, Georgina; Rogers, Alex D
2016-01-01
Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30-150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth.
Schill, Steven R.; Raber, George T.; Roberts, Jason J.; Treml, Eric A.; Brenner, Jorge; Halpin, Patrick N.
2015-01-01
We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008–2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future. PMID:26641083
Macaya-Solis, Consuelo; Exton, Dan A.; Gress, Erika; Wright, Georgina; Rogers, Alex D.
2016-01-01
Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30–150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth. PMID:27959907
Pacific ciguatoxins in food web components of coral reef systems in the Republic of Kiribati.
Mak, Yim Ling; Wai, Tak-Cheung; Murphy, Margaret B; Chan, Wing Hei; Wu, Jia Jun; Lam, James C W; Chan, Leo L; Lam, Paul K S
2013-12-17
Ciguatera fish poisoning (CFP) is a foodborne illness caused by consumption of coral reef fishes contaminated by ciguatoxins (CTXs); of the known CTX congeners, the Pacific ciguatoxins (P-CTXs) are the most toxic. Little is known about the trophodynamics of P-CTXs in coral reef systems. The present study explores the distribution, transfer, and trophic magnification of P-CTX-1, -2, and -3 in coral reef systems with high (ciguatoxic) and low (reference) ciguatoxicity in a CFP-endemic nation by use of liquid chromatography-tandem mass spectrometry (LC-MS/MS). In ciguatoxic coral reef systems, P-CTXs were detected in 54% of herbivorous fishes [total P-CTXs <0.500-1670 pg/g wet weight (ww)], 72% of omnivorous fishes (<0.500-1810 pg/g ww), and 76% of carnivorous fishes (<0.500-69 500 pg/g ww), as well as a lobster ( Panulirus penicillatus ; 2.36 pg/g ww) and an octopus (Octopodidae; 2.56 pg/g ww). The dominant P-CTXs in grazers and piscivorous fishes were P-CTX-2 and -1, respectively. No significant correlation between P-CTX levels and lipid content in three target predatory fishes indicated that accumulation of P-CTXs does not depend on fat content. A weak but significant positive relationship was observed between δ(15)N and P-CTX-1 levels, but further investigation is required to confirm its biomagnification potential.
Seascape and life-history traits do not predict self-recruitment in a coral reef fish.
Herrera, Marcela; Nanninga, Gerrit B; Planes, Serge; Jones, Geoffrey P; Thorrold, Simon R; Saenz-Agudelo, Pablo; Almany, Glenn R; Berumen, Michael L
2016-08-01
The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable for most marine metapopulations. Here, we assess patterns of larval dispersal in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using parentage and sibling reconstruction analyses based on 23 microsatellite DNA loci. We found that, contrary to previous findings in this system, self-recruitment (SR) was virtually absent at both the reef (0.4-0.5% at 0.15 km(2)) and the lagoon scale (0.6-0.8% at approx. 700 km(2)). While approximately 25% of the collected juveniles were identified as potential siblings, the majority of sibling pairs were sampled from separate reefs. Integrating our findings with earlier research from the same system suggests that geographical setting and life-history traits alone are not suitable predictors of SR and that high levels of localized recruitment are not universal in coral reef fishes. © 2016 The Authors.
Titus, Benjamin M; Daly, Marymegan; Exton, Dan A
2015-01-01
Contact between humans and the marine environment is increasing, but the capacity of communities to adapt to human presence remains largely unknown. The popularization of SCUBA diving has added a new dimension to human impacts in aquatic systems and, although individual-level impacts have been identified, cumulative effects on ecosystem function and community-wide responses are unclear. In principle, habituation may mitigate the consequences of human presence on the biology of an individual and allow the quick resumption of its ecological roles, but this has not been documented in aquatic systems. Here, we investigate the short-term impact of human presence and the long-term habituation potential of reef-fish communities to recreational SCUBA divers by studying symbiotic cleaning interactions on coral reefs with differing levels of historical contact with divers. We show that incidences of human contact result in a smaller decline in ecosystem function and more rapid resumption of baseline services on a reef in Utila, Honduras that has heavy historical levels of SCUBA diver presence, compared to an un-dived reef site in the Cayos Cochinos Marine Protected Area (CCMPA). Nonetheless, despite the generally smaller change in ecosystem function and decades of regular contact with divers, cleaning behavior is suppressed by >50% at Utila when divers are present. We hypothesize that community-wide habituation of reef fish is not fully achievable and may be biologically restricted to only partial habituation. Differential responses to human presence impacts the interpretation and execution of behavioral research where SCUBA is the predominant means of data collection, and provides an important rationale for future research investigating the interplay between human presence, ecosystem function, and community structure on coral reefs.
The status of coral reef ecology research in the Red Sea
NASA Astrophysics Data System (ADS)
Berumen, M. L.; Hoey, A. S.; Bass, W. H.; Bouwmeester, J.; Catania, D.; Cochran, J. E. M.; Khalil, M. T.; Miyake, S.; Mughal, M. R.; Spaet, J. L. Y.; Saenz-Agudelo, P.
2013-09-01
The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia's Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically "young" sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world's most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale.
Barnhardt, W.A.; Richmond, B.M.; Grossman, E.E.; Hart, P.
2005-01-01
High-resolution, seismic-reflection data elucidate the late Quaternary development of the largest coral-reef complex in the main Hawaiian Islands. Six acoustic facies were identified from reflection characteristics and lithosome geometry. An extensive, buried platform with uniformly low relief was traced beneath fore-reef and marginal shelf environments. This highly reflective surface dips gently seaward to ???130 m depth and locally crops out on the seafloor. It probably represents a wave-cut platform or ancient reef flat. We propose alternative evolutionary models, in which sea-level changes have modulated the development of reef systems, to explain the observed stratigraphic relationships. The primary difference between the models is the origin of the underlying antecedent surface, which arguably could have formed during either regression/lowstand or subsequent transgression.
Beijbom, Oscar; Edmunds, Peter J.; Roelfsema, Chris; Smith, Jennifer; Kline, David I.; Neal, Benjamin P.; Dunlap, Matthew J.; Moriarty, Vincent; Fan, Tung-Yung; Tan, Chih-Jui; Chan, Stephen; Treibitz, Tali; Gamst, Anthony; Mitchell, B. Greg; Kriegman, David
2015-01-01
Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys. PMID:26154157
Impacts of Artificial Reefs on Surrounding Ecosystems
NASA Astrophysics Data System (ADS)
Manoukian, Sarine
Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish aggregations associated with Senigallia reef based on the analysis of multibeam backscatter data in the water column is also explored. The settlement of the reefs and any terrain change are investigated over time providing a useful description of the local hydrodynamics and geological processes. All the artificial structures (made up by water-based concrete for Senigallia reef and mainly steel for St. Petersburg Beach reef) are identified and those showing substantial horizontal and/or vertical movements are analyzed in detail. Most artificial modules of Senigallia reef are not intact and scour signatures are well depicted around them, indicating reversals of the local current. This is due to both the wind pattern and to the quite close arrangement of the reef units that tend to deflect the bottom flow. As regards to the St. Petersburg Beach reef, all the man-made steel units are still in their upright position. Only a large barge shows a gradual collapse of its south side, and presents well-developed scouring at its east-northeast side, indicating dominant bottom flow from west-southwest to east-northeast. While an overall seafloor depth shallowing of about 0.30 m from down-current deposits was observed for Senigallia reef, an overall deepening of about 0.08 m due to scour was observed at the St. Petersburg Beach reef. Based on the backscatter data interpretation, surficial sediments are coarser in the vicinities of both artificial reefs than corresponding surrounding sediments. Scouring reveals this coarser layer underneath the prevalent mud sediment at Senigallia reef, and the predominant silt sediment at St. Petersburg Beach reef. In the ten years of Senigalia reef study, large-scale variations between clay and silt appear to be directly linked to large flood events that have occurred just prior to the change. As regards the water column investigation, acoustic backscatter from fish aggregations gives detailed information on their morphology and spatial distribution. In addition, relative fish biomass estimates can be extrapolated. Results suggest that most of the fish aggregations are generally associated with the artificial modules showing a tendency for mid- and bottom-water depth distribution than for the surface waters. This study contributes to understanding the changes in artificial reefs over time in relation to coastal processes. Moreover, the preliminary results concerning the water column backscatter data represents progress in fisheries acoustics research as a result of three-dimensional acoustics. They demonstrate the benefits of multibeam sonar as a tool to investigate and quantify size distribution and geometry of fish aggregations associated with shallow marine habitats.
A detrital sediment budget of a Maldivian reef platform
NASA Astrophysics Data System (ADS)
Morgan, K. M.; Kench, P. S.
2014-10-01
Sediment dynamics are an important control on the morphology and development of reef systems by actively removing and redistributing excess detrital sediment. This study presents quantitative data from direct point measurements of sediment transport on the platform surface and fore-reef slope of Vabbinfaru reef, North Malé Atoll, Maldives. A suite of sediment traps were used to construct actual rates of platform sediment fluxes and off-reef export over different spatial and temporal (seasonal) scales to establish key sediment transport pathways. Findings showed that high sediment fluxes occur on Vabbinfaru platform in the absence of major storm activity (up to 1905 g m- 1 d- 1), with 95% of annual transport occurring during the southwest monsoon as a result of increased wave energy. Climate-driven changes in the platform process regime caused a reversal of net sediment transport pathways between each monsoon season. Off-reef export rates were high, reaching a maximum of 12.58 kg m- 1 y- 1 for gravel and 407 g m- 1 d- 1 for sand-sized sediment. An estimated 127,120 kg is exported from the platform annually equating to a significant loss from the reef sediment budget and contributing to the long-term geomorphic development of the fore-reef slope and atoll basin. Detrital sediment reservoirs on Vabbinfaru are not purely depositional carbonate sinks, but rather temporary stores that are important in the transfer of sediment between reef zones.
NASA Astrophysics Data System (ADS)
Marshall, N. A.; Bohensky, E.; Curnock, M.; Goldberg, J.; Gooch, M.; Nicotra, B.; Pert, P.; Scherl, L. M.; Stone-Jovicich, S.; Tobin, R. C.
2016-11-01
The aim of this paper is to demonstrate the feasibility and potential utility of decision-centric social-economic monitoring using data collected from Great Barrier Reef (Reef) region. The social and economic long term monitoring program (SELTMP) for the Reef is a novel attempt to monitor the social and economic dimensions of social-ecological change in a globally and nationally important region. It represents the current status and condition of the major user groups of the Reef with the potential to simultaneously consider trends, interconnections, conflicts, dependencies and vulnerabilities. Our approach was to combine a well-established conceptual framework with a strong governance structure and partnership arrangement that enabled the co-production of knowledge. The framework is a modification of the Millennium Ecosystem Assessment and it was used to guide indicator choice. Indicators were categorised as; (i) resource use and dependency, (ii) ecosystem benefits and well-being, and (iii) drivers of change. Data were collected through secondary datasets where existing and new datasets were created where not, using standard survey techniques. Here we present an overview of baseline results of new survey data from commercial-fishers (n = 210), marine-based tourism operators (n = 119), tourists (n = 2877), local residents (n = 3181), and other Australians (n = 2002). The indicators chosen describe both social and economic components of the Reef system and represent an unprecedented insight into the ways in which people currently use and depend on the Reef, the benefits that they derive, and how they perceive, value and relate to the Reef and each other. However, the success of a program such as the SELTMP can only occur with well-translated cutting-edge data and knowledge that are collaboratively produced, adaptive, and directly feeds into current management processes. We discuss how data from the SELTMP have already been incorporated into Reef management decision-making through substantial inclusion in three key policy documents.
Salles, Tristan; Ding, Xuesong; Webster, Jody M; Vila-Concejo, Ana; Brocard, Gilles; Pall, Jodie
2018-03-27
Understanding the effects of climatic variability on sediment dynamics is hindered by limited ability of current models to simulate long-term evolution of sediment transfer from source to sink and associated morphological changes. We present a new approach based on a reduced-complexity model which computes over geological time: sediment transport from landmasses to coasts, reworking of marine sediments by longshore currents, and development of coral reef systems. Our framework links together the main sedimentary processes driving mixed siliciclastic-carbonate system dynamics. It offers a methodology for objective and quantitative sediment fate estimations over regional and millennial time-scales. A simulation of the Holocene evolution of the Great Barrier Reef shows: (1) how high sediment loads from catchments erosion prevented coral growth during the early transgression phase and favoured sediment gravity-flows in the deepest parts of the northern region basin floor (prior to 8 ka before present (BP)); (2) how the fine balance between climate, sea-level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates after ~6 ka BP; and, (3) how since 3 ka BP, with the decrease of accommodation space, reduced of vertical growth led to the lateral extension of reefs consistent with available observational data.
Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change
Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian
2014-01-01
Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086
NASA Astrophysics Data System (ADS)
Lorenzo-Trueba, J.
2016-02-01
Coral reef islands are accumulations of carbonate sediment deposited subaerially atop coral reef platforms. We hypothesize that the long-term evolution of reef islands is primarily controlled by the interplay between sea-level rise, sediment supply, and sediment overwash. Reef islands are supplied with sediment from offshore, in the form of reworked coral skeletons that originate at the reef edge and are carried onto the reef platform by waves, as well as in situ production on the reef flat itself. However, the primary mechanism that allows reef islands to keep pace with sea level is storm overwash, which enables the vertical transport of sediment from the periphery to the top of the island. Given the current lack of understanding on how production and overwash processes interact, we have constructed a morphodynamic model to elucidate and quantify how reef islands may respond to sea-level rise and changes in sediment production. Model results demonstrate that even if reef islands can remain subaerial over the coming century, this will require significant deposition of sediment atop the island and, in many cases, the island is expected to roll considerably over itself; both of these morphologic changes will negatively affect homes and infrastructure atop these islands. The model also suggests that as reef islands approach the lagoon edge of the reef platform, shoreline erosion and island drowning can be enhanced as sediment overwashes into the lagoon. Interestingly, this situation can only be avoided if either a high offshore sediment supply bulwarks the island in place or the system undergoes similar rates of overwash sedimentation from both the ocean and the lagoon sides. The model also allows us to explore the potential for increased overwash with increased storminess, increases in sediment supply due to bleaching or disturbance, or reduction of sediment supply as a result of reduced calcification rates due to ocean acidification.
Quantifying Climatological Ranges and Anomalies for Pacific Coral Reef Ecosystems
Gove, Jamison M.; Williams, Gareth J.; McManus, Margaret A.; Heron, Scott F.; Sandin, Stuart A.; Vetter, Oliver J.; Foley, David G.
2013-01-01
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic–biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change. PMID:23637939
Spatial and seasonal reef calcification in corals and calcareous crusts in the central Red Sea
NASA Astrophysics Data System (ADS)
Roik, Anna; Roder, Cornelia; Röthig, Till; Voolstra, Christian R.
2016-06-01
The existence of coral reef ecosystems critically relies on the reef carbonate framework produced by scleractinian corals and calcareous crusts (i.e., crustose coralline algae). While the Red Sea harbors one of the longest connected reef systems in the world, detailed calcification data are only available from the northernmost part. To fill this knowledge gap, we measured in situ calcification rates of primary and secondary reef builders in the central Red Sea. We collected data on the major habitat-forming coral genera Porites, Acropora, and Pocillopora and also on calcareous crusts (CC) in a spatio-seasonal framework. The scope of the study comprised sheltered and exposed sites of three reefs along a cross-shelf gradient and over four seasons of the year. Calcification of all coral genera was consistent across the shelf and highest in spring. In addition, Pocillopora showed increased calcification at exposed reef sites. In contrast, CC calcification increased from nearshore, sheltered to offshore, exposed reef sites, but also varied over seasons. Comparing our data to other reef locations, calcification in the Red Sea was in the range of data collected from reefs in the Caribbean and Indo-Pacific; however, Acropora calcification estimates were at the lower end of worldwide rates. Our study shows that the increasing coral cover from nearshore to offshore environments aligned with CC calcification but not coral calcification, highlighting the potentially important role of CC in structuring reef cover and habitats. While coral calcification maxima have been typically observed during summer in many reef locations worldwide, calcification maxima during spring in the central Red Sea indicate that summer temperatures exceed the optima of reef calcifiers in this region. This study provides a foundation for comparative efforts and sets a baseline to quantify impact of future environmental change in the central Red Sea.
Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.
Gove, Jamison M; Williams, Gareth J; McManus, Margaret A; Heron, Scott F; Sandin, Stuart A; Vetter, Oliver J; Foley, David G
2013-01-01
Coral reef ecosystems are exposed to a range of environmental forcings that vary on daily to decadal time scales and across spatial scales spanning from reefs to archipelagos. Environmental variability is a major determinant of reef ecosystem structure and function, including coral reef extent and growth rates, and the abundance, diversity, and morphology of reef organisms. Proper characterization of environmental forcings on coral reef ecosystems is critical if we are to understand the dynamics and implications of abiotic-biotic interactions on reef ecosystems. This study combines high-resolution bathymetric information with remotely sensed sea surface temperature, chlorophyll-a and irradiance data, and modeled wave data to quantify environmental forcings on coral reefs. We present a methodological approach to develop spatially constrained, island- and atoll-scale metrics that quantify climatological range limits and anomalous environmental forcings across U.S. Pacific coral reef ecosystems. Our results indicate considerable spatial heterogeneity in climatological ranges and anomalies across 41 islands and atolls, with emergent spatial patterns specific to each environmental forcing. For example, wave energy was greatest at northern latitudes and generally decreased with latitude. In contrast, chlorophyll-a was greatest at reef ecosystems proximate to the equator and northern-most locations, showing little synchrony with latitude. In addition, we find that the reef ecosystems with the highest chlorophyll-a concentrations; Jarvis, Howland, Baker, Palmyra and Kingman are each uninhabited and are characterized by high hard coral cover and large numbers of predatory fishes. Finally, we find that scaling environmental data to the spatial footprint of individual islands and atolls is more likely to capture local environmental forcings, as chlorophyll-a concentrations decreased at relatively short distances (>7 km) from 85% of our study locations. These metrics will help identify reef ecosystems most exposed to environmental stress as well as systems that may be more resistant or resilient to future climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tribble, G.W.
A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a strongermore » tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.« less
Gibbs, Ann E.; Cochran, Susan A.; Tierney, Peter W.
2013-01-01
Underwater video footage was collected in nearshore waters (<60-meter depth) off the Hawaiian Islands from 2002 to 2011 as part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program's Pacific Coral Reef Project, to improve seafloor characterization and for the development and ground-truthing of benthic-habitat maps. This report includes nearly 53 hours of digital underwater video footage collected during four USGS cruises and more than 10,200 still images extracted from the videos, including still frames from every 10 seconds along transect lines, and still frames showing both an overview and a near-bottom view from fixed stations. Environmental Systems Research Institute (ESRI) shapefiles of individual video and still-image locations, and Google Earth kml files with explanatory text and links to the video and still images, are included. This report documents the various camera systems and methods used to collect the videos, and the techniques and software used to convert the analog video tapes into digital data in order to process the images for optimum viewing and to extract the still images, along with a brief summary of each survey cruise.
Colín-García, Norberto A; Campos, Jorge E; Tello-Musi, Jose Luis; Arias-González, Jesús E
2016-09-01
Coral reefs are under intense conditions of stress caused by the anthropogenic activities in coastal areas and the increase of human population. Water effluents from urban and industrial areas carry large amounts of sediments and pollutants affecting corals populations, inducing bioerosion, increasing diseases and promoting the development of algae that compete for space with corals. In the Veracruz Reef System National Park (VRSNP) coral reefs are strongly affected by human activities carried out in the area. Gallega and Galleguilla reefs are among the most affected by wastewater discharges from the industrial (petrochemical and metallurgical) and urban areas in their vicinity. To assess the potential impact of this contamination on corals in the VRSNP, a chemical composition and morphology study of 76 Pseudodiploria colonies collected in reefs Gallega, Galleguilla, Isla Verde and Isla de Enmedio, was performed. Fragments of ~10 cm2 were collected and boric acid at 0.5 % was used to remove tissue from the skeleton; once clean, the morphology of each sample was determined with a scanning electron microscope (SEM). Subsequently, to test the chemical composition, an energy dispersion spectroscopy of X-ray chemical microanalysis (EDSX) was performed in the SEM. We found that corals from Gallega and Galleguilla reefs, located closer to human populations, presented high levels of tungsten and the skeleton exhibited multiple perforations. In contrast, corals from the farthest offshore reefs (Isla Verde and Isla de Enmedio) exhibited lower levels of tungsten and fewer perforations in their skeleton. These results demonstrated that anthropogenic activities in the NPVRS are affecting corals skeleton, highly damaging and promoting their bioerosion. The presence of traces of tungsten in the skeleton of corals is an evidence of the damage that waste discharges are causing to coral reefs. Discharges of large amounts of contaminants promoted the growth of harmful species that grow and develop into the corals skeleton, causing its bioerosion, and making them susceptible to disease and physical damage. This study is the first evidence of the effects of contamination on these species; therefore, further studies are necessary to determine the impact of pollution on their biology and survival.
Reef Ecosystem Services and Decision Support Database
This scientific and management information database utilizes systems thinking to describe the linkages between decisions, human activities, and provisioning of reef ecosystem goods and services. This database provides: (1) Hierarchy of related topics - Click on topics to navigat...
MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS
Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luczkovich, J.J.; Wagner, T.W.; Michalek, J.L.
In order to monitor changes caused by local and global human actions to a coral reef ecosystem, we sea-truthed a natural color Landsat TM image prepared for a coastal region of the northwestern Dominican Republic and recorded average water depth, precise geographical positions, and bottom types (seagrass, 15 sites; coral reef, ten sites; and sand, six sites). There were no significant differences in depth for the bottom type groups. The depths ranged from 0 to 16.1 m. Mean digital counts of seagrass and coral reef sites did not differ significantly in any band. A multivariate analysis of variance using allmore » three bands gave similar results. A ratio of the green/blue bands (TM 2/TM 1) showed there was a spectral shift associated with increasing depth, but not bottom type. Due to small-scale patchiness, seagrass and coral areas were difficult to distinguish, but sandy areas can be distinguished using Landsat TM imagery and our methods. 12 refs.« less
With a Little Help from My Friends: Group Orientation by Larvae of a Coral Reef Fish
Irisson, Jean-Olivier; Paris, Claire B.; Leis, Jeffrey M.; Yerman, Michelle N.
2015-01-01
Theory and some empirical evidence suggest that groups of animals orient better than isolated individuals. We present the first test of this hypothesis for pelagic marine larvae, at the stage of settlement, when orientation is critical to find a habitat. We compare the in situ behaviour of individuals and groups of 10–12 Chromis atripectoralis (reef fish of the family Pomacentridae), off Lizard Island, Great Barrier Reef. Larvae are observed by divers or with a drifting image recording device. With both methods, groups orient cardinally while isolated individuals do not display significant orientation. Groups also swim on a 15% straighter course (i.e. are better at keeping a bearing) and 7% faster than individuals. A body of observations collected in this study suggest that enhanced group orientation emerges from simple group dynamics rather than from the presence of more skilful leaders. PMID:26625164
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2014-09-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
NASA Astrophysics Data System (ADS)
do Nascimento Silva, Luzia Liniane; Gomes, Moab Praxedes; Vital, Helenice
2018-05-01
Submerged reefs, referred to as the Açu Reefs, have been newly observed on both sides of the Açu Incised Valley on the northeastern equatorial Brazilian outer shelf. This study aims to understand the roles of shelf physiography, its antecedent morphologies, and its inter reef sedimentation on the different development stages of the biogenic reef during last deglacial sea-level rise. The data sets consist of side-scan sonar imagery, one sparker seismic profile, 76 sediment samples, and underwater photography. Seven backscatter patterns (P1 to P7) were identified and associated with eleven sedimentary carbonate and siliciclastic facies. The inherited relief, the mouth of the paleo incised valley, and the interreef sediment distribution play major controls on the deglacial reef evolution. The reefs occur in a depth-limited 25-55 m water depth range and in a 6 km wide narrow zone of the outer shelf. The reefs crop out in a surface area over 100 km2 and occur as a series of NW-SE preferentially orientated ridges composed of three parallel ridge sets at 45, 35, and 25 m of water depth. The reefs form a series of individual, roughly linear ridges, tens of km in length, acting as barriers in addition to scattered reef mounds or knolls, averaging 4 m in height and grouped in small patches and aggregates. The reefs, currently limited at the transition between the photic and mesophotic zones, are thinly covered by red algae and scattered coral heads and sponges. Taking into account the established sea-level curves from the equatorial Brazilian northeastern shelf / Rochas Atoll and Barbados, the shelf physiography, and the shallow bedrock, the optimal conditions for reef development had to occur during a time interval (11-9 kyr BP) characterized by a slowdown of the outer shelf flooding, immediately following Meltwater Pulse-1B. This 2 kyr short interval provided unique conditions for remarkable reef backstepping into distinct parallel ridge sets. Furthermore, the Açu Reefs have trapped relict siliciclastic sediments within the three sets of reefs, west of the Açu Incised Valley and adjacent coasts. Lines evidence of easterly nearshore currents carried sediments from the old Açu Incised Valley and adjacent coasts. These incipiently drowned reefs influence the water circulation patterns of the modern shelf system, its carbonate sedimentation, and sediment transport. This study provides a new example of reef occurrence which might be more commonly observed on similar equatorial continental shelves.
Lirman, Diego; Fong, Peggy
2007-06-01
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.
A new towed platform for the unobtrusive surveying of benthic habitats and organisms
Zawada, David G.; Thompson, P.R.; Butcher, J.
2008-01-01
Maps of coral ecosystems are needed to support many conservation and management objectives, as well as research activities. Examples include ground-truthing aerial and satellite imagery, characterizing essential habitat, assessing changes, and monitoring the progress of restoration efforts. To address some of these needs, the U.S. Geological Survey developed the Along-Track Reef-Imaging System (ATRIS), a boat-based sensor package for mapping shallow-water benthic environments. ATRIS consists of a digital still camera, a video camera, and an acoustic depth sounder affixed to a moveable pole. This design, however, restricts its deployment to clear waters less than 10 m deep. To overcome this limitation, a towed version has been developed, referred to as Deep ATRIS. The system is based on a light-weight, computer-controlled, towed vehicle that is capable of following a programmed diving profile. The vehicle is 1.3 m long with a 63-cm wing span and can carry a wide variety of research instruments, including CTDs, fluorometers, transmissometers, and cameras. Deep ATRIS is currently equipped with a high-speed (20 frames · s-1) digital camera, custom-built light-emitting-diode lights, a compass, a 3-axis orientation sensor, and a nadir-looking altimeter. The vehicle dynamically adjusts its altitude to maintain a fixed height above the seafloor. The camera has a 29° x 22° field-of-view and captures color images that are 1360 x 1024 pixels in size. GPS coordinates are recorded for each image. A gigabit ethernet connection enables the images to be displayed and archived in real time on the surface computer. Deep ATRIS has a maximum tow speed of 2.6 m · s-1and a theoretical operating tow-depth limit of 27 m. With an improved tow cable, the operating depth can be extended to 90 m. Here, we present results from the initial sea trials in the Gulf of Mexico and Biscayne National Park, Florida, USA, and discuss the utility of Deep ATRIS for map-ping coral reef habitats. Several example mosaics illustrate the high-quality imagery that can be obtained with this system. The images also reveal the potential for unobtrusive animal observations; fish and sea turtles are unperturbed by the presence of Deep ATRIS
Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.
Diaz-Pulido, Guillermo; McCook, Laurence J; Dove, Sophie; Berkelmans, Ray; Roff, George; Kline, David I; Weeks, Scarla; Evans, Richard D; Williamson, David H; Hoegh-Guldberg, Ove
2009-01-01
Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance. In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata), colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated. These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.
Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.
2018-01-01
Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, Donald W.
1988-01-01
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.
Apparatus for simultaneously disreefing a centrally reefed clustered parachute system
Johnson, D.W.
1988-06-21
A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands.
Delevaux, Jade M S; Whittier, Robert; Stamoulis, Kostantinos A; Bremer, Leah L; Jupiter, Stacy; Friedlander, Alan M; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L L; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two 'ridge-to-reef' systems (Hā'ena and Ka'ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka'ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā'ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka'ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā'ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management.
Airborne Hyperspectral Imaging of Seagrass and Coral Reef
NASA Astrophysics Data System (ADS)
Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.
2013-12-01
This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.
2007-01-26
ocean affects calcifying organisms, such as corals , with significant effects to reefs , the ecosystems they support, and their ability to pro- tect...water coral reefs , to open- ocean systems. For example, increasing ocean acidity, altered biogeochemistry, changing current patterns, loss of sea ice...for example, large swings in the populations of commercial fisheries, changes in seabird-population distributions, and coral - reef -bleaching events
Coral reefs and the World Bank.
Hatziolos, M
1997-01-01
The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.
Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago
Jouffray, Jean-Baptiste; Nyström, Magnus; Norström, Albert V.; Williams, Ivor D.; Wedding, Lisa M.; Kittinger, John N.; Williams, Gareth J.
2015-01-01
Loss of coral reef resilience can lead to dramatic changes in benthic structure, often called regime shifts, which significantly alter ecosystem processes and functioning. In the face of global change and increasing direct human impacts, there is an urgent need to anticipate and prevent undesirable regime shifts and, conversely, to reverse shifts in already degraded reef systems. Such challenges require a better understanding of the human and natural drivers that support or undermine different reef regimes. The Hawaiian archipelago extends across a wide gradient of natural and anthropogenic conditions and provides us a unique opportunity to investigate the relationships between multiple reef regimes, their dynamics and potential drivers. We applied a combination of exploratory ordination methods and inferential statistics to one of the most comprehensive coral reef datasets available in order to detect, visualize and define potential multiple ecosystem regimes. This study demonstrates the existence of three distinct reef regimes dominated by hard corals, turf algae or macroalgae. Results from boosted regression trees show nonlinear patterns among predictors that help to explain the occurrence of these regimes, and highlight herbivore biomass as the key driver in addition to effluent, latitude and depth.
Changes in coral reef communities across a natural gradient in seawater pH.
Barkley, Hannah C; Cohen, Anne L; Golbuu, Yimnang; Starczak, Victoria R; DeCarlo, Thomas M; Shamberger, Kathryn E F
2015-06-01
Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.
NASA Astrophysics Data System (ADS)
Sadler, James; Nguyen, Ai D.; Leonard, Nicole D.; Webb, Gregory E.; Nothdurft, Luke D.
2016-04-01
The majority of coral geochemistry-based paleoclimate reconstructions in the Indo-Pacific are conducted on selectively cored colonies of massive Porites. This restriction to a single genus may make it difficult to amass the required paleoclimate data for studies that require deep reef coring techniques. Acropora, however, is a highly abundant coral genus in both modern and fossil reef systems and displays potential as a novel climate archive. Here we present a calibration study for Sr/Ca ratios recovered from interbranch skeleton in corymbose Acropora colonies from Heron Reef, southern Great Barrier Reef. Significant intercolony differences in absolute Sr/Ca ratios were normalized by producing anomaly plots of both coral geochemistry and instrumental water temperature records. Weighted linear regression of these anomalies from the lagoon and fore-reef slope provide a sensitivity of -0.05 mmol/mol °C-1, with a correlation coefficient (r2 = 0.65) comparable to those of genera currently used in paleoclimate reconstructions. Reconstructions of lagoon and reef slope mean seasonality in water temperature accurately identify the greater seasonal amplitude observed in the lagoon of Heron Reef. A longer calibration period is, however, required for reliable reconstructions of annual mean water temperatures.
Operationalizing resilience for adaptive coral reef management under global environmental change.
Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie
2015-01-01
Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. © 2014 John Wiley & Sons Ltd.
SIMAC: development and implementation of a coral reef monitoring network in Colombia.
Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto
2010-05-01
Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).
The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages
Chong-Seng, Karen M.; Mannering, Thomas D.; Pratchett, Morgan S.; Bellwood, David R.; Graham, Nicholas A. J.
2012-01-01
Accumulative disturbances can erode a coral reef’s resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae. PMID:22870294
NASA Astrophysics Data System (ADS)
Perry, Chris
2016-04-01
Global-scale deteriorations in coral reef health have caused major shifts in species composition and are likely to be exacerbated by climate change. It has been suggested that one effect of these ecological changes will be to lower reef carbonate production rates, which will impair reef growth potential and, ultimately, may lead to states of net reef erosion. However, quantitative data to support such assertions are limited, and linkages between the ecological state of coral reefs and their past and present geomorphic performance (in other words their growth potential) are poorly resolved. Using recently collected data from sites in the Caribbean and Indian Ocean, and which have undergone very different post-disturbance ecological trajectories over the last ~20-30 years, the differential impacts of disturbance on contemporary carbonate production regimes and on reef growth potential can be explored. In the Caribbean, a region which has been severely impacted ecological over the last 30+ years, our datasets show that average carbonate production rates on reefs are now less than 50% of pre-disturbance rates, and that calculated accretion rates (mm yr-1) are an about order of magnitude lower within shallow water habitats compared to Holocene averages. Collectively, these data suggest that recent ecological declines are now propagating through the system to impact on the geomorphic performance of Caribbean reefs and will impair their future growth potential. In contrast, the carbonate budgets of most reefs across the Chagos archipelago (central Indian Ocean), which is geographically remote and largely isolated from direct human disturbances, have recovered rapidly from major past disturbances (specifically the 1998 coral bleaching event). The carbonate budgets on these remote reefs now average +3.7 G (G = kg CaCO3 m-2 yr-1). Most significantly the production rates on Acropora-dominated reefs, which were most severely impacted by the 1998 bleaching event, average +8.4 G, comparable with estimates under pre-human disturbance conditions, and are reflected in high reef growth rates (4.2 mm yr-1). These reefs thus retain the capacity to grow at rates exceeding measured regional mid-late Holocene and 20th century sea-level rise, and close to IPCC sea-level rise projections through to 2100. However, their positive growth potential is strongly tied to the persistence of several key coral species, and thus the frequency and magnitude of future disturbance events will be key determinants of near-future reef growth.
NASA Astrophysics Data System (ADS)
Hamylton, S.
2011-12-01
This paper demonstrates a practical step-wise method for modelling wave energy at the landscape scale using GIS and remote sensing techniques at Alphonse Atoll, Seychelles. Inputs are a map of the benthic surface (seabed) cover, a detailed bathymetric model derived from remotely sensed Compact Airborne Spectrographic Imager (CASI) data and information on regional wave heights. Incident energy at the reef crest around the atoll perimeter is calculated as a function of its deepwater value with wave parameters (significant wave height and period) hindcast in the offshore zone using the WaveWatch III application developed by the National Oceanographic and Atmospheric Administration. Energy modifications are calculated at constant intervals as waves transform over the forereef platform along a series of reef profile transects running into the atoll centre. Factors for shoaling, refraction and frictional attenuation are calculated at each interval for given changes in bathymetry and benthic coverage type and a nominal reduction in absolute energy is incorporated at the reef crest to account for wave breaking. Overall energy estimates are derived for a period of 5 years and related to spatial patterning of reef flat surface cover (sand and seagrass patches).
Mysterious Black Water off Florida's Gulf Coast
NASA Technical Reports Server (NTRS)
2002-01-01
In mid-December last year, a mysterious black water overtook the normally bluish green waters of Florida Bay. Over the course of the winter, the extent of the water grew to encompass an area as big as Lake Okeechobee, Florida, before subsiding over the last few weeks. These images taken by the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), flying aboard the Orbview-2 satellite, show the progression of the black water over the last three months. The affected water sits along the southeastern coast of Florida about fifty miles north of the Florida Keys. As of now, scientists do not know why the water appears black in satellite and aerial images or whether the water is harming the wildlife. They speculate that it could be due to an exotic algae bloom, an underwater fountain pushing up sediments from the ocean floor, or possibly chemical and sediment run-off from the nearby Shark River. Researchers at the Florida Marine Research Institute in St. Petersburg and the Mote Marine Research Institute in Sarasota are running tests to determine the chemical make-up of the water. No big fish kills have been reported in the area. But fishermen say the catch has been low this winter. In addition, the black water sits just north of the Florida Keys National Marine Sanctuary, which is home to one of the largest coral reef habitats in the United States. Toxic run-off from the Florida coastline and motor boats in the area have already destroyed many of Florida's reefs. Scientists are concerned that if the extent of the black water grows again, it could endanger these reefs. Information provided by the Naples Daily News. For up-to-date images of the area, view these SeaWiFS Images of Florida Bay. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 5)
2017-05-01
Scientists from NASA and University of Hawaii, in partnership the U.S. Naval Research Laboratory, teamed up in February 2017 to study the health of coral reefs located around the Hawaiian Islands for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission. Research divers and an autonomous kayak monitored coral color signatures from the ocean floor and surface, while NASA’s high-altitude ER-2 collected images of the same areas from a height of 70,000 ft. The data from these sources are being combined to better understand how coral reef ecosystems are responding to stressful conditions like warming ocean temperatures and water acidification. Data from this mission will potentially help develop a NASA satellite to study natural hazards and ecosystems all over the world. Learn more about the HyspIRI airborne mission here: https://www.jpl.nasa.gov/news/news.php?feature=6793
Letessier, Tom B.; Koldewey, Heather J.; Meeuwig, Jessica J.
2017-01-01
We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores) had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type). There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study) recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini) not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos), varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY). The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey) in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark assemblages. PMID:28562602
Tickler, David M; Letessier, Tom B; Koldewey, Heather J; Meeuwig, Jessica J
2017-01-01
We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores) had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type). There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study) recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini) not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos), varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY). The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey) in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark assemblages.
NASA Astrophysics Data System (ADS)
Parrish, C.; Carreón-Palau, L.; del Ángel-Rodríguez, J.; Perez-Espana, H.; Aguiniga-Garcıa, S.
2016-02-01
To assess the degree to which coral reefs in a marine protected area have been influenced by terrestrial and anthropogenic organic carbon inputs we used C and N stable isotopes and lipid biomarkers in the Coral Reef System of Veracruz in the southwest Gulf of Mexico. A C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor revealed the primary producer sources that fuel the coral reef food web. Then lipid classes, FA and sterol biomarkers determined production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, coprostanol determined pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential FA for fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while sea grass non-essential FA are transferred to the entire food web. Sea urchins may be the main consumers of brown macroalgae, while surgeon fish prefer red algae. C and N isotopic values and the C:N ratio suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and sea grass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly. The nearest river to the Reef System was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. We would suggest monitoring δ15N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the Reef System.
Coastal nutrification and coral health at Porto Seguro reefs, Brazil
NASA Astrophysics Data System (ADS)
Costa, O.; Attrill, M.; Nimmo, M.
2003-04-01
Human activities have substantially increased the natural flux of nutrients to coastal systems worldwide. In Brazilian reefs, all major stresses (sedimentation, overfishing, tourism-related activities and nutrification) are human induced. To assess nutrification levels in Brazilian coastal reefs, measurements of the distribution patterns of nutrients and chlorophyll concentrations were conducted in three nearshore and offshore reefs with distinct nutrient inputs along the south coast of Bahia State. Seawater and porewater samples were analysed for soluble reactive phosphorus, total oxidised nitrogen and reactive silica. Benthic surveys were performed at all sites to investigate the relationships between benthic community composition and nutrient and chlorophyll concentrations. Sampling was undertaken in dry and rainy seasons. Results of both seawater and porewater nutrient measurements revealed the occurrence of consistent spatial and temporal patterns. An inshore-offshore gradient reflects the occurrence of land-based point sources, with significant amount of nutrients being delivered by human activities on the coast (untreated sewage and groundwater seepage). Another spatial gradient is related to distance from a localized source of pollution (an urban settlement without sewerage treatment) with two nearshore reefs presenting distinct nutrient and chlorophyll concentrations. Seasonal variations suggest that submarine groundwater discharge (SGD) is the primary source of nutrients for the coastal reefs during rainy season. The data also suggests that the SGD effect is not restricted to nearshore reefs, and may be an important factor controlling the differences between landward and seaward sides on the offshore reef. Benthic community assessment revealed that turf alga is the dominant group in all studied reefs and that zoanthids are the organisms most adapted to take advantage of nutrient increase in coastal areas. At nearshore reefs, there was a negative correlation between zoanthids and algal abundance and a positive correlation with the amount of available space for settlement. On the offshore reef, correlation of algal cover with both zoanthids and available space were negative, suggesting that hard substrate may be the primary limiting factor for algal settlement and growth in the nearshore reefs. Highly variable physical disturbances (like wave energy and low tide exposure) between landward and seaward reef sides appear to be the factors controlling algal distribution in the offshore reef. Highly spatial variability in coral cover ultimately reflects the patchy distribution of stony corals over the reefs.
Earth Observations taken by the Expedition 18 Crew
2009-01-27
ISS018-E-024351 (27 Jan. 2009) --- Tetiaroa Island in French Polynesia is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This island, part of the Society Islands archipelago in the southern Pacific Ocean, is also known as ?Marlon Brando?s Island?. The late film star purchased the island ? more correctly, an atoll comprised of thirteen small islets (or motus) from the French Polynesian government for a total of 70,000 over 1966-1967. While the motus were his property, the government retained the rights to the coral reefs and lagoons to preserve control of marine resources. Following Brando?s death in 2004, ownership of the approximately 8 kilometers?wide atoll passed into other private hands, and there are now plans to build a luxury resort amongst the islets. This view illustrates the typical circular appearance of a fully-developed atoll. The ring of islands ? covered in green vegetation and white to tan sandy beaches ? develops on coral reefs, which originally form around a volcanic island. As the volcanic island gradually disappears due to subsidence and erosion, the coral reefs continue to grow upwards. Over time, the central volcanic island is completely submerged, leaving a ring of coral reefs and islands that surround a lagoon. The shallow lagoon waters appear blue-green in this image, and contrast with darker ? and deeper ? Pacific Ocean waters surrounding the atoll. One of the motus in the southern portion of the atoll, Tahuna Rahi, is a protected bird sanctuary, and is the nesting site of red- and brown-footed boobies, frigatebirds, and terns (among other species). Access to the atoll is via boat, as the airstrip was closed in 2004 due to safety and security concerns.
NASA Astrophysics Data System (ADS)
Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane
2016-08-01
Shelf-margin carbonate mounds in water depths of 116-135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the "Sticky Grounds", trend along slope, are 5-15 m in relief with base diameters of 5-30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.
Gardner, James V.; Hughes-Clarke, John E.; Mayer, Larry A.; Dartnell, Peter
2003-01-01
The mid to outer continental shelf off Mississippi-Alabama and off northwest Florida were the focus of U.S. Geological Survey (USGS) multibeam echosounder (MBES) mapping cruises in 2000 and 2001, respectively. These areas were mapped to investigate the extent of "deep-water reefs" first suggested by Ludwig and Walton (1957). The reefs off Mississippi and Alabama were initially described in water depths of 60 to 120 m (Ludwig and Walton, 1957) but the 2000 mapping found reef and hardgrounds to be much more extensive than previously thought (Gardner et al., 2001). The persistent trend of reef-like features along the outer shelf of Mississippi-Alabama suggested the trend might continue along the northwest Florida mid and outer shelf so a MBES-mapping effort was mounted in 2001 to test this suggestion. It is critical to determine the accurate location, geomorphology, and types of the ridges and reefs that occur in this region to understand the Quaternary history of the area and to assess their importance as benthic habitats for fisheries. The area known as the "Head of De Soto Canyon" is the large unmapped region between the 2000 and 2001 mapped areas. It was unknown whether the reefs of the Mississippi-Alabama shelf continue eastward into the head of De Soto Canyon and connect with the ridges and reefs mapped on the northwest Florida outer shelf. The existence of carbonate-cemented Quaternary to Holocene sandstones along the western wall of the head of De Soto Canyon (Shipp and Hopkins, 1978; Benson et al., 1997; W.W. Schroeder, personal commun., 2002) is of interest because of the potential benthic habitats they may represent. In the summer of 2002, the USGS, in cooperation with Minerals Management Service (MMS), the University of New Hampshire, and the University of New Brunswick, conducted a MBES survey of the Head of De Soto Canyon Region connecting the 2000 and 2001 mapped regions.
Locker, Stanley D.; Reed, John K.; Farrington, Stephanie; Harter, Stacey; Hine, Albert C.; Dunn, Shane
2016-01-01
Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest widespread potential for mesophotic reef habitat along the west Florida outer continental shelf. Possible origins are sea-level lowstand coral patch reefs, oyster reefs, or perhaps more recent post-lowstand biohermal development. Rock dredging recovered bioeroded carbonate-rock facies comprised of bored and cemented bioclastics. Rock sample components included calcified worm tubes, pelagic sediment, and oysters normally restricted to brackish nearshore areas. Several reef sites were surveyed at the Sticky Grounds during a cruise in August 2010 with the R/V Seward Johnson using the Johnson-Sea-Link II submersible to ground truth the swath-sonar maps and to quantify and characterize the benthic habitats, benthic macrofauna, fish populations, and coral/sponge cover. This study characterizes for the first time this mesophotic reef ecosystem and associated fish populations, and analyzes the interrelationships of the fish assemblages, benthic habitats and invertebrate biota. These highly eroded rock mounds provide extensive hard-bottom habitat for reef invertebrate species as well as essential fish habitat for reef fish and commercially/recreationally important fish species. The extent and significance of associated living resources with these bottom types is particularly important in light of the 2010 Deepwater Horizon oil spill in the northeastern Gulf and the proximity of the Loop Current. Mapping the distribution of these mesophotic-depth ecosystems is important for quantifying essential fish habitat and describing benthic resources. These activities can improve ecosystem management and planning of future oil and gas activities in this outer continental shelf region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buddemeier, R.W.; Oberdorfer, J.A.
A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of theirmore » effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.« less
Plate tectonics drive tropical reef biodiversity dynamics
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc
2016-01-01
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103
Plate tectonics drive tropical reef biodiversity dynamics.
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc
2016-05-06
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.
NASA Astrophysics Data System (ADS)
Guest, J. R.; Baird, A. H.; Goh, B. P. L.; Chou, L. M.
2012-09-01
The sexual system in corals refers to the spatial and temporal pattern of sexual function within an individual coral polyp, colony or population. Although information on sexual systems now exists for over 400 scleractinian species, data are still lacking for some important reef-building taxa. The vast majority of scleractinians are either simultaneous hermaphrodites or gonochoric with other sexual systems rarely occurring. Diploastrea heliopora is one of the most ubiquitous and easily recognised reef-building species in the Indo-West Pacific; however, surprisingly little is known about its reproductive biology. The aim of the present study was to examine the reproductive biology of D. heliopora colonies on chronically impacted, equatorial reefs south of Singapore. Here we show that in Singapore, D. heliopora is a broadcast spawner with predominantly gonochoric polyps. Colonies, however, contained male, female and a low proportion of cosexual polyps during the 14-month sampling period. The most plausible explanation for this is that polyps switch sexes with oogenic and spermatogenic cycles occasionally overlapping. This leads to colony level alternation of sex function within and between breeding seasons. While this sexual system is atypical for scleractinians, it supports molecular evidence that D. heliopora is phylogenetically distinct from species formerly in the family Faviidae.
Vertical Ship Motion Study for Ambrose Entrance Channel, New York
2014-05-01
channels, PIANC Bulletin 1971, Vol. 1, No. 7, 17-20. Hardy, T. A. 1993. The attenuation of spectral transformation of wind waves on a coral reef ...A80(12): 95 p. Hearn, C. J. 1999. Wave -breaking hydrodynamics within coral reef systems and the effect of changing relative sea level, Journal of...Values of cf applied for coral reefs range from 0.05 to 0.40 (Hardy 1993; Hearn 1999 and Lowe et al. 2005). CMS- Wave uses a default value of cf
NASA Technical Reports Server (NTRS)
Patzert, William C.
1999-01-01
The goal of this research is to monitor the health and vigor of coral reef ecosystems, and their sensitivity to natural and anthropogenic climate changes. To achieve these lofty goals, this research is investigating the feasibility of using spaceborne high-resolution spectrometers (on the US Landsat, French Systeme Probatoire pour l'Observation de la Terre [SPOT] and/or the Indian Resources Satellite [IRS 1C & 1D] spacecraft) to first map the aerial extent of coral reef systems, and second separate the amount of particular corals. If this is successful, we could potentially provide a quantum leap in our understanding of coral reef systems, as well as provide much needed baseline data to measure future changes in global coral reef ecosystems. In collaboration with Tomas Tomascik, Yann Morel, and other colleagues, a series of experiments were planned to coordinate in situ coral observations, high-resolution spaceborne imagery (from Landsat, SPOT, and, possibly, IRS IC spacecraft), and NASA Space Shuttle photographs and digital images. Our eventual goal is to develop "coral health algorithms" that can be used to assess time series of imagery collected from satellite sensors (Landsat since 1972, SPOT since 1986) in concert with in situ observations. The bad news from last year was that from 1997 to mid- 1998, the extreme cloudiness over southeast Asia due to prolonged smoke from El Nino-related fires and the economic chaos in this region frustrated both our space and reef-based data collection activities. When this volatile situation stabilizes, we will restart these activities. The good news was that in collaboration with Al Strong at the National Oceanic and Atmospheric Administration (NOAA) we had an exciting year operationally using the NOAA's Advanced Very High Resolution Radiometer sensor derived sea surface temperature products to warn of coral "bleaching" at many locations throughout the tropics. Data from NOAA's satellites showed that during the El Nino of 1997 and the first half of 1998, more ocean area in the tropics experienced exceptionally high sea surface temperatures, or "hot spots," than have been observed in any fall year since the El Nino of 1982. From January to July, the coral bleaching events were concentrated in the Southern Hemisphere (during its warm season). Since July 1998, the reports of extensive coral bleaching have again spread into regions of the Northern Hemisphere following abnormally high sea surface temperatures, especially around the Philippines and throughout the Caribbean Basin, Bahamas, Bermuda and Florida Keys. These El Nino induced events clearly demonstrated that corals are the "canaries of the marine ecosystem," highly sensitive to short-term natural climate events (El Nino), and should be monitored as measures of longer-term environmental and climate change. Additional information is contained in the original.
NASA Astrophysics Data System (ADS)
Koweek, David A.; Dunbar, Robert B.; Monismith, Stephen G.; Mucciarone, David A.; Woodson, C. Brock; Samuel, Lianna
2015-09-01
Shallow back reefs commonly experience greater thermal and biogeochemical variability owing to a combination of coral community metabolism, environmental forcing, flow regime, and water depth. We present results from a high-resolution (sub-hourly to sub-daily) hydrodynamic and biogeochemical study, along with a coupled long-term (several months) hydrodynamic study, conducted on the back reefs of Ofu, American Samoa. During the high-resolution study, mean temperature was 29.0 °C with maximum temperatures near 32 °C. Dissolved oxygen concentrations spanned 32-178 % saturation, and pHT spanned the range from 7.80 to 8.39 with diel ranges reaching 0.58 units. Empirical cumulative distribution functions reveal that pHT was between 8.0 and 8.2 during only 30 % of the observational period, with approximately even distribution of the remaining 70 % of the time between pHT values less than 8.0 and greater than 8.2. Thermal and biogeochemical variability in the back reefs is partially controlled by tidal modulation of wave-driven flow, which isolates the back reefs at low tide and brings offshore water into the back reefs at high tide. The ratio of net community calcification to net community production was 0.15 ± 0.01, indicating that metabolism on the back reef was dominated by primary production and respiration. Similar to other back reef systems, the back reefs of Ofu are carbon sinks during the daytime. Shallow back reefs like those in Ofu may provide insights for how coral communities respond to extreme temperatures and acidification and are deserving of continued attention.
Coral reef recovery dynamics in a changing world
NASA Astrophysics Data System (ADS)
Graham, N. A. J.; Nash, K. L.; Kool, J. T.
2011-06-01
Coral reef ecosystems are degrading through multiple disturbances that are becoming more frequent and severe. The complexities of this degradation have been studied in detail, but little work has assessed characteristics that allow reefs to bounce back and recover between pulse disturbance events. We quantitatively review recovery rates of coral cover from pulse disturbance events among 48 different reef locations, testing the relative roles of disturbance characteristics, reef characteristics, connectivity and anthropogenic influences. Reefs in the western Pacific Ocean had the fastest recovery, whereas reefs in the geographically isolated eastern Pacific Ocean were slowest to recover, reflecting regional differences in coral composition, fish functional diversity and geographic isolation. Disturbances that opened up large areas of benthic space recovered quickly, potentially because of nonlinear recovery where recruitment rates were high. The type of disturbance had a limited effect on subsequent rates of reef recovery, although recovery was faster following crown-of-thorns starfish outbreaks. This inconsequential role of disturbance type may be in part due to the role of unaltered structural complexity in maintaining key reef processes, such as recruitment and herbivory. Few studies explicitly recorded potential ecological determinants of recovery, such as recruitment rates, structural complexity of habitat and the functional composition of reef-associated fish. There was some evidence of slower recovery rates within protected areas compared with other management systems and fished areas, which may reflect the higher initial coral cover in protected areas rather than reflecting a management effect. A better understanding of the driving role of processes, structural complexity and diversity on recovery may enable more appropriate management actions that support coral-dominated ecosystems in our changing climate.
Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.
Wolanski, Eric; Kingsford, Michael J
2014-09-06
A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Temporal variation in development of ecosystem services from oyster reef restoration
LaPeyre, Megan K.; Humphries, Austin T.; Casas, Sandra M.; La Peyre, Jerome F.
2014-01-01
Restoration ecology relies heavily on ecosystem development theories that generally assume development of fully functioning natural systems over time, but often fail to identify the time-frame required for provision of desired functions, or acknowledge different pathways of functional development. In estuaries, a decline of overall habitat quality and functioning has led to significant efforts to restore critical ecosystem services, recently through the creation and restoration of oyster reefs. Oyster reef restoration generally occurs with goals of (1) increasing water quality via filtration through sustainable oyster recruitment, (2) stabilizing shorelines, and (3) creating and enhancing critical estuarine habitat for fish and invertebrates. We restored over 260 m2 of oyster reef habitat in coastal Louisiana and followed the development and provision of these ecosystem services from 2009 through 2012. Oysters recruited to reefs immediately, with densities of oysters greater than 75 mm exceeding 80 ind m−2 after 3 years, and provision of filtration rates of 1002 ± 187 L h−1 m−2; shoreline stabilization effects of the created reefs were minimal over the three years of monitoring, with some evidence of positive shoreline stabilization during higher wind/energy events only; increased nekton abundance of resident, but not larger transient fish was immediately measurable at the reefs, however, this failed to increase through time. Our results provide critical insights into the development trajectories of ecosystem services provided by restored oyster reefs, as well as the mechanisms mediating these changes. This is critical both ecologically to understand how and where a reef thrives, and for policy and management to guide decision-making related to oyster reef restoration and the crediting and accounting of ecosystem services.
NASA Astrophysics Data System (ADS)
De Carlo, E. H.; Drupp, P. S.; Thompson, R. W.; Mackenzie, F. T.; Muscielewicz, S.; Jones, S. M.; Feely, R. A.; Sabine, C. L.
2012-12-01
A series of MAP-CO2 buoys deployed in the coastal waters of Hawaii have produced multiyear high temporal resolution CO2 records in four different coral reef environments of the island of Oahu, Hawaii. This study is part of an integrated effort to understand the factors that influence the dynamics of CO2-carbonic acid system parameters in waters bathing Pacific high island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAP-CO2 buoys are located in backreef, lagoonal, and fringing reef sites, and measure CO2 and O2 in seawater and in the atmosphere. Other sensors on the buoys record physical and biogeochemical parameters (CTD, chl-a, turbidity, pH, nitrate). The buoy records, when combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcing on hourly to inter-annual time scales, including those of land runoff. Our data demonstrate that coral reefs are subject to a wide range of pCO2, both on short and long time scales, and significant differences in the CO2-carbonic acid system dynamics across these various settings. We report that coral communities currently thrive in areas where the concentrations of CO2 can range from extremes as low as 200 ppm to as high as 1000 ppm and can fluctuate by ~500 ppm on any given day. The data provide evidence that net ecosystem calcification currently occurs in the presence of levels of CO2 predicted to occur well into the next century, although these coral reef ecosystems are only exposed to the extremes for short periods of time each day.
NASA Astrophysics Data System (ADS)
Martindale, R. C.; Kosir, A.; Schaller, M. F.
2015-12-01
With rising concerns regarding the persistence of coral reefs through the 21st century, there is a crucial need to understand how these ecosystems will respond to future environmental deterioration (e.g. ocean warming, acidification, and decreased oxygenation). Several ancient events have been identified as good analogues for modern ecological changes, however, most of these correspond to mass extinction events. By studying carbon cycle perturbations that caused more minor ecosystem collapse, such as the Toarcian Ocean Anoxic Event (T-OAE), the key physiological, ecological, and environmental features that correlate with species and community survival can be assessed. The Dinaric Carbonate Platform, which extends from northeastern Italy to northwestern Albania, is one of the few platforms in Europe that captures an almost continuous shallow-water record of Pliensbachian and Toarcian strata. Specifically, this comparatively poorly studied platform captures the T-OAE in shallow-water carbonates. One such outcrop on the Trnovski Gozd karst plateau in western Slovenia contains both Pleinsbachian lithiotid (bivalve) biostromes and coral bioherms (i.e. coral reefs). The occurrence of both lithiotid and coral buildups in one section is extremely rare and provides the opportunity to study the response of both communities, as well as the carbonate system as a whole, to the T-OAE. This research focuses on the lithology and chemostratigraphy from this locality, particularly identifying the T-OAE horizon more precisely. Additionally, (micro)facies analyses and paleontological analyses of the reefs themselves will be presented. These data will establish the paleoenvironmental conditions that favored reef growth in the Pliensbachian, as well as what conditions changed at the stage boundary and T-OAE to cause the collapse of the shallow-water carbonates and reef systems.
Assessment of Acropora palmata in the Mesoamerican Reef System
Rodríguez-Martínez, Rosa E.; Banaszak, Anastazia T.; McField, Melanie D.; Beltrán-Torres, Aurora U.; Álvarez-Filip, Lorenzo
2014-01-01
The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS). Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010–2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010–2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef), in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%). At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0), whereas in 2010–2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5). A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics) and environmental conditions (e.g., sources of stress) of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species. PMID:24763319
Biomarker profiling in reef corals of Tonga’s Ha’apai and Vava’u archipelagos
Chen, Chii-Shiarng; Dempsey, Alexandra C.
2017-01-01
Given the significant threats towards Earth’s coral reefs, there is an urgent need to document the current physiological condition of the resident organisms, particularly the reef-building scleractinians themselves. Unfortunately, most of the planet’s reefs are understudied, and some have yet to be seen. For instance, the Kingdom of Tonga possesses an extensive reef system, with thousands of hectares of unobserved reefs; little is known about their ecology, nor is there any information on the health of the resident corals. Given such knowledge deficiencies, 59 reefs across three Tongan archipelagos were surveyed herein, and pocilloporid corals were sampled from approximately half of these surveyed sites; 10 molecular-scale response variable were assessed in 88 of the sampled colonies, and 12 colonies were found to be outliers based on employment of a multivariate statistics-based aberrancy detection system. These outliers differed from the statistically normally behaving colonies in having not only higher RNA/DNA ratios but also elevated expression levels of three genes: 1) Symbiodinium zinc-induced facilitator-like 1-like, 2) host coral copper-zinc superoxide dismutase, and 3) host green fluorescent protein-like chromoprotein. Outliers were also characterized by significantly higher variation amongst the molecular response variables assessed, and the response variables that contributed most significantly to colonies being delineated as outliers differed between the two predominant reef coral species sampled, Pocillopora damicornis and P. acuta. These closely related species also displayed dissimilar temporal fluctuation patterns in their molecular physiologies, an observation that may have been driven by differences in their feeding strategies. Future works should attempt to determine whether corals displaying statistically aberrant molecular physiology, such as the 12 Tongan outliers identified herein, are indeed characterized by a diminished capacity for acclimating to the rapid changes in their abiotic milieu occurring as a result of global climate change. PMID:29091723
Individual-based analyses reveal limited functional overlap in a coral reef fish community.
Brandl, Simon J; Bellwood, David R
2014-05-01
Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
NASA Technical Reports Server (NTRS)
2006-01-01
In the South Pacific, south of Late Island along the Tofua volcanic arc in Tonga, a new volcanic island Home Reef is being re-born. The island is thought to have emerged after a volcanic eruption in mid-August that has also spewed large amounts of floating pumice into Tongan waters and sweeping across to Fiji about 350 km (220 miles) to the west of where the new island has formed. In 2004 a similar eruption created an ephemeral island about 0.5 by 1.5 km (0.3 by 0.9 miles) in size; it was no longer visible in an ASTER image acquired November 2005. This simulated natural color image shows the vegetation-covered stratovolcanic island of Late in the upper right. Home Reef is found in the lower left. The two bluish plumes are hot seawater that is laden with volcanic ash and chemicals; the larger one can be traced for more than 14 km (8.4 miles) to the east. The image was acquired October 10, 2006 and covers an area of 24.3 by 30.2 km. It is located at 18.9 degrees South latitude, 174.7 degrees west longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 24.3 by 30.2 kilometers (15 by 18.6 miles) Location: 18.9 degrees South latitude, 174.7 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: October 4, 2006Toward a Marine Ecological Forecasting System
2010-06-01
advance. Two beaches in Lake Michigan have been selected for initial implementation. Forecasting Coral Bleaching in relation to Ocean Temperatures...The coral reef is a unique and very rich ecosystem which supports a vast array of animal and plant species. Corals form the structural and...ecological foundation of the reef system, and consist of a symbiotic relationship between the coral animal (polyp) and associated algae (zooxanthellae
Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.
2018-01-01
Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.
2017-12-08
On February 25, 2016, the Operational Land Imager (OLI) on the Landsat 8 satellite acquired this natural-color image of Biscayne National Park. The park encompasses the northernmost Florida Keys, starting from Miami to just north of Key Largo. The keys run like a spine through the center of the park, with Biscayne Bay to the west and the Atlantic Ocean to the east. The water-covered areas span more than 660 square kilometers (250 square miles) of the park, making it the largest marine park in the U.S. National Park System. Biscayne protects the longest stretch of mangrove forest on the U.S. East Coast, and one of the most extensive stretches of coral reef in the world. Read more: go.nasa.gov/1SWs1a3 Credit: NASA/Landsat8 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Cooper, Timothy F.; Ulstrup, Karin E.
2009-06-01
Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield ( Fv/ Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PS max) and minimum saturating irradiance ( Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PS max and Ek with improving water quality coinciding with greater heat dissipation (NPQ 241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.
Large-scale bleaching of corals on the Great Barrier Reef.
Hughes, T P; Kerry, J T; Simpson, T
2018-02-01
In 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching. In the southern hemisphere summer of March-April 2016, we used aerial surveys to measure the level of bleaching on 1,156 individual reefs throughout the 2,300 km length of the Great Barrier Reef, the world's largest coral reef system. The accuracy of the aerial scores was ground-truthed with detailed underwater surveys of bleaching at 260 sites (104 reefs), allowing us to compare aerial and underwater bleaching data with satellite-derived temperatures and with associated model predictions of bleaching. The severity of bleaching on individual reefs in 2016 was tightly correlated with the level of local heat exposure: the southernmost region of the Great Barrier Reef escaped with only minor bleaching because summer temperatures there were close to average. Gradients in nutrients and turbidity from inshore to offshore across the Great Barrier Reef had minimal effect on the severity of bleaching. Similarly, bleaching was equally severe on reefs that are open or closed to fishing, once the level of satellite-derived heat exposure was accounted for. The level of post-bleaching mortality, measured underwater after 7-8 months, was tightly correlated with the aerial scores measured at the peak of bleaching. Similarly, reefs with a high aerial bleaching score also experienced major shifts in species composition due to extensive mortality of heat-sensitive species. Reefs with low bleaching scores did not change in composition, and some showed minor increases in coral cover. Two earlier mass bleaching events occurred on the Great Barrier Reef in 1998 and 2002, that were less severe than 2016. In 2016, <9% of scored reefs had no bleaching, compared to 42% in 2002 and 44% in 1998. Conversely, the proportion of reefs that were severely bleached (>60% of corals affected) was four times higher in 2016. The geographic footprint of each of the three events is distinctive, and matches satellite-derived sea surface temperature patterns. Our aerial surveys indicate that past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. This data set of aerial bleaching scores provides a historical baseline for comparison with future bleaching events. No copyright restrictions apply to the use of this data set other than citing this publication. © 2017 by the Ecological Society of America.
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2015-03-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
How models can support ecosystem-based management of coral reefs
NASA Astrophysics Data System (ADS)
Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.
2015-11-01
Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they require many efforts to decipher the numerous interactions and feedback loops. Given the breadth of questions to be tackled when dealing with coral reefs, the best practice approach uses multiple model types and thus benefits from the strength of different models types.
Pimiento, Catalina; Nifong, James C.; Hunter, Margaret E.; Monaco, Eric; Silliman, Brian R.
2015-01-01
The Indo-Pacific red lionfish Pterois volitans is widespread both in its native and its non-native habitats. The rapid invasion of this top predator has had a marked negative effect on fish populations in the Western Atlantic and the Caribbean. It is now well documented that lionfish are invading many tropical and sub-tropical habitats. However, there are fewer data available on the change in lionfish abundance over time and the variation of body size and diet across habitats. A recent study in San Salvador, Bahamas, found body size differences between individuals from mangrove and reef systems. That study further suggested that ontogenetic investigation of habitat use patterns could help clarify whether lionfish are using the mangrove areas of San Salvador as nurseries. The aim of the present study is to determine temporal trends in lionfish relative abundance in mangrove and reef systems in San Salvador, and to further assess whether there is evidence suggesting an ontogenetic shift from mangroves to reef areas. Accordingly, we collected lionfish from mangrove and reef habitats and calculated catch per unit effort (a proxy for relative abundance), compared body size distributions across these two systems, and employed a combination of stable isotope, stomach content, and genetic analyses of prey, to evaluate differences in lionfish trophic interactions and habitat use patterns. Our results show that populations may have increased in San Salvador during the last 4 years, and that there is a strong similarity in body size between habitats, stark differences in prey items, and no apparent overlap in the use of habitat and/or food resources. These results suggest that there is not evidence an for ontogenetic shift from mangroves to reefs, and support other studies that propose lionfish are opportunistic forages with little movement across habitats.
Robust Performance of Marginal Pacific Coral Reef Habitats in Future Climate Scenarios.
Freeman, Lauren A
2015-01-01
Coral reef ecosystems are under dual threat from climate change. Increasing sea surface temperatures and thermal stress create environmental limits at low latitudes, and decreasing aragonite saturation state creates environmental limits at high latitudes. This study examines the response of unique coral reef habitats to climate change in the remote Pacific, using the National Center for Atmospheric Research Community Earth System Model version 1 alongside the species distribution algorithm Maxent. Narrow ranges of physico-chemical variables are used to define unique coral habitats and their performance is tested in future climate scenarios. General loss of coral reef habitat is expected in future climate scenarios and has been shown in previous studies. This study found exactly that for most of the predominant physico-chemical environments. However, certain coral reef habitats considered marginal today at high latitude, along the equator and in the eastern tropical Pacific were found to be quite robust in climate change scenarios. Furthermore, an environmental coral reef refuge previously identified in the central south Pacific near French Polynesia was further reinforced. Studying the response of specific habitats showed that the prevailing conditions of this refuge during the 20th century shift to a new set of conditions, more characteristic of higher latitude coral reefs in the 20th century, in future climate scenarios projected to 2100.
Changes in coral reef communities across a natural gradient in seawater pH
Barkley, Hannah C.; Cohen, Anne L.; Golbuu, Yimnang; Starczak, Victoria R.; DeCarlo, Thomas M.; Shamberger, Kathryn E. F.
2015-01-01
Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau’s natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification. PMID:26601203
Evaluating the human impact on groundwater quality discharging into a coastal reef lagoon
NASA Astrophysics Data System (ADS)
Rebolledo-Vieyra, M.; Hernandez-Terrones, L.; Soto, M.; Lecossec, A.; Monroy-Rios, E.
2008-12-01
The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean. In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. No seasonal parameters differences were observed, suggesting that groundwater composition reaching the reef lagoon is not changing seasonally. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.
Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys
Turk, Daniela; Yates, Kimberly K.; Vega-Rodriguez, Maria; Toro-Farmer, Gerardo; L'Esperance, Chris; Melo, Nelson; Ramsewak, Deanesch; Estrada, S. Cerdeira; Muller-Karger, Frank E.; Herwitz, Stan R.; McGillis, Wade
2016-01-01
Diurnal variation of net community production (NEP) and net community calcification (NEC) were measured in coral reef and seagrass biomes during October 2012 in the lower Florida Keys using a mesocosm enclosure and the oxygen gradient flux technique. Seagrass and coral reef sites showed diurnal variations of NEP and NEC, with positive values at near-seafloor light levels >100–300 µEinstein m-2 s-1. During daylight hours, we detected an average NEP of 12.3 and 8.6 mmol O2 m-2 h-1 at the seagrass and coral reef site, respectively. At night, NEP at the seagrass site was relatively constant, while on the coral reef, net respiration was highest immediately after dusk and decreased during the rest of the night. At the seagrass site, NEC values ranged from 0.20 g CaCO3 m-2 h-1 during daylight to -0.15 g CaCO3 m-2 h-1 at night, and from 0.17 to -0.10 g CaCO3 m-2 h-1 at the coral reef site. There were no significant differences in pH and aragonite saturation states (Ωar) between the seagrass and coral reef sites. Decrease in light levels during thunderstorms significantly decreased NEP, transforming the system from net autotrophic to net heterotrophic.
Simulations of Long-Term Community Dynamics in Coral Reefs - How Perturbations Shape Trajectories
Kubicek, Andreas; Muhando, Christopher; Reuter, Hauke
2012-01-01
Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations – anthropogenic and natural – many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions. We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community – comprised of scleractinian corals and algae – under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies) of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs. PMID:23209397
Goffredo, Stefano; Piccinetti, Corrado; Zaccanti, Francesco
2007-08-01
On December 26th 2004, a earthquake west of Sumatra generated a devastating tsunami. Hundreds of thousands of people fell victim. Economic losses were greatest in those countries dependant on tourism. The impact in the Maldives on persons and things was modest. Immediately following the event and notwithstanding the lack of scientific data, the mass media gave catastrophic reports on the state of coral reefs in the area. This paper reports on the first survey on coral reefs in the Maldives after the Tsunami. Ocean walls, passes, inner reefs, and shoals in the North and South Malé atolls, were surveyed two weeks after the event. Significant damage was recorded in the passes in the South Malé atoll. Our observations showed that the damage was more or less extensive depending on latitude and topography. Sri Lanka may have broken the wave's rush, reducing the extent of the impact on northern atolls. The water's acceleration inside the passes was so intense as to cause reef collapses. The observed damage represents a minimum fraction of the entire coral reef system. Tourist perception of the area seems unchanged. These data may be used to disseminate correct information about the state of Maldives coral reefs, which would be useful in relaunching local economy.
Otero, Emesto; Carbery, Kelly K
2005-05-01
Studies of temporal and spatial changes in phytoplankton biomass and turbidity provide essential information on coral reef ecosystem function and health. Fluctuation of phytoplankton biomass responds to several factors including nutrient inputs, both anthropogenic and natural, while turbidity is mostly affected by sediment resuspension or transport from terrestrial systems. These parameters can be used as sentinels of significant environmental factors "modifying" coral reef systems. A chlorophyll a concentration (Chl a) and turbidity (Turb) in situ logger was installed at 10 stations from June 4 to July 7, 2003 in La Parguera Natural Reserve (Southwestern Puerto Rico) to assess short-term temporal and geographic variation in patterns of phytoplankton biomass and turbidity at pre-selected sites as part of an interdisciplinary long-term study. Average station Ch1 a variation was 0.17-1.12 microg 1(-1) and 0.2-23.4 NTU for Turb. Results indicate that the western near-coastal stations had higher levels of Turb and Ch1 a. The easternmost mid shelf station, Romero reef, was similar to coastal stations probably due to nutrient and suspended sediment inputs from a source external to our study area to the east, Guánica Bay. Comparisons between different sampling days indicate significant differences between days for most stations suggesting that one-time discrete sampling may not be representative of average water column conditions and illustrate the dynamic nature of coral reef systems. Further work is warranted to assess seasonal changes that integrate short-term (daily) variability in both Turb and Ch1 a.
Chitons (Mollusca, Polyplacophora) from Alacranes Reef, Yucatan, Mexico
Reyes-Gómez, Adriana; Ortigosa, Deneb; Simões, Nuno
2017-01-01
Abstract This study represents the first comprehensive chiton study from Alacranes Reef, the largest reef system in the Gulf of Mexico. Nine chiton species were found in seven localities within the area, in the intertidal and subtidal to 12 m depth. SEM examination of C. janeirensis, A. hemphilli, T. schrammi and C. floridanus, showed variations in the sculpture and radular teeth morphology when compared to specimens of the same species from Florida Keys, Bahamas and Puerto Rico. The distribution ranges of T. schrammi, L. liozonis and S. floridana are extended into the south-western area of the Gulf of Mexico. Altogether, combining previous literature and the present survey, reports eleven chiton species which have now been recorded within the Alacranes reef area. PMID:28769624
Bahr, Keisha D; Jokiel, Paul L; Toonen, Robert J
2015-01-01
Kāne'ohe Bay, which is located on the on the NE coast of O'ahu, Hawai'i, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāne'ohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Lo'e (Coconut Island) in the southern region of the bay became home to the Hawai'i Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960's the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of Kāne'ohe Bay developed under estuarine conditions and thus have been subjected to multiple natural stresses. These include storm floods, a more extreme temperature range than more oceanic reefs, high rates of sedimentation, and exposure at extreme low tides. Deposition and degradation of organic materials carried into the bay from the watershed results in low pH conditions such that according to some ocean acidification projections the rich coral reefs in the bay should not exist. Increased global temperature due to anthropogenic fossil fuel emmisions is now impacting these reefs with the first "bleaching event" in 1996 and a second more severe event in 2014. The reefs of Kāne'ohe Bay have developed and persist under rather severe natural and anthropogenic perturbations. To date, these reefs have proved to be very resilient once the stressor has been removed. A major question remains to be answered concerning the limits of Kāne'ohe Bay reef resilience in the face of global climate change.
NASA Astrophysics Data System (ADS)
Bainbridge, S.
2012-04-01
The advent of new observing systems, such as sensor networks, have dramatically increased our ability to collect marine data; the issue now is not data drought but data deluge. The challenge now is to extract data representing events of interest from the background data, that is how to deliver information and potentially knowledge from an increasing large store of base observations. Given that each potential user will have differing definitions of 'interesting' and that this is often defined by other events and data, systems need to deliver information or knowledge in a form and context defined by the user. This paper reports on a series of coral reef sensor networks set up under the Coral Reef Environmental Observation Network (CREON). CREON is a community of interest group deploying coral reef sensor networks with the goal of increasing capacity in coral reef observation, especially into developing areas. Issues such as coral bleaching, terrestrial runoff, human impacts and climate change are impacting reefs with one assessment indicating a quarter of the worlds reefs being severely degraded with another quarter under immediate threat. Increasing our ability to collect scientifically valid observations is fundamental to understanding these systems and ultimately in preserving and sustaining them. A cloud based data management system was used to store the base sensor data from each agency involved using service based agents to push the data from individual field sensors to the cloud. The system supports a range of service based outputs such as on-line graphs, a smart-phone application and simple event detection. A more complex event detection system was written that takes input from the cloud services and outputs natural language 'tweets' to Twitter as events occur. It therefore becomes possible to distil the entire data set down to a series of Twitter entries that interested parties can subscribe to. The next step is to allow users to define their own events and to deliver results, in context, to their preferred medium. The paper contrasts what has been achieved within a small community with well defined issues with what it would take to build equivalent systems to hold a wide range of cross community observational data addressing a wider range of potential issues. The role of discoverability, quality control, uncertainly, conformity and metadata are investigated along with a brief discussion of existing and emerging standards in this area. The elements of such as system are described along with the role of modelling and scenario tools in delivering a higher level of outputs linking what may have already occurred (event detection) with what may potentially occur (scenarios). The development of service based cloud computing open data systems coupled with complex event detection systems delivering through social media and other channels linked into model and scenario systems represents one vision for delivering value from the increasing store of ocean observations, most of which lie unknown, unused and unloved.
NASA Astrophysics Data System (ADS)
Wooldridge, Scott A.
2017-12-01
Changes in the atmospheric partial pressure of CO2 ( pCO2) leads to predictable impacts on the surface ocean carbonate system. Here, the importance of atmospheric pCO2 <260 ppmv is established for the optimum performance (and stability) of the algal endosymbiosis employed by a key suite of tropical reef-building coral species. Violation of this symbiotic threshold is revealed as a prerequisite for major historical reef extinction events, glacial-interglacial feedback climate cycles, and the modern decline of coral reef ecosystems. Indeed, it is concluded that this symbiotic threshold enacts a fundamental feedback mechanism needed to explain the characteristic dynamics (and drivers) of the coupled land-ocean-atmosphere carbon cycle of the Earth System since the mid-Miocene, some 25 million yr ago.
Resilience of Florida Keys coral communities following large scale disturbances
The decline of coral reefs in the Caribbean over the last 40 years has been attributed to multiple chronic stressors and episodic large-scale disturbances. This study assessed the resilience of coral communities in two different regions of the Florida Keys reef system between 199...
Characterizing Surface Transport Barriers in the South China Sea
2015-09-30
to a coral reef system flow, rigorously identifying hyperbolic and elliptic flow structures. 2 RESULTS The FTLE approach was found to be...included in real world applications (Allshouse et al. 2015). Figure 3: The impact of windage on a hypothetical tracer release event of Ningaloo Reef
Reguero, Borja G; Beck, Michael W; Agostini, Vera N; Kramer, Philip; Hancock, Boze
2018-03-15
Coastal communities in tropical environments are at increasing risk from both environmental degradation and climate change and require urgent local adaptation action. Evidences show coral reefs play a critical role in wave attenuation but relatively little direct connection has been drawn between these effects and impacts on shorelines. Reefs are rarely assessed for their coastal protection service and thus not managed for their infrastructure benefits, while widespread damage and degradation continues. This paper presents a systematic approach to assess the protective role of coral reefs and to examine solutions based on the reef's influence on wave propagation patterns. Portions of the shoreline of Grenville Bay, Grenada, have seen acute shoreline erosion and coastal flooding. This paper (i) analyzes the historical changes in the shoreline and the local marine, (ii) assess the role of coral reefs in shoreline positioning through a shoreline equilibrium model first applied to coral reef environments, and (iii) design and begin implementation of a reef-based solution to reduce erosion and flooding. Coastline changes in the bay over the past 6 decades are analyzed from bathymetry and benthic surveys, historical imagery, historical wave and sea level data and modeling of wave dynamics. The analysis shows that, at present, the healthy and well-developed coral reefs system in the southern bay keeps the shoreline in equilibrium and stable, whereas reef degradation in the northern bay is linked with severe coastal erosion. A comparison of wave energy modeling for past bathymetry indicates that degradation of the coral reefs better explains erosion than changes in climate and historical sea level rise. Using this knowledge on how reefs affect the hydrodynamics, a reef restoration solution is designed and studied to ameliorate the coastal erosion and flooding. A characteristic design provides a modular design that can meet specific engineering, ecological and implementation criteria. Four pilot units were implemented in 2015 and are currently being field-tested. This paper presents one of the few existing examples available to date of a reef restoration project designed and engineered to deliver risk reduction benefits. The case study shows how engineering and ecology can work together in community-based adaptation. Our findings are particularly important for Small Island States on the front lines of climate change, who have the most to gain from protecting and managing coral reefs as coastal infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Salles, Tristan; Pall, Jodie; Webster, Jody M.; Dechnik, Belinda
2018-06-01
Assemblages of corals characterise specific reef biozones and the environmental conditions that change spatially across a reef and with depth. Drill cores through fossil reefs record the time and depth distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological timescales but are poorly constrained at centennial to geological timescales. pyReef-Core is a stratigraphic forward model designed to solve the problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea-level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes and (2) the evolution of an idealised coral reef core since the last interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.
NASA Astrophysics Data System (ADS)
Kapur, M. R.
2016-02-01
Simulative models of reef ecosystems have been used to evaluate ecological responses to a myriad of disturbance events, including fishing pressure, coral bleaching, invasion by alien species, and nutrient loading. The Coral Reef Scenario Evaluation Tool (CORSET), has been developed and instantiated for both the Meso-American Reef (MAR) and South China Sea (SCS) regions. This model is novel in that it accounts for the many scales at which reef ecosystem processes take place; is comprised of a "bottom-up" structure wherein complex behaviors are not pre-programmed, but emergent and highly portable to new systems. Local-scale dynamics are coupled across regions through larval connectivity matrices, derived sophisticated particle transport simulations that include key elements of larval behavior. By this approach, we are able to directly evaluate some of the potential consequences of larval connectivity patterns across a range of spatial scales and under multiple climate scenarios. This work develops and applies the CORSET (Coral Reef Scenario Evaluation Tool) to the Main Hawaiian Islands under a suite of climate and ecological scenarios. We introduce an adaptation constant into reef-building coral dynamics to simulate observed resiliencies to bleaching events. This presentation will share results from the model's instantiation under two Resource Concentration Pathway climate scenarios, with emphasis upon larval connectivity dynamics, emergent coral tolerance to increasing thermal anomalies, and patterns of spatial fishing closures. Results suggest that under a business-as-usual scenario, thermal tolerance and herbivore removal will have synergistic effects on reef resilience.
NASA Astrophysics Data System (ADS)
Koweek, D.; Samuel, L.; Mucciarone, D. A.; Woodson, C. B.; Monismith, S. G.; Dunbar, R. B.
2012-12-01
Forecasts for coral reefs under various ocean acidification scenarios are becoming increasingly complex due to significant inter-site variability in biogeochemistry, ecology, and physical oceanography. The reef flats of Ofu, American Samoa are a potential end-member of this vulnerability spectrum due to extremely high diurnal variability in their biogeochemistry. Here we present coupled biogeochemical and physical oceanographic measurements from a shallow reef flat on Ofu in November 2011. We observed diurnal temperature ranges of up to 7°C, along with diurnal pH and dissolved oxygen ranges of 0.6 units, and 160 percent of saturation, respectively. Carbon system measurements were less extreme. Alkalinity varied between 2240-2360 μmol/kg and total dissolved inorganic carbon (TDIC) ranged between 1850-2100 μmol/kg during the diurnal cycle. These observations suggest diurnal ranges of ~240ppm CO2 and 1.5 units of ΩAr. The larger diurnal range in TDIC relative to alkalinity suggests a reef environment dominated by photosynthesis. From these observations, we explore the balance between the dominant biogeochemical processes of production and calcification on the reef flat in more detail, along with its implication for conferring resistance to ocean acidification. We use calcification rate estimates to provide insight to patterns of day and night growth and/or dissolution on the reef. Finally, we present evidence of tidal modulation of the biogeochemical signals and discuss the role of localized physical circulation in helping to determine a reef's vulnerability to ocean acidification.
Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P
2012-10-01
Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D
2015-04-01
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.
Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.
2015-01-01
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625
Offshore S. Cuba -- Quaternary lobsters and Eocene reefs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebora, M.
When Cuba is mentioned, the first image that comes to an explorationist's mind is one of complex imbricated thrust sheets, fractured carbonate reservoirs, volcanics and ophiolitic, and heavy and high sulfur oil. It is now known that this stimulating'' scenario does not apply to the whole of Cuba but only to the northern and central part where plate collisions and robust wrench tectonics exacted their toll on sediments and hydrocarbons alike. Seismic data recently acquired by Taurus Petroleum off the southern coast of Cuba reveal a rather different scenario: Mesozoic sediments several thousands of meters thick, deformed by moderate wrenchmore » tectonics into low-relief flower structures, and overlain by a variety of Paleogene shelf edge reefs, atolls, and banks that look as if reproduced from the pages of AAPG's Memoir 57. The whole is topped by Oligocene and Miocene evaporites, shales, and carbonates. The paper describes the southern shelf area, exploration in Cuba, reefs, oil and gas shows, source rocks, reservoir rocks, seals, and potential reserves.« less
Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L
2005-05-22
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual 'breakthroughs' in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes.
Horwitz, Noa; Bodin, Julia; Giovani, Maria-Evangelia; Escrig, Stéphane; Meibom, Anders; Fine, Maoz
2017-01-01
Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events—the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1–2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region. PMID:28573008
Krueger, Thomas; Horwitz, Noa; Bodin, Julia; Giovani, Maria-Evangelia; Escrig, Stéphane; Meibom, Anders; Fine, Maoz
2017-05-01
Coral reefs are currently experiencing substantial ecological impoverishment as a result of anthropogenic stressors, and the majority of reefs are facing immediate risk. Increasing ocean surface temperatures induce frequent coral mass bleaching events-the breakdown of the nutritional photo-symbiosis with intracellular algae (genus: Symbiodinium ). Here, we report that Stylophora pistillata from a highly diverse reef in the Gulf of Aqaba showed no signs of bleaching despite spending 1.5 months at 1-2°C above their long-term summer maximum (amounting to 11 degree heating weeks) and a seawater pH of 7.8. Instead, their symbiotic dinoflagellates exhibited improved photochemistry, higher pigmentation and a doubling in net oxygen production, leading to a 51% increase in primary productivity. Nanoscale secondary ion mass spectrometry imaging revealed subtle cellular-level shifts in carbon and nitrogen metabolism under elevated temperatures, but overall host and symbiont biomass proxies were not significantly affected. Now living well below their thermal threshold in the Gulf of Aqaba, these corals have been evolutionarily selected for heat tolerance during their migration through the warm Southern Red Sea after the last ice age. This may allow them to withstand future warming for a longer period of time, provided that successful environmental conservation measures are enacted across national boundaries in the region.
A linked land-sea modeling framework to inform ridge-to-reef management in high oceanic islands
Whittier, Robert; Stamoulis, Kostantinos A.; Bremer, Leah L.; Jupiter, Stacy; Friedlander, Alan M.; Poti, Matthew; Guannel, Greg; Kurashima, Natalie; Winter, Kawika B.; Toonen, Robert; Conklin, Eric; Wiggins, Chad; Knudby, Anders; Goodell, Whitney; Burnett, Kimberly; Yee, Susan; Htun, Hla; Oleson, Kirsten L. L.; Wiegner, Tracy; Ticktin, Tamara
2018-01-01
Declining natural resources have led to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. Effective ridge-to-reef management requires improved understanding of land-sea linkages and decision-support tools to simultaneously evaluate the effects of terrestrial and marine drivers on coral reefs, mediated by anthropogenic activities. Although a few applications have linked the effects of land cover to coral reefs, these are too coarse in resolution to inform watershed-scale management for Pacific Islands. To address this gap, we developed a novel linked land-sea modeling framework based on local data, which coupled groundwater and coral reef models at fine spatial resolution, to determine the effects of terrestrial drivers (groundwater and nutrients), mediated by human activities (land cover/use), and marine drivers (waves, geography, and habitat) on coral reefs. We applied this framework in two ‘ridge-to-reef’ systems (Hā‘ena and Ka‘ūpūlehu) subject to different natural disturbance regimes, located in the Hawaiian Archipelago. Our results indicated that coral reefs in Ka‘ūpūlehu are coral-dominated with many grazers and scrapers due to low rainfall and wave power. While coral reefs in Hā‘ena are dominated by crustose coralline algae with many grazers and less scrapers due to high rainfall and wave power. In general, Ka‘ūpūlehu is more vulnerable to land-based nutrients and coral bleaching than Hā‘ena due to high coral cover and limited dilution and mixing from low rainfall and wave power. However, the shallow and wave sheltered back-reef areas of Hā‘ena, which support high coral cover and act as nursery habitat for fishes, are also vulnerable to land-based nutrients and coral bleaching. Anthropogenic sources of nutrients located upstream from these vulnerable areas are relevant locations for nutrient mitigation, such as cesspool upgrades. In this study, we located coral reefs vulnerable to land-based nutrients and linked them to priority areas to manage sources of human-derived nutrients, thereby demonstrating how this framework can inform place-based ridge-to-reef management. PMID:29538392
Coral reefs: threats and conservation in an era of global change.
Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E
2009-04-01
Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.
Beseres Pollack, Jennifer; Cleveland, Andrew; Palmer, Terence A.; Reisinger, Anthony S.; Montagna, Paul A.
2012-01-01
Oyster reefs are one of the most threatened marine habitats on earth, with habitat loss resulting from water quality degradation, coastal development, destructive fishing practices, overfishing, and storm impacts. For successful and sustainable oyster reef restoration efforts, it is necessary to choose sites that support long-term growth and survival of oysters. Selection of suitable sites is critically important as it can greatly influence mortality factors and may largely determine the ultimate success of the restoration project. The application of Geographic Information Systems (GIS) provides an effective methodology for identifying suitable sites for oyster reef restoration and removes much of the uncertainty involved in the sometimes trial and error selection process. This approach also provides an objective and quantitative tool for planning future oyster reef restoration efforts. The aim of this study was to develop a restoration suitability index model and reef quality index model to characterize locations based on their potential for successful reef restoration within the Mission-Aransas Estuary, Texas, USA. The restoration suitability index model focuses on salinity, temperature, turbidity, dissolved oxygen, and depth, while the reef quality index model focuses on abundance of live oysters, dead shell, and spat. Size-specific Perkinsus marinus infection levels were mapped to illustrate general disease trends. This application was effective in identifying suitable sites for oyster reef restoration, is flexible in its use, and provides a mechanism for considering alternative approaches. The end product is a practical decision-support tool that can be used by coastal resource managers to improve oyster restoration efforts. As oyster reef restoration activities continue at small and large-scales, site selection criteria are critical for assisting stakeholders and managers and for maximizing long-term sustainability of oyster resources. PMID:22792410
Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil
NASA Astrophysics Data System (ADS)
Longhini, Cybelle M.; Souza, Marcelo F. L.; Silva, Ananda M.
2015-12-01
The carbon cycle in coral reefs is usually dominated by the organic carbon metabolism and precipitation-dissolution of CaCO3, processes that control the CO2 partial pressure (pCO2) in seawater and the CO2 fluxes through the air-sea interface. In order to characterize these processes and the carbonate system, four sampling surveys were conducted at the reef flat of Coroa Vermelha during low tide (exposed flat). Net ecosystem production (NEP), net precipitation-dissolution of CaCO3 (G) and CO2 fluxes across the air-water interface were calculated. The reef presented net autotrophy and calcification at daytime low tide. The NEP ranged from -8.7 to 31.6 mmol C m-2 h-1 and calcification from -13.1 to 26.0 mmol C m-2 h-1. The highest calcification rates occurred in August 2007, coinciding with the greater NEP rates. The daytime CO2 fluxes varied from -9.7 to 22.6 μmol CO2 m-2 h-1, but reached up to 13,900 μmol CO2 m-2 h-1 during nighttime. Carbon dioxide influx to seawater was predominant in the reef flat during low tide. The regions adjacent to the reef showed a supersaturation of CO2, acting as a source of CO2 to the atmosphere (from -22.8 to -2.6 mol CO2 m-2 h-1) in the reef flat during ebbing tide. Nighttime gas release to the atmosphere indicates a net CO2 release from the Coroa Vermelha reef flat within 24 h, and that these fluxes can be important to carbon budget in coral reefs.
Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification
NASA Astrophysics Data System (ADS)
Mongin, Mathieu; Baird, Mark E.; Hadley, Scott; Lenton, Andrew
2016-03-01
The equilibration of rising atmospheric {{CO}}2 with the ocean is lowering {pH} in tropical waters by about 0.01 every decade. Coral reefs and the ecosystems they support are regarded as one of the most vulnerable ecosystems to ocean acidification, threatening their long-term viability. In response to this threat, different strategies for buffering the impact of ocean acidification have been proposed. As the {pH} experienced by individual corals on a natural reef system depends on many processes over different time scales, the efficacy of these buffering strategies remains largely unknown. Here we assess the feasibility and potential efficacy of a reef-scale (a few kilometers) carbon removal strategy, through the addition of seaweed (fleshy multicellular algae) farms within the Great Barrier Reef at the Heron Island reef. First, using diagnostic time-dependent age tracers in a hydrodynamic model, we determine the optimal location and size of the seaweed farm. Secondly, we analytically calculate the optimal density of the seaweed and harvesting strategy, finding, for the seaweed growth parameters used, a biomass of 42 g N m-2 with a harvesting rate of up 3.2 g N m-2 d-1 maximises the carbon sequestration and removal. Numerical experiments show that an optimally located 1.9 km2 farm and optimally harvested seaweed (removing biomass above 42 g N m-2 every 7 d) increased aragonite saturation by 0.1 over 24 km2 of the Heron Island reef. Thus, the most effective seaweed farm can only delay the impacts of global ocean acidification at the reef scale by 7-21 years, depending on future global carbon emissions. Our results highlight that only a kilometer-scale farm can partially mitigate global ocean acidification for a particular reef.
Environmental controls on modern scleractinian coral and reef-scale calcification.
Courtney, Travis A; Lebrato, Mario; Bates, Nicholas R; Collins, Andrew; de Putron, Samantha J; Garley, Rebecca; Johnson, Rod; Molinero, Juan-Carlos; Noyes, Timothy J; Sabine, Christopher L; Andersson, Andreas J
2017-11-01
Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony ( Porites astreoides and Diploria labyrinthiformis ) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO 2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO 2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO 2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.
Roberts, Michaela; Hanley, Nick; Cresswell, Will
2017-09-15
While ecological links between ecosystems have been long recognised, management rarely crosses ecosystem boundaries. Coral reefs are susceptible to damage through terrestrial run-off, and failing to account for this within management threatens reef protection. In order to quantify the extent to that coral reef users are willing to support management actions to improve ecosystem quality, we conducted a choice experiment with SCUBA divers on the island of Bonaire, Caribbean Netherlands. Specifically, we estimated their willingness to pay to reduce terrestrial overgrazing as a means to improve reef health. Willingness to pay was estimated using the multinomial, random parameter and latent class logit models. Willingness to pay for improvements to reef quality was positive for the majority of respondents. Estimates from the latent class model determined willingness to pay for reef improvements of between $31.17 - $413.18/year, dependent on class membership. This represents a significant source of funding for terrestrial conservation, and illustrates the potential for user fees to be applied across ecosystem boundaries. We argue that such across-ecosystem-boundary funding mechanisms are an important avenue for future investigation in many connected systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coral–algal phase shifts alter fish communities and reduce fisheries production
Ainsworth, Cameron H; Mumby, Peter J
2015-01-01
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835
An Integrated Study of the Degadation of a Reefscape in the Florida Keys
NASA Astrophysics Data System (ADS)
Zawada, D. G.; Yates, K. K.
2016-02-01
Worldwide, many coral reefs are contending with a number of stressors driven by local-, regional-, and global-scale processes. Examples include bleaching, disease, overfishing, acidification, ocean warming, and sea level rise. Understanding the impact of these stressors requires a better understanding of the interplay between various reef processes over a range of spatial scales and from the perspective of different scientific disciplines. For an 18-month period, we applied a multidisciplinary, reefscape-characterization strategy to study a portion of the Florida Reef Tract. Our approach coupled biogeochemical, sedimentological, and geophysical observations over a continuum of spatial scales (from mm to km) through co-located, autonomous instrumentation and synchronized in situ sampling. Specifically, we measured carbonate system parameters; acquired current profiles at 4 reef locations; and characterized reef morphology, benthic cover, and sediment production. The synthesis of these data is enabling us to explore and explain linkages between geochemical and physical processes related to issues of reef accretion/erosion, habitat distributions, and environmental conditions. This presentation focuses on the impact of these processes on carbonate accretion and erosion at our study site and the associated coastal vulnerability due to the degradation of these natural, protective barriers.
Assessment of human activities impact on groundwater quality discharging into a reef lagoon
NASA Astrophysics Data System (ADS)
Rebolledo-Vieyra, M.; Hernandez, L.; Paytan, A.; Merino-Ibarra, M.; Lecossec, A.; Soto, M.
2010-03-01
The Eastern coast of the Yucatan Peninsula has the fastest growth rate in Mexico and groundwater is the only source of drinking water in the region. The consequences of the lack of proper infrastructure to collect and treat wastewater and the impact of human activities on the quality of groundwater are addressed. The groundwater in the coastal aquifer of Quintana Roo (SE Mexico) discharges directly into the ocean (Submarine Groundwater Discharges). In addition, the coral reef of the Eastern Yucatan Peninsula is part of the Mesoamerican Coral Reef System, one of the largest in the world. The interaction of the reef-lagoon hydraulics with the coastal aquifer of Puerto Morelos (NE Yucatan Peninsula), and a major input of NH4, SO4, SiO2, as a consequence of the use of septic tanks and the lack of modern wastewater treatment plants are presented. A conceptual model of the coastal aquifer was developed, in order to explain how the human activities are impacting directly on the groundwater quality that, potentially, will have a direct impact on the coral reef. The protection and conservation of coral reefs must be directly related with a policy of sound management of coastal aquifers and wastewater treatment.
Energetic differences between bacterioplankton trophic groups and coral reef resistance
McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J.; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B.; Sullivan, Chris; Brainard, Russell E.; Rohwer, Forest
2016-01-01
Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. PMID:27097927
Energetic differences between bacterioplankton trophic groups and coral reef resistance.
McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest
2016-04-27
Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).
Environmental controls on modern scleractinian coral and reef-scale calcification
Courtney, Travis A.; Lebrato, Mario; Bates, Nicholas R.; Collins, Andrew; de Putron, Samantha J.; Garley, Rebecca; Johnson, Rod; Molinero, Juan-Carlos; Noyes, Timothy J.; Sabine, Christopher L.; Andersson, Andreas J.
2017-01-01
Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide. PMID:29134196
NASA Astrophysics Data System (ADS)
Fidler, Robert Young, III
Overfishing and destructive fishing practices threaten the sustainability of fisheries worldwide. In addition to reducing population sizes, anthropogenic fishing effort is highly size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-selective mortality induces widespread phenotypic shifts toward the predominance of smaller and earlier-maturing individuals. Fish that reach sexual maturity at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of exploited populations. These directional phenotypic alterations, collectively known as "fisheries-induced evolution" (FIE) are among the primary causes of the loss of harvestable fish biomass. Marine protected areas (MPAs) are one of the most widely utilized components of fisheries management programs around the world, and have been proposed as a potential mechanism by which the impacts of FIE may be mitigated. The ability of MPAs to buffer exploited populations against fishing pressure, however, remains debated due to inconsistent results across studies. Additionally, empirical evidence of phenotypic shifts in fishes within MPAs is lacking. This investigation addresses both of these issues by: (1) using a categorical meta-analysis of MPAs to standardize and quantify the magnitude of MPA impacts across studies; and (2) conducting a direct comparison of life-history phenotypes known to be influenced by FIE in six reef-fish species inside and outside of MPAs. The Philippines was used as a model system for analyses due to the country's significance in global marine biodiversity and reliance on MPAs as a fishery management tool. The quantitative impact of Philippine MPAs was assessed using a "reef-wide" meta-analysis. This analysis used pooled visual census data from 39 matched pairs of MPAs and fished reefs surveyed twice over a mean period of 3 years. In 17 of these MPAs, two additional surveys were conducted using size-specific fish counts, allowing for spatiotemporal comparisons of abundance and demographic structure of fish populations across protected and fished areas. Results of the meta-analysis revealed that: (1) although fish density was higher inside MPAs than in fished reefs at each sampling period, reef-wide density often increased or remained stable over time; and (2) increases in large-bodied fish were evident reef-wide between survey periods, indicating that positive demographic shifts occurred simultaneously in both MPAs and adjacent areas. Increases in large-bodied fish were observed across a range of taxa, but were most prominent in families directly targeted by fishermen. These results suggest that over relatively few years of protection, Philippine MPAs promoted beneficial shifts in population structure throughout entire reef systems, rather than simply maintaining stable populations within their borders. Relationships between MPA age and shifts in fish density or demographic structure were rare, but may have been precluded by the relatively short period between replicate surveys. Although increases in fish density inside MPAs were occasionally associated with MPA size, there were no significant relationships between the size of MPAs and reef-wide increases in fish density. The reef-wide framework of MPA assessment used in this study has the advantage of treating MPAs and fished reefs as an integrated system, thus revealing trends that would be indistinguishable in traditional spatial comparisons between MPAs and fished reefs. The impact of MPAs on fishing-induced life-history traits was assessed by comparing growth and maturation patterns exhibited by six reef-fish species inside and outside five MPAs and adjacent, fished reefs in Zambales, Luzon, Philippines. This analysis demonstrated considerable variation in terminal body-sizes (Linf) and growth rates (K) between conspecifics in MPAs and fished reefs. Three of the four experimental species directly targeted for food in the region (Acanthurus nigrofuscus, Ctenochaetus striatus, and Parupeneus multifasciatus) exhibited greater Linf, lower K, or both characteristics inside at least one MPA compared to populations in adjacent, fished reefs. Life-history shifts were concentrated in the oldest and largest MPAs, but occurred at least once in each of the five MPAs that were examined. A fourth species harvested for food (Ctenochaetus binotatus), as well as a species targeted for the aquarium trade (Zebrasoma scopas) and a non-target species (Plectroglyphidodon lacrymatus) did not exhibit differential phenotypes between MPAs and fished reefs. The relatively high frequency of alterations to life-history characteristics across MPAs in harvested species suggests that observed changes in the density and size-structure of harvested fish populations inside MPAs are likely driven by spatial disparities in fishing pressure, and are the result of phenotypic changes rather than increased longevity.
Kiritimati, Kiribati (Christmas Island)
NASA Technical Reports Server (NTRS)
2002-01-01
Pronounced 'Ki-ris-mas,' Kiritimati Island has a large infilled lagoon that gives it the largest land area (125 square miles, 321 square km) of any atoll in the world. Captain Cook named the atoll Christmas Island when he arrived on Christmas Eve in 1777. Used for nuclear testing in the 1950s and 1960s, the island is now valued for its marine and wildlife resources. It is particularly important as a seabird nesting site-with an estimated 6 million birds using or breeding on the island, including several million Sooty Terns. Rainfall on Kiritimati is linked to El Nino patterns, with long droughts experienced between the wetter El Nino years. This image is based on a mosaic of four digital photographs taken on 16 January 2002 from the Space Station Alpha as part of the Crew Earth Observations Project. The underlying data have 10 meter spatial resolution. Coral reefs are one of the areas selected as a scientific theme for this project (see also the recent Earth Observatory article, Mapping the Decline of Coral Reefs. The mosaic, based on images ISS004-ESC-6249 to 6252, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
Mallet, Delphine; Wantiez, Laurent; Lemouellic, Soazig; Vigliola, Laurent; Pelletier, Dominique
2014-01-01
Estimating diversity and abundance of fish species is fundamental for understanding community structure and dynamics of coral reefs. When designing a sampling protocol, one crucial step is the choice of the most suitable sampling technique which is a compromise between the questions addressed, the available means and the precision required. The objective of this study is to compare the ability to sample reef fish communities at the same locations using two techniques based on the same stationary point count method: one using Underwater Visual Census (UVC) and the other rotating video (STAVIRO). UVC and STAVIRO observations were carried out on the exact same 26 points on the reef slope of an intermediate reef and the associated inner barrier reefs. STAVIRO systems were always deployed 30 min to 1 hour after UVC and set exactly at the same place. Our study shows that; (i) fish community observations by UVC and STAVIRO differed significantly; (ii) species richness and density of large species were not significantly different between techniques; (iii) species richness and density of small species were higher for UVC; (iv) density of fished species was higher for STAVIRO and (v) only UVC detected significant differences in fish assemblage structure across reef type at the spatial scale studied. We recommend that the two techniques should be used in a complementary way to survey a large area within a short period of time. UVC may census reef fish within complex habitats or in very shallow areas such as reef flat whereas STAVIRO would enable carrying out a large number of stations focused on large and diver-averse species, particularly in the areas not covered by UVC due to time and depth constraints. This methodology would considerably increase the spatial coverage and replication level of fish monitoring surveys. PMID:24392126
Coral reef habitat response to climate change scenarios.
Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J
2013-01-01
Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.
NASA Astrophysics Data System (ADS)
Forsberg, Pernille L.; Lumborg, Ulrik; Bundgaard, Klavs; Ernstsen, Verner B.
2017-12-01
Rødsand lagoon in southeast Denmark is a non-tidal coastal lagoon. It is home to a wide range of marine flora and fauna and part of the Natura 2000 network. An increase in turbidity through elevated levels of suspended sediment concentration (SSC) within the lagoon may affect the ecosystem health due to reduced light penetration. Increasing SSC levels within Rødsand lagoon could be caused by increasing storm intensity or by a sediment spill from dredging activities west of the lagoon in relation to the planned construction of the Fehmarnbelt fixed link between Denmark and Germany. The aim of the study was to investigate the impact of a mussel reef on sediment import and SSC in a semi-enclosed lagoon through the development of a bioengineering modelling application that makes it possible to include the filtrating effect of mussels in a numerical model of the lagoonal system. The numerical implementation of an exterior mussel reef generated a reduction in the SSC in the vicinity of the reef, through the adjacent inlet and in the western part of the lagoon. The mussel reef reduced the sediment import to Rødsand lagoon by 13-22% and reduced the SSC within Rødsand lagoon by 5-9% depending on the filtration rate and the reef length. The results suggest that the implementation of a mussel reef has the potential to relieve the pressure of increasing turbidity levels within a semi-enclosed lagoonal system. However, further assessment and development of the bioengineering application and resulting ecosystem impacts are necessary prior to actual implementation.
NASA Astrophysics Data System (ADS)
Plass-Johnson, Jeremiah G.; Heiden, Jasmin P.; Abu, Nur; Lukman, Muhammad; Teichberg, Mirta
2016-03-01
The composition of coral reef benthic communities is strongly affected by variation in water quality and consumer abundance and composition. This is particularly evident in highly populated coastal regions where humans depend on coral reef resources and where terrestrial run-off can change the chemical composition of the water. We tested the effects of grazing pressure and ambient water conditions along an established eutrophication gradient on the recruitment and successional development of benthic communities of the Spermonde Archipelago, Indonesia, through caging experiments with settlement tiles. Within 1 month, benthic community composition of the closest reef to land, near the city of Makassar, was significantly different from other sites further offshore, driven primarily by differences in recruitment of invertebrates or turf algae. In contrast to other caging experiments, consumer exclusion had no effect after 3 months, suggesting that larger, mobile consumers had little effect on the benthic communities of these reefs at all sites. Despite conditions that usually favour macroalgal development, this group was rarely observed on recruitment tiles even after 4 months of consumer exclusion. Furthermore, tiles from both the caged and open treatments retained high proportions of open space indicating the possible role of small-sized or non-fish consumers that were not excluded from the experiment. These results indicate that, unlike many other studies, benthic consumers in the Spermonde Archipelago had little effect on the recruitment and early succession of the reef habitat and that unexamined biota such as mesograzers may be significant in degraded systems.
NASA Astrophysics Data System (ADS)
Hallock, Pamela
2005-04-01
Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and global warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO 2 has already reduced CaCO 3 saturation in surface waters by more than 10%. Doubling of atmospheric CO 2 concentration over pre-industrial concentration in the 21st century may reduce carbonate production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of carbonate depositional systems. Coordinated studies of carbonate geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic carbonate-ramp communities, will contribute to understanding of carbonate sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with global change are prime topics for further research, with both ecological and geological implications.
Lamb, Joleah B; van Oppen, Madeleine J H; Willis, Bette L; Bourne, David G
2015-01-01
Abstract Unravelling the contributions of local anthropogenic and seasonal environmental factors in suppressing the coral immune system is important for prioritizing management actions at reefs exposed to high levels of human activities. Here, we monitor health of the model coral Acropora millepora adjacent to a high-use and an unused reef-based tourist platform, plus a nearby control site without a platform, over 7 months spanning a typical austral summer. Comparisons of temporal patterns in a range of biochemical and genetic immune parameters (Toll-like receptor signalling pathway, lectin–complement system, prophenoloxidase-activating system and green fluorescent protein-like proteins) among healthy, injured and diseased corals revealed that corals exhibit a diverse array of immune responses to environmental and anthropogenic stressors. In healthy corals at the control site, expression of genes involved in the Toll-like receptor signalling pathway (MAPK p38, MEKK1, cFos and ATF4/5) and complement system (C3 and Bf) was modulated by seasonal environmental factors in summer months. Corals at reef platform sites experienced additional stressors over the summer, as evidenced by increased expression of various immune genes, including MAPK p38 and MEKK1. Despite increased expression of immune genes, signs of white syndromes were detected in 31% of study corals near tourist platforms in the warmest summer month. Evidence that colonies developing disease showed reduced expression of genes involved in the complement pathway prior to disease onset suggests that their immune systems may have been compromised. Responses to disease and physical damage primarily involved the melanization cascade and GFP-like proteins, and appeared to be sufficient for recovery when summer heat stress subsided. Overall, seasonal and anthropogenic factors may have interacted synergistically to overwhelm the immune systems of corals near reef platforms, leading to increased disease prevalence in summer at these sites. PMID:27293717
High-resolution photo-mosaic time-series imagery for monitoring human use of an artificial reef.
Wood, Georgina; Lynch, Tim P; Devine, Carlie; Keller, Krystle; Figueira, Will
2016-10-01
Successful marine management relies on understanding patterns of human use. However, obtaining data can be difficult and expensive given the widespread and variable nature of activities conducted. Remote camera systems are increasingly used to overcome cost limitations of conventional labour-intensive methods. Still, most systems face trade-offs between the spatial extent and resolution over which data are obtained, limiting their application. We trialed a novel methodology, CSIRO Ruggedized Autonomous Gigapixel System (CRAGS), for time series of high-resolution photo-mosaic (HRPM) imagery to estimate fine-scale metrics of human activity at an artificial reef located 1.3 km from shore. We compared estimates obtained using the novel system to those produced with a web camera that concurrently monitored the site. We evaluated the effect of day type (weekday/weekend) and time of day on each of the systems and compared to estimates obtained from binocular observations. In general, both systems delivered similar estimates for the number of boats observed and to those obtained by binocular counts; these results were also unaffected by the type of day (weekend vs. weekday). CRAGS was able to determine additional information about the user type and party size that was not possible with the lower resolution webcam system. However, there was an effect of time of day as CRAGS suffered from poor image quality in early morning conditions as a result of fixed camera settings. Our field study provides proof of concept of use of this new cost-effective monitoring tool for the remote collection of high-resolution large-extent data on patterns of human use at high temporal frequency.
Jokiel, Paul L.; Toonen, Robert J.
2015-01-01
Kāneʻohe Bay, which is located on the on the NE coast of Oʻahu, Hawaiʻi, represents one of the most intensively studied estuarine coral reef ecosystems in the world. Despite a long history of anthropogenic disturbance, from early settlement to post European contact, the coral reef ecosystem of Kāneʻohe Bay appears to be in better condition in comparison to other reefs around the world. The island of Moku o Loʻe (Coconut Island) in the southern region of the bay became home to the Hawaiʻi Institute of Marine Biology in 1947, where researchers have since documented the various aspects of the unique physical, chemical, and biological features of this coral reef ecosystem. The first human contact by voyaging Polynesians occurred at least 700 years ago. By A.D. 1250 Polynesians voyagers had settled inhabitable islands in the region which led to development of an intensive agricultural, fish pond and ocean resource system that supported a large human population. Anthropogenic disturbance initially involved clearing of land for agriculture, intentional or accidental introduction of alien species, modification of streams to supply water for taro culture, and construction of massive shoreline fish pond enclosures and extensive terraces in the valleys that were used for taro culture. The arrival by the first Europeans in 1778 led to further introductions of plants and animals that radically changed the landscape. Subsequent development of a plantation agricultural system led to increased human immigration, population growth and an end to traditional land and water management practices. The reefs were devastated by extensive dredge and fill operations as well as rapid growth of human population, which led to extensive urbanization of the watershed. By the 1960’s the bay was severely impacted by increased sewage discharge along with increased sedimentation due to improper grading practices and stream channelization, resulting in extensive loss of coral cover. The reefs of Kāneʻohe Bay developed under estuarine conditions and thus have been subjected to multiple natural stresses. These include storm floods, a more extreme temperature range than more oceanic reefs, high rates of sedimentation, and exposure at extreme low tides. Deposition and degradation of organic materials carried into the bay from the watershed results in low pH conditions such that according to some ocean acidification projections the rich coral reefs in the bay should not exist. Increased global temperature due to anthropogenic fossil fuel emmisions is now impacting these reefs with the first “bleaching event” in 1996 and a second more severe event in 2014. The reefs of Kāneʻohe Bay have developed and persist under rather severe natural and anthropogenic perturbations. To date, these reefs have proved to be very resilient once the stressor has been removed. A major question remains to be answered concerning the limits of Kāneʻohe Bay reef resilience in the face of global climate change. PMID:26020007
From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 1
2017-03-22
A NASA-led science team spent six weeks in January and February studying Hawaii's volcanos and coral reefs using the agency's ER-2 aircraft. The mission, called Hyperspectral InfraRed Imager (HyspIRI), focused on observing coral reef health and volcano emissions and eruptions. Flying at 65,000 feet (19,800 meters), above 95 percent of Earth’s atmosphere, the ER-2 can closely replicate the data a future satellite could collect. Data from this mission will help in developing a NASA satellite to study natural hazards and ecosystems. NASA's ER-2 aircraft are based at NASA's Armstrong Flight Research Center Building 703 in Palmdale, California.
NASA Astrophysics Data System (ADS)
Enochs, I.; Manzello, D.; Carlton, R.
2013-05-01
Coral reef habitats exist as a dynamic balance between the additive process of calcification and the destructive effects of erosion. A disruption to either the positive or negative side of the coral reef carbonate budget can push a reef system towards rapid collapse. It is well understood that Ocean Acidification (OA) may impair calcification and emerging experimental evidence suggests that it will likely increase the erosive potential of a diverse suite of bioeroding taxa. This may lead to previously unforeseen scenarios where reef framework degradation occurs at a faster pace than that predicted by more simplistic models, resulting from the multifaceted impacts of both slower coral growth and enhanced rates of habitat erosion. As such, it is of paramount importance that monitoring plans tasked with assessing reef resilience to climate change and OA incorporate methods for quantifying bioerosion. This is a complex undertaking as reef ecosystem bioerosion is the result of numerous behaviors, employed by diverse flora and fauna, operating at vastly different scales. Furthermore, these erosive processes are highly variable, dependent on seasonal fluctuations and differing between reef regions, species, individuals, and even the physical characteristics of the substrates acted upon. The strengths and weaknesses of existing bioerosion monitoring methodologies are discussed, ranging from quantification of single species erosion rates to multi-phyletic census-based approaches. Traditional techniques involving the weight change of carbonate blocks are compared alongside more modern methodologies such as micro computed tomography. Finally, recommendations are made for a comprehensive monitoring strategy, incorporating multiple methodologies in a time and cost-effective manner.
Williamson, David H.; Ceccarelli, Daniela M.; Evans, Richard D.; Hill, Jos K.; Russ, Garry R.
2014-01-01
No-take marine reserves (NTMRs) are increasingly being established to conserve or restore biodiversity and to enhance the sustainability of fisheries. Although effectively designed and protected NTMR networks can yield conservation and fishery benefits, reserve effects often fail to manifest in systems where there are high levels of non-compliance by fishers (poaching). Obtaining reliable estimates of NTMR non-compliance can be expensive and logistically challenging, particularly in areas with limited or non-existent resources for conducting surveillance and enforcement. Here we assess the utility of density estimates and re-accumulation rates of derelict (lost and abandoned) fishing line as a proxy for fishing effort and NTMR non-compliance on fringing coral reefs in three island groups of the Great Barrier Reef Marine Park (GBRMP), Australia. Densities of derelict fishing line were consistently lower on reefs within old (>20 year) NTMRs than on non-NTMR reefs (significantly in the Palm and Whitsunday Islands), whereas line densities did not differ significantly between reefs in new NTMRs (5 years of protection) and non-NTMR reefs. A manipulative experiment in which derelict fishing lines were removed from a subset of the monitoring sites demonstrated that lines re-accumulated on NTMR reefs at approximately one third (32.4%) of the rate observed on non-NTMR reefs over a thirty-two month period. Although these inshore NTMRs have long been considered some of the best protected within the GBRMP, evidence presented here suggests that the level of non-compliance with NTMR regulations is higher than previously assumed. PMID:25545154
Processes Driving Natural Acidification of Western Pacific Coral Reef Waters
NASA Astrophysics Data System (ADS)
Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.
2013-12-01
Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem calcification rates in the Rock Island bays than on the barrier reef.
Climate change and tropical marine agriculture.
Crabbe, M James C
2009-01-01
The coral reef ecosystem forms part of a 'seascape' that includes land-based ecosystems such as mangroves and forests, and ideally should form a complete system for conservation and management. Aquaculture, including artisanal fishing for fish and invertebrates, shrimp farming, and seaweed farming, is a major part of the farming and gleaning practices of many tropical communities, particularly on small islands, and depends upon the integrity of the reefs. Climate change is making major impacts on these communities, not least through global warming and high CO(2) concentrations. Corals grow within very narrow limits of temperature, provide livelihoods for millions of people in tropical areas, and are under serious threat from a variety of environmental and climate extremes. Corals survive and grow through a symbiotic relationship with photosynthetic algae: zooxanthellae. Such systems apply highly co-operative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. This review will discuss research on how climate influences reef ecosystems, and how science can lead to conservation actions, with benefits for the human populations reliant on the reefs for their survival.
Astronaut Photography of Coral Reefs
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Noordeloos, Marco
2001-01-01
Astronaut photographs of tropical coastal areas may contain information on submerged features, including coral reefs, up to depths of about 15 m in clear waters. Previous research efforts have shown that astronaut photographs can aid in estimating coral reef locations and extent on national, regional and global scales, and allow characterization of major geomorphological rim and lagoon features (Andrefouet et al. 2000, in preparation). They can be combined with traditional satellite data to help distinguish between clouds and lagoon features such as pinnacles (Andrefouet and Robinson, in review). Furthermore, astronaut photographs may provide reef scientists and managers with information on the location and extent of river plumes and sediment run off, or facilitate identification of land cover types, including mangroves (Webb et al., in press). Photographs included in the section were selected based on several criteria. The primary consideration of the editors was that the photographs represent a worldwide distribution of coral reefs, have extremely low visual interference by cloud cover, and display a spatial scale reasonable for examining reef-related features. Once photographs were selected, they were digitized from 2nd generation copies. The color and contrast were hand corrected to an approximation of natural color (required to account for spectral differences between photographs due to the color sensitivities of films used, and differences in sun angle and exposure of the photographs). None of the photographs shown here have been georeferenced to correct them to a map projection and scale. Any distortions in features due to slightly oblique look angles when the photographs were taken through spacecraft windows remain. When feasible, near vertical photographs have been rotated so that north is toward the top. An approximate scale bar and north arrow have added using distinctive features on each photograph with reference to a 1:1,000,000 scale navigation chart. Astronaut photographs provide a unique source of moderate resolution reef remote sensing data because of their global coverage and (immediate) availability in the public domain. The database of photographs can be searched an browsed online and high-resolution digital copies of photographs in this atlas can be accessed via the Website of Earth Science and Image Analysis at NASA's Johnson Space Center:
Marsden, J. Ellen; Binder, Thomas R.; Johnson, James; He, Ji; Dingledine, Natalie; Adams, Janice; Johnson, Nicholas S.; Buchinger, Tyler J.; Krueger, Charles C.
2016-01-01
Degradation of aquatic habitats has motivated construction and research on the use of artificial reefs to enhance production of fish populations. However, reefs are often poorly planned, reef design characteristics are not evaluated, and reef assessments are short-term. We constructed 29 reefs in Thunder Bay, Lake Huron, in 2010 and 2011 to mitigate for degradation of a putative lake trout spawning reef. Reefs were designed to evaluate lake trout preferences for height, orientation, and size, and were compared with two degraded natural reefs and a high-quality natural reef (East Reef). Eggs and fry were sampled on each reef for five years post-construction, and movements of 40 tagged lake trout were tracked during three spawning seasons using acoustic telemetry. Numbers of adults and spawning on the constructed reefs were initially low, but increased significantly over the five years, while remaining consistent on East Reef. Adult density, egg deposition, and fry catch were not related to reef height or orientation of the constructed reefs, but were related to reef size and adjacency to East Reef. Adult lake trout visited and spawned on all except the smallest constructed reefs. Of the metrics used to evaluate the reefs, acoustic telemetry produced the most valuable and consistent data, including fine-scale examination of lake trout movements relative to individual reefs. Telemetry data, supplemented with diver observations, identified several previously unknown natural spawning sites, including the high-use portions of East Reef. Reef construction has increased the capacity for fry production in Thunder Bay without apparently decreasing the use of the natural reef. Results of this project emphasize the importance of multi-year reef assessment, use of multiple assessment methods, and comparison of reef characteristics when developing artificial reef projects. Specific guidelines for construction of reefs focused on enhancing lake trout spawning are suggested.
Rieucau, G; Kiszka, J J; Castillo, J C; Mourier, J; Boswell, K M; Heithaus, M R
2018-06-01
A novel image analysis-based technique applied to unmanned aerial vehicle (UAV) survey data is described to detect and locate individual free-ranging sharks within aggregations. The method allows rapid collection of data and quantification of fine-scale swimming and collective patterns of sharks. We demonstrate the usefulness of this technique in a small-scale case study exploring the shoaling tendencies of blacktip reef sharks Carcharhinus melanopterus in a large lagoon within Moorea, French Polynesia. Using our approach, we found that C. melanopterus displayed increased alignment with shoal companions when distributed over a sandflat where they are regularly fed for ecotourism purposes as compared with when they shoaled in a deeper adjacent channel. Our case study highlights the potential of a relatively low-cost method that combines UAV survey data and image analysis to detect differences in shoaling patterns of free-ranging sharks in shallow habitats. This approach offers an alternative to current techniques commonly used in controlled settings that require time-consuming post-processing effort. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Carreón-Palau, Laura; Parrish, Christopher C; Pérez-España, Horacio
2017-10-15
Nutritional quality of suspended particulate matter (SPM) and the degree of human fecal pollution in the largest coral reef system in the southwest Gulf of Mexico were evaluated using lipid classes, fatty acids (FA) and sterols in the dry and rainy seasons. High proportions of triacylglycerols and saturated and monounsaturated FA were detected in the SPM however it was considered poor quality because it had low proportions of highly unsaturated FA which can be used to determine production of marine biogenic material of dietary value to pelagic and benthic organisms. Urban sewage organic carbon was traced with coprostanol. The reference value of coprostanol from the point source of pollution was set using two samples from a sewage treatment plant processing waste from >140,000 people near the coral reef system, and it was contrasted with one river station and nine marine stations including six coral reefs. The concentration of coprostanol in the SPM was 3621 ± 98 ng L -1 comprising 26% of total sterols. During the dry season, the river was contaminated upstream with human feces as evidenced by coprostanol at 1823 ng L -1 , the 5β-coprostanol: cholesterol ratio at 0.5, and 5β-coprostanol: [5α-cholestanol+5β-coprostanol] at 0.7. In contrast, marine stations had concentrations of coprostanol lower than a suggested regulation limit for tropical marine coastal waters (30 ng L -1 ), ranging between 6 and 28 ng L -1 . During the rainy season a dilution effect was detected in the river, however significantly higher concentrations of coprostanol in the marine stations were detected ranging between 15 and 215 ng L -1 , higher than the tentative tropical regulation range (30-100 ng L -1 ). Among the reefs, the nearshore one, 14.3 km from the treatment plant, was more exposed to human-fecal pollution, and offshore reefs, >17.3 km from the plant, had a lower degree of contamination. Finally, only three stations were clearly uncontaminated during both seasons including two reefs in the south located 21.8 and 35.6 km from the plant, with no presence of coprostanol. Contamination in the rainy season likely comes from a village with untreated sewage located 9.3-32 km from the reefs, and from the second largest Mexican river flowing into the Gulf of Mexico which has a watershed covering three states with lower than average sewage treatment. Inclusion of coprostanol monitoring could be a key factor in the management of this coral reef system. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boss, Stephen K.
1996-11-01
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise.
NASA Astrophysics Data System (ADS)
Melendez, M.; Salisbury, J.; Gledhill, D. K.; Musielewicz, S.; Morell, J. M.; Manzello, D.
2016-02-01
Diverse metabolic processes in conjunction with thermodynamic, physical and benthic related processes modulate seawater carbonate chemistry in near-shore environments. Such processes operate at different time scales. In the open ocean, dynamics and trends in carbonate chemistry are reasonably well constrained and often characterized based on TA-salinity and pCO2-temperature relationships. However, in near-shore environments benthic and coastal processes can convolute these relationships and careful direct measurement of the carbonate system (e.g. through alkalinity and dissolved inorganic carbon) is needed. To this end, we characterized seasonal and inter-annual carbonate dynamics from 2009 to 2014 at the Class III fixed climate station of La Parguera Marine Reserve, Puerto Rico. This high-temporal resolution chemical monitoring at Enrique reef facilitated an examination of what local processes might prove dominant, and how changes in community-scale metabolic performance might alter the dynamics of the carbonate system within the near-shore reef waters. Changes in pCO2,sw at Enrique reef are strongly associated with both community inorganic and organic carbon production processes. Enrique reef is a persistent source of CO2 to the atmosphere (1.8 mmol CO2 m-2 d-1, SE = 0.04) with at maximum peak during the summer and fall seasons. During the same time, carbonate mineral saturation state are generally lower along the fore-reef relative to offshore waters and dominantly controlled by short-term pCO2,sw dynamics primarily driven by benthic community organic matter productivity, temperature and salinity seasonal changes. At this time, high temperatures coincide with intense local rainfall and the influx of the low-salinity Amazon and Orinoco River plumes into the eastern Caribbean. One benefit of such measurements is that they provide data for a more accurate determination of TA-salinity relationships for our region and site-specific algorithms for first order derivations of other carbonate system parameters.
Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D.
2016-01-01
Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003–2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change. PMID:27606598
Baumann, Justin H; Townsend, Joseph E; Courtney, Travis A; Aichelman, Hannah E; Davies, Sarah W; Lima, Fernando P; Castillo, Karl D
2016-01-01
Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (lowTP), moderate (modTP), or high (highTP) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at highTP sites relative to lowTP and modTP sites, but these coral community traits did not differ significantly between lowTP and modTP sites. Analysis of coral life history strategies revealed that highTP sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while lowTP and modTP sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at highTP sites, medial at modTP sites, and lowest at lowTP sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at highTP sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change.
Bathymetric distribution of foraminifera in Jamaican reef environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.E.; Liddell, W.D.
1985-02-01
Recent foraminifera inhabiting Jamaican north-coast fringing reefs display variations in distributional patterns that are related to bathymetry and reef morphology. Sediment samples containing foraminifera were collected along a profile that traversed the back reef (depth 1-2 m), fore-reef terrace (3-15 m), fore-reef escarpment (15-27 m), fore-reef slope (30-55 m), and upper deep fore reef (70 m). Approximately 150 species distributed among 80 genera were identified from the samples. Preliminary analyses indicate that diversity values (S, H') are lowest on the fore-reef terrace (79, 3.0, respectively), increase similarly in back-reef and fore-reef escarpment and slope settings (93, 3.4), and are highestmore » on the deep fore reef (109, 3.7). Larger groupings (suborders) exhibit distinct bathymetric trends with miliolids occurring more commonly in back-reef (comprising 51% of the fauna) than in fore-reef (28%) zones, whereas agglutinated and planktonic species occur more commonly in deeper reef (> 15 m, 9% and 4%, respectively) than in shallower reef zones (< 15 m, 3%, and 0.5%, respectively). Among the more common species Amphistegina gibbosa (Rotolina) is much more abundant in fore-reef (3%) environments, and Sorites marginalis (Miliolina) occurs almost exclusively in the back reef, where it comprises 5.5% of the fauna. Q-mode cluster analysis, involving all species collected, enabled the delineation of back-reef, shallow fore-reef, and deeper fore-reef biofacies, also indicating the potential utility of foraminiferal distributions in detailed paleoenvironment interpretations of ancient reef settings.« less
Dambacher, Jeffrey M; Brewer, David T; Dennis, Darren M; Macintyre, Martha; Foale, Simon
2007-01-15
Inhabitants of Lihir Island, Papua New Guinea, have traditionally relied on reef fishing and rotational farming of slash-burn forest plots for a subsistence diet. However, a new gold mine has introduced a cash economy to the island's socioeconomic system and impacted the fringing coral reef through sedimentation from the near-shore dumping of mine wastes. Studies of the Lihirian people have documented changes in population size, local customs, health, education, and land use; studies of the reef have documented impacts to fish populations in mine affected sites. Indirect effects from these impacts are complex and indecipherable when viewed only from isolated studies. Here, we use qualitative modelling to synthesize the social and biological research programs in order to understand the interaction of the human and ecological systems. Initial modelling results appear to be consistent with differences in fish and macroalgae populations in sites with and without coral degradation due to sedimentation. A greater cash flow from mine expansion is predicted to increase the human population, the intensity of the artisanal fishery, and the rate of sewage production and land clearing. Modelling results are being used to guide ongoing research projects, such as monitoring fish populations and artisanal catch and patterns and intensity of land clearing.
NASA Astrophysics Data System (ADS)
Davis, K. A.; Reid, E. C.; Cohen, A. L.
2016-02-01
Internal waves propagating across the continental slope and shelf are transformed by the competing effects of nonlinear steepening and dispersive spreading, forming nonlinear internal waves (NLIWs) that can penetrate onto the shallow inner shelf, often appearing in the form of bottom-propagating nonlinear internal bores or boluses. NLIWs play a significant role in nearshore dynamics with baroclinic current amplitudes on the order of that of wind- and surface wave-driven flows and rapid temperature changes on the order of annual ranges. In June 2014 we used a Distributed Temperature Sensing (DTS) system to give a continuous cross-shelf view of nonlinear internal wave dynamics on the forereef of Dongsha Atoll, a coral reef in the northern South China Sea. A DTS system measures temperature continuously along the length of an optical fiber, resolving meter-to-kilometer spatial scales. This unique view of cross-shelf temperature structure made it possible to observe internal wave reflection, variable propagation speed across the shelf, bolus formation and dissipation. Additionally, we used the DTS data to track internal waves across the shallow fore reef and onto the reef flat and to quantify spatial patterns in temperature variability. Shoaling internal waves are an important process affecting physical variability and water properties on the reef.
Westneat, Mark W; Alfaro, Michael E; Wainwright, Peter C; Bellwood, David R; Grubich, Justin R; Fessler, Jennifer L; Clements, Kendall D; Smith, Lydia L
2005-01-01
The Labridae is one of the most structurally and functionally diversified fish families on coral and rocky reefs around the world, providing a compelling system for examination of evolutionary patterns of functional change. Labrid fishes have evolved a diverse array of skull forms for feeding on prey ranging from molluscs, crustaceans, plankton, detritus, algae, coral and other fishes. The species richness and diversity of feeding ecology in the Labridae make this group a marine analogue to the cichlid fishes. Despite the importance of labrids to coastal reef ecology, we lack evolutionary analysis of feeding biomechanics among labrids. Here, we combine a molecular phylogeny of the Labridae with the biomechanics of skull function to reveal a broad pattern of repeated convergence in labrid feeding systems. Mechanically fast jaw systems have evolved independently at least 14 times from ancestors with forceful jaws. A repeated phylogenetic pattern of functional divergence in local regions of the labrid tree produces an emergent family-wide pattern of global convergence in jaw function. Divergence of close relatives, convergence among higher clades and several unusual ‘breakthroughs’ in skull function characterize the evolution of functional complexity in one of the most diverse groups of reef fishes. PMID:16024356
Reef flattening effects on total richness and species responses in the Caribbean.
Newman, Steven P; Meesters, Erik H; Dryden, Charlie S; Williams, Stacey M; Sanchez, Cristina; Mumby, Peter J; Polunin, Nicholas V C
2015-11-01
There has been ongoing flattening of Caribbean coral reefs with the loss of habitat having severe implications for these systems. Complexity and its structural components are important to fish species richness and community composition, but little is known about its role for other taxa or species-specific responses. This study reveals the importance of reef habitat complexity and structural components to different taxa of macrofauna, total species richness, and individual coral and fish species in the Caribbean. Species presence and richness of different taxa were visually quantified in one hundred 25-m(2) plots in three marine reserves in the Caribbean. Sampling was evenly distributed across five levels of visually estimated reef complexity, with five structural components also recorded: the number of corals, number of large corals, slope angle, maximum sponge and maximum octocoral height. Taking advantage of natural heterogeneity in structural complexity within a particular coral reef habitat (Orbicella reefs) and discrete environmental envelope, thus minimizing other sources of variability, the relative importance of reef complexity and structural components was quantified for different taxa and individual fish and coral species on Caribbean coral reefs using boosted regression trees (BRTs). Boosted regression tree models performed very well when explaining variability in total (82·3%), coral (80·6%) and fish species richness (77·3%), for which the greatest declines in richness occurred below intermediate reef complexity levels. Complexity accounted for very little of the variability in octocorals, sponges, arthropods, annelids or anemones. BRTs revealed species-specific variability and importance for reef complexity and structural components. Coral and fish species occupancy generally declined at low complexity levels, with the exception of two coral species (Pseudodiploria strigosa and Porites divaricata) and four fish species (Halichoeres bivittatus, H. maculipinna, Malacoctenus triangulatus and Stegastes partitus) more common at lower reef complexity levels. A significant interaction between country and reef complexity revealed a non-additive decline in species richness in areas of low complexity and the reserve in Puerto Rico. Flattening of Caribbean coral reefs will result in substantial species losses, with few winners. Individual structural components have considerable value to different species, and their loss may have profound impacts on population responses of coral and fish due to identity effects of key species, which underpin population richness and resilience and may affect essential ecosystem processes and services. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Guinotte, J.M.; Buddemeier, R.W.; Kleypas, J.A.
2003-01-01
Marginal reef habitats are regarded as regions where coral reefs and coral communities reflect the effects of steady-state or long-term average environmental limitations. We used classifications based on this concept with predicted time-variant conditions of future climate to develop a scenario for the evolution of future marginality. Model results based on a conservative scenario of atmospheric CO2 increase were used to examine changes in sea surface temperature and aragonite saturation state over the Pacific Ocean basin until 2069. Results of the projections indicated that essentially all reef locations are likely to become marginal with respect to aragonite saturation state. Significant areas, including some with the highest biodiversity, are expected to experience high-temperature regimes that may be marginal, and additional areas will enter the borderline high temperature range that have experienced significant ENSO-related bleaching in the recent past. The positive effects of warming in areas that are presently marginal in terms of low temperature were limited. Conditions of the late 21st century do not lie outside the ranges in which present-day marginal reef systems occur. Adaptive and acclimative capabilities of organisms and communities will be critical in determining the future of coral reef ecosystems.
Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Ruppert, Jonathan L. W.; Brooks, Edward J.
2017-01-01
Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72–91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches. PMID:28386422
Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu
2016-09-01
High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales.
Shipley, Oliver N; Howey, Lucy A; Tolentino, Emily R; Jordan, Lance K B; Ruppert, Jonathan L W; Brooks, Edward J
2017-02-01
Despite the ecological and economic importance of the Caribbean reef shark ( Carcharhinus perezi ), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.
Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs
Kittinger, John N.; Pandolfi, John M.; Blodgett, Jonathan H.; Hunt, Terry L.; Jiang, Hong; Maly, Kepā; McClenachan, Loren E.; Schultz, Jennifer K.; Wilcox, Bruce A.
2011-01-01
Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts. PMID:21991311
The recovery of coral genetic diversity in the Sunda Strait following the 1883 eruption of Krakatau
NASA Astrophysics Data System (ADS)
Starger, C. J.; Barber, P. H.; Ambariyanto; Baker, A. C.
2010-09-01
Surveys of microsatellite variation show that genetic diversity has largely recovered in two reef-building corals, Pocillopora damicornis and Seriatopora hystrix (Scleractinia: Pocilloporidae), on reefs which were decimated by the eruption of the volcano Krakatau in 1883. Assignment methods and gene flow estimates indicate that the recolonization of Krakatau occurred mainly from the closest upstream reef system, Pulau Seribu, but that larval input from other regions has also occurred. This pattern is clearer in S. hystrix, which is traditionally the more dispersal-limited species. Despite these observed patterns of larval dispersal, self-recruitment appears to now be the most important factor in supplying larvae to coral populations in Krakatau. This suggests that the colonization of devastated reefs can occur quickly through larval dispersal; however, their survival requires local sources of larvae for self-recruitment. This research supports the observation that the recovery of genetic diversity in coral reef animals can occur on the order of decades and centuries rather than millennia. Conservation measures aimed at sustaining coral reef populations in Krakatau and elsewhere should include both the protection of upstream source populations for larval replenishment should disaster occur as well as the protection of large adult colonies to serve as local larval sources.
Powell, Abigail; Smith, David J.; Hepburn, Leanne J.; Jones, Timothy; Berman, Jade; Jompa, Jamaluddin; Bell, James J.
2014-01-01
Although coral reef health across the globe is declining as a result of anthropogenic impacts, relatively little is known of how environmental variability influences reef organisms other than corals and fish. Sponges are an important component of coral reef fauna that perform many important functional roles and changes in their abundance and diversity as a result of environmental change has the potential to affect overall reef ecosystem functioning. In this study, we examined patterns of sponge biodiversity and abundance across a range of environments to assess the potential key drivers of differences in benthic community structure. We found that sponge assemblages were significantly different across the study sites, but were dominated by one species Lamellodysidea herbacea (42% of all sponges patches recorded) and that the differential rate of sediment deposition was the most important variable driving differences in abundance patterns. Lamellodysidea herbacea abundance was positively associated with sedimentation rates, while total sponge abundance excluding Lamellodysidea herbacea was negatively associated with rates of sedimentation. Overall variation in sponge assemblage composition was correlated with a number of variables although each variable explained only a small amount of the overall variation. Although sponge abundance remained similar across environments, diversity was negatively affected by sedimentation, with the most sedimented sites being dominated by a single sponge species. Our study shows how some sponge species are able to tolerate high levels of sediment and that any transition of coral reefs to more sedimented states may result in a shift to a low diversity sponge dominated system, which is likely to have subsequent effects on ecosystem functioning. PMID:24475041
Secondary calcification and dissolution respond differently to future ocean conditions
NASA Astrophysics Data System (ADS)
Silbiger, N. J.; Donahue, M. J.
2015-01-01
Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP 8.5 to examine the combined effects of rising ocean acidity and sea surface temperature (SST) on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2 and temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest temperature-pCO2 condition. In contrast, dissolution increased linearly with temperature-pCO2 . The rubble community switched from net calcification to net dissolution at +271 μatm pCO2 and 0.75 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that (i) dissolution may be more sensitive to climate change than calcification and (ii) that calcification and dissolution have different functional responses to climate stressors; this highlights the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.
Secondary calcification and dissolution respond differently to future ocean conditions
NASA Astrophysics Data System (ADS)
Silbiger, N. J.; Donahue, M. J.
2014-09-01
Climate change threatens both the accretion and erosion processes that sustain coral reefs. Secondary calcification, bioerosion, and reef dissolution are integral to the structural complexity and long-term persistence of coral reefs, yet these processes have received less research attention than reef accretion by corals. In this study, we use climate scenarios from RCP8.5 to examine the combined effects of rising ocean acidity and SST on both secondary calcification and dissolution rates of a natural coral rubble community using a flow-through aquarium system. We found that secondary reef calcification and dissolution responded differently to the combined effect of pCO2 and temperature. Calcification had a non-linear response to the combined effect of pCO2-temperature: the highest calcification rate occurred slightly above ambient conditions and the lowest calcification rate was in the highest pCO2-temperature condition. In contrast, dissolution increased linearly with pCO2-temperature. The rubble community switched from net calcification to net dissolution at +272 μatm pCO2 and 0.84 °C above ambient conditions, suggesting that rubble reefs may shift from net calcification to net dissolution before the end of the century. Our results indicate that dissolution may be more sensitive to climate change than calcification, and that calcification and dissolution have different functional responses to climate stressors, highlighting the need to study the effects of climate stressors on both calcification and dissolution to predict future changes in coral reefs.
Smith, L.W.; Birkeland, C.
2007-01-01
Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events. ?? 2006 Elsevier B.V. All rights reserved.
[A review of the role and function of microbes in coral reef ecosystem].
Zhou, Jin; Jin, Hui; Cai, Zhong-Hua
2014-03-01
Coral reef is consisted with several kinds of reef-associated organisms, including coral, fish, benthos, algae and microbes, which is an important marine ecosystem. Coral reef lives in the oligotrophic environment, has very highly primary productivity and net productivity, and is called "tropical rain forest in ocean". In corals, diverse microorganisms exert a significant influence on biogeochemical and ecological processes, including food webs, organism life cycles, and nutrient cycling. With the development of molecular biology, the role of microorganisms in a coral system is becoming more outstanding. In this article, we reviewed current understanding on 1) the onset of coral-bacterial associations; 2) the characteristics of microbes in coral (specificity, plasticity and co-evolution) ; 3) the role and signal regulation of microbes in the health and disease of coral; and 4) the response mechanism of microbes for global climatic change and consequent effects, such as temperature rise, ocean acidification and eutrophication. The aims of this article were to summarize the latest theories and achievements, clear the mechanism of microbial ecology in coral reefs and provide a theoretical reference for better protection and maintaining the coral's biodiversity.
Sawall, Yvonne; Jompa, Jamaluddin; Litaay, Magdalena; Maddusila, Andi; Richter, Claudio
2013-09-15
Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m(-2) yr(-1) and was strongest in the dry season (July-October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Strategic Framework for Responding to Coral Bleaching Events in a Changing Climate
NASA Astrophysics Data System (ADS)
Maynard, J. A.; Johnson, J. E.; Marshall, P. A.; Eakin, C. M.; Goby, G.; Schuttenberg, H.; Spillman, C. M.
2009-07-01
The frequency and severity of mass coral bleaching events are predicted to increase as sea temperatures continue to warm under a global regime of rising ocean temperatures. Bleaching events can be disastrous for coral reef ecosystems and, given the number of other stressors to reefs that result from human activities, there is widespread concern about their future. This article provides a strategic framework from the Great Barrier Reef to prepare for and respond to mass bleaching events. The framework presented has two main inter-related components: an early warning system and assessment and monitoring. Both include the need to proactively and consistently communicate information on environmental conditions and the level of bleaching severity to senior decision-makers, stakeholders, and the public. Managers, being the most timely and credible source of information on bleaching events, can facilitate the implementation of strategies that can give reefs the best chance to recover from bleaching and to withstand future disturbances. The proposed framework is readily transferable to other coral reef regions, and can easily be adapted by managers to local financial, technical, and human resources.
Crustal subsidence rate off Hawaii determined from sup 234 U/ sup 238 U ages of drowned coral reefs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, K.R.; Szabo, B.J.; Simmons, K.R.
1991-02-01
A series of submerged coral reefs off northwestern Hawaii was formed during (largely glacial) intervals when the rate of local sea-level rise was less than the maximum upward growth rate of the reefs. Mass-spectrometric {sup 234}U/{sup 238}U ages for samples from six such reefs range from 17 to 475 ka and indicate that this part of the Hawaiian Ridge has been subsiding at a roughly uniform rate of 2.6 mm/yr for the past 475 ka. The {sup 234}U/{sup 238}U ages are in general agreement with model ages of reef drowning (based on estimates of paleo-sea-level stands derived from oxygen-isotope ratiosmore » of deep-sea sediments), but there are disagreements in detail. The high attainable precision ({plus minus}10 ka or better on samples younger than {approximately}800 ka), large applicable age range, relative robustness against open-system behavior, and ease of analysis for this technique hold great promise for future applications of dating of 50-1,000 ka coral.« less
NASA Astrophysics Data System (ADS)
Debiasse, M. B.; Richards, V. P.; Shivji, M. S.
2010-03-01
The genetic population structure of the common branching vase sponge, Callyspongia vaginalis, was determined along the entire length (465 km) of the Florida reef system from Palm Beach to the Dry Tortugas based on sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene. Populations of C. vaginalis were highly structured (overall ΦST = 0.33), in some cases over distances as small as tens of kilometers. However, nonsignificant pairwise ΦST values were also found between a few relatively distant sampling sites suggesting that some long distance larval dispersal may occur via ocean currents or transport in sponge fragments along continuous, shallow coastlines. Indeed, sufficient gene flow appears to occur along the Florida reef tract to obscure a signal of isolation by distance, but not to homogenize COI haplotype frequencies. The strong genetic differentiation among most of the sampling locations suggests that recruitment in this species is largely local source-driven, pointing to the importance of further elucidating general connectivity patterns along the Florida reef tract to guide the spatial scale of management efforts.
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.
Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C
2008-08-27
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
Pacific Circulation and the Resilience of its Equatorial Reefs
NASA Astrophysics Data System (ADS)
Cohen, A. L.; Drenkard, E.
2012-12-01
High rates of calcification by tropical reef-building corals are paramount to the maintenance of healthy reefs. Investigations of the impact of ocean acidification in both laboratory and field studies demonstrate unequivocally the dependence of coral and coral reef calcification on the carbonate ion concentration of seawater, a dependence predicted by fundamental laws of physical chemistry. Nevertheless, results from a new generation of experiments that exploit the biology of coral calcification, suggest that effects of ocean acidification can - in some instances - be mitigated with simultaneous manipulation of multiple factors. These laboratory results imply that coral reefs in regions projected to experience changes in, for example, nutrient delivery, light and flow, in addition to pH and carbonate ion concentration, may be more resilient (or vulnerable) to the effects of ocean acidification alone. If demonstrated to be true, these observations have profound implications for the conservation and management of coral reefs in the 21st century. We quantified spatial and temporal variability in rates of calcification of a dominant Indo-Pacific reef building coral across sites where changes in ocean circulation patterns drive variability in multiple physical, chemical and biological parameters. Such changes are occurring against a background of variability and trends in carbonate system chemistry. Our field data provide support for hypotheses based on laboratory observations, and show that impacts of ocean acidification on coral calcification can be partially and in some cases, fully, offset by simultaneous changes in multiple factors. Our results imply that projected changes in oceanic and atmospheric circulation patterns, driven by global warming, must be considered when predicting coral reef resilience, or vulnerability, to 21st century ocean acidification.
NASA Astrophysics Data System (ADS)
Fabricius, Katharina E.; De'ath, Glenn; Humphrey, Craig; Zagorskis, Irena; Schaffelke, Britta
2013-01-01
Seawater turbidity is a fundamental driver of the ecology of coastal marine systems, and is widely used as indicator for environmental reporting. However, the time scales and processes leading to changes in turbidity in tropical coastal waters remain poorly understood. This study investigates the main determinants of inshore turbidity in four inshore regions along ˜1000 km of the Australian Great Barrier Reef, based on ˜3 years of almost continuous in situ turbidity logger data on 14 reefs. Generalized additive mixed models were used to predict spatial and temporal variation in weekly mean turbidity based on variation in resuspension and runoff conditions. At any given wave height, wave period and tidal range, turbidity was significantly affected by river flow and rainfall. Averaged across all reefs, turbidity was 13% lower (range: 5-37%) in weeks with low compared with high rainfall and river flows. Additionally, turbidity was on average 43% lower 250 days into the dry season than at the start of the dry season on reefs with long-term mean turbidity >1.1 NTU. The data suggest the time scale of winnowing or consolidation of newly imported materials in this zone is months to years. In contrast, turbidity returned to low levels within weeks after river flows and rainfall on reefs with long-term mean turbidity of <1.1 NTU. Turbidity was also up to 10-fold higher on reefs near compared to away from river mouths, suggesting inter-annual accumulation of fine resuspendible sediments. The study suggests that a reduction in the river loads of fine sediments and nutrients through improved land management should lead to measurably improved inshore water clarity in the most turbid parts of the GBR.
Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques
NASA Astrophysics Data System (ADS)
Casella, Elisa; Collin, Antoine; Harris, Daniel; Ferse, Sebastian; Bejarano, Sonia; Parravicini, Valeriano; Hench, James L.; Rovere, Alessio
2017-03-01
We propose a novel technique to measure the small-scale three-dimensional features of a shallow-water coral reef using a small drone equipped with a consumer-grade camera, a handheld GPS and structure from motion (SfM) algorithms. We used a GoPro HERO4 with a modified lens mounted on a DJI Phantom 2 drone (maximum total take-off weight <2 kg) to perform a 10 min flight and collect 306 aerial images with an overlap equal or greater than 90%. We mapped an area of 8380 m2, obtaining as output an ortho-rectified aerial photomosaic and a bathymetric digital elevation model (DEM) with a resolution of 0.78 and 1.56 cm pixel-1, respectively. Through comparison with airborne LiDAR data for the same area, we verified that the location of the ortho-rectified aerial photomosaic is accurate within 1.4 m. The bathymetric difference between our DEM and the LiDAR dataset is -0.016 ± 0.45 m (1σ). Our results show that it is possible, in conditions of calm waters, low winds and minimal sun glint, to deploy consumer-grade drones as a relatively low-cost and rapid survey technique to produce multispectral and bathymetric data on shallow-water coral reefs. We discuss the utility of such data to monitor temporal changes in topographic complexity of reefs and associated biological processes.
Carbonate sedimentology of Seribu Islands patch reef complex: a literature review
NASA Astrophysics Data System (ADS)
Utami, D. A.; Hakim, A. R.
2018-02-01
Many oil and gas reservoirs in the world are reserved in fossil carbonate sediment. Knowledge of modern carbonate sedimentology is important for a better understanding of ancient carbonate sedimentation. Equatorial coral reefs comprise almost half of the world coral reef production, and yet their dynamics, distributions, and cycles are still not well understood. Contrary to their subtropical counterpart, South East Asian carbonate system is known to be strongly influenced by the combination of oceanographic and climatic conditions. Hence carbonate sediments in the tropics have a distinct depositional system, and ought to be treated differently since common distribution models were developed from the (sub-tropical) Atlantic and Pacific regions. This paper systematically summarizes carbonate sediment studies in Seribu Islands and its dominant oceanographic configuration to provide insights and a sense of research direction in the future.
Postglacial Fringing-Reef to Barrier-Reef conversion on Tahiti links Darwin's reef types
NASA Astrophysics Data System (ADS)
Blanchon, Paul; Granados-Corea, Marian; Abbey, Elizabeth; Braga, Juan C.; Braithwaite, Colin; Kennedy, David M.; Spencer, Tom; Webster, Jody M.; Woodroffe, Colin D.
2014-05-01
In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.
Use of an UROV to develop 3-D optical models of submarine environments
NASA Astrophysics Data System (ADS)
Null, W. D.; Landry, B. J.
2017-12-01
The ability to rapidly obtain high-fidelity bathymetry is crucial for a broad range of engineering, scientific, and defense applications ranging from bridge scour, bedform morphodynamics, and coral reef health to unexploded ordnance detection and monitoring. The present work introduces the use of an Underwater Remotely Operated Vehicle (UROV) to develop 3-D optical models of submarine environments. The UROV used a Raspberry Pi camera mounted to a small servo which allowed for pitch control. Prior to video data collection, in situ camera calibration was conducted with the system. Multiple image frames were extracted from the underwater video for 3D reconstruction using Structure from Motion (SFM). This system provides a simple and cost effective solution to obtaining detailed bathymetry in optically clear submarine environments.
NASA Astrophysics Data System (ADS)
Drupp, P. S.; De Carlo, E. H.; Guidry, M.; Mackenzie, F. T.
2016-02-01
Porewater was collected from highly permeable, carbonate-rich, sandy sediments at two locations, CRIMP-2 and Ala Wai, on coral reefs on Oahu, Hawaii. Samples were collected at the sediment-water interface and from porewater wells installed at sediment depths of 2, 4, 6, 8, 12, 16, 20, 30, 40, and 60 cm. Total alkalinity and dissolved inorganic carbon were enriched, relative to the overlying water column, and ratios of TA:DIC at the two sites (0.80 and 0.93) suggest that aerobic respiration and sulfate reduction - both coupled with carbonate mineral dissolution - in the oxic and anoxic layers, respectively, are the major controls on the biogeochemistry of the porewater-sediment system. The porewater was approaching thermodynamic saturation with respect to aragonite and was found to be undersaturated with respect to all phases of magnesian calcite containing greater than 12 mol% MgCO3. In addition to microbial controls on porewater diagenesis, transient physical events in the water column, such as swells and changing bottom current speeds, appear to exert a strong influence on the porewater chemistry due to the highly permeable and porous nature of the sediments. Profiles collected before and after swell events at each location show an apparent flushing of the porewater system, replacing low pH, high DIC interstitial waters with seawater from the overlying water column. Using this data, along with data collected in numerous prior studies, a CO2-carbonic acid system biogeochemical box model of the barrier reef flat of Kaneohe Bay, Oahu was developed in order to determine how increasing DIC of the open ocean source waters due to rising anthropogenic CO2 emissions and ocean acidification affects the CaCO3 budget of coral reef systems. This 17-box model was forced using the Representative Concentration Pathway (RCP) scenarios that predict CO2 atmospheric concentrations and temperature anomalies out to 2100. Model outputs predict a decrease in net ecosystem carbonate production, although the reef does not reach a state of net erosion by 2100. This dual approach allows for a better understanding of how sediment porewaters, sediments, and reef frameworks will respond to anthropogenic changes over the next century and provides valuable insight into the threshold when coral reefs could switch from net accretion to net erosion.
Manikandan, B; Ravindran, J; Shrinivaasu, S; Marimuthu, N; Paramasivam, K
2014-10-01
Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.
Analyzing the Impacts of Land Use Land Change on Near Shore Coastal Habitat
NASA Astrophysics Data System (ADS)
Lehman, R. D.; Ta, E.; Boyle, C.; Alwood, B.
2017-12-01
The natural beauty of the United States Virgin Islands (USVI) has continued to attract visitors and residents, which overtime has increased human development and impact. The resulting land use change increases sediment loads and the flow of pollutants into surrounding nearshore environments such as coral reefs, mangroves, and seagrass beds. Compounded with regional climate-related processes such as rising ocean temperatures and acidification, future land-use change poses a formidable threat to coral reefs and other susceptible marine environments. Without a healthy environment, the USVI economy also becomes endangered because it is mainly supported by tourism and recreation. Using Google Earth Engine, we created a tool to composite yearly Landsat 5 TM, Landsat 8 OLI/TIRS and Sentinel-2 MSI images identify changes from 1985 to present day. Using these land cover change maps we then analyzed trends at a watershed scale using hydrological data. We found there is a spatial relationship between development intensity and the health of coral reefs. Our work supports the existing knowledge of the link between land use and coastal ecosystem health.
NASA Astrophysics Data System (ADS)
Manessa, Masita Dwi Mandini; Kanno, Ariyo; Sagawa, Tatsuyuki; Sekine, Masahiko; Nurdin, Nurjannah
2018-01-01
Lyzenga's multispectral bathymetry formula has attracted considerable interest due to its simplicity. However, there has been little discussion of the effect that variation in optical conditions and bottom types-which commonly appears in coral reef environments-has on this formula's results. The present paper evaluates Lyzenga's multispectral bathymetry formula for a variety of optical conditions and bottom types. A noiseless dataset of above-water remote sensing reflectance from WorldView-2 images over Case-1 shallow coral reef water is simulated using a radiative transfer model. The simulation-based assessment shows that Lyzenga's formula performs robustly, with adequate generality and good accuracy, under a range of conditions. As expected, the influence of bottom type on depth estimation accuracy is far greater than the influence of other optical parameters, i.e., chlorophyll-a concentration and solar zenith angle. Further, based on the simulation dataset, Lyzenga's formula estimates depth when the bottom type is unknown almost as accurately as when the bottom type is known. This study provides a better understanding of Lyzenga's multispectral bathymetry formula under various optical conditions and bottom types.
NASA Astrophysics Data System (ADS)
Hall, E. R.; Vaughan, D.; Crosby, M. P.
2011-12-01
Ocean acidification, a consequence of anthropogenic CO2 production due to fossil fuel combustion, deforestation, and cement production, has been referred to as "the other CO2 problem" and is receiving much attention in marine science and public policy communities. Critical needs that have been identified by top climate change and marine scientists include using projected pCO2 (partial pressure of CO2 in seawater) levels in manipulative experiments to determine physiological indices of ecologically important species, such as corals. Coral reefs were one of the first ecosystems to be documented as susceptible to ocean acidification. The Florida Keys reef system has already experienced a long-term deterioration, resulting in increased calls for large scale coral reef ecosystem restoration of these critical resources. It has also been speculated that this decline in reef ecosystem health may be exacerbated by increasing atmospheric CO2 levels with resulting ocean acidification. Therefore, reef resilience to ocean acidification and the potential for successful restoration of these systems under forecasted long-term modified pH conditions in the Florida Keys is of great concern. Many studies for testing effects of ocean acidification on corals have already been established and tested. However, many employ pH modification experimental designs that include addition of acid to seawater which may not mimic conditions of climate change induced ocean acidification. It would be beneficial to develop and maintain an ocean acidification testing system more representative of climate change induced changes, and specific to organisms and ecosystems indigenous to the Florida Keys reef tract. The Mote Marine Laboratory research facility in Summerland Key, FL has an established deep well from which its supply of seawater is obtained. This unique source of seawater is 80 feet deep, "fossil" marine water. It is pumped from the on-site aquifer aerated to reduce H2S and ammonia, and passed through filters for biofiltration, and clarification. The resulting water has a pH that is relatively acidic (pH around 7.6, pCO2 ranging from 200 to 2000 μatm). However, further aeration will adjust the pH of the water, by driving off more CO2, yielding pH levels at varying levels between 7.6 and present day values (>8.0-8.4). We are currently testing methods for utilizing this unique seawater system as the foundation for manipulative ocean acidification studies with Florida Keys corals and other reef ecosystem species in both flow-through and large mesocosm-based designs. Advance knowledge of potential climate-driven trends in coral growth and health will permit improved modeling for prediction and more effectively guide policy decisions for how financial resources should be directed to protection and restoration of coral reef ecosystems. Developing such longterm research infrastructure at the existing Mote Marine Laboratory Summerland Key facility will provide an optimum global research center for examining and modeling effects of ocean acidification on corals as well as other important estuarine and marine species.
Parasite infestation increases on coral reefs without cleaner fish
NASA Astrophysics Data System (ADS)
Grutter, A. S.; De Brauwer, M.; Bshary, R.; Cheney, K. L.; Cribb, T. H.; Madin, E. M. P.; McClure, E. C.; Meekan, M. G.; Sun, D.; Warner, R. R.; Werminghausen, J.; Sikkel, P. C.
2018-03-01
Mutualisms are pivotal in shaping ecological communities. Iconic images of cleaner fish entering the mouths of predatory fish clients to remove ectoparasites epitomize their mutual benefit. Experimental manipulations of cleaner wrasse reveal declines in fish size and growth, and population abundance and diversity of client fishes in the absence of cleaner wrasse. Fishes grow more slowly and are less abundant and diverse on reefs without cleaner wrasse, both for larger species that are regularly cleaned and have high ectoparasite loads ("attractive species"), and for those smaller species that are rarely cleaned and are rarely infested with parasites ("unattractive species"). We therefore considered whether these previously observed declines in individual and population parameters on reefs without cleaners were related to increased ectoparasite infestation using an attractive species ( Hemigymnus melapterus, Labridae) and an unattractive species ( Pomacentrus amboinensis, Pomacentridae). Traps with these fish as a form of bait were deployed to sample blood-sucking gnathiid ectoparasites (Gnathiidae: Isopoda) on reefs from which cleaners ( Labroides dimidiatus, Labridae) have been removed for 13 yr. Cleaner fish could not enter traps to access the clients/hosts, but gnathiids could enter the traps to infest hosts; thus, this method sampled the indirect effect of cleaners on gnathiid infestation of fish. Infestation was higher on reefs without cleaners than on those with them. The effect was only detected during the daytime when cleaners are active and only on the attractive species ( H. melapterus). Thus, cleaner presence indirectly reduced fish exposure to parasites in a species that is highly susceptible to parasites, but not in one that is rarely infested with parasites. This suggests that cleaner presence indirectly reduces exposure of a common fish species to harmful parasites, which may explain some observed benefits in fishes at this location.
NASA Astrophysics Data System (ADS)
Tribollet, A.; Golubic, S.
2005-11-01
Patterns of bioerosion of dead corals and rubbles on the northern Great Barrier Reef were studied by using blocks of the massive coral Porites experimentally exposed at six sites, located on an inshore-offshore profile, for 1 year and 3 years. Rates of microbioerosion by microborers, grazing by fish, and macrobioerosion by filter-feeding organisms were simultaneously evaluated using image analysis. Microbioerosion, grazing, and total bioerosion were lower at reefs near the Queensland coast than at the edge of the continental shelf (1.81 kg m-2 and 6.07 kg m-2 after 3 years of exposure respectively, for total bioerosion). The opposite pattern was observed for macrobioerosion. Bioaccretion was negligible. These patterns were evident after 1 year of exposure, and became enhanced after 3 years. Microborers were established and were the main agent of bioerosion after 1 year of exposure, and as the principal support for grazing, continued to be the main cause of carbonate loss after 3 years. Full grazing activity and establishment of a mature community of macroborers required more than 1 year of exposure. After 1 year, macroborers and grazers were the second most important agents of bioerosion on both inshore and offshore reefs. However, after 3 years, grazers became the main agents at all sites except at the inshore sites, where macroborers were the principal agents. Because the contribution of microborers, grazers, and macroborers to bioerosion varies in space and time, we suggest that the estimation of reef carbonate budgets need to take in account the activities of all bioerosion agents.
Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change
NASA Astrophysics Data System (ADS)
Kikuchi, R. K.; Elliff, C. I.
2014-12-01
Coral reefs provide many ecosystem services of which coastal populations are especially dependent upon, both in cases of extreme events and in daily life. However, adaptation to climate change is still relatively unknown territory regarding the ecosystem services provided by coastal environments, such as coral reefs. Management strategies usually consider climate change as a distant issue and rarely include ecosystem services in decision-making. Coral reefs are among the most vulnerable environments to climate change, considering the impact that increased ocean temperature and acidity have on the organisms that compose this ecosystem. If no actions are taken, the most likely scenario to occur will be of extreme decline in the ecosystem services provided by coral reefs. Loss of biodiversity due to the pressures of ocean warming and acidification will lead to increased price of seafood products, negative impact on food security, and ecological imbalances. Also, sea-level rise and fragile structures due to carbonate dissolution will increase vulnerability to storms, which can lead to shoreline erosion and ultimately threaten coastal communities. Both these conditions will undoubtedly affect recreation and tourism, which are often the most important use values in the case of coral reef systems. Adaptation strategies to climate change must take on an ecosystem-based approach with continuous monitoring programs, so that multiple ecosystem services are considered and not only retrospective trends are analyzed. Brazilian coral reefs have been monitored on a regular basis since 2000 and, considering that these marginal coral reefs of the eastern Atlantic are naturally under stressful conditions (e.g. high sedimentation rates), inshore reefs of Brazil, such as those in Tinharé-Boipeba, have shown lower vitality rates due to greater impacts from the proximity to the coastal area (e.g. pollution, overfishing, sediment run-off). This chronic negative impact must be addressed to increase resilience and guarantee the adaptation of this ecosystem to climate change. Thus, considering that the majority of the marine ecosystem services we benefit from are provided from coastal habitats, of which coral reefs play an important role, the challenge at hand is in fact the interaction between local factors and climate change
NASA Astrophysics Data System (ADS)
El-Askary, H. M.; Idris, N.; Johnson, S. H.; Qurban, M. A. B.
2014-12-01
Many factors can severely affect the growth and abundance of the marine ecosystems. For example, due to anthropogenic and natural forces, benthic habitats including but not limited to mangroves, sea grass, salt marshes, macro algae, and coral reefs have been experiencing high levels of declination. Furthermore, aerosols and their propellants are suspected contributors to marine habitat degradation. Although several studies reveal that the Arabian Gulf habitats have suffered deleterious impacts after the Gulf War and the following six month off-shore oil spill, limited research exists to track the changes in benthic habitats over the past three decades using remote sensing. Document changes in costal habitats over the past thirty years were better observed with the use of multispectral remote sensors such as Landsat-5, Landsat-7, and Landsat8 (OLI). Change detection analysis was performed on the three Landsat images (Landsat-5 for the 1987 image, Landsat-7 for the 2000, and Landsat-8 for the 2013 image). The images were then modified, masked off from open water and land. An unsupervised classification was performed which cluster similar classes together. The supervised classification displayed the seven following classes: coral reefs, macro algae, sea grass, salt marshes, mangroves, water, and land. Compared to 1987 image to 2000 scene, there was a noticeable increase in the extensiveness of salt marsh and macro algae habitats. However, a significant decrease in salt marsh habitats were apparent in the 2013 scene.
Human deforestation outweighs future climate change impacts of sedimentation on coral reefs
Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E.
2013-01-01
Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar’s major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs. PMID:23736941
Persistence of coral assemblages at East and West Flower Garden Banks, Gulf of Mexico
NASA Astrophysics Data System (ADS)
Johnston, Michelle A.; Embesi, John A.; Eckert, Ryan J.; Nuttall, Marissa F.; Hickerson, Emma L.; Schmahl, George P.
2016-09-01
Since 1989 a federally supported long-term coral reef monitoring program has focused on two study sites atop East and West Flower Garden Banks in the northwestern Gulf of Mexico. We examined 25 yr of benthic cover data to provide a multi-decadal baseline and trend analysis of the community structure for this coral reef system. Despite global coral reef decline in recent decades, mean coral cover at East and West Flower Garden Banks was above 50% for the combined 25 yr of continuous monitoring, and represented a stable coral community. However, mean macroalgal cover increased significantly between 1998 and 1999, rising from approximately 3 to 20%, and reaching a maximum above 30% in 2012. In contrast to many other shallow water reefs in the Caribbean region, increases in mean macroalgal cover have not been concomitant with coral cover decline at the Flower Garden Banks.
Human deforestation outweighs future climate change impacts of sedimentation on coral reefs.
Maina, Joseph; de Moel, Hans; Zinke, Jens; Madin, Joshua; McClanahan, Tim; Vermaat, Jan E
2013-01-01
Near-shore coral reef systems are experiencing increased sediment supply due to conversion of forests to other land uses. Counteracting increased sediment loads requires an understanding of the relationship between forest cover and sediment supply, and how this relationship might change in the future. Here we study this relationship by simulating river flow and sediment supply in four watersheds that are adjacent to Madagascar's major coral reef ecosystems for a range of future climate change projections and land-use change scenarios. We show that by 2090, all four watersheds are predicted to experience temperature increases and/or precipitation declines that, when combined, result in decreases in river flow and sediment load. However, these climate change-driven declines are outweighed by the impact of deforestation. Consequently, our analyses suggest that regional land-use management is more important than mediating climate change for influencing sedimentation of Malagasy coral reefs.
Chemically cued suppression of coral reef resilience: Where is the tipping point?
NASA Astrophysics Data System (ADS)
Brooker, Rohan M.; Hay, Mark E.; Dixson, Danielle L.
2016-12-01
Coral reefs worldwide are shifting from high-diversity, coral-dominated communities to low-diversity systems dominated by seaweeds. This shift can impact essential recovery processes such as larval recruitment and ecosystem resilience. Recent evidence suggests that chemical cues from certain corals attract, and from certain seaweeds suppress, recruitment of juvenile fishes, with loss of coral cover and increases in seaweed cover creating negative feedbacks that prevent reef recovery and sustain seaweed dominance. Unfortunately, the level of seaweed increase and coral decline that creates this chemically cued tipping point remains unknown, depriving managers of data-based targets to prevent damaging feedbacks. We conducted flume and field assays that suggest juvenile fishes sense and respond to cues produced by low levels of seaweed cover. However, the herbivore species we tested was more tolerant of degraded reef cues than non-herbivores, possibly providing some degree of resilience if these fishes recruit, consume macroalgae, and diminish negative cues.
Hysteresis in coral reefs under macroalgal toxicity and overfishing.
Bhattacharyya, Joydeb; Pal, Samares
2015-03-01
Macroalgae and corals compete for the available space in coral reef ecosystems.While herbivorous reef fish play a beneficial role in decreasing the growth of macroalgae, macroalgal toxicity and overfishing of herbivores leads to proliferation of macroalgae. The abundance of macroalgae changes the community structure towards a macroalgae-dominated reef ecosystem. We investigate coral-macroalgal phase shifts by means of a continuous time model in a food chain. Conditions for local asymptotic stability of steady states are derived. It is observed that in the presence of macroalgal toxicity and overfishing, the system exhibits hysteresis through saddle-node bifurcation and transcritical bifurcation. We examine the effects of time lags in the liberation of toxins by macroalgae and the recovery of algal turf in response to grazing of herbivores on macroalgae by performing equilibrium and stability analyses of delay-differential forms of the ODE model. Computer simulations have been carried out to illustrate the different analytical results.
Restrepo, Juan D; Park, Edward; Aquino, Samia; Latrubesse, Edgardo M
2016-05-15
Politicians do not acknowledge the devastating impacts riverine sediments can have on healthy coral reef ecosystems during environmental debates in Caribbean countries. Therefore, regional and/or local decision makers do not implement the necessary measures to reduce fluvial sediment fluxes on coral reefs. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers water and sediment fluxes into the Rosario Islands National Park, an important marine protected area in the southwestern Caribbean. Until now, there is no scientific consensus on the presence of sediment fluxes from the Magdalena River in the coral reefs of the Rosario Islands. Our hypothesis is that high sediment and freshwater inputs from the Magdalena have been present at higher acute levels during the last decade than previously thought, and that these runoff pulses are not flashy. We use in-situ calibrated MODIS satellite images to capture the spatiotemporal variability of the distribution of suspended sediment over the coral reefs. Furthermore, geochemical data are analyzed to detect associated sedimentation rates and pollutant dispersion into the coastal zone. Results confirm that turbidity levels have been much higher than previous values presented by national environmental authorities on coral reefs off Colombia over the last decade. During the 2003-2013-period most of the Total Suspended Sediments (TSS) values witnessed in the sampled regions were above 10mg/l, a threshold value of turbidity for healthy coral reef waters. TSS concentrations throughout the analyzed time were up to 62.3mg/l. Plume pulses were more pronounced during wet seasons of La Niña events in 2002-2003, 2007-2008, and 2009-2010. Reconstructed time series of MODIS TSS indicates that coral reef waters were exposed to river plumes between 19.6 and 47.8% of the entire period of analysis (2000-2013). Further analyses of time series of water discharge and sediment load into the coastal zone during the last two decades show temporal increases in water discharge and sediment load of 28% and 48%, respectively. (210)Pb dating results from two cores indicate sedimentation rates of ~0.75 cm/y of continentally exported clastic muddy sediments that are being deposited on the carbonatic shelf. The cores contain sediments with heavy metals and their concentrations are frequently above the ecologically accepted standards. Overall, the last decade has witnessed stronger magnitudes in fluvial fluxes to the coastal region, which probably coincide with associated declines in healthy coral cover and water quality. Our results emphasize the importance of local stressors, such as runoff and dispersion of turbid plumes, as opposed to ocean warming, disease and hurricanes, which have played a larger role on other coral reefs in the Caribbean. Coral reef management across the southwestern Caribbean, a coastal region influenced by continental fluxes of numerous rivers flowing from the Andes, may only be effective when land and marine-based stressors are simultaneously mitigated. Copyright © 2016 Elsevier B.V. All rights reserved.
Dirnwoeber, Markus; Machan, Rudolf; Herler, Juergen
2012-10-31
Direct field observations of fine-scaled biological processes and interactions of the benthic community of corals and associated reef organisms (e.g., feeding, reproduction, mutualistic or agonistic behavior, behavioral responses to changing abiotic factors) usually involve a disturbing intervention. Modern digital camcorders (without inflexible land-or ship-based cable connection) such as the GoPro camera enable undisturbed and unmanned, stationary close-up observations. Such observations, however, are also very time-limited (~3 h) and full 24 h-recordings throughout day and night, including nocturnal observations without artificial daylight illumination, are not possible. Herein we introduce the application of modern standard video surveillance technology with the main objective of providing a tool for monitoring coral reef or other sessile and mobile organisms for periods of 24 h and longer. This system includes nocturnal close-up observations with miniature infrared (IR)-sensitive cameras and separate high-power IR-LEDs. Integrating this easy-to-set up and portable remote-sensing equipment into coral reef research is expected to significantly advance our understanding of fine-scaled biotic processes on coral reefs. Rare events and long-lasting processes can easily be recorded, in situ -experiments can be monitored live on land, and nocturnal IR-observations reveal undisturbed behavior. The options and equipment choices in IR-sensitive surveillance technology are numerous and subject to a steadily increasing technical supply and quality at decreasing prices. Accompanied by short video examples, this report introduces a radio-transmission system for simultaneous recordings and real-time monitoring of multiple cameras with synchronized timestamps, and a surface-independent underwater-recording system.
Dirnwoeber, Markus; Machan, Rudolf; Herler, Juergen
2014-01-01
Direct field observations of fine-scaled biological processes and interactions of the benthic community of corals and associated reef organisms (e.g., feeding, reproduction, mutualistic or agonistic behavior, behavioral responses to changing abiotic factors) usually involve a disturbing intervention. Modern digital camcorders (without inflexible land-or ship-based cable connection) such as the GoPro camera enable undisturbed and unmanned, stationary close-up observations. Such observations, however, are also very time-limited (~3 h) and full 24 h-recordings throughout day and night, including nocturnal observations without artificial daylight illumination, are not possible. Herein we introduce the application of modern standard video surveillance technology with the main objective of providing a tool for monitoring coral reef or other sessile and mobile organisms for periods of 24 h and longer. This system includes nocturnal close-up observations with miniature infrared (IR)-sensitive cameras and separate high-power IR-LEDs. Integrating this easy-to-set up and portable remote-sensing equipment into coral reef research is expected to significantly advance our understanding of fine-scaled biotic processes on coral reefs. Rare events and long-lasting processes can easily be recorded, in situ-experiments can be monitored live on land, and nocturnal IR-observations reveal undisturbed behavior. The options and equipment choices in IR-sensitive surveillance technology are numerous and subject to a steadily increasing technical supply and quality at decreasing prices. Accompanied by short video examples, this report introduces a radio-transmission system for simultaneous recordings and real-time monitoring of multiple cameras with synchronized timestamps, and a surface-independent underwater-recording system. PMID:24829763
NASA Astrophysics Data System (ADS)
Ryan, E. J.; Smithers, S. G.; Lewis, S. E.; Clark, T. R.; Zhao, J. X.
2016-09-01
The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium-thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr-1. Reef framework was dominated by branching corals ( Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.
2015-01-01
Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis. Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies. PMID:26710320
Fajemila, Olugbenga T; Langer, Martin R; Lipps, Jere H
2015-01-01
Coral reefs are now subject to global threats and influences from numerous anthropogenic sources. Foraminifera, a group of unicellular shelled organisms, are excellent indicators of water quality and reef health. Thus we studied a set of samples taken in 1992 to provide a foraminiferal baseline for future studies of environmental change. Our study provides the first island-wide analysis of shallow benthic foraminifera from around Moorea (Society Archipelago). We analyzed the composition, species richness, patterns of distribution and abundance of unstained foraminiferal assemblages from bays, fringing reefs, nearshore and back- and fore-reef environments. A total of 380 taxa of foraminifera were recorded, a number that almost doubles previous species counts. Spatial patterns of foraminiferal assemblages are characterized by numerical abundances of individual taxa, cluster groups and gradients of species richness, as documented by cluster, Fisher α, ternary plot and Principal Component Analyses (PCA). The inner bay inlets are dominated by stress-tolerant, mostly thin-shelled taxa of Bolivina, Bolivinella, Nonionoides, Elongobula, and Ammonia preferring low-oxygen and/or nutrient-rich habitats influenced by coastal factors such as fresh-water runoff and overhanging mangroves. The larger symbiont-bearing foraminifera (Borelis, Amphistegina, Heterostegina, Peneroplis) generally live in the oligotrophic, well-lit back- and fore-reef environments. Amphisteginids and peneroplids were among the few taxa found in the bay environments, probably due to their preferences for phytal substrates and tolerance to moderate levels of eutrophication. The fringing reef environments along the outer bay are characterized by Borelis schlumbergeri, Heterostegina depressa, Textularia spp. and various miliolids which represent a hotspot of diversity within the complex reef-lagoon system of Moorea. The high foraminiferal Fisher α and species richness diversity in outer bay fringing reefs is consistent with the disturbance-mosaic (microhabitat heterogeneity) hypothesis. Calculations of the FORAM Index (FI), a single metric index to assess reef vitality, indicate that all fore- and most back-reef environments support active carbonate accretion and provide habitat suitability for carbonate producers dependent on algal symbiosis. Lowest suitability values were recorded within the innermost bays, an area where natural and increasing anthropogenic influences continue to impact the reefs. The presence of habitat specific assemblages and numerical abundance values of individual taxa show that benthic foraminifera are excellent recorders of environmental perturbations and good indicators useful in modern and ancient ecological and environmental studies.
A Global Estimate of the Number of Coral Reef Fishers.
Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid
2013-01-01
Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale.
A Global Estimate of the Number of Coral Reef Fishers
Teh, Louise S. L.; Teh, Lydia C. L.; Sumaila, U. Rashid
2013-01-01
Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world’s small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale. PMID:23840327
Crustose coralline algae increased framework and diversity on ancient coral reefs.
Weiss, Anna; Martindale, Rowan C
2017-01-01
Crustose coralline algae (CCA) are key producers of carbonate sediment on reefs today. Despite their importance in modern reef ecosystems, the long-term relationship of CCA with reef development has not been quantitatively assessed in the fossil record. This study includes data from 128 Cenozoic coral reefs collected from the Paleobiology Database, the Paleoreefs Database, as well as the original literature and assesses the correlation of CCA abundance with taxonomic diversity (both corals and reef dwellers) and framework of fossil coral reefs. Chi-squared tests show reef type is significantly correlated with CCA abundance and post-hoc tests indicate higher involvement of CCA is associated with stronger reef structure. Additionally, general linear models show coral reefs with higher amounts of CCA had a higher diversity of reef-dwelling organisms. These data have important implications for paleoecology as they demonstrate that CCA increased building capacity, structural integrity, and diversity of ancient coral reefs. The analyses presented here demonstrate that the function of CCA on modern coral reefs is similar to their function on Cenozoic reefs; thus, studies of ancient coral reef collapse are even more meaningful as modern analogues.
Development of the ARIES parachute system
NASA Technical Reports Server (NTRS)
Pepper, W. B.; Collins, F. M.
1981-01-01
The design and testing of a two-stage parachute system to recover a space telescope weighing up to 2000 pounds is described. The system consists of a 15-ft dia ribbon parachute reefed to 50% for 10 seconds and a 73-ft dia paraform or cross second stage reefed to 10% for 10 seconds. The results of eight drop tests and one operational rocket launched flight and recovery are presented. A successful operational recovery of a 1600-lb NASA space telescope was conducted. The payload was launched by a second stage Minuteman rocket to an altitude of about 300 miles above sea level.
Kopp, C; Pernice, M; Domart-Coulon, I; Djediat, C; Spangenberg, J E; Alexander, D T L; Hignette, M; Meziane, T; Meibom, A
2013-05-14
Metabolic interactions with endosymbiotic photosynthetic dinoflagellate Symbiodinium spp. are fundamental to reef-building corals (Scleractinia) thriving in nutrient-poor tropical seas. Yet, detailed understanding at the single-cell level of nutrient assimilation, translocation, and utilization within this fundamental symbiosis is lacking. Using pulse-chase (15)N labeling and quantitative ion microprobe isotopic imaging (NanoSIMS; nanoscale secondary-ion mass spectrometry), we visualized these dynamic processes in tissues of the symbiotic coral Pocillopora damicornis at the subcellular level. Assimilation of ammonium, nitrate, and aspartic acid resulted in rapid incorporation of nitrogen into uric acid crystals (after ~45 min), forming temporary N storage sites within the dinoflagellate endosymbionts. Subsequent intracellular remobilization of this metabolite was accompanied by translocation of nitrogenous compounds to the coral host, starting at ~6 h. Within the coral tissue, nitrogen is utilized in specific cellular compartments in all four epithelia, including mucus chambers, Golgi bodies, and vesicles in calicoblastic cells. Our study shows how nitrogen-limited symbiotic corals take advantage of sudden changes in nitrogen availability; this opens new perspectives for functional studies of nutrient storage and remobilization in microbial symbioses in changing reef environments. The methodology applied, combining transmission electron microscopy with nanoscale secondary-ion mass spectrometry (NanoSIMS) imaging of coral tissue labeled with stable isotope tracers, allows quantification and submicrometric localization of metabolic fluxes in an intact symbiosis. This study opens the way for investigations of physiological adaptations of symbiotic systems to nutrient availability and for increasing knowledge of global nitrogen and carbon biogeochemical cycling.
Yang, Weifeng; Huang, Yipu; Chen, Min; Qiu, Yusheng; Li, Hongbin; Zhang, Lei
2011-10-01
Recent researches revealed the exciting application of (210)Po in tracing carbon and nitrogen cycling in the coral reef system. In order to quantify the recycling of particulate organic nitrogen (PON), both (210)Po and (210)Pb were examined at both high and low tides in the Zhubi Coral Reef lagoon, the South China Sea. Unusually, much higher (210)Po activities and (210)Po/(210)Pb ratios, in comparison with those found in the open seawater and the lagoon subsurface water, showed additional input of (210)Po besides production from in situ(210)Pb in the lagoon surface water. Statistical analysis identified that the reef flat seawater was the additional (210)Po source. Based on a mass balance model, the input rates of (210)Po varied from 0.04 Bq m(-3)year(-1) to 8.41 Bq m(-3)year(-1). On average, the additional (210)Po contributed more than 60% of the total (210)Po. The particulate (210)Po significantly correlated with the concentrations of PON, indicating that diffusion of (210)Po from sediment could be used to quantify the recycling of nitrogen. The average input rate of nitrogen was 16 mmol m(-3)year(-1), which can support up to 11% of the primary production rate. These results suggested that the unusual behavior of (210)Po could provide new insight into the nitrogen recycling in the coral reef system. Copyright © 2011 Elsevier B.V. All rights reserved.
Dynamically Coupled Food-web and Hydrodynamic Modeling with ADH-CASM
NASA Astrophysics Data System (ADS)
Piercy, C.; Swannack, T. M.
2012-12-01
Oysters and freshwater mussels are "ecological engineers," modifying the local water quality by filtering zooplankton and other suspended particulate matter from the water column and flow hydraulics by impinging on the near-bed flow environment. The success of sessile, benthic invertebrates such as oysters depends on environmental factors including but not limited to temperature, salinity, and flow regime. Typically food-web and other types of ecological models use flow and water quality data as direct input without regard to the feedback between the ecosystem and the physical environment. The USACE-ERDC has developed a coupled hydrodynamic-ecological modeling approach that dynamically couples a 2-D hydrodynamic and constituent transport model, Adaptive Hydraulics (ADH), with a bioenergetics food-web model, the Comprehensive Aquatics Systems Model (CASM), which captures the dynamic feedback between aquatic ecological systems and the environment. We present modeling results from restored oyster reefs in the Great Wicomico River on the western shore of the Chesapeake Bay, which quantify ecosystem services such as the influence of the benthic ecosystem on water quality. Preliminary results indicate that while the influence of oyster reefs on bulk flow dynamics is limited due to the localized influence of oyster reefs, large reefs and the associated benthic ecosystem can create measurable changes in the concentrations of nitrogen, phosphorus, and carbon in the areas around reefs. We also present a sensitivity analysis to quantify the relative sensitivity of the coupled ADH-CASM model to both hydrodynamic and ecological parameter choice.
NASA Technical Reports Server (NTRS)
Instrella, Ron; Chirayath, Ved
2016-01-01
In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.
NASA Astrophysics Data System (ADS)
Instrella, R.; Chirayath, V.
2015-12-01
In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.
Hammill, Edward; Booth, David J.; Madin, Elizabeth M. P.; Hinchliffe, Charles; Harborne, Alastair R.; Lovelock, Catherine E.; Macreadie, Peter I.; Atwood, Trisha B.
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways. PMID:29513746
Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.
NASA Astrophysics Data System (ADS)
Gomez, A. M.; McDonald, K. C.; Shein, K. A.; Devries, S. L.; Armstrong, R.; Carlo, M.
2017-12-01
The third global coral bleaching event, which began in mid-2014, is a major environmental stressor that has been causing significant documented damage to coral reefs in all tropical ocean basins. This worldwide phenomenon is the longest and largest coral bleaching event on record and now finally appears to be ending. During this event, some coral colonies proved to be more resilient to increased ocean temperatures while others bleached severely. This research investigates the spatial and temporal variability of bleaching stress on coral reefs in La Parguera, Puerto Rico, and Southeastern Florida to help further understand the role of temperature and light in coral bleaching. We examine the microclimate within two coral reef systems, using in situ collections of temperature and light data from data loggers deployed throughout Cayo Enrique and Cayo Mario in La Parguera, and Lauderdale-By-The-Sea in FLorida. The in situ measurements are compared to NOAA Coral Reef Watch's 5-km sea surface temperature data as well as to the associated Light Stress Damage Product. Research outcomes include statistical analyses of in situ measurements with satellite datasets supporting enhanced interpretation of satellite-based SST and light products, and ecological niche modeling to assess where corals could potentially survive under future climate conditions. Additional understanding of the microclimate encompassing coral reefs and improved satellite SST and light data will ultimately help coral reef ecosystem managers and policy makers in prioritizing resources toward the monitoring and protection of coral reef ecosystems.
Ocean Acidification Refugia of the Florida Reef Tract
NASA Astrophysics Data System (ADS)
Manzello, D.; Enochs, I.; Melo, N.; Gledhill, D. K.; Johns, E. M.
2012-12-01
Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Ωarag) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ωarag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ωarag-values in spring = 4.69 (± 0.101). Conversely, Ωarag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.
NASA Astrophysics Data System (ADS)
Meissner, Katrin J.; McNeil, Ben I.; Eby, Michael; Wiebe, Edward C.
2012-09-01
Modern-day coral reefs have well defined environmental envelopes for light, sea surface temperature (SST) and seawater aragonite saturation state (Ωarag). We examine the changes in global coral reef habitat on multimillennial timescales with regard to SST and Ωaragusing a climate model including a three-dimensional ocean general circulation model, a fully coupled carbon cycle, and six different parameterizations for continental weathering (the UVic Earth System Climate Model). The model is forced with emission scenarios ranging from 1,000 Pg C to 5,000 Pg C total emissions. We find that the long-term climate change response is independent of the rate at which CO2 is emitted over the next few centuries. On millennial timescales, the weathering feedback introduces a significant uncertainty even for low emission scenarios. Weathering parameterizations based on atmospheric CO2 only display a different transient response than weathering parameterizations that are dependent on temperature. Although environmental conditions for SST and Ωaragstay globally hostile for coral reefs for millennia for our high emission scenarios, some weathering parameterizations induce a near-complete recovery of coral reef habitat to current conditions after 10,000 years, while others result in a collapse of coral reef habitat throughout our simulations. We find that the multimillennial response in sea surface temperature (SST) substantially lags the aragonite saturation recovery in all configurations. This implies that if corals can naturally adapt over millennia by selecting thermally tolerant species to match warmer ocean temperatures, prospects for long-term recovery of coral reefs are better since Ωarag recovers more quickly than SST.
Alleway, Heidi K; Connell, Sean D
2015-06-01
Oyster reefs form over extensive areas and the diversity and productivity of sheltered coasts depend on them. Due to the relatively recent population growth of coastal settlements in Australia, we were able to evaluate the collapse and extirpation of native oyster reefs (Ostrea angasi) over the course of a commercial fishery. We used historical records to quantify commercial catch of O. angasi in southern Australia from early colonization, around 1836, to some of the last recorded catches in 1944 and used our estimates of catch and effort to map their past distribution and assess oyster abundance over 180 years. Significant declines in catch and effort occurred from 1886 to 1946 and no native oyster reefs occur today, but historically oyster reefs extended across more than 1,500 km of coastline. That oyster reefs were characteristic of much of the coastline of South Australia from 1836 to 1910 appears not to be known because there is no contemporary consideration of their ecological and economic value. Based on the concept of a shifted baseline, we consider this contemporary state to reflect a collective, intergenerational amnesia. Our model of generational amnesia accounts for differences in intergenerational expectations of food, economic value, and ecosystem services of nearshore areas. An ecological system that once surrounded much of the coast and possibly the past presence of oyster reefs altogether may be forgotten and could not only undermine progress towards their recovery, but also reduce our expectations of these coastal ecosystems. © 2015 Society for Conservation Biology.
Ocean Acidification Refugia of the Florida Reef Tract
Manzello, Derek P.; Enochs, Ian C.; Melo, Nelson; Gledhill, Dwight K.; Johns, Elizabeth M.
2012-01-01
Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Ωarag) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ωarag than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ωarag-values in spring = 4.69 (±0.101). Conversely, Ωarag-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA. PMID:22848575
Ocean acidification refugia of the Florida Reef Tract.
Manzello, Derek P; Enochs, Ian C; Melo, Nelson; Gledhill, Dwight K; Johns, Elizabeth M
2012-01-01
Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO(2), alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO(2) (TCO(2)) which increases aragonite saturation state (Ω(arag)) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Ω(arag) than what has been modeled for the tropical surface ocean during preindustrial times, with mean (± std. error) Ω(arag)-values in spring = 4.69 (±0.101). Conversely, Ω(arag)-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO(2) mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.
NASA Astrophysics Data System (ADS)
Enochs, I.; Manzello, D.; Donham, E. M.; Johnston, L.; Valentino, L.; Young, C.; Kolodziej, G.; Carlton, R.; Price, N.
2016-02-01
Coral reef ecosystems are expected to be strongly impacted by ocean acidification (OA) in the coming century. The influences of OA on coral reefs will be numerous, involving diverse species with different degrees of susceptibility. Naturally acidified systems provide a way to study these individual responses and a means to investigate how myriad alterations manifest at the ecosystem-scale over long periods of time. To this end, we characterized the unique coral reef ecosystem surrounding the volcanic carbon dioxide vent at Maug Island in the Commonwealth of the Northern Mariana Islands (CNMI). We present data on the spatial extent of carbonate chemistry alteration through interpolation of water bottle samples, and data on the temporal nature of this gradient through the deployment of three SeaFET pH loggers over a period of three months. We analyze trace-gas concentrations and characterize fluctuations in light, current, tides, and temperature. We tie these environmental data to high-resolution photo mosaics and in situ biodiversity surveys to examine changes in reef community structure correlated with this natural OA gradient. Finally, we investigate the influence of vent proximity on biological processes affecting reef habitat growth and erosion. Using computed tomography (CT) and analysis of coral growth bands, we analyze changes in the calcification of massive Porites coral. Using crystalline calcium carbonate (calcite) blocks, we quantify the settlement and erosion rate of microboring algae. Together these measurements underscore the strong influence that OA will have on reef persistence and highlight the value of the Maug site for future OA research.
Advancing the integration of spatial data to map human and natural drivers on coral reefs
Gove, Jamison M.; Walecka, Hilary R.; Donovan, Mary K.; Williams, Gareth J.; Jouffray, Jean-Baptiste; Crowder, Larry B.; Erickson, Ashley; Falinski, Kim; Friedlander, Alan M.; Kappel, Carrie V.; Kittinger, John N.; McCoy, Kaylyn; Norström, Albert; Nyström, Magnus; Oleson, Kirsten L. L.; Stamoulis, Kostantinos A.; White, Crow; Selkoe, Kimberly A.
2018-01-01
A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs. PMID:29494613
NASA Astrophysics Data System (ADS)
Montaggioni, Lucien F.
2005-06-01
A significant body of new information about the development of coral reefs during the last 23 ka has been generated in the last three decades. In the Indo-Pacific province, structures from a variety of geodynamic settings have been investigated using subsurface drilling and submersible diving. This paper is based principally on the re-examination of the core dataset from the literature, with reconversion of many previously published radiocarbon ages into calendar dates. Seven framework and three detrital facies were identified on the basis of the nature and growth shapes of dominant framework builders, and on that of the texture of sediments, respectively. Framework facies in high-hydrodynamic energy settings were dominated by an association of coralline algae and robust-branching corals ( Acropora robusta group, A. gr. humilis, A. palifera, Pocillopora damicornis) with locally encrusting coral forms (faviids). In moderate energy environments, these were replaced by domal ( Porites), tabular-branching ( Acropora gr. hyacinthus) and arborescent ( Acropora gr. muricata), whereas sheltered areas included an association of arborescent, foliaceous ( Montipora, Pavona) and encrusting coral species. Detrital facies comprise coral rubble, carbonate sand and mud. On compositional and textural bases, four main sand subfacies were recognized: coralgal rudstone to packstone; coral-molluscan grainstone/packstone; molluscan-foraminiferal grainstone/packstone; and green algal ( Halimeda) grainstone/packstone. Despite some overlaps in the sand facies association, each subfacies can provide additional support to reconstruction of paleoreef environments. Three types of framework facies association were identified within entire reef-margin sequences: framework of homogeneous composition reflecting stability of environmental conditions through time; superimposition of two distinct frameworks, usually as deeper water corals overlain by shallower, higher energy ones, and recurrent alternations of shallower and deeper coral assemblages. The two last associations resulted probably from lateral displacements of coral communities in response to rapid changes in accommodation space. Such facies transitions also are described from backreef sediment piles: gravel graded into sand and mud successively as a result of upward shallowing. The degree of reef development seems to be linked to coral community structure. Communities consisting principally of branching and domal coral forms favoured substantial accretion and the formation of well-developed reefs, whereas assemblages comprising foliaceous and encrusting colonies produced only incipient reefs. Within reef systems, the proportions of detritus over framework tend to increase as hydrodynamic energy declines. The Indo-Pacific reef systems are classified into four anatomy types on the basis of dominant depositional patterns: balanced aggrading/onlapping, unbalanced aggrading/downlapping, prograding and backstepping types. Vertical accretion rates of frameworks are highly variable and are not directly dictated by coral growth habits. However, the highest rates recorded (up to 20 mm year -1) relate to tabular- and arborescent-acroporid rich sections. Abrupt variations in the aggradation rates of framework are recorded in sequences at the transitional zone between two distinct coral assemblages. In detritus-dominated sequences, accumulation rates range from 0.2 to about 40 mm year -1, with higher values suggesting intense hurricane-controlled deposition. In addition, accretion rates also seem to depend on water-energy conditions. In high-energy environments, aggradation rates did not exceed 12 mm year -1, but reached 25 mm year -1 in more protected areas. By contrast, lateral accretion operated at an average rate of 90 mm year -1 in agitated waters, while it did not exceed the mean rate of 55 mm year -1 in calm waters. Changes in accretion rates appear to be linked to reef growth modes. In the reef zones driven by a "keep-up" mode, mean vertical accretion rates range at around 6 mm year -1. The reef zones developed through a "catch-up" mode at rates of 3-4 mm year -1. There was little variation in accretion rates according to latitude. At the Last Glacial Maximum, from 23 to about 19 ka BP, reefs (Reef Generation RGO) only developed along what were to become the foreslopes of present reefs, forming accumulations a few metres thick at vertical rates of up to 1 mm year -1. The rapid postglacial rise in sea level, from about 19 to 6.5 ka BP, was accompanied by the settlement of three successive reef generations (the so called RGI, RGII and RGIII), within the periods 17.5-14.7, 13.8-11.5 and 10 ka BP to the Present. During the Postglacial transgression, regional to local differences in gross morphology and internal architecture of the reefs have been determined by differing sea-level histories in combination with neotectonics and typographic factors. Locally, reef colonization seems to have been facilitated or prevented chiefly by small-scale topographic features. Development during subsequent deglaciation was probably largely independent of variations in sea surface temperatures. Water turbidity also seems to have been only a minor determinant of reef settlement and growth, but may locally have controlled the composition of coral communities, resulting in the growth of turbidity-tolerant domal and foliaceous forms. Changes in atmospheric CO 2 levels remained within the tolerance thresholds for reef calcification. The three main reef growth episodes coincide roughly with rapid increases in atmospheric pCO 2. Dust input and variations in sea surface salinities seem to have had a very limited control on reef growth. The LGM was characterized by salinities comparable with those of the present, but by higher dust fluxes. By contrast, nutrient levels, hydrodynamic energy, and to a lesser, extent coral recruitment in relation to substrate availability and ocean circulation, have played major roles in determining reef accretion patterns at both local and regional scales. Two periods of increased upwelling in the western Indian Ocean, at 15.3 and 11.5-10.8 ka BP, coincided with the demise of RGI and RGII. During deglaciation, high-frequency storm events probably led to a scarcity of typical growth framework reefs and favoured the formation of structures composed of reworked and recemented coral framework. Storm control may have been particularly important in the mid-Holocene when water depths over incipient reefs were greater than 5 m. From the LGM to the early Holocene, coral settlement has probably declined due to a lack of suitable nurseries, until the modern patterns of ocean circulation were established and thus favoured larval dispersal from refuges. It is highly desirable to improve analysis of the core database and to increase the number of core-transects, including forereef sites, to enhance our knowledge of Recent reef development.
Coral reefs in the Gulf are mostly dead now, but can we do anything about it?
Sheppard, Charles
2016-04-30
This article discusses two key issues: firstly, the demise of reefs in the Gulf which is happening probably more rapidly than elsewhere; and secondly, the reasons why this remains such an intractable problem. Most reasons for this decline are scientifically well understood, though clearly not by the region's managers. Several factors may cause people to ignore the problem, even though habitat loss is vastly costly to the region. About 70% of the Gulf's reefs have essentially disappeared in a few decades, and although scientific indicators confirm that this is happening, it is commonly discounted as even being a possibility. Management of human interactions with the Gulf's marine systems remains very inadequate, to the detriment of the Gulf's marine systems and its people. It is clear that this not a scientific issue any longer but rather it is a political problem and failure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae.
Simpson, Stephen D; Radford, Andrew N; Holles, Sophie; Ferarri, Maud C O; Chivers, Douglas P; McCormick, Mark I; Meekan, Mark G
2016-01-01
After a pelagic larval phase, settlement-stage coral reef fish must locate a suitable reef habitat for juvenile life. Reef noise, produced by resident fish and invertebrates, provides an important cue for orientation and habitat selection during this process, which must often occur in environments impacted by anthropogenic noise. We adapted an established field-based protocol to test whether recorded boat noise influenced the settlement behavior of reef fish. Fewer fish settled to patch reefs broadcasting boat + reef noise compared with reef noise alone. This study suggests that boat noise, now a common feature of many reefs, can compromise critical settlement behavior of reef fishes.
NASA Technical Reports Server (NTRS)
Hardy, John T.
1997-01-01
Coastal reef degradation and widespread bleaching of corals, i.e. loss of pigments and/or symbiotic zooxanthellae, is increasing globally. Remote sensing has great potential for assessing the extent of reef change. However, measuring reef change from remote platforms (boats, aircraft or satellites), requires ground-truth spectral algorithms characteristic of healthy and degraded reef populations. Our laboratory experiments demonstrated, for the first time, that healthy coral colonies emit characteristic fluorescence spectra in response to excitation with short wavelength (blue or ultraviolet) light. Furthermore, following stress, e.g. increased temperature, corals lose symbiotic algae and their health is compromised. We measured changes in coral fluorescence spectra along with pigment loss in response to temperature-induced stress. Following laboratory demonstration, we tested this approach in the field. The NASA P3 aircraft with the airborne oceanographic LIDAR system was used to map transects of coral reef in Hawaii. Ground truth samples of coral; were collected and analyzed for pigment density (pigments/surface area). Fluorescence spectra along transects showed consistent chlorophyll fluorescence peaks at 685 nm from the chlorophyll of the zooxanthellae and peaks between 400 and 570 nm believed to emanate from the coral tissue. Our results suggest that remote sensing of laser-induced fluorescence represents an efficient and effective approach to monitoring the health of coral reefs. Lists of papers, conferences, proposals awarded and a summary of student involvement is included in the appendices.
NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers
NASA Astrophysics Data System (ADS)
Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.
2010-12-01
A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.
Comparison of Coral Reef Ecosystems along a Fishing Pressure Gradient
Weijerman, Mariska; Fulton, Elizabeth A.; Parrish, Frank A.
2013-01-01
Three trophic mass-balance models representing coral reef ecosystems along a fishery gradient were compared to evaluate ecosystem effects of fishing. The majority of the biomass estimates came directly from a large-scale visual survey program; therefore, data were collected in the same way for all three models, enhancing comparability. Model outputs–such as net system production, size structure of the community, total throughput, production, consumption, production-to-respiration ratio, and Finn’s cycling index and mean path length–indicate that the systems around the unpopulated French Frigate Shoals and along the relatively lightly populated Kona Coast of Hawai’i Island are mature, stable systems with a high efficiency in recycling of biomass. In contrast, model results show that the reef system around the most populated island in the State of Hawai’i, O’ahu, is in a transitional state with reduced ecosystem resilience and appears to be shifting to an algal-dominated system. Evaluation of the candidate indicators for fishing pressure showed that indicators at the community level (e.g., total biomass, community size structure, trophic level of the community) were most robust (i.e., showed the clearest trend) and that multiple indicators are necessary to identify fishing perturbations. These indicators could be used as performance indicators when compared to a baseline for management purposes. This study shows that ecosystem models can be valuable tools in identification of the system state in terms of complexity, stability, and resilience and, therefore, can complement biological metrics currently used by monitoring programs as indicators for coral reef status. Moreover, ecosystem models can improve our understanding of a system’s internal structure that can be used to support management in identification of approaches to reverse unfavorable states. PMID:23737951
Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs.
Kikuchi, Ruy K P; Leão, Zelinda M A N; Oliveira, Marília D M
2010-05-01
Coral reefs along the Eastern Brazilian coast extend for a distance of 800 km from 12 degrees to 18 degrees S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90's in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonics > 20cm per reef site) and of the coral recruits (colonies < 2cm per square meter), and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5 km from the coast, are in poorer condition than the reefs located more than 5 km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearshore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been most severely impacted by the effects of direct human activities such as cuthrophic waters associated with sewage pollution, higher sedimentation rates and water turbidity, inadequate use of the reefs and over exploitation of their resources. The implementation of a more effective coral reef monitoring program in Bahia is mandatory, in order to improve the strategies for protection and management efforts of the reefs.
Hamylton, Sarah
2014-01-01
A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010–2100) time periods. Reef platform sediment production is estimated at 569 m3 yr−1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr−1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000–2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr−1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution. PMID:24759700
Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers
NASA Astrophysics Data System (ADS)
Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Kawahata, H.
2011-02-01
Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of Baculogypsina and Calcarina, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of Amphisorus, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. These different responses among the three species are possibly due to differences in calcification mechanisms (in particular, the specific carbonate species used for calcification) between hyaline and porcelaneous taxa, and to links between calcification by the foraminiferal hosts and photosynthesis by the algal endosymbionts. Our findings suggest that ongoing ocean acidification might favor symbiont-bearing reef foraminifers with hyaline shells at intermediate pCO2 levels (580 to 770 μatm) but be unfavorable to those with either hyaline or porcelaneous shells at higher pCO2 levels (near 1000 μatm).
Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers
NASA Astrophysics Data System (ADS)
Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H.; Nojiri, Y.
2011-08-01
Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by algal symbionts, versus associated changes in seawater carbonate chemistry, which decreases a carbonate concentration. Our findings suggest that ongoing ocean acidification might favor symbiont-bearing reef foraminifers with hyaline shells at intermediate pCO2 levels (580 to 770 μatm) but be unfavorable to those with either hyaline or porcelaneous shells at higher pCO2 levels (near 1000 μatm).
Hamylton, Sarah
2014-01-01
A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution.
Zooplankton From a Reef System Under the Influence of the Amazon River Plume.
Neumann-Leitão, Sigrid; Melo, Pedro A M C; Schwamborn, Ralf; Diaz, Xiomara F G; Figueiredo, Lucas G P; Silva, Andrea P; Campelo, Renata P S; de Melo Júnior, Mauro; Melo, Nuno F A C; Costa, Alejandro E S F; Araújo, Moacyr; Veleda, Dóris R A; Moura, Rodrigo L; Thompson, Fabiano
2018-01-01
At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km 2 ) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind -1 ) and evenness (>0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m -3 over the reef area to 2,609.24 ind. m -3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura , an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [ Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions ( Clausocalanus ); (3) characterized the reef system ( O. plumifera ). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine plume and are mixed with species of the North Brazil Current. These species practically disappear offshore, where occur oceanic species commonly found in other oligotrophic tropical areas. This ecosystem shows a mixture of estuarine, coastal and oceanic communities coexisting in the waters over the Amazon reefs, with no significant differences among these areas. However, the MDS clearly separated the communities along the salinity gradient in the plume.
Earth observation taken by the Expedition 43 crew
2015-05-08
ISS043E182498 (05/08/2015) --- Expedition 43 Flight Engineer Scott Kelly tweeted this view of an American southwest section of the San Rafael Reef, Utah. Kelly added this comment to the tweet: "The rising sun casts shadows upon the US #SouthWest this morning creating a striking image. #YearInSpace".
Remote Sensing: The View from Above. Know Your Environment.
ERIC Educational Resources Information Center
Academy of Natural Sciences, Philadelphia, PA.
This publication identifies some of the general concepts of remote sensing and explains the image collection process and computer-generated reconstruction of the data. Monitoring the ecological collapse in coral reefs, weather phenomena like El Nino/La Nina, and U.S. Space Shuttle-based sensing projects are some of the areas for which remote…
Artificial reefs and reef restoration in the Laurentian Great Lakes
McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.
2015-01-01
We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.
GMT007_09_33_Terry Virts_India Maldives night zoom chennai colum
2015-01-06
ISS042eE01551 (01/06/2015) --- NASA astronaut Terry Virts tweeted this night image out with the twinkling city lights of the coast of India and the Maldives. The Maldives is a tropical nation in the Indian Ocean composed of 26 coral atolls, which stretch for hundreds of islands. It’s known for its beaches, blue lagoons and extensive reefs. Terry tweeted this comment along with the image: " Moonlit clouds over southeast #India coastline, with Chennai, Bangalore, and Hyderabad."
Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.
Engels, Mary S.; Fletcher, Charles H.; Field, Michael E.; Storlazzi, Curt D.; Grossman, Eric E.; Rooney, John J.B.; Conger, Christopher L.; Glenn, Craig
2004-01-01
Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from ∼ 8,100 cal yr BP (offshore) to ∼ 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of ∼ 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age ∼ 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of ∼ 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Niño Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.
NASA Astrophysics Data System (ADS)
Edwards, Clinton B.; Eynaud, Yoan; Williams, Gareth J.; Pedersen, Nicole E.; Zgliczynski, Brian J.; Gleason, Arthur C. R.; Smith, Jennifer E.; Sandin, Stuart A.
2017-12-01
For sessile organisms such as reef-building corals, differences in the degree of dispersion of individuals across a landscape may result from important differences in life-history strategies or may reflect patterns of habitat availability. Descriptions of spatial patterns can thus be useful not only for the identification of key biological and physical mechanisms structuring an ecosystem, but also by providing the data necessary to generate and test ecological theory. Here, we used an in situ imaging technique to create large-area photomosaics of 16 plots at Palmyra Atoll, central Pacific, each covering 100 m2 of benthic habitat. We mapped the location of 44,008 coral colonies and identified each to the lowest taxonomic level possible. Using metrics of spatial dispersion, we tested for departures from spatial randomness. We also used targeted model fitting to explore candidate processes leading to differences in spatial patterns among taxa. Most taxa were clustered and the degree of clustering varied by taxon. A small number of taxa did not significantly depart from randomness and none revealed evidence of spatial uniformity. Importantly, taxa that readily fragment or tolerate stress through partial mortality were more clustered. With little exception, clustering patterns were consistent with models of fragmentation and dispersal limitation. In some taxa, dispersion was linearly related to abundance, suggesting density dependence of spatial patterning. The spatial patterns of stony corals are non-random and reflect fundamental life-history characteristics of the taxa, suggesting that the reef landscape may, in many cases, have important elements of spatial predictability.
Rogers, Caroline S.; Miller, Jeff; Hubbard, Dennis K.; Rogers, Caroline S.; Lipps, Jere H.; Stanley, George D.
2016-01-01
What, exactly, is a coral reef? And how have the world’s reefs changed in the last several decades? What are the stressors undermining reef structure and function? Given the predicted effects of climate change, do reefs have a future? Is it possible to “manage” coral reefs for resilience? What can coral reef scientists contribute to improve protection and management of coral reefs? What insights can biologists and geologists provide regarding the persistence of coral reefs on a human timescale? What is reef change to a biologist… to a geologist?Clearly, there are many challenging questions. In this chapter, we present some of our thoughts on monitoring and management of coral reefs in US national parks in the Caribbean and western Atlantic based on our experience as members of monitoring teams. We reflect on the need to characterize and evaluate reefs, on how to conduct high-quality monitoring programs, and on what we can learn from biological and geological experiments and investigations. We explore the possibility that specific steps can be taken to “manage” coral reefs for greater resilience.
La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea
2013-01-01
Understanding the time frame in which ecosystem services (that is, water quality maintenance, shoreline protection, habitat provision) are expected to be provided is important when restoration projects are being designed and implemented. Restoration of three-dimensional shell habitats in coastal Louisiana and elsewhere presents a valuable and potentially self-sustaining approach to providing shoreline protection, enhancing nekton habitat, and providing water quality maintenance. As with most restoration projects, the development of expected different ecosystem services often occurs over varying time frames, with some services provided immediately and others taking longer to develop. This project was designed initially to compare the provision and development of ecosystem services by created fringing shoreline reefs in subtidal and intertidal environments in Vermilion Bay, Louisiana. Specifically, the goal was to test the null hypothesis that over time, the oyster recruitment and development of a sustainable oyster reef community would be similar at both intertidal and subtidal reef bases, and these sustainable reefs would in time provide similar shoreline stabilization, nekton habitat, and water quality services over similar time frames. Because the ecosystem services hypothesized to be provided by oyster reefs reflect long-term processes, fully testing the above-stated null hypothesis requires a longer-time frame than this project allowed. As such, this project was designed to provide the initial data on reef development and provision of ecosystem services, to identify services that may develop immediately, and to provide baseline data to allow for longer-term follow up studies tracking reef development over time. Unfortunately, these initially created reef bases (subtidal, intertidal) were not constructed as planned because of the Deepwater Horizon oil spill in April 2010, which resulted in reef duplicates being created 6 months apart. Further confounding the project were additional construction and restoration projects along the same shorelines which occurred between 2011 and June 2012. Because of constant activity near and around the reefs and continuing construction, development trajectories could not be compared among reef types at this time. This report presents the data collected at the sites over 3 years (2010–2012), describing only conditions and trends. In addition, these data provide an extensive and detailed dataset documenting initial conditions and initial ecosystem changes which will prove valuable in future data collection and analyses of reef development at this site. Data collection characterized the local water quality conditions (salinity, temperature, total suspended sediments, dissolved oxygen, chlorophyll a), adjacent marsh vegetation, soils, and shoreline position along the project shoreline at Vermilion Bay. During the study, marsh vegetation and soil characteristics were similar across the study area and did not change over time. Shoreline movement indicated shoreline loss at all sites, which varied by reefs. Water quality conditions followed expected seasonal patterns for this region, and no significant nonseasonal changes were measured throughout the study period. Despite oyster recruitment in fall 2010 and 2011, few if any oysters survived from the 2010 year class to 2012. At the last sampling of this project, some oysters recruited in fall 2011 survived through 2012, resulting in an on-reef density of 18.3 ± 2.1 individuals per square meter (mean size: 85.6 ± 2.2 millimeters). Because project goals were to compare reef development and provision of ecosystem services over time, as well as many of the processes identified for monitoring reflect long-term processes, results and data are presented only qualitatively, and trends or observations should be interpreted cautiously at this point. Measurable system responses to reef establishment require more time than was available for this study. These data provide a valuable baseline that can be ultimately used to help inform site selections for future restoration projects as well to further investigate the development trajectories of ecosystem provision of created reefs in this region.
Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.
2004-01-01
Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Woodroffe, Colin D.; Brooke, Brendan P.; Linklater, Michelle; Kennedy, David M.; Jones, Brian G.; Buchanan, Cameron; Mleczko, Richard; Hua, Quan; Zhao, Jian-xin
2010-08-01
Coral reefs track sea level and are particularly sensitive to changes in climate. Reefs are threatened by global warming, with many experiencing increased coral bleaching. Warmer sea surface temperatures might enable reef expansion into mid latitudes. Here we report multibeam sonar and coring that reveal an extensive relict coral reef around Lord Howe Island, which is fringed by the southernmost reef in the Pacific Ocean. The relict reef, in water depths of 25-50 m, flourished in early Holocene and covered an area more than 20 times larger than the modern reef. Radiocarbon and uranium-series dating indicates that corals grew between 9000 and 7000 years ago. The reef was subsequently drowned, and backstepped to its modern limited extent. This relict reef, with localised re-establishment of corals in the past three millennia, could become a substrate for reef expansion in response to warmer temperatures, anticipated later this century and beyond, if corals are able to recolonise its surface.
Stratigraphy and evolution of emerged Pleistocene reefs at the Red Sea coast of Sudan
NASA Astrophysics Data System (ADS)
Hamed, Basher; Bussert, Robert; Dominik, Wilhelm
2016-02-01
Emerged Pleistocene coral reefs constitute a prominent landform along the Red Sea coast of Sudan. They are well exposed with a thickness of up to 12 m and extend over a width of about 3 km parallel to the coastline. Four major reef units that represent different reef zones are distinguished. Unit 1 is located directly at the coastline and is assigned to the rock-reef rim, while unit 2 represents the reef-front zone. Unit 3 is attributed to the reef-flat zone and unit 4 to the back-reef zone. The stratigraphic position and age of the four units respectively the facies zones are based on field relationships and δ18O analysis. Results of δ18O analysis of coral, gastropod and bivalve samples were correlated to previous age dating of correlative reefs in Sudan and other parts of the Red Sea region. Estimation of reef ages was mainly based on δ18O values of the reef-front zone (unit 2) and the observed sedimentary succession of the reefs. δ18O values of two Porites coral samples from the reef-front zone strongly suggest equivalent ages of 120 and 122 ka that correspond to marine isotope stage MIS 5.5. Based on δ18O values and the field relationship to the reef-front zone, ages of reef-flat zone (unit 3) and back-reef zone (unit 4) could be assigned to MIS 9 and MIS 7 respectively. MIS 5.1 is suggested for the reef-rock rim (unit 1). The relationship of the reef zones to individual MIS might be explained by the predominance of a specific zone during a certain stage, while other facies were less well developed and/or later eroded by wave action. The reef unit most distal from the recent coastline formed during interglacial stage MIS 7, while former studies assign this unit to interglacial stage MIS 9. Unique flourishing, high diversity and excellent preservation of corals in the back-reef unit of MIS 7 reflect growth in troughs landward of the oldest reef-flat formed during previous interglacial stage MIS 9.
Mesopredator trophodynamics on thermally stressed coral reefs
NASA Astrophysics Data System (ADS)
Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.
2018-03-01
Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.
Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.
2013-01-01
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5years) and old (>6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.
Development of the Aries parachute system
NASA Technical Reports Server (NTRS)
Pepper, W. B.; Collins, F. M.
1981-01-01
The design and testing of a two-stage parachute system to recover a space telescope weighing up to 2200 pounds is described. The system consists of a 15-ft diameter ribbon parachute reefed to 50 percent for 10 seconds and a 73-ft diameter paraform or cross second stage reefed to 20 percent for 10 seconds. The results of ten drop tests and two operational rocket launched flights are presented. Two successful operational recoveries of 1600-lb and 2050-lb NASA space telescopes were conducted at White Sands Missile Range, NM. The payloads are launched by ARIES rockets to altitudes of about 194 and 163 miles above sea level.
Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime
2010-05-01
Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent natural disturbances, live coral cover in 2004 was as high as that existing before 1982 at La Azufrada, and one of the highest observed on healthy coral reefs in the TEP region.
Reef Education Evaluation: Environmental Knowledge and Reef Experience
ERIC Educational Resources Information Center
Stepath, Carl M.
2005-01-01
Background: The Reef education evaluation: environmental knowledge and reef experience report concerns PhD research about marine education, and the investigation of learning with high school students and the effect of coral reef monitoring marine experiential education interventions. The effectiveness of classroom learning and reef trips were…
Microphytoplankton variations during coral spawning at Los Roques, Southern Caribbean
Zubillaga, Ainhoa L.; Bastidas, Carolina
2016-01-01
Phytoplankton drives primary productivity in marine pelagic systems. This is also true for the oligotrophic waters in coral reefs, where natural and anthropogenic sources of nutrients can alter pelagic trophic webs. In this study, microphytoplankton assemblages were characterized for the first time in relation to expected coral spawning dates in the Caribbean. A hierarchical experimental design was used to examine these assemblages in Los Roques archipelago, Venezuela, at various temporal and spatial scales for spawning events in both 2007 and 2008. At four reefs, superficial water samples were taken daily for 9 days after the full moon of August, including days before, during and after the expected days of coral spawning. Microphytoplankton assemblages comprised 100 microalgae taxa at up to 50 cells per mL (mean ± 8 SD) and showed temporal and spatial variations related to the coral spawning only in 2007. However, chlorophyll a concentrations increased during and after the spawning events in both years, and this was better matched with analyses of higher taxonomical groups (diatoms, cyanophytes and dinoflagellates), that also varied in relation to spawning times in 2007 and 2008, but asynchronously among reefs. Heterotrophic and mixotrophic dinoflagellates increased in abundance, correlating with a decrease of the diatom Cerataulina pelagica and an increase of the diatom Rhizosolenia imbricata. These variations occurred during and after the coral spawning event for some reefs in 2007. For the first time, a fresh-water cyanobacteria species of Anabaena was ephemerally found (only 3 days) in the archipelago, at reefs closest to human settlements. Variability among reefs in relation to spawning times indicated that reef-specific processes such as water residence time, re-mineralization rates, and benthic-pelagic coupling can be relevant to the observed patterns. These results suggest an important role of microheterotrophic grazers in re-mineralization of organic matter in coral reef waters and highlight the importance of assessing compositional changes of larger size fractions of the phytoplankton when evaluating primary productivity and nutrient fluxes. PMID:27019774
Richards, Zoe T; Garcia, Rodrigo A; Wallace, Carden C; Rosser, Natalie L; Muir, Paul R
2015-01-01
The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity) with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs), prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.
Mesophotic depths as refuge areas for fishery-targeted species on coral reefs
NASA Astrophysics Data System (ADS)
Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.
2016-03-01
Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.
Encouraging Proximal Relations: Queensland High School Students Go to the Reef
ERIC Educational Resources Information Center
Stepath, Carl; Whitehouse, Hilary
2006-01-01
Background: This article concerns learning with high school students and the effect of snorkeling and coral reef monitoring at the Great Barrier Reef, Australia. The effectiveness of classroom learning, student-reef relationships and reef trips were investigated. Purpose: This paper presents selected student accounts of reef educational…
Divergence of seafloor elevation and sea level rise in coral reef ecosystems
Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger
2017-01-01
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from −0.09 to −0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.
Divergence of seafloor elevation and sea level rise in coral reef ecosystems
NASA Astrophysics Data System (ADS)
Yates, Kimberly K.; Zawada, David G.; Smiley, Nathan A.; Tiling-Range, Ginger
2017-04-01
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves, and erosion. Projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. Here, we provide a comprehensive assessment of the combined effect of all of the processes affecting seafloor accretion and erosion by measuring changes in seafloor elevation and volume for five coral reef ecosystems in the Atlantic, Pacific, and Caribbean over the last several decades. Regional-scale mean elevation and volume losses were observed at all five study sites and in 77 % of the 60 individual habitats that we examined across all study sites. Mean seafloor elevation losses for whole coral reef ecosystems in our study ranged from -0.09 to -0.8 m, corresponding to net volume losses ranging from 3.4 × 106 to 80.5 × 106 m3 for all study sites. Erosion of both coral-dominated substrate and non-coral substrate suggests that the current rate of carbonate production is no longer sufficient to support net accretion of coral reefs or adjacent habitats. We show that regional-scale loss of seafloor elevation and volume has accelerated the rate of relative sea level rise in these regions. Current water depths have increased to levels not predicted until near the year 2100, placing these ecosystems and nearby communities at elevated and accelerating risk to coastal hazards. Our results set a new baseline for projecting future impacts to coastal communities resulting from degradation of coral reef systems and associated losses of natural and socioeconomic resources.
Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world
NASA Astrophysics Data System (ADS)
Manzello, Derek; Enochs, Ian; Musielewicz, Sylvia; Carlton, Renée.; Gledhill, Dwight
2013-10-01
Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2 system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current "business-as-usual" CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω < 1.0) for high-Mg calcite and aragonite mineral phases at acidification levels before the end of this century. Week-long periods of undersaturation occur for 18 mol % high-Mg calcite after storms by the end of the century. In a high-CO2 world, CaCO3 undersaturation of coral reef seawater will occur as a result of even modest tropical cyclones. The expected increase in the strength, frequency, and rainfall of the most severe tropical cyclones with climate change in combination with ocean acidification will negatively impact the structural persistence of coral reefs.
Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World
NASA Astrophysics Data System (ADS)
Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.
2013-12-01
Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω < 1.0) for high-Mg calcite and aragonite mineral phases at acidification levels before the end of this century. Week-long periods of undersaturation occur for 18 mol% high-Mg calcite after storms by the end of the century. In a high-CO2 world, CaCO3 undersaturation of coral reef seawater can occur as a result of even modest tropical cyclones. The expected increase in the strength, frequency, and rainfall of the most severe tropical cyclones with climate change in combination with ocean acidification will negatively impact the structural persistence of coral reefs over this century.
NASA Astrophysics Data System (ADS)
Andersson, A. J.; Bates, N. R.; dePutron, S.; Collins, A.; Neely, K.; Best, M.; Noyes, T.
2011-12-01
To accurately predict future consequences of ocean acidification on coastal environments and ecosystems, it is critical to understand present conditions and variability. As part of the Bermuda ocean acidification and coral reef investigation (BEACON), significant efforts have been dedicated to characterize the complete surface seawater carbonic-acid system at different temporal and spatial scales on the Bermuda coral reef platform to understand current levels and variability in seawater CO2 parameters, reef metabolism, and future potential changes arising from ocean acidification. A four years monthly time-series of seawater carbonic-acid parameters at eight different locations on the Bermuda coral reef platform reveals strong seasonal patterns in dissolved inorganic carbon (DIC), total alkalinity (TA), pH, pCO2, and [HCO3-], and somewhat weaker trends in [CO32-] and saturation state with respect to CaCO3 minerals. Strong spatial gradients are also observed in DIC and TA during summertime owing to reef metabolism, but no or weak spatial gradients of these parameters are observed in the wintertime. Interestingly, maximum pH-sws (~8.15) is observed during wintertime when minimum aragonite saturation state (<3.0) is observed. In contrast, minimum pH-sws (~7.95) is observed in the summertime when maximum aragonite saturation state (>3.70) is observed. The observed trends and gradients point to complex relationships and interactions between seawater chemistry, biology and physics that need to be considered in the context of ocean acidification and in making future predictions on the effects of this perturbation on coral reefs and coastal ecosystems.
Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages
Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.
2015-01-01
Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532
The structure and composition of Holocene coral reefs in the Middle Florida Keys
Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.
2016-07-21
The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published records of the Holocene history of reefs in the region. The objectives of the present study were to (1) provide general descriptions of unpublished core records from Alligator Reef and (2) collect and describe new Holocene reef cores from two additional locations in the Middle Keys: Sombrero and Tennessee Reefs.
Grech, Alana; Coles, Rob
2011-01-01
Background The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australia's Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001–2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention. PMID:21695155
Combined Th/U, Pa/U and Ra/Th dating of fossil reef corals
NASA Astrophysics Data System (ADS)
Obert, J. C.; Scholz, D.; Lippold, J.; Felis, T.; Jochum, K. P.; Andreae, M. O.
2016-12-01
Fossil reef corals are often subject to post-depositional open-system behaviour, which is a major problem for accurate absolute dating. The commonly used 230Th/U-system can be disturbed by diagenetic alteration resulting in wrong apparent 230Th/U-ages. Since fossil reef corals are important palaeoenvironmental archives, precise absolute dating is essential for sea-level reconstruction and high-resolution climate reconstruction. We have developed a method for combined preparation and analysis of fossil reef corals by the 230Th/U-, 231Pa/U- and 226Ra/230Th-methods. Inconsistencies between ages determined by the different methods provide a means to identify diagenetically altered corals. In addition, the comparison of the 230Th/U and 231Pa/U data on concordia diagrams reveals further information about the alteration processes. (226Ra/230Th) and (226Ra/U) ratios in particular provide information about the more recent past (last 10 to approx. 50 ka) of the coral's diagenetic history. We compare these data with quantitative modelling of various diagenetic scenarios in order to identify the potential open-system processes. Here we present new data on the combined application of the three isotope systems to fossil Last Interglacial corals from the Gulf of Aqaba, northern Red Sea. Previous studies have shown that these corals were subject to substantial open-system behaviour, documented by very high initial (234U/238U) activity ratios. The process that was proposed to explain the activity ratios of these corals is U gain with subsequent U loss after a specific amount of time. The amount of U loss is assumed to be proportional to the amount of U previously gained. The application of our new method aims to test whether this diagenetic scenario can be verified.
NASA Astrophysics Data System (ADS)
Shoham, Erez; Benayahu, Yehuda
2017-03-01
Mesophotic coral-reef ecosystems (MCEs), which comprise the light-dependent communities of corals and other organisms found at depths between 30 and 150 m, have received very little study to date. However, current technological advances, such as remotely operated vehicles and closed-circuit rebreather diving, now enable their thorough investigation. Following the reef-building stony corals, octocorals are the second most common benthic component on many shallow reefs and a major component on deep reefs, the Red Sea included. This study is the first to examine octocoral community features on upper MCEs based on species-level identification and to compare them with the shallower reef zones. The study was carried out at Eilat (Gulf of Aqaba, northern Red Sea), comparing octocoral communities at two mesophotic reefs (30-45 m) and two shallow reef zones (reef flat and upper fore-reef) by belt transects. A total of 30 octocoral species were identified, with higher species richness on the upper MCEs compared to the shallower reefs. Although the MCEs were found to host a higher number of species than the shallower reefs, both featured a similar diversity. Each reef zone revealed a unique octocoral species composition and distinct community structure, with only 16% of the species shared by both the MCEs and the shallower reefs. This study has revealed an almost exclusive dominance of zooxanthellate species at the studied upper MCE reefs, thus indicating an adequate light regime for photosynthesis there. The findings should encourage similar studies on other reefs, aimed at understanding the spatiotemporal features and ecological role of octocorals in reef ecosystems down to the deepest limit of the MCEs.
Wave Dissipation on Low- to Super-Energy Coral Reefs
NASA Astrophysics Data System (ADS)
Harris, D. L.
2016-02-01
Coral reefs are valuable, complex and bio-diverse ecosystems and are also known to be one of the most effective barriers to swell events in coastal environments. Previous research has found coral reefs to be remarkably efficient in removing most of the wave energy during the initial breaking and transformation on the reef flats. The rate of dissipation is so rapid that coral reefs have been referred to as rougher than any known coastal barrier. The dissipation of wave energy across reef flats is crucial in maintaining the relatively low-energy conditions in the back reef and lagoonal environments providing vital protection to adjacent beach or coastal regions from cyclone and storm events. A shift in the regulation of wave energy by reef flats could have catastrophic consequences ecologically, socially, and economically. This study examined the dissipation of wave energy during two swell events in Tahiti and Moorea, French Polyesia. Field sites were chosen in varying degrees of exposure and geomorphology from low-energy protected sites (Tiahura, Moorea) to super-energy sites (Teahupo'o, Tahiti). Waves were measured during two moderate to large swell events in cross reef transects using short-term high-resolution pressure transducers. Wave conditions were found to be similar in all back reef locations despite the very different wave exposure at each reef site. However, wave conditions on the reef flats were different and mirrored the variation in wave exposure with depth over the reef flat the primary regulator of reef flat wave height. These results indicate that coral reef flats evolve morphodynamically with the wave climate, which creates coral reef geomorphologies capable of dissipating wave energy that results in similar back reef wave conditions regardless of the offshore wave climate.