Sample records for reference coupled cluster

  1. Singlet-paired coupled cluster theory for open shells

    NASA Astrophysics Data System (ADS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2016-06-01

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior formore » strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference.« less

  3. Perturbative universal state-selective correction for state-specific multi-reference coupled cluster methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Banik, Subrata; Kowalski, Karol

    2016-10-28

    The implementation details of the universal state-selective (USS) multi-reference coupled cluster (MRCC) formalism with singles and doubles (USS(2)) are discussed on the example of several benchmark systems. We demonstrate that the USS(2) formalism is capable of improving accuracies of state specific multi-reference coupled-cluster (MRCC) methods based on the Brillouin-Wigner and Mukherjee’s sufficiency conditions. Additionally, it is shown that the USS(2) approach significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals. We also discuss the perturbative USS(2) formulations that significantly reduce numerical overhead of the full USS(2) method.

  4. Discontinuities-free complete-active-space state–specific multi–reference coupled cluster theory for describing bond stretching and dissociation

    DOE PAGES

    Zaporozhets, Irina A.; Ivanov, Vladimir V.; Lyakh, Dmitry I.; ...

    2015-07-13

    The earlier proposed multi-reference state-specific coupled-cluster theory with the complete active space reference suffered from a problem of energy discontinuities when the formal reference state was changing in the calculation of the potential energy curve (PEC). A simple remedy to the discontinuity problem is found and is presented in this work. It involves using natural complete active space self-consistent field active orbitals in the complete active space coupled-cluster calculations. As a result, the approach gives smooth PECs for different types of dissociation problems, as illustrated in the calculations of the dissociation of the single bond in the hydrogen fluorine moleculemore » and of the symmetric double-bond dissociation in the water molecule.« less

  5. A quasiparticle-based multi-reference coupled-cluster method.

    PubMed

    Rolik, Zoltán; Kállay, Mihály

    2014-10-07

    The purpose of this paper is to introduce a quasiparticle-based multi-reference coupled-cluster (MRCC) approach. The quasiparticles are introduced via a unitary transformation which allows us to represent a complete active space reference function and other elements of an orthonormal multi-reference (MR) basis in a determinant-like form. The quasiparticle creation and annihilation operators satisfy the fermion anti-commutation relations. On the basis of these quasiparticles, a generalization of the normal-ordered operator products for the MR case can be introduced as an alternative to the approach of Mukherjee and Kutzelnigg [Recent Prog. Many-Body Theor. 4, 127 (1995); Mukherjee and Kutzelnigg, J. Chem. Phys. 107, 432 (1997)]. Based on the new normal ordering any quasiparticle-based theory can be formulated using the well-known diagram techniques. Beyond the general quasiparticle framework we also present a possible realization of the unitary transformation. The suggested transformation has an exponential form where the parameters, holding exclusively active indices, are defined in a form similar to the wave operator of the unitary coupled-cluster approach. The definition of our quasiparticle-based MRCC approach strictly follows the form of the single-reference coupled-cluster method and retains several of its beneficial properties. Test results for small systems are presented using a pilot implementation of the new approach and compared to those obtained by other MR methods.

  6. A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito

    2017-08-01

    A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.

  7. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  8. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of termsmore » is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N{sub 2} problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree–Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT-n), and 3) via an excited state approximation through the equation of motion (EOM) approach (EOM-DCD, EOM-DCSD). The EOM-CC method is used to identify lower-energy CC solutions to overcome singularities in the CC potential energy curves. It is also shown that UHF based CC and DC methods behave very similarly in bond-breaking of N{sub 2}, and that using spatially broken but spin preserving SCF references makes the CCSD solutions better than those for DCSD.« less

  9. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  10. Coupled-cluster computations of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Hagen, G.; Papenbrock, T.; Hjorth-Jensen, M.; Dean, D. J.

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.

  11. Structure, stability, and properties of the trans peroxo nitrate radical: the importance of nondynamic correlation.

    PubMed

    Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav

    2014-02-27

    We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.

  12. Approximate solution of coupled cluster equations: application to the coupled cluster doubles method and non-covalent interacting systems.

    PubMed

    Smiga, Szymon; Fabiano, Eduardo

    2017-11-15

    We have developed a simplified coupled cluster (SCC) methodology, using the basic idea of scaled MP2 methods. The scheme has been applied to the coupled cluster double equations and implemented in three different non-iterative variants. This new method (especially the SCCD[3] variant, which utilizes a spin-resolved formalism) has been found to be very efficient and to yield an accurate approximation of the reference CCD results for both total and interaction energies of different atoms and molecules. Furthermore, we demonstrate that the equations determining the scaling coefficients for the SCCD[3] approach can generate non-empirical SCS-MP2 scaling coefficients which are in good agreement with previous theoretical investigations.

  13. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  14. Attenuated coupled cluster: a heuristic polynomial similarity transformation incorporating spin symmetry projection into traditional coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Gomez, John A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2017-11-01

    In electronic structure theory, restricted single-reference coupled cluster (CC) captures weak correlation but fails catastrophically under strong correlation. Spin-projected unrestricted Hartree-Fock (SUHF), on the other hand, misses weak correlation but captures a large portion of strong correlation. The theoretical description of many important processes, e.g. molecular dissociation, requires a method capable of accurately capturing both weak and strong correlation simultaneously, and would likely benefit from a combined CC-SUHF approach. Based on what we have recently learned about SUHF written as particle-hole excitations out of a symmetry-adapted reference determinant, we here propose a heuristic CC doubles model to attenuate the dominant spin collective channel of the quadratic terms in the CC equations. Proof of principle results presented here are encouraging and point to several paths forward for improving the method further.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaporozhets, Irina A.; Ivanov, Vladimir V.; Lyakh, Dmitry I.

    The earlier proposed multi-reference state-specific coupled-cluster theory with the complete active space reference suffered from a problem of energy discontinuities when the formal reference state was changing in the calculation of the potential energy curve (PEC). A simple remedy to the discontinuity problem is found and is presented in this work. It involves using natural complete active space self-consistent field active orbitals in the complete active space coupled-cluster calculations. As a result, the approach gives smooth PECs for different types of dissociation problems, as illustrated in the calculations of the dissociation of the single bond in the hydrogen fluorine moleculemore » and of the symmetric double-bond dissociation in the water molecule.« less

  16. Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment

    DTIC Science & Technology

    2009-01-01

    reference point have the smallest unbiased RMSD value (Fig. 3). It would appear that the cluster of model points closest to the reference point may...total RMSD values. This is particularly the case for phyto- plankton absorption (Fig. 3B) where the cluster of points closest to the reference...pattern statistics and the bias (difference of mean values) each magnitude of the total Root-Mean-Square Difference ( RMSD ). An alternative skill score and

  17. A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: theory, implementation, and examples.

    PubMed

    Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav

    2015-01-28

    We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N(6) does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.

  18. Recent advances in spin-free state-specific and state-universal multi-reference coupled cluster formalisms: A unitary group adapted approach

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-06-01

    We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.

  19. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster

    NASA Astrophysics Data System (ADS)

    Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony

    2017-04-01

    A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.

  20. Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlen-Strothman, J. M.; Henderson, T. H.; Hermes, M. R.

    Coupled cluster and symmetry projected Hartree-Fock are two central paradigms in electronic structure theory. However, they are very different. Single reference coupled cluster is highly successful for treating weakly correlated systems, but fails under strong correlation unless one sacrifices good quantum numbers and works with broken-symmetry wave functions, which is unphysical for finite systems. Symmetry projection is effective for the treatment of strong correlation at the mean-field level through multireference non-orthogonal configuration interaction wavefunctions, but unlike coupled cluster, it is neither size extensive nor ideal for treating dynamic correlation. We here examine different scenarios for merging these two dissimilar theories.more » We carry out this exercise over the integrable Lipkin model Hamiltonian, which despite its simplicity, encompasses non-trivial physics for degenerate systems and can be solved via diagonalization for a very large number of particles. We show how symmetry projection and coupled cluster doubles individually fail in different correlation limits, whereas models that merge these two theories are highly successful over the entire phase diagram. Despite the simplicity of the Lipkin Hamiltonian, the lessons learned in this work will be useful for building an ab initio symmetry projected coupled cluster theory that we expect to be accurate in the weakly and strongly correlated limits, as well as the recoupling regime.« less

  1. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  2. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  3. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  4. Solvatochromic shifts from coupled-cluster theory embedded in density functional theory

    NASA Astrophysics Data System (ADS)

    Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas

    2013-09-01

    Building on the framework recently reported for determining general response properties for frozen-density embedding [S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012)], 10.1063/1.3675845, in this work we report a first implementation of an embedded coupled-cluster in density-functional theory (CC-in-DFT) scheme for electronic excitations, where only the response of the active subsystem is taken into account. The formalism is applied to the calculation of coupled-cluster excitation energies of water and uracil in aqueous solution. We find that the CC-in-DFT results are in good agreement with reference calculations and experimental results. The accuracy of calculations is mainly sensitive to factors influencing the correlation treatment (basis set quality, truncation of the cluster operator) and to the embedding treatment of the ground-state (choice of density functionals). This allows for efficient approximations at the excited state calculation step without compromising the accuracy. This approximate scheme makes it possible to use a first principles approach to investigate environment effects with specific interactions at coupled-cluster level of theory at a cost comparable to that of calculations of the individual subsystems in vacuum.

  5. Properties of coupled-cluster equations originating in excitation sub-algebras

    NASA Astrophysics Data System (ADS)

    Kowalski, Karol

    2018-03-01

    In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.

  6. A comparison of the coupled cluster and internally contracted averaged coupled-pair functional levels of theory for the calculation of the MCH2(+) binding energies for M = Sc to Cu

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Scuseria, Gustavo E.

    1992-01-01

    The correlation contribution to the M-C binding energy for the MCH2(+) systems can exceed 100 kcal/mol. At the self-consistent field (SCF) level, these systems can be more than 50 kcal/mol above the fragment energies. In spite of the poor zeroth-order reference, the coupled cluster single and double excitation method with a perturbational estimate of triple excitations, CCSD(T), method is shown to provide an accurate description of these systems. The maximum difference between the CCSD(T) and internally contracted averaged coupled-pair functional binding energies is 1.5 kcal/mol for CrCH2(+), with the remaining systems agreeing to within 1.0 kcal/mol.

  7. Different equation-of-motion coupled cluster methods with different reference functions: The formyl radical

    NASA Astrophysics Data System (ADS)

    Kuś, Tomasz; Bartlett, Rodney J.

    2008-09-01

    The doublet and quartet excited states of the formyl radical have been studied by the equation-of-motion (EOM) coupled cluster (CC) method. The Sz spin-conserving singles and doubles (EOM-EE-CCSD) and singles, doubles, and triples (EOM-EE-CCSDT) approaches, as well as the spin-flipped singles and doubles (EOM-SF-CCSD) method have been applied, subject to unrestricted Hartree-Fock (HF), restricted open-shell HF, and quasirestricted HF references. The structural parameters, vertical and adiabatic excitation energies, and harmonic vibrational frequencies have been calculated. The issue of the reference function choice for the spin-flipped (SF) method and its impact on the results has been discussed using the experimental data and theoretical results available. The results show that if the appropriate reference function is chosen so that target states differ from the reference by only single excitations, then EOM-EE-CCSD and EOM-SF-CCSD methods give a very good description of the excited states. For the states that have a non-negligible contribution of the doubly excited configurations one is able to use the SF method with such a reference function, that in most cases the performance of the EOM-SF-CCSD method is better than that of the EOM-EE-CCSD approach.

  8. Novel strategy to implement active-space coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Rolik, Zoltán; Kállay, Mihály

    2018-03-01

    A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.

  9. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  10. Bridging single and multireference coupled cluster theories with universal state selective formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Kowalski, Karol

    2013-05-28

    The universal state selective (USS) multireference approach is used to construct new energy functionals which offers a unique possibility of bridging single and multireference coupled cluster theories (SR/MRCC). These functionals, which can be used to develop iterative and non-iterative approaches, utilize a special form of the trial wavefunctions, which assure additive separability (or size-consistency) of the USS energies in the non-interacting subsystem limit. When the USS formalism is combined with approximate SRCC theories, the resulting formalism can be viewed as a size-consistent version of the method of moments of coupled cluster equations (MMCC) employing a MRCC trial wavefunction. Special casesmore » of the USS formulations, which utilize single reference state specific CC (V.V. Ivanov, D.I. Lyakh, L. Adamowicz, Phys. Chem. Chem. Phys. 11, 2355 (2009)) and tailored CC (T. Kinoshita, O. Hino, R.J. Bartlett, J. Chem. Phys. 123, 074106 (2005)) expansions are also discussed.« less

  11. Weak Lensing Peaks in Simulated Light-Cones: Investigating the Coupling between Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.

    2018-05-01

    In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20% with respect to the reference ΛCDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z ≤ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.

  12. Ab initio multireference study of the BN molecule

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.; Scuseria, Gustavo E.; Taylor, Peter R.

    1992-01-01

    The lowest 1Sigma(+) and 3Pi states of the BN molecule are studied using multireference configuration interaction (MRCI) and averaged coupled-pair functional (ACPF) methods and large atomic natural orbital (ANO) basis sets, as well as several coupled cluster methods. Our calculations strongly support a 3Pi ground state, but the a1Sigma(+) state lies only 381 +/- 100/cm higher. The a1Sigma(+) state wave function exhibits strong multireference character and, consequently, the predictions of the perturbationally-based single-reference CCSD(T) coupled cluster method are not as reliable in this case as the multireference results. The theoretical predictions for the spectroscopic constants of BN are in good agreement with experiment for the Chi3Pi state, but strongly suggest a misassignment of the fundamental vibrational frequency for the a1Sigma(+) state.

  13. A diagnostic for determining the quality of single-reference electron correlation methods

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Taylor, Peter R.

    1989-01-01

    It was recently proposed that the Euclidian norm of the t(sub 1) vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appopriate. This diagnostic, T(sub 1) is defined for use with self-consistent-field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T(sub 1) is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of non-dynamical electron correlation and is far superior to C(sub 0) from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T(sub 1) (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.

  14. A diagnostic for determining the quality of single-reference electron correlation methods

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Taylor, Peter R.

    1989-01-01

    It was recently proposed that the Euclidian norm of the t sub 1 vector of the coupled cluster wave function (normalized by the number of electrons included in the correlation procedure) could be used to determine whether a single-reference-based electron correlation procedure is appropriate. This diagnostic, T sub 1, is defined for use with self consistent field molecular orbitals and is invariant to the same orbital rotations as the coupled cluster energy. T sub 1 is investigated for several different chemical systems which exhibit a range of multireference behavior, and is shown to be an excellent measure of the importance of nondynamical electron correlation and is far superior to C sub 0 from a singles and doubles configuration interaction wave function. It is further suggested that when the aim is to recover a large fraction of the dynamical electron correlation energy, a large T sub 1 (i.e., greater than 0.02) probably indicates the need for a multireference electron correlation procedure.

  15. The externally corrected coupled cluster approach with four- and five-body clusters from the CASSCF wave function.

    PubMed

    Xu, Enhua; Li, Shuhua

    2015-03-07

    An externally corrected CCSDt (coupled cluster with singles, doubles, and active triples) approach employing four- and five-body clusters from the complete active space self-consistent field (CASSCF) wave function (denoted as ecCCSDt-CASSCF) is presented. The quadruple and quintuple excitation amplitudes within the active space are extracted from the CASSCF wave function and then fed into the CCSDt-like equations, which can be solved in an iterative way as the standard CCSDt equations. With a size-extensive CASSCF reference function, the ecCCSDt-CASSCF method is size-extensive. When the CASSCF wave function is readily available, the computational cost of the ecCCSDt-CASSCF method scales as the popular CCSD method (if the number of active orbitals is small compared to the total number of orbitals). The ecCCSDt-CASSCF approach has been applied to investigate the potential energy surface for the simultaneous dissociation of two O-H bonds in H2O, the equilibrium distances and spectroscopic constants of 4 diatomic molecules (F2(+), O2(+), Be2, and NiC), and the reaction barriers for the automerization reaction of cyclobutadiene and the Cl + O3 → ClO + O2 reaction. In most cases, the ecCCSDt-CASSCF approach can provide better results than the CASPT2 (second order perturbation theory with a CASSCF reference function) and CCSDT methods.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul; Matthews, Devin A.

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test setmore » of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.« less

  17. Singlet Excited States of Cl and Br Molecules: New Theories Applied to the -XO and -XO2 (X=C1 and Br) Chromophores

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Srinivasan, Parthiban; Head-Gordon, Martin; Huo, Winifred (Technical Monitor)

    1998-01-01

    Electronic excitation energies are determined using single-reference based theories derived from response equations involving perturbation theory and coupled-cluster theory. These methods are applied to the singlet manifold of excited electronic states of the HClO, HBrO, HOClO, HOBrO, HClO2, and HBrO2 molecules. The reliability of the various perturbation theory approaches is assessed by comparison to the linear-response singles and doubles coupled-cluster (LRCCSD) method. The excitation energies for the Y-XO compounds are compared and contrasted for Y=H and HO, and X=Cl and Br. A similar comparison is performed for the H-XO2 compounds.

  18. Equation-of-motion coupled-cluster method for ionised states with spin-orbit coupling using open-shell reference wavefunction

    NASA Astrophysics Data System (ADS)

    Wang, Zhifan; Wang, Fan

    2018-04-01

    The equation-of-motion coupled-cluster method for ionised states at the singles and doubles level (EOM-IP-CCSD) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) steps is extended to spatially non-degenerate open-shell systems such as high spin states of s1, p3, σ1 or π2 configuration in this work. Pseudopotentials are employed to treat relativistic effects and spin-unrestricted scalar relativistic HF determinant is adopted as reference in calculations. Symmetry is not exploited in the implementation since both time-reversal and spatial symmetry is broken due to SOC. IPs with the EOM-IP-CCSD approach are those from the 3Σ1- states for high spin state of π2 configuration, while the ground state is the 3Σ0- state. When removing an electron from the high spin state of p3 configuration, only the 3P2 state can be reached. The open-shell EOM-IP-CCSD approach with SOC was employed in calculating IPs of some open-shell atoms with s1 configuration, diatomic molecules with π2 configuration and SOC splitting of the ionised π1 state, as well as IPs of VA atoms with p3 configuration. Our results demonstrate that this approach can be applied to ionised states of spatially non-degenerate open-shell states containing heavy elements with reasonable accuracy.

  19. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    DOE PAGES

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; ...

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an N max=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is relatively constant for all five nuclei, in both the Hartree-Fock-Bogoliubov and BCCD approximations. Conclusions: The newly developed many-body formalism increases the potential span of ab initio calculations based on single-reference coupled cluster techniques tremendously, i.e., potentially to reach several hundred additional midmass nuclei. The new formalism offers a wealth of potential applications and further extensions dedicated to the description of ground and excited states of open-shell nuclei. Short-term goals include the implementation of three-nucleon forces at the normal-ordered two-body level. Midterm extensions include the approximate treatment of triples corrections and the development of the equation-of-motion methodology to treat both excited states and odd nuclei. Long-term extensions include exact restoration of U(1) and SU(2) symmetries.« less

  20. Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction: Application to ionization potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Himadri, E-mail: hmdrpthk@gmail.com; Sasmal, Sudip, E-mail: sudipsasmal.chem@gmail.com; Vaval, Nayana

    2016-08-21

    The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximationsmore » in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.« less

  1. Dealing with chemical reaction pathways and electronic excitations in molecular systems via renormalized and active-space coupled-cluster methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piecuch, Piotr; Li, Wei; Lutz, Jesse J.

    Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionizedmore » formalisms.« less

  2. Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU-GPU Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaskaran-Nair, Kiran; Ma, Wenjing; Krishnamoorthy, Sriram

    2013-04-09

    A novel parallel algorithm for non-iterative multireference coupled cluster (MRCC) theories, which merges recently introduced reference-level parallelism (RLP) [K. Bhaskaran-Nair, J.Brabec, E. Aprà, H.J.J. van Dam, J. Pittner, K. Kowalski, J. Chem. Phys. 137, 094112 (2012)] with the possibility of accelerating numerical calculations using graphics processing unit (GPU) is presented. We discuss the performance of this algorithm on the example of the MRCCSD(T) method (iterative singles and doubles and perturbative triples), where the corrections due to triples are added to the diagonal elements of the MRCCSD (iterative singles and doubles) effective Hamiltonian matrix. The performance of the combined RLP/GPU algorithmmore » is illustrated on the example of the Brillouin-Wigner (BW) and Mukherjee (Mk) state-specific MRCCSD(T) formulations.« less

  3. Orbitally invariant internally contracted multireference unitary coupled cluster theory and its perturbative approximation: theory and test calculations of second order approximation.

    PubMed

    Chen, Zhenhua; Hoffmann, Mark R

    2012-07-07

    A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.

  4. Nuclear structure studies performed using the (18O,16O) two-neutron transfer reactions

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Ferreira, J. L.; Foti, A.; Gargano, A.; Lenzi, S. M.; Linares, R.; Lubian, J.; Santagati, G.

    2018-02-01

    Excitation energy spectra and absolute cross section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. This reaction selectively populates two-neutron configurations in the states of the residual nucleus. Exact finite-range coupled reaction channel calculations are used to analyse the data. Two approaches are discussed: the extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre of mass reference frame, derived from shell-model calculations using the Moshinsky transformation brackets. The results describe well the experimental cross section and highlight cluster configurations in the involved wave functions.

  5. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.

  6. Systematic design of active spaces for multi-reference calculations of singlet-triplet gaps of organic diradicals, with benchmarks against doubly electron-attached coupled-cluster data

    NASA Astrophysics Data System (ADS)

    Stoneburner, Samuel J.; Shen, Jun; Ajala, Adeayo O.; Piecuch, Piotr; Truhlar, Donald G.; Gagliardi, Laura

    2017-10-01

    Singlet-triplet gaps in diradical organic π-systems are of interest in many applications. In this study, we calculate them in a series of molecules, including cyclobutadiene and its derivatives and cyclopentadienyl cation, by using correlated participating orbitals within the complete active space (CAS) and restricted active space (RAS) self-consistent field frameworks, followed by second-order perturbation theory (CASPT2 and RASPT2). These calculations are evaluated by comparison with the results of doubly electron-attached (DEA) equation-of-motion (EOM) coupled-cluster (CC) calculations with up to 4-particle-2-hole (4p-2h) excitations. We find active spaces that can accurately reproduce the DEA-EOMCC(4p-2h) data while being small enough to be applicable to larger organic diradicals.

  7. Insight from first principles into the stability and magnetism of alkali-metal superoxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Arcelus, Oier; Suaud, Nicolas; Katcho, Nebil A.; Carrasco, Javier

    2017-05-01

    Alkali-metal superoxides are gaining increasing interest as 2p magnetic materials for information and energy storage. Despite significant research efforts on bulk materials, gaps in our knowledge of the electronic and magnetic properties at the nanoscale still remain. Here, we focused on the role that structural details play in determining stability, electronic structure, and magnetic couplings of (MO2)n (M = Li, Na, and K, with n = 2-8) clusters. Using first-principles density functional theory based on the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functionals, we examined the effect of atomic structure on the relative stability of different polymorphs within each investigated cluster size. We found that small clusters prefer to form planar-ring structures, whereas non-planar geometries become more stable when increasing the cluster size. However, the crossover point depends on the nature of the alkali metal. Our analysis revealed that electrostatic interactions govern the highly ionic M-O2 bonding and ultimately control the relative stability between 2-D and 3-D geometries. In addition, we analyzed the weak magnetic couplings between superoxide molecules in (NaO2)4 clusters comparing model Hamiltonian methods based on Wannier function projections onto πg states with wave function-based multi-reference calculations.

  8. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    PubMed

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  9. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbitmore » coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kizashi; Nishihara, Satomichi; Saito, Toru

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level.more » In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.« less

  11. Learning of spatio-temporal codes in a coupled oscillator system.

    PubMed

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  12. Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering

    DOE PAGES

    White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William; ...

    2017-06-21

    The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less

  13. Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alec F.; Epifanovsky, Evgeny; McCurdy, C. William

    The method of complex basis functions is applied to molecular resonances at correlated levels of theory. Møller-Plesset perturbation theory at second order and equation-of-motion electron attachment coupled-cluster singles and doubles (EOM-EA-CCSD) methods based on a non-Hermitian self-consistent-field reference are used to compute accurate Siegert energies for shape resonances in small molecules including N 2 - , CO - , CO 2 - , and CH 2 O - . Analytic continuation of complex θ-trajectories is used to compute Siegert energies, and the θ-trajectories of energy differences are found to yield more consistent results than those of total energies.more » Furthermore, the ability of such methods to accurately compute complex potential energy surfaces is investigated, and the possibility of using EOM-EA-CCSD for Feshbach resonances is explored in the context of e-helium scattering.« less

  14. Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis

    PubMed Central

    Obeso, David; Pezza, Roberto J; Dawson, Dean

    2013-01-01

    Observations from a wide range of organisms show the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program – sometimes referred to as centromere coupling, and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes. PMID:24126501

  15. Couples, pairs, and clusters: mechanisms and implications of centromere associations in meiosis.

    PubMed

    Obeso, David; Pezza, Roberto J; Dawson, Dean

    2014-03-01

    Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.

  16. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium

    NASA Astrophysics Data System (ADS)

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik

    2018-03-01

    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  17. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium.

    PubMed

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik

    2018-03-14

    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol -1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  18. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-01

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N5 AO to MO transformation in contrast to the ΔCCSD method.

  19. Inclusion of orbital relaxation and correlation through the unitary group adapted open shell coupled cluster theory using non-relativistic and scalar relativistic Hamiltonians to study the core ionization potential of molecules containing light to medium-heavy elements.

    PubMed

    Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2018-02-07

    The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N 5 AO to MO transformation in contrast to the ΔCCSD method.

  20. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang

    2013-12-01

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.

  1. Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Zhang, Gang

    2013-12-15

    This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme ismore » confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.« less

  2. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding.

    PubMed

    Krause, Katharina; Klopper, Wim

    2016-01-28

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  3. Communication: A simplified coupled-cluster Lagrangian for polarizable embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, Katharina; Klopper, Wim, E-mail: klopper@kit.edu

    A simplified coupled-cluster Lagrangian, which is linear in the Lagrangian multipliers, is proposed for the coupled-cluster treatment of a quantum mechanical system in a polarizable environment. In the simplified approach, the amplitude equations are decoupled from the Lagrangian multipliers and the energy obtained from the projected coupled-cluster equation corresponds to a stationary point of the Lagrangian.

  4. On the cooperativity of association and reference energy scales in thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2016-11-01

    Equations of state for hydrogen bonding fluids are typically described by two energy scales. A short range highly directional hydrogen bonding energy scale as well as a reference energy scale which accounts for dispersion and orientationally averaged multi-pole attractions. These energy scales are always treated independently. In recent years, extensive first principles quantum mechanics calculations on small water clusters have shown that both hydrogen bond and reference energy scales depend on the number of incident hydrogen bonds of the water molecule. In this work, we propose a new methodology to couple the reference energy scale to the degree of hydrogen bonding in the fluid. We demonstrate the utility of the new approach by showing that it gives improved predictions of water-hydrocarbon mutual solubilities.

  5. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  6. Ordering of the O-O stretching vibrational frequencies in ozone

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.; Lee, Timothy J.; Scheiner, Andrew C.; Schaefer, Henry F., III

    1989-01-01

    The ordering of nu1 and nu3 for O3 is incorrectly predicted by most theoretical methods, including some very high level methods. The first systematic electron correlation method based on one-reference configuration to solve this problem is the coupled cluster single and double excitation method. However, a relatively large basis set, triple zeta plus double polarization is required. Comparison with other theoretical methods is made.

  7. The Geomorphology of Puget Sound Beaches

    DTIC Science & Technology

    2006-10-01

    of longer-term climate variations it is referred to as a meteorological residual. An analysis of regional air pressure and water level observations...wave and tidal climate . For further details on the analy- sis rational and methods, see Finlayson (2006) The clustering analysis resulted in four profile...energy compared with incident waves on the Pacific Coast, and (2) the wave climate is tightly coupled with local wind patterns. The direction of

  8. Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.

    1990-01-01

    The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.

  9. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastegger, Michael; Kauffmann, Clemens; Marquetand, Philipp, E-mail: philipp.marquetand@univie.ac.at

    Many approaches, which have been developed to express the potential energy of large systems, exploit the locality of the atomic interactions. A prominent example is the fragmentation methods in which the quantum chemical calculations are carried out for overlapping small fragments of a given molecule that are then combined in a second step to yield the system’s total energy. Here we compare the accuracy of the systematic molecular fragmentation approach with the performance of high-dimensional neural network (HDNN) potentials introduced by Behler and Parrinello. HDNN potentials are similar in spirit to the fragmentation approach in that the total energy ismore » constructed as a sum of environment-dependent atomic energies, which are derived indirectly from electronic structure calculations. As a benchmark set, we use all-trans alkanes containing up to eleven carbon atoms at the coupled cluster level of theory. These molecules have been chosen because they allow to extrapolate reliable reference energies for very long chains, enabling an assessment of the energies obtained by both methods for alkanes including up to 10 000 carbon atoms. We find that both methods predict high-quality energies with the HDNN potentials yielding smaller errors with respect to the coupled cluster reference.« less

  10. Time-dependent risks of cancer clustering among couples: a nationwide population-based cohort study in Taiwan.

    PubMed

    Wang, Jong-Yi; Liang, Yia-Wen; Yeh, Chun-Chen; Liu, Chiu-Shong; Wang, Chen-Yu

    2018-02-21

    Spousal clustering of cancer warrants attention. Whether the common environment or high-age vulnerability determines cancer clustering is unclear. The risk of clustering in couples versus non-couples is undetermined. The time to cancer clustering after the first cancer diagnosis is yet to be reported. This study investigated cancer clustering over time among couples by using nationwide data. A cohort of 5643 married couples in the 2002-2013 Taiwan National Health Insurance Research Database was identified and randomly matched with 5643 non-couple pairs through dual propensity score matching. Factors associated with clustering (both spouses with tumours) were analysed by using the Cox proportional hazard model. Propensity-matched analysis revealed that the risk of clustering of all tumours among couples (13.70%) was significantly higher than that among non-couples (11.84%) (OR=1.182, 95% CI 1.058 to 1.321, P=0.0031). The median time to clustering of all tumours and of malignant tumours was 2.92 and 2.32 years, respectively. Risk characteristics associated with clustering included high age and comorbidity. Shared environmental factors among spouses might be linked to a high incidence of cancer clustering. Cancer incidence in one spouse may signal cancer vulnerability in the other spouse. Promoting family-oriented cancer care in vulnerable families and preventing shared lifestyle risk factors for cancer are suggested. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Stochastic coupled cluster theory: Efficient sampling of the coupled cluster expansion

    NASA Astrophysics Data System (ADS)

    Scott, Charles J. C.; Thom, Alex J. W.

    2017-09-01

    We consider the sampling of the coupled cluster expansion within stochastic coupled cluster theory. Observing the limitations of previous approaches due to the inherently non-linear behavior of a coupled cluster wavefunction representation, we propose new approaches based on an intuitive, well-defined condition for sampling weights and on sampling the expansion in cluster operators of different excitation levels. We term these modifications even and truncated selections, respectively. Utilising both approaches demonstrates dramatically improved calculation stability as well as reduced computational and memory costs. These modifications are particularly effective at higher truncation levels owing to the large number of terms within the cluster expansion that can be neglected, as demonstrated by the reduction of the number of terms to be sampled when truncating at triple excitations by 77% and hextuple excitations by 98%.

  12. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  13. More than one way to be happy: a typology of marital happiness.

    PubMed

    Rauer, Amy; Volling, Brenda

    2013-09-01

    This study utilized observational and self-report data from 57 happily married couples to explore assumptions regarding marital happiness. Suggesting that happily married couples are not a homogeneous group, cluster analyses revealed the existence of three types of couples based on their observed behaviors in a problem-solving task: (1) mutually engaged couples (characterized by both spouses' higher negative and positive problem-solving); (2) mutually supportive couples (characterized by both spouses' higher positivity and support); and (3) wife compensation couples (characterized by high wife positivity). Although couples in all three clusters were equally happy with and committed to their marriages, these clusters were differentially associated with spouses' evaluations of their marriage. Spouses in the mutually supportive cluster reported greater intimacy and maintenance and less conflict and ambivalence, although this was more consistently the case in comparison to the wife compensation cluster, as opposed to the mutually engaged cluster. The implications of these typologies are discussed as they pertain to efforts on the part of both practitioners to promote marital happiness and repair marital relations when couples are faced with difficulties. © FPI, Inc.

  14. Equation-of-motion coupled cluster method for the description of the high spin excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.

    2016-04-21

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5more » diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.« less

  15. Universal state-selective corrections to multireference coupled-cluster theories with single and double excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; van Dam, Hubertus JJ; Pittner, Jiri

    2012-03-28

    The recently proposed Universal State-Selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate Multi-Reference Coupled Cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential Ansatz. In this letter we report on the performance of a simple USS correction to the Brillouin-Wigner MRCC (BW-MRCC) formalism employing single and double excitations (BW-MRCCSD). It is shown that the resulting formalism (USS-BW-MRCCSD), which uses the manifold of single and double excitations to construct the correction, can be related to a posteriorimore » corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the results of the USS-BW-MRCCSD method with results of the BW-MRCCSD approach employing a posteriori corrections and with results obtained with the Full Configuration Interaction (FCI) method.« less

  16. Co-Authorship and Bibliographic Coupling Network Effects on Citations

    PubMed Central

    Biscaro, Claudio; Giupponi, Carlo

    2014-01-01

    This paper analyzes the effects of the co-authorship and bibliographic coupling networks on the citations received by scientific articles. It expands prior research that limited its focus on the position of co-authors and incorporates the effects of the use of knowledge sources within articles: references. By creating a network on the basis of shared references, we propose a way to understand whether an article bridges among extant strands of literature and infer the size of its research community and its embeddedness. Thus, we map onto the article – our unit of analysis – the metrics of authors' position in the co-authorship network and of the use of knowledge on which the scientific article is grounded. Specifically, we adopt centrality measures – degree, betweenneess, and closeness centrality – in the co-authorship network and degree, betweenness centrality and clustering coefficient in the bibliographic coupling and show their influence on the citations received in first two years after the year of publication. Findings show that authors' degree positively impacts citations. Also closeness centrality has a positive effect manifested only when the giant component is relevant. Author's betweenness centrality has instead a negative effect that persists until the giant component - largest component of the network in which all nodes can be linked by a path - is relevant. Moreover, articles that draw on fragmented strands of literature tend to be cited more, whereas the size of the scientific research community and the embeddedness of the article in a cohesive cluster of literature have no effect. PMID:24911416

  17. Cluster decomposition of full configuration interaction wave functions: A tool for chemical interpretation of systems with strong correlation

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Tubman, Norm M.; Whaley, K. Birgitta; Head-Gordon, Martin

    2017-10-01

    Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.

  18. Evaluation of a demand-creation intervention for couples' HIV testing services among married or cohabiting individuals in Rakai, Uganda: a cluster-randomized intervention trial.

    PubMed

    Matovu, Joseph K B; Todd, Jim; Wanyenze, Rhoda K; Kairania, Robert; Serwadda, David; Wabwire-Mangen, Fred

    2016-08-08

    Uptake of couples' HIV counseling and testing (couples' HCT) services remains largely low in most settings. We report the effect of a demand-creation intervention trial on couples' HCT uptake among married or cohabiting individuals who had never received couples' HCT. This was a cluster-randomized intervention trial implemented in three study regions with differing HIV prevalence levels (range: 9-43 %) in Rakai district, southwestern Uganda, between February and September 2014. We randomly assigned six clusters (1:1) to receive the intervention or serve as the comparison arm using computer-generated random numbers. In the intervention clusters, individuals attended small group, couple and male-focused interactive sessions, reinforced with testimonies from 'expert couples', and received invitation coupons to test together with their partners at designated health facilities. In the comparison clusters, participants attended general adult health education sessions but received no invitation coupons. The primary outcome was couples' HCT uptake, measured 12 months post-baseline. Baseline data were collected between November 2013 and February 2014 while follow-up data were collected between March and April 2015. We conducted intention-to-treat analysis using a mixed effects Poisson regression model to assess for differences in couples' HCT uptake between the intervention and comparison clusters. Data analysis was conducted using STATA statistical software, version 14.1. Of 2135 married or cohabiting individuals interviewed at baseline, 42 % (n = 846) had ever received couples' HCT. Of those who had never received couples' HCT (n = 1,174), 697 were interviewed in the intervention clusters while 477 were interviewed in the comparison clusters. 73.6 % (n = 513) of those interviewed in the intervention and 82.6 % (n = 394) of those interviewed in the comparison cluster were interviewed at follow-up. Of those interviewed, 72.3 % (n = 371) in the intervention and 65.2 % (n = 257) in the comparison clusters received HCT. Couples' HCT uptake was higher in the intervention than in the comparison clusters (20.3 % versus 13.7 %; adjusted prevalence ratio (aPR) = 1.43, 95 % CI: 1.02, 2.01, P = 0.04). Our findings show that a small group, couple and male-focused, demand-creation intervention reinforced with testimonies from 'expert couples', improved uptake of couples' HCT in this rural setting. ClinicalTrials.gov, NCT02492061 . Date of registration: June 14, 2015.

  19. Distinct collective states due to trade-off between attractive and repulsive couplings

    NASA Astrophysics Data System (ADS)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  20. Corepressive interaction and clustering of degrade-and-fire oscillators

    PubMed Central

    Fernandez, Bastien; Tsimring, Lev S.

    2016-01-01

    Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a delayed negative feedback loop as their core element. Here we study the synchronization of DF oscillators coupled through a common repressor field. For weak coupling, initially distinct oscillators remain desynchronized. For stronger coupling, oscillators can be forced to wait in the repressed state until the global repressor field is sufficiently degraded, and then they fire simultaneously forming a synchronized cluster. Our analytical theory provides necessary and sufficient conditions for clustering and specifies the maximum number of clusters that can be formed in the asymptotic regime. We find that in the thermodynamic limit a phase transition occurs at a certain coupling strength from the weakly clustered regime with only microscopic clusters to a strongly clustered regime where at least one giant cluster has to be present. PMID:22181453

  1. Benchmark of Dynamic Electron Correlation Models for Seniority-Zero Wave Functions and Their Application to Thermochemistry.

    PubMed

    Boguslawski, Katharina; Tecmer, Paweł

    2017-12-12

    Wave functions restricted to electron-pair states are promising models to describe static/nondynamic electron correlation effects encountered, for instance, in bond-dissociation processes and transition-metal and actinide chemistry. To reach spectroscopic accuracy, however, the missing dynamic electron correlation effects that cannot be described by electron-pair states need to be included a posteriori. In this Article, we extend the previously presented perturbation theory models with an Antisymmetric Product of 1-reference orbital Geminal (AP1roG) reference function that allows us to describe both static/nondynamic and dynamic electron correlation effects. Specifically, our perturbation theory models combine a diagonal and off-diagonal zero-order Hamiltonian, a single-reference and multireference dual state, and different excitation operators used to construct the projection manifold. We benchmark all proposed models as well as an a posteriori Linearized Coupled Cluster correction on top of AP1roG against CR-CC(2,3) reference data for reaction energies of several closed-shell molecules that are extrapolated to the basis set limit. Moreover, we test the performance of our new methods for multiple bond breaking processes in the homonuclear N 2 , C 2 , and F 2 dimers as well as the heteronuclear BN, CO, and CN + dimers against MRCI-SD, MRCI-SD+Q, and CR-CC(2,3) reference data. Our numerical results indicate that the best performance is obtained from a Linearized Coupled Cluster correction as well as second-order perturbation theory corrections employing a diagonal and off-diagonal zero-order Hamiltonian and a single-determinant dual state. These dynamic corrections on top of AP1roG provide substantial improvements for binding energies and spectroscopic properties obtained with the AP1roG approach, while allowing us to approach chemical accuracy for reaction energies involving closed-shell species.

  2. Preliminary analysis of one year long space climate simulation

    NASA Astrophysics Data System (ADS)

    Facsko, G.; Honkonen, I. J.; Juusola, L.; Viljanen, A.; Vanhamäki, H.; Janhunen, P.; Palmroth, M.; Milan, S. E.

    2013-12-01

    One full year (155 Cluster orbits, from January 29, 2002 to February 2, 2003) is simulated using the Grand Unified Magnetosphere Ionosphere Coupling simulation (GUMICS) in the European Cluster Assimilation Technology project (ECLAT). This enables us to study the performance of a global magnetospheric model in an unprecedented scale both in terms of the amount of available observations and the length of the timeseries that can be compared. The solar wind for the simulated period, obtained from OMNIWeb, is used as input to GUMICS. We present an overview of various comparisons of GUMICS results to observations for the simulated year. Results along the Cluster reference spacecraft orbit to are compared to Cluster measurements. The Cross Polar Cap Potential (CPCP) results are compared to SuperDARN measurements. The IMAGE electrojet indicators (IU, IL) calculated from the ionospheric currents of GUMICS are compared to observations. Finally, Geomagnetically Induced Currents (GIC) calculated from GUMICS results along the Finnish mineral gas pipeline at Mätsälä are also compared to measurements.

  3. A coupled-cluster study of photodetachment cross sections of closed-shell anions

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-01

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  4. A coupled-cluster study of photodetachment cross sections of closed-shell anions.

    PubMed

    Cukras, Janusz; Decleva, Piero; Coriani, Sonia

    2014-11-07

    We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H(-), Li(-), Na(-), F(-), Cl(-), and OH(-). The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.

  5. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kizashi; Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka

    2015-01-01

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  6. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  7. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra.

    PubMed

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  8. An AB Initio Study of SbH_2 and BiH_2: the Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH_2

    NASA Astrophysics Data System (ADS)

    Ostojic, Bojana; Schwerdtfeger, Peter; Bunker, Phil; Jensen, Per

    2016-06-01

    We present the results of ab initio calculations for the lower electronic states of the Group 15 (pnictogen) dihydrides, SbH_2 and BiH_2. For each of these molecules the two lowest electronic states become degenerate at linearity and are therefore subject to the Renner effect. Spin-orbit coupling is also strong in these two heavy-element containing molecules. For the lowest two electronic states of SbH_2, we construct the three dimensional potential energy surfaces and corresponding dipole moment and transition moment surfaces by multi-reference configuration interaction techniques. Including both the Renner effect and spin-orbit coupling, we calculate term values and simulate the rovibrational and rovibronic spectra of SbH_2. Excellent agreement is obtained with the results of matrix isolation infrared spectroscopic studies and with gas phase electronic spectroscopic studies in absorption [1,2]. For the heavier dihydride BiH_2 we calculate bending potential curves and the spin-orbit coupling constant for comparison. For SbH_2 we further study the local mode vibrational behavior and the formation of rovibronic energy level clusters in high angular momentum states. [1] X. Wang, P. F. Souter and L. Andrews, J. Phys. Chem. A 107, 4244-4249 (2003) [2] N. Basco and K. K. Lee, Spectroscopy Letters 1, 13-15 (1968)

  9. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and Rapid Development.

    PubMed

    Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David

    2018-06-11

    Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.

  10. The electronic structure of vanadium monochloride cation (VCl{sup +}): Tackling the complexities of transition metal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeYonker, Nathan J., E-mail: ndyonker@memphis.edu; Halfen, DeWayne T.; Ziurys, Lucy M.

    Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e},more » ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.« less

  11. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine

    DOE PAGES

    Sadybekov, Arman; Krylov, Anna I.

    2017-07-07

    A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less

  12. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadybekov, Arman; Krylov, Anna I.

    A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less

  13. Ab initio coupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone

    DOE PAGES

    Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; ...

    2015-12-09

    In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D 4h-symmetric, 1,2,3,4-cyclobutanetetraone (C 4O 4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π( 1A 1g) state, the singlet 10π( 1A 1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π( 1A 1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π( 1B 2u) and 9π( 3B 2u), respectively, originating from single occupancy of the HOMO and LUMO.more » Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneracies in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π( 3B 2u) < 8π( 1A 1g) < 9π( 1B 2u) < 10π( 1A 1g) and that the 8π( 1A 1g) - 9π( 3B 2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.« less

  14. Recent development in deciphering the structure of luminescent silver nanodots

    NASA Astrophysics Data System (ADS)

    Choi, Sungmoon; Yu, Junhua

    2017-05-01

    Matrix-stabilized silver clusters and stable luminescent few-atom silver clusters, referred to as silver nanodots, show notable difference in their photophysical properties. We present recent research on deciphering the nature of silver clusters and nanodots and understanding the factors that lead to variations in luminescent mechanisms. Due to their relatively simple structure, the matrix-stabilized clusters have been well studied. However, the single-stranded DNA (ssDNA)-stabilized silver nanodots that show the most diverse emission wavelengths and the best photophysical properties remain mysterious species. It is clear that their photophysical properties highly depend on their protection scaffolds. Analyses from combinations of high-performance liquid chromatography, inductively coupled plasma-atomic emission spectroscopy, electrophoresis, and mass spectrometry indicate that about 10 to 20 silver atoms form emissive complexes with ssDNA. However, it is possible that not all of the silver atoms in the complex form effective emission centers. Investigation of the nanodot structure will help us understand why luminescent silver nanodots are stable in aqueous solution and how to further improve their chemical and photophysical properties.

  15. Static electric dipole polarizabilities of An(5+/6+) and AnO2 (+/2+) (An = U, Np, and Pu) ions.

    PubMed

    Parmar, Payal; Peterson, Kirk A; Clark, Aurora E

    2014-12-21

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An(5+/6+) and AnO2 (+/2+)) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (∼5 a.u.(3)) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (αzz) of the polarizability for the lowest Ω levels corresponding to the ground electronic states are (in a.u.(3)) 44.15 and 41.17 for UO2 (+) and UO2 (2+), respectively, 45.64 and 41.42 for NpO2 (+) and NpO2 (2+), respectively, and 47.15 for the PuO2 (+) ion.

  16. GREEN SUPERCOMPUTING IN A DESKTOP BOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HSU, CHUNG-HSING; FENG, WU-CHUN; CHING, AVERY

    2007-01-17

    The computer workstation, introduced by Sun Microsystems in 1982, was the tool of choice for scientists and engineers as an interactive computing environment for the development of scientific codes. However, by the mid-1990s, the performance of workstations began to lag behind high-end commodity PCs. This, coupled with the disappearance of BSD-based operating systems in workstations and the emergence of Linux as an open-source operating system for PCs, arguably led to the demise of the workstation as we knew it. Around the same time, computational scientists started to leverage PCs running Linux to create a commodity-based (Beowulf) cluster that provided dedicatedmore » computer cycles, i.e., supercomputing for the rest of us, as a cost-effective alternative to large supercomputers, i.e., supercomputing for the few. However, as the cluster movement has matured, with respect to cluster hardware and open-source software, these clusters have become much more like their large-scale supercomputing brethren - a shared (and power-hungry) datacenter resource that must reside in a machine-cooled room in order to operate properly. Consequently, the above observations, when coupled with the ever-increasing performance gap between the PC and cluster supercomputer, provide the motivation for a 'green' desktop supercomputer - a turnkey solution that provides an interactive and parallel computing environment with the approximate form factor of a Sun SPARCstation 1 'pizza box' workstation. In this paper, they present the hardware and software architecture of such a solution as well as its prowess as a developmental platform for parallel codes. In short, imagine a 12-node personal desktop supercomputer that achieves 14 Gflops on Linpack but sips only 185 watts of power at load, resulting in a performance-power ratio that is over 300% better than their reference SMP platform.« less

  17. Delay-induced cluster patterns in coupled Cayley tree networks

    NASA Astrophysics Data System (ADS)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  18. Kinematics of the Normal Knee during Dynamic Activities: A Synthesis of Data from Intracortical Pins and Biplane Imaging

    PubMed Central

    Gasparutto, Xavier; Moissenet, Florent; Lafon, Yoann

    2017-01-01

    Few studies have provided in vivo tibiofemoral kinematics of the normal knee during dynamic weight-bearing activities. Indeed, gold standard measurement methods (i.e., intracortical pins and biplane imaging) raise ethical and experimental issues. Moreover, the conventions used for the processing of the kinematics show large inconsistencies. This study aims at synthesising the tibiofemoral kinematics measured with gold standard measurement methods. Published kinematic data were transformed in the standard recommended by the International Society of Biomechanics (ISB), and a clustering method was applied to investigate whether the couplings between the degrees of freedom (DoFs) are consistent among the different activities and measurement methods. The synthesised couplings between the DoFs during knee flexion (from 4° of extension to −61° of flexion) included abduction (up to −10°); internal rotation (up to 15°); and medial (up to 10 mm), anterior (up to 25 mm), and proximal (up to 28 mm) displacements. These synthesised couplings appeared mainly partitioned into two clusters that featured all the dynamic weight-bearing activities and all the measurement methods. Thus, the effect of the dynamic activities on the couplings between the tibiofemoral DoFs appeared to be limited. The synthesised data might be used as a reference of normal in vivo knee kinematics for prosthetic and orthotic design and for knee biomechanical model development and validation. PMID:28487620

  19. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.

  20. Antiferromagnetic exchange coupling measurements on single Co clusters

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  1. First principles electron-correlated calculations of optical absorption in magnesium clusters★

    NASA Astrophysics Data System (ADS)

    Shinde, Ravindra; Shukla, Alok

    2017-11-01

    In this paper, we report large-scale configuration interaction (CI) calculations of linear optical absorption spectra of various isomers of magnesium clusters Mgn (n = 2-5), corresponding to valence transitions. Geometry optimization of several low-lying isomers of each cluster was carried out using coupled-cluster singles doubles (CCSD) approach, and these geometries were subsequently employed to perform ground and excited state calculations using either the full-CI (FCI) or the multi-reference singles-doubles configuration interaction (MRSDCI) approach, within the frozen-core approximation. Our calculated photoabsorption spectrum of magnesium dimer (Mg2) is in excellent agreement with the experiments both for peak positions, and intensities. Owing to the sufficiently inclusive electron-correlation effects, these results can serve as benchmarks against which future experiments, as well as calculations performed using other theoretical approaches, can be tested. Supplementary material in the form of one pdf fille available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80356-6.

  2. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  3. Predictive coupled-cluster isomer orderings for some Si{sub n}C{sub m} (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, Jason N., E-mail: byrd.jason@ensco.com; ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940; Lutz, Jesse J., E-mail: jesse.lutz.ctr@afit.edu

    The accurate determination of the preferred Si{sub 12}C{sub 12} isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for the opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies, and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC{sub 3} to Si{sub 12}C{sub 12}. It is found that post-MBPT(2) correlation energy plays a significant rolemore » in obtaining converged relative isomer energies, suggesting that predictions using low rung density functional methods will not have adequate accuracy. Utilizing the best composite coupled-cluster energy that is still computationally feasible, entailing a 3-4 SCF and coupled-cluster theory with singles and doubles extrapolation with triple-ζ (T) correlation, the closo Si{sub 12}C{sub 12} isomer is identified to be the preferred isomer in the support of previous calculations [X. F. Duan and L. W. Burggraf, J. Chem. Phys. 142, 034303 (2015)]. Additionally we have investigated more pragmatic approaches to obtaining accurate silicon carbide isomer energies, including the use of frozen natural orbital coupled-cluster theory and several rungs of standard and double-hybrid density functional theory. Frozen natural orbitals as a way to compute post-MBPT(2) correlation energy are found to be an excellent balance between efficiency and accuracy.« less

  4. Basin stability measure of different steady states in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  5. Biorthogonal projected energies of a Gutzwiller similarity transformed Hamiltonian.

    PubMed

    Wahlen-Strothman, J M; Scuseria, G E

    2016-12-07

    We present a method incorporating biorthogonal orbital-optimization, symmetry projection, and double-occupancy screening with a non-unitary similarity transformation generated by the Gutzwiller factor [Formula: see text], and apply it to the Hubbard model. Energies are calculated with mean-field computational scaling with high-quality results comparable to coupled cluster singles and doubles. This builds on previous work performing similarity transformations with more general, two-body Jastrow-style correlators. The theory is tested on 2D lattices ranging from small systems into the thermodynamic limit and is compared to available reference data.

  6. Potential energy surfaces of the ground and low-lying states of HCCS and NCS: CASSCF, MRCI and CCSD(T) studies

    NASA Astrophysics Data System (ADS)

    Li, Yumin; Iwata, Suehiro

    1997-07-01

    For astronomically interesting molecules, HCCS and NCS, the equilibrium geometries and potential energy curves of three states (X 2Π, A 2Π and B 2Σ+) as well as vertical excitation energies are studied using complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI) and coupled cluster (CCSD(T)) methods with cc-pVTZ basis sets. The difference and similarity in the three states of HCCS and NCS are illustrated. The results obtained are in good agreement with available experimental data.

  7. Managing a cluster outbreak of psittacosis in Belgium linked to a pet shop visit in The Netherlands.

    PubMed

    DE Boeck, C; Dehollogne, C; Dumont, A; Spierenburg, M; Heijne, M; Gyssens, I; VAN DER Hilst, J; Vanrompay, D

    2016-06-01

    In July 2013, a Belgian couple were admitted to hospital because of pneumonia. Medical history revealed contact with birds. Eleven days earlier, they had purchased a lovebird in a pet shop in The Netherlands. The bird became ill, with respiratory symptoms. The couple's daughter who accompanied them to the pet shop, reported similar symptoms, but was travelling abroad. On the suspicion of psittacosis, pharyngeal swabs from the couple were taken and sent to the Belgian reference laboratory for psittacosis. Culture and nested polymerase chain reaction (PCR) tests were positive for the presence of Chlamydia psittaci, and ompA genotyping indicated genotype A in both patients. The patients were treated with doxycycline and the daughter started quinolone therapy; all three recovered promptly. Psittacosis is a notifiable disease in Belgium and therefore local healthcare authorities were informed. They contacted their Dutch colleagues, who visited the pet shop. Seven pooled faecal samples were taken and analysed using PCR by the Dutch national reference laboratory for notifiable animal diseases for the presence of Chlamydia psittaci. Four (57%) samples tested positive, genotyping revealed genotype A. Enquiring about exposure to pet birds is essential when patients present with pneumonia. Reporting to health authorities, even across borders, is warranted to prevent further spread.

  8. Effects of cluster-shell competition and BCS-like pairing in 12C

    NASA Astrophysics Data System (ADS)

    Matsuno, H.; Itagaki, N.

    2017-12-01

    The antisymmetrized quasi-cluster model (AQCM) was proposed to describe α-cluster and jj-coupling shell models on the same footing. In this model, the cluster-shell transition is characterized by two parameters, R representing the distance between α clusters and Λ describing the breaking of α clusters, and the contribution of the spin-orbit interaction, very important in the jj-coupling shell model, can be taken into account starting with the α-cluster model wave function. Not only the closure configurations of the major shells but also the subclosure configurations of the jj-coupling shell model can be described starting with the α-cluster model wave functions; however, the particle-hole excitations of single particles have not been fully established yet. In this study we show that the framework of AQCM can be extended even to the states with the character of single-particle excitations. For ^{12}C, two-particle-two-hole (2p2h) excitations from the subclosure configuration of 0p_{3/2} corresponding to a BCS-like pairing are described, and these shell model states are coupled with the three α-cluster model wave functions. The correlation energy from the optimal configuration can be estimated not only in the cluster part but also in the shell model part. We try to pave the way to establish a generalized description of the nuclear structure.

  9. Addition by subtraction in coupled-cluster theory: a reconsideration of the CC and CI interface and the nCC hierarchy.

    PubMed

    Bartlett, Rodney J; Musiał, Monika

    2006-11-28

    The nCC hierarchy of coupled-cluster approximations, where n guarantees exactness for n electrons and all products of n electrons are derived and applied to several illustrative problems. The condition of exactness for n=2 defines nCCSD=2CC, with nCCSDT=3CC and nCCSDTQ=4CC being exact for three and four electrons. To achieve this, the minimum number of diagrams is evaluated, which is less than in the corresponding CC model. For all practical purposes, nCC is also the proper definition of a size-extensive CI. 2CC is also an orbitally invariant coupled electron pair approximation. The numerical results of nCC are close to those for the full CC variant, and in some cases are closer to the full CI reference result. As 2CC is exact for separated electron pairs, it is the natural zeroth-order approximation for the correlation problem in molecules with other effects introduced as these units start to interact. The nCC hierarchy of approximations has all the attractive features of CC including its size extensivity, orbital invariance, and orbital insensitivity, but in a conceptually appealing form suited to bond breaking, while being computationally less demanding. Excited states from the equation of motion (EOM-2CC) are also reported, which show results frequently approaching those of EOM-CCSDT.

  10. On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model

    NASA Astrophysics Data System (ADS)

    Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin

    2018-01-01

    We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.

  11. Excited states with internally contracted multireference coupled-cluster linear response theory.

    PubMed

    Samanta, Pradipta Kumar; Mukherjee, Debashis; Hanauer, Matthias; Köhn, Andreas

    2014-04-07

    In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Köhn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical implementation of the method, we adopt a Tamm-Dancoff-type approximation and neglect these couplings. This approximation is also consistent with an equation-of-motion based derivation, which neglects these couplings right from the start. We have implemented the linear-response approach in the ic-MRCC singles-and-doubles framework and applied our method to calculate excitation energies for a number of molecules ranging from CH2 to p-benzyne and conjugated polyenes (up to octatetraene). The computed excitation energies are found to be very accurate, even for the notoriously difficult case of doubly excited states. The ic-MRCC-LR theory is also applicable to systems with open-shell ground-state wavefunctions and is by construction not biased towards a particular reference determinant. We have also compared the linear-response approach to the computation of energy differences by direct state-specific ic-MRCC calculations. We finally compare to Mk-MRCC-LR theory for which spurious roots have been reported [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012)], being due to the use of sufficiency conditions to solve the Mk-MRCC equations. No such problem is present in ic-MRCC-LR theory.

  12. A theoretical and experimental benchmark study of core-excited states in nitrogen

    NASA Astrophysics Data System (ADS)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; Nandi, Saikat; Coriani, Sonia; Gühr, Markus; Koch, Henrik

    2018-02-01

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.

  13. An efficient matrix-matrix multiplication based antisymmetric tensor contraction engine for general order coupled cluster.

    PubMed

    Hanrath, Michael; Engels-Putzka, Anna

    2010-08-14

    In this paper, we present an efficient implementation of general tensor contractions, which is part of a new coupled-cluster program. The tensor contractions, used to evaluate the residuals in each coupled-cluster iteration are particularly important for the performance of the program. We developed a generic procedure, which carries out contractions of two tensors irrespective of their explicit structure. It can handle coupled-cluster-type expressions of arbitrary excitation level. To make the contraction efficient without loosing flexibility, we use a three-step procedure. First, the data contained in the tensors are rearranged into matrices, then a matrix-matrix multiplication is performed, and finally the result is backtransformed to a tensor. The current implementation is significantly more efficient than previous ones capable of treating arbitrary high excitations.

  14. New ab initio adiabatic potential energy surfaces and bound state calculations for the singlet ground X˜ 1A1 and excited C˜ 1B2(21A') states of SO2

    NASA Astrophysics Data System (ADS)

    Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua

    2016-05-01

    We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.

  15. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    PubMed

    Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2017-11-15

    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.

  16. Cluster-modified function projective synchronisation of complex networks with asymmetric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Shuguo

    2018-02-01

    This paper investigates the cluster-modified function projective synchronisation (CMFPS) of a generalised linearly coupled network with asymmetric coupling and nonidentical dynamical nodes. A novel synchronisation scheme is proposed to achieve CMFPS in community networks. We use adaptive control method to derive CMFPS criteria based on Lyapunov stability theory. Each cluster of networks is synchronised with target system by state transformation with scaling function matrix. Numerical simulation results are presented finally to illustrate the effectiveness of this method.

  17. Trace elements in seminal plasma of men from infertile couples.

    PubMed

    Guzikowski, Wojciech; Szynkowska, Małgorzata I; Motak-Pochrzęst, Hanna; Pawlaczyk, Aleksandra; Sypniewski, Stanisław

    2015-06-19

    An analysis of lead, zinc, cadmium and other trace elements in semen of men from infertile couples was performed to determine the association between abnormal semen parameters and enviromental or occupational exposure to some trace metals. Presence of manganese, cobalt, nickel, copper, zinc, molybdenum, cadmium, tin and lead was measured in seminal plasma of 34 men from infertile couples using spectrometry with time-of-flight analysis. Correlations among sperm parameters and trace metals were determined using cluster analysis and Pearson's correlation coefficient. Abnormally high concentrations of lead, cadmium, zinc and cobalt were found in 23 seminal plasma of men from infertile couples. The most consistent evidence was determined for an association between high cadmium concentration in seminal plasma and sperm count, motility and morphology below reference limits (p < 0.01). A correlation of significantly increased tin level and reduced sperm count in semen of men with limited fertility potential was observed (p = 0.04). In our study we observed a correlation of tin level with sperm count in semen of men with limited fertility potential.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less

  19. Relativistic coupled-cluster calculations of the 173Yb nuclear quadrupole coupling constant for the YbF molecule

    NASA Astrophysics Data System (ADS)

    Pašteka, L. F.; Mawhorter, R. J.; Schwerdtfeger, P.

    2016-04-01

    We report calculations on the q(Yb) electric field gradient (EFG) for the X2Σ+ and A2Π1/2 electronic states of the ytterbium monofluoride (YbF) molecule at the molecular mean-field Dirac-Coulomb-Gaunt as well as scalar-relativistic coupled-cluster levels of theory using large uncontracted basis sets. Vibrational contributions are included in the final results. Our estimated nuclear quadrupole coupling constants of -3386(78) MHz and -2083(153) MHz for the X2Σ+ and A2Π1/2 states of 173YbF are in stark contrast to the only available experimental results (-2050(170) MHz and -1090(160) MHz) respectively, where the only similarity is the difference between the two values. Perturbative triple contributions in the coupled cluster treatment are significant and point towards the necessity to go to higher order in the coupled-cluster treatment in future calculations. We also present density functional calculations which show rather large variations for the Yb EFG with different functionals used; the best result was obtained using the CAM-B3LYP* functional.

  20. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less

  1. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE PAGES

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; ...

    2018-02-14

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  2. A theoretical and experimental benchmark study of core-excited states in nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan

    The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less

  3. Association schemes perspective of microbubble cluster in ultrasonic fields.

    PubMed

    Behnia, S; Yahyavi, M; Habibpourbisafar, R

    2018-06-01

    Dynamics of a cluster of chaotic oscillators on a network are studied using coupled maps. By introducing the association schemes, we obtain coupling strength in the adjacency matrices form, which satisfies Markov matrices property. We remark that in general, the stability region of the cluster of oscillators at the synchronization state is characterized by Lyapunov exponent which can be defined based on the N-coupled map. As a detailed physical example, dynamics of microbubble cluster in an ultrasonic field are studied using coupled maps. Microbubble cluster dynamics have an indicative highly active nonlinear phenomenon, were not easy to be explained. In this paper, a cluster of microbubbles with a thin elastic shell based on the modified Keller-Herring equation in an ultrasonic field is demonstrated in the framework of the globally coupled map. On the other hand, a relation between the microbubble elements is replaced by a relation between the vertices. Based on this method, the stability region of microbubbles pulsations at complete synchronization state has been obtained analytically. In this way, distances between microbubbles as coupling strength play the crucial role. In the stability region, we thus observe that the problem of study of dynamics of N-microbubble oscillators reduce to that of a single microbubble. Therefore, the important parameters of the isolated microbubble such as applied pressure, driving frequency and the initial radius have effective behavior on the synchronization state. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.

    PubMed

    Myhre, Rolf H; Coriani, Sonia; Koch, Henrik

    2016-06-14

    Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.

  5. Complete characterization of the stability of cluster synchronization in complex dynamical networks.

    PubMed

    Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi

    2016-04-01

    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.

  6. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    NASA Astrophysics Data System (ADS)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  7. Projected Hartree-Fock theory as a polynomial of particle-hole excitations and its combination with variational coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Qiu, Yiheng; Henderson, Thomas M.; Scuseria, Gustavo E.

    2017-05-01

    Projected Hartree-Fock theory provides an accurate description of many kinds of strong correlations but does not properly describe weakly correlated systems. Coupled cluster theory, in contrast, does the opposite. It therefore seems natural to combine the two so as to describe both strong and weak correlations with high accuracy in a relatively black-box manner. Combining the two approaches, however, is made more difficult by the fact that the two techniques are formulated very differently. In earlier work, we showed how to write spin-projected Hartree-Fock in a coupled-cluster-like language. Here, we fill in the gaps in that earlier work. Further, we combine projected Hartree-Fock and coupled cluster theory in a variational formulation and show how the combination performs for the description of the Hubbard Hamiltonian and for several small molecular systems.

  8. Global cluster synchronization in nonlinearly coupled community networks with heterogeneous coupling delays.

    PubMed

    Tseng, Jui-Pin

    2017-02-01

    This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Symmetries and stability of chimera states in small, globally-coupled networks

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    It has recently been demonstrated that symmetries in a network's topology can help predict the patterns of synchronized clusters that can emerge in a network of coupled oscillators. This and related discoveries have led to increased interest in both network symmetries and cluster synchronization. In parallel with these discoveries, interest in chimera states-dynamical patterns in which a network separates into coherent and incoherent portions-has grown, and chimeras have now been observed in a variety of experimental systems. We present an opto-electronic experiment in which both chimera states and synchronized clusters are observed in a small, globally-coupled network. We show that the symmetries and sub-symmetries of the network permit the formation of the chimera and cluster states. A recently developed group theoretical approach enables us to predict the stability of the observed chimera and cluster states, and highlights the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization.

  10. Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters

    PubMed Central

    Morris, Wesley D.; Darcy, Julia W.; Mayer, James M.

    2015-01-01

    Biological [Fe-S] clusters are increasingly recognized to undergo proton-coupled electron transfer (PCET), but the site of protonation, mechanism, and role for PCET remains largely unknown. Here we explore this reactivity with synthetic model clusters. Protonation of the arylthiolate-ligated [4Fe-4S] cluster [Fe4S4(SAr)4]2- (1, SAr = S-2,4-6-(iPr)3C6H2) leads to thiol dissociation, reversibly forming [Fe4S4(SAr)3L]1- (2) + ArSH (L = solvent, and/or conjugate base). Solutions of 2 + ArSH react with the nitroxyl radical TEMPO to give [Fe4S4(SAr)4]1- (1ox) and TEMPOH. This reaction involves PCET coupled to thiolate association and may proceed via the unobserved protonated cluster [Fe4S4(SAr)3(HSAr)]1-(1-H). Similar reactions with this and related clusters proceed comparably. An understanding of the PCET thermochemistry of this cluster system has been developed, encompassing three different redox levels and two protonation states. PMID:25965413

  11. Influences of adding negative couplings between cliques of Kuramoto-like oscillators

    NASA Astrophysics Data System (ADS)

    Yang, Li-xin; Lin, Xiao-lin; Jiang, Jun

    2018-06-01

    We study the dynamics in a clustered network of coupled oscillators by considering positive and negative coupling schemes. Second order oscillators can be interpreted as a model of consumers and generators working in a power network. Numerical results indicate that coupling strategies play an important role in the synchronizability of the clustered power network. It is found that the synchronizability can be enhanced as the positive intragroup connections increase. Meanwhile, when the intragroup interactions are positive and the probability p that two nodes belonging to different clusters are connected is increased, the synchronization has better performance. Besides, when the intragroup connections are negative, it is observed that the power network has poor synchronizability as the probability p increases. Our simulation results can help us understand the collective behavior of the power network with positive and negative couplings.

  12. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  13. MkMRCC, APUCC and APUBD approaches to 1,n-didehydropolyene diradicals: the nature of through-bond exchange interactions

    NASA Astrophysics Data System (ADS)

    Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi

    2010-10-01

    Mukherjee-type (Mk) state specific (SS) multi-reference (MR) coupled-cluster (CC) calculations of 1,n-didehydropolyene diradicals were carried out to elucidate singlet-triplet energy gaps via through-bond coupling between terminal radicals. Spin-unrestricted Hartree-Fock (UHF) based coupled-cluster (CC) computations of these diradicals were also performed. Comparison between symmetry-adapted MkMRCC and broken-symmetry (BS) UHF-CC computational results indicated that spin-contamination error of UHF-CC solutions was left at the SD level, although it had been thought that this error was negligible for the CC scheme in general. In order to eliminate the spin contamination error, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed eliminated the error to yield good agreement with MRCC in energy. The CCD with spin-unrestricted Brueckner's orbital (UB) was also employed for these polyene diradicals, showing that large spin-contamination errors at UHF solutions are dramatically improved, and therefore AP scheme for UBD removed easily the rest of spin-contaminations. Pure- and hybrid-density functional theory (DFT) calculations of the species were also performed. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid DFT. The AP DFT calculations yielded the singlet-triplet energy gaps that were in good agreement with those of MRCC, AP UHF-CC and AP UB-CC. Chemical indices such as the diradical character were calculated with all these methods. Implications of the present computational results are discussed in relation to previous RMRCC calculations of diradical species and BS calculations of large exchange coupled systems.

  14. X-ray aspects of the DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.

    2012-12-01

    We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.

  15. Efficient electronic structure theory via hierarchical scale-adaptive coupled-cluster formalism: I. Theory and computational complexity analysis

    NASA Astrophysics Data System (ADS)

    Lyakh, Dmitry I.

    2018-03-01

    A novel reduced-scaling, general-order coupled-cluster approach is formulated by exploiting hierarchical representations of many-body tensors, combined with the recently suggested formalism of scale-adaptive tensor algebra. Inspired by the hierarchical techniques from the renormalisation group approach, H/H2-matrix algebra and fast multipole method, the computational scaling reduction in our formalism is achieved via coarsening of quantum many-body interactions at larger interaction scales, thus imposing a hierarchical structure on many-body tensors of coupled-cluster theory. In our approach, the interaction scale can be defined on any appropriate Euclidean domain (spatial domain, momentum-space domain, energy domain, etc.). We show that the hierarchically resolved many-body tensors can reduce the storage requirements to O(N), where N is the number of simulated quantum particles. Subsequently, we prove that any connected many-body diagram consisting of a finite number of arbitrary-order tensors, e.g. an arbitrary coupled-cluster diagram, can be evaluated in O(NlogN) floating-point operations. On top of that, we suggest an additional approximation to further reduce the computational complexity of higher order coupled-cluster equations, i.e. equations involving higher than double excitations, which otherwise would introduce a large prefactor into formal O(NlogN) scaling.

  16. The electron affinity of Al13H cluster: high level ab initio study

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2014-11-01

    Al13H clusters have been considered candidates for cluster assembled materials. Here we have carried out benchmark calculations for the Al13H cluster, both neutral and anionic, with the aim of verifying the nature of stationary points on the potential energy surface, studying dynamics of H atom and determining an adiabatic electron affinity. A range of correlated methods applied include second-order perturbation theory (MP2), spin-component-scaled MP2, coupled electron pair (CEPA) and coupled cluster singles and doubles with perturbative triple corrections (CCSD(T)). These methods are used in combination with the correlation consistent basis sets through aug-cc-pVTZ including extrapolation to the complete basis set (CBS) limit. Performance of several different flavours of density functional theory (DFT) such as generalised gradient approximation (GGA), hybrid GGA, meta-GGA and hybrid-meta-GGA is assessed with respect to the ab initio correlated reference data. The harmonic force constant analysis is systematically performed with the MP2 and DFT methods. The MP2 results show that for neutral Al13H only the hollow structure is a potential energy minimum, with the bridged structure being a transition state for the H shift from the hollow site to the adjacent hollow site. The CCSD(T)/aug-cc-pVTZ (CCSD(T)/CBS) estimate of the energy barrier to this H shift is 2.6 (2.9) kcal/mol, implying that the H atom movement over the Al13H cluster surface is facile. By contrast, the DFT force constant analysis results suggest additional terminal and bridged minima structures. For the anion Al13H-, exhibiting 'stiffer' potential energy surface compared to the neutral, the existence of the hollow and terminal isomers is consistent with the earlier photoelectron spectroscopy assignment. The adiabatic electron affinity of Al13H is determined to be 2.00 and 1.95 eV (the latter including the ΔZPE correction) based on the CCSD(T) energies extrapolated to the CBS limit, whereas the respective CCSD(T)/CBS thermodynamic EA values are 2.79 and 2.80 eV.

  17. Ionization energies and electron affinities from a random-phase-approximation many-body Green's-function method including exchange interactions

    NASA Astrophysics Data System (ADS)

    Heßelmann, Andreas

    2017-06-01

    A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.

  18. Two clusters of ciguatera fish poisoning in Paris, France, related to tropical fish imported from the French Caribbean by travelers.

    PubMed

    Epelboin, Loïc; Pérignon, Alice; Hossen, Virginie; Vincent, Renaud; Krys, Sophie; Caumes, Eric

    2014-01-01

    Ciguatera fish poisoning (CFP) is a food-borne illness due to the consumption of reef fish containing pathogenic toxins. CFP is endemic to tropical areas and may be described in travelers in non-endemic areas. We describe two clusters of autochthonous cases of CFP in Paris, France. They were related to two fish caught in Guadeloupe (French West Indies) and consumed in Paris after being air-transported in a cooler. In both cases, fish flesh was analyzed and the presence of ciguatoxins by mouse bioassay (MBA) was confirmed. The first cluster involved eight individuals among whom five presented gastrointestinal symptoms and four presented neurological symptoms after consuming barracuda flesh (Sphyraena barracuda). The second cluster involved a couple who consumed a grey snapper (Lutjanus griseus). Most of them consulted at different emergency departments in the region of Paris. CFP may be seen in non-traveler patients outside endemic countries resulting from imported species of fish. Thus, CFP may be undiagnosed as physicians are not aware of this tropical disease outside endemic countries. The detection of ciguatoxins by MBA in the French National Reference Laboratory is useful in the confirmation of the diagnosis. © 2014 International Society of Travel Medicine.

  19. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less

  20. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  1. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    PubMed

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  2. Configurational coupled cluster approach with applications to magnetic model systems

    NASA Astrophysics Data System (ADS)

    Wu, Siyuan; Nooijen, Marcel

    2018-05-01

    A general exponential, coupled cluster like, approach is discussed to extract an effective Hamiltonian in configurational space, as a sum of 1-body, 2-body up to n-body operators. The simplest two-body approach is illustrated by calculations on simple magnetic model systems. A key feature of the approach is that equations up to a certain rank do not depend on higher body cluster operators.

  3. ``Dressing'' lines and vertices in calculations of matrix elements with the coupled-cluster method and determination of Cs atomic properties

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Porsev, Sergey G.

    2005-03-01

    We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally involve infinite number of terms and we devise a method of partial summation (dressing) of the resulting series. Our formalism is built upon an expansion of the product C†C of cluster amplitudes C into a sum of n -body insertions. We consider two types of insertions: particle (hole) line insertion and two-particle (two-hole) random-phase-approximation-like insertion. We demonstrate how to “dress” these insertions and formulate iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We illustrate our formalism with relativistic calculations of the hyperfine constant A(6s) and the 6s1/2-6p1/2 electric-dipole transition amplitude for the Cs atom. Finally, we augment the truncated coupled-cluster calculations with otherwise omitted fourth order diagrams. The resulting analysis for Cs is complete through the fourth order of many-body perturbation theory and reveals an important role of triple and disconnected quadruple excitations.

  4. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory.

    PubMed

    Zhekova, Hristina R; Seth, Michael; Ziegler, Tom

    2011-11-14

    We have recently developed a methodology for the calculation of exchange coupling constants J in weakly interacting polynuclear metal clusters. The method is based on unrestricted and restricted second order spin-flip constricted variational density functional theory (SF-CV(2)-DFT) and is here applied to eight binuclear copper systems. Comparison of the SF-CV(2)-DFT results with experiment and with results obtained from other DFT and wave function based methods has been made. Restricted SF-CV(2)-DFT with the BH&HLYP functional yields consistently J values in excellent agreement with experiment. The results acquired from this scheme are comparable in quality to those obtained by accurate multi-reference wave function methodologies such as difference dedicated configuration interaction and the complete active space with second-order perturbation theory. © 2011 American Institute of Physics

  5. Dynamic Jahn-Teller effect: Calculation of fine structure spectrum, isotope shift and Zeeman behavior at deep center Ni2+ in CdS

    NASA Astrophysics Data System (ADS)

    Schoepp, Juergen

    The internal transition of the deep center Ni2+ in II to IV semiconductor cadmium sulfide is examined with reference to crystal field theory. An algorithm was developed for calculation, in a basis fitted to trigonal symmetry, of fine structure operator matrix which is made of the sum of operators from spin trajectory coupling, trigonal field and electron phonon coupling. The dependence of energy level on the mass was calculated in order to examine the isotropy effect at Ni2+ transition. The mass dependence of phonon energy was estimated in an atomic cluster by using a valence force model from Keating for elastic energy. The Zeeman behavior of Ni2+ transition was examined for magnetic fields; the Zeeman operator was added to the fine structure operator and the resulting matrix was diagonalized. It is noticed that calculations are quantitatively and qualitatively in agreement with experiments.

  6. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  7. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank

    2011-12-01

    A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.

  8. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as themore » state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to this method.« less

  9. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this method.

  10. Transition properties from the Hermitian formulation of the coupled cluster polarization propagator

    NASA Astrophysics Data System (ADS)

    Tucholska, Aleksandra M.; Modrzejewski, Marcin; Moszynski, Robert

    2014-09-01

    Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Żuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.

  11. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.

  12. Multipoint observations of plasma phenomena made in space by Cluster

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Escoubet, P.; Hwang, K.-Joo; Wendel, D. E.; Viñas, A.-F.; Fung, S. F.; Perri, S.; Servidio, S.; Pickett, J. S.; Parks, G. K.; Sahraoui, F.; Gurgiolo, C.; Matthaeus, W.; Weygand, J. M.

    2015-06-01

    Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005 Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005 Sur. Geophys. 26, 307-339, Paschmann et al. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series of ISSI. Berlin: Springer, Goldstein et al. 2006 Adv. Space Res. 38, 21-36, Taylor et al. 2010 The Cluster Mission: Space Plasma in Three Dimensions, Springer, pp. 309-330 and Escoubet et al. 2013 Ann. Geophys. 31, 1045-1059).

  13. Communication: Finite size correction in periodic coupled cluster theory calculations of solids.

    PubMed

    Liao, Ke; Grüneis, Andreas

    2016-10-14

    We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.

  14. Relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic pair correlation energies of the Xe atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, E.; Kaldor, U.; Ishikawa, Y.

    1994-12-31

    Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.

  15. A nonperturbative light-front coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Hiller, J. R.

    2012-10-01

    The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.

  16. Coulomb- and Antiferromagnetic-Induced Fission in Doubly Charged Cubelike Fe-S Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Wang, Xue-Bin; Niu, Shuqiang; Pickett, Chris J.; Ichiye, Toshiko; Wang, Lai-Sheng

    2002-09-01

    We report the observation of symmetric fission in doubly charged Fe-S cluster anions, [Fe4S4X4]2- -->2[Fe2S2X2]- (X=Cl,Br), owing to both Coulomb repulsion and antiferromagnetic coupling. Photoelectron spectroscopy shows that both the parent and the fission fragments have similar electronic structures and confirms the inverted energy schemes due to the strong spin polarization of the Fe 3d levels. The current observation provides direct confirmation for the unusual spin couplings in the [Fe4S4X4]2- clusters, which contain two valent-delocalized and ferromagnetically coupled Fe2S2 subunits.

  17. A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam

    In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.

  18. X-ray and optical substructures of the DAFT/FADA survey clusters

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.

    2013-04-01

    We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.

  19. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  20. CEBAF Superconducting Cavity RF Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugitt, Jock; Moore, Thomas

    1987-03-01

    The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less

  1. Statistical Mechanical Theory of Coupled Slow Dynamics in Glassy Polymer-Molecule Mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth

    The microscopic Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids and glasses is generalized to polymer-molecule mixtures. The key idea is to account for dynamic coupling between molecule and polymer segment motion. For describing the molecule hopping event, a temporal casuality condition is formulated to self-consistently determine a dimensionless degree of matrix distortion relative to the molecule jump distance based on the concept of coupled dynamic free energies. Implementation for real materials employs an established Kuhn sphere model of the polymer liquid and a quantitative mapping to a hard particle reference system guided by the experimental equation-of-state. The theory makes predictions for the mixture dynamic shear modulus, activated relaxation time and diffusivity of both species, and mixture glass transition temperature as a function of molecule-Kuhn segment size ratio and attraction strength, composition and temperature. Model calculations illustrate the dynamical behavior in three distinct mixture regimes (fully miscible, bridging, clustering) controlled by the molecule-polymer interaction or chi-parameter. Applications to specific experimental systems will be discussed.

  2. Cyclotron transitions of bound ions

    NASA Astrophysics Data System (ADS)

    Bezchastnov, Victor G.; Pavlov, George G.

    2017-06-01

    A charged particle in a magnetic field possesses discrete energy levels associated with particle rotation around the field lines. The radiative transitions between these levels are the well-known cyclotron transitions. We show that a bound complex of particles with a nonzero net charge displays analogous transitions between the states of confined motion of the entire complex in the field. The latter bound-ion cyclotron transitions are affected by a coupling between the collective and internal motions of the complex and, as a result, differ from the transitions of a "reference" bare ion with the same mass and charge. We analyze the cyclotron transitions for complex ions by including the coupling within a rigorous quantum approach. Particular attention is paid to comparison of the transition energies and oscillator strengths to those of the bare ion. Selection rules based on integrals of collective motion are derived for the bound-ion cyclotron transitions analytically, and the perturbation and coupled-channel approaches are developed to study the transitions quantitatively. Representative examples are considered and discussed for positive and negative atomic and cluster ions.

  3. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics

    NASA Astrophysics Data System (ADS)

    Ünal, Aslı; Bozkaya, Uǧur

    2018-03-01

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  4. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics.

    PubMed

    Ünal, Aslı; Bozkaya, Uğur

    2018-03-28

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol -1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol -1 . Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol -1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  5. Experimental observation of chimera and cluster states in a minimal globally coupled network

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    2016-09-01

    A "chimera state" is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  6. Cluster dynamics of pulse coupled oscillators

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Kevin; Strogatz, Steven; Krapivsky, Paul

    2015-03-01

    We study the dynamics of networks of pulse coupled oscillators. Much attention has been devoted to the ultimate fate of the system: which conditions lead to a steady state in which all the oscillators are firing synchronously. But little is known about how synchrony builds up from an initially incoherent state. The current work addresses this question. Oscillators start to synchronize by forming clusters of different sizes that fire in unison. First pairs of oscillators, then triplets and so on. These clusters progressively grow by coalescing with others, eventually resulting in the fully synchronized state. We study the mean field model in which the coupling between oscillators is all to all. We use probabilistic arguments to derive a recursive set of evolution equations for these clusters. Using a generating function formalism, we derive simple equations for the moments of these clusters. Our results are in good agreement simulation. We then numerically explore the effects of non-trivial connectivity. Our results have potential application to ultra-low power ``impulse radio'' & sensor networks.

  7. Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.

    PubMed

    Varandas, A J C

    2011-05-28

    The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011

  8. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance Raman spectra of M1 MoVO x .

    PubMed

    Kubas, Adam; Noak, Johannes; Trunschke, Annette; Schlögl, Robert; Neese, Frank; Maganas, Dimitrios

    2017-09-01

    Absorption and multiwavelength resonance Raman spectroscopy are widely used to investigate the electronic structure of transition metal centers in coordination compounds and extended solid systems. In combination with computational methodologies that have predictive accuracy, they define powerful protocols to study the spectroscopic response of catalytic materials. In this work, we study the absorption and resonance Raman spectra of the M1 MoVO x catalyst. The spectra were calculated by time-dependent density functional theory (TD-DFT) in conjunction with the independent mode displaced harmonic oscillator model (IMDHO), which allows for detailed bandshape predictions. For this purpose cluster models with up to 9 Mo and V metallic centers are considered to represent the bulk structure of MoVO x . Capping hydrogens were used to achieve valence saturation at the edges of the cluster models. The construction of model structures was based on a thorough bonding analysis which involved conventional DFT and local coupled cluster (DLPNO-CCSD(T)) methods. Furthermore the relationship of cluster topology to the computed spectral features is discussed in detail. It is shown that due to the local nature of the involved electronic transitions, band assignment protocols developed for molecular systems can be applied to describe the calculated spectral features of the cluster models as well. The present study serves as a reference for future applications of combined experimental and computational protocols in the field of solid-state heterogeneous catalysis.

  9. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  10. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics.

    PubMed

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L

    2018-02-07

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  11. Coupled multipolar interactions in small-particle metallic clusters.

    PubMed

    Pustovit, Vitaly N; Sotelo, Juan A; Niklasson, Gunnar A

    2002-03-01

    We propose a new formalism for computing the optical properties of small clusters of particles. It is a generalization of the coupled dipole-dipole particle-interaction model and allows one in principle to take into account all multipolar interactions in the long-wavelength limit. The method is illustrated by computations of the optical properties of N = 6 particle clusters for different multipolar approximations. We examine the effect of separation between particles and compare the optical spectra with the discrete-dipole approximation and the generalized Mie theory.

  12. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    PubMed

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  13. Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen

    2018-01-01

    A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.

  14. Chimeras and clusters in networks of hyperbolic chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Cano, A. V.; Cosenza, M. G.

    2017-03-01

    We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.

  15. Experimental observation of chimera and cluster states in a minimal globally coupled network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Joseph D.; Department of Physics, University of Maryland, College Park, Maryland 20742; Bansal, Kanika

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belongingmore » to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.« less

  16. Highly anisotropic exchange interactions in a trigonal bipyramidal cyanide-bridged Ni(II)3Os(III)2 cluster.

    PubMed

    Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Hilfiger, Matthew; Shatruk, Michael; Prosvirin, Andrey; Dunbar, Kim R

    2009-06-25

    This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling. The magnetic properties of the Ni(II)(3)Os(III)(2) cluster are described in the framework of a highly anisotropic pseudo-spin Hamiltonian that corresponds to the limit of strong spin-orbital coupling and takes into account the complex molecular structure. The model provides a good fit to the experimental data and allows the conclusion that the trigonal axis of the bipyramidal Ni(II)(3)Os(III)(2) cluster is a hard axis of magnetization. This explains the fact that in contrast with the isostructural trigonal bipyramidal Mn(III)(2)Mn(II)(3) cluster, the Ni(II)(3)Os(III)(2) system does not exhibit the single-molecule magnetic behavior.

  17. GW and Bethe-Salpeter study of small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul; Bruneval, Fabien

    We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description ofmore » the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.« less

  18. Exchange coupling transformations in Cu (II) heterospin complexes of “breathing crystals” under structural phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N., E-mail: luk@tomo.nsc.ru

    2015-08-15

    Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal”more » family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.« less

  19. Ferromagnetic spin coupling in the chromium dimer cation: Measurements by photodissociation spectroscopy combined with coupled-cluster calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egashira, Kazuhiro, E-mail: egashira@clusterlab.jp; Yamada, Yurika; Kita, Yukiumi

    2015-02-07

    The magnetic coupling of the chromium dimer cation, Cr{sub 2}{sup +}, has been an outstanding problem for decades. An optical absorption spectrum of Cr{sub 2}{sup +} has been obtained by photodissociation spectroscopy in the photon-energy range from 2.0 to 5.0 eV. Besides, calculations have been performed by the equation-of-motion coupled-cluster singles and doubles method for vertical excitation of the species. Their coincidence supports our assignment that the ground electronic state exhibits a ferromagnetic spin coupling, which is contrary to those of neutral and negatively charged dimers, Cr{sub 2} and Cr{sub 2}{sup −}, in their lowest spin states.

  20. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions.

    PubMed

    Jagau, Thomas-C

    2018-01-14

    The impact of residual electron correlation beyond the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approximation on positions and widths of electronic resonances is investigated. To establish a method that accomplishes this task in an economical manner, several approaches proposed for the approximate treatment of triple excitations are reviewed with respect to their performance in the electron attachment (EA) variant of EOM-CC theory. The recently introduced EOM-CCSD(T)(a)* method [D. A. Matthews and J. F. Stanton, J. Chem. Phys. 145, 124102 (2016)], which includes non-iterative corrections to the reference and the target states, reliably reproduces vertical attachment energies from EOM-EA-CC calculations with single, double, and full triple excitations in contrast to schemes in which non-iterative corrections are applied only to the target states. Applications of EOM-EA-CCSD(T)(a)* augmented by a complex absorbing potential (CAP) to several temporary anions illustrate that shape resonances are well described by EOM-EA-CCSD, but that residual electron correlation often makes a non-negligible impact on their positions and widths. The positions of Feshbach resonances, on the other hand, are significantly improved when going from CAP-EOM-EA-CCSD to CAP-EOM-EA-CCSD(T)(a)*, but the correct energetic order of the relevant electronic states is still not achieved.

  1. Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.

    2018-01-01

    The impact of residual electron correlation beyond the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) approximation on positions and widths of electronic resonances is investigated. To establish a method that accomplishes this task in an economical manner, several approaches proposed for the approximate treatment of triple excitations are reviewed with respect to their performance in the electron attachment (EA) variant of EOM-CC theory. The recently introduced EOM-CCSD(T)(a)* method [D. A. Matthews and J. F. Stanton, J. Chem. Phys. 145, 124102 (2016)], which includes non-iterative corrections to the reference and the target states, reliably reproduces vertical attachment energies from EOM-EA-CC calculations with single, double, and full triple excitations in contrast to schemes in which non-iterative corrections are applied only to the target states. Applications of EOM-EA-CCSD(T)(a)* augmented by a complex absorbing potential (CAP) to several temporary anions illustrate that shape resonances are well described by EOM-EA-CCSD, but that residual electron correlation often makes a non-negligible impact on their positions and widths. The positions of Feshbach resonances, on the other hand, are significantly improved when going from CAP-EOM-EA-CCSD to CAP-EOM-EA-CCSD(T)(a)*, but the correct energetic order of the relevant electronic states is still not achieved.

  2. Spatial pattern evolution of Aedes aegypti breeding sites in an Argentinean city without a dengue vector control programme.

    PubMed

    Espinosa, Manuel O; Polop, Francisco; Rotela, Camilo H; Abril, Marcelo; Scavuzzo, Carlos M

    2016-11-21

    The main objective of this study was to obtain and analyse the space-time dynamics of Aedes aegypti breeding sites in Clorinda City, Formosa Province, Argentina coupled with landscape analysis using the maximum entropy approach in order to generate a dengue vector niche model. In urban areas, without vector control activities, 12 entomologic (larval) samplings were performed during three years (October 2011 to October 2014). The entomologic surveillance area represented 16,511 houses. Predictive models for Aedes distribution were developed using vector breeding abundance data, density analysis, clustering and geoprocessing techniques coupled with Earth observation satellite data. The spatial analysis showed a vector spatial distribution pattern with clusters of high density in the central region of Clorinda with a well-defined high-risk area in the western part of the city. It also showed a differential temporal behaviour among different areas, which could have implications for risk models and control strategies at the urban scale. The niche model obtained for Ae. aegypti, based on only one year of field data, showed that 85.8% of the distribution of breeding sites is explained by the percentage of water supply (48.2%), urban distribution (33.2%), and the percentage of urban coverage (4.4%). The consequences for the development of control strategies are discussed with reference to the results obtained using distribution maps based on environmental variables.

  3. Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Sharma, Sandeep; Alavi, Ali

    2017-01-01

    In this article we report a stochastic evaluation of the recently proposed multireference linearized coupled cluster theory [S. Sharma and A. Alavi, J. Chem. Phys. 143, 102815 (2015)]. In this method, both the zeroth-order and first-order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth-order wavefunction follows a set of stochastic processes identical to the one used in the full configuration interaction quantum Monte Carlo (FCIQMC) method. To sample the first-order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first-order wavefunction from the zeroth-order wavefunction. The second-order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first-order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory. The method is used to study a few benchmark systems including the carbon dimer and aromatic molecules. We have computed the singlet-triplet gaps of benzene and m-xylylene. For m-xylylene, which has proved difficult for standard complete active space self consistent field theory with perturbative correction, we find the singlet-triplet gap to be in good agreement with the experimental values.

  4. Multifrequency multi-qubit entanglement based on plasmonic hot spots

    PubMed Central

    Ren, Jun; Wu, Tong; Zhang, Xiangdong

    2015-01-01

    The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051

  5. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Efficient One-Step Generation of Cluster State with Charge Qubits in Circuit QED

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Min; Li, Cheng-Zu

    2010-01-01

    We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the long-range Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.

  6. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  7. Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.

    PubMed

    Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R

    2015-12-01

    The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.

  8. UNO DMRG CASCI calculations of effective exchange integrals for m-phenylene-bis-methylene spin clusters

    NASA Astrophysics Data System (ADS)

    Kawakami, Takashi; Sano, Shinsuke; Saito, Toru; Sharma, Sandeep; Shoji, Mitsuo; Yamada, Satoru; Takano, Yu; Yamanaka, Shusuke; Okumura, Mitsutaka; Nakajima, Takahito; Yamaguchi, Kizashi

    2017-09-01

    Theoretical examinations of the ferromagnetic coupling in the m-phenylene-bis-methylene molecule and its oligomer were carried out. These systems are good candidates for exchange-coupled systems to investigate strong electronic correlations. We studied effective exchange integrals (J), which indicated magnetic coupling between interacting spins in these species. First, theoretical calculations based on a broken-symmetry single-reference procedure, i.e. the UHF, UMP2, UMP4, UCCSD(T) and UB3LYP methods, were carried out with a GAUSSIAN program code under an SR wave function. From these results, the J value by the UHF method was largely positive because of the strong ferromagnetic spin polarisation effect. The J value by the UCCSD(T) and UB3LYP methods improved an overestimation problem by correcting the dynamical electronic correlation. Next, magnetic coupling among these spins was studied using the CAS-based method of the symmetry-adapted multireference methods procedure. Thus, the UNO DMRG CASCI (UNO, unrestricted natural orbital; DMRG, density matrix renormalised group; CASCI, complete active space configuration interaction) method was mainly employed with a combination of ORCA and BLOCK program codes. DMRG CASCI calculations in valence electron counting, which included all orbitals to full valence CI, provided the most reliable result, and support the UB3LYP method for extended systems.

  9. A MRCC study of the isomerisation of cyclopropane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Jakub; Švaňa, Matej; Demel, Ondřej

    2017-01-19

    Mukherjee’s and Brillouin-Wigner multi-reference coupled cluster methods were used to study the isomerization of cyclopropane to propene through a trimethylene/propylidene diradicals. Main aim was to obtain high quality ab-initio data using advanced methods that treat both static and dynamic correlation in the involved species. The MkCCSD(T)/cc-pVQZ activation energy of cyclopropane isomerization via trimethylene is 65.6 kcal/mol, in a good agreement with experimental values in the range 60-65 kcal/mol. The MkCCSD(T)/cc-pV5Z adiabatic singlet-triplet gap in trimethylene is 0.6 kcal/mol, slightly higher than previous CASPT2 result -0.7 kcal/mol by Skancke et al.

  10. Direct-to-digital holography and holovision

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Hanson, Gregory R.; Rasmussen, David A.; Voelkl, Edgar; Castracane, James; Simkulet, Michelle; Clow, Lawrence

    2000-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  11. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  12. Virtual mask digital electron beam lithography

    DOEpatents

    Baylor, Larry R.; Thomas, Clarence E.; Voelkl, Edgar; Moore, James A.; Simpson, Michael L.; Paulus, Michael J.

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  13. SCUD: fast structure clustering of decoys using reference state to remove overall rotation.

    PubMed

    Li, Hongzhi; Zhou, Yaoqi

    2005-08-01

    We developed a method for fast decoy clustering by using reference root-mean-squared distance (rRMSD) rather than commonly used pairwise RMSD (pRMSD) values. For 41 proteins with 2000 decoys each, the computing efficiency increases nine times without a significant change in the accuracy of near-native selections. Tests on additional protein decoys based on different reference conformations confirmed this result. Further analysis indicates that the pRMSD and rRMSD values are highly correlated (with an average correlation coefficient of 0.82) and the clusters obtained from pRMSD and rRMSD values are highly similar (the representative structures of the top five largest clusters from the two methods are 74% identical). SCUD (Structure ClUstering of Decoys) with an automatic cutoff value is available at http://theory.med.buffalo.edu. (c) 2005 Wiley Periodicals, Inc.

  14. Identification and growth characteristics of pink pigmented oxidative bacteria, Methylobacterium mesophilicum and biovars isolated from chlorinated and raw water supplies.

    PubMed

    O'Brien, J R; Murphy, J M

    1993-01-01

    Pink pigmented bacteria were isolated from a blood bank water purification unit, a municipal town water supply (tap water), and an island (untreated) ground water source. A total of thirteen strains including two reference strains of pink pigmented bacteria were compared in a numerical phenotypic study using 119 binary characters. Three clusters were derived, one major cluster of eleven strains was subdivided into two sub-clusters on the basis of methanol utilization. Five strains were facultative methylotrophs and were classified as Methylobacterium mesophilicum biovar 1. The other six strains did not utilize methanol, but on the basis of high phenotypic similarity of 83.6% were classified as M. mesophilicum biovar 2. The single reference strain comprising cluster 2 Pseudomonas extorquens NCIB 9399 was assigned to the genus Methylobacterium and classified as M. extorquens. Cluster 3 was the single reference strain Rhizobium CB 376.

  15. Cluster synchronization in networks of neurons with chemical synapses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Jonq, E-mail: jjuang@math.nctu.edu.tw; Liang, Yu-Hao, E-mail: moonsea.am96g@g2.nctu.edu.tw

    2014-03-15

    In this work, we study the cluster synchronization of chemically coupled and generally formulated networks which are allowed to be nonidentical. The sufficient condition for the existence of stably synchronous clusters is derived. Specifically, we only need to check the stability of the origins of m decoupled linear systems. Here, m is the number of subpopulations. Examples of nonidentical networks such as Hindmarsh-Rose (HR) neurons with various choices of parameters in different subpopulations, or HR neurons in one subpopulation and FitzHugh-Nagumo neurons in the other subpopulation are provided. Explicit threshold for the coupling strength that guarantees the stably cluster synchronizationmore » can be obtained.« less

  16. Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions

    NASA Astrophysics Data System (ADS)

    Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco

    2018-06-01

    The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

  17. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, Michael C.; Shoemarker, Erika L.; Fraioli, deceased, Anthony V.

    1995-01-01

    An electrocatalytic device for sensing gases. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte.

  18. Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaolu; Steele, Ryan P., E-mail: ryan.steele@utah.edu

    This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behavedmore » spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.« less

  19. Similarity-transformed perturbation theory on top of truncated local coupled cluster solutions: Theory and applications to intermolecular interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Richard Julian, E-mail: julianazar2323@berkeley.edu; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu

    2015-05-28

    Your correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the “(2)”-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained. Different restrictions on the zeroth- and first-order amplitudes are explored in the context of large-computation tractability and elucidationmore » of non-local effects in the space of singles and doubles. To accurately approximate CCSD intermolecular interaction energies, a quadratically growing number of variables must be included at zeroth-order.« less

  20. Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degroote, M.; Henderson, T. M.; Zhao, J.

    We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero.more » Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.« less

  1. Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, So; Yanai, Takeshi; De Jong, Wibe A.

    Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms,more » rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.« less

  2. Effect of a chameleon scalar field on the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Anne-Christine; Schelpe, Camilla A. O.; Shaw, Douglas J.

    2009-09-15

    We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel'dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling.more » The constrained conversion probability in the cluster is P{sub Coma}(204 GHz)<6.2x10{sup -5} at 95% confidence, corresponding to an upper bound on the coupling strength of g{sub eff}{sup (cell)}<2.2x10{sup -8} GeV{sup -1} or g{sub eff}{sup (Kolmo)}<(7.2-32.5)x10{sup -10} GeV{sup -1}, depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.« less

  3. [Study on HPLC fingerprint of Oldenlandia diffusa].

    PubMed

    Chen, Yan; Yao, Zhi-Hong; Dai, Yi; Cheng, Hong; Wen, Li-Rong; Zhou, Guang-Xiong; Yao, Xin-Sheng

    2012-06-01

    To establish the HPLC fingerprint chromatogram of Oldenlandia diffusa coupled with chemometrics means for the quality control of multi-batches of medicinal material. The separation was developed on C18 column(4.6 mm x 250 mm, 5 microm) by gradient elution with acetonitrile-water(both containing 0.1 per thousand (V/V) ocetic acid) as mobile phase at a flow rate of 0.8 mL/min, the detection wavelength at 238 nm and column temperature at 30 degrees C. The HPLC fingerprint chromatogram of Oldenlandia diffusa was set up and the main characteristic peaks were identified by comparing with chemical reference substance. The quality of 22 batches of medicinal material was evaluated by similarity assay as well as principal component analysis (PCA) and cluster analysis. The established HPLC fingerprint chromatogram of Oldenlandia diffusa was specific, precise, reproducible and stable. 11 peaks were chemically identified. The similarity of 17 batches of Oldenlandia diffusa was obviously higher than 5 batches of adulterants. PCA showed that 17 batches of Oldenlandia diffusa were in a domain and 5 batches of adulterants were far apart from the domain. The cluster analysis of the 22 batches of medicinal material showed that 17 batches of Oldenlandia diffusa were in a cluster while 5 batches of adulterants were excluded. Further cluster analysis was carried out for the quality consistency of 17 batches of Oldenlandia diffusa and accordingly they were devided into 4 clusters. With the combination of chemometrics means, the HPLC fingerprint chromatogram provides a method for evaluation of authenticity and quality control of Oldenlandia diffusa, which is favorable to improve overall quality control of Oldenlandia diffusa.

  4. Electrocatalytic cermet gas detector/sensor

    DOEpatents

    Vogt, M.C.; Shoemarker, E.L.; Fraioli, A.V.

    1995-07-04

    An electrocatalytic device for sensing gases is described. The gas sensing device includes a substrate layer, a reference electrode disposed on the substrate layer comprised of a nonstoichiometric chemical compound enabling oxygen diffusion therethrough, a lower reference electrode coupled to the reference electrode, a solid electrolyte coupled to the lower reference electrode and an upper catalytically active electrode coupled to the solid electrolyte. 41 figs.

  5. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less

  6. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  7. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  8. Evaluating Mixture Modeling for Clustering: Recommendations and Cautions

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    This article provides a large-scale investigation into several of the properties of mixture-model clustering techniques (also referred to as latent class cluster analysis, latent profile analysis, model-based clustering, probabilistic clustering, Bayesian classification, unsupervised learning, and finite mixture models; see Vermunt & Magdison,…

  9. Title: Chimeras in small, globally coupled networks: Experiments and stability analysis

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi

    Since the initial observation of chimera states, there has been much discussion of the conditions under which these states emerge. The emphasis thus far has mainly been to analyze large networks of coupled oscillators; however, recent studies have begun to focus on the opposite limit: what is the smallest system of coupled oscillators in which chimeras can exist? We experimentally observe chimeras and other partially synchronous patterns in a network of four globally-coupled chaotic opto-electronic oscillators. By examining the equations of motion, we demonstrate that symmetries in the network topology allow a variety of synchronous states to exist, including cluster synchronous states and a chimera state. Using the group theoretical approach recently developed for analyzing cluster synchronization, we show how to derive the variational equations for these synchronous patterns and calculate their linear stability. The stability analysis gives good agreement with our experimental results. Both experiments and simulations suggest that these chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  10. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials

    NASA Astrophysics Data System (ADS)

    Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao

    2017-10-01

    The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.

  11. Rational synthesis of high nuclearity Mo/Fe/S clusters: the reductive coupling approach in the convenient synthesis of (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et, (n)Pr, (n)Bu] and the new [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl]-1/2(Fe(PEt(3))(2)(MeCN)(4)) and (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) clusters.

    PubMed

    Han, J; Koutmos, M; Ahmad, S A; Coucouvanis, D

    2001-11-05

    A general method for the synthesis of high nuclearity Mo/Fe/S clusters is presented and involves the reductive coupling of the (Et(4)N)(2)[(Cl(4)-cat)MoOFeS(2)Cl(2)] (I) and (Et(4)N)(2)[Fe(2)S(2)Cl(4)] (II) clusters. The reaction of I and II with Fe(PR(3))(2)Cl(2) or sodium salts of noncoordinating anions such as NaPF(6) or NaBPh(4) in the presence of PR(3) (R = Et, (n)Pr, or (n)Bu) affords (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (IIIa), (n)Pr (IIIb), (n)Bu (IIIc)], Fe(6)S(6)(PEt(3))(4)Cl(2) (IV) and (PF(6))[Fe(6)S(8)(P(n)Pr(3))(6)] (V) as byproducts. The isolation of (Et(4)N)[Fe(PEt(3))Cl(3)] (VI), NaCl, and SPEt(3) supports a reductive coupling mechanism. Cluster IV and V also have been synthesized by the reductive self-coupling of compound II. The reductive coupling reaction between I and II by PEt(3) and NaPF(6) in a 1:1 ratio produces the (Et(4)N)(2)[(Cl(4)-cat)Mo(L)Fe(3)S(4)Cl(3)] clusters [L = MeCN (VIIa), THF (VIIb)]. The hitherto unknown [(Cl(4)-cat)(2)Mo(2)Fe(2)S(3)O(PEt(3))(3)Cl](+) cluster (VIII) has been isolated as the 2:1 salt of the (Fe(PEt(3))(2)(MeCN)(4))(2+) cation after the reductive self-coupling reaction of I in the presence of Fe(PEt(3))(2)Cl(2). Cluster VIII crystallizes in the monoclinic space group P2(1)/c with a = 11.098(3) A, b = 22.827(6) A, c = 25.855(6) A, beta = 91.680(4) degrees, and Z = 4. The formal oxidation states of metal atoms in VIII have been assigned as Mo(III), Mo(IV), Fe(II), and Fe(III) on the basis of zero-field Mössbauer spectra. The Fe(PEt(3))(2)(MeCN)(4) cation of VIII is also synthesized independently, isolated as the BPh(4)(-) salt (IX), and has been structurally characterized. The reductive coupling of compound I also affords in low yield the new (Cl(4)-cat)(2)Mo(2)Fe(3)S(5)(PEt(3))(5) cluster (X) as a byproduct. Cluster X crystallizes in the monoclinic space group P2(1)/n with a = 14.811(3) A, b = 22.188(4) A, c = 21.864(4) A, beta = 100.124(3) degrees, and Z = 4 and the structure shows very short Mo-Fe, Fe-Fe, Mo-S, Fe-S bonds. The oxidation states of the metal atoms in this neutral cluster (X) have been assigned as Mo(IV)Mo(III)Fe(II)Fe(II)Fe(III) based on zero-field Mössbauer and magnetic measurement. All Fe atoms are high spin and two of the three Fe-Fe distances are found at 2.4683(9) A and 2.4721(9) A.

  12. Solution of the sign problem in the Potts model at fixed fermion number

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bergner, Georg; Schaich, David; Wenger, Urs

    2018-06-01

    We consider the heavy-dense limit of QCD at finite fermion density in the canonical formulation and approximate it by a three-state Potts model. In the strong-coupling limit, the model is free of the sign problem. Away from the strong coupling, the sign problem is solved by employing a cluster algorithm which allows to average each cluster over the Z (3 ) sectors. Improved estimators for physical quantities can be constructed by taking into account the triality of the clusters, that is, their transformation properties with respect to Z (3 ) transformations.

  13. Estimation of satellite position, clock and phase bias corrections

    NASA Astrophysics Data System (ADS)

    Henkel, Patrick; Psychas, Dimitrios; Günther, Christoph; Hugentobler, Urs

    2018-05-01

    Precise point positioning with integer ambiguity resolution requires precise knowledge of satellite position, clock and phase bias corrections. In this paper, a method for the estimation of these parameters with a global network of reference stations is presented. The method processes uncombined and undifferenced measurements of an arbitrary number of frequencies such that the obtained satellite position, clock and bias corrections can be used for any type of differenced and/or combined measurements. We perform a clustering of reference stations. The clustering enables a common satellite visibility within each cluster and an efficient fixing of the double difference ambiguities within each cluster. Additionally, the double difference ambiguities between the reference stations of different clusters are fixed. We use an integer decorrelation for ambiguity fixing in dense global networks. The performance of the proposed method is analysed with both simulated Galileo measurements on E1 and E5a and real GPS measurements of the IGS network. We defined 16 clusters and obtained satellite position, clock and phase bias corrections with a precision of better than 2 cm.

  14. Application of Hermitian time-dependent coupled-cluster response Ansätze of second order to excitation energies and frequency-dependent dipole polarizabilities

    NASA Astrophysics Data System (ADS)

    Wälz, Gero; Kats, Daniel; Usvyat, Denis; Korona, Tatiana; Schütz, Martin

    2012-11-01

    Linear-response methods, based on the time-dependent variational coupled-cluster or the unitary coupled-cluster model, and truncated at the second order according to the Møller-Plesset partitioning, i.e., the TD-VCC[2] and TD-UCC[2] linear-response methods, are presented and compared. For both of these methods a Hermitian eigenvalue problem has to be solved to obtain excitation energies and state eigenvectors. The excitation energies thus are guaranteed always to be real valued, and the eigenvectors are mutually orthogonal, in contrast to response theories based on “traditional” coupled-cluster models. It turned out that the TD-UCC[2] working equations for excitation energies and polarizabilities are equivalent to those of the second-order algebraic diagrammatic construction scheme ADC(2). Numerical tests are carried out by calculating TD-VCC[2] and TD-UCC[2] excitation energies and frequency-dependent dipole polarizabilities for several test systems and by comparing them to the corresponding values obtained from other second- and higher-order methods. It turns out that the TD-VCC[2] polarizabilities in the frequency regions away from the poles are of a similar accuracy as for other second-order methods, as expected from the perturbative analysis of the TD-VCC[2] polarizability expression. On the other hand, the TD-VCC[2] excitation energies are systematically too low relative to other second-order methods (including TD-UCC[2]). On the basis of these results and an analysis presented in this work, we conjecture that the perturbative expansion of the Jacobian converges more slowly for the TD-VCC formalism than for TD-UCC or for response theories based on traditional coupled-cluster models.

  15. Theoretical studies on the coupling interactions in H2SO4···HOO˙···(H2O)n (n = 0-2) clusters: toward understanding the role of water molecules in the uptake of HOO˙ radical by sulfuric acid aerosols.

    PubMed

    Li, Ping; Ma, Zhiying; Wang, Weihua; Zhai, Yazhou; Sun, Haitao; Bi, Siwei; Bu, Yuxiang

    2011-01-21

    A detailed knowledge of coupling interactions among sulfuric acid (H(2)SO(4)), the hydroperoxyl radical (HOO˙), and water molecules (H(2)O) is crucial for the better understanding of the uptake of HOO˙ radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H(2)SO(4)···HOO˙···(H(2)O)(n) (n = 0-2) clusters have been systematically investigated at the B3LYP/6-311++G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H(2)SO(4) and HOO˙ through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H(2)SO(4)···HOO˙ cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H(2)SO(4) and HOO˙, implying the positive role of water molecules in the uptake of the HOO˙ radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics.

  16. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barriermore » for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.« less

  17. Cluster assembly in nitrogenase.

    PubMed

    Sickerman, Nathaniel S; Rettberg, Lee A; Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2017-05-09

    The versatile enzyme system nitrogenase accomplishes the challenging reduction of N 2 and other substrates through the use of two main metalloclusters. For molybdenum nitrogenase, the catalytic component NifDK contains the [Fe 8 S 7 ]-core P-cluster and a [MoFe 7 S 9 C-homocitrate] cofactor called the M-cluster. These chemically unprecedented metalloclusters play a critical role in the reduction of N 2 , and both originate from [Fe 4 S 4 ] clusters produced by the actions of NifS and NifU. Maturation of P-cluster begins with a pair of these [Fe 4 S 4 ] clusters on NifDK called the P*-cluster. An accessory protein NifZ aids in P-cluster fusion, and reductive coupling is facilitated by NifH in a stepwise manner to form P-cluster on each half of NifDK. For M-cluster biosynthesis, two [Fe 4 S 4 ] clusters on NifB are coupled with a carbon atom in a radical-SAM dependent process, and concomitant addition of a 'ninth' sulfur atom generates the [Fe 8 S 9 C]-core L-cluster. On the scaffold protein NifEN, L-cluster is matured to M-cluster by the addition of Mo and homocitrate provided by NifH. Finally, matured M-cluster in NifEN is directly transferred to NifDK, where a conformational change locks the cofactor in place. Mechanistic insights into these fascinating biosynthetic processes are detailed in this chapter. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. The evolution of early-type galaxies in nearby clusters: breaking the age-metallicity degeneracy with Spitzer IRS Blue Peak-Up Imaging

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro; Buson, Lucio; Clemens, Marcel; Danese, Luigi; Granato, Gian Luigi; Panuzzo, Pasquale; Rampazzo, Roberto; Silva, Laura; Valdes, Jose Ramon

    2005-06-01

    We have shown with Cycle 1 observations that Spitzer has the capability of disentangling age and metallicity in old stellar populations. By looking to the broad emission feature left by dust enshrouded asymptotic giant branch stars above 9.7 microns, Spitzer IRS can provide direct evidence that the colour- magnitude relation of Virgo ellipticals is mainly driven by metallicity. However, with the IRS spectrograph we can only probe the bright tail of the colour-magnitude relation, and only in the nearest cluster. We propose to use IRS Blue Peak-Up, the only Spitzer band that looks directly in the core of that spectral feature, to reach fainter galaxies. We will perform a thorough investigation of early type galaxies along the colour-magnitude relation in Virgo and in Coma clusters. These observations, when coupled with already existing IRAC and Optical-NIR observations, will allow a) an unbiased census of the stellar populations in cluster early type galaxies; b) an estimate of the AGB material recycled into the ISM in these systems; c) a direct check of the universality of the colour- magnitude relation on a wide range of magnitudes; d) a spatial study of the stellar populations within the galaxies, e.g. investigating differences between bulge and disk populations within S0; e) the most secure reference frame with which to compare the evolution of early type galaxies in other environments (groups and field).

  19. Pulse-coupled mixed-mode oscillators: Cluster states and extreme noise sensitivity

    NASA Astrophysics Data System (ADS)

    Karamchandani, Avinash J.; Graham, James N.; Riecke, Hermann

    2018-04-01

    Motivated by rhythms in the olfactory system of the brain, we investigate the synchronization of all-to-all pulse-coupled neuronal oscillators exhibiting various types of mixed-mode oscillations (MMOs) composed of sub-threshold oscillations (STOs) and action potentials ("spikes"). We focus particularly on the impact of the delay in the interaction. In the weak-coupling regime, we reduce the system to a Kuramoto-type equation with non-sinusoidal phase coupling and the associated Fokker-Planck equation. Its linear stability analysis identifies the appearance of various cluster states. Their type depends sensitively on the delay and the width of the pulses. Interestingly, long delays do not imply slow population rhythms, and the number of emerging clusters only loosely depends on the number of STOs. Direct simulations of the oscillator equations reveal that for quantitative agreement of the weak-coupling theory the coupling strength and the noise have to be extremely small. Even moderate noise leads to significant skipping of STO cycles, which can enhance the diffusion coefficient in the Fokker-Planck equation by two orders of magnitude. Introducing an effective diffusion coefficient extends the range of agreement significantly. Numerical simulations of the Fokker-Planck equation reveal bistability and solutions with oscillatory order parameters that result from nonlinear mode interactions. These are confirmed in simulations of the full spiking model.

  20. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  1. Event-based cluster synchronization of coupled genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Yue, Dandan; Guan, Zhi-Hong; Li, Tao; Liao, Rui-Quan; Liu, Feng; Lai, Qiang

    2017-09-01

    In this paper, the cluster synchronization of coupled genetic regulatory networks with a directed topology is studied by using the event-based strategy and pinning control. An event-triggered condition with a threshold consisting of the neighbors' discrete states at their own event time instants and a state-independent exponential decay function is proposed. The intra-cluster states information and extra-cluster states information are involved in the threshold in different ways. By using the Lyapunov function approach and the theories of matrices and inequalities, we establish the cluster synchronization criterion. It is shown that both the avoidance of continuous transmission of information and the exclusion of the Zeno behavior are ensured under the presented triggering condition. Explicit conditions on the parameters in the threshold are obtained for synchronization. The stability criterion of a single GRN is also given under the reduced triggering condition. Numerical examples are provided to validate the theoretical results.

  2. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the 199Hg Atom

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.; Das, B. P.

    2018-05-01

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  3. Relativistic Normal Coupled-Cluster Theory for Accurate Determination of Electric Dipole Moments of Atoms: First Application to the ^{199}Hg Atom.

    PubMed

    Sahoo, B K; Das, B P

    2018-05-18

    Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.

  4. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.

    PubMed

    Rideout, Jai Ram; He, Yan; Navas-Molina, Jose A; Walters, William A; Ursell, Luke K; Gibbons, Sean M; Chase, John; McDonald, Daniel; Gonzalez, Antonio; Robbins-Pianka, Adam; Clemente, Jose C; Gilbert, Jack A; Huse, Susan M; Zhou, Hong-Wei; Knight, Rob; Caporaso, J Gregory

    2014-01-01

    We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to "classic" open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, "classic" open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of "classic" open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by "classic" open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME's uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME's OTU picking workflows and make recommendations on settings for these free parameters to optimize runtime without reducing the quality of the results. These optimized parameters can vastly decrease the runtime of uclust-based OTU picking in QIIME.

  5. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes.

    PubMed

    Tecmer, Paweł; Gomes, André Severo Pereira; Knecht, Stefan; Visscher, Lucas

    2014-07-28

    We present a study of the electronic structure of the [UO2](+), [UO2](2 +), [UO2](3 +), NUO, [NUO](+), [NUO](2 +), [NUN](-), NUN, and [NUN](+) molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  6. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    NASA Astrophysics Data System (ADS)

    Tecmer, Paweł; Severo Pereira Gomes, André; Knecht, Stefan; Visscher, Lucas

    2014-07-01

    We present a study of the electronic structure of the [UO2]+, [UO2]2 +, [UO2]3 +, NUO, [NUO]+, [NUO]2 +, [NUN]-, NUN, and [NUN]+ molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spin-orbit coupling and Gaunt interactions are compared to results obtained with the Dirac-Coulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity).

  7. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  8. Macroscopic Magnetic Coupling Effect: The Physical Origination of a High-Temperature Superconducting Flux Pump

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Coombs, Tim

    2018-04-01

    We have uncovered at the macroscopic scale a magnetic coupling phenomenon in a superconducting YBa2Cu3O7 -δ (YBCO) film, which physically explains the mechanism of the high-temperature superconducting flux pump. The coupling occurs between the applied magnetic poles and clusters of vortices induced in the YBCO film, with each cluster containing millions of vortices. The coupling energy is verified to originate from the inhomogeneous field of the magnetic poles, which reshapes the vortex distribution, aggregates millions of vortices into a single cluster, and accordingly moves with the poles. A contrast study is designed to verify that, to provide the effective coupling energy, the applied wavelength must be short while the field amplitude must be strong, i.e., local-field inhomogeneity is the crucial factor. This finding broadens our understanding of the collective vortex behavior in an applied magnetic field with strong local inhomogeneity. Moreover, this phenomenon largely increases the controlled vortex flow rate by several orders of magnitude compared with existing methods, providing motivation for and physical support to a new branch of wireless superconducting dc power sources, i.e., the high-temperature superconducting flux pump.

  9. A state-specific approach to multireference coupled electron-pair approximation like methods: Development and applications

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudip; Pahari, Dola; Mukherjee, Debashis; Mahapatra, Uttam Sinha

    2004-04-01

    The traditional multireference (MR) coupled-cluster (CC) methods based on the effective Hamiltonian are often beset by the problem of intruder states, and are not suitable for studying potential energy surface (PES) involving real or avoided curve crossing. State-specific MR-based approaches obviate this limitation. The state-specific MRCC (SS-MRCC) method developed some years ago [Mahapatra et al., J. Chem. Phys. 110, 6171 (1999)] can handle quasidegeneracy of varying degrees over a wide range of PES, including regions of real or avoided curve-crossing. Motivated by its success, we have suggested and explored in this paper a suite of physically motivated coupled electron-pair approximations (SS-MRCEPA) like methods, which are designed to capture the essential strength of the parent SS-MRCC method without significant sacrificing its accuracy. These SS-MRCEPA theories, like their CC counterparts, are based on complete active space, treat all the reference functions on the same footing and provide a description of potentially uniform precision of PES of states with varying MR character. The combining coefficients of the reference functions are self-consistently determined along with the cluster amplitudes themselves. The newly developed SS-MRCEPA methods are size-extensive, and are also size-consistent with localized orbitals. Among the various versions, there are two which are invariant with respect to the restricted rotations among doubly occupied and active orbitals separately. Similarity of performance of this latter and the noninvariant versions at the crossing points of the degenerate orbitals imply that the all the methods presented are rather robust with respect to the rotations among degenerate orbitals. Illustrative numerical applications are presented for PES of the ground state of a number of difficult test cases such as the model H4, H8 problems, the insertion of Be into H2, and Li2, where intruders exist and for a state of a molecule such as CH2, with pronounced MR character. Results obtained with SS-MRCEPA methods are found to be comparable in accuracy to the parent SS-MRCC and FCI/large scale CI results throughout the PES, which indicates the efficacy of our SS-MRCEPA methods over a wide range of geometries, despite their neglect of a host of complicated nonlinear terms, even when the traditional MR-based methods based on effective Hamiltonians fail due to intruders.

  10. Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S.; Hasegawa, N.; Kishimoto, M.

    A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a stronglymore » coupled cluster nanoplasma with several eV was generated.« less

  11. Stability and Noise-induced Transitions in an Ensemble of Nonlocally Coupled Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Bukh, Andrei V.; Slepnev, Andrei V.; Anishchenko, Vadim S.; Vadivasova, Tatiana E.

    2018-05-01

    The influence of noise on chimera states arising in ensembles of nonlocally coupled chaotic maps is studied. There are two types of chimera structures that can be obtained in such ensembles: phase and amplitude chimera states. In this work, a series of numerical experiments is carried out to uncover the impact of noise on both types of chimeras. The noise influence on a chimera state in the regime of periodic dynamics results in the transition to chaotic dynamics. At the same time, the transformation of incoherence clusters of the phase chimera to incoherence clusters of the amplitude chimera occurs. Moreover, it is established that the noise impact may result in the appearance of a cluster with incoherent behavior in the middle of a coherence cluster.

  12. Excitons in Potassium Bromide: A Study using Embedded Time-dependent Density Functional Theory and Equation-of-Motion Coupled Cluster Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govind, Niranjan; Sushko, Petr V.; Hess, Wayne P.

    2009-03-05

    We present a study of the electronic excitations in insulating materials using an embedded- cluster method. The excited states of the embedded cluster are studied systematically using time-dependent density functional theory (TDDFT) and high-level equation-of-motion coupled cluster (EOMCC) methods. In particular, we have used EOMCC models with singles and doubles (EOMCCSD) and two approaches which account for the e®ect of triply excited con¯gurations in non-iterative and iterative fashions. We present calculations of the lowest surface excitations of the well-studied potassium bromide (KBr) system and compare our results with experiment. The bulk-surface exciton shift is also calculated at the TDDFT levelmore » and compared with experiment.« less

  13. Impact of symmetry breaking in networks of globally coupled oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-05-01

    We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera, amplitude cluster, frequency chimera, and frequency cluster states. In addition we also find disparate transition routes to recently observed chimera death states in the presence of symmetry breaking even with global coupling. We also analytically verify the chimera death region, which corroborates the numerical results. These results are compared with that of the symmetry-preserving case as well.

  14. Dataset of Fourier transform-infrared coupled with chemometric analysis used to distinguish accessions of Garcinia mangostana L. in Peninsular Malaysia.

    PubMed

    Samsir, Sri A'jilah; Bunawan, Hamidun; Yen, Choong Chee; Noor, Normah Mohd

    2016-09-01

    In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600-3100 cm(-) (1) in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.

  15. Patterns of Dysmorphic Features in Schizophrenia

    PubMed Central

    Scutt, L.E.; Chow, E.W.C.; Weksberg, R.; Honer, W.G.; Bassett, Anne S.

    2011-01-01

    Congenital dysmorphic features are prevalent in schizophrenia and may reflect underlying neurodevelopmental abnormalities. A cluster analysis approach delineating patterns of dysmorphic features has been used in genetics to classify individuals into more etiologically homogeneous subgroups. In the present study, this approach was applied to schizophrenia, using a sample with a suspected genetic syndrome as a testable model. Subjects (n = 159) with schizophrenia or schizoaffective disorder were ascertained from chronic patient populations (random, n=123) or referred with possible 22q11 deletion syndrome (referred, n = 36). All subjects were evaluated for presence or absence of 70 reliably assessed dysmorphic features, which were used in a three-step cluster analysis. The analysis produced four major clusters with different patterns of dysmorphic features. Significant between-cluster differences were found for rates of 37 dysmorphic features (P < 0.05), median number of dysmorphic features (P = 0.0001), and validating features not used in the cluster analysis: mild mental retardation (P = 0.001) and congenital heart defects (P = 0.002). Two clusters (1 and 4) appeared to represent more developmental subgroups of schizophrenia with elevated rates of dysmorphic features and validating features. Cluster 1 (n = 27) comprised mostly referred subjects. Cluster 4 (n= 18) had a different pattern of dysmorphic features; one subject had a mosaic Turner syndrome variant. Two other clusters had lower rates and patterns of features consistent with those found in previous studies of schizophrenia. Delineating patterns of dysmorphic features may help identify subgroups that could represent neurodevelopmental forms of schizophrenia with more homogeneous origins. PMID:11803519

  16. Metastable Autoionizing States of Molecules and Radicals in Highly Energetic Environment

    DTIC Science & Technology

    2016-03-22

    electronic states. The specific aims are to develop and calibrate complex-scaled equation-of-motion coupled cluster (cs-EOM- CC ) and CAP (complex...absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and CAP- augmented EOM-CCSD methods for excitation energies...motion coupled cluster (cs-EOM- CC ) and CAP (complex absorbing potential) augmented EOM- CC methods. We have implemented and benchmarked cs-EOM-CCSD and

  17. Communication: Biological applications of coupled-cluster frozen-density embedding

    NASA Astrophysics Data System (ADS)

    Heuser, Johannes; Höfener, Sebastian

    2018-04-01

    We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.

  18. Are trinuclear superhalogens promising candidates for building blocks of novel magnetic materials? A theoretical prospect from combined broken-symmetry density functional theory and ab initio study.

    PubMed

    Yu, Yang; Li, Chen; Yin, Bing; Li, Jian-Li; Huang, Yuan-He; Wen, Zhen-Yi; Jiang, Zhen-Yi

    2013-08-07

    The structures, relative stabilities, vertical electron detachment energies, and magnetic properties of a series of trinuclear clusters are explored via combined broken-symmetry density functional theory and ab initio study. Several exchange-correlation functionals are utilized to investigate the effects of different halogen elements and central atoms on the properties of the clusters. These clusters are shown to possess stronger superhalogen properties than previously reported dinuclear superhalogens. The calculated exchange coupling constants indicate the antiferromagnetic coupling between the transition metal ions. Spin density analysis demonstrates the importance of spin delocalization in determining the strengths of various couplings. Spin frustration is shown to occur in some of the trinuclear superhalogens. The coexistence of strong superhalogen properties and spin frustration implies the possibility of trinuclear superhalogens working as the building block of new materials of novel magnetic properties.

  19. Partially linearized external models to active-space coupled-cluster through connected hextuple excitations.

    PubMed

    Xu, Enhua; Ten-No, Seiichiro L

    2018-06-05

    Partially linearized external models to active-space coupled-cluster through hextuple excitations, for example, CC{SDtqph} L , CCSD{tqph} L , and CCSD{tqph} hyb, are implemented and compared with the full active-space CCSDtqph. The computational scaling of CCSDtqph coincides with that for the standard coupled-cluster singles and doubles (CCSD), yet with a much large prefactor. The approximate schemes to linearize the external excitations higher than doubles are significantly cheaper than the full CCSDtqph model. These models are applied to investigate the bond dissociation energies of diatomic molecules (HF, F 2 , CuH, and CuF), and the potential energy surfaces of the bond dissociation processes of HF, CuH, H 2 O, and C 2 H 4 . Among the approximate models, CCSD{tqph} hyb provides very accurate descriptions compared with CCSDtqph for all of the tested systems. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Effectiveness of the 'Hold me Tight' Relationship Enhancement Program in a Self-referred and a Clinician-referred Sample: An Emotionally Focused Couples Therapy-Based Approach.

    PubMed

    Conradi, Henk Jan; Dingemanse, Pieter; Noordhof, Arjen; Finkenauer, Catrin; Kamphuis, Jan H

    2017-09-04

    While evidence-based couple therapies are available, only a minority of troubled couples seek help and they often do this too late. To reach more couples earlier, the couple relationship education (CRE) group program "Hold me Tight" (HmT) based on Emotionally Focused Couples Therapy (EFCT) was developed. This study is the first to examine the effectiveness of HmT. Using a three-wave (waiting period, treatment, and follow-up) within-subject design, HmT was delivered to 79 self-referred couples and 50 clinician-referred couples. We applied a comprehensive outcome measure battery. Our main findings were that (1) self-referred couples significantly improved during HmT on all measures, that is relationship satisfaction, security of partner-bond, forgiveness, daily coordination, maintenance behavior, and psychological complaints, with a moderate-to-large mean effect size (d = .63), which was maintained (d = .57) during the 3.5 month follow-up; (2) in clinician-referred couples, who were vulnerable in terms of insecure attachment status and psychopathology, the improvement during HmT was moderate (d = .42), but this was reduced during the 3.5-month follow-up to a small effect (d = .22); (3) emotional functioning (typical HmT target) as well as behavioral functioning (typical Behavioral Couples Therapy-based CRE target) improved during HmT; and (4) individual psychological complaints, although not specifically targeted, were reduced during HmT. These findings suggest that HmT is a promising intervention for enhancement of relationship functioning. Clinical implications are discussed. © 2017 Family Process Institute.

  1. Spin-orbit coupling effect on structural and magnetic properties of ConRh13-n (n = 0-13) clusters

    NASA Astrophysics Data System (ADS)

    Bai, Xi; Lv, Jin; Zhang, Fu-Qiang; Jia, Jian-Feng; Wu, Hai-Shun

    2018-04-01

    The effect of spin-orbit interaction on the structures and magnetism of ConRh13-n (n = 0-13) clusters have been systematically investigated by using the spin-orbit coupling (SOC) implementation of the density functional theory (DFT). The results calculated without SOC (NSOC) show that Rh13 prefers the double simple-cubic configuration, and icosahedron is the favorable structure for n = 1-9, while n ≥ 10, clusters favor the hexagonal bilayer structure. The inclusion of SOC in calculation does not change the geometries of clusters. Compared with that in NSOC calculation, although the binding energy per atom in clusters with same composition decreases in SOC calculation, the relative stability of clusters with different compositions does not change. An interesting result is that the spin moments of clusters for n = 1-9 are almost constant (21 μB). Spin-orbit interaction recovers orbital moment and its anisotropy by removing crystal-field effect in calculation. The destruction of bonding symmetry and relaxation of bonding account for high anisotropies of orbital moments in Co11Rh2 and CoRh12 clusters. With atomic composition (Co/Rh) around 4/9-5/8 and 9/4, the Co-Rh clusters exhibit high magnetic anisotropy energies.

  2. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance Raman spectra of M1 MoVOx † †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc01771e Click here for additional data file.

    PubMed Central

    Kubas, Adam; Noak, Johannes

    2017-01-01

    Absorption and multiwavelength resonance Raman spectroscopy are widely used to investigate the electronic structure of transition metal centers in coordination compounds and extended solid systems. In combination with computational methodologies that have predictive accuracy, they define powerful protocols to study the spectroscopic response of catalytic materials. In this work, we study the absorption and resonance Raman spectra of the M1 MoVOx catalyst. The spectra were calculated by time-dependent density functional theory (TD-DFT) in conjunction with the independent mode displaced harmonic oscillator model (IMDHO), which allows for detailed bandshape predictions. For this purpose cluster models with up to 9 Mo and V metallic centers are considered to represent the bulk structure of MoVOx. Capping hydrogens were used to achieve valence saturation at the edges of the cluster models. The construction of model structures was based on a thorough bonding analysis which involved conventional DFT and local coupled cluster (DLPNO-CCSD(T)) methods. Furthermore the relationship of cluster topology to the computed spectral features is discussed in detail. It is shown that due to the local nature of the involved electronic transitions, band assignment protocols developed for molecular systems can be applied to describe the calculated spectral features of the cluster models as well. The present study serves as a reference for future applications of combined experimental and computational protocols in the field of solid-state heterogeneous catalysis. PMID:28989667

  3. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  4. Mechanisms contributing to cluster formation in the inferior olivary nucleus in brainstem slices from postnatal mice

    PubMed Central

    Kølvraa, Mathias; Müller, Felix C; Jahnsen, Henrik; Rekling, Jens C

    2014-01-01

    Abstract The inferior olivary nucleus (IO) in in vitro slices from postnatal mice (P5.5–P15.5) spontaneously generates clusters of neurons with synchronous calcium transients, and intracellular recordings from IO neurons suggest that electrical coupling between neighbouring IO neurons may serve as a synchronizing mechanism. Here, we studied the cluster-forming mechanism and find that clusters overlap extensively with an overlap distribution that resembles the distribution for a random overlap model. The average somatodendritic field size of single curly IO neurons was ∼6400 μm2, which is slightly smaller than the average IO cluster size. Eighty-seven neurons with overlapping dendrites were estimated to be contained in the principal olive mean cluster size, and about six non-overlapping curly IO neurons could be contained within the largest clusters. Clusters could also be induced by iontophoresis with glutamate. Induced clusters were inhibited by tetrodotoxin, carbenoxelone and 18β-glycyrrhetinic acid, suggesting that sodium action potentials and electrical coupling are involved in glutamate-induced cluster formation, which could also be induced by activation of N-methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Spikelets and a small transient depolarizing response were observed during glutamate-induced cluster formation. Calcium transients spread with decreasing velocity during cluster formation, and somatic action potentials and cluster formation are accompanied by large dendritic calcium transients. In conclusion, cluster formation depends on gap junctions, sodium action potentials and spontaneous clusters occur randomly throughout the IO. The relative slow signal spread during cluster formation, combined with a strong dendritic influx of calcium, may signify that active dendritic properties contribute to cluster formation. PMID:24042500

  5. The Structure and Stability of Bn(+) Clusters

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The geometries of B+n clusters for n less than 14 have been optimized using density functional theory with the B3LYP functional. The most stable structure for each cluster is planar or quasi-planar. The B3LYP fragmentation energies are calibrated using coupled cluster theory. Overall, our corrected fragmentation energies are in reasonable agreement with experiment. Our results are compared with previous theoretical results.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  7. Consensus of satellite cluster flight using an energy-matching optimal control method

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Zhou, Liang; Zhang, Bo

    2017-11-01

    This paper presents an optimal control method for consensus of satellite cluster flight under a kind of energy matching condition. Firstly, the relation between energy matching and satellite periodically bounded relative motion is analyzed, and the satellite energy matching principle is applied to configure the initial conditions. Then, period-delayed errors are adopted as state variables to establish the period-delayed errors dynamics models of a single satellite and the cluster. Next a novel satellite cluster feedback control protocol with coupling gain is designed, so that the satellite cluster periodically bounded relative motion consensus problem (period-delayed errors state consensus problem) is transformed to the stability of a set of matrices with the same low dimension. Based on the consensus region theory in the research of multi-agent system consensus issues, the coupling gain can be obtained to satisfy the requirement of consensus region and decouple the satellite cluster information topology and the feedback control gain matrix, which can be determined by Linear quadratic regulator (LQR) optimal method. This method can realize the consensus of satellite cluster period-delayed errors, leading to the consistency of semi-major axes (SMA) and the energy-matching of satellite cluster. Then satellites can emerge the global coordinative cluster behavior. Finally the feasibility and effectiveness of the present energy-matching optimal consensus for satellite cluster flight is verified through numerical simulations.

  8. Orbital-ordering-driven multiferroicity and magnetoelectric coupling in GeV₄S₈.

    PubMed

    Singh, Kiran; Simon, Charles; Cannuccia, Elena; Lepetit, Marie-Bernadette; Corraze, Benoit; Janod, Etienne; Cario, Laurent

    2014-09-26

    We report here the discovery of multiferroicity and large magnetoelectric coupling in the type I orbital order system GeV₄S₈. Our study demonstrates that this clustered compound displays a para-ferroelectric transition at 32 K. This transition originates from an orbital ordering which reorganizes the charge within the transition metal clusters. Below the antiferromagnetic transition at 17 K, the application of a magnetic field significantly affects the ferroelectric polarization, revealing thus a large magnetoelectric coupling. Our study suggests that the application of a magnetic field induces a metamagnetic transition which significantly affects the ferroelectric polarization thanks to an exchange striction phenomenon.

  9. Hybrid Tracking Algorithm Improvements and Cluster Analysis Methods.

    DTIC Science & Technology

    1982-02-26

    UPGMA ), and Ward’s method. Ling’s papers describe a (k,r) clustering method. Each of these methods have individual characteristics which make them...Reference 7), UPGMA is probably the most frequently used clustering strategy. UPGMA tries to group new points into an existing cluster by using an

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wykes, M., E-mail: mikewykes@gmail.com; Parambil, R.; Gierschner, J.

    Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescencemore » spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.« less

  11. Electrostatic effects on clustering and ion dynamics in ionomer melts

    NASA Astrophysics Data System (ADS)

    Ma, Boran; Nguyen, Trung; Pryamitsyn, Victor; Olvera de La Cruz, Monica

    An understanding of the relationships between ionomer chain morphology, dynamics and counter-ion mobility is a key factor in the design of ion conducting membranes for battery applications. In this study, we investigate the influence of electrostatic coupling between randomly charged copolymers (ionomers) and counter ions on the structural and dynamic features of a model system of ionomer melts. Using coarse-grained molecular dynamics (CGMD) simulations, we found that variations in electrostatic coupling strength (Γ) remarkably affect the formation of ion-counter ion clusters, ion mobility, and polymer dynamics for a range of charged monomer fractions. Specifically, an increase in Γ leads to larger ionic cluster sizes and reduced polymer and ion mobility. Analysis of the distribution of the radius of gyration of the clusters further reveals that the fractal dimension of the ion clusters is nearly independent from Γ for all the cases studied. Finally, at sufficiently high values of Γ, we observed arrested heterogeneous ions mobility, which is correlated with an increase in ion cluster size. These findings provide insight into the role of electrostatics in governing the nanostructures formed by ionomers.

  12. Heterogeneous delays making parents synchronized: A coupled maps on Cayley tree model

    NASA Astrophysics Data System (ADS)

    Singh, Aradhana; Jalan, Sarika

    2014-06-01

    We study the phase synchronized clusters in the diffusively coupled maps on the Cayley tree networks for heterogeneous delay values. Cayley tree networks comprise of two parts: the inner nodes and the boundary nodes. We find that heterogeneous delays lead to various cluster states, such as; (a) cluster state consisting of inner nodes and boundary nodes, and (b) cluster state consisting of only boundary nodes. The former state may comprise of nodes from all the generations forming self-organized cluster or nodes from few generations yielding driven clusters depending upon on the parity of heterogeneous delay values. Furthermore, heterogeneity in delays leads to the lag synchronization between the siblings lying on the boundary by destroying the exact synchronization among them. The time lag being equal to the difference in the delay values. The Lyapunov function analysis sheds light on the destruction of the exact synchrony among the last generation nodes. To the end we discuss the relevance of our results with respect to their applications in the family business as well as in understanding the occurrence of genetic diseases.

  13. Laser-Induced Breakdown Spectroscopy Coupled with Multivariate Chemometrics for Variety Discrimination of Soil

    PubMed Central

    Yu, Ke-Qiang; Zhao, Yan-Ru; Liu, Fei; He, Yong

    2016-01-01

    The aim of this work was to analyze the variety of soil by laser-induced breakdown spectroscopy (LIBS) coupled with chemometrics methods. 6 certified reference materials (CRMs) of soil samples were selected and their LIBS spectra were captured. Characteristic emission lines of main elements were identified based on the LIBS curves and corresponding contents. From the identified emission lines, LIBS spectra in 7 lines with high signal-to-noise ratio (SNR) were chosen for further analysis. Principal component analysis (PCA) was carried out using the LIBS spectra at 7 selected lines and an obvious cluster of 6 soils was observed. Soft independent modeling of class analogy (SIMCA) and least-squares support vector machine (LS-SVM) were introduced to establish discriminant models for classifying the 6 types of soils, and they offered the correct discrimination rates of 90% and 100%, respectively. Receiver operating characteristic (ROC) curve was used to evaluate the performance of models and the results demonstrated that the LS-SVM model was promising. Lastly, 8 types of soils from different places were gathered to conduct the same experiments for verifying the selected 7 emission lines and LS-SVM model. The research revealed that LIBS technology coupled with chemometrics could conduct the variety discrimination of soil. PMID:27279284

  14. Pattern formation for NO+N H3 on Pt(100): Two-dimensional numerical results

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2005-01-01

    The Lombardo-Fink-Imbihl model of the NO+NH3 reaction on a Pt(100) surface consists of seven coupled ordinary differential equations (ODE) and shows stable relaxation oscillations with sharp transitions in the relevant temperature range. Here we study numerically the effect of coupling of these oscillators by surface diffusion in two dimensions. We find different types of patterns, in particular phase clusters and standing waves. In models of related surface reactions such clustered solutions are known to exist only under a global coupling through the gas phase. This global coupling is replaced here by relatively fast diffusion of two variables which are kinetically slaved in the ODE. We also compare our simulations with experimental results and discuss some shortcomings of the model.

  15. Glucose transformation to 5-hydroxymethylfurfural in acidic ionic liquid: A quantum mechanical study.

    PubMed

    Arifin; Puripat, Maneeporn; Yokogawa, Daisuke; Parasuk, Vudhichai; Irle, Stephan

    2016-01-30

    Isomerization and transformation of glucose and fructose to 5-hydroxymethylfurfural (HMF) in both ionic liquids (ILs) and water has been studied by the reference interaction site model self-consistent field spatial electron density distribution (RISM-SCF-SEDD) method coupled with ab initio electronic structure theory, namely coupled cluster single, double, and perturbative triple excitation (CCSD(T)). Glucose isomerization to fructose has been investigated via cyclic and open chain mechanisms. In water, the calculations support the cyclic mechanism of glucose isomerization; with the predicted activation free energy is 23.8 kcal mol(-1) at experimental condition. Conversely, open ring mechanism is more favorable in ILs with the energy barrier is 32.4 kcal mol(-1) . Moreover, the transformation of fructose into HMF via cyclic mechanism is reasonable; the calculated activation barriers are 16.0 and 21.5 kcal mol(-1) in aqueous and ILs solutions, respectively. The solvent effects of ILs could be explained by the decomposition of free energies and radial distribution functions of solute-solvent that are produced by RISM-SCF-SEDD. © 2015 Wiley Periodicals, Inc.

  16. Gap-junction coupling and ATP-sensitive potassium channels in human β -cell clusters: Effects on emergent dynamics

    NASA Astrophysics Data System (ADS)

    Loppini, A.; Pedersen, M. G.; Braun, M.; Filippi, S.

    2017-09-01

    The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β -cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005 -0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.

  17. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  18. Renormalized coupled cluster approaches in the cluster-in-molecule framework: predicting vertical electron binding energies of the anionic water clusters (H2O)(n)(-).

    PubMed

    Xu, Peng; Gordon, Mark S

    2014-09-04

    Anionic water clusters are generally considered to be extremely challenging to model using fragmentation approaches due to the diffuse nature of the excess electron distribution. The local correlation coupled cluster (CC) framework cluster-in-molecule (CIM) approach combined with the completely renormalized CR-CC(2,3) method [abbreviated CIM/CR-CC(2,3)] is shown to be a viable alternative for computing the vertical electron binding energies (VEBE). CIM/CR-CC(2,3) with the threshold parameter ζ set to 0.001, as a trade-off between accuracy and computational cost, demonstrates the reliability of predicting the VEBE, with an average percentage error of ∼15% compared to the full ab initio calculation at the same level of theory. The errors are predominantly from the electron correlation energy. The CIM/CR-CC(2,3) approach provides the ease of a black-box type calculation with few threshold parameters to manipulate. The cluster sizes that can be studied by high-level ab initio methods are significantly increased in comparison with full CC calculations. Therefore, the VEBE computed by the CIM/CR-CC(2,3) method can be used as benchmarks for testing model potential approaches in small-to-intermediate-sized water clusters.

  19. Development of a Typology of Dual-Earner Couples Caring for Children and Aging Parents

    ERIC Educational Resources Information Center

    Cullen, Jennifer C.; Hammer, Leslie B.; Neal, Margaret B.; Sinclair, Robert R.

    2009-01-01

    Using a national sample of 267 couples, the authors identify distinct profiles of dual-earner couples in the sandwiched generation (i.e., those caring for children and aging parents) using cluster analysis and then assess the relationship between these profiles and work-family conflict. The profiles are defined by characteristics of couples' child…

  20. Genetics Home Reference: myopathy with deficiency of iron-sulfur cluster assembly enzyme

    MedlinePlus

    ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme Printable PDF Open All Close All Enable Javascript ... Myopathy with deficiency of iron-sulfur cluster assembly enzyme is an inherited disorder that primarily affects muscles ...

  1. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  2. Solar Wind/Magnetosphere/Ionosphere Coupling and the Temporal and Spatial Evolution of Boundary Layers using Cluster, Polar and other ISTP Satellites

    NASA Technical Reports Server (NTRS)

    Maynard, Nelson C.

    2004-01-01

    Our analysis concerns macro and meso-scale aspects of coupling between the IMF and the magnetosphere-ionosphere system, as opposed to the microphysics of determining how electron gyrotropy is broken and merging actually occurs. We correlate observed behaviors at Cluster and at Polar with temporal variations in other regions, such as in the ionosphere as measured by SuperDARN. Addressing problems with simultaneous observations from diverse locations properly constrains our interpretations.

  3. A Financial Market Model Incorporating Herd Behaviour.

    PubMed

    Wray, Christopher M; Bishop, Steven R

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents' accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents' accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option.

  4. Optical potential from first principles

    DOE PAGES

    Rotureau, J.; Danielewicz, P.; Hagen, G.; ...

    2017-02-15

    Here, we develop a method to construct a microscopic optical potential from chiral interactions for nucleon-nucleus scattering. The optical potential is constructed by combining the Green’s function approach with the coupled-cluster method. To deal with the poles of the Green’s function along the real energy axis we employ a Berggren basis in the complex energy plane combined with the Lanczos method. Using this approach, we perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on 16O. For the computation of the ground-state of 16O, we use the coupled-cluster method in the singles-and-doubles approximation, while for themore » A ±1 nuclei we use particle-attached/removed equation-of-motion method truncated at two-particle-one-hole and one-particle-two-hole excitations, respectively. We verify the convergence of the optical potential and scattering phase shifts with respect to the model-space size and the number of discretized complex continuum states. We also investigate the absorptive component of the optical potential (which reflects the opening of inelastic channels) by computing its imaginary volume integral and find an almost negligible absorptive component at low-energies. To shed light on this result, we computed excited states of 16O using equation-of-motion coupled-cluster method with singles-and- doubles excitations and we found no low-lying excited states below 10 MeV. Furthermore, most excited states have a dominant two-particle-two-hole component, making higher-order particle-hole excitations necessary to achieve a precise description of these core-excited states. We conclude that the reduced absorption at low-energies can be attributed to the lack of correlations coming from the low-order cluster truncation in the employed coupled-cluster method.« less

  5. Single nucleotide polymorphism discovery via genotyping by sequencing to assess population genetic structure and recurrent polyploidization in Andropogon gerardii.

    PubMed

    McAllister, Christine A; Miller, Allison J

    2016-07-01

    Autopolyploidy, genome duplication within a single lineage, can result in multiple cytotypes within a species. Geographic distributions of cytotypes may reflect the evolutionary history of autopolyploid formation and subsequent population dynamics including stochastic (drift) and deterministic (differential selection among cytotypes) processes. Here, we used a population genomic approach to investigate whether autopolyploidy occurred once or multiple times in Andropogon gerardii, a widespread, North American grass with two predominant cytotypes. Genotyping by sequencing was used to identify single nucleotide polymorphisms (SNPs) in individuals collected from across the geographic range of A. gerardii. Two independent approaches to SNP calling were used: the reference-free UNEAK pipeline and a reference-guided approach based on the sequenced Sorghum bicolor genome. SNPs generated using these pipelines were analyzed independently with genetic distance and clustering. Analyses of the two SNP data sets showed very similar patterns of population-level clustering of A. gerardii individuals: a cluster of A. gerardii individuals from the southern Plains, a northern Plains cluster, and a western cluster. Groupings of individuals corresponded to geographic localities regardless of cytotype: 6x and 9x individuals from the same geographic area clustered together. SNPs generated using reference-guided and reference-free pipelines in A. gerardii yielded unique subsets of genomic data. Both data sets suggest that the 9x cytotype in A. gerardii likely evolved multiple times from 6x progenitors across the range of the species. Genomic approaches like GBS and diverse bioinformatics pipelines used here facilitate evolutionary analyses of complex systems with multiple ploidy levels. © 2016 Botanical Society of America.

  6. A four-component Fock-space coupled cluster investigation of the HM(CO)5, (M = Mn, Re) photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Nikoobakht, Behnam; Siebert, Max; Pernpointner, Markus

    2015-11-01

    In this work, we readdress the photoelectron spectra of the HM(CO)5, (M=Mn, Re) carbonyl complexes by applying four-component Fock-space coupled cluster (FSCC) methods for their calculation in order to extend earlier studies based on less demanding approaches. The final-state characterisation was based on group theoretical considerations of the contributing orbitals and allowed for an unambiguous assignment. Energy level diagrams show the effect of spin-orbit (SO) coupling starting from scalar relativistic results and for the heavy representative HRe(CO)5 nonadditivity effects of SO and electron correlation can be observed requiring a consistent treatment of both contributions.

  7. A note on the accuracy of KS-DFT densities

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.

    2017-11-01

    The accuracy of the density of wave function methods and Kohn-Sham (KS) density functionals is studied using moments of the density, ⟨rn ⟩ =∫ ρ (r )rnd τ =∫0∞4 π r2ρ (r ) rnd r ,where n =-1 ,-2,0,1,2 ,and 3 provides information about the short- and long-range behavior of the density. Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) is considered as the reference density. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and 3d transition metals. The total density and valence only density are distinguished by dropping appropriate core orbitals. Among density functionals tested, CAMQTP00 and ωB97x show the least deviation for boron through neon neutral atoms. They also show accurate eigenvalues for the HOMO indicating that they should have a more correct long-range behavior for the density. For transition metals, some density functional approximations outperform some wave function methods, suggesting that the KS determinant could be a better starting point for some kinds of correlated calculations. By using generalized many-body perturbation theory (MBPT), the convergence of second-, third-, and fourth-order KS-MBPT for the density is addressed as it converges to the infinite-order coupled cluster result. For the transition metal test set, the deviations in the KS density functional theory methods depend on the amount of exact exchange the functional uses. Functionals with exact exchange close to 25% show smaller deviations from the CCSD(T) density.

  8. Adaptive multiconfigurational wave functions.

    PubMed

    Evangelista, Francesco A

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N2 and the potential energy curves for the first three singlet states of C2. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu2O2(2+) core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  9. The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study.

    PubMed

    Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo

    2013-02-12

    We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.

  10. Quasi-degenerate perturbation theory using matrix product states

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  11. Cooperative Jahn-Teller phase transition of icosahedral molecular units

    NASA Astrophysics Data System (ADS)

    Nasrollahi, Seyed H.; Vvedensky, Dimitri D.

    2017-02-01

    Non-linear molecules undergo distortions when the orbital degeneracy of the highest occupied level is lifted by the Jahn-Teller effect. If such molecules or clusters of atoms are coupled to one another, the system may experience a cooperative Jahn-Teller effect (CJTE). In this paper, we describe a model of how the CJTE leads to the crystallization of the disordered phase. The model Hamiltonian is based on a normal mode decomposition of the clusters in order to maintain the symmetry labels. We take account of the electron-strain and the electron-phonon couplings and, by displacing the coordinates of the oscillators, obtain a term that explicitly couples the Jahn-Teller centers, enabling us to perform a mean-field analysis. The calculation of the free energy then becomes straightforward, and obtaining phase diagrams in various regimes follows from the minimization of this free energy. The results show that the character of the phase transition may change from strong to weak first order and even to second-order, depending on the coupling to the vibrational modes. Taken together, these results may serve as a paradigm for crystallization near the transition temperature, where the atoms tend to form clusters of icosahedral symmetry.

  12. Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations

    NASA Astrophysics Data System (ADS)

    Sørensen, L. K.; Fleig, T.; Olsen, J.

    2009-08-01

    Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.

  13. Coupled Cluster Studies of Ionization Potentials and Electron Affinities of Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Govind, Niranjan; Aprà, Edoardo

    In this paper we apply equation-of-motion coupled cluster (EOMCC) methods in studies of vertical ionization potentials (IP) and electron affinities (EA) for sin- gled walled carbon nanotubes. EOMCC formulations for ionization potentials and electron affinities employing excitation manifolds spanned by single and double ex- citations (IP/EA-EOMCCSD) are used to study IPs and EAs of nanotubes as a function of nanotube length. Several armchair nanotubes corresponding to C20nH20 models with n = 2 - 6 have been used in benchmark calculations. In agreement with previous studies, we demonstrate that the electronegativity of C20nH20 systems remains, to a large extent, independent ofmore » nanotube length. We also compare IP/EA- EOMCCSD results with those obtained with the coupled cluster models with single and double excitations corrected by perturbative triples, CCSD(T), and density func- tional theory (DFT) using global and range-separated hybrid exchange-correlation functionals.« less

  14. Coupled-cluster based R-matrix codes (CCRM): Recent developments

    NASA Astrophysics Data System (ADS)

    Sur, Chiranjib; Pradhan, Anil K.

    2008-05-01

    We report the ongoing development of the new coupled-cluster R-matrix codes (CCRM) for treating electron-ion scattering and radiative processes within the framework of the relativistic coupled-cluster method (RCC), interfaced with the standard R-matrix methodology. The RCC method is size consistent and in principle equivalent to an all-order many-body perturbation theory. The RCC method is one of the most accurate many-body theories, and has been applied for several systems. This project should enable the study of electron-interactions with heavy atoms/ions, utilizing not only high speed computing platforms but also improved theoretical description of the relativistic and correlation effects for the target atoms/ions as treated extensively within the RCC method. Here we present a comprehensive outline of the newly developed theoretical method and a schematic representation of the new suite of CCRM codes. We begin with the flowchart and description of various stages involved in this development. We retain the notations and nomenclature of different stages as analogous to the standard R-matrix codes.

  15. Carrier-frequency synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2003-05-13

    Systems and methods are described for carrier-frequency synchronization for improved AM and TV broadcast reception. A method includes synchronizing a carrier frequency of a broadcast signal with a remote reference frequency. An apparatus includes a reference signal receiver; a phase comparator coupled to the reference signal receiver; a voltage controlled oscillator coupled to the phase comparator; and a radio frequency output coupled to the voltage controlled oscillator.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Stephen F; Moore, James A

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  17. Higher-order equation-of-motion coupled-cluster methods for ionization processes.

    PubMed

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the state with s(z) = 3/2 is sought, the energy separations converge much more rapidly with the IP-EOM-CCSD value (0.03 eV) already being close to the observed (0.04 eV).

  18. Testing chameleon gravity with the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terukina, Ayumu; Yamamoto, Kazuhiro; Lombriser, Lucas

    2014-04-01

    We propose a novel method to test the gravitational interactions in the outskirts of galaxy clusters. When gravity is modified, this is typically accompanied by the introduction of an additional scalar degree of freedom, which mediates an attractive fifth force. The presence of an extra gravitational coupling, however, is tightly constrained by local measurements. In chameleon modifications of gravity, local tests can be evaded by employing a screening mechanism that suppresses the fifth force in dense environments. While the chameleon field may be screened in the interior of the cluster, its outer region can still be affected by the extramore » force, introducing a deviation between the hydrostatic and lensing mass of the cluster. Thus, the chameleon modification can be tested by combining the gas and lensing measurements of the cluster. We demonstrate the operability of our method with the Coma cluster, for which both a lensing measurement and gas observations from the X-ray surface brightness, the X-ray temperature, and the Sunyaev-Zel'dovich effect are available. Using the joint observational data set, we perform a Markov chain Monte Carlo analysis of the parameter space describing the different profiles in both the Newtonian and chameleon scenarios. We report competitive constraints on the chameleon field amplitude and its coupling strength to matter. In the case of f(R) gravity, corresponding to a specific choice of the coupling, we find an upper bound on the background field amplitude of |f{sub R0}| < 6 × 10{sup −5}, which is currently the tightest constraint on cosmological scales.« less

  19. 7 CFR 52.1842 - Product description of Layer or (Cluster) raisins with seeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Product description of Layer or (Cluster) raisins with... Raisins 1 § 52.1842 Product description of Layer or (Cluster) raisins with seeds. Raisins with Seeds that are referred to as Layer or Cluster raisins means that the raisins have not been detached from the...

  20. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    NASA Astrophysics Data System (ADS)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  1. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  2. Electronic Structure of Ethynyl Substituted Cyclobutadienes

    NASA Astrophysics Data System (ADS)

    Emmert, Frank Lee Emmert, III; Thompson, Stephanie J.; Slipchenko, Lyudmila V.

    2011-06-01

    We investigated the effects of ethynyl substitution on the electronic structure of cyclobutadiene. These species are involved in Bergman Cyclization reactionsand are possible intermediates in the formation of fullerenes and graphite sheets. Prediction of the electronic energy of cyclobutadiene is challenging for single-reference ab initio methods such as HF, MP2 or DFT because of Jahn-Teller distortions and the diradical character of the singlet state. We determined the vertical and adiabatic singlet-triplet energy splittings, the natural charges and spin densities in substituted cyclobutadienes, using the equations of motion spin flip coupled cluster with single and double excitations (EOM-SF-CCSD) method that accurately describes diradical states. The adiabatic singlet-triplet gaps decrease upon substituent addition, but the singlet state is always lower in energy. However, we found that the results are affected by spin-contamination of the reference state and deteriorate when an unrestricted HF reference is employed. O. L. Chapman, C. L. McIntosh, J. Pacansky, "Cyclobutadiene" J. Am. Chem. Soc. 1973, 95, (2), 614-617. N. S. Goroff, "Mechanism of Fullerene Formation." Acc. Chem. Res. 1996, 29, (2), 77-83. L.V. Slipchenko and A.I. Krylov, "Singlet-triplet gaps in diradicals by the Spin-Flip approach: A benchmark study", J. Chem. Phys. 2002, 117, 4694-4708.

  3. Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity.

    PubMed

    He, Yan; Caporaso, J Gregory; Jiang, Xiao-Tao; Sheng, Hua-Fang; Huse, Susan M; Rideout, Jai Ram; Edgar, Robert C; Kopylova, Evguenia; Walters, William A; Knight, Rob; Zhou, Hong-Wei

    2015-01-01

    The operational taxonomic unit (OTU) is widely used in microbial ecology. Reproducibility in microbial ecology research depends on the reliability of OTU-based 16S ribosomal subunit RNA (rRNA) analyses. Here, we report that many hierarchical and greedy clustering methods produce unstable OTUs, with membership that depends on the number of sequences clustered. If OTUs are regenerated with additional sequences or samples, sequences originally assigned to a given OTU can be split into different OTUs. Alternatively, sequences assigned to different OTUs can be merged into a single OTU. This OTU instability affects alpha-diversity analyses such as rarefaction curves, beta-diversity analyses such as distance-based ordination (for example, Principal Coordinate Analysis (PCoA)), and the identification of differentially represented OTUs. Our results show that the proportion of unstable OTUs varies for different clustering methods. We found that the closed-reference method is the only one that produces completely stable OTUs, with the caveat that sequences that do not match a pre-existing reference sequence collection are discarded. As a compromise to the factors listed above, we propose using an open-reference method to enhance OTU stability. This type of method clusters sequences against a database and includes unmatched sequences by clustering them via a relatively stable de novo clustering method. OTU stability is an important consideration when analyzing microbial diversity and is a feature that should be taken into account during the development of novel OTU clustering methods.

  4. FT-IR spectroscopy for rapid differentiation of Aspergillus flavus, Aspergillus fumigatus, Aspergillus parasiticus and characterization of aflatoxigenic isolates collected from agricultural environments.

    PubMed

    Garon, David; El Kaddoumi, Anne; Carayon, Alexandra; Amiel, Caroline

    2010-08-01

    In agricultural areas, Aspergillus flavus, Aspergillus fumigatus and Aspergillus parasiticus are commonly identified in various feedstuffs and bioaerosols originated from feed handling. Some isolates belonging to these fungal species could produce mycotoxins and constitute a risk factor for human and animal health. In this study, Fourier-transform infrared spectroscopy was used for a rapid detection and characterization of 99 isolates collected from agricultural areas. The results showed a first cluster corresponding to strains previously attributed to the A. fumigatus group according to current taxonomic concepts, and a second cluster divided in 2 groups around reference strains of A. flavus and A. parasiticus species. The toxigenic capacity of isolates was evaluated by high performance liquid chromatography coupled to mass spectrometry. In the A. flavus group, only 6 strains of A. parasiticus and 4 strains of A. flavus were able to produce aflatoxins on culture media. FT-IR spectroscopy, respectively, allowed the differentiation of non-toxigenic and toxigenic A. flavus and A. parasiticus isolates at 75 and 100%. Discrimination between toxigenic and non-toxigenic A. fumigatus was not possible because all of the isolates produced at least one mycotoxin.

  5. Sub-problem Optimization With Regression and Neural Network Approximators

    NASA Technical Reports Server (NTRS)

    Guptill, James D.; Hopkins, Dale A.; Patnaik, Surya N.

    2003-01-01

    Design optimization of large systems can be attempted through a sub-problem strategy. In this strategy, the original problem is divided into a number of smaller problems that are clustered together to obtain a sequence of sub-problems. Solution to the large problem is attempted iteratively through repeated solutions to the modest sub-problems. This strategy is applicable to structures and to multidisciplinary systems. For structures, clustering the substructures generates the sequence of sub-problems. For a multidisciplinary system, individual disciplines, accounting for coupling, can be considered as sub-problems. A sub-problem, if required, can be further broken down to accommodate sub-disciplines. The sub-problem strategy is being implemented into the NASA design optimization test bed, referred to as "CometBoards." Neural network and regression approximators are employed for reanalysis and sensitivity analysis calculations at the sub-problem level. The strategy has been implemented in sequential as well as parallel computational environments. This strategy, which attempts to alleviate algorithmic and reanalysis deficiencies, has the potential to become a powerful design tool. However, several issues have to be addressed before its full potential can be harnessed. This paper illustrates the strategy and addresses some issues.

  6. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  7. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  8. Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.

    PubMed

    Liu, Xiwei; Chen, Tianping

    2018-01-01

    In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.

  9. Electrocatalytic cermet sensor

    DOEpatents

    Shoemaker, E.L.; Vogt, M.C.

    1998-06-30

    A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

  10. Electrocatalytic cermet sensor

    DOEpatents

    Shoemaker, Erika L.; Vogt, Michael C.

    1998-01-01

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  11. Combinations of Personal Responsibility: Differences on Pre-service and Practicing Teachers’ Efficacy, Engagement, Classroom Goal Structures and Wellbeing

    PubMed Central

    Daniels, Lia M.; Radil, Amanda I.; Goegan, Lauren D.

    2017-01-01

    Pre-service and practicing teachers feel responsible for a range of educational activities. Four domains of personal responsibility emerging in the literature are: student achievement, student motivation, relationships with students, and responsibility for ones own teaching. To date, most research has used variable-centered approaches to examining responsibilities even though the domains appear related. In two separate samples we used cluster analysis to explore how pre-service (n = 130) and practicing (n = 105) teachers combined personal responsibilities and their impact on three professional cognitions and their wellbeing. Both groups had low and high responsibility clusters but the third cluster differed: Pre-service teachers combined responsibilities for relationships and their own teaching in a cluster we refer to as teacher-based responsibility; whereas, practicing teachers combined achievement and motivation in a cluster we refer to as student-outcome focused responsibility. These combinations affected outcomes for pre-service but not practicing teachers. Pre-service teachers in the low responsibility cluster reported less engagement, less mastery approaches to instruction, and more performance goal structures than the other two clusters. PMID:28620332

  12. Combinations of Personal Responsibility: Differences on Pre-service and Practicing Teachers' Efficacy, Engagement, Classroom Goal Structures and Wellbeing.

    PubMed

    Daniels, Lia M; Radil, Amanda I; Goegan, Lauren D

    2017-01-01

    Pre-service and practicing teachers feel responsible for a range of educational activities. Four domains of personal responsibility emerging in the literature are: student achievement, student motivation, relationships with students, and responsibility for ones own teaching. To date, most research has used variable-centered approaches to examining responsibilities even though the domains appear related. In two separate samples we used cluster analysis to explore how pre-service ( n = 130) and practicing ( n = 105) teachers combined personal responsibilities and their impact on three professional cognitions and their wellbeing. Both groups had low and high responsibility clusters but the third cluster differed: Pre-service teachers combined responsibilities for relationships and their own teaching in a cluster we refer to as teacher-based responsibility; whereas, practicing teachers combined achievement and motivation in a cluster we refer to as student-outcome focused responsibility. These combinations affected outcomes for pre-service but not practicing teachers. Pre-service teachers in the low responsibility cluster reported less engagement, less mastery approaches to instruction, and more performance goal structures than the other two clusters.

  13. Individual and couple-level risk factors for hepatitis C infection among heterosexual drug users: a multilevel dyadic analysis.

    PubMed

    McMahon, James M; Pouget, Enrique R; Tortu, Stephanie

    2007-06-01

    Hepatitis C virus (HCV) is the most common bloodborne pathogen in the United States and is a leading cause of liver-related morbidity and mortality. Although it is known that HCV is most commonly transmitted among injection drug users, the role of sexual transmission in the spread of HCV remains controversial because of inconsistent findings across studies involving heterosexual couples. A novel multilevel modeling technique designed to overcome the limitations of previous research was performed to assess multiple risk factors for HCV while partitioning the source of risk at the individual and couple level. The analysis was performed on risk exposure and HCV screening data obtained from 265 drug-using couples in East Harlem, New York City. In multivariable analysis, significant individual risk factors for HCV included a history of injection drug use, tattooing, and older age. At the couple level, HCV infection tended to cluster within couples, and this interdependence was accounted for by couples' drug-injection behavior. Individual and couple-level sexual behavior was not associated with HCV infection. Our results are consistent with prior research indicating that sexual contact plays little role in HCV transmission. Rather, couples' injection behavior appears to account for the clustering of HCV within heterosexual dyads.

  14. Catalog of open clusters and associated interstellar matter

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    1988-01-01

    The Catalog of Open Clusters and Associated Interstellar Matter summarizes observations of 128 open clusters and their associated ionized, atomic, and molecular iinterstellar matter. Cluster sizes, distances, radial velocities, ages, and masses, and the radial velocities and masses of associated interstellar medium components, are given. The database contains information from approximately 400 references published in the scientific literature before 1988.

  15. On Ion Clusters in the Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Donn, Bertram

    1960-01-01

    In a recent paper V.I. Krassovsky (1958) predicts the occurrence of clusters of large numbers of atoms and molecules around ions in the interstellar gas. He then proposes a number of physicochemical processes that would be considerably enhanced by the high particle density in such clusters. In particular, he suggests that absorption by negative ions formed in the clusters would account for the interstellar extinction without any necessity for the presence of grains. Because of the important consequences that ion clusters could have, it is necessary to examine their occurrence more fully. This note re-examines the formation of ion clusters in space and shows that even ion-molecule pairs are essentially non-existent. Ion clusters have been considered by Bloom and Margenau (1952) from the same point of view as that used by Krassovsky, whose basic reference (Joffe and Semenov 1933) unfortunately is not available. A different approach has been used by Eyring, Hirschfelder, and Taylor (1936) following the methods of chemical equilibrium. Both the references cited here enable one to conclude that clustering is negligible. Therefore, the treatment of Eyring et al. is more appropriate than the method of Bloom and Margenau, which depends on the statistical equilibrium of an atmosphere in a force field.

  16. The Profile-Query Relationship.

    ERIC Educational Resources Information Center

    Shepherd, Michael A.; Phillips, W. J.

    1986-01-01

    Defines relationship between user profile and user query in terms of relationship between clusters of documents retrieved by each, and explores the expression of cluster similarity and cluster overlap as linear functions of similarity existing between original pairs of profiles and queries, given the desired retrieval threshold. (23 references)…

  17. A PRIOR EVALUATION OF TWO-STAGE CLUSTER SAMPLING FOR ACCURACY ASSESSMENT OF LARGE-AREA LAND-COVER MAPS

    EPA Science Inventory

    Two-stage cluster sampling reduces the cost of collecting accuracy assessment reference data by constraining sample elements to fall within a limited number of geographic domains (clusters). However, because classification error is typically positively spatially correlated, withi...

  18. From globally coupled maps to complex-systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  19. Correlation buildup during recrystallization in three-dimensional dusty plasma clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schella, André; Mulsow, Matthias; Melzer, André

    2014-05-15

    The recrystallization process of finite three-dimensional dust clouds after laser heating is studied experimentally. The time-dependent Coulomb coupling parameter is presented, showing that the recrystallization starts with an exponential cooling phase where cooling is slower than damping by the neutral gas friction. At later times, the coupling parameter oscillates into equilibrium. It is found that a large fraction of cluster states after recrystallization experiments is in metastable states. The temporal evolution of the correlation buildup shows that correlation occurs on even slower time scale than cooling.

  20. Carrier phase synchronization system for improved amplitude modulation and television broadcast reception

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2011-02-01

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  1. Light clusters and pasta phases in warm and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Ferreira, Márcio; Pais, Helena; Providência, Constança; Röpke, Gerd

    2017-04-01

    The pasta phases are calculated for warm stellar matter in a framework of relativistic mean-field models, including the possibility of light cluster formation. Results from three different semiclassical approaches are compared with a quantum statistical calculation. Light clusters are considered as point-like particles, and their abundances are determined from the minimization of the free energy. The couplings of the light clusters to mesons are determined from experimental chemical equilibrium constants and many-body quantum statistical calculations. The effect of these light clusters on the chemical potentials is also discussed. It is shown that, by including heavy clusters, light clusters are present up to larger nucleonic densities, although with smaller mass fractions.

  2. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    PubMed

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2018-02-15

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation and decreased peak I Na at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na + channel distribution. In the intercalated disc computer model, redistributing the Na + channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na + channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac I Na , and our simulations reveal the functional role of the aggregation of Na + channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Cluster Analysis of Minnesota School Districts. A Research Report.

    ERIC Educational Resources Information Center

    Cleary, James

    The term "cluster analysis" refers to a set of statistical methods that classify entities with similar profiles of scores on a number of measured dimensions, in order to create empirically based typologies. A 1980 Minnesota House Research Report employed cluster analysis to categorize school districts according to their relative mixtures…

  4. Lie algebraic similarity transformed Hamiltonians for lattice model systems

    NASA Astrophysics Data System (ADS)

    Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-01

    We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.

  5. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  6. Temperamental reactivity and negative emotionality in uncooperative children referred to specialized paediatric dentistry compared to children in ordinary dental care.

    PubMed

    Arnrup, Kristina; Broberg, Anders G; Berggren, Ulf; Bodin, Lennart

    2007-11-01

    Current treatment of children with dental behaviour management problems (DBMP) is based on the presupposition that their difficulties are caused by dental fear, but is this always the case? The aim of this study was to study temperamental reactivity, negative emotionality, and other personal characteristics in relation to DBMP in 8- to 12-year-old children. Forty-six children referred because of DBMP (study group) and 110 children in ordinary dental care (reference group) participated. The EASI tempramental survey assessed temperamental reactivity and negative emotionality, the Child Behaviour Questionnaire internalizing and externalizing behaviour problems, and the Children's Fear Survey Schedule general and dental fears. Cluster analyses and tree-based modelling were used for data analysis. Among the five clusters identified, one could be characterized as 'balanced temperament'. Thirty-five per cent of the reference group compared to only 7% of the study group belonged to this cluster. Negative emotionality was the most important sorting variable. Children referred because of DBMP differed from children in ordinary dental care, not only in dental fear level, but also in personal characteristics. Few of the referred children were characterized by a balanced temperament profile. It is important to consider the dual impact of emotion dysregulation and emotional reactivity in the development of DBMP.

  7. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn–Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuefei; Zhang, Wenjing; Tang, Mingsheng

    2015-05-12

    Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn–Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules againstmore » the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal–ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core–valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used. We found that, for both coupled cluster calculations and KS calculations, the T1 diagnostics correlate the errors better than either the M diagnostics or the B1 DFT-based diagnostics. The potential use of practical standard CC methods as a benchmark theory is further confounded by the finding that CC and DFT methods usually have different signs of the error. We conclude that the available experimental data do not provide a justification for using conventional single-reference CC theory calculations to validate or test xc functionals for systems involving 3d transition metals.« less

  8. Atomistic simulations to characterize the influence of applied strain and PKA energy on radiation damage evolution in pure aluminum

    NASA Astrophysics Data System (ADS)

    Sahi, Qurat-ul-ain; Kim, Yong-Soo

    2018-05-01

    Knowledge of defects generation, their mobility, growth rate, and spatial distribution is the cornerstone for understanding the surface and structural evolution of a material used under irradiation conditions. In this study, molecular dynamics simulations were used to investigate the coupled effect of primary knock-on atom (PKA) energy and applied strain (uniaxial and hydrostatic) fields on primary radiation damage evolution in pure aluminum. Cascade damage simulations were carried out for PKA energy ranging between 1 and 20 keV and for applied strain values ranging between -2% and 2% at the fixed temperature of 300 K. Simulation results showed that as the atomic displacement cascade proceeds under uniaxial and hydrostatic strains, the peak and surviving number of Frenkel point defects increases with increasing tension; however, these increments were more prominent under larger volume changing deformations (hydrostatic strain). The percentage fraction of point defects that aggregate into clusters increases under tension conditions; compared to the reference conditions with no strain, these increases are around 13% and 7% for interstitials and vacancies, respectively (under 2% uniaxial strain), and 19% and 11% for interstitials and vacancies, respectively (under 2% hydrostatic strain). Clusters formed of vacancies and interstitials were both larger under tensile strain conditions, with increases in both the average and maximum cluster sizes. The rate of increase/decrease in the number of Frenkel pairs, their clustering, and their size distributions under expansion/compression strain conditions were higher for higher PKA energies. Overall, the present results suggest that strain effects should be considered carefully in radiation damage environments, specifically for conditions of low temperature and high radiation energy. Compressive strain conditions could be beneficial for materials used in nuclear reactor power systems.

  9. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    NASA Astrophysics Data System (ADS)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Huy Pham, C.; Riera, Marc; Moberg, Daniel R.; Morales, Miguel A.; Knight, Chris; Götz, Andreas W.; Paesani, Francesco

    2016-11-01

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.

  10. Cluster Beam Deposition Technology for Optical Coatings. Phase 1

    DTIC Science & Technology

    1987-05-01

    Particles 55 5.4.3 Growth of Ultrafine Particles or 61 Clusters by Gas Quenching 6.0 REFERENCES 67 APPENDIX: SUPPLEMENTARY INFORMATION 69 COP TR-407/5-87...approach, based on growth and transport of ultrafine particles or clusters in a quenching gas, appears more promising in our view and has been proposed for... Ultrafine Particles or Clusters by Gas quenching The apparent difficulty of making metal clusters with a Takagi-type source led us to explore other

  11. Acculturation Stress, Drinking, and Intimate Partner Violence among Hispanic Couples in the U.S

    ERIC Educational Resources Information Center

    Caetano, Raul; Ramisetty-Mikler, Suhasini; Caetano Vaeth, Patrice A.; Harris, T. Robert

    2007-01-01

    This article examines the cross-sectional association between acculturation, acculturation stress, drinking, and intimate partner violence (IPV) among Hispanic couples in the U.S. The data being analyzed come from a multi-cluster random household sample of couples interviewed as part of the second wave of a 5-year national longitudinal study. The…

  12. Efficient coupling of high intensity short laser pulses into snow clusters

    NASA Astrophysics Data System (ADS)

    Palchan, T.; Pecker, S.; Henis, Z.; Eisenmann, S.; Zigler, A.

    2007-01-01

    Measurements of energy absorption of high intensity laser pulses in snow clusters are reported. Targets consisting of sapphire coated with snow nanoparticles were found to absorb more than 95% of the incident light compared to 50% absorption in flat sapphire targets.

  13. Transport properties of dilute α -Fe (X ) solid solutions (X = C, N, O)

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Nastar, Maylise

    2016-06-01

    We extend the self-consistent mean field (SCMF) method to the calculation of the Onsager matrix of Fe-based interstitial solid solutions. Both interstitial jumps and substitutional atom-vacancy exchanges are accounted for. A general procedure is introduced to split the Onsager matrix of a dilute solid solution into intrinsic cluster Onsager matrices, and extract from them flux-coupling ratios, mobilities, and association-dissociation rates for each cluster. The formalism is applied to vacancy-interstitial solute pairs in α -Fe (V X pairs, X = C, N, O), with ab initio based thermodynamic and kinetic parameters. Convergence of the cluster mobility contribution gives a controlled estimation of the cluster definition distance, taking into account both its thermodynamic and kinetic properties. Then, the flux-coupling behavior of each V X pair is discussed, and qualitative understanding is achieved from the comparison between various contributions to the Onsager matrix. Also, the effect of low-activation energy second-nearest-neighbor interstitial solute jumps around a vacancy on these results is addressed.

  14. Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis

    PubMed Central

    Kozai, Toshiya; Yang, Huiran; Ishikuro, Daiki; Seyama, Kaho; Kumagai, Yusuke; Abe, Tadashi; Yamada, Hiroshi; Uchihashi, Takayuki

    2018-01-01

    Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. PMID:29357276

  15. Cluster Synchronization of Diffusively Coupled Nonlinear Systems: A Contraction-Based Approach

    NASA Astrophysics Data System (ADS)

    Aminzare, Zahra; Dey, Biswadip; Davison, Elizabeth N.; Leonard, Naomi Ehrich

    2018-04-01

    Finding the conditions that foster synchronization in networked nonlinear systems is critical to understanding a wide range of biological and mechanical systems. However, the conditions proved in the literature for synchronization in nonlinear systems with linear coupling, such as has been used to model neuronal networks, are in general not strict enough to accurately determine the system behavior. We leverage contraction theory to derive new sufficient conditions for cluster synchronization in terms of the network structure, for a network where the intrinsic nonlinear dynamics of each node may differ. Our result requires that network connections satisfy a cluster-input-equivalence condition, and we explore the influence of this requirement on network dynamics. For application to networks of nodes with FitzHugh-Nagumo dynamics, we show that our new sufficient condition is tighter than those found in previous analyses that used smooth or nonsmooth Lyapunov functions. Improving the analytical conditions for when cluster synchronization will occur based on network configuration is a significant step toward facilitating understanding and control of complex networked systems.

  16. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  17. A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD)

    DOE PAGES

    Baudin, Pablo; Bykov, Dmytro; Liakh, Dmitry I.; ...

    2017-02-22

    Here, the recently developed Local Framework for calculating Excitation energies (LoFEx) is extended to the coupled cluster singles and doubles (CCSD) model. In the new scheme, a standard CCSD excitation energy calculation is carried out within a reduced excitation orbital space (XOS), which is composed of localised molecular orbitals and natural transition orbitals determined from time-dependent Hartree–Fock theory. The presented algorithm uses a series of reduced second-order approximate coupled cluster singles and doubles (CC2) calculations to optimise the XOS in a black-box manner. This ensures that the requested CCSD excitation energies have been determined to a predefined accuracy compared tomore » a conventional CCSD calculation. We present numerical LoFEx-CCSD results for a set of medium-sized organic molecules, which illustrate the black-box nature of the approach and the computational savings obtained for transitions that are local compared to the size of the molecule. In fact, for such local transitions, the LoFEx-CCSD scheme can be applied to molecular systems where a conventional CCSD implementation is intractable.« less

  18. A noniterative asymmetric triple excitation correction for the density-fitted coupled-cluster singles and doubles method: Preliminary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugrbzky@gmail.com

    2016-04-14

    An efficient implementation of the asymmetric triples correction for the coupled-cluster singles and doubles [ΛCCSD(T)] method [S. A. Kucharski and R. J. Bartlett, J. Chem. Phys. 108, 5243 (1998); T. D. Crawford and J. F. Stanton, Int. J. Quantum Chem. 70, 601 (1998)] with the density-fitting [DF-ΛCCSD(T)] approach is presented. The computational time for the DF-ΛCCSD(T) method is compared with that of ΛCCSD(T). Our results demonstrate that the DF-ΛCCSD(T) method provide substantially lower computational costs than ΛCCSD(T). Further application results show that the ΛCCSD(T) and DF-ΛCCSD(T) methods are very beneficial for the study of single bond breaking problems as wellmore » as noncovalent interactions and transition states. We conclude that ΛCCSD(T) and DF-ΛCCSD(T) are very promising for the study of challenging chemical systems, where the coupled-cluster singles and doubles with perturbative triples method fails.« less

  19. Exploration of dynamical regimes of irradiated small protonated water clusters

    NASA Astrophysics Data System (ADS)

    Ndongmouo Taffoti, U. F.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Wang, Z. P.

    2010-05-01

    We explore from a theoretical perspective the dynamical response of small water clusters, (H2O)nH3O+ with n=1,2,3, to a short laser pulse for various frequencies, from infrared (IR) to ultra-violet (UV) and intensities (from 6×10^{13} W/cm^2 to 5×10^{14} W/cm^2). To that end, we use time-dependent local-density approximation for the electrons, coupled to molecular dynamics for the atomic cores (TDLDA-MD). The local-density approximation is augmented by a self-interaction correction (SIC) to allow for a correct description of electron emission. For IR frequencies, we see a direct coupling of the laser field to the very light H+ ions in the clusters. Resonant coupling (in the UV) and/or higher intensities lead to fast ionization with subsequent Coulomb explosion. The stability against Coulomb pressure increases with system size. Excitation to lower ionization stages induced strong ionic vibrations. The latter maintain a rather harmonic pattern in spite of the sizeable amplitudes (often 10% of the bond length).

  20. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.

    PubMed

    Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo

    2017-01-01

    Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the 'mean-shift' algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters' centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network's state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.

  1. Coupling of Acoustic Cavitation with Dem-Based Particle Solvers for Modeling De-agglomeration of Particle Clusters in Liquid Metals

    NASA Astrophysics Data System (ADS)

    Manoylov, Anton; Lebon, Bruno; Djambazov, Georgi; Pericleous, Koulis

    2017-11-01

    The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters' breakup by cavitation.

  2. Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Capecelatro, Jesse

    2018-03-01

    We present a numerical study on inertial electrically charged particles suspended in a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method, referred to as the particle-particle-particle-mesh (P3M ) method, to accurately capture short- and long-range electrostatic forces in a tractable manner. The EL P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charge densities. Simulations of like- and oppositely charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. It is found that even in dilute suspensions, the short-range electric potential plays an important role in flows that admit preferential concentration. Suspensions of oppositely charged particles are observed to agglomerate in the form of chains and rings. Comparisons between the particle-mesh method typically employed in fluid-particle calculations and P3M are reported, in addition to one-point and two-point statistics to quantify the level of clustering as a function of Reynolds number, Stokes number, and nondimensional electric settling velocity.

  3. Psychological Factors Predict Local and Referred Experimental Muscle Pain: A Cluster Analysis in Healthy Adults

    PubMed Central

    Lee, Jennifer E.; Watson, David; Frey-Law, Laura A.

    2012-01-01

    Background Recent studies suggest an underlying three- or four-factor structure explains the conceptual overlap and distinctiveness of several negative emotionality and pain-related constructs. However, the validity of these latent factors for predicting pain has not been examined. Methods A cohort of 189 (99F; 90M) healthy volunteers completed eight self-report negative emotionality and pain-related measures (Eysenck Personality Questionnaire-Revised; Positive and Negative Affect Schedule; State-Trait Anxiety Inventory; Pain Catastrophizing Scale; Fear of Pain Questionnaire; Somatosensory Amplification Scale; Anxiety Sensitivity Index; Whiteley Index). Using principal axis factoring, three primary latent factors were extracted: General Distress; Catastrophic Thinking; and Pain-Related Fear. Using these factors, individuals clustered into three subgroups of high, moderate, and low negative emotionality responses. Experimental pain was induced via intramuscular acidic infusion into the anterior tibialis muscle, producing local (infusion site) and/or referred (anterior ankle) pain and hyperalgesia. Results Pain outcomes differed between clusters (multivariate analysis of variance and multinomial regression), with individuals in the highest negative emotionality cluster reporting the greatest local pain (p = 0.05), mechanical hyperalgesia (pressure pain thresholds; p = 0.009) and greater odds (2.21 OR) of experiencing referred pain compared to the lowest negative emotionality cluster. Conclusion Our results provide support for three latent psychological factors explaining the majority of the variance between several pain-related psychological measures, and that individuals in the high negative emotionality subgroup are at increased risk for (1) acute local muscle pain; (2) local hyperalgesia; and (3) referred pain using a standardized nociceptive input. PMID:23165778

  4. Cluster-Glass Phase in Pyrochlore X Y Antiferromagnets with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Andrade, Eric C.; Hoyos, José A.; Rachel, Stephan; Vojta, Matthias

    2018-03-01

    We study the impact of quenched disorder (random exchange couplings or site dilution) on easy-plane pyrochlore antiferromagnets. In the clean system, order by disorder selects a magnetically ordered state from a classically degenerate manifold. In the presence of randomness, however, different orders can be chosen locally depending on details of the disorder configuration. Using a combination of analytical considerations and classical Monte Carlo simulations, we argue that any long-range-ordered magnetic state is destroyed beyond a critical level of randomness where the system breaks into magnetic domains due to random exchange anisotropies, becoming, therefore, a glass of spin clusters, in accordance with the available experimental data. These random anisotropies originate from off-diagonal exchange couplings in the microscopic Hamiltonian, establishing their relevance to other magnets with strong spin-orbit coupling.

  5. Ortho-para interconversion in cation-water complexes: The case of V + (H 2 O) and Nb + (H 2 O) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less

  6. Computational Thermochemistry of Jet Fuels and Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Crawford, T. Daniel

    2002-01-01

    The design of new high-energy density molecules as candidates for jet and rocket fuels is an important goal of modern chemical thermodynamics. The NASA Glenn Research Center is home to a database of thermodynamic data for over 2000 compounds related to this goal, in the form of least-squares fits of heat capacities, enthalpies, and entropies as functions of temperature over the range of 300 - 6000 K. The chemical equilibrium with applications (CEA) program written and maintained by researchers at NASA Glenn over the last fifty years, makes use of this database for modeling the performance of potential rocket propellants. During its long history, the NASA Glenn database has been developed based on experimental results and data published in the scientific literature such as the standard JANAF tables. The recent development of efficient computational techniques based on quantum chemical methods provides an alternative source of information for expansion of such databases. For example, it is now possible to model dissociation or combustion reactions of small molecules to high accuracy using techniques such as coupled cluster theory or density functional theory. Unfortunately, the current applicability of reliable computational models is limited to relatively small molecules containing only around a dozen (non-hydrogen) atoms. We propose to extend the applicability of coupled cluster theory- often referred to as the 'gold standard' of quantum chemical methods- to molecules containing 30-50 non-hydrogen atoms. The centerpiece of this work is the concept of local correlation, in which the description of the electron interactions- known as electron correlation effects- are reduced to only their most important localized components. Such an advance has the potential to greatly expand the current reach of computational thermochemistry and thus to have a significant impact on the theoretical study of jet and rocket propellants.

  7. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.

    PubMed

    Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A

    2017-06-14

    Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).

  8. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters

    NASA Astrophysics Data System (ADS)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.

    2017-06-01

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

  9. Clusters in nonsmooth oscillator networks

    NASA Astrophysics Data System (ADS)

    Nicks, Rachel; Chambon, Lucie; Coombes, Stephen

    2018-03-01

    For coupled oscillator networks with Laplacian coupling, the master stability function (MSF) has proven a particularly powerful tool for assessing the stability of the synchronous state. Using tools from group theory, this approach has recently been extended to treat more general cluster states. However, the MSF and its generalizations require the determination of a set of Floquet multipliers from variational equations obtained by linearization around a periodic orbit. Since closed form solutions for periodic orbits are invariably hard to come by, the framework is often explored using numerical techniques. Here, we show that further insight into network dynamics can be obtained by focusing on piecewise linear (PWL) oscillator models. Not only do these allow for the explicit construction of periodic orbits, their variational analysis can also be explicitly performed. The price for adopting such nonsmooth systems is that many of the notions from smooth dynamical systems, and in particular linear stability, need to be modified to take into account possible jumps in the components of Jacobians. This is naturally accommodated with the use of saltation matrices. By augmenting the variational approach for studying smooth dynamical systems with such matrices we show that, for a wide variety of networks that have been used as models of biological systems, cluster states can be explicitly investigated. By way of illustration, we analyze an integrate-and-fire network model with event-driven synaptic coupling as well as a diffusively coupled network built from planar PWL nodes, including a reduction of the popular Morris-Lecar neuron model. We use these examples to emphasize that the stability of network cluster states can depend as much on the choice of single node dynamics as it does on the form of network structural connectivity. Importantly, the procedure that we present here, for understanding cluster synchronization in networks, is valid for a wide variety of systems in biology, physics, and engineering that can be described by PWL oscillators.

  10. Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation

    NASA Astrophysics Data System (ADS)

    Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert

    2018-06-01

    In this paper, we present a chain-of-sphere implementation of the external exchange term, the computational bottleneck of coupled-cluster calculations at the singles and doubles level. This implementation is compared to standard molecular orbital, atomic orbital and resolution of identity implementations of the same term within the ORCA package and turns out to be the most efficient one for larger molecules, with a better accuracy than the resolution-of-identity approximation. Furthermore, it becomes possible to perform a canonical CC calculation on a tetramer of nucleobases in 17 days, 20 hours.

  11. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  12. A Massively Parallel Tensor Contraction Framework for Coupled-Cluster Computations

    DTIC Science & Technology

    2014-08-02

    CCSDT The CCSD model [41], where T = T1 + T2 (i.e. n = 2 in Equation 2), is one of the most widely used coupled-cluster methods as it provides a good...derived from response theory. Extending this to CCSDT [30, 35], where T = T1 + T2 + T3 ( n = 3), gives an even more accurate method (often capable of...CCSD and CCSDT have leading-order costs of O(n2on 4 v) and O( n 3 on 5 v), where no and nv are the number of occupied and virtual orbitals, respectively

  13. Communication: Acceleration of coupled cluster singles and doubles via orbital-weighted least-squares tensor hypercontraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu; Hohenstein, Edward G.

    2014-05-14

    We apply orbital-weighted least-squares tensor hypercontraction decomposition of the electron repulsion integrals to accelerate the coupled cluster singles and doubles (CCSD) method. Using accurate and flexible low-rank factorizations of the electron repulsion integral tensor, we are able to reduce the scaling of the most vexing particle-particle ladder term in CCSD from O(N{sup 6}) to O(N{sup 5}), with remarkably low error. Combined with a T{sub 1}-transformed Hamiltonian, this leads to substantial practical accelerations against an optimized density-fitted CCSD implementation.

  14. Coupled-cluster treatment of molecular strong-field ionization

    NASA Astrophysics Data System (ADS)

    Jagau, Thomas-C.

    2018-05-01

    Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.

  15. Adaptive multiconfigurational wave functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff Λ. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than Λ. The resulting Λ-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (Λ+SD-CI), which is based on a small Λ-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build Λ-CI wave functions.more » The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The Λ-CI and Λ+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the Λ-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the Λ-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.« less

  16. Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory

    NASA Astrophysics Data System (ADS)

    Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei

    2015-08-01

    For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.

  17. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  18. Comparing Effects of Cluster-Coupled Patterns on Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Si, Xia-Meng; Zhang, Yan-Chao

    2012-07-01

    Community structure is another important feature besides small-world and scale-free property of complex networks. Communities can be coupled through specific fixed links between nodes, or occasional encounter behavior. We introduce a model for opinion evolution with multiple cluster-coupled patterns, in which the interconnectivity denotes the coupled degree of communities by fixed links, and encounter frequency controls the coupled degree of communities by encounter behaviors. Considering the complicated cognitive system of people, the CODA (continuous opinions and discrete actions) update rules are used to mimic how people update their decisions after interacting with someone. It is shown that, large interconnectivity and encounter frequency both can promote consensus, reduce competition between communities and propagate some opinion successfully across the whole population. Encounter frequency is better than interconnectivity at facilitating the consensus of decisions. When the degree of social cohesion is same, small interconnectivity has better effects on lessening the competence between communities than small encounter frequency does, while large encounter frequency can make the greater degree of agreement across the whole populations than large interconnectivity can.

  19. Characterization of a gated fiber-optic-coupled detector for application in clinical electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanyi, James A.; Nitzling, Kevin D.; Lodwick, Camille J.

    2011-02-15

    Purpose: Assessment of the fundamental dosimetric characteristics of a novel gated fiber-optic-coupled dosimetry system for clinical electron beam irradiation. Methods: The response of fiber-optic-coupled dosimetry system to clinical electron beam, with nominal energy range of 6-20 MeV, was evaluated for reproducibility, linearity, and output dependence on dose rate, dose per pulse, energy, and field size. The validity of the detector system's response was assessed in correspondence with a reference ionization chamber. Results: The fiber-optic-coupled dosimetry system showed little dependence to dose rate variations (coefficient of variation {+-}0.37%) and dose per pulse changes (with 0.54% of reference chamber measurements). The reproducibilitymore » of the system was {+-}0.55% for dose fractions of {approx}100 cGy. Energy dependence was within {+-}1.67% relative to the reference ionization chamber for the 6-20 MeV nominal electron beam energy range. The system exhibited excellent linear response (R{sup 2}=1.000) compared to reference ionization chamber in the dose range of 1-1000 cGy. The output factors were within {+-}0.54% of the corresponding reference ionization chamber measurements. Conclusions: The dosimetric properties of the gated fiber-optic-coupled dosimetry system compare favorably to the corresponding reference ionization chamber measurements and show considerable potential for applications in clinical electron beam radiotherapy.« less

  20. Version 4.0 of code Java for 3D simulation of the CCA model

    NASA Astrophysics Data System (ADS)

    Fan, Linyu; Liao, Jianwei; Zuo, Junsen; Zhang, Kebo; Li, Chao; Xiong, Hailing

    2018-07-01

    This paper presents a new version Java code for the three-dimensional simulation of Cluster-Cluster Aggregation (CCA) model to replace the previous version. Many redundant traverses of clusters-list in the program were totally avoided, so that the consumed simulation time is significantly reduced. In order to show the aggregation process in a more intuitive way, we have labeled different clusters with varied colors. Besides, a new function is added for outputting the particle's coordinates of aggregates in file to benefit coupling our model with other models.

  1. Pendulum Motion in Main Parachute Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Machin, Ricardo A.

    2015-01-01

    The coupled dynamics of a cluster of parachutes to a payload are notoriously difficult to predict. Often the payload is designed to be insensitive to the range of attitude and rates that might occur, but spacecraft generally do not have the mass and volume budgeted for this robust of a design. The National Aeronautics and Space Administration (NASA) Orion Capsule Parachute Assembly System (CPAS) implements a cluster of three mains for landing. During testing of the Engineering Development Unit (EDU) design, it was discovered that with a cluster of two mains (a fault tolerance required for human rating) the capsule coupled to the parachute cluster could get into a limit cycle pendulum motion which would exceed the spacecraft landing capability. This pendulum phenomenon could not be predicted with the existing models and simulations. A three phased effort has been undertaken to understand the consequence of the pendulum motion observed, and explore potential design changes that would mitigate this phenomenon. This paper will review the early analysis that was performed of the pendulum motion observed during EDU testing, summarize the analysis ongoing to understand the root cause of the pendulum phenomenon, and discuss the modeling and testing that is being pursued to identify design changes that would mitigate the risk.

  2. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    PubMed

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  3. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  4. Cluster Formation of Anchored Proteins Induced by Membrane-Mediated Interaction

    PubMed Central

    Li, Shuangyang; Zhang, Xianren; Wang, Wenchuan

    2010-01-01

    Abstract Computer simulations were used to study the cluster formation of anchored proteins in a membrane. The rate and extent of clustering was found to be dependent upon the hydrophobic length of the anchored proteins embedded in the membrane. The cluster formation mechanism of anchored proteins in our work was ascribed to the different local perturbations on the upper and lower monolayers of the membrane and the intermonolayer coupling. Simulation results demonstrated that only when the penetration depth of anchored proteins was larger than half the membrane thickness, could the structure of the lower monolayer be significantly deformed. Additionally, studies on the local structures of membranes indicated weak perturbation of bilayer thickness for a shallowly inserted protein, while there was significant perturbation for a more deeply inserted protein. The origin of membrane-mediated protein-protein interaction is therefore due to the local perturbation of the membrane thickness, and the entropy loss—both of which are caused by the conformation restriction on the lipid chains and the enhanced intermonolayer coupling for a deeply inserted protein. Finally, in this study we addressed the difference of cluster formation mechanisms between anchored proteins and transmembrane proteins. PMID:20513399

  5. Map-based trigonometric parallaxes of open clusters - The Pleiades

    NASA Technical Reports Server (NTRS)

    Gatewood, George; Castelaz, Michael; Han, Inwoo; Persinger, Timothy; Stein, John

    1990-01-01

    The multichannel astrometric photometer and Thaw refractor of the University of Pittsburgh's Allegheny Observatory have been used to determine the trigonometric parallax of the Pleiades star cluster. The distance determined, 150 with a standard error of 18 parsecs, places the cluster slightly farther away than generally accepted. This suggests that the basis of many estimations of the cosmic distance scale is approximately 20 percent short. The accuracy of the determination is limited by the number and choice of reference stars. With careful attention to the selection of reference stars in several Pleiades regions, it should be possible to examine differences in the photometric and trigonometric modulus at a precision of 0.1 magnitudes.

  6. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2014-06-16

    CFD analysis. Coupled simulations will be run at PSU on the COCOA -4 cluster, a high performance computing cluster. The CRUNCH CFD software has...been installed on the COCOA -4 servers and initial software tests are being conducted. Initial efforts will use the Generic Frigate Shape SFS-2 to

  7. Clonality and distribution of clinical Ureaplasma isolates recovered from male patients and infertile couples in China

    PubMed Central

    Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou

    2017-01-01

    Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages. PMID:28859153

  8. Clonality and distribution of clinical Ureaplasma isolates recovered from male patients and infertile couples in China.

    PubMed

    Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou; Zhang, Jun

    2017-01-01

    Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages.

  9. Structures of Aln (n= 27, 28, 29, and 30) clusters with double-tetrahedron structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Lu, W. C.; Sun, J.

    2008-01-31

    Global search for lowest-energy structures of neutral aluminum clusters Al{sub n} (n = 27, 28, 29 and 30) was performed using a genetic algorithm (GA) coupled with a tight-binding (TB) method. Structural candidates obtained from our GA search were further optimized with first-principles calculations. It is found that the medium-sized aluminum clusters Al{sub 27} to Al{sub 30} favor double-tetrahedron structures.

  10. Communication: Evaluating non-empirical double hybrid functionals for spin-state energetics in transition-metal complexes

    NASA Astrophysics Data System (ADS)

    Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria

    2018-01-01

    The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.

  11. Dynamical evolution of globular-cluster systems in clusters of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  12. Spatiotemporal coding of inputs for a system of globally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wordsworth, John; Ashwin, Peter

    2008-12-01

    We investigate the spatiotemporal coding of low amplitude inputs to a simple system of globally coupled phase oscillators with coupling function g(ϕ)=-sin(ϕ+α)+rsin(2ϕ+β) that has robust heteroclinic cycles (slow switching between cluster states). The inputs correspond to detuning of the oscillators. It was recently noted that globally coupled phase oscillators can encode their frequencies in the form of spatiotemporal codes of a sequence of cluster states [P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley, SIAM J. Appl. Dyn. Syst. 6, 728 (2007)]. Concentrating on the case of N=5 oscillators we show in detail how the spatiotemporal coding can be used to resolve all of the information that relates the individual inputs to each other, providing that a long enough time series is considered. We investigate robustness to the addition of noise and find a remarkable stability, especially of the temporal coding, to the addition of noise even for noise of a comparable magnitude to the inputs.

  13. Accurate, precise, and efficient theoretical methods to calculate anion-π interaction energies in model structures.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei

    2015-01-13

    A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.

  14. Recognition and Matching of Clustered Mature Litchi Fruits Using Binocular Charge-Coupled Device (CCD) Color Cameras

    PubMed Central

    Wang, Chenglin; Tang, Yunchao; Zou, Xiangjun; Luo, Lufeng; Chen, Xiong

    2017-01-01

    Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD) color cameras. The approach mainly included three steps: (1) calibration of binocular color cameras and litchi image acquisition; (2) segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3) matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively. PMID:29112177

  15. Quantum tunneling of magnetization and related phenomena in molecular materials.

    PubMed

    Gatteschi, Dante; Sessoli, Roberta

    2003-01-20

    Molecules comprising a large number of coupled paramagnetic centers are attracting much interest because they may show properties which are intermediate between those of simple paramagnets and classical bulk magnets and provide unambiguous evidence of quantum size effects in magnets. To date, two cluster families, usually referred to as Mn12 and Fe8, have been used to test theories. However, it is reasonable to predict that other classes of molecules will be discovered which have similar or superior properties. To do this it is necessary that synthetic chemists have a good understanding of the correlation between the structure and properties of the molecules, for this it is necessary that concepts such as quantum tunneling, quantum coherence, quantum oscillations are understood. The goal of this article is to review the fundamental concepts needed to understand quantum size effects in molecular magnets and to critically report what has been done in the field to date.

  16. Comparison between cachaça and rum using pattern recognition methods.

    PubMed

    Cardoso, Daniel R; Andrade-Sobrinho, Luiz G; Leite-Neto, Alexandre F; Reche, Roni V; Isique, William D; Ferreira, Marcia M C; Lima-Neto, Benedito S; Franco, Douglas W

    2004-06-02

    The differentiation between cachaça and rum using analytical data referred to alcohols (methanol, propanol, isobutanol, and isopentanol), acetaldehyde, ethyl acetate, organic acids (octanoic acid, decanoic acid, and dodecanoic acid), metals (Al, Ca, Co, Cu, Cr, Fe, Mg, Mn, Ni, Na, and Zn), and polyphenols (protocatechuic acid, sinapaldehyde, syringaldehyde, ellagic acid, syringic acid, gallic acid, (-)-epicatechin, vanillic acid, vanillin, p-coumaric acid, coniferaldehyde, coniferyl alcohol, kaempferol, and quercetin) is described. The organic and metal analyte contents were determined in 18 cachaça and 21 rum samples using chromatographic methods (GC-MS, GC-FID, and HPLC-UV-vis) and inductively coupled plasma atomic emission spectrometry, respectively. The analytical data of the above compounds, when treated by principal component analysis, hierarchical cluster analysis, discriminant analysis, and K-nearest neighbor analysis, provide a very good discrimination between the two classes of beverages.

  17. Sensory analysis of characterising flavours: evaluating tobacco product odours using an expert panel.

    PubMed

    Krüsemann, Erna J Z; Lasschuijt, Marlou P; de Graaf, C; de Wijk, René A; Punter, Pieter H; van Tiel, Loes; Cremers, Johannes W J M; van de Nobelen, Suzanne; Boesveldt, Sanne; Talhout, Reinskje

    2018-05-23

    Tobacco flavours are an important regulatory concept in several jurisdictions, for example in the USA, Canada and Europe. The European Tobacco Products Directive 2014/40/EU prohibits cigarettes and roll-your-own tobacco having a characterising flavour. This directive defines characterising flavour as 'a clearly noticeable smell or taste other than one of tobacco […]'. To distinguish between products with and without a characterising flavour, we trained an expert panel to identify characterising flavours by smelling. An expert panel (n=18) evaluated the smell of 20 tobacco products using self-defined odour attributes, following Quantitative Descriptive Analysis. The panel was trained during 14 attribute training, consensus training and performance monitoring sessions. Products were assessed during six test sessions. Principal component analysis, hierarchical clustering (four and six clusters) and Hotelling's T-tests (95% and 99% CIs) were used to determine differences and similarities between tobacco products based on odour attributes. The final attribute list contained 13 odour descriptors. Panel performance was sufficient after 14 training sessions. Products marketed as unflavoured that formed a cluster were considered reference products. A four-cluster method distinguished cherry-flavoured, vanilla-flavoured and menthol-flavoured products from reference products. Six clusters subdivided reference products into tobacco leaves, roll-your-own and commercial products. An expert panel was successfully trained to assess characterising odours in cigarettes and roll-your-own tobacco. This method could be applied to other product types such as e-cigarettes. Regulatory decisions on the choice of reference products and significance level are needed which directly influences the products being assessed as having a characterising odour. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. A Financial Market Model Incorporating Herd Behaviour

    PubMed Central

    2016-01-01

    Herd behaviour in financial markets is a recurring phenomenon that exacerbates asset price volatility, and is considered a possible contributor to market fragility. While numerous studies investigate herd behaviour in financial markets, it is often considered without reference to the pricing of financial instruments or other market dynamics. Here, a trader interaction model based upon informational cascades in the presence of information thresholds is used to construct a new model of asset price returns that allows for both quiescent and herd-like regimes. Agent interaction is modelled using a stochastic pulse-coupled network, parametrised by information thresholds and a network coupling probability. Agents may possess either one or two information thresholds that, in each case, determine the number of distinct states an agent may occupy before trading takes place. In the case where agents possess two thresholds (labelled as the finite state-space model, corresponding to agents’ accumulating information over a bounded state-space), and where coupling strength is maximal, an asymptotic expression for the cascade-size probability is derived and shown to follow a power law when a critical value of network coupling probability is attained. For a range of model parameters, a mixture of negative binomial distributions is used to approximate the cascade-size distribution. This approximation is subsequently used to express the volatility of model price returns in terms of the model parameter which controls the network coupling probability. In the case where agents possess a single pulse-coupling threshold (labelled as the semi-infinite state-space model corresponding to agents’ accumulating information over an unbounded state-space), numerical evidence is presented that demonstrates volatility clustering and long-memory patterns in the volatility of asset returns. Finally, output from the model is compared to both the distribution of historical stock returns and the market price of an equity index option. PMID:27007236

  19. Electron spectra of xenon clusters irradiated with a laser-driven plasma soft-x-ray laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S.; Takiyama, K.; Hasegawa, N.

    Xenon clusters were irradiated with plasma soft-x-ray laser pulses (having a wavelength of 13.9 nm, time duration of 7 ps, and intensities of up to 10 GW/cm{sup 2}). The laser photon energy was high enough to photoionize 4d core electrons. The cross section is large due to a giant resonance. The interaction was investigated by measuring the electron energy spectra. The photoelectron spectra for small clusters indicate that the spectral width due to the 4d hole significantly broadens with increasing cluster size. For larger clusters, the electron energy spectra evolve into a Maxwell-Boltzmann distribution, as a strongly coupled cluster nanoplasmamore » is generated.« less

  20. First principles studies of electron tunneling in proteins

    PubMed Central

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  1. Typology of Couples Entering Alcohol Behavioral Couple Therapy: An Empirical Approach and Test of Predictive Validity on Treatment Response

    PubMed Central

    Ladd, Benjamin O.; McCrady, Barbara S.

    2016-01-01

    The current study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking Alcohol Behavioral Couple Therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled Avoider, Validator, Hostile, and Ambivalent-Detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. PMID:25808432

  2. Quantum soldering of individual quantum dots.

    PubMed

    Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

    2012-12-07

    Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Novel approach to characterising individuals with low back-related leg pain: cluster identification with latent class analysis and 12-month follow-up.

    PubMed

    Stynes, Siobhán; Konstantinou, Kika; Ogollah, Reuben; Hay, Elaine M; Dunn, Kate M

    2018-04-01

    Traditionally, low back-related leg pain (LBLP) is diagnosed clinically as referred leg pain or sciatica (nerve root involvement). However, within the spectrum of LBLP, we hypothesised that there may be other unrecognised patient subgroups. This study aimed to identify clusters of patients with LBLP using latent class analysis and describe their clinical course. The study population was 609 LBLP primary care consulters. Variables from clinical assessment were included in the latent class analysis. Characteristics of the statistically identified clusters were compared, and their clinical course over 1 year was described. A 5 cluster solution was optimal. Cluster 1 (n = 104) had mild leg pain severity and was considered to represent a referred leg pain group with no clinical signs, suggesting nerve root involvement (sciatica). Cluster 2 (n = 122), cluster 3 (n = 188), and cluster 4 (n = 69) had mild, moderate, and severe pain and disability, respectively, and response to clinical assessment items suggested categories of mild, moderate, and severe sciatica. Cluster 5 (n = 126) had high pain and disability, longer pain duration, and more comorbidities and was difficult to map to a clinical diagnosis. Most improvement for pain and disability was seen in the first 4 months for all clusters. At 12 months, the proportion of patients reporting recovery ranged from 27% for cluster 5 to 45% for cluster 2 (mild sciatica). This is the first study that empirically shows the variability in profile and clinical course of patients with LBLP including sciatica. More homogenous groups were identified, which could be considered in future clinical and research settings.

  4. Graph partitions and cluster synchronization in networks of oscillators

    PubMed Central

    Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio

    2017-01-01

    Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454

  5. Comment on "An Evaluation of Query Expansion by the Addition of Clustered Terms for a Document Retrieval System"

    ERIC Educational Resources Information Center

    Salton, G.

    1972-01-01

    The author emphasized that one cannot conclude from the experiments reported upon that term clusters (or equivalently, keyword classifications or thesauruses) are not useful in retrieval. (2 references) (Author)

  6. A Technique of Two-Stage Clustering Applied to Environmental and Civil Engineering and Related Methods of Citation Analysis.

    ERIC Educational Resources Information Center

    Miyamoto, S.; Nakayama, K.

    1983-01-01

    A method of two-stage clustering of literature based on citation frequency is applied to 5,065 articles from 57 journals in environmental and civil engineering. Results of related methods of citation analysis (hierarchical graph, clustering of journals, multidimensional scaling) applied to same set of articles are compared. Ten references are…

  7. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple

    NASA Astrophysics Data System (ADS)

    Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.

    2014-08-01

    We present a production implementation of reduced-scaling explicitly correlated (F12) coupled-cluster singles and doubles (CCSD) method based on pair-natural orbitals (PNOs). A key feature is the reformulation of the explicitly correlated terms using geminal-spanning orbitals that greatly reduce the truncation errors of the F12 contribution. For the standard S66 benchmark of weak intermolecular interactions, the cc-pVDZ-F12 PNO CCSD F12 interaction energies reproduce the complete basis set CCSD limit with mean absolute error <0.1 kcal/mol, and at a greatly reduced cost compared to the conventional CCSD F12.

  8. Adaptive fixed-time control for cluster synchronisation of coupled complex networks with uncertain disturbances

    NASA Astrophysics Data System (ADS)

    Jiang, Shengqin; Lu, Xiaobo; Cai, Guoliang; Cai, Shuiming

    2017-12-01

    This paper focuses on the cluster synchronisation problem of coupled complex networks with uncertain disturbances under an adaptive fixed-time control strategy. To begin with, complex dynamical networks with community structure which are subject to uncertain disturbances are taken into account. Then, a novel adaptive control strategy combined with fixed-time techniques is proposed to guarantee the nodes in the communities to desired states in a settling time. In addition, the stability of complex error systems is theoretically proved based on Lyapunov stability theorem. At last, two examples are presented to verify the effectiveness of the proposed adaptive fixed-time control.

  9. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less

  10. Cluster Randomized Controlled Trial Evaluation of a Gender Equity and Family Planning Intervention for Married Men and Couples in Rural India

    PubMed Central

    Raj, Anita; Ghule, Mohan; Ritter, Julie; Battala, Madhusudana; Gajanan, Velhal; Nair, Saritha; Dasgupta, Anindita; Silverman, Jay G.; Balaiah, Donta; Saggurti, Niranjan

    2016-01-01

    Background Despite ongoing recommendations to increase male engagement and gender-equity (GE) counseling in family planning (FP) services, few such programs have been implemented and rigorously evaluated. This study evaluates the impact of CHARM, a three-session GE+FP counseling intervention delivered by male health care providers to married men, alone (sessions 1&2) and with their wives (session 3) in India. Methods and Findings A two-armed cluster randomized controlled trial was conducted with young married couples (N = 1081 couples) recruited from 50 geographic clusters (25 clusters randomized to CHARM and a control condition, respectively) in rural Maharashtra, India. Couples were surveyed on demographics, contraceptive behaviors, and intimate partner violence (IPV) attitudes and behaviors at baseline and 9 &18-month follow-ups, with pregnancy testing at baseline and 18-month follow-up. Outcome effects on contraceptive use and incident pregnancy, and secondarily, on contraceptive communication and men’s IPV attitudes and behaviors, were assessed using logistic generalized linear mixed models. Most men recruited from CHARM communities (91.3%) received at least one CHARM intervention session; 52.5% received the couple’s session with their wife. Findings document that women from the CHARM condition, relative to controls, were more likely to report contraceptive communication at 9-month follow-up (AOR = 1.77, p = 0.04) and modern contraceptive use at 9 and 18-month follow-ups (AORs = 1.57–1.58, p = 0.05), and they were less likely to report sexual IPV at 18-month follow-up (AOR = 0.48, p = 0.01). Men in the CHARM condition were less likely than those in the control clusters to report attitudes accepting of sexual IPV at 9-month (AOR = 0.64, p = 0.03) and 18-month (AOR = 0.51, p = 0.004) follow-up, and attitudes accepting of physical IPV at 18-month follow-up (AOR = 0.64, p = 0.02). No significant effect on pregnancy was seen. Conclusions Findings demonstrate that men can be engaged in FP programming in rural India, and that such an approach inclusive of GE counseling can improve contraceptive practices and reduce sexual IPV in married couples. Trial Registration ClinicalTrials.gov NCT01593943 PMID:27167981

  11. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    NASA Astrophysics Data System (ADS)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  12. Genetic characterization of Vibrio vulnificus strains isolated from oyster samples in Mexico.

    PubMed

    Guerrero, Abraham; Gómez Gil Rodríguez, Bruno; Wong-Chang, Irma; Lizárraga-Partida, Marcial Leonardo

    2015-01-01

    Vibrio vulnificus strains were isolated from oysters that were collected at the main seafood market in Mexico City. Strains were characterized with regard to vvhA, vcg genotype, PFGE, multilocus sequence typing (MLST), and rtxA1. Analyses included a comparison with rtxA1 reference sequences. Environmental (vcgE) and clinical (vcgC) genotypes were isolated at nearly equal percentages. PFGE had high heterogeneity, but the strains clustered by vcgE or vcgC genotype. Select housekeeping genes for MLST and primers that were designed for rtxA1 domains divided the strains into two clusters according to the E or C genotype. Reference rtxA1 sequences and those from this study were also clustered according to genotype. These results confirm that this genetic dimorphism is not limited to vcg genotyping, as other studies have reported. Some environmental C genotype strains had high similarity to reference strains, which have been reported to be virulent, indicating a potential risk for oyster consumers in Mexico City.

  13. The effect of the subprime crisis on the credit risk in global scale

    NASA Astrophysics Data System (ADS)

    Lee, Sangwook; Kim, Min Jae; Lee, Sun Young; Kim, Soo Yong; Ban, Joon Hwa

    2013-05-01

    Credit default swap (CDS) has become one of the most actively traded credit derivatives, and its importance in finance markets has increased after the subprime crisis. In this study, we analyzed the correlation structure of credit risks embedded in CDS and the influence of the subprime crisis on this topological space. We found that the correlation was stronger in the cluster constructed according to the location of the CDS reference companies than in the one constructed according to their industries. The correlation both within a given cluster and between different clusters became significantly stronger after the subprime crisis. The causality test shows that the lead lag effect between the portfolios (into which reference companies are grouped by the continent where each of them is located) is reversed in direction because the portion of non-investable and investable reference companies in each portfolio has changed since then. The effect of a single impulse has increased and the response time relaxation has become prolonged after the crisis as well.

  14. Computational clustering for viral reference proteomes

    PubMed Central

    Chen, Chuming; Huang, Hongzhan; Mazumder, Raja; Natale, Darren A.; McGarvey, Peter B.; Zhang, Jian; Polson, Shawn W.; Wang, Yuqi; Wu, Cathy H.

    2016-01-01

    Motivation: The enormous number of redundant sequenced genomes has hindered efforts to analyze and functionally annotate proteins. As the taxonomy of viruses is not uniformly defined, viral proteomes pose special challenges in this regard. Grouping viruses based on the similarity of their proteins at proteome scale can normalize against potential taxonomic nomenclature anomalies. Results: We present Viral Reference Proteomes (Viral RPs), which are computed from complete virus proteomes within UniProtKB. Viral RPs based on 95, 75, 55, 35 and 15% co-membership in proteome similarity based clusters are provided. Comparison of our computational Viral RPs with UniProt’s curator-selected Reference Proteomes indicates that the two sets are consistent and complementary. Furthermore, each Viral RP represents a cluster of virus proteomes that was consistent with virus or host taxonomy. We provide BLASTP search and FTP download of Viral RP protein sequences, and a browser to facilitate the visualization of Viral RPs. Availability and implementation: http://proteininformationresource.org/rps/viruses/ Contact: chenc@udel.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153712

  15. Phylogenetic relationship of Ornithobacterium rhinotracheale strains.

    PubMed

    DE Oca-Jimenez, Roberto Montes; Vega-Sanchez, Vicente; Morales-Erasto, Vladimir; Salgado-Miranda, Celene; Blackall, Patrick J; Soriano-Vargas, Edgardo

    2018-04-10

    The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease in wild birds and poultry. In this study, the phylogenetic analysis of nine reference strains of O. rhinotracheale belonging to serovars A to I, and eight Mexican isolates belonging to serovar A, was performed. The analysis was extended to include available sequences from another 23 strains available in the public domain. The analysis showed that the 40 sequences formed six clusters, I to VI. All eight Mexican field isolates were placed in cluster I. One of the reference strains appears to present genetic diversity not previously recognized and was placed in a new genetic cluster. In conclusion, the phylogenetic analysis of O. rhinotracheale strains, based on the 16S rRNA gene, is a suitable tool for epidemiologic studies.

  16. Reference pricing for drugs: is it compatible with U.S. health care?

    PubMed

    Kanavos, Panos; Reinhardt, Uwe

    2003-01-01

    To control spending on prescription drugs, health insurance systems abroad have experimented in recent years with a novel form of patient cost sharing called "reference pricing." Under this approach, the insurer covers only the prices of low-cost, benchmark drugs in therapeutic clusters that are deemed to be close substitutes for one another in treating specific illnesses. Patients who desire a higher-price substitute in a cluster must then pay the full difference between the retail price of that drug and the reference price covered by the insurer. This paper explores the difficult trade-offs that policymakers must make in designing such a system, drawing where relevant from experience abroad.

  17. Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble

    NASA Astrophysics Data System (ADS)

    Toh, Ying Ying; Turner, Andrew G.; Johnson, Stephanie J.; Holloway, Christopher E.

    2018-02-01

    The fidelity of 28 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating mean climate over the Maritime Continent in the Atmospheric Model Intercomparison Project (AMIP) experiment is evaluated in this study. The performance of AMIP models varies greatly in reproducing seasonal mean climate and the seasonal cycle. The multi-model mean has better skill at reproducing the observed mean climate than the individual models. The spatial pattern of 850 hPa wind is better simulated than the precipitation in all four seasons. We found that model horizontal resolution is not a good indicator of model performance. Instead, a model's local Maritime Continent biases are somewhat related to its biases in the local Hadley circulation and global monsoon. The comparison with coupled models in CMIP5 shows that AMIP models generally performed better than coupled models in the simulation of the global monsoon and local Hadley circulation but less well at simulating the Maritime Continent annual cycle of precipitation. To characterize model systematic biases in the AMIP runs, we performed cluster analysis on Maritime Continent annual cycle precipitation. Our analysis resulted in two distinct clusters. Cluster I models are able to capture both the winter monsoon and summer monsoon shift, but they overestimate the precipitation; especially during the JJA and SON seasons. Cluster II models simulate weaker seasonal migration than observed, and the maximum rainfall position stays closer to the equator throughout the year. The tropics-wide properties of these clusters suggest a connection between the skill of simulating global properties of the monsoon circulation and the skill of simulating the regional scale of Maritime Continent precipitation.

  18. Normal order and extended Wick theorem for a multiconfiguration reference wave function

    NASA Astrophysics Data System (ADS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    1997-07-01

    A generalization of normal ordering and of Wick's theorem with respect to an arbitrary reference function Φ as some generalized "physical vacuum" is formulated in a different (but essentially equivalent) way than that suggested previously by one of the present authors. Guiding principles are that normal order operators with respect to any reference state must be expressible as linear combinations of those with respect to the genuine vacuum, that the vacuum expectation value of a normal order operator must vanish (with respect to the vacuum to which it is in normal order), and that the well-known formalism for a single Slater determinant as physical vacuum must be contained as a special case. The derivation is largely based on the concepts of "Quantum Chemistry in Fock space," which means that particle-number-conserving operators (excitation operators) play a central role. Nevertheless, the contraction rules in the frame of a generalized Wick theorem are derived, that hold for non-particle-number-conserving operators as well. The contraction rules are formulated and illustrated in terms of diagrams. The contractions involve the "residual n-particle density matrices" λ, which are the irreducible (non-factorizable) parts of the conventional n-particle density matrices γ, in the sense of a cumulant expansion for the density. A spinfree formulation is presented as well. The expression of the Hamiltonian in normal order with respect to a multiconfiguration reference function leads to a natural definition of a generalized Fock operator. MC-SCF-theory is easily worked out in this context. The paper concludes with a discussion of the excited configurations and the first-order interacting space, that underlies a perturbative coupled cluster type correction to the MCSCF function for an arbitrary reference function, and with general implications of the new formalism, that is related to "internally contracted multireference configuration interaction." The present generalization of normal ordering is not only valid for arbitrary reference functions, but also if the reference state is an ensemble state.

  19. Superresolution Modeling of Calcium Release in the Heart

    PubMed Central

    Walker, Mark A.; Williams, George S.B.; Kohl, Tobias; Lehnart, Stephan E.; Jafri, M. Saleet; Greenstein, Joseph L.; Lederer, W.J.; Winslow, Raimond L.

    2014-01-01

    Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions. PMID:25517166

  20. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulationsmore » as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.« less

  1. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice [How good is the MB-pol many-body potential for water?

    DOE PAGES

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; ...

    2016-11-17

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. Here, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. We investigate several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure through classical molecular dynamics simulations as amore » function of temperature. Furthermore, the structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.« less

  2. On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice [How good is the MB-pol many-body potential for water?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp

    The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. Here, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. We investigate several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure through classical molecular dynamics simulations as amore » function of temperature. Furthermore, the structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.« less

  3. Yellow evolved stars in open clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, J.R.

    1987-05-01

    This paper describes a program in which Galactic cluster post-AGB candidates were first identified and then analyzed for cluster membership via radial velocities, monitored for possible photometric variations, examined for evidence of mass loss, and classified as completely as possible in terms of their basic stellar parameters. The intrinsically brightest supergiants are found in the youngest clusters. With increasing cluster age, the absolute luminosities attained by the supergiants decline. It appears that the evolutionary tracks of luminosity class II stars are more similar to those of class I than of class III. Only two superluminous giant star candidates are foundmore » in open clusters. 154 references.« less

  4. TOSCA-based orchestration of complex clusters at the IaaS level

    NASA Astrophysics Data System (ADS)

    Caballer, M.; Donvito, G.; Moltó, G.; Rocha, R.; Velten, M.

    2017-10-01

    This paper describes the adoption and extension of the TOSCA standard by the INDIGO-DataCloud project for the definition and deployment of complex computing clusters together with the required support in both OpenStack and OpenNebula, carried out in close collaboration with industry partners such as IBM. Two examples of these clusters are described in this paper, the definition of an elastic computing cluster to support the Galaxy bioinformatics application where the nodes are dynamically added and removed from the cluster to adapt to the workload, and the definition of an scalable Apache Mesos cluster for the execution of batch jobs and support for long-running services. The coupling of TOSCA with Ansible Roles to perform automated installation has resulted in the definition of high-level, deterministic templates to provision complex computing clusters across different Cloud sites.

  5. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  6. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  7. A benchmark theoretical study of the electronic ground state and of the singlet-triplet split of benzene and linear acenes

    NASA Astrophysics Data System (ADS)

    Hajgató, B.; Szieberth, D.; Geerlings, P.; De Proft, F.; Deleuze, M. S.

    2009-12-01

    A benchmark theoretical study of the electronic ground state and of the vertical and adiabatic singlet-triplet (ST) excitation energies of benzene (n =1) and n-acenes (C4n+2H2n+4) ranging from naphthalene (n =2) to heptacene (n =7) is presented, on the ground of single- and multireference calculations based on restricted or unrestricted zero-order wave functions. High-level and large scale treatments of electronic correlation in the ground state are found to be necessary for compensating giant but unphysical symmetry-breaking effects in unrestricted single-reference treatments. The composition of multiconfigurational wave functions, the topologies of natural orbitals in symmetry-unrestricted CASSCF calculations, the T1 diagnostics of coupled cluster theory, and further energy-based criteria demonstrate that all investigated systems exhibit a A1g singlet closed-shell electronic ground state. Singlet-triplet (S0-T1) energy gaps can therefore be very accurately determined by applying the principles of a focal point analysis onto the results of a series of single-point and symmetry-restricted calculations employing correlation consistent cc-pVXZ basis sets (X=D, T, Q, 5) and single-reference methods [HF, MP2, MP3, MP4SDQ, CCSD, CCSD(T)] of improving quality. According to our best estimates, which amount to a dual extrapolation of energy differences to the level of coupled cluster theory including single, double, and perturbative estimates of connected triple excitations [CCSD(T)] in the limit of an asymptotically complete basis set (cc-pV∞Z), the S0-T1 vertical excitation energies of benzene (n =1) and n-acenes (n =2-7) amount to 100.79, 76.28, 56.97, 40.69, 31.51, 22.96, and 18.16 kcal/mol, respectively. Values of 87.02, 62.87, 46.22, 32.23, 24.19, 16.79, and 12.56 kcal/mol are correspondingly obtained at the CCSD(T)/cc-pV∞Z level for the S0-T1 adiabatic excitation energies, upon including B3LYP/cc-PVTZ corrections for zero-point vibrational energies. In line with the absence of Peierls distortions, extrapolations of results indicate a vanishingly small S0-T1 energy gap of 0 to ˜4 kcal/mol (˜0.17 eV) in the limit of an infinitely large polyacene.

  8. Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Hosoda, H.; Miyazaki, S.

    2013-02-01

    The frequency distribution of habit plane variant (HPV) clusters and the deviation from twin orientation relationships (ORs) at the junction plane (JP) are investigated by transmission electron microscopy together with theoretical evaluation of the kinematic compatibility (KC) at the JP in a β-titanium shape memory alloy. Even though there are more than 10 types of possible HPV clusters, only three types are formed. V-shaped couplings of HPVs by {111} type I twins (VI: 49%) and by ⟨211⟩ type II twins (VII: 42%) are the predominant types. A triangular morphology due to coupling of {111} type I twins is observed with a frequency of only 9%. These preferred morphologies are well explained by the degree of incompatibility (the rotation necessary for compatible connection of HPVs). The exact twin OR and KC are maintained at the JP in a VI cluster instead of KC at the habit plane (HP), whereas the JP in a VII cluster is incompatible and the ⟨211⟩ type II twin OR shows slight deviation at the JP by about 0.4°. The competition between KC at the JP and KC at the HP (invariant plane) is responsible for the frequency distribution of HPV clusters and the character of the interfaces in the self-accommodation microstructure.

  9. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  10. Validity of the classical monte carlo method to model the magnetic properties of a large transition-metal cluster: Mn19.

    PubMed

    Lima, Nicola; Caneschi, Andrea; Gatteschi, Dante; Kritikos, Mikael; Westin, L Gunnar

    2006-03-20

    The susceptibility of the large transition-metal cluster [Mn19O12(MOE)14(MOEH)10].MOEH (MOE = OC2H2O-CH3) has been fitted through classical Monte Carlo simulation, and an estimation of the exchange coupling constants has been done. With these results, it has been possible to perform a full-matrix diagonalization of the cluster core, which was used to provide information on the nature of the low-lying levels.

  11. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  12. Effect of Coulomb Correlation on the Magnetic Properties of Mn Clusters.

    PubMed

    Huang, Chengxi; Zhou, Jian; Deng, Kaiming; Kan, Erjun; Jena, Puru

    2018-05-03

    In spite of decades of research, a fundamental understanding of the unusual magnetic behavior of small Mn clusters remains a challenge. Experiments show that Mn 2 is antiferromagnetic while small clusters containing up to five Mn atoms are ferromagnetic with magnetic moments of 5 μ B /atom and become ferrimagnetic as they grow further. Theoretical studies based on density functional theory (DFT), however, find Mn 2 to be ferromagnetic, with ferrimagnetic order setting in at different sizes that depend upon the computational methods used. While quantum chemical techniques correctly account for the antiferromagnetic ground state of Mn 2 , they are computationally too demanding to treat larger clusters, making it difficult to understand the evolution of magnetism. These studies clearly point to the importance of correlation and the need to find ways to treat it effectively for larger clusters and nanostructures. Here, we show that the DFT+ U method can be used to account for strong correlation. We determine the on-site Coulomb correlation, Hubbard U self-consistently by using the linear response theory and study its effect on the magnetic coupling of Mn clusters containing up to five atoms. With a calculated U value of 4.8 eV, we show that the ground state of Mn 2 is antiferromagnetic with a Mn-Mn distance of 3.34 Å, which agrees well with the electron spin resonance experiment. Equally important, we show that on-site Coulomb correlation also plays an important role in the evolution of magnetic coupling in larger clusters, as the results differ significantly from standard DFT calculations. We conclude that for a proper understanding of magnetism of Mn nanostructures (clusters, chains, and layers) one must take into account the effect of strong correlation.

  13. Comprehensive Biothreat Cluster Identification by PCR/Electrospray-Ionization Mass Spectrometry

    PubMed Central

    Sampath, Rangarajan; Mulholland, Niveen; Blyn, Lawrence B.; Massire, Christian; Whitehouse, Chris A.; Waybright, Nicole; Harter, Courtney; Bogan, Joseph; Miranda, Mary Sue; Smith, David; Baldwin, Carson; Wolcott, Mark; Norwood, David; Kreft, Rachael; Frinder, Mark; Lovari, Robert; Yasuda, Irene; Matthews, Heather; Toleno, Donna; Housley, Roberta; Duncan, David; Li, Feng; Warren, Robin; Eshoo, Mark W.; Hall, Thomas A.; Hofstadler, Steven A.; Ecker, David J.

    2012-01-01

    Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry. PMID:22768032

  14. Typology of Couples Entering Alcohol Behavioral Couple Therapy: An Empirical Approach and Test of Predictive Validity on Treatment Response.

    PubMed

    Ladd, Benjamin O; McCrady, Barbara S

    2016-01-01

    This study aimed to examine whether classification of couples in which one partner has an alcohol problem is similar to that reported in the general couples literature. Typologies of couples seeking alcohol behavioral couple therapy (ABCT) were developed via hierarchical cluster analysis using behavioral codes of couple interactions during their first ABCT session. Four couples types based on in-session behavior were established reliably, labeled avoider, validator, hostile, and ambivalent-detached. These couple types resembled couples types found in previous research. Couple type was associated with baseline relationship satisfaction, but not alcohol use. Results suggest heterogeneity in couples with alcohol problems presenting to treatment; further study is needed to investigate the function of alcohol within these different types. © 2015 American Association for Marriage and Family Therapy.

  15. Designing Web-based Telemedicine Training for Military Health Care Providers.

    ERIC Educational Resources Information Center

    Bangert, David; Doktor, Boert; Johnson, Erik

    2001-01-01

    Interviews with 48 military health care professionals identified 20 objectives and 4 learning clusters for a telemedicine training curriculum. From these clusters, web-based modules were developed addressing clinical learning, technology, organizational issues, and introduction to telemedicine. (Contains 19 references.) (SK)

  16. Extraction of the gate capacitance coupling coefficient in floating gate non-volatile memories: Statistical study of the effect of mismatching between floating gate memory and reference transistor in dummy cell extraction methods

    NASA Astrophysics Data System (ADS)

    Rafhay, Quentin; Beug, M. Florian; Duane, Russell

    2007-04-01

    This paper presents an experimental comparison of dummy cell extraction methods of the gate capacitance coupling coefficient for floating gate non-volatile memory structures from different geometries and technologies. These results show the significant influence of mismatching floating gate devices and reference transistors on the extraction of the gate capacitance coupling coefficient. In addition, it demonstrates the accuracy of the new bulk bias dummy cell extraction method and the importance of the β function, introduced recently in [Duane R, Beug F, Mathewson A. Novel capacitance coupling coefficient measurement methodology for floating gate non-volatile memory devices. IEEE Electr Dev Lett 2005;26(7):507-9], to determine matching pairs of floating gate memory and reference transistor.

  17. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  18. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  19. Depression: The Differing Narratives of Couples in Couple Therapy

    ERIC Educational Resources Information Center

    Rautiainen, Eija-Liisa; Aaltonen, Jukka

    2010-01-01

    How does the spouse of a person with depression take part in constructing narratives of depression in couple therapy? In this study we examined couples' ways of co-constructing narratives of depression in couple therapy. Three couple therapy processes were chosen for the study, one spouse in each couple having been referred to an outpatient clinic…

  20. Chimeras with multiple coherent regions

    NASA Astrophysics Data System (ADS)

    Ujjwal, Sangeeta Rani; Ramaswamy, Ramakrishna

    2013-09-01

    We study chimeric states in a coupled phase oscillator system with piecewise linear nonlocal coupling. By modifying the details of the coupling, it is possible to obtain multiple chimeric states with a specified number of coherent regions and with specified phase relationships. The case of a two-component chimera is illustrated and the generalization to arbitrary chimeric configurations is discussed. The phase relations between the two clusters of phase oscillators is described in some detail.

  1. Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses

    NASA Astrophysics Data System (ADS)

    Lungsi Sharma, B.

    2016-07-01

    The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.

  2. Computational Chemistry Modeling of the Atmospheric Fate of Toxic Industrial Compounds (TICs)

    DTIC Science & Technology

    2007-06-01

    1+G(3df,2p) number of atoms and number of basis functions) of the (LRG) compounds under study precludes the use of coupled 0 Zero Point Energy ( ZPE ...overlap (NDDO) The extrapolated energy = E(QCI) + E(LRG) - Hamiltonian that is reparameterized to accurately E(SML) + ZPE reproduce coupled cluster

  3. Standing waves, clustering, and phase waves in 1D simulations of kinetic relaxation oscillations in NO+NH 3 on Pt(1 0 0) coupled by diffusion

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2004-04-01

    The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.

  4. A Well-Posed, Objective and Dynamic Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Chetty, Krishna; Vaidheeswaran, Avinash; Sharma, Subash; Clausse, Alejandro; Lopez de Bertodano, Martin

    The transition from dispersed to clustered bubbly flows due to wake entrainment is analyzed with a well-posed and objective one-dimensional (1-D) Two-Fluid Model, derived from variational principles. Modeling the wake entrainment force using the variational technique requires formulation of the inertial coupling coefficient, which defines the kinetic coupling between the phases. The kinetic coupling between a pair of bubbles and the liquid is obtained from potential flow over two-spheres and the results are validated by comparing the virtual mass coefficients with existing literature. The two-body interaction kinetic coupling is then extended to a lumped parameter model for viscous flow over two cylindrical bubbles, to get the Two-Fluid Model for wake entrainment. Linear stability analyses comprising the characteristics and the dispersion relation and non-linear numerical simulations are performed with the 1-D variational Two-Fluid Model to demonstrate the wake entrainment instability leading to clustering of bubbles. Finally, the wavelengths, amplitudes and propagation velocities of the void waves from non-linear simulations are compared with the experimental data.

  5. Clustering by soft-constraint affinity propagation: applications to gene-expression data.

    PubMed

    Leone, Michele; Sumedha; Weigt, Martin

    2007-10-15

    Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.

  6. Dynamic Transition and Resonance in Coupled Oscillators Under Symmetry-Breaking Fields

    NASA Astrophysics Data System (ADS)

    Choi, J.; Choi, M. Y.; Chung, M. S.; Yoon, B.-G.

    2013-06-01

    We investigate numerically the dynamic properties of a system of globally coupled oscillators driven by periodic symmetry-breaking fields in the presence of noise. The phase distribution of the oscillators is computed and a dynamic transition is disclosed. It is further found that the stochastic resonance is closely related to the behavior of the dynamic order parameter, which is in turn explained by the formation of a bi-cluster in the system. Here noise tends to symmetrize the motion of the oscillators, facilitating the bi-cluster formation. The observed resonance appears to be of the same class as the resonance present in the two-dimensional Ising model under oscillating fields.

  7. Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture.

    PubMed

    Aprà, E; Kowalski, K

    2016-03-08

    In this paper we discuss the implementation of multireference coupled-cluster formalism with singles, doubles, and noniterative triples (MRCCSD(T)), which is capable of taking advantage of the processing power of the Intel Xeon Phi coprocessor. We discuss the integration of two levels of parallelism underlying the MRCCSD(T) implementation with computational kernels designed to offload the computationally intensive parts of the MRCCSD(T) formalism to Intel Xeon Phi coprocessors. Special attention is given to the enhancement of the parallel performance by task reordering that has improved load balancing in the noniterative part of the MRCCSD(T) calculations. We also discuss aspects regarding efficient optimization and vectorization strategies.

  8. Coupled Protein Diffusion and Folding in the Cell

    PubMed Central

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling ‘sticking’ of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates. PMID:25436502

  9. Equation of motion approach for describing allowed transitions in Ne and Al3+ under classical and quantum plasmas

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2018-04-01

    The equation of motion coupled cluster methodology within relativistic framework has been applied to analyze the electron correlation effects on the low lying dipole allowed excited states of Ne and Al3+ under classical and quantum plasma environments. The effect of confinement due to classical plasma has been incorporated through screened Coulomb potential, while that of quantum plasma has been treated by exponential cosine screened Coulomb potential. The confined structural properties investigated are the depression of ionization potential, low lying excitation energies (dipole allowed), oscillator strengths, transition probabilities, and frequency dependent polarizabilities under systematic variation of the plasma-atom coupling strength determined through the screening parameter. Specific atomic systems are chosen for their astrophysical importance and availability of experimental data related to laboratory plasma with special reference to Al3+ ion. Here, we consider 1 s22 s22 p6(1S0)→1 s22 s22 p5 n s /n d (1P1) (n =3 ,4 ) dipole allowed transitions of Ne and Al3+. Results for the free (isolated) atomic systems agree well with those available in the literature. Spectroscopic properties under confinement show systematic and interesting pattern with respect to plasma screening parameter.

  10. Coupled protein diffusion and folding in the cell.

    PubMed

    Guo, Minghao; Gelman, Hannah; Gruebele, Martin

    2014-01-01

    When a protein unfolds in the cell, its diffusion coefficient is affected by its increased hydrodynamic radius and by interactions of exposed hydrophobic residues with the cytoplasmic matrix, including chaperones. We characterize protein diffusion by photobleaching whole cells at a single point, and imaging the concentration change of fluorescent-labeled protein throughout the cell as a function of time. As a folded reference protein we use green fluorescent protein. The resulting region-dependent anomalous diffusion is well characterized by 2-D or 3-D diffusion equations coupled to a clustering algorithm that accounts for position-dependent diffusion. Then we study diffusion of a destabilized mutant of the enzyme phosphoglycerate kinase (PGK) and of its stable control inside the cell. Unlike the green fluorescent protein control's diffusion coefficient, PGK's diffusion coefficient is a non-monotonic function of temperature, signaling 'sticking' of the protein in the cytosol as it begins to unfold. The temperature-dependent increase and subsequent decrease of the PGK diffusion coefficient in the cytosol is greater than a simple size-scaling model suggests. Chaperone binding of the unfolding protein inside the cell is one plausible candidate for even slower diffusion of PGK, and we test the plausibility of this hypothesis experimentally, although we do not rule out other candidates.

  11. Exploring personality clusters among parents of ED subjects. Relationship with parents' psychopathology, attachment, and family dynamics.

    PubMed

    Amianto, Federico; Daga, Giovanni Abbate; Bertorello, Antonella; Fassino, Secondo

    2013-10-01

    Eating disorders are some of the most difficult mental disorders to treat and manage. Family interacts with genetic dispositions and other pathogenic factors, and may influence the outburst, development and outcome of EDs. The present study explores with a cluster analysis the personality traits of parents of ED subjects. One-hundred-eight mothers and 104 fathers were tested with Temperament Character Inventory (TCI), Eating Disorder Inventory-2 (EDI-2), State-Trait Anger Expression Inventory (STAX), Family Assessment Device (FAD), Attachment Style Questionnaire (ASQ), Symptom Questionnaire (SQ), Psychological Well-Being scales (PWB). The cluster distribution of parents based on personality traits was explored. Parents' clusters TCI scores were compared as regards personality, psychopathology, attachment and family features. Cross distribution of temperament and character clusters in mothers and fathers, among couples and ED diagnoses of the daughters was explored. Two clusters of mothers and fathers were identified with temperament clustering. Character traits led to two mothers and three fathers clusters. Mothers temperament cluster 1 (MTC1) correspond to a explosive/adventurous profile, MTC2 to a cautious/passive-dependent profile. Fathers temperament cluster 1 (FTC1) was explosive/methodic, FTC2 was independent/methodic. Character clustering distinguished very immature mothers (MCC1) and majority (65%) of character mature mothers with low self-transcendence (MCC2). A third of fathers was severely immature (FCC1), a third impaired as regards relationships (poor cooperativeness and self-transcendence; FCC2), and one third character mature fathers with low self-transcendence (FCC3). Each cluster evidences specific psychopathology and attachment characteristics. FTC1 was more frequently associated with character immaturity. No significant clusters' cross correlation was found in parental couples. Parents' clusters analyze in depth the univocal picture of prototypical mothers and fathers of EDs. Parents not disturbed as regards personality traits are not exceptions. Since EDs are multifactor disorders family dynamics related to parents' personality may be very relevant or even marginal in their pathogenesis. Conversely, parenting may be negatively influenced by relatively marginal personality malfunctions of parents. The clustering approach to the complexity of personality-related dynamics of ED families improves the picture of ED parents. Psychoeducational, counseling and psychotherapeutic family interventions should consider the specific underlying personality of parents. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle?

    PubMed

    Stern, Michael D; Cheng, Heping

    2004-06-01

    The majority of contractile calcium in cardiac muscle is released from stores in the sarcoplasmic reticulum (SR), by a process of calcium-induced calcium release (CICR) through ryanodine receptors. Because CICR is intrinsically self-reinforcing, the stability of and graded regulation of cardiac EC coupling appear paradoxical. It is now well established that this gradation results from the stochastic recruitment of varying numbers of elementary local release events, which may themselves be regenerative, and which can be directly observed as calcium sparks. Ryanodine receptors (RyRs) are clustered in dense lattices, and most calcium sparks are now believed to involve activation of multiple RyRs. This implies that local CICR is regenerative, requiring a mechanism to terminate it. It was initially assumed that this mechanism was inactivation of the RyR, but during the decade since the discovery of sparks, no sufficiently strong inactivation mechanism has been demonstrated in vitro and all empirically determined gating schemes for the RyR give unstable EC coupling in Monte Carlo simulations. We consider here possible release termination mechanisms. Stochastic attrition is the spontaneous decay of active clusters due to random channel closure; calculations show that it is much too slow unless assisted by another process. Calcium-dependent RyR inactivation involving third-party proteins remains a viable but speculative mechanism; current candidates include calmodulin and sorcin. Local depletion of SR release terminal calcium could terminate release, however calculations and measurements leave it uncertain whether a sufficient diffusion resistance exists within the SR to sustain such depletion. Depletion could be assisted by dependence of RyR activity on SR lumenal [Ca(2+)]. There is substantial evidence for such lumenal activation, but it is not clear if it is a strong enough effect to account for the robust termination of sparks. The existence of direct interactions among clustered RyRs might account for the discrepancy between the inactivation properties of isolated RyRs and intact clusters. Such coupled gating remains controversial. Determining the mechanism of release termination is the outstanding unsolved problem of cardiac EC coupling, and will probably require extensive genetic manipulation of the EC coupling apparatus in its native environment to unravel the solution.

  13. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  14. Clustering stock market companies via chaotic map synchronization

    NASA Astrophysics Data System (ADS)

    Basalto, N.; Bellotti, R.; De Carlo, F.; Facchi, P.; Pascazio, S.

    2005-01-01

    A pairwise clustering approach is applied to the analysis of the Dow Jones index companies, in order to identify similar temporal behavior of the traded stock prices. To this end, the chaotic map clustering algorithm is used, where a map is associated to each company and the correlation coefficients of the financial time series to the coupling strengths between maps. The simulation of a chaotic map dynamics gives rise to a natural partition of the data, as companies belonging to the same industrial branch are often grouped together. The identification of clusters of companies of a given stock market index can be exploited in the portfolio optimization strategies.

  15. Role of radial nonuniformities in the interaction of an intense laser with atomic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R.; Gupta, N. K.

    A model for the interaction of an intense laser with atomic clusters is presented. The model takes into account the spatial nonuniformities of the cluster as it evolves in time. The cluster is treated as a stratified sphere having an arbitrary number of layers. Electric and magnetic fields are obtained by solving the vector Helmholtz equation coupled with one-dimensional Lagrangian hydrodynamics. Results are compared with the uniform density nanoplasma model. Enhancement in the amount of energy absorbed is seen over the uniform density model. In some cases the absorbed energy increases by as much as a factor of 40.

  16. Assessing the Amazon Cloud Suitability for CLARREO's Computational Needs

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel; Vakhnin, Andrei A.; Currey, Jon C.

    2015-01-01

    In this document we compare the performance of the Amazon Web Services (AWS), also known as Amazon Cloud, with the CLARREO (Climate Absolute Radiance and Refractivity Observatory) cluster and assess its suitability for computational needs of the CLARREO mission. A benchmark executable to process one month and one year of PARASOL (Polarization and Anistropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) data was used. With the optimal AWS configuration, adequate data-processing times, comparable to the CLARREO cluster, were found. The assessment of alternatives to the CLARREO cluster continues and several options, such as a NASA-based cluster, are being considered.

  17. A stellar tracking reference system

    NASA Technical Reports Server (NTRS)

    Klestadt, B.

    1971-01-01

    A stellar attitude reference system concept for satellites was studied which promises to permit continuous precision pointing of payloads with accuracies of 0.001 degree without the use of gyroscopes. It is accomplished with the use of a single, clustered star tracker assembly mounted on a non-orthogonal, two gimbal mechanism, driven so as to unwind satellite orbital and orbit precession rates. A set of eight stars was found which assures the presence of an adequate inertial reference on a continuous basis in an arbitrary orbit. Acquisition and operational considerations were investigated and inherent reference redundancy/reliability was established. Preliminary designs for the gimbal mechanism, its servo drive, and the star tracker cluster with its associated signal processing were developed for a baseline sun-synchronous, noon-midnight orbit. The functions required of the onboard computer were determined and the equations to be solved were found. In addition detailed error analyses were carried out, based on structural, thermal and other operational considerations.

  18. The new ClusterTrap setup

    NASA Astrophysics Data System (ADS)

    Martinez, F.; Marx, G.; Schweikhard, L.; Vass, A.; Ziegler, F.

    2011-07-01

    ClusterTrap has been designed to investigate properties of atomic clusters in the gas phase with particular emphasis on the dependence on the cluster size and charge state. The combination of cluster source, Penning trap and time-of-flight mass spectrometry allows a variety of experimental schemes including collision-induced dissociation, photo-dissociation, further ionization by electron impact, and electron attachment. Due to the storage capability of the trap extended-delay reaction experiments can be performed. Several recent modifications have resulted in an improved setup. In particular, an electrostatic quadrupole deflector allows the coupling of several sources or detectors to the Penning trap. Furthermore, a linear radio-frequency quadrupole trap has been added for accumulation and ion bunching and by switching the potential of a drift tube the kinetic energy of the cluster ions can be adjusted on their way towards or from the Penning trap. Recently, experiments on multiply negatively charged clusters have been resumed.

  19. Clustering impact regime with shocks in freely evolving granular gas

    NASA Astrophysics Data System (ADS)

    Isobe, Masaharu

    2017-06-01

    A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.

  20. De novo assembly of the transcriptome of the non-model plant Streptocarpus rexii employing a novel heuristic to recover locus-specific transcript clusters.

    PubMed

    Chiara, Matteo; Horner, David S; Spada, Alberto

    2013-01-01

    De novo transcriptome characterization from Next Generation Sequencing data has become an important approach in the study of non-model plants. Despite notable advances in the assembly of short reads, the clustering of transcripts into unigene-like (locus-specific) clusters remains a somewhat neglected subject. Indeed, closely related paralogous transcripts are often merged into single clusters by current approaches. Here, a novel heuristic method for locus-specific clustering is compared to that implemented in the de novo assembler Oases, using the same initial transcript collections, derived from Arabidopsis thaliana and the developmental model Streptocarpus rexii. We show that the proposed approach improves cluster specificity in the A. thaliana dataset for which the reference genome is available. Furthermore, for the S. rexii data our filtered transcript collection matches a larger number of distinct annotated loci in reference genomes than the Oases set, while containing a reduced overall number of loci. A detailed discussion of advantages and limitations of our approach in processing de novo transcriptome reconstructions is presented. The proposed method should be widely applicable to other organisms, irrespective of the transcript assembly method employed. The S. rexii transcriptome is available as a sophisticated and augmented publicly available online database.

  1. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

    PubMed Central

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization. PMID:28786986

  2. Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning.

    PubMed

    Wu, Jiayi; Ma, Yong-Bei; Congdon, Charles; Brett, Bevin; Chen, Shuobing; Xu, Yaofang; Ouyang, Qi; Mao, Youdong

    2017-01-01

    Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.

  3. Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Piecuch, Piotr

    2012-06-01

    After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. Włoch, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. Włoch, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator Rμ, is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and Rμ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many-body components of T and Rμ via active orbitals and which recover much of the relevant non-dynamical and some dynamical electron correlation effects in applications involving potential energy surfaces (PESs) along bond breaking coordinates, for the effects of higher-order, primarily dynamical, correlations missing in the active-space CC/EOMCC considerations. The Flex-MMCC corrections to the active-space CC/EOMCC energies are mathematically similar to the non-iterative energy corrections defining the existing left-eigenstate CR-CC and CR-EOMCC methods, such as CR-CC(2, 3) and CR-EOMCC(2, 3). The potential advantages of the Flex-MMCC and CC(P; Q) formalisms are illustrated by describing the initial implementation and numerical tests of the novel CC hybrid scheme, abbreviated as CC(t; 3), in which one corrects the results of the CC calculations with singles, doubles, and active-space triples, termed CCSDt, for the remaining effects due to connected triple excitations that are missing in the CCSDt considerations, but are present in the MMCC-based CR-CC(2, 3) approach. By examining bond breaking in the HF, F2, and F2+ molecules, it is demonstrated that the CC(t; 3) method improves the CCSDt and CR-CC(2, 3) results, providing PESs that agree with those obtained with the full CC theory with singles, doubles, and triples (CCSDT) to within small fractions of a millihartree, at the fraction of the computer costs of the CCSDT calculations. Different strategies for defining active-space triples within the CC(t; 3) scheme and the underlying CCSDt method are discussed. When limited to the ground-state problem, the CC(t; 3) approach can be regarded as an improved and rigorously derived extension of the recently proposed CCSD(T)-h method [J. Shen, E. Xu, Z. Kou, S. Li, J. Chem. Phys. 132 (2010) 114115], in which triples corrections of the CCSD(T) type are replaced by their more robust CR-CC(2, 3)-style analogs.

  4. Robust fluoroscopic respiratory gating for lung cancer radiotherapy without implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Sharp, Greg C.; Alexander, Brian; Jiang, Steve B.

    2007-02-01

    For gated lung cancer radiotherapy, it is difficult to generate accurate gating signals due to the large uncertainties when using external surrogates and the risk of pneumothorax when using implanted fiducial markers. We have previously investigated and demonstrated the feasibility of generating gating signals using the correlation scores between the reference template image and the fluoroscopic images acquired during the treatment. In this paper, we present an in-depth study, aiming at the improvement of robustness of the algorithm and its validation using multiple sets of patient data. Three different template generating and matching methods have been developed and evaluated: (1) single template method, (2) multiple template method, and (3) template clustering method. Using the fluoroscopic data acquired during patient setup before each fraction of treatment, reference templates are built that represent the tumour position and shape in the gating window, which is assumed to be at the end-of-exhale phase. For the single template method, all the setup images within the gating window are averaged to generate a composite template. For the multiple template method, each setup image in the gating window is considered as a reference template and used to generate an ensemble of correlation scores. All the scores are then combined to generate the gating signal. For the template clustering method, clustering (grouping of similar objects together) is performed to reduce the large number of reference templates into a few representative ones. Each of these methods has been evaluated against the reference gating signal as manually determined by a radiation oncologist. Five patient datasets were used for evaluation. In each case, gated treatments were simulated at both 35% and 50% duty cycles. False positive, negative and total error rates were computed. Experiments show that the single template method is sensitive to noise; the multiple template and clustering methods are more robust to noise due to the smoothing effect of aggregation of correlation scores; and the clustering method results in the best performance in terms of computational efficiency and accuracy.

  5. Validation of the (GTG)(5)-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans.

    PubMed

    De Vuyst, Luc; Camu, Nicholas; De Winter, Tom; Vandemeulebroecke, Katrien; Van de Perre, Vincent; Vancanneyt, Marc; De Vos, Paul; Cleenwerck, Ilse

    2008-06-30

    Amplification of repetitive bacterial DNA elements through the polymerase chain reaction (rep-PCR fingerprinting) using the (GTG)(5) primer, referred to as (GTG)(5)-PCR fingerprinting, was found a promising genotypic tool for rapid and reliable speciation of acetic acid bacteria (AAB). The method was evaluated with 64 AAB reference strains, including 31 type strains, and 132 isolates from Ghanaian, fermented cocoa beans, and was validated with DNA:DNA hybridization data. Most reference strains, except for example all Acetobacter indonesiensis strains and Gluconacetobacter liquefaciens LMG 1509, grouped according to their species designation, indicating the usefulness of this technique for identification to the species level. Moreover, exclusive patterns were obtained for most strains, suggesting that the technique can also be used for characterization below species level or typing of AAB strains. The (GTG)(5)-PCR fingerprinting allowed us to differentiate four major clusters among the fermented cocoa bean isolates, namely A. pasteurianus (cluster I, 100 isolates), A. syzygii- or A. lovaniensis-like (cluster II, 23 isolates), and A. tropicalis-like (clusters III and IV containing 4 and 5 isolates, respectively). A. syzygii-like and A. tropicalis-like strains from cocoa bean fermentations were reported for the first time. Validation of the method and indications for reclassifications of AAB species and existence of new Acetobacter species were obtained through 16S rRNA sequencing analyses and DNA:DNA hybridizations. Reclassifications refer to A. aceti LMG 1531, Ga. xylinus LMG 1518, and Ga. xylinus subsp. sucrofermentans LMG 18788(T).

  6. Validating the use of Hospital Episode Statistics data and comparison of costing methodologies for economic evaluation: an end-of-life case study from the Cluster randomised triAl of PSA testing for Prostate cancer (CAP)

    PubMed Central

    Thorn, Joanna C; Turner, Emma L; Hounsome, Luke; Walsh, Eleanor; Down, Liz; Verne, Julia; Donovan, Jenny L; Neal, David E; Hamdy, Freddie C; Martin, Richard M; Noble, Sian M

    2016-01-01

    Objectives To evaluate the accuracy of routine data for costing inpatient resource use in a large clinical trial and to investigate costing methodologies. Design Final-year inpatient cost profiles were derived using (1) data extracted from medical records mapped to the National Health Service (NHS) reference costs via service codes and (2) Hospital Episode Statistics (HES) data using NHS reference costs. Trust finance departments were consulted to obtain costs for comparison purposes. Setting 7 UK secondary care centres. Population A subsample of 292 men identified as having died at least a year after being diagnosed with prostate cancer in Cluster randomised triAl of PSA testing for Prostate cancer (CAP), a long-running trial to evaluate the effectiveness and cost-effectiveness of prostate-specific antigen (PSA) testing. Results Both inpatient cost profiles showed a rise in costs in the months leading up to death, and were broadly similar. The difference in mean inpatient costs was £899, with HES data yielding ∼8% lower costs than medical record data (differences compatible with chance, p=0.3). Events were missing from both data sets. 11 men (3.8%) had events identified in HES that were all missing from medical record review, while 7 men (2.4%) had events identified in medical record review that were all missing from HES. The response from finance departments to requests for cost data was poor: only 3 of 7 departments returned adequate data sets within 6 months. Conclusions Using HES routine data coupled with NHS reference costs resulted in mean annual inpatient costs that were very similar to those derived via medical record review; therefore, routinely available data can be used as the primary method of costing resource use in large clinical trials. Neither HES nor medical record review represent gold standards of data collection. Requesting cost data from finance departments is impractical for large clinical trials. Trial registration number ISRCTN92187251; Pre-results. PMID:27130167

  7. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability.

    PubMed

    Parrish, Robert M; Burns, Lori A; Smith, Daniel G A; Simmonett, Andrew C; DePrince, A Eugene; Hohenstein, Edward G; Bozkaya, Uğur; Sokolov, Alexander Yu; Di Remigio, Roberto; Richard, Ryan M; Gonthier, Jérôme F; James, Andrew M; McAlexander, Harley R; Kumar, Ashutosh; Saitow, Masaaki; Wang, Xiao; Pritchard, Benjamin P; Verma, Prakash; Schaefer, Henry F; Patkowski, Konrad; King, Rollin A; Valeev, Edward F; Evangelista, Francesco A; Turney, Justin M; Crawford, T Daniel; Sherrill, C David

    2017-07-11

    Psi4 is an ab initio electronic structure program providing methods such as Hartree-Fock, density functional theory, configuration interaction, and coupled-cluster theory. The 1.1 release represents a major update meant to automate complex tasks, such as geometry optimization using complete-basis-set extrapolation or focal-point methods. Conversion of the top-level code to a Python module means that Psi4 can now be used in complex workflows alongside other Python tools. Several new features have been added with the aid of libraries providing easy access to techniques such as density fitting, Cholesky decomposition, and Laplace denominators. The build system has been completely rewritten to simplify interoperability with independent, reusable software components for quantum chemistry. Finally, a wide range of new theoretical methods and analyses have been added to the code base, including functional-group and open-shell symmetry adapted perturbation theory, density-fitted coupled cluster with frozen natural orbitals, orbital-optimized perturbation and coupled-cluster methods (e.g., OO-MP2 and OO-LCCD), density-fitted multiconfigurational self-consistent field, density cumulant functional theory, algebraic-diagrammatic construction excited states, improvements to the geometry optimizer, and the "X2C" approach to relativistic corrections, among many other improvements.

  8. Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches

    NASA Astrophysics Data System (ADS)

    Abe, M.; Prasannaa, V. S.; Das, B. P.

    2018-03-01

    Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.

  9. Modeling Photoelectron Spectra of CuO, Cu2O, and CuO2 Anions with Equation-of-Motion Coupled-Cluster Methods: An Adventure in Fock Space.

    PubMed

    Orms, Natalie; Krylov, Anna I

    2018-04-12

    The experimental photoelectron spectra of di- and triatomic copper oxide anions have been reported previously. We present an analysis of the experimental spectra of the CuO - , Cu 2 O - , and CuO 2 - anions using equation-of-motion coupled-cluster (EOM-CC) methods. The open-shell electronic structure of each molecule demands a unique combination of EOM-CC methods to achieve an accurate and balanced representation of the multiconfigurational anionic- and neutral-state manifolds. Analysis of the Dyson orbitals associated with photodetachment from CuO - reveals the strong non-Koopmans character of the CuO states. For the lowest detachment energy, a good agreement between theoretical and experimental values is obtained with CCSD(T) (coupled-cluster with single and double excitations and perturbative account of triple excitations). The (T) correction is particularly important for Cu 2 O - . Use of a relativistic pseudopotential and matching basis set improves the quality of results in most cases. EOM-DIP-CCSD analysis of the low-lying states of CuO 2 - reveals multiple singlet and triplet anionic states near the triplet ground state, adding an extra layer of complexity to the interpretation of the experimental CuO 2 - photoelectron spectrum.

  10. Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannan, Rahul; Vogelsberger, Mark; Pfrommer, Christoph

    Feedback from central supermassive black holes is often invoked to explain the low star formation rates (SFRs) in the massive galaxies at the centers of galaxy clusters. However, the detailed physics of the coupling of the injected feedback energy with the intracluster medium (ICM) is still unclear. Using high-resolution magnetohydrodynamic cosmological simulations of galaxy cluster formation, we investigate the role of anisotropic thermal conduction in shaping the thermodynamic structure of clusters, and in particular, in modifying the impact of black hole feedback. Stratified anisotropically conducting plasmas are formally always unstable, and thus more prone to mixing, an expectation borne outmore » by our results. The increased mixing efficiently isotropizes the injected feedback energy, which in turn significantly improves the coupling between the feedback energy and the ICM. This facilitates an earlier disruption of the cool-core, reduces the SFR by more than an order of magnitude, and results in earlier quenching despite an overall lower amount of feedback energy injected into the cluster core. With conduction, the metallicity gradients and dispersions are lowered, aligning them better with observational constraints. These results highlight the important role of thermal conduction in establishing and maintaining the quiescence of massive galaxies.« less

  11. Electron interactions, spin-orbit coupling, intersite correlations in pyrochlore iridates: a comparison of single-site and cluster calculations

    NASA Astrophysics Data System (ADS)

    Wang, Runzhi; Go, Ara; Millis, Andrew

    Pyrochlore iridates (R2 Ir2O7) are studied using density functional theory plus single-site and cluster dynamical mean-field theory (DFT+DMFT). The calculations include spin-orbit coupling. Significant differences between the single-site and cluster calculations are found. The single-site approximation fails to account for the properties of the paramagnetic insulator phase, in particular predicting a larger gap than found in experiments, while cluster calculations yield gaps consistent with transport data. A ground-state phase diagram is computed. Paramagnetic metal, metallic all-in/all-out (AIAO) and insulating AIAO phases are found. Tilted Weyl cones are observed in the AIAO metallic phase for a relatively wide range of interaction strength. Our paramagnetic calculations predict almost identical behaviors for the Y and Eu compound, conflicting with the strong material dependence reported in experiments. Inclusion of magnetic order restores the material difference. The physical origin of the difference is discussed. The results indicate that intersite effects, most likely of antiferromagnetic origin, play an important role in studying the physics of pyrochlore iridates. This work is supported by DOE-ER046169.

  12. Extensive regularization of the coupled cluster methods based on the generating functional formalism: application to gas-phase benchmarks and to the S(N)2 reaction of CHCl3 and OH- in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Karol; Valiev, Marat

    2009-12-21

    The recently introduced energy expansion based on the use of generating functional (GF) [K. Kowalski, P.D. Fan, J. Chem. Phys. 130, 084112 (2009)] provides a way of constructing size-consistent non-iterative coupled-cluster (CC) corrections in terms of moments of the CC equations. To take advantage of this expansion in a strongly interacting regime, the regularization of the cluster amplitudes is required in order to counteract the effect of excessive growth of the norm of the CC wavefunction. Although proven to be effcient, the previously discussed form of the regularization does not lead to rigorously size-consistent corrections. In this paper we addressmore » the issue of size-consistent regularization of the GF expansion by redefning the equations for the cluster amplitudes. The performance and basic features of proposed methodology is illustrated on several gas-phase benchmark systems. Moreover, the regularized GF approaches are combined with QM/MM module and applied to describe the SN2 reaction of CHCl3 and OH- in aqueous solution.« less

  13. Efficient clustering aggregation based on data fragments.

    PubMed

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  14. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.

  15. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.

    PubMed

    Chen, Bolun; Engelbrecht, Jan R; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  16. Cluster synchronization in networks of identical oscillators with α -function pulse coupling

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  17. Decaying vector dark matter as an explanation for the 3.5 keV line from galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman; Akbarieh, Amin Rezaei, E-mail: yasaman@theory.ipm.ac.ir, E-mail: am_rezaei@physics.sharif.ir

    2014-11-01

    We present a Vector Dark Matter (VDM) model that explains the 3.5 keV line recently observed in the XMM-Newton observatory data from galaxy clusters. In this model, dark matter is composed of two vector bosons, V and V', which couple to the photon through an effective generalized Chern-Simons coupling, g{sub V}. V' is slightly heavier than V with a mass splitting m{sub V'} – m{sub V} ≅ 3.5 keV. The decay of V' to V and a photon gives rise to the 3.5 keV line. The production of V and V' takes place in the early universe within the freeze-in framework through the effectivemore » g{sub V} coupling when m{sub V'} < T < Λ, Λ being the cut-off above which the effective g{sub V} coupling is not valid. We introduce a high energy model that gives rise to the g{sub V} coupling at low energies. To do this, V and V' are promoted to gauge bosons of spontaneously broken new U(1){sub V} and U(1){sub V'} gauge symmetries, respectively. The high energy sector includes milli-charged chiral fermions that lead to the g{sub V} coupling at low energy via triangle diagrams.« less

  18. Mesenchymal stem cells and their conditioned medium improve integration of purified induced pluripotent stem cell-derived cardiomyocyte clusters into myocardial tissue.

    PubMed

    Rubach, Martin; Adelmann, Roland; Haustein, Moritz; Drey, Florian; Pfannkuche, Kurt; Xiao, Bing; Koester, Annette; Udink ten Cate, Floris E A; Choi, Yeong-Hoon; Neef, Klaus; Fatima, Azra; Hannes, Tobias; Pillekamp, Frank; Hescheler, Juergen; Šarić, Tomo; Brockmeier, Konrad; Khalil, Markus

    2014-03-15

    Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium.

  19. Mesenchymal Stem Cells and Their Conditioned Medium Improve Integration of Purified Induced Pluripotent Stem Cell–Derived Cardiomyocyte Clusters into Myocardial Tissue

    PubMed Central

    Rubach, Martin; Adelmann, Roland; Haustein, Moritz; Drey, Florian; Pfannkuche, Kurt; Xiao, Bing; Koester, Annette; Udink ten Cate, Floris E.A.; Choi, Yeong-Hoon; Neef, Klaus; Fatima, Azra; Hannes, Tobias; Pillekamp, Frank; Hescheler, Juergen; Šarić, Tomo; Brockmeier, Konrad

    2014-01-01

    Induced pluripotent stem cell–derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium. PMID:24219308

  20. Influence of topology in the mobility enhancement of pulse-coupled oscillator synchronization

    NASA Astrophysics Data System (ADS)

    Beardo, A.; Prignano, L.; Sagarra, O.; Díaz-Guilera, A.

    2017-12-01

    In this work we revisit the nonmonotonic behavior (NMB) of synchronization time with velocity reported for systems of mobile pulse-coupled oscillators (PCOs). We devise a control parameter that allows us to predict in which range of velocities NMB may occur, also uncovering the conditions allowing us to establish the emergence of NMB based on specific features of the connectivity rule. Specifically, our results show that if the connectivity rule is such that the interaction patterns are sparse and, more importantly, include a large fraction of nonreciprocal interactions, then the system will display NMB. We furthermore provide a microscopic explanation relating the presence of such features of the connectivity patterns to the existence of local clusters unable to synchronize, termed frustrated clusters, for which we also give a precise definition in terms of simple graph concepts. We conclude that, if the probability of finding a frustrated cluster in a system of moving PCOs is high enough, NMB occurs in a predictable range of velocities.

  1. Mössbauer spectroscopy and DFT calculations on all protonation states of the 2Fe-2S cluster of the Rieske protein

    NASA Astrophysics Data System (ADS)

    Müller, C. S.; Auerbach, H.; Stegmaier, K.; Wolny, J. A.; Schünemann, V.; Pierik, A. J.

    2017-11-01

    The Thermus thermophilus Rieske protein ( TtRP) contains a 2Fe-2S cluster with one iron (Fe-Cys) coordinated by four sulfur atoms (2xS2- and 2xCys) and one iron (Fe-His) by two sulfur and two nitrogen atoms (2xS2-, His134 and His154). Here, the protein is investigated at three pH values (6.0, 8.5 and 10.5) in order to elucidate the protonation states of the His-ligands. Examination of the effect of protonation on the electronic structure of the cluster via Mössbauer spectroscopy gives a deeper understanding of the coupling of electron transfer to the protonation state of the His-ligands. Two components (1 referring to Fe-Cys and 2 to Fe-His) with parameters typical for a diamagnetic [2Fe-2S]2+ cluster are detected. The Mössbauer parameters and the protonation state clearly correlate: while δ remains almost pH-independent with δ 1 (pH6.0) = 0.23 (± 0.01) mms- 1 and δ 1 (pH10.5) = 0.24 (± 0.01) mms- 1 for Fe-Cys, it decreases for Fe-His from δ 2 (pH6.0) = 0.34 (± 0.01) mms- 1 to δ 2 (pH10.5) = 0.28 (± 0.01) mms- 1. Δ E Q changes from Δ E Q1 (pH6.0) = 0.57 (± 0.01) mms- 1 to Δ E Q1 (pH10.5) = 0.45 (± 0.01) mms- 1 and from Δ E Q2 (pH6.0) = 1.05 (± 0.01) mms- 1 to Δ E Q2 (pH10.5) = 0.71 (± 0.01) mms- 1. Density functional theory (DFT)-calculations based on the crystal structure (pdb 1NYK) (Hunsicker-Wang et al. Biochemistry 42, 7303, 2003) have been performed for the Rieske-cluster with different His-ligand protonation states, reproducing the experimentally observed trend.

  2. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    PubMed Central

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  3. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    PubMed

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  4. Phase diagram and quench dynamics of the cluster-XY spin chain

    NASA Astrophysics Data System (ADS)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  5. Phase diagram and quench dynamics of the cluster-XY spin chain.

    PubMed

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  6. Reactivity of Cubane-Type [(OC)(3)MFe(3)S(4)(SR)(3)](3-) Clusters (M = Mo, W): Interconversion with Cuboidal [Fe(3)S(4)](0) Clusters and Electron Transfer.

    PubMed

    Raebiger, James W.; Crawford, Charles A.; Zhou, Jian; Holm, R. H.

    1997-03-12

    The title clusters, several examples of which have been reported earlier, have been prepared by two different methods and subjected to structural and reactivity studies. The compounds (Et(4)N)(3)[(OC)(3)MFe(3)S(4)(Smes)(3)].MeCN (M = Mo/W) are isomorphous and crystallize in monoclinic space group P2(1)/n with a = 13.412(1)/13.297(1) Å, b = 19.0380(1)/18.9376(3) Å, c = 26.4210(1)/26.2949(1) Å, beta = 97.87(1)/97.549(1) degrees, and Z = 4. The clusters contain long M-S (2.62/2.59 Å) and M-Fe (3.22/3.19 Å) bonds, consistent with the reported structure of [(OC)(3)MoFe(3)S(4)(SEt)(3)](3-) (3). Reaction of [(OC)(3)MoFe(3)S(4)(LS(3))](3-) (7) with CO in the presence of NaPF(6) affords cuboidal [Fe(3)S(4)(LS(3))](3-) (9), also prepared in this laboratory by another route as a synthetic analogue of protein-bound [Fe(3)S(4)](0) clusters. The clusters [Fe(3)S(4)(SR)(3)](3-) (R = mes, Et), of limited stability, were generated by the same reaction. Treatment of 9 with [M(CO)(3)(MeCN)(3)] affords 7 and its M = W analogue. The clusters [(OC)(3)MFe(3)S(4)(SR)(3)](3-) form a four-member electron transfer series in which the 3- cluster can be once reduced (4-) and twice oxidized (2-, 1-) to afford clusters of the indicated charges. The correct assignment of redox couple to potential in the redox series of six clusters is presented, correcting an earlier misassignment of the redox series of 3. Carbonyl stretching frequencies are shown to be sensitive to cluster oxidation state, showing that the M sites and Fe(3)S(4) fragments are electronically coupled despite the long bond distances. (LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzenate(3-); mes = mesityl.)

  7. Accurate virial coefficients of gaseous krypton from state-of-the-art ab initio potential and polarizability of the krypton dimer

    NASA Astrophysics Data System (ADS)

    Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad

    2018-01-01

    We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.

  8. On-Line Pattern Analysis and Recognition System. OLPARS VI. Software Reference Manual,

    DTIC Science & Technology

    1982-06-18

    Discriminant Analysis Data Transformation, Feature Extraction, Feature Evaluation Cluster Analysis, Classification Computer Software 20Z. ABSTRACT... cluster /scatter cut-off value, (2) change the one-space bin factor, (3) change from long prompts to short prompts or vice versa, (4) change the...value, a cluster plot is displayed, otherwise a scatter plot is shown. if option 1 is selected, the program requests that a new value be input

  9. Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV

    NASA Astrophysics Data System (ADS)

    Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.

    2011-04-01

    When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.

  10. Characteristics of airflow and particle deposition in COPD current smokers

    NASA Astrophysics Data System (ADS)

    Zou, Chunrui; Choi, Jiwoong; Haghighi, Babak; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    A recent imaging-based cluster analysis of computed tomography (CT) lung images in a chronic obstructive pulmonary disease (COPD) cohort identified four clusters, viz. disease sub-populations. Cluster 1 had relatively normal airway structures; Cluster 2 had wall thickening; Cluster 3 exhibited decreased wall thickness and luminal narrowing; Cluster 4 had a significant decrease of luminal diameter and a significant reduction of lung deformation, thus having relatively low pulmonary functions. To better understand the characteristics of airflow and particle deposition in these clusters, we performed computational fluid and particle dynamics analyses on representative cluster patients and healthy controls using CT-based airway models and subject-specific 3D-1D coupled boundary conditions. The results show that particle deposition in central airways of cluster 4 patients was noticeably increased especially with increasing particle size despite reduced vital capacity as compared to other clusters and healthy controls. This may be attributable in part to significant airway constriction in cluster 4. This study demonstrates the potential application of cluster-guided CFD analysis in disease populations. NIH Grants U01HL114494 and S10-RR022421, and FDA Grant U01FD005837.

  11. A Cluster Analytic Study of Clinical Orientations among Chemical Dependency Counselors.

    ERIC Educational Resources Information Center

    Thombs, Dennis L.; Osborn, Cynthia J.

    2001-01-01

    Three distinct clinical orientations were identified in a sample of chemical dependency counselors (N=406). Based on cluster analysis, the largest group, identified and labeled as "uniform counselors," endorsed a simple, moral-disease model with little interest in psychosocial interventions. (Contains 50 references and 4 tables.) (GCP)

  12. A Unified Approach to Electron Counting in Main-Group Clusters

    ERIC Educational Resources Information Center

    McGrady, John E.

    2004-01-01

    A presentation of an extensive review of traditional approaches to teaching electron counting is given. The electron-precise clusters are usually taken as a reference point for rationalizing the structures of their electron-rich counterparts, which are characterized by valence electron counts greater than 5n.

  13. Spatially explicit population estimates for black bears based on cluster sampling

    USGS Publications Warehouse

    Humm, J.; McCown, J. Walter; Scheick, B.K.; Clark, Joseph D.

    2017-01-01

    We estimated abundance and density of the 5 major black bear (Ursus americanus) subpopulations (i.e., Eglin, Apalachicola, Osceola, Ocala-St. Johns, Big Cypress) in Florida, USA with spatially explicit capture-mark-recapture (SCR) by extracting DNA from hair samples collected at barbed-wire hair sampling sites. We employed a clustered sampling configuration with sampling sites arranged in 3 × 3 clusters spaced 2 km apart within each cluster and cluster centers spaced 16 km apart (center to center). We surveyed all 5 subpopulations encompassing 38,960 km2 during 2014 and 2015. Several landscape variables, most associated with forest cover, helped refine density estimates for the 5 subpopulations we sampled. Detection probabilities were affected by site-specific behavioral responses coupled with individual capture heterogeneity associated with sex. Model-averaged bear population estimates ranged from 120 (95% CI = 59–276) bears or a mean 0.025 bears/km2 (95% CI = 0.011–0.44) for the Eglin subpopulation to 1,198 bears (95% CI = 949–1,537) or 0.127 bears/km2 (95% CI = 0.101–0.163) for the Ocala-St. Johns subpopulation. The total population estimate for our 5 study areas was 3,916 bears (95% CI = 2,914–5,451). The clustered sampling method coupled with information on land cover was efficient and allowed us to estimate abundance across extensive areas that would not have been possible otherwise. Clustered sampling combined with spatially explicit capture-recapture methods has the potential to provide rigorous population estimates for a wide array of species that are extensive and heterogeneous in their distribution.

  14. Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis

    PubMed Central

    Fung, Danny Ka Chun; Lau, Wai Yin; Chan, Wing Tat

    2013-01-01

    Adaptation to changing environments is essential to bacterial physiology. Here we report a unique role of the copper homeostasis system in adapting Escherichia coli to its host-relevant environment of anaerobiosis coupled with amino acid limitation. We found that expression of the copper/silver efflux pump CusCFBA was significantly upregulated during anaerobic amino acid limitation in E. coli without the supplement of exogenous copper. Inductively coupled plasma mass spectrometry analysis of the total intracellular copper content combined with transcriptional assay of the PcusC-lacZ reporter in the presence of specific Cu(I) chelators indicated that anaerobic amino acid limitation led to the accumulation of free Cu(I) in the periplasmic space of E. coli, resulting in Cu(I) toxicity. Cells lacking cusCFBA and another copper transporter, copA, under this condition displayed growth defects and reduced ATP production during fumarate respiration. Ectopic expression of the Fe-S cluster enzyme fumarate reductase (Frd), or supplementation with amino acids whose biosynthesis involves Fe-S cluster enzymes, rescued the poor growth of ΔcusC cells. Yet, Cu(I) treatment did not impair the Frd activity in vitro. Further studies revealed that the alternative Fe-S cluster biogenesis system Suf was induced during the anaerobic amino acid limitation, and ΔcusC enhanced this upregulation, indicating the impairment of the Fe-S cluster assembly machinery and the increased Fe-S cluster demands under this condition. Taken together, we conclude that the copper efflux system CusCFBA is induced during anaerobic amino acid limitation to protect Fe-S cluster enzymes and biogenesis from the endogenously originated Cu(I) toxicity, thus facilitating the physiological adaptation of E. coli. PMID:23893112

  15. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  16. Hypervelocity Inflight Trajectory Scatter (HITS) Code. User’s Manual

    DTIC Science & Technology

    1976-04-01

    referred to as skewness. The fourth central moment is referred to as kurtosis and provides an additional measure of the clustering of the distribution... clustering of data points in the resulting "scatter diagram" would indicate correlation. The correlation can be quantified by fit- ting a straight line...10- *4 U* 0%.0 Coo IX wV~ Z de *I *- 0 On Wa )I GMX Ŕ.~ Ot. *P0 WX #- % OW- W 00WIj u +,- >ot o-O- oW cbok~ o*9 lWI $ Wld6 0000000N000 0 4 00 6 6

  17. Project FOOTPRINT: Substation modeling and simulations for E1 pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Scott D.; Larson, D. J.; Kirkendall, B. A.

    This report includes a presentation with an: Introduction to CW coupling; Introduction to single-pulse coupling; Description of E1 waveforms; Structures in a substation yard --articulated (as part of the substation's defined electrical functionality)--unarticulated (not as part of the substation's defined electrical functionality); Coupling --electrical coupling (capacitive coupling) --magnetic coupling (inductive coupling); Connectivity to long-line transmission lines; Control infrastructure; Summary; and References.

  18. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  19. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    PubMed

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  20. An RNA-Seq Transcriptome Analysis of Orthophosphate-Deficient White Lupin Reveals Novel Insights into Phosphorus Acclimation in Plants1[W][OA

    PubMed Central

    O’Rourke, Jamie A.; Yang, S. Samuel; Miller, Susan S.; Bucciarelli, Bruna; Liu, Junqi; Rydeen, Ariel; Bozsoki, Zoltan; Uhde-Stone, Claudia; Tu, Zheng Jin; Allan, Deborah; Gronwald, John W.; Vance, Carroll P.

    2013-01-01

    Phosphorus, in its orthophosphate form (Pi), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to Pi deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in Pi-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to Pi supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to Pi deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to Pi deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the Pi status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in Pi deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to Pi deficiency. PMID:23197803

  1. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants.

    PubMed

    O'Rourke, Jamie A; Yang, S Samuel; Miller, Susan S; Bucciarelli, Bruna; Liu, Junqi; Rydeen, Ariel; Bozsoki, Zoltan; Uhde-Stone, Claudia; Tu, Zheng Jin; Allan, Deborah; Gronwald, John W; Vance, Carroll P

    2013-02-01

    Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.

  2. The protonation of N2O reexamined - A case study on the reliability of various electron correlation methods for minima and transition states

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.; Lee, Timothy J.

    1993-01-01

    The protonation of N2O and the intramolecular proton transfer in N2OH(+) are studied using various basis sets and a variety of methods, including second-order many-body perturbation theory (MP2), singles and doubles coupled cluster (CCSD), the augmented coupled cluster (CCSD/T/), and complete active space self-consistent field (CASSCF) methods. For geometries, MP2 leads to serious errors even for HNNO(+); for the transition state, only CCSD/T/ produces a reliable geometry due to serious nondynamical correlation effects. The proton affinity at 298.15 K is estimated at 137.6 kcal/mol, in close agreement with recent experimental determinations of 137.3 +/- 1 kcal/mol.

  3. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.; Sousa Alencar, Ana G.; Scuseria, Gustavo E.

    2015-12-01

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f0 actinyl series (UO22+, NpO23+, PuO24+), the isoelectronic NUN, and thorium (ThO, ThO2+) and nobelium (NoO, NoO2) oxides are studied.

  4. Coupled cluster calculations for static and dynamic polarizabilities of C60

    NASA Astrophysics Data System (ADS)

    Kowalski, Karol; Hammond, Jeff R.; de Jong, Wibe A.; Sadlej, Andrzej J.

    2008-12-01

    New theoretical predictions for the static and frequency dependent polarizabilities of C60 are reported. Using the linear response coupled cluster approach with singles and doubles and a basis set especially designed to treat the molecular properties in external electric field, we obtained 82.20 and 83.62 Å3 for static and dynamic (λ =1064 nm) polarizabilities. These numbers are in a good agreement with experimentally inferred data of 76.5±8 and 79±4 Å3 [R. Antoine et al., J. Chem. Phys.110, 9771 (1999); A. Ballard et al., J. Chem. Phys.113, 5732 (2000)]. The reported results were obtained with the highest wave function-based level of theory ever applied to the C60 system.

  5. Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the [2Fe-2S](2+) Rieske cluster in cytochrome bc(1).

    PubMed

    Sarewicz, Marcin; Dutka, Małgorzata; Pietras, Rafał; Borek, Arkadiusz; Osyczka, Artur

    2015-10-14

    Here, comparative electron spin-lattice relaxation studies of the 2Fe-2S iron-sulphur (Fe-S) cluster embedded in a large membrane protein complex - cytochrome bc1 - are reported. Structural modifications of the local environment alone (mutations S158A and Y160W removing specific H bonds between Fe-S and amino acid side chains) or in combination with changes in global protein conformation (mutations/inhibitors changing the position of the Fe-S binding domain within the protein complex) resulted in different redox potentials as well as g-, g-strain and the relaxation rates (T1(-1)) for the Fe-S cluster. The relaxation rates for T < 25 K were measured directly by inversion recovery, while for T > 60 K they were deduced from simulation of continuous wave EPR spectra of the cluster using a model that included anisotropy of Lorentzian broadening. In all cases, the relaxation rate involved contributions from direct, second-order Raman and Orbach processes, each dominating over different temperature ranges. The analysis of T1(-1) (T) over the range 5-120 K yielded the values of the Orbach energy (EOrb), Debye temperature θD and Raman process efficiency CRam for each variant of the protein. As the Orbach energy was generally higher for mutants S158A and Y160W, compared to wild-type protein (WT), it is suggested that H bond removal influences the geometry leading to increased strength of antiferromagnetic coupling between two Fe ions of the cluster. While θD was similar for all variants (∼107 K), the efficiency of the Raman process generally depends on the spin-orbit coupling that is lower for S158A and Y160W mutants, when compared to the WT. However, in several cases CRam did not only correlate with spin-orbit coupling but was also influenced by other factors - possibly the modification of protein rigidity and therefore the vibrational modes around the Fe-S cluster that change upon the movement of the iron-sulphur head domain.

  6. Galaxy Transformations In The Cosmic Web

    NASA Astrophysics Data System (ADS)

    Jablonka, Pascale

    2017-06-01

    In this talk, I present a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), that aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. SEEDisCS therefore focusses on the changes in galaxy properties along the large scale structures surrounding a couple of z 0.5 medium mass clusters, I first describe how spiral disc stellar populations are affected by the environment,and how we can get constraints on the timescale of star formation quenching. I then present new NOEMA and ALMA CO observations that trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.

  7. Continuum Level Density of a Coupled-Channel System in the Complex Scaling Method

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Kruppa, A. T.; Giraud, B. G.; Katō, K.

    2008-06-01

    We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the ^{4}He = [^{3}H + p] + [^3{He} + n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L^{2} basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role.

  8. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    NASA Astrophysics Data System (ADS)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  9. Device and Method for Gathering Ensemble Data Sets

    NASA Technical Reports Server (NTRS)

    Racette, Paul E. (Inventor)

    2014-01-01

    An ensemble detector uses calibrated noise references to produce ensemble sets of data from which properties of non-stationary processes may be extracted. The ensemble detector comprising: a receiver; a switching device coupled to the receiver, the switching device configured to selectively connect each of a plurality of reference noise signals to the receiver; and a gain modulation circuit coupled to the receiver and configured to vary a gain of the receiver based on a forcing signal; whereby the switching device selectively connects each of the plurality of reference noise signals to the receiver to produce an output signal derived from the plurality of reference noise signals and the forcing signal.

  10. Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters

    NASA Astrophysics Data System (ADS)

    Diaz-Bachs, A.; Katsnelson, M. I.; Kirilyuk, A.

    2018-04-01

    In this work we use magnetic deflection of V, Nb, and Ta atomic clusters to measure their magnetic moments. While only a few of the clusters show weak magnetism, all odd-numbered clusters deflect due to the presence of a single unpaired electron. Surprisingly, for the majority of V and Nb clusters an atomic-like behavior is found, which is a direct indication of the absence of spin–lattice interaction. This is in agreement with Kramers degeneracy theorem for systems with a half-integer spin. This purely quantum phenomenon is surprisingly observed for large systems of more than 20 atoms, and also indicates various quantum relaxation processes, via Raman two-phonon and Orbach high-spin mechanisms. In heavier, Ta clusters, the relaxation is always present, probably due to larger masses and thus lower phonon energies, as well as increased spin–orbit coupling.

  11. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.

  12. U.S. stock market interaction network as learned by the Boltzmann machine

    DOE PAGES

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-07

    Here, we study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as themore » market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model’s parameters might be used as a precursor of financial instabilities.« less

  13. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    NASA Astrophysics Data System (ADS)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  14. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].

    PubMed

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-07

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  15. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  16. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.

    PubMed

    Gozem, Samer; Melaccio, Federico; Valentini, Alessio; Filatov, Michael; Huix-Rotllant, Miquel; Ferré, Nicolas; Frutos, Luis Manuel; Angeli, Celestino; Krylov, Anna I; Granovsky, Alexander A; Lindh, Roland; Olivucci, Massimo

    2014-08-12

    We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

  17. Chronology of the halo globular cluster system formation.

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Weiss, A.

    1997-11-01

    Using up-to-date stellar models and isochrones we determine the age of 25 galactic halo clusters. The clusters are distributed into four groups according to metallicity. We measure the absolute age of a reference cluster in each group, and then find the relative ages of the other clusters relative to this one. This combination yields the most reliable results. We find that the oldest cluster group on average is 11.8+/-0.9Gyr or 12.3+/-0.3Gyr old, depending on whether we include Arp 2 and Rup 106. The average age of all clusters is about 10.5Gyr. Questions concerning a common age for all clusters and a relation between metallicity and age are addressed. The groups of lower metallicity appear to be coeval, but our results indicate that globally the sample has an age spread, and age and metallicity are correlated but not with a simple linear relation.

  18. GDPC: Gravitation-based Density Peaks Clustering algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Jianhua; Hao, Dehao; Chen, Yujun; Parmar, Milan; Li, Keqin

    2018-07-01

    The Density Peaks Clustering algorithm, which we refer to as DPC, is a novel and efficient density-based clustering approach, and it is published in Science in 2014. The DPC has advantages of discovering clusters with varying sizes and varying densities, but has some limitations of detecting the number of clusters and identifying anomalies. We develop an enhanced algorithm with an alternative decision graph based on gravitation theory and nearby distance to identify centroids and anomalies accurately. We apply our method to some UCI and synthetic data sets. We report comparative clustering performances using F-Measure and 2-dimensional vision. We also compare our method to other clustering algorithms, such as K-Means, Affinity Propagation (AP) and DPC. We present F-Measure scores and clustering accuracies of our GDPC algorithm compared to K-Means, AP and DPC on different data sets. We show that the GDPC has the superior performance in its capability of: (1) detecting the number of clusters obviously; (2) aggregating clusters with varying sizes, varying densities efficiently; (3) identifying anomalies accurately.

  19. A cluster analytic study of the Wechsler Intelligence Test for Children-IV in children referred for psychoeducational assessment due to persistent academic difficulties.

    PubMed

    Hale, Corinne R; Casey, Joseph E; Ricciardi, Philip W R

    2014-02-01

    Wechsler Intelligence Test for Children-IV core subtest scores of 472 children were cluster analyzed to determine if reliable and valid subgroups would emerge. Three subgroups were identified. Clusters were reliable across different stages of the analysis as well as across algorithms and samples. With respect to external validity, the Globally Low cluster differed from the other two clusters on Wechsler Individual Achievement Test-II Word Reading, Numerical Operations, and Spelling subtests, whereas the latter two clusters did not differ from one another. The clusters derived have been identified in studies using previous WISC editions. Clusters characterized by poor performance on subtests historically associated with the VIQ (i.e., VCI + WMI) and PIQ (i.e., POI + PSI) did not emerge, nor did a cluster characterized by low scores on PRI subtests. Picture Concepts represented the highest subtest score in every cluster, failing to vary in a predictable manner with the other PRI subtests.

  20. The Comparison of Iranian Normative Reference Data with Five Countries ‎Across Variables in Eight Rorschach Comprehensive System (CS) Clusters

    PubMed Central

    Hosseininasab, Abufazel; Mohammadi, Mohammadreza; Jouzi, Samira; Esmaeilinasab, Maryam; Delavar, Ali

    2016-01-01

    Objective: This study aimed to provide a normative study documenting how 114 five-seven year-old non-‎patient Iranian children respond to the Rorschach test. We compared this especial sample to ‎international normative reference values for the Comprehensive System (CS).‎ Method: One hundred fourteen 5- 7- year-old non-patient Iranian children were recruited from public ‎schools. Using five child and adolescent samples from five countries, we compared Iranian ‎Normative Reference Data- based on reference means and standard deviations for each sample.‎ Results: Findings revealed that how the scores in each sample were distributed and how the samples were ‎compared across variables in eight Rorschach Comprehensive System (CS) clusters. We reported ‎all descriptive statistics such as reference mean and standard deviation for all variables.‎ Conclusion: Iranian clinicians could rely on country specific or “local norms” when assessing children. We ‎discourage Iranian clinicians to use many CS scores to make nomothetic, score-based inferences ‎about psychopathology in children and adolescents.‎ PMID:27928247

  1. Opportunities of Learning through the History of Mathematics: The Example of National Textbooks in Cyprus and Greece

    ERIC Educational Resources Information Center

    Xenofontos, Constantinos; Papadopoulos, Christos E.

    2015-01-01

    In this paper, we examine the ways the history of mathematics is integrated in the national textbooks of Cyprus and Greece. Our data-driven analyses suggest that the references identified can be clustered in four categories: (a) biographical references about mathematicians or historical references regarding the origins of a mathematical concept…

  2. Impact of the choice of reference genome on the ability of the core genome SNV methodology to distinguish strains of Salmonella enterica serovar Heidelberg.

    PubMed

    Usongo, Valentine; Berry, Chrystal; Yousfi, Khadidja; Doualla-Bell, Florence; Labbé, Genevieve; Johnson, Roger; Fournier, Eric; Nadon, Celine; Goodridge, Lawrence; Bekal, Sadjia

    2018-01-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.

  3. A Typology of Marital Quality of Enduring Marriages in Israel

    ERIC Educational Resources Information Center

    Cohen, Orna; Geron, Yael; Farchi, Alva

    2010-01-01

    This article presents a typology of enduring marriages of Israeli couples married for at least 40 years. Based on the view that marital quality is a multidimensional phenomenon, the typology is derived from a cluster analysis of responses of husbands and wives in 51 couples to the ENRICH scale items. Three types of enduring marriages were found:…

  4. Radiative Feedback of Forming Star Clusters on Their GMC Environments: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Howard, C. S.; Pudritz, R. E.; Harris, W. E.

    2013-07-01

    Star clusters form from dense clumps within a molecular cloud. Radiation from these newly formed clusters feeds back on their natal molecular cloud through heating and ionization which ultimately stops gas accretion into the cluster. Recent studies suggest that radiative feedback effects from a single cluster may be sufficient to disrupt an entire cloud over a short timescale. Simulating cluster formation on a large scale, however, is computationally demanding due to the high number of stars involved. For this reason, we present a model for representing the radiative output of an entire cluster which involves randomly sampling an initial mass function (IMF) as the cluster accretes mass. We show that this model is able to reproduce the star formation histories of observed clusters. To examine the degree to which radiative feedback shapes the evolution of a molecular cloud, we use the FLASH adaptive-mesh refinement hydrodynamics code to simulate cluster formation in a turbulent cloud. Unlike previous studies, sink particles are used to represent a forming cluster rather than individual stars. Our cluster model is then coupled with a raytracing scheme to treat radiative transfer as the clusters grow in mass. This poster will outline the details of our model and present preliminary results from our 3D hydrodynamical simulations.

  5. The Influence of the Phonological Neighborhood Clustering Coefficient on Spoken Word Recognition

    ERIC Educational Resources Information Center

    Chan, Kit Ying; Vitevitch, Michael S.

    2009-01-01

    Clustering coefficient--a measure derived from the new science of networks--refers to the proportion of phonological neighbors of a target word that are also neighbors of each other. Consider the words "bat", "hat", and "can", all of which are neighbors of the word "cat"; the words "bat" and…

  6. Crossmaps: Visualization of overlapping relationships in collections of journal papers

    PubMed Central

    Morris, Steven A.; Yen, Gary G.

    2004-01-01

    A crossmapping technique is introduced for visualizing multiple and overlapping relations among entity types in collections of journal articles. Groups of entities from two entity types are crossplotted to show correspondence of relations. For example, author collaboration groups are plotted on the x axis against groups of papers (research fronts) on the y axis. At the intersection of each pair of author group/research front pairs a circular symbol is plotted whose size is proportional to the number of times that authors in the group appear as authors in papers in the research front. Entity groups are found by agglomerative hierarchical clustering using conventional similarity measures. Crossmaps comprise a simple technique that is particularly suited to showing overlap in relations among entity groups. Particularly useful crossmaps are: research fronts against base reference clusters, research fronts against author collaboration groups, and research fronts against term co-occurrence clusters. When exploring the knowledge domain of a collection of journal papers, it is useful to have several crossmaps of different entity pairs, complemented by research front timelines and base reference cluster timelines. PMID:14762168

  7. Electronic spectra from TDDFT and machine learning in chemical space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakrishnan, Raghunathan; Hartmann, Mia; Tapavicza, Enrico

    Due to its favorable computational efficiency, time-dependent (TD) density functional theory (DFT) enables the prediction of electronic spectra in a high-throughput manner across chemical space. Its predictions, however, can be quite inaccurate. We resolve this issue with machine learning models trained on deviations of reference second-order approximate coupled-cluster (CC2) singles and doubles spectra from TDDFT counterparts, or even from DFT gap. We applied this approach to low-lying singlet-singlet vertical electronic spectra of over 20 000 synthetically feasible small organic molecules with up to eight CONF atoms. The prediction errors decay monotonously as a function of training set size. For amore » training set of 10 000 molecules, CC2 excitation energies can be reproduced to within +/- 0.1 eV for the remaining molecules. Analysis of our spectral database via chromophore counting suggests that even higher accuracies can be achieved. Based on the evidence collected, we discuss open challenges associated with data-driven modeling of high-lying spectra and transition intensities.« less

  8. An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannon, Kevin P.; Li, Chenyang; Evangelista, Francesco A., E-mail: francesco.evangelista@emory.edu

    2016-05-28

    We report an efficient implementation of a second-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT2) [C. Li and F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)]. Our implementation employs factorized two-electron integrals to avoid storage of large four-index intermediates. It also exploits the block structure of the reference density matrices to reduce the computational cost to that of second-order Møller–Plesset perturbation theory. Our new DSRG-MRPT2 implementation is benchmarked on ten naphthyne isomers using basis sets up to quintuple-ζ quality. We find that the singlet-triplet splittings (Δ{sub ST}) of the naphthyne isomers strongly depend onmore » the equilibrium structures. For a consistent set of geometries, the Δ{sub ST} values predicted by the DSRG-MRPT2 are in good agreements with those computed by the reduced multireference coupled cluster theory with singles, doubles, and perturbative triples.« less

  9. Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Ferreira da Silva, F.; Lange, E.

    2016-07-21

    We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3–10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to themore » 3sσ/σ{sup ∗}(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth’s atmosphere (0–50 km).« less

  10. On-top density functionals for the short-range dynamic correlation between electrons of opposite and parallel spin

    NASA Astrophysics Data System (ADS)

    Hollett, Joshua W.; Pegoretti, Nicholas

    2018-04-01

    Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.

  11. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group

    NASA Astrophysics Data System (ADS)

    Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.

    2017-08-01

    We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.

  12. Electronic and spectroscopic characterizations of SNP isomers

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.

    2018-02-01

    High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.

  13. Gaussian process regression to accelerate geometry optimizations relying on numerical differentiation

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Christiansen, Ove

    2018-06-01

    We study how with means of Gaussian Process Regression (GPR) geometry optimizations, which rely on numerical gradients, can be accelerated. The GPR interpolates a local potential energy surface on which the structure is optimized. It is found to be efficient to combine results on a low computational level (HF or MP2) with the GPR-calculated gradient of the difference between the low level method and the target method, which is a variant of explicitly correlated Coupled Cluster Singles and Doubles with perturbative Triples correction CCSD(F12*)(T) in this study. Overall convergence is achieved if both the potential and the geometry are converged. Compared to numerical gradient-based algorithms, the number of required single point calculations is reduced. Although introducing an error due to the interpolation, the optimized structures are sufficiently close to the minimum of the target level of theory meaning that the reference and predicted minimum only vary energetically in the μEh regime.

  14. Ab initio prediction of the vibration-rotation-tunneling spectrum of HCl-(H2O)2

    NASA Astrophysics Data System (ADS)

    Wormer, P. E. S.; Groenenboom, G. C.; van der Avoird, A.

    2001-08-01

    Quantum calculations of the vibration-rotation-tunneling (VRT) levels of the trimer HCl-(H2O)2 are presented. Two internal degrees of freedom are considered—the rotation angles of the two nonhydrogen-bonded (flipping) hydrogens in the complex—together with the overall rotation of the trimer in space. The kinetic energy expression of van der Avoird et al. [J. Chem. Phys. 105, 8034 (1996)] is used in a slightly modified form. The experimental microwave geometry of Kisiel et al. [J. Chem. Phys. 112, 5767 (2000)] served as input in the generation of a planar reference structure. The two-dimensional potential energy surface is generated ab initio by the iterative coupled-cluster method based on singly and doubly excited states with triply excited states included noniteratively [CCSD(T)]. Frequencies of vibrations and tunnel splittings are predicted for two isotopomers. The effect of the nonadditive three-body forces is considered and found to be important.

  15. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  16. Pseudo Jahn-Teller coupling in trioxides XO3(0,1,-1) with 22 and 23 valence electrons

    NASA Astrophysics Data System (ADS)

    Grein, Friedrich

    2013-05-01

    D3h and C2v geometries and energies, vertical excitation energies, as well as minimal energy paths as function of the O1(z)-X-O2 angle α were obtained for XO3(0,1,-1) (X = B, Al, Ga; C, Si, Ge; N, P, As; S, Se) molecules and ions with 22 and 23 valence electrons (VE), using density functional theory (DFT), coupled cluster with single and double substitutions with noniterative triple excitations (CCSD(T)), equation of motion (EOM)-CCSD, time-dependent DFT, and multi-reference configuration interaction methods. It is shown that pseudo Jahn-Teller (PJT) coupling increases as the central atom X becomes heavier, due to decreases in excitation energies. As is well known for CO3, the excited 1E' states of the 22 VE systems SiO3, GeO3; NO_3 ^ +, PO3+, AsO3+; BO3-, AlO3-, GaO3- have strong vibronic coupling with the 1A1' ground state via the e' vibrational modes, leading to a C2v minimum around α = 145°. For first and second row X atoms, there is an additional D3h minimum (α = 120°). Interacting excited states have minima around 135°. In the 23 VE systems CO3-, SiO3-; NO3, PO3; SO3+, coupling of the excited 2E' with the 2A2' ground state via the e' mode does not generate a C2v state. Minima of interacting excited states are close to 120°. However, due to very strong PJT coupling, a double-well potential is predicted for GeO3-, AsO3, and SeO3+, with a saddle point at D3h symmetry. Interaction of the b2 highest occupied molecular orbital with the b2 lowest unoccupied molecular orbital, both oxygen lone pair molecular orbitals, is seen as the reason for the C2v stabilization of 22 VE molecules.

  17. Seismic Tomography Of The Caucasus Region

    NASA Astrophysics Data System (ADS)

    Javakhishvili, Z.; Godoladze, T.; Gok, R.; Elashvili, M.

    2007-12-01

    The Caucasus is one of the most active segments of the Alpine-Himalayan collision belt. We used the catalog data of Georgian Seismic Network to calculate the reference 1-D and 3-D P-velocity model of the Caucasus region. The analog recording period in Georgia was quite long and 17,000 events reported in the catalog between 1956 and 1990. We carefully eliminated some arrivals due to ambiguities for analog type data picking and station time corrections. We choose arrivals with comparably low residuals between observed and calculated travel times (<1 sec). We also limited our data to minimum 10 P-arrivals and maximum azimuthal gap of 180 degrees. Finally,475 events were selected with magnitude greater than 1.5 recorded by 84 stations. We obtained good resolution down to 70 km. First, we used 1-D coupled inversion algorithm (VELEST) to calculate the velocity model and the relocations. The same model convergence is observed for the mid and lower crust. The upper layer (0-10km) is observed to be sensitive to the starting model. We used vertical seismic prospecting data from boreholes in Georgia to fix upper layer velocities. We relocated all events in the region using the new reference 1- D velocity model. The 3-D coupled inversion algorithm (SIMULPS14) was applied using the 1-D reference model as a starting model. We observed very large amount of shift at horizontal directions (up to 50 km). We observed clustered events where they are well correlated with query blasts from Tkibuli mining area. We applied the resolution test to estimate the spatial resolution of the tomographic images. The results of the test indicate that the initial model is well reconstructed for all depth slices, though it is badly reconstructed for the shallowest layer (with depth = 5km). The Moho geometry beneath Caucasus has been determined reliably by the previous geophysical studies. It has a relatively large depth variation in this region from 28 to 61 km depth, according to those studies and our tomography result for the uppermost mantle (50 km) reflects this depth variation of the Moho discontinuity.

  18. Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Johnston, Steven W.; Ahrenkiel, Richard K.

    2002-01-01

    An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

  19. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias

    2007-11-01

    The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Møller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.

  20. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: benchmarks approaching the complete basis set limit.

    PubMed

    Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias

    2007-11-14

    The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Moller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.

Top